Fushiki, Tadayoshi
2009-07-01
The correlation matrix is a fundamental statistic that is used in many fields. For example, GroupLens, a collaborative filtering system, uses the correlation between users for predictive purposes. Since the correlation is a natural similarity measure between users, the correlation matrix may be used in the Gram matrix in kernel methods. However, the estimated correlation matrix sometimes has a serious defect: although the correlation matrix is originally positive semidefinite, the estimated one may not be positive semidefinite when not all ratings are observed. To obtain a positive semidefinite correlation matrix, the nearest correlation matrix problem has recently been studied in the fields of numerical analysis and optimization. However, statistical properties are not explicitly used in such studies. To obtain a positive semidefinite correlation matrix, we assume the approximate model. By using the model, an estimate is obtained as the optimal point of an optimization problem formulated with information on the variances of the estimated correlation coefficients. The problem is solved by a convex quadratic semidefinite program. A penalized likelihood approach is also examined. The MovieLens data set is used to test our approach.
Positive Matrix Factorization Model for environmental data analyses
Positive Matrix Factorization is a receptor model developed by EPA to provide scientific support for current ambient air quality standards and implement those standards by identifying and quantifying the relative contributions of air pollution sources.
The matrix effect in secondary ion mass spectrometry
NASA Astrophysics Data System (ADS)
Seah, M. P.; Shard, A. G.
2018-05-01
Matrix effects in the secondary ion mass spectrometry (SIMS) of selected elemental systems have been analyzed to investigate the applicability of a mathematical description of the matrix effect, called here the charge transfer (CT) model. This model was originally derived for proton exchange and organic positive secondary ions, to characterise the enhancement or suppression of intensities in organic binary systems. In the systems considered in this paper protons are specifically excluded, which enables an assessment of whether the model applies for electrons as well. The present importance is in organic systems but, here we analyse simpler inorganic systems. Matrix effects in elemental systems cannot involve proton transfer if there are no protons present but may be caused by electron transfer and so electron transfer may also be involved in the matrix effects for organic systems. There are general similarities in both the magnitudes of the ion intensities as well as the matrix effects for both positive and negative secondary ions in both systems and so the CT model may be more widely applicable. Published SIMS analyses of binary elemental mixtures are analyzed. The data of Kim et al., for the Pt/Co system, provide, with good precision, data for such a system. This gives evidence for the applicability of the CT model, where electron, rather than proton, transfer is the matrix enhancing and suppressing mechanism. The published data of Prudon et al., for the important Si/Ge system, provides further evidence for the effects for both positive and negative secondary ions and allows rudimentary rules to be developed for the enhancing and suppressing species.
THE U.S. ENVIRONMENTAL PROTECTION AGENCY VERSION OF POSITIVE MATRIX FACTORIZATION
The abstract describes some of the special features of the EPA's version of Positive Matrix Factorization that is freely distributed. Features include descriptions of the Graphical User Interface, an approach for estimating errors in the modeled solutions, and future development...
Methods for apportioning sources of ambient particulate matter (PM) using the positive matrix factorization (PMF) algorithm are reviewed. Numerous procedural decisions must be made and algorithmic parameters selected when analyzing PM data with PMF. However, few publications docu...
Matched field localization based on CS-MUSIC algorithm
NASA Astrophysics Data System (ADS)
Guo, Shuangle; Tang, Ruichun; Peng, Linhui; Ji, Xiaopeng
2016-04-01
The problem caused by shortness or excessiveness of snapshots and by coherent sources in underwater acoustic positioning is considered. A matched field localization algorithm based on CS-MUSIC (Compressive Sensing Multiple Signal Classification) is proposed based on the sparse mathematical model of the underwater positioning. The signal matrix is calculated through the SVD (Singular Value Decomposition) of the observation matrix. The observation matrix in the sparse mathematical model is replaced by the signal matrix, and a new concise sparse mathematical model is obtained, which means not only the scale of the localization problem but also the noise level is reduced; then the new sparse mathematical model is solved by the CS-MUSIC algorithm which is a combination of CS (Compressive Sensing) method and MUSIC (Multiple Signal Classification) method. The algorithm proposed in this paper can overcome effectively the difficulties caused by correlated sources and shortness of snapshots, and it can also reduce the time complexity and noise level of the localization problem by using the SVD of the observation matrix when the number of snapshots is large, which will be proved in this paper.
Manifold Preserving: An Intrinsic Approach for Semisupervised Distance Metric Learning.
Ying, Shihui; Wen, Zhijie; Shi, Jun; Peng, Yaxin; Peng, Jigen; Qiao, Hong
2017-05-18
In this paper, we address the semisupervised distance metric learning problem and its applications in classification and image retrieval. First, we formulate a semisupervised distance metric learning model by considering the metric information of inner classes and interclasses. In this model, an adaptive parameter is designed to balance the inner metrics and intermetrics by using data structure. Second, we convert the model to a minimization problem whose variable is symmetric positive-definite matrix. Third, in implementation, we deduce an intrinsic steepest descent method, which assures that the metric matrix is strictly symmetric positive-definite at each iteration, with the manifold structure of the symmetric positive-definite matrix manifold. Finally, we test the proposed algorithm on conventional data sets, and compare it with other four representative methods. The numerical results validate that the proposed method significantly improves the classification with the same computational efficiency.
Investigation into Text Classification With Kernel Based Schemes
2010-03-01
Document Matrix TDMs Term-Document Matrices TMG Text to Matrix Generator TN True Negative TP True Positive VSM Vector Space Model xxii THIS PAGE...are represented as a term-document matrix, common evaluation metrics, and the software package Text to Matrix Generator ( TMG ). The classifier...AND METRICS This chapter introduces the indexing capabilities of the Text to Matrix Generator ( TMG ) Toolbox. Specific attention is placed on the
ARMA Cholesky Factor Models for the Covariance Matrix of Linear Models.
Lee, Keunbaik; Baek, Changryong; Daniels, Michael J
2017-11-01
In longitudinal studies, serial dependence of repeated outcomes must be taken into account to make correct inferences on covariate effects. As such, care must be taken in modeling the covariance matrix. However, estimation of the covariance matrix is challenging because there are many parameters in the matrix and the estimated covariance matrix should be positive definite. To overcomes these limitations, two Cholesky decomposition approaches have been proposed: modified Cholesky decomposition for autoregressive (AR) structure and moving average Cholesky decomposition for moving average (MA) structure, respectively. However, the correlations of repeated outcomes are often not captured parsimoniously using either approach separately. In this paper, we propose a class of flexible, nonstationary, heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the covariance matrix that we denote as ARMACD. We analyze a recent lung cancer study to illustrate the power of our proposed methods.
Three years of PM2.5 speciated data were collected and chemically analyzed using the IMPROVE protocol at the Beacon Hill site in Seattle. The data were analyzed by the Chemical Mass Balance Version 8 (CMB8) and Positive Matrix Factorization (PMF) source apportionment models. T...
1990-12-01
was determined from the difference between the 24-state matrix product, HtP (t’)HT, and the six-state matrix product, HfPf (tT)HT’. For this...The true position for node 7, which represents the rigid body position of the structure, is not damped and can be interpreted as a rigid body...application, considering the same issues as explored in this research. Continue with a physical interpretation of the structure positions for determining the
NASA Technical Reports Server (NTRS)
McManus, Hugh L.; Chamis, Christos C.
1996-01-01
This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.
Correction of electrode modelling errors in multi-frequency EIT imaging.
Jehl, Markus; Holder, David
2016-06-01
The differentiation of haemorrhagic from ischaemic stroke using electrical impedance tomography (EIT) requires measurements at multiple frequencies, since the general lack of healthy measurements on the same patient excludes time-difference imaging methods. It has previously been shown that the inaccurate modelling of electrodes constitutes one of the largest sources of image artefacts in non-linear multi-frequency EIT applications. To address this issue, we augmented the conductivity Jacobian matrix with a Jacobian matrix with respect to electrode movement. Using this new algorithm, simulated ischaemic and haemorrhagic strokes in a realistic head model were reconstructed for varying degrees of electrode position errors. The simultaneous recovery of conductivity spectra and electrode positions removed most artefacts caused by inaccurately modelled electrodes. Reconstructions were stable for electrode position errors of up to 1.5 mm standard deviation along both surface dimensions. We conclude that this method can be used for electrode model correction in multi-frequency EIT.
Institutional and matrix support and its relationship with primary healthcare
dos Santos, Alaneir de Fátima; Machado, Antônio Thomaz Gonzaga da Matta; dos Reis, Clarice Magalhães Rodrigues; Abreu, Daisy Maria Xavier; de Araújo, Lucas Henrique Lobato; Rodrigues, Simone Cristina; de Lima, Ângela Maria de Lourdes Dayrell; Jorge, Alzira de Oliveira; Fonseca, Délcio
2015-01-01
OBJECTIVE To analyze whether the level of institutional and matrix support is associated with better certification of primary healthcare teams. METHODS In this cross-sectional study, we evaluated two kinds of primary healthcare support – 14,489 teams received institutional support and 14,306 teams received matrix support. Logistic regression models were applied. In the institutional support model, the independent variable was “level of support” (as calculated by the sum of supporting activities for both modalities). In the matrix support model, in turn, the independent variables were the supporting activities. The multivariate analysis has considered variables with p < 0.20. The model was adjusted by the Hosmer-Lemeshow test. RESULTS The teams had institutional and matrix supporting activities (84.0% and 85.0%), respectively, with 55.0% of them performing between six and eight activities. For the institutional support, we have observed 1.96 and 3.77 chances for teams who had medium and high levels of support to have very good or good certification, respectively. For the matrix support, the chances of their having very good or good certification were 1.79 and 3.29, respectively. Regarding to the association between institutional support activities and the certification, the very good or good certification was positively associated with self-assessment (OR = 1.95), permanent education (OR = 1.43), shared evaluation (OR = 1.40), and supervision and evaluation of indicators (OR = 1.37). In regards to the matrix support, the very good or good certification was positively associated with permanent education (OR = 1.50), interventions in the territory (OR = 1.30), and discussion in the work processes (OR = 1.23). CONCLUSIONS In Brazil, supporting activities are being incorporated in primary healthcare, and there is an association between the level of support, both matrix and institutional, and the certification result. PMID:26274872
Risk Management using Dependency Stucture Matrix
NASA Astrophysics Data System (ADS)
Petković, Ivan
2011-09-01
An efficient method based on dependency structure matrix (DSM) analysis is given for ranking risks in a complex system or process whose entities are mutually dependent. This rank is determined according to the element's values of the unique positive eigenvector which corresponds to the matrix spectral radius modeling the considered engineering system. For demonstration, the risk problem of NASA's robotic spacecraft is analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcmanus, H.L.; Chamis, C.C.
1996-01-01
This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) ismore » presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.« less
Matrix method for acoustic levitation simulation.
Andrade, Marco A B; Perez, Nicolas; Buiochi, Flavio; Adamowski, Julio C
2011-08-01
A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort.
Modeling food matrix effects on chemical reactivity: Challenges and perspectives.
Capuano, Edoardo; Oliviero, Teresa; van Boekel, Martinus A J S
2017-06-29
The same chemical reaction may be different in terms of its position of the equilibrium (i.e., thermodynamics) and its kinetics when studied in different foods. The diversity in the chemical composition of food and in its structural organization at macro-, meso-, and microscopic levels, that is, the food matrix, is responsible for this difference. In this viewpoint paper, the multiple, and interconnected ways the food matrix can affect chemical reactivity are summarized. Moreover, mechanistic and empirical approaches to explain and predict the effect of food matrix on chemical reactivity are described. Mechanistic models aim to quantify the effect of food matrix based on a detailed understanding of the chemical and physical phenomena occurring in food. Their applicability is limited at the moment to very simple food systems. Empirical modeling based on machine learning combined with data-mining techniques may represent an alternative, useful option to predict the effect of the food matrix on chemical reactivity and to identify chemical and physical properties to be further tested. In such a way the mechanistic understanding of the effect of the food matrix on chemical reactions can be improved.
NASA Technical Reports Server (NTRS)
Bahethi, O. P.; Fraser, R. S.
1975-01-01
Computations of the intensity, flux, degree of polarization, and the positions of neutral points are presented for models of the terrestrial gaseous and hazy atmospheres by incorporating the molecular anisotropy due to air in the Rayleigh scattering optical thickness and phase matrix. Molecular anisotropy causes significant changes in the intensity, flux and the degree of polarization of the scattered light. The positions of neutral points do not change significantly. When the Rayleigh scattering optical thickness is kept constant and the molecular anisotropy factor is included only in the Rayleigh phase matrix, the flux does not change and the intensity and positions of neutron points change by a small amount. The changes in the degree of polarization are still significant.
Spatial orientation of the vestibular system
NASA Technical Reports Server (NTRS)
Raphan, T.; Dai, M.; Cohen, B.
1992-01-01
1. A simplified three-dimensional state space model of visual vestibular interaction was formulated. Matrix and dynamical system operators representing coupling from the semicircular canals and the visual system to the velocity storage integrator were incorporated into the model. 2. It was postulated that the system matrix for a tilted position was a composition of two linear transformations of the system matrix for the upright position. One transformation modifies the eigenvalues of the system matrix while another rotates the pitch and roll eigenvectors with the head, while maintaining the yaw axis eigenvector approximately spatially invariant. Using this representation, the response characteristics of the pitch, roll, and yaw eye velocity were obtained in terms of the eigenvalues and associated eigenvectors. 3. Using OKAN data obtained from monkeys and comparing to the model predictions, the eigenvalues and eigenvectors of the system matrix were identified as a function of tilt to the side or of tilt to the prone positions, using a modification of the Marquardt algorithm. The yaw eigenvector for right-side-down tilt and for downward pitch cross-coupling was approximately 30 degrees from the spatial vertical. For the prone position, the eigenvector was computed to be approximately 20 degrees relative to the spatial vertical. For both side-down and prone positions, oblique OKN induced along eigenvector directions generated OKAN which decayed to zero along a straight line with approximately a single time constant. This was verified by a spectral analysis of the residual sequence about the straight line fit to the decaying data. The residual sequence was associated with a narrow autocorrelation function and a wide power spectrum. 4. Parameters found using the Marquardt algorithm were incorporated into the model. Diagonal matrices in a head coordinate frame were introduced to represent the direct pathway and the coupling of the visual system to the integrator. Model simulations predicted the behavior of yaw and pitch OKN and OKAN when the animal was upright, as well as the cross-coupling in the tilted position. The trajectories in velocity space were also accurately simulated. 5. There were similarities between the monkey eigenvectors and human perception of the spatial vertical. For side-down tilts and downward eye velocity cross-coupling, there was only an Aubert (A) effect. For upward eye velocity cross-coupling there were both Muller (E) and Aubert (A) effects. The mean of the eigenvectors for upward and downward eye velocities overlay human 1 x g perceptual data.(ABSTRACT TRUNCATED AT 400 WORDS).
On the transfer matrix of the supersymmetric eight-vertex model. I. Periodic boundary conditions
NASA Astrophysics Data System (ADS)
Hagendorf, Christian; Liénardy, Jean
2018-03-01
The square-lattice eight-vertex model with vertex weights a, b, c, d obeying the relation (a^2+ab)(b^2+ab) = (c^2+ab)(d^2+ab) and periodic boundary conditions is considered. It is shown that the transfer matrix of the model for L = 2n + 1 vertical lines and periodic boundary conditions along the horizontal direction possesses the doubly degenerate eigenvalue \\Thetan = (a+b){\\hspace{0pt}}2n+1 . This proves a conjecture by Stroganov from 2001. The proof uses the supersymmetry of a related XYZ spin-chain Hamiltonian. The eigenstates of the transfer matrix corresponding to \\Thetan are shown to be the ground states of the spin-chain Hamiltonian. Moreover, for positive vertex weights \\Thetan is the largest eigenvalue of the transfer matrix.
Large-region acoustic source mapping using a movable array and sparse covariance fitting.
Zhao, Shengkui; Tuna, Cagdas; Nguyen, Thi Ngoc Tho; Jones, Douglas L
2017-01-01
Large-region acoustic source mapping is important for city-scale noise monitoring. Approaches using a single-position measurement scheme to scan large regions using small arrays cannot provide clean acoustic source maps, while deploying large arrays spanning the entire region of interest is prohibitively expensive. A multiple-position measurement scheme is applied to scan large regions at multiple spatial positions using a movable array of small size. Based on the multiple-position measurement scheme, a sparse-constrained multiple-position vectorized covariance matrix fitting approach is presented. In the proposed approach, the overall sample covariance matrix of the incoherent virtual array is first estimated using the multiple-position array data and then vectorized using the Khatri-Rao (KR) product. A linear model is then constructed for fitting the vectorized covariance matrix and a sparse-constrained reconstruction algorithm is proposed for recovering source powers from the model. The user parameter settings are discussed. The proposed approach is tested on a 30 m × 40 m region and a 60 m × 40 m region using simulated and measured data. Much cleaner acoustic source maps and lower sound pressure level errors are obtained compared to the beamforming approaches and the previous sparse approach [Zhao, Tuna, Nguyen, and Jones, Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP) (2016)].
Quantum-inspired algorithm for estimating the permanent of positive semidefinite matrices
NASA Astrophysics Data System (ADS)
Chakhmakhchyan, L.; Cerf, N. J.; Garcia-Patron, R.
2017-08-01
We construct a quantum-inspired classical algorithm for computing the permanent of Hermitian positive semidefinite matrices by exploiting a connection between these mathematical structures and the boson sampling model. Specifically, the permanent of a Hermitian positive semidefinite matrix can be expressed in terms of the expected value of a random variable, which stands for a specific photon-counting probability when measuring a linear-optically evolved random multimode coherent state. Our algorithm then approximates the matrix permanent from the corresponding sample mean and is shown to run in polynomial time for various sets of Hermitian positive semidefinite matrices, achieving a precision that improves over known techniques. This work illustrates how quantum optics may benefit algorithm development.
Effect of inclusions on heterogeneous crack nucleation in nanocomposites
NASA Astrophysics Data System (ADS)
Gutkin, M. Yu.; Ovid'Ko, I. A.; Skiba, N. V.
2007-02-01
A two-dimensional theoretical model is proposed for the heterogeneous nucleation of a grain-boundary nanocrack in a nanocomposite consisting of a nanocrystalline matrix and nanoinclusions whose elastic moduli are identical to those of the matrix. The inclusions have the form of rods with a rectangular cross section and undergo dilatation eigenstrain induced by the differences in the lattice parameters and thermal expansion coefficients of the matrix and inclusions. In terms of the model, a mode-I-II nanocrack nucleates at the negative disclination of a biaxial dipole consisting of wedge grain-boundary (or junction) disclinations; then, the nanocrack opens along a grain boundary and reaches an inclusion boundary. Depending on the relative positions and orientations of the initial segment of the nanocrack and the inclusion, the nanocrack can either penetrate into the inclusion or bypass it along the matrix-inclusion interface. The nanocrack nucleation probability increases near an inclusion with negative (compressive) dilatation eigenstrain. A decrease in the inclusion size decreases (increases) the probability of a crack opening along the interface if the dilatation eigenstrain is negative (positive).
Multi-ray-based system matrix generation for 3D PET reconstruction
NASA Astrophysics Data System (ADS)
Moehrs, Sascha; Defrise, Michel; Belcari, Nicola; DelGuerra, Alberto; Bartoli, Antonietta; Fabbri, Serena; Zanetti, Gianluigi
2008-12-01
Iterative image reconstruction algorithms for positron emission tomography (PET) require a sophisticated system matrix (model) of the scanner. Our aim is to set up such a model offline for the YAP-(S)PET II small animal imaging tomograph in order to use it subsequently with standard ML-EM (maximum-likelihood expectation maximization) and OSEM (ordered subset expectation maximization) for fully three-dimensional image reconstruction. In general, the system model can be obtained analytically, via measurements or via Monte Carlo simulations. In this paper, we present the multi-ray method, which can be considered as a hybrid method to set up the system model offline. It incorporates accurate analytical (geometric) considerations as well as crystal depth and crystal scatter effects. At the same time, it has the potential to model seamlessly other physical aspects such as the positron range. The proposed method is based on multiple rays which are traced from/to the detector crystals through the image volume. Such a ray-tracing approach itself is not new; however, we derive a novel mathematical formulation of the approach and investigate the positioning of the integration (ray-end) points. First, we study single system matrix entries and show that the positioning and weighting of the ray-end points according to Gaussian integration give better results compared to equally spaced integration points (trapezoidal integration), especially if only a small number of integration points (rays) are used. Additionally, we show that, for a given variance of the single matrix entries, the number of rays (events) required to calculate the whole matrix is a factor of 20 larger when using a pure Monte-Carlo-based method. Finally, we analyse the quality of the model by reconstructing phantom data from the YAP-(S)PET II scanner.
Aging Effects in Polymer Composites
NASA Technical Reports Server (NTRS)
Chamis, Chistos C.; McManus, Hugh L.
1999-01-01
Simulation of composites degradation due to aging are described. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. Aging effects at the laminate, ply, and micro levels are evaluated, to determine failure of any kind. The results obtained show substantial ply stress built up as a result of aging accompanied by comparable laminate strength degradation in matrix dominated composite strengths.
Spatial modeling of households' knowledge about arsenic pollution in Bangladesh.
Sarker, M Mizanur Rahman
2012-04-01
Arsenic in drinking water is an important public health issue in Bangladesh, which is affected by households' knowledge about arsenic threats from their drinking water. In this study, spatial statistical models were used to investigate the determinants and spatial dependence of households' knowledge about arsenic risk. The binary join matrix/binary contiguity matrix and inverse distance spatial weight matrix techniques are used to capture spatial dependence in the data. This analysis extends the spatial model by allowing spatial dependence to vary across divisions and regions. A positive spatial correlation was found in households' knowledge across neighboring districts at district, divisional and regional levels, but the strength of this spatial correlation varies considerably by spatial weight. Literacy rate, daily wage rate of agricultural labor, arsenic status, and percentage of red mark tube well usage in districts were found to contribute positively and significantly to households' knowledge. These findings have policy implications both at regional and national levels in mitigating the present arsenic crisis and to ensure arsenic-free water in Bangladesh. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wang, Li-jun; Lu, Xin-xin; Wu, Wei; Sui, Wen-jun; Zhang, Gui
2014-01-01
In order to evaluate a rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry (MAIDI-TOF MS) assay in screening vancomycin-resistant Enterococcus faecium, a total of 150 E. faecium clinical strains were studied, including 60 vancomycin-resistant E. faecium (VREF) isolates and 90 vancomycin-susceptible (VSEF) strains. Vancomycin resistance genes were detected by sequencing. E. faecium were identified by MALDI-TOF MS. A genetic algorithm model with ClinProTools software was generated using spectra of 30 VREF isolates and 30 VSEF isolates. Using this model, 90 test isolates were discriminated between VREF and VSEF. The results showed that all sixty VREF isolates carried the vanA gene. The performance of VREF detection by the genetic algorithm model of MALDI-TOF MS compared to the sequencing method was sensitivity = 80%, specificity = 90%, false positive rate =10%, false negative rate =10%, positive predictive value = 80%, negative predictive value= 90%. MALDI-TOF MS can be used as a screening test for discrimination between vanA-positive E. faecium and vanA-negative E. faecium.
Expression of CD44v6 as matrix-associated ectodomain in the bone development.
Nakajima, Kosei; Taniguchi, Kazumi; Mutoh, Ken-ichiro
2010-08-01
This study describes the expression of CD44v6 in the bone development and is the first study of its kind to the authors' best knowledge. The CD44 family is a family of transmembrane glycoproteins that acts as cell adhesion molecules binding cells to other cells as well as cells to the extracellular matrix. It has been suggested that the CD44v6, a family member of CD44, is closely related to the osteosarcoma metastasis. In general, when cancer cells metastasize, they revert to their immature forms. In the present study, therefore, we have investigated CD44v6 and the standard form of CD44 (CD44st) in two types of immature forms of bone tissues: developmentally immature stages from fetuses to adults as well as experimentally immature stages using fracture models. CD44st expression was identified in osteoblasts, osteocytes, and in the peripheral portion of the bone matrix from the fetal to young ages of rats. Many more intense reactions for CD44v6 were observed in the bone matrix than CD44st in fetal stages. In experimental fracture models, positive immunoreactions to CD44st were clearly observed in the osteoblasts and osteocytes. CD44v6-positive immunoreactivity, however, was not detected in either osteoblasts or the bone matrix. In conclusion, CD44v6 is expressed in the embryonic stages and may be involved in the bone matrix formation as a matrix-associated ectodomain during normal ontogenetic development but not involved in the process of fracture healing.
A density functional approach to ferrogels
NASA Astrophysics Data System (ADS)
Cremer, P.; Heinen, M.; Menzel, A. M.; Löwen, H.
2017-07-01
Ferrogels consist of magnetic colloidal particles embedded in an elastic polymer matrix. As a consequence, their structural and rheological properties are governed by a competition between magnetic particle-particle interactions and mechanical matrix elasticity. Typically, the particles are permanently fixed within the matrix, which makes them distinguishable by their positions. Over time, particle neighbors do not change due to the fixation by the matrix. Here we present a classical density functional approach for such ferrogels. We map the elastic matrix-induced interactions between neighboring colloidal particles distinguishable by their positions onto effective pairwise interactions between indistinguishable particles similar to a ‘pairwise pseudopotential’. Using Monte-Carlo computer simulations, we demonstrate for one-dimensional dipole-spring models of ferrogels that this mapping is justified. We then use the pseudopotential as an input into classical density functional theory of inhomogeneous fluids and predict the bulk elastic modulus of the ferrogel under various conditions. In addition, we propose the use of an ‘external pseudopotential’ when one switches from the viewpoint of a one-dimensional dipole-spring object to a one-dimensional chain embedded in an infinitely extended bulk matrix. Our mapping approach paves the way to describe various inhomogeneous situations of ferrogels using classical density functional concepts of inhomogeneous fluids.
SOURCE APPORTIONMENT RESULTS, UNCERTAINTIES, AND MODELING TOOLS
Advanced multivariate receptor modeling tools are available from the U.S. Environmental Protection Agency (EPA) that use only speciated sample data to identify and quantify sources of air pollution. EPA has developed both EPA Unmix and EPA Positive Matrix Factorization (PMF) and ...
Campbell, Patricia J.; Kyriakis, Constantinos S.; Marshall, Nicolle; Suppiah, Suganthi; Seladi-Schulman, Jill; Danzy, Shamika; Lowen, Anice C.
2014-01-01
ABSTRACT Position 41 of the influenza A virus matrix protein encodes a highly conserved alanine in human and avian lineages. Nonetheless, strains of the Eurasian avian-like swine (Easw) lineage contain a change at this position: position 41 of A/swine/Spain/53207/04 (H1N1) (SPN04) encodes a proline. To assess the impact of this naturally occurring polymorphism on viral fitness, we utilized reverse genetics to produce recombinant viruses encoding wild-type M1 41P (rSPN04-P) and consensus 41A (rSPN04-A) residues. Relative to rSPN04-A, rSPN04-P virus displayed reduced growth in vitro. In the guinea pig model, rSPN04-P was transmitted to fewer contact animals than rSPN04-A and failed to infect guinea pigs that received a low-dose inoculum. Moreover, the P41A change altered virion morphology, reducing the number and length of filamentous virions, as well as reducing the neuraminidase activity of virions. The lab-adapted human isolate, A/PR/8/34 (H1N1) (PR8), is nontransmissible in the guinea pig model, making it a useful background in which to identify certain viral factors that enhance transmissibility. We assessed transmission in the context of single-, double-, and triple-reassortant viruses between PR8 and SPN04; PR8/SPN04 M, PR8/SPN04 M+NA, and PR8/SPN04 M+NA+HA, encoding either matrix 41 A or P, were generated. In each case, the virus possessing 41P transmitted less well than the corresponding 41A-encoding virus. In summary, we have identified a naturally occurring mutation in the influenza A virus matrix protein that impacts transmission efficiency and can alter virion morphology and neuraminidase activity. IMPORTANCE We have developed a practical model for examining the genetics underlying transmissibility of the Eurasian avian-like swine lineage viruses, which contributed M and NA segments to the 2009 pandemic strain. Here, we use our system to investigate the impact on viral fitness of a naturally occurring polymorphism at matrix (M1) position 41 in an Easw isolate. Position 41 has been implicated previously in adaptation to laboratory substrates and to mice. Here we show that the polymorphism at M1 41 has a limited effect on growth in vitro but changes the morphology of the virus and impacts growth and transmission in the guinea pig model. PMID:24760887
Gueddida, Saber; Yan, Zeyin; Kibalin, Iurii; Voufack, Ariste Bolivard; Claiser, Nicolas; Souhassou, Mohamed; Lecomte, Claude; Gillon, Béatrice; Gillet, Jean-Michel
2018-04-28
In this paper, we propose a simple cluster model with limited basis sets to reproduce the unpaired electron distributions in a YTiO 3 ferromagnetic crystal. The spin-resolved one-electron-reduced density matrix is reconstructed simultaneously from theoretical magnetic structure factors and directional magnetic Compton profiles using our joint refinement algorithm. This algorithm is guided by the rescaling of basis functions and the adjustment of the spin population matrix. The resulting spin electron density in both position and momentum spaces from the joint refinement model is in agreement with theoretical and experimental results. Benefits brought from magnetic Compton profiles to the entire spin density matrix are illustrated. We studied the magnetic properties of the YTiO 3 crystal along the Ti-O 1 -Ti bonding. We found that the basis functions are mostly rescaled by means of magnetic Compton profiles, while the molecular occupation numbers are mainly modified by the magnetic structure factors.
DEVELOPMENT AND EVALUATION OF PM 2.5 SOURCE APPORTIONMENT METHODOLOGIES
The receptor model called Positive Matrix Factorization (PMF) has been extensively used to apportion sources of ambient fine particulate matter (PM2.5), but the accuracy of source apportionment results currently remains unknown. In addition, air quality forecast model...
Critical speeds and forced response solutions for active magnetic bearing turbomachinery, part 2
NASA Technical Reports Server (NTRS)
Rawal, D.; Keesee, J.; Kirk, R. Gordon
1991-01-01
The need for better performance of turbomachinery with active magnetic bearings has necessitated a study of such systems for accurate prediction of their vibrational characteristics. A modification of existing transfer matrix methods for rotor analysis is presented to predict the response of rotor systems with active magnetic bearings. The position of the magnetic bearing sensors is taken into account and the effect of changing sensor position on the vibrational characteristics of the rotor system is studied. The modified algorithm is validated using a simpler Jeffcott model described previously. The effect of changing from a rotating unbalance excitation to a constant excitation in a single plane is also studied. A typical eight stage centrifugal compressor rotor is analyzed using the modified transfer matrix code. The results for a two mass Jeffcott model were presented previously. The results obtained by running this model with the transfer matrix method were compared with the results of the Jeffcott analysis for the purposes of verification. Also included are plots of amplitude versus frequency for the eight stage centrifugal compressor rotor. These plots demonstrate the significant influence that sensor location has on the amplitude and critical frequencies of the rotor system.
NASA Astrophysics Data System (ADS)
Kump, P.; Vogel-Mikuš, K.
2018-05-01
Two fundamental-parameter (FP) based models for quantification of 2D elemental distribution maps of intermediate-thick biological samples by synchrotron low energy μ-X-ray fluorescence spectrometry (SR-μ-XRF) are presented and applied to the elemental analysis in experiments with monochromatic focused photon beam excitation at two low energy X-ray fluorescence beamlines—TwinMic, Elettra Sincrotrone Trieste, Italy, and ID21, ESRF, Grenoble, France. The models assume intermediate-thick biological samples composed of measured elements, the sources of the measurable spectral lines, and by the residual matrix, which affects the measured intensities through absorption. In the first model a fixed residual matrix of the sample is assumed, while in the second model the residual matrix is obtained by the iteration refinement of elemental concentrations and an adjusted residual matrix. The absorption of the incident focused beam in the biological sample at each scanned pixel position, determined from the output of a photodiode or a CCD camera, is applied as a control in the iteration procedure of quantification.
Modelling polarization dependent absorption: The vectorial Lambert-Beer law
NASA Astrophysics Data System (ADS)
Franssens, G.
2014-07-01
The scalar Lambert-Beer law, describing the absorption of unpolarized light travelling through a linear non-scattering medium, is simple, well-known, and mathematically trivial. However, when we take the polarization of light into account and consider a medium with polarization dependent absorption, we now need a Vectorial Lambert-Beer Law (VLBL) to quantify this interaction. Such a generalization of the scalar Lambert-Beer law appears not to be readily available. A careful study of this topic reveals that it is not a trivial problem. We will see that the VLBL is not and cannot be a straightforward vectorized version of its scalar counterpart. The aim of the work is to present the general form of the VLBL and to explain how it arises. A reasonable starting point to derive the VLBL is the Vectorial Radiative Transfer Equation (VRTE), which models the absorption and scattering of (partially) polarized light travelling through a linear medium. When we turn off scattering, the VRTE becomes an infinitesimal model for the VLBL holding in the medium. By integrating this equation, we expect to find the VLBL. Surprisingly, this is not the end of the story. It turns out that light propagation through a medium with polarization-dependent absorption is mathematically not that trivial. The trickiness behind the VLBL can be understood in the following terms. The matrix in the VLBL, relating any input Stokes vector to the corresponding output Stokes vector, must necessarily be a Mueller matrix. The subset of invertible Mueller matrices forms a Lie group. It is known that this Lie group contains the ortho-chronous Lorentz group as a subgroup. The group manifold of this subgroup has a (well-known) non-trivial topology. Consequently, the manifold of the Lie group of Mueller matrices also has (at least the same, but likely a more general) non-trivial topology (the full extent of which is not yet known). The type of non-trivial topology, possessed by the manifold of (invertible) Mueller matrices and which stems from the ortho-chronous Lorentz group, already implies (by a theorem from Lie group theory) that the infinitesimal VRTE model for the VLBL is not guaranteed to produce in general the correct finite model (i.e., the VLBL itself) upon integration. What happens is that the non-trivial topology acts as an obstruction that prevents the (matrix) exponential function to reach the correct Mueller matrix (for the medium at hand), because it is too far away from the identity matrix. This means that, for certain media, the VLBL obtained by integrating the VRTE may be different from the VLBL that one would actually measure. Basically, we have here an example of a physical problem that cannot be completely described by a differential equation! The following more concrete example further illustrates the problem. Imagine a slab of matter, showing polarization dependent absorption but negligible scattering, and consider its Mueller matrix for forward propagating plane waves. Will the measured Mueller matrix of such a slab always have positive determinant? There is no apparent mathematical nor physical reason why this (or any) Mueller matrix must have positive determinant. On the other hand, our VRTE model with scattering turned off will always generate a Mueller matrix with positive determinant. This particular example also presents a nice challenge and opportunity for the experimenter: demonstrate the existence of a medium of the envisioned type having a Mueller matrix with non-positive determinant! Lie group theory not only explains when and why we cannot trust a differential equation, but also offers a way out of such a situation if it arises. Applied to our problem, Lie group theory in addition yields the general form of the VLBL. More details will be given in the presentation.
Ahmadzadeh, Hossein; Webster, Marie R.; Behera, Reeti; Jimenez Valencia, Angela M.; Wirtz, Denis; Weeraratna, Ashani T.; Shenoy, Vivek B.
2017-01-01
Cancer cell invasion from primary tumors is mediated by a complex interplay between cellular adhesions, actomyosin-driven contractility, and the physical characteristics of the extracellular matrix (ECM). Here, we incorporate a mechanochemical free-energy–based approach to elucidate how the two-way feedback loop between cell contractility (induced by the activity of chemomechanical interactions such as Ca2+ and Rho signaling pathways) and matrix fiber realignment and strain stiffening enables the cells to polarize and develop contractile forces to break free from the tumor spheroids and invade into the ECM. Interestingly, through this computational model, we are able to identify a critical stiffness that is required by the matrix to break intercellular adhesions and initiate cell invasion. Also, by considering the kinetics of the cell movement, our model predicts a biphasic invasiveness with respect to the stiffness of the matrix. These predictions are validated by analyzing the invasion of melanoma cells in collagen matrices of varying concentration. Our model also predicts a positive correlation between the elongated morphology of the invading cells and the alignment of fibers in the matrix, suggesting that cell polarization is directly proportional to the stiffness and alignment of the matrix. In contrast, cells in nonfibrous matrices are found to be rounded and not polarized, underscoring the key role played by the nonlinear mechanics of fibrous matrices. Importantly, our model shows that mechanical principles mediated by the contractility of the cells and the nonlinearity of the ECM behavior play a crucial role in determining the phenotype of the cell invasion. PMID:28196892
NASA Astrophysics Data System (ADS)
Enachescu, Cristian; Tanasa, Radu; Stancu, Alexandru; Tissot, Antoine; Laisney, Jérôme; Boillot, Marie-Laure
2016-07-01
In this study, we present the influence of the embedding matrix on the relaxation of Fe(phen)2(NCS)2 (phen = 1,10-phenanthroline) spin-transition microparticles as revealed by experiments and provide an explanation within the framework of an elastic model based on a Monte-Carlo method. Experiments show that the shape of the high-spin → low-spin relaxation curves is drastically changed when the particles are dispersed in glycerol. This effect was considered in the model by means of interactions between the microparticles and the matrix. A faster start of the relaxation for microparticles embedded in glycerol is due to an initial positive local pressure acting on the edge spin-crossover molecules from the matrix side. This local pressure diminishes and eventually becomes negative during relaxation, as an effect of the decrease of the volume of spin-crossover microparticles from high-spin to low-spin.
Position Index for the Matrix Light Source
NASA Astrophysics Data System (ADS)
Takahashi, Hiroshi; Kobayashi, Yoshinori; Onda, Shou; Irikura, Takashi
It is expected that in the future white LEDs will be widely used in practical applications including replacing conventional lighting in offices and homes. The white LED light source of matrix arrangement is also considered in it. On the other hand, although now the unified glare rating (UGR) is widely used for evaluation of the discomfort glare of the interior lighting, UGR is a thing for a uniform light source, and its application to the matrix light sources that have non-uniform luminance has not been considered. The aim of this study is to clarify the position index which is one of element of UGR for the matrix light source. In this case, to apply the position index for a matrix light source to UGR, the concept of the revised position index is invented. As the preliminary experiment, method for measuring the position index was conducted, and as the experiment, position index for the matrix light source was conducted and compared with the uniform light source. The results of the experiments show that the position index is decided by the relative angle between line of sight and light source. It is also found that the matrix light source have larger position index than uniform light source. Furthermore, it is shown that the discomfort glare caused by a matrix light source can be evaluated by applying the revised position index to the UGR.
On Schrödinger's bridge problem
NASA Astrophysics Data System (ADS)
Friedland, S.
2017-11-01
In the first part of this paper we generalize Georgiou-Pavon's result that a positive square matrix can be scaled uniquely to a column stochastic matrix which maps a given positive probability vector to another given positive probability vector. In the second part we prove that a positive quantum channel can be scaled to another positive quantum channel which maps a given positive definite density matrix to another given positive definite density matrix using Brouwer's fixed point theorem. This result proves the Georgiou-Pavon conjecture for two positive definite density matrices, made in their recent paper. We show that the fixed points are unique for certain pairs of positive definite density matrices. Bibliography: 15 titles.
A major protein component of the Bacillus subtilis biofilm matrix.
Branda, Steven S; Chu, Frances; Kearns, Daniel B; Losick, Richard; Kolter, Roberto
2006-02-01
Microbes construct structurally complex multicellular communities (biofilms) through production of an extracellular matrix. Here we present evidence from scanning electron microscopy showing that a wild strain of the Gram positive bacterium Bacillus subtilis builds such a matrix. Genetic, biochemical and cytological evidence indicates that the matrix is composed predominantly of a protein component, TasA, and an exopolysaccharide component. The absence of TasA or the exopolysaccharide resulted in a residual matrix, while the absence of both components led to complete failure to form complex multicellular communities. Extracellular complementation experiments revealed that a functional matrix can be assembled even when TasA and the exopolysaccharide are produced by different cells, reinforcing the view that the components contribute to matrix formation in an extracellular manner. Having defined the major components of the biofilm matrix and the control of their synthesis by the global regulator SinR, we present a working model for how B. subtilis switches between nomadic and sedentary lifestyles.
Method and apparatus for optimized processing of sparse matrices
Taylor, Valerie E.
1993-01-01
A computer architecture for processing a sparse matrix is disclosed. The apparatus stores a value-row vector corresponding to nonzero values of a sparse matrix. Each of the nonzero values is located at a defined row and column position in the matrix. The value-row vector includes a first vector including nonzero values and delimiting characters indicating a transition from one column to another. The value-row vector also includes a second vector which defines row position values in the matrix corresponding to the nonzero values in the first vector and column position values in the matrix corresponding to the column position of the nonzero values in the first vector. The architecture also includes a circuit for detecting a special character within the value-row vector. Matrix-vector multiplication is executed on the value-row vector. This multiplication is performed by multiplying an index value of the first vector value by a column value from a second matrix to form a matrix-vector product which is added to a previous matrix-vector product.
A Nonlinear Three-Dimensional Micromechanics Model for Fiber-Reinforced Laminated Composites
1993-11-01
Interfacial Properties Employed for the SCS6/Ti-15-3 Composite ......................... 150 11. Constants Employed for the LLFM Predictions of Quasi...Region m Matrix Property or Mean of the Interfacial Stress Distribution ml, m2, m3 Signifies Matrix Region n Normal to Interface r Signifies Equation...usage of the new class of titanium based com- posites in advanced aerospace structures and engines such as are targeted for the advanced tactical fighter
NASA Astrophysics Data System (ADS)
Jiang, Yao; Li, Tie-Min; Wang, Li-Ping
2015-09-01
This paper investigates the stiffness modeling of compliant parallel mechanism (CPM) based on the matrix method. First, the general compliance matrix of a serial flexure chain is derived. The stiffness modeling of CPMs is next discussed in detail, considering the relative positions of the applied load and the selected displacement output point. The derived stiffness models have simple and explicit forms, and the input, output, and coupling stiffness matrices of the CPM can easily be obtained. The proposed analytical model is applied to the stiffness modeling and performance analysis of an XY parallel compliant stage with input and output decoupling characteristics. Then, the key geometrical parameters of the stage are optimized to obtain the minimum input decoupling degree. Finally, a prototype of the compliant stage is developed and its input axial stiffness, coupling characteristics, positioning resolution, and circular contouring performance are tested. The results demonstrate the excellent performance of the compliant stage and verify the effectiveness of the proposed theoretical model. The general stiffness models provided in this paper will be helpful for performance analysis, especially in determining coupling characteristics, and the structure optimization of the CPM.
Factor analytic tools such as principal component analysis (PCA) and positive matrix factorization (PMF), suffer from rotational ambiguity in the results: different solutions (factors) provide equally good fits to the measured data. The PMF model imposes non-negativity of both...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonasson, O.; Karimi, F.; Knezevic, I.
2016-08-01
We derive a Markovian master equation for the single-electron density matrix, applicable to quantum cascade lasers (QCLs). The equation conserves the positivity of the density matrix, includes off-diagonal elements (coherences) as well as in-plane dynamics, and accounts for electron scattering with phonons and impurities. We use the model to simulate a terahertz-frequency QCL, and compare the results with both experiment and simulation via nonequilibrium Green's functions (NEGF). We obtain very good agreement with both experiment and NEGF when the QCL is biased for optimal lasing. For the considered device, we show that the magnitude of coherences can be a significantmore » fraction of the diagonal matrix elements, which demonstrates their importance when describing THz QCLs. We show that the in-plane energy distribution can deviate far from a heated Maxwellian distribution, which suggests that the assumption of thermalized subbands in simplified density-matrix models is inadequate. As a result, we also show that the current density and subband occupations relax towards their steady-state values on very different time scales.« less
NASA Astrophysics Data System (ADS)
Tasić, M.; Mijić, Z.; Rajšić, S.; Stojić, A.; Radenković, M.; Joksić, J.
2009-04-01
The primary objective of the present study was to assess anthropogenic impacts of heavy metals to the environment by determination of total atmospheric deposition of heavy metals. Atmospheric depositions (wet + dry) were collected monthly, from June 2002 to December 2006, at three urban locations in Belgrade, using bulk deposition samplers. Concentrations of Fe, Al, Pb, Zn, Cu, Ni, Mn, Cr, V, As and Cd were analyzed using atomic absorption spectrometry. Based upon these results, the study attempted to examine elemental associations in atmospheric deposition and to elucidate the potential sources of heavy metal contaminants in the region by the use of multivariate receptor model Positive Matrix Factorization (PMF).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enachescu, Cristian, E-mail: cristian.enachescu@uaic.ro; Stancu, Alexandru; Tanasa, Radu
2016-07-18
In this study, we present the influence of the embedding matrix on the relaxation of Fe(phen){sub 2}(NCS){sub 2} (phen = 1,10-phenanthroline) spin-transition microparticles as revealed by experiments and provide an explanation within the framework of an elastic model based on a Monte-Carlo method. Experiments show that the shape of the high-spin → low-spin relaxation curves is drastically changed when the particles are dispersed in glycerol. This effect was considered in the model by means of interactions between the microparticles and the matrix. A faster start of the relaxation for microparticles embedded in glycerol is due to an initial positive local pressure actingmore » on the edge spin-crossover molecules from the matrix side. This local pressure diminishes and eventually becomes negative during relaxation, as an effect of the decrease of the volume of spin-crossover microparticles from high-spin to low-spin.« less
SOURCE APPORTIONMENT OF PM2.5 AT AN URBAN IMPROVE SITE IN SEATTLE, WA
The multivariate receptor models Positive Matrix Factorization (PMF) and Unmix were used along with EPA's Chemical Mass Balance model to deduce the sources of PM2.5 at a centrally located urban site in Seattle, Washington. A total of 289 filter samples were obtained with an IM...
Inouye, David I.; Ravikumar, Pradeep; Dhillon, Inderjit S.
2016-01-01
We develop Square Root Graphical Models (SQR), a novel class of parametric graphical models that provides multivariate generalizations of univariate exponential family distributions. Previous multivariate graphical models (Yang et al., 2015) did not allow positive dependencies for the exponential and Poisson generalizations. However, in many real-world datasets, variables clearly have positive dependencies. For example, the airport delay time in New York—modeled as an exponential distribution—is positively related to the delay time in Boston. With this motivation, we give an example of our model class derived from the univariate exponential distribution that allows for almost arbitrary positive and negative dependencies with only a mild condition on the parameter matrix—a condition akin to the positive definiteness of the Gaussian covariance matrix. Our Poisson generalization allows for both positive and negative dependencies without any constraints on the parameter values. We also develop parameter estimation methods using node-wise regressions with ℓ1 regularization and likelihood approximation methods using sampling. Finally, we demonstrate our exponential generalization on a synthetic dataset and a real-world dataset of airport delay times. PMID:27563373
Patel, Deepak K.
2016-01-01
This paper is concerned with predicting the progressive damage and failure of multi-layered hybrid textile composites subjected to uniaxial tensile loading, using a novel two-scale computational mechanics framework. These composites include three-dimensional woven textile composites (3DWTCs) with glass, carbon and Kevlar fibre tows. Progressive damage and failure of 3DWTCs at different length scales are captured in the present model by using a macroscale finite-element (FE) analysis at the representative unit cell (RUC) level, while a closed-form micromechanics analysis is implemented simultaneously at the subscale level using material properties of the constituents (fibre and matrix) as input. The N-layers concentric cylinder (NCYL) model (Zhang and Waas 2014 Acta Mech. 225, 1391–1417; Patel et al. submitted Acta Mech.) to compute local stress, srain and displacement fields in the fibre and matrix is used at the subscale. The 2-CYL fibre–matrix concentric cylinder model is extended to fibre and (N−1) matrix layers, keeping the volume fraction constant, and hence is called the NCYL model where the matrix damage can be captured locally within each discrete layer of the matrix volume. The influence of matrix microdamage at the subscale causes progressive degradation of fibre tow stiffness and matrix stiffness at the macroscale. The global RUC stiffness matrix remains positive definite, until the strain softening response resulting from different failure modes (such as fibre tow breakage, tow splitting in the transverse direction due to matrix cracking inside tow and surrounding matrix tensile failure outside of fibre tows) are initiated. At this stage, the macroscopic post-peak softening response is modelled using the mesh objective smeared crack approach (Rots et al. 1985 HERON 30, 1–48; Heinrich and Waas 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23–26 April 2012. AIAA 2012-1537). Manufacturing-induced geometric imperfections are included in the simulation, where the FE mesh of the unit cell is generated directly from micro-computed tomography (MCT) real data using a code Simpleware. Results from multi-scale analysis for both an idealized perfect geometry and one that includes geometric imperfections are compared with experimental results (Pankow et al. 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23–26 April 2012. AIAA 2012-1572). This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242294
Patel, Deepak K; Waas, Anthony M
2016-07-13
This paper is concerned with predicting the progressive damage and failure of multi-layered hybrid textile composites subjected to uniaxial tensile loading, using a novel two-scale computational mechanics framework. These composites include three-dimensional woven textile composites (3DWTCs) with glass, carbon and Kevlar fibre tows. Progressive damage and failure of 3DWTCs at different length scales are captured in the present model by using a macroscale finite-element (FE) analysis at the representative unit cell (RUC) level, while a closed-form micromechanics analysis is implemented simultaneously at the subscale level using material properties of the constituents (fibre and matrix) as input. The N-layers concentric cylinder (NCYL) model (Zhang and Waas 2014 Acta Mech. 225, 1391-1417; Patel et al. submitted Acta Mech.) to compute local stress, srain and displacement fields in the fibre and matrix is used at the subscale. The 2-CYL fibre-matrix concentric cylinder model is extended to fibre and (N-1) matrix layers, keeping the volume fraction constant, and hence is called the NCYL model where the matrix damage can be captured locally within each discrete layer of the matrix volume. The influence of matrix microdamage at the subscale causes progressive degradation of fibre tow stiffness and matrix stiffness at the macroscale. The global RUC stiffness matrix remains positive definite, until the strain softening response resulting from different failure modes (such as fibre tow breakage, tow splitting in the transverse direction due to matrix cracking inside tow and surrounding matrix tensile failure outside of fibre tows) are initiated. At this stage, the macroscopic post-peak softening response is modelled using the mesh objective smeared crack approach (Rots et al. 1985 HERON 30, 1-48; Heinrich and Waas 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23-26 April 2012 AIAA 2012-1537). Manufacturing-induced geometric imperfections are included in the simulation, where the FE mesh of the unit cell is generated directly from micro-computed tomography (MCT) real data using a code Simpleware Results from multi-scale analysis for both an idealized perfect geometry and one that includes geometric imperfections are compared with experimental results (Pankow et al. 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23-26 April 2012 AIAA 2012-1572). This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).
Methods for Estimating Uncertainty in Factor Analytic Solutions
The EPA PMF (Environmental Protection Agency positive matrix factorization) version 5.0 and the underlying multilinear engine-executable ME-2 contain three methods for estimating uncertainty in factor analytic models: classical bootstrap (BS), displacement of factor elements (DI...
The feasibility and stability of large complex biological networks: a random matrix approach.
Stone, Lewi
2018-05-29
In the 70's, Robert May demonstrated that complexity creates instability in generic models of ecological networks having random interaction matrices A. Similar random matrix models have since been applied in many disciplines. Central to assessing stability is the "circular law" since it describes the eigenvalue distribution for an important class of random matrices A. However, despite widespread adoption, the "circular law" does not apply for ecological systems in which density-dependence operates (i.e., where a species growth is determined by its density). Instead one needs to study the far more complicated eigenvalue distribution of the community matrix S = DA, where D is a diagonal matrix of population equilibrium values. Here we obtain this eigenvalue distribution. We show that if the random matrix A is locally stable, the community matrix S = DA will also be locally stable, providing the system is feasible (i.e., all species have positive equilibria D > 0). This helps explain why, unusually, nearly all feasible systems studied here are locally stable. Large complex systems may thus be even more fragile than May predicted, given the difficulty of assembling a feasible system. It was also found that the degree of stability, or resilience of a system, depended on the minimum equilibrium population.
This research investigated different strategies for source apportionment of airborne fine particulate matter (PM2.5) collected as part of the Pittsburgh Air Quality Study. Two source receptor models were used, the EPA Chemical Mass Balance 8.2 (CMB) and EPA Positive Matrix Facto...
NASA Technical Reports Server (NTRS)
Sevener, Kathy; Chen, Zhe; Daly, Sam; Tracy, Jared; Kiser, Doug
2016-01-01
With CMC components poised to complete flight certification in turbine engines on commercial aircraft within the near future, there are many efforts within the aerospace community to model the mechanical and environmental degradation of CMCs. Direct observations of damage evolution are needed to support these modeling efforts and provide quantitative measures of damage parameters used in the various models. This study was performed to characterize the damage evolution during tensile loading of a melt infiltrated (MI) silicon carbide reinforced silicon carbide (SiC/SiC) composite. A SiC/SiC tensile coupon was loaded to a maximum global stress of 30 ksi in a tensile fixture within an SEM while observations were made at 5 ksi increments. Both traditional image analysis and DIC (digital image correlation) were used to quantify damage evolution. With the DIC analysis, microscale damage was observed at the fiber-matrix interfaces at stresses as low as 5 ksi. First matrix cracking took place between 20 and 25 ksi, accompanied by an observable relaxation in strain near matrix cracks. Matrix crack opening measurements at the maximum load ranged from 200 nm to 1.5 m. Crack opening along the fiber-matrix interface was also characterized as a function of load and angular position relative to the loading axis. This characterization was funded by NASA GRC and was performed to support NASA GRC modeling of SiC/SiC environmental degradation
An Indoor Slam Method Based on Kinect and Multi-Feature Extended Information Filter
NASA Astrophysics Data System (ADS)
Chang, M.; Kang, Z.
2017-09-01
Based on the frame of ORB-SLAM in this paper the transformation parameters between adjacent Kinect image frames are computed using ORB keypoints, from which priori information matrix and information vector are calculated. The motion update of multi-feature extended information filter is then realized. According to the point cloud data formed by depth image, ICP algorithm was used to extract the point features of the point cloud data in the scene and built an observation model while calculating a-posteriori information matrix and information vector, and weakening the influences caused by the error accumulation in the positioning process. Furthermore, this paper applied ORB-SLAM frame to realize autonomous positioning in real time in interior unknown environment. In the end, Lidar was used to get data in the scene in order to estimate positioning accuracy put forward in this paper.
Blind separation of positive sources by globally convergent gradient search.
Oja, Erkki; Plumbley, Mark
2004-09-01
The instantaneous noise-free linear mixing model in independent component analysis is largely a solved problem under the usual assumption of independent nongaussian sources and full column rank mixing matrix. However, with some prior information on the sources, like positivity, new analysis and perhaps simplified solution methods may yet become possible. In this letter, we consider the task of independent component analysis when the independent sources are known to be nonnegative and well grounded, which means that they have a nonzero pdf in the region of zero. It can be shown that in this case, the solution method is basically very simple: an orthogonal rotation of the whitened observation vector into nonnegative outputs will give a positive permutation of the original sources. We propose a cost function whose minimum coincides with nonnegativity and derive the gradient algorithm under the whitening constraint, under which the separating matrix is orthogonal. We further prove that in the Stiefel manifold of orthogonal matrices, the cost function is a Lyapunov function for the matrix gradient flow, implying global convergence. Thus, this algorithm is guaranteed to find the nonnegative well-grounded independent sources. The analysis is complemented by a numerical simulation, which illustrates the algorithm.
Degree of coupling and efficiency of energy converters far-from-equilibrium
NASA Astrophysics Data System (ADS)
Vroylandt, Hadrien; Lacoste, David; Verley, Gatien
2018-02-01
In this paper, we introduce a real symmetric and positive semi-definite matrix, which we call the non-equilibrium conductance matrix, and which generalizes the Onsager response matrix for a system in a non-equilibrium stationary state. We then express the thermodynamic efficiency in terms of the coefficients of this matrix using a parametrization similar to the one used near equilibrium. This framework, then valid arbitrarily far from equilibrium allows to set bounds on the thermodynamic efficiency by a universal function depending only on the degree of coupling between input and output currents. It also leads to new general power-efficiency trade-offs valid for macroscopic machines that are compared to trade-offs previously obtained from uncertainty relations. We illustrate our results on an unicycle heat to heat converter and on a discrete model of a molecular motor.
Single-lens stereovision system using a prism: position estimation of a multi-ocular prism.
Cui, Xiaoyu; Lim, Kah Bin; Zhao, Yue; Kee, Wei Loon
2014-05-01
In this paper, a position estimation method using a prism-based single-lens stereovision system is proposed. A multifaced prism was considered as a single optical system composed of few refractive planes. A transformation matrix which relates the coordinates of an object point to its coordinates on the image plane through the refraction of the prism was derived based on geometrical optics. A mathematical model which is able to denote the position of an arbitrary faces prism with only seven parameters is introduced. This model further extends the application of the single-lens stereovision system using a prism to other areas. Experimentation results are presented to prove the effectiveness and robustness of our proposed model.
NASA Astrophysics Data System (ADS)
Beaudoin, Georges; Therrien, René
1999-10-01
Vein fields are fractured domains of the lithosphere that have been infiltrated by hydrothermal fluids, which deposited minerals in response to changing physico-chemical conditions. Because oxygen is a major component of the infiltrating fluid and the surrounding rock matrix, the oxygen isotope composition of minerals found in veins is used to decipher ancient fluid flow within the lithosphere. We use a numerical model to simulate oxygen isotope transport in the Kokanee Range silver-lead-zinc vein field. The model considers advective, dispersive, and reactive transport in a three-dimensional porous rock matrix intersected by high-permeability planes representing fracture zones. Here we show that it is the geometrical configuration of the sources and of the drains of hydrothermal fluids, combined with the fracture pattern, that exerts the main control on the oxygen isotope distribution. Other factors that affect, to a lesser extent, the values and positions of oxygen isopleths are the fluids and rock-matrix isotopic compositions, the isotopic fractionation, the reaction rate constant, and hydraulic conductivities of the rock matrix and fracture zones.
EPA Positive Matrix Factorization (PMF) 3.0 Fundamentals & User Guide
Positive matrix factorization (PMF) is a multivariate factor analysis tool that decomposes a matrix of ambient data into two matrices - factor contributions and factor profiles - which then need to be interpreted by an analyst as to what source types are represented using measure...
Machine learning with quantum relative entropy
NASA Astrophysics Data System (ADS)
Tsuda, Koji
2009-12-01
Density matrices are a central tool in quantum physics, but it is also used in machine learning. A positive definite matrix called kernel matrix is used to represent the similarities between examples. Positive definiteness assures that the examples are embedded in an Euclidean space. When a positive definite matrix is learned from data, one has to design an update rule that maintains the positive definiteness. Our update rule, called matrix exponentiated gradient update, is motivated by the quantum relative entropy. Notably, the relative entropy is an instance of Bregman divergences, which are asymmetric distance measures specifying theoretical properties of machine learning algorithms. Using the calculus commonly used in quantum physics, we prove an upperbound of the generalization error of online learning.
Toda hierarchies and their applications
NASA Astrophysics Data System (ADS)
Takasaki, Kanehisa
2018-05-01
The 2D Toda hierarchy occupies a central position in the family of integrable hierarchies of the Toda type. The 1D Toda hierarchy and the Ablowitz–Ladik (aka relativistic Toda) hierarchy can be derived from the 2D Toda hierarchy as reductions. These integrable hierarchies have been applied to various problems of mathematics and mathematical physics since 1990s. A recent example is a series of studies on models of statistical mechanics called the melting crystal model. This research has revealed that the aforementioned two reductions of the 2D Toda hierarchy underlie two different melting crystal models. Technical clues are a fermionic realization of the quantum torus algebra, special algebraic relations therein called shift symmetries, and a matrix factorization problem. The two melting crystal models thus exhibit remarkable similarity with the Hermitian and unitary matrix models for which the two reductions of the 2D Toda hierarchy play the role of fundamental integrable structures.
Multi-target detection and positioning in crowds using multiple camera surveillance
NASA Astrophysics Data System (ADS)
Huang, Jiahu; Zhu, Qiuyu; Xing, Yufeng
2018-04-01
In this study, we propose a pixel correspondence algorithm for positioning in crowds based on constraints on the distance between lines of sight, grayscale differences, and height in a world coordinates system. First, a Gaussian mixture model is used to obtain the background and foreground from multi-camera videos. Second, the hair and skin regions are extracted as regions of interest. Finally, the correspondences between each pixel in the region of interest are found under multiple constraints and the targets are positioned by pixel clustering. The algorithm can provide appropriate redundancy information for each target, which decreases the risk of losing targets due to a large viewing angle and wide baseline. To address the correspondence problem for multiple pixels, we construct a pixel-based correspondence model based on a similar permutation matrix, which converts the correspondence problem into a linear programming problem where a similar permutation matrix is found by minimizing an objective function. The correct pixel correspondences can be obtained by determining the optimal solution of this linear programming problem and the three-dimensional position of the targets can also be obtained by pixel clustering. Finally, we verified the algorithm with multiple cameras in experiments, which showed that the algorithm has high accuracy and robustness.
Distributed Matrix Completion: Application to Cooperative Positioning in Noisy Environments
2013-12-11
positioning, and a gossip version of low-rank approximation were developed. A convex relaxation for positioning in the presence of noise was shown to...of a large data matrix through gossip algorithms. A new algorithm is proposed that amounts to iteratively multiplying a vector by independent random...sparsification of the original matrix and averaging the resulting normalized vectors. This can be viewed as a generalization of gossip algorithms for
A matrix-inversion method for gamma-source mapping from gamma-count data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adsley, Ian; Burgess, Claire; Bull, Richard K
In a previous paper it was proposed that a simple matrix inversion method could be used to extract source distributions from gamma-count maps, using simple models to calculate the response matrix. The method was tested using numerically generated count maps. In the present work a 100 kBq Co{sup 60} source has been placed on a gridded surface and the count rate measured using a NaI scintillation detector. The resulting map of gamma counts was used as input to the matrix inversion procedure and the source position recovered. A multi-source array was simulated by superposition of several single-source count maps andmore » the source distribution was again recovered using matrix inversion. The measurements were performed for several detector heights. The effects of uncertainties in source-detector distances on the matrix inversion method are also examined. The results from this work give confidence in the application of the method to practical applications, such as the segregation of highly active objects amongst fuel-element debris. (authors)« less
NASA Astrophysics Data System (ADS)
Beaudoin, Yanick; Desbiens, André; Gagnon, Eric; Landry, René
2018-01-01
The navigation system of a satellite launcher is of paramount importance. In order to correct the trajectory of the launcher, the position, velocity and attitude must be known with the best possible precision. In this paper, the observability of four navigation solutions is investigated. The first one is the INS/GPS couple. Then, attitude reference sensors, such as magnetometers, are added to the INS/GPS solution. The authors have already demonstrated that the reference trajectory could be used to improve the navigation performance. This approach is added to the two previously mentioned navigation systems. For each navigation solution, the observability is analyzed with different sensor error models. First, sensor biases are neglected. Then, sensor biases are modelled as random walks and as first order Markov processes. The observability is tested with the rank and condition number of the observability matrix, the time evolution of the covariance matrix and sensitivity to measurement outlier tests. The covariance matrix is exploited to evaluate the correlation between states in order to detect structural unobservability problems. Finally, when an unobservable subspace is detected, the result is verified with theoretical analysis of the navigation equations. The results show that evaluating only the observability of a model does not guarantee the ability of the aiding sensors to correct the INS estimates within the mission time. The analysis of the covariance matrix time evolution could be a powerful tool to detect this situation, however in some cases, the problem is only revealed with a sensitivity to measurement outlier test. None of the tested solutions provide GPS position bias observability. For the considered mission, the modelling of the sensor biases as random walks or Markov processes gives equivalent results. Relying on the reference trajectory can improve the precision of the roll estimates. But, in the context of a satellite launcher, the roll estimation error and gyroscope bias are only observable if attitude reference sensors are present.
Oldekop, Maarja-Liisa; Rebane, Riin; Herodes, Koit
2017-10-01
Matrix effect, the influence of co-eluting components on the ionization efficiency of the analyte, affects the trueness and precision of the LC-ESI-MS analysis. Derivatization can reduce or eliminate matrix effect, for example, diethyl ethoxymethylenemalonate (DEEMM) derivatives have shown less matrix effect compared to other derivatives. Moreover, the use of negative ion mode can further reduce matrix effect. In order to investigate the combination of derivatization and different ionization modes, an LC-ESI-MS/MS method using alternating positive/negative ion mode was developed and validated. The analyses in positive and negative ion modes had comparable limit of quantitation values. The influence of ESI polarity on matrix effect was investigated during the analysis of 22 DEEMM-derivatized amino acids in herbal extracts and honeys. Sample dilution approach was used for the evaluation of the presence of matrix effect. Altogether, 4 honeys and 11 herbal extracts were analyzed, and the concentrations of 22 amino acids in the samples are presented. In the positive ion mode, matrix effect was observed for several amino acid derivatives and the matrix effect was stronger in honey samples compared to the herbal extracts. The negative ion mode was free from matrix effect, with only few exceptions in honeys (average relative standard deviation over all analytes and matrices was 8%; SD = 7%). The matrix effect was eliminated in the positive ion mode by sample dilution and agreement between concentrations from the two ion modes was achieved for most amino acids. In conclusion, it was shown that the combination of derivatization and negative ion mode can be a powerful tool for minimizing matrix effect in more complicated applications.
NASA Astrophysics Data System (ADS)
Wirtz, Tim; Kieburg, Mario; Guhr, Thomas
2017-06-01
The correlated Wishart model provides the standard benchmark when analyzing time series of any kind. Unfortunately, the real case, which is the most relevant one in applications, poses serious challenges for analytical calculations. Often these challenges are due to square root singularities which cannot be handled using common random matrix techniques. We present a new way to tackle this issue. Using supersymmetry, we carry out an anlaytical study which we support by numerical simulations. For large but finite matrix dimensions, we show that statistical properties of the fully correlated real Wishart model generically approach those of a correlated real Wishart model with doubled matrix dimensions and doubly degenerate empirical eigenvalues. This holds for the local and global spectral statistics. With Monte Carlo simulations we show that this is even approximately true for small matrix dimensions. We explicitly investigate the k-point correlation function as well as the distribution of the largest eigenvalue for which we find a surprisingly compact formula in the doubly degenerate case. Moreover we show that on the local scale the k-point correlation function exhibits the sine and the Airy kernel in the bulk and at the soft edges, respectively. We also address the positions and the fluctuations of the possible outliers in the data.
Sturtz, Timothy M; Schichtel, Bret A; Larson, Timothy V
2014-10-07
Source contributions to total fine particle carbon predicted by a chemical transport model (CTM) were incorporated into the positive matrix factorization (PMF) receptor model to form a receptor-oriented hybrid model. The level of influence of the CTM versus traditional PMF was varied using a weighting parameter applied to an object function as implemented in the Multilinear Engine (ME-2). The methodology provides the ability to separate features that would not be identified using PMF alone, without sacrificing fit to observations. The hybrid model was applied to IMPROVE data taken from 2006 through 2008 at Monture and Sula Peak, Montana. It was able to separately identify major contributions of total carbon (TC) from wildfires and minor contributions from biogenic sources. The predictions of TC had a lower cross-validated RMSE than those from either PMF or CTM alone. Two unconstrained, minor features were identified at each site, a soil derived feature with elevated summer impacts and a feature enriched in sulfate and nitrate with significant, but sporadic contributions across the sampling period. The respective mean TC contributions from wildfires, biogenic emissions, and other sources were 1.18, 0.12, and 0.12 ugC/m(3) at Monture and 1.60, 0.44, and 0.06 ugC/m(3) at Sula Peak.
NASA Astrophysics Data System (ADS)
Bian, Leixiang; Zhu, Wei
2018-07-01
In this paper, a Fe–Ga alloy magnetostrictive beam is designed as an actuator to restrain the vibration of a supported mass. Dynamic modeling of the system based on the transfer matrix method of multibody system is first shown, and then a hybrid controller is developed to achieve vibration control. The proposed vibration controller combines a multi-mode adaptive positive position feedback (APPF) with a feedforward compensator. In the APPF control, an adaptive natural frequency estimator based on the recursive least-square method is developed to be used. In the feedforward compensator, the hysteresis of the magnetostrictive beam is linearized based on a Bouc–Wen model. The further remarkable vibration suppression capability of the proposed hybrid controller is demonstrated experimentally and compared with the positive position feedback controller. Experiment results show that the proposed controller is applicable to the magnetostrictive beam for improving vibration control effectiveness.
Tensor Sparse Coding for Positive Definite Matrices.
Sivalingam, Ravishankar; Boley, Daniel; Morellas, Vassilios; Papanikolopoulos, Nikos
2013-08-02
In recent years, there has been extensive research on sparse representation of vector-valued signals. In the matrix case, the data points are merely vectorized and treated as vectors thereafter (for e.g., image patches). However, this approach cannot be used for all matrices, as it may destroy the inherent structure of the data. Symmetric positive definite (SPD) matrices constitute one such class of signals, where their implicit structure of positive eigenvalues is lost upon vectorization. This paper proposes a novel sparse coding technique for positive definite matrices, which respects the structure of the Riemannian manifold and preserves the positivity of their eigenvalues, without resorting to vectorization. Synthetic and real-world computer vision experiments with region covariance descriptors demonstrate the need for and the applicability of the new sparse coding model. This work serves to bridge the gap between the sparse modeling paradigm and the space of positive definite matrices.
Tensor sparse coding for positive definite matrices.
Sivalingam, Ravishankar; Boley, Daniel; Morellas, Vassilios; Papanikolopoulos, Nikolaos
2014-03-01
In recent years, there has been extensive research on sparse representation of vector-valued signals. In the matrix case, the data points are merely vectorized and treated as vectors thereafter (for example, image patches). However, this approach cannot be used for all matrices, as it may destroy the inherent structure of the data. Symmetric positive definite (SPD) matrices constitute one such class of signals, where their implicit structure of positive eigenvalues is lost upon vectorization. This paper proposes a novel sparse coding technique for positive definite matrices, which respects the structure of the Riemannian manifold and preserves the positivity of their eigenvalues, without resorting to vectorization. Synthetic and real-world computer vision experiments with region covariance descriptors demonstrate the need for and the applicability of the new sparse coding model. This work serves to bridge the gap between the sparse modeling paradigm and the space of positive definite matrices.
Pixel electronic noise as a function of position in an active matrix flat panel imaging array
NASA Astrophysics Data System (ADS)
Yazdandoost, Mohammad Y.; Wu, Dali; Karim, Karim S.
2010-04-01
We present an analysis of output referred pixel electronic noise as a function of position in the active matrix array for both active and passive pixel architectures. Three different noise sources for Active Pixel Sensor (APS) arrays are considered: readout period noise, reset period noise and leakage current noise of the reset TFT during readout. For the state-of-the-art Passive Pixel Sensor (PPS) array, the readout noise of the TFT switch is considered. Measured noise results are obtained by modeling the array connections with RC ladders on a small in-house fabricated prototype. The results indicate that the pixels in the rows located in the middle part of the array have less random electronic noise at the output of the off-panel charge amplifier compared to the ones in rows at the two edges of the array. These results can help optimize for clearer images as well as help define the region-of-interest with the best signal-to-noise ratio in an active matrix digital flat panel imaging array.
Evaluating the MSCEIT V2.0 via CFA: comment on Mayer et al. (2003).
Gignac, Gilles E
2005-06-01
This investigation uncovered several substantial errors in the confirmatory factor analysis results reported by J. D. Mayer, P. Salovey, D. R. Caruso, and G. Sitarenios (see record 2003-02341-015). Specifically, the values associated with the close-fit indices (normed fit index, Tucker-Lewis Index, and root-mean-square error of approximation) are inaccurate. A reanalysis of the Mayer et al. subscale intercorrelation matrix provided accurate values of the close-fit indices, which resulted in different evaluations of the models tested by J. D. Mayer et al. Contrary to J. D. Mayer et al., the 1-factor model and the 2-factor model did not provide good fit. Although the 4-factor model was still considered good fitting, the non-constrained 4-factor model yielded a non-positive definite matrix, which was interpreted to be due to the fact that two of the branch-level factors (Perceiving and Facilitating) were collinear, suggesting that a model with 4 factors was implausible.
Fast polar decomposition of an arbitrary matrix
NASA Technical Reports Server (NTRS)
Higham, Nicholas J.; Schreiber, Robert S.
1988-01-01
The polar decomposition of an m x n matrix A of full rank, where m is greater than or equal to n, can be computed using a quadratically convergent algorithm. The algorithm is based on a Newton iteration involving a matrix inverse. With the use of a preliminary complete orthogonal decomposition the algorithm can be extended to arbitrary A. How to use the algorithm to compute the positive semi-definite square root of a Hermitian positive semi-definite matrix is described. A hybrid algorithm which adaptively switches from the matrix inversion based iteration to a matrix multiplication based iteration due to Kovarik, and to Bjorck and Bowie is formulated. The decision when to switch is made using a condition estimator. This matrix multiplication rich algorithm is shown to be more efficient on machines for which matrix multiplication can be executed 1.5 times faster than matrix inversion.
Positioning matrix of economic efficiency and complexity: a case study in a university hospital.
Ippolito, Adelaide; Viggiani, Vincenzo
2014-01-01
At the end of 2010, the Federico II University Hospital in Naples, Italy, initiated a series of discussions aimed at designing and applying a positioning matrix to its departments. This analysis was developed to create a tool able to extract meaningful information both to increase knowledge about individual departments and to inform the choices of general management during strategic planning. The name given to this tool was the positioning matrix of economic efficiency and complexity. In the matrix, the x-axis measures the ratio between revenues and costs, whereas the y-axis measures the index of complexity, thus showing "profitability" while bearing in mind the complexity of activities. By using the positioning matrix, it was possible to conduct a critical analysis of the characteristics of the Federico II University Hospital and to extract useful information for general management to use during strategic planning at the end of 2010 when defining medium-term objectives. Copyright © 2013 John Wiley & Sons, Ltd.
Nonlinear Semi-Supervised Metric Learning Via Multiple Kernels and Local Topology.
Li, Xin; Bai, Yanqin; Peng, Yaxin; Du, Shaoyi; Ying, Shihui
2018-03-01
Changing the metric on the data may change the data distribution, hence a good distance metric can promote the performance of learning algorithm. In this paper, we address the semi-supervised distance metric learning (ML) problem to obtain the best nonlinear metric for the data. First, we describe the nonlinear metric by the multiple kernel representation. By this approach, we project the data into a high dimensional space, where the data can be well represented by linear ML. Then, we reformulate the linear ML by a minimization problem on the positive definite matrix group. Finally, we develop a two-step algorithm for solving this model and design an intrinsic steepest descent algorithm to learn the positive definite metric matrix. Experimental results validate that our proposed method is effective and outperforms several state-of-the-art ML methods.
Ability of matrix models to explain the past and predict the future of plant populations.
McEachern, Kathryn; Crone, Elizabeth E.; Ellis, Martha M.; Morris, William F.; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlen, Johan; Kaye, Thomas N.; Knight, Tiffany M.; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer I.; Doak, Daniel F.; Ganesan, Rengaian; Thorpe, Andrea S.; Menges, Eric S.
2013-01-01
Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models.
Ability of matrix models to explain the past and predict the future of plant populations.
Crone, Elizabeth E; Ellis, Martha M; Morris, William F; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlén, Johan; Kaye, Thomas N; Knight, Tiffany M; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer L; Doak, Daniel F; Ganesan, Rengaian; McEachern, Kathyrn; Thorpe, Andrea S; Menges, Eric S
2013-10-01
Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models. © 2013 Society for Conservation Biology.
Xu, Jiao; Shi, Guo-Liang; Guo, Chang-Sheng; Wang, Hai-Ting; Tian, Ying-Ze; Huangfu, Yan-Qi; Zhang, Yuan; Feng, Yin-Chang; Xu, Jian
2018-01-01
A hybrid model based on the positive matrix factorization (PMF) model and the health risk assessment model for assessing risks associated with sources of perfluoroalkyl substances (PFASs) in water was established and applied at Dianchi Lake to test its applicability. The new method contains 2 stages: 1) the sources of PFASs were apportioned by the PMF model and 2) the contribution of health risks from each source was calculated by the new hybrid model. Two factors were extracted by PMF, with factor 1 identified as aqueous fire-fighting foams source and factor 2 as fluoropolymer manufacturing and processing and perfluorooctanoic acid production source. The health risk of PFASs in the water assessed by the health risk assessment model was 9.54 × 10 -7 a -1 on average, showing no obvious adverse effects to human health. The 2 sources' risks estimated by the new hybrid model ranged from 2.95 × 10 -10 to 6.60 × 10 -6 a -1 and from 1.64 × 10 -7 to 1.62 × 10 -6 a -1 , respectively. The new hybrid model can provide useful information on the health risks of PFAS sources, which is helpful for pollution control and environmental management. Environ Toxicol Chem 2018;37:107-115. © 2017 SETAC. © 2017 SETAC.
ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL
Huang, Jian; Sun, Tingni; Ying, Zhiliang; Yu, Yi; Zhang, Cun-Hui
2013-01-01
We study the absolute penalized maximum partial likelihood estimator in sparse, high-dimensional Cox proportional hazards regression models where the number of time-dependent covariates can be larger than the sample size. We establish oracle inequalities based on natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true regression coefficients. Similar results based on an extension of the restricted eigenvalue can be also proved by our method. However, the presented oracle inequalities are sharper since the compatibility and cone invertibility factors are always greater than the corresponding restricted eigenvalue. In the Cox regression model, the Hessian matrix is based on time-dependent covariates in censored risk sets, so that the compatibility and cone invertibility factors, and the restricted eigenvalue as well, are random variables even when they are evaluated for the Hessian at the true regression coefficients. Under mild conditions, we prove that these quantities are bounded from below by positive constants for time-dependent covariates, including cases where the number of covariates is of greater order than the sample size. Consequently, the compatibility and cone invertibility factors can be treated as positive constants in our oracle inequalities. PMID:24086091
ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL.
Huang, Jian; Sun, Tingni; Ying, Zhiliang; Yu, Yi; Zhang, Cun-Hui
2013-06-01
We study the absolute penalized maximum partial likelihood estimator in sparse, high-dimensional Cox proportional hazards regression models where the number of time-dependent covariates can be larger than the sample size. We establish oracle inequalities based on natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true regression coefficients. Similar results based on an extension of the restricted eigenvalue can be also proved by our method. However, the presented oracle inequalities are sharper since the compatibility and cone invertibility factors are always greater than the corresponding restricted eigenvalue. In the Cox regression model, the Hessian matrix is based on time-dependent covariates in censored risk sets, so that the compatibility and cone invertibility factors, and the restricted eigenvalue as well, are random variables even when they are evaluated for the Hessian at the true regression coefficients. Under mild conditions, we prove that these quantities are bounded from below by positive constants for time-dependent covariates, including cases where the number of covariates is of greater order than the sample size. Consequently, the compatibility and cone invertibility factors can be treated as positive constants in our oracle inequalities.
NASA Astrophysics Data System (ADS)
Seti, Julia; Tkach, Mykola; Voitsekhivska, Oxana
2018-03-01
The exact solutions of the Schrödinger equation for a double-barrier open semiconductor plane nanostructure are obtained by using two different approaches, within the model of the rectangular potential profile and the continuous position-dependent effective mass of the electron. The transmission coefficient and scattering matrix are calculated for the double-barrier nanostructure. The resonance energies and resonance widths of the electron quasi-stationary states are analyzed as a function of the size of the near-interface region between wells and barriers, where the effective mass linearly depends on the coordinate. It is established that, in both methods, the increasing size affects in a qualitatively similar way the spectral characteristics of the states, shifting the resonance energies into the low- or high-energy region and increasing the resonance widths. It is shown that the relative difference of resonance energies and widths of a certain state, obtained in the model of position-dependent effective mass and in the widespread abrupt model in physically correct range of near-interface sizes, does not exceed 0.5% and 5%, respectively, independently of the other geometrical characteristics of the structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unseren, M.A.
A rigid body model for the entire system which accounts for the load distribution scheme proposed in Part 1 as well as for the dynamics of the manipulators and the kinematic constraints is derived in the joint space. A technique is presented for expressing the object dynamics in terms of the joint variables of both manipulators which leads to a positive definite and symmetric inertia matrix. The model is then transformed to obtain reduced order equations of motion and a separate set of equations which govern the behavior of the internal contact forces. The control architecture is applied to themore » model which results in the explicit decoupling of the position and internal contact force-controlled degrees of freedom (DOF).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blume-Kohout, Robin J; Scholten, Travis L.
Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) shouldmore » not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.« less
Computing the structural influence matrix for biological systems.
Giordano, Giulia; Cuba Samaniego, Christian; Franco, Elisa; Blanchini, Franco
2016-06-01
We consider the problem of identifying structural influences of external inputs on steady-state outputs in a biological network model. We speak of a structural influence if, upon a perturbation due to a constant input, the ensuing variation of the steady-state output value has the same sign as the input (positive influence), the opposite sign (negative influence), or is zero (perfect adaptation), for any feasible choice of the model parameters. All these signs and zeros can constitute a structural influence matrix, whose (i, j) entry indicates the sign of steady-state influence of the jth system variable on the ith variable (the output caused by an external persistent input applied to the jth variable). Each entry is structurally determinate if the sign does not depend on the choice of the parameters, but is indeterminate otherwise. In principle, determining the influence matrix requires exhaustive testing of the system steady-state behaviour in the widest range of parameter values. Here we show that, in a broad class of biological networks, the influence matrix can be evaluated with an algorithm that tests the system steady-state behaviour only at a finite number of points. This algorithm also allows us to assess the structural effect of any perturbation, such as variations of relevant parameters. Our method is applied to nontrivial models of biochemical reaction networks and population dynamics drawn from the literature, providing a parameter-free insight into the system dynamics.
Multi-color incomplete Cholesky conjugate gradient methods for vector computers. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Poole, E. L.
1986-01-01
In this research, we are concerned with the solution on vector computers of linear systems of equations, Ax = b, where A is a larger, sparse symmetric positive definite matrix. We solve the system using an iterative method, the incomplete Cholesky conjugate gradient method (ICCG). We apply a multi-color strategy to obtain p-color matrices for which a block-oriented ICCG method is implemented on the CYBER 205. (A p-colored matrix is a matrix which can be partitioned into a pXp block matrix where the diagonal blocks are diagonal matrices). This algorithm, which is based on a no-fill strategy, achieves O(N/p) length vector operations in both the decomposition of A and in the forward and back solves necessary at each iteration of the method. We discuss the natural ordering of the unknowns as an ordering that minimizes the number of diagonals in the matrix and define multi-color orderings in terms of disjoint sets of the unknowns. We give necessary and sufficient conditions to determine which multi-color orderings of the unknowns correpond to p-color matrices. A performance model is given which is used both to predict execution time for ICCG methods and also to compare an ICCG method to conjugate gradient without preconditioning or another ICCG method. Results are given from runs on the CYBER 205 at NASA's Langley Research Center for four model problems.
The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EP...
Environmental arsenic exposure and serum matrix metalloproteinase-9.
Burgess, Jefferey L; Kurzius-Spencer, Margaret; O'Rourke, Mary Kay; Littau, Sally R; Roberge, Jason; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Harris, Robin B
2013-03-01
The objective of this study was to evaluate the relationship between environmental arsenic exposure and serum matrix metalloproteinase (MMP)-9, a biomarker associated with cardiovascular disease and cancer. In a cross-sectional study of residents of Arizona, USA (n=215) and Sonora, Mexico (n=163), drinking water was assayed for total arsenic, and daily drinking water arsenic intake was estimated. Urine was speciated for arsenic, and concentrations were adjusted for specific gravity. Serum was analyzed for MMP-9 using ELISA. Mixed model linear regression was used to assess the relation among drinking water arsenic concentration, drinking water arsenic intake, urinary arsenic sum of species (the sum of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid), and MMP-9, controlling for autocorrelation within households. Drinking water arsenic concentration and intake were positively associated with MMP-9, both in crude analysis and after adjustment for gender, country/ethnicity, age, body mass index, current smoking, and diabetes. Urinary arsenic sum of species was positively associated with MMP-9 in multivariable analysis only. Using Akaike's Information Criterion, arsenic concentration in drinking water provided a better fitting model of MMP-9 than either urinary arsenic or drinking water arsenic intake. In conclusion, arsenic exposure evaluated using all three exposure metrics was positively associated with MMP-9.
Environmental arsenic exposure and serum matrix metalloproteinase-9
Burgess, Jefferey L.; Kurzius-Spencer, Margaret; O’Rourke, Mary Kay; Littau, Sally R.; Roberge, Jason; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Harris, Robin B.
2014-01-01
The objective of this study was to evaluate the relationship between environmental arsenic exposure and serum matrix metalloproteinase (MMP)-9, a biomarker associated with cardiovascular disease and cancer. In a cross-sectional study of residents of Arizona, USA (n=215) and Sonora, Mexico (n=163), drinking water was assayed for total arsenic, and daily drinking water arsenic intake estimated. Urine was speciated for arsenic and concentrations were adjusted for specific gravity. Serum was analyzed for MMP-9 using ELISA. Mixed model linear regression was used to assess the relation among drinking water arsenic concentration, drinking water arsenic intake, urinary arsenic sum of species (the sum of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid), and MMP-9, controlling for autocorrelation within households. Drinking water arsenic concentration and intake were positively associated with MMP-9, both in crude analysis and after adjustment for gender, country/ethnicity, age, body mass index, current smoking and diabetes. Urinary arsenic sum of species was positively associated with MMP-9 in multivariable analysis only. Using Akaike’s Information Criterion, arsenic concentration in drinking water provided a better fitting model of MMP-9, than either urinary arsenic or drinking water arsenic intake. In conclusion, arsenic exposure was positively associated with MMP-9 using all three exposure metrics evaluated. PMID:23232971
Multi-cut solutions in Chern-Simons matrix models
NASA Astrophysics Data System (ADS)
Morita, Takeshi; Sugiyama, Kento
2018-04-01
We elaborate the Chern-Simons (CS) matrix models at large N. The saddle point equations of these matrix models have a curious structure which cannot be seen in the ordinary one matrix models. Thanks to this structure, an infinite number of multi-cut solutions exist in the CS matrix models. Particularly we exactly derive the two-cut solutions at finite 't Hooft coupling in the pure CS matrix model. In the ABJM matrix model, we argue that some of multi-cut solutions might be interpreted as a condensation of the D2-brane instantons.
Reduced modeling of flexible structures for decentralized control
NASA Technical Reports Server (NTRS)
Yousuff, A.; Tan, T. M.; Bahar, L. Y.; Konstantinidis, M. F.
1986-01-01
Based upon the modified finite element-transfer matrix method, this paper presents a technique for reduced modeling of flexible structures for decentralized control. The modeling decisions are carried out at (finite-) element level, and are dictated by control objectives. A simply supported beam with two sets of actuators and sensors (linear force actuator and linear position and velocity sensors) is considered for illustration. In this case, it is conjectured that the decentrally controlled closed loop system is guaranteed to be at least marginally stable.
A structure-based extracellular matrix expansion mechanism of fibrous tissue growth.
Kalson, Nicholas S; Lu, Yinhui; Taylor, Susan H; Starborg, Tobias; Holmes, David F; Kadler, Karl E
2015-05-20
Embryonic growth occurs predominately by an increase in cell number; little is known about growth mechanisms later in development when fibrous tissues account for the bulk of adult vertebrate mass. We present a model for fibrous tissue growth based on 3D-electron microscopy of mouse tendon. We show that the number of collagen fibrils increases during embryonic development and then remains constant during postnatal growth. Embryonic growth was explained predominately by increases in fibril number and length. Postnatal growth arose predominately from increases in fibril length and diameter. A helical crimp structure was established in embryogenesis, and persisted postnatally. The data support a model where the shape and size of tendon is determined by the number and position of embryonic fibroblasts. The collagen fibrils that these cells synthesise provide a template for postnatal growth by structure-based matrix expansion. The model has important implications for growth of other fibrous tissues and fibrosis.
Performance analysis of cross-seeding WDM-PON system using transfer matrix method
NASA Astrophysics Data System (ADS)
Simatupang, Joni Welman; Pukhrambam, Puspa Devi; Huang, Yen-Ru
2016-12-01
In this paper, a model based on the transfer matrix method is adopted to analyze the effects of Rayleigh backscattering and Fresnel multiple reflections on a cross-seeding WDM-PON system. As part of analytical approximation methods, this time-independent model is quite simple but very efficient when it is applied to various WDM-PON transmission systems, including the cross-seeding scheme. The cross seeding scheme is most beneficial for systems with low loop-back ONU gain or low reflection loss at the drop fiber for upstream data in bidirectional transmission. However for downstream data transmission, multiple reflections power could destroy the usefulness of the cross-seeding scheme when the reflectivity is high enough and the RN is positioned near OLT or close to ONU.
Emergence of a new pair-coherent phase in many-body quenches of repulsive bosons
NASA Astrophysics Data System (ADS)
Fischer, Uwe R.; Lee, Kang-Soo; Xiong, Bo
2011-07-01
We investigate the dynamical mode population statistics and associated first- and second-order coherence of an interacting bosonic two-mode model when the pair-exchange coupling is quenched from negative to positive values. It is shown that for moderately rapid second-order transitions, a new pair-coherent phase emerges on the positive coupling side in an excited state, which is not fragmented as the ground-state single-particle density matrix would prescribe it to be.
Ionospheric modelling to boost the PPP-RTK positioning and navigation in Australia
NASA Astrophysics Data System (ADS)
Arsov, Kirco; Terkildsen, Michael; Olivares, German
2017-04-01
This paper deals with implementation of 3-D ionospheric model to support the GNSS positioning and navigation activities in Australia. We will introduce two strategies for Slant Total Electron Content (STEC) estimation from GNSS CORS sites in Australia. In the first scenario, the STEC is estimated in the PPP-RTK network processing. The ionosphere is estimated together with other GNSS network parameters, such as Satellite Clocks, Satellite Phase Biases, etc. Another approach is where STEC is estimated on a station by station basis by taking advantage of already known station position and different satellite ambiguities relations. Accuracy studies and considerations will be presented and discussed. Furthermore, based on this STEC, 3-D ionosphere modeling will be performed. We will present the simple interpolation, 3-D Tomography and bi-cubic splines as modeling techniques. In order to assess these models, a (user) PPP-RTK test bed is established and a sensitivity matrix will be introduced and analyzed based on time to first fix (TTFF) of ambiguities, positioning accuracy, PPP-RTK solution convergence time etc. Different spatial configurations and constellations will be presented and assessed.
Vector Observation-Aided/Attitude-Rate Estimation Using Global Positioning System Signals
NASA Technical Reports Server (NTRS)
Oshman, Yaakov; Markley, F. Landis
1997-01-01
A sequential filtering algorithm is presented for attitude and attitude-rate estimation from Global Positioning System (GPS) differential carrier phase measurements. A third-order, minimal-parameter method for solving the attitude matrix kinematic equation is used to parameterize the filter's state, which renders the resulting estimator computationally efficient. Borrowing from tracking theory concepts, the angular acceleration is modeled as an exponentially autocorrelated stochastic process, thus avoiding the use of the uncertain spacecraft dynamic model. The new formulation facilitates the use of aiding vector observations in a unified filtering algorithm, which can enhance the method's robustness and accuracy. Numerical examples are used to demonstrate the performance of the method.
A fast, preconditioned conjugate gradient Toeplitz solver
NASA Technical Reports Server (NTRS)
Pan, Victor; Schrieber, Robert
1989-01-01
A simple factorization is given of an arbitrary hermitian, positive definite matrix in which the factors are well-conditioned, hermitian, and positive definite. In fact, given knowledge of the extreme eigenvalues of the original matrix A, an optimal improvement can be achieved, making the condition numbers of each of the two factors equal to the square root of the condition number of A. This technique is to applied to the solution of hermitian, positive definite Toeplitz systems. Large linear systems with hermitian, positive definite Toeplitz matrices arise in some signal processing applications. A stable fast algorithm is given for solving these systems that is based on the preconditioned conjugate gradient method. The algorithm exploits Toeplitz structure to reduce the cost of an iteration to O(n log n) by applying the fast Fourier Transform to compute matrix-vector products. Matrix factorization is used as a preconditioner.
Configuration Analysis of the ERS Points in Large-Volume Metrology System
Jin, Zhangjun; Yu, Cijun; Li, Jiangxiong; Ke, Yinglin
2015-01-01
In aircraft assembly, multiple laser trackers are used simultaneously to measure large-scale aircraft components. To combine the independent measurements, the transformation matrices between the laser trackers’ coordinate systems and the assembly coordinate system are calculated, by measuring the enhanced referring system (ERS) points. This article aims to understand the influence of the configuration of the ERS points that affect the transformation matrix errors, and then optimize the deployment of the ERS points to reduce the transformation matrix errors. To optimize the deployment of the ERS points, an explicit model is derived to estimate the transformation matrix errors. The estimation model is verified by the experiment implemented in the factory floor. Based on the proposed model, a group of sensitivity coefficients are derived to evaluate the quality of the configuration of the ERS points, and then several typical configurations of the ERS points are analyzed in detail with the sensitivity coefficients. Finally general guidance is established to instruct the deployment of the ERS points in the aspects of the layout, the volume size and the number of the ERS points, as well as the position and orientation of the assembly coordinate system. PMID:26402685
Sakaris, Peter C; Irwin, Elise R
2010-03-01
We developed stochastic matrix models to evaluate the effects of hydrologic alteration and variable mortality on the population dynamics of a lotic fish in a regulated river system. Models were applied to a representative lotic fish species, the flathead catfish (Pylodictis olivaris), for which two populations were examined: a native population from a regulated reach of the Coosa River (Alabama, USA) and an introduced population from an unregulated section of the Ocmulgee River (Georgia, USA). Size-classified matrix models were constructed for both populations, and residuals from catch-curve regressions were used as indices of year class strength (i.e., recruitment). A multiple regression model indicated that recruitment of flathead catfish in the Coosa River was positively related to the frequency of spring pulses between 283 and 566 m3/s. For the Ocmulgee River population, multiple regression models indicated that year class strength was negatively related to mean March discharge and positively related to June low flow. When the Coosa population was modeled to experience five consecutive years of favorable hydrologic conditions during a 50-year projection period, it exhibited a substantial spike in size and increased at an overall 0.2% annual rate. When modeled to experience five years of unfavorable hydrologic conditions, the Coosa population initially exhibited a decrease in size but later stabilized and increased at a 0.4% annual rate following the decline. When the Ocmulgee River population was modeled to experience five years of favorable conditions, it exhibited a substantial spike in size and increased at an overall 0.4% annual rate. After the Ocmulgee population experienced five years of unfavorable conditions, a sharp decline in population size was predicted. However, the population quickly recovered, with population size increasing at a 0.3% annual rate following the decline. In general, stochastic population growth in the Ocmulgee River was more erratic and variable than population growth in the Coosa River. We encourage ecologists to develop similar models for other lotic species, particularly in regulated river systems. Successful management of fish populations in regulated systems requires that we are able to predict how hydrology affects recruitment and will ultimately influence the population dynamics of fishes.
[Sorption properties of various polysaccharide matrixes to Lactobacillus plantarum 8RA-3 bacteria].
Bondarenko, V M; Larionov, I V; Rybal'chenko, O V; Potokin, I L; Ryzhankova, A V
2011-01-01
Study of sorption properties of various spherical polysaccharide matrixes designated as Spherocell to probiotic Lactobacillus plantarum 8RA-3 bacteria. Industrial strain of L. plantarum 8PA-3 was used. The process of immobilization of lactobacilli on 3 variants of spherical sorbents was studied. The first sorbent - neutral, composed of nonpolar cellulose matrix with ("0") charge, the second--DEAE obtained by modification of cellulose by diethylaminoethyl groups with positive ("+") charge and the third--CM (carboxymethyl) with negative ("-") charge. Cellulose matrixes were designated by us by the term Spherocell. Immobilization of bacterial cells on Spherocell was performed by addition of suspension containing 1.0 x 10(9) CFU/ml. The effect of bacterial immobilization was evaluated by CFU/ ml titration and by electron microscopy. The dependence on matrix charge of adsorption immobilization on sorbent granules of lactobacilli cells was shown. At certain equal parameters (granule size, surface characteristics, charge value) the positively charged matrix sorbed 3-10 times more cells than neutral and 20-25 times more than negatively charged matrix. Each 100-180 microm Spherocell DEAE particle could sorb more than 1000 viable bacterial cells. Positively charged polysaccharide matrix Spherocell DEAE obtained by modification of cellulose by diethylaminoethyl groups is promising for creation of immobilized probiotic preparations.
Cartilage-targeting drug delivery: can electrostatic interactions help?
Bajpayee, Ambika G; Grodzinsky, Alan J
2017-03-01
Current intra-articular drug delivery methods do not guarantee sufficient drug penetration into cartilage tissue to reach cell and matrix targets at the concentrations necessary to elicit the desired biological response. Here, we provide our perspective on the utilization of charge-charge (electrostatic) interactions to enhance drug penetration and transport into cartilage, and to enable sustained binding of drugs within the tissue's highly negatively charged extracellular matrix. By coupling drugs to positively charged nanocarriers that have optimal size and charge, cartilage can be converted from a drug barrier into a drug reservoir for sustained intra-tissue delivery. Alternatively, a wide variety of drugs themselves can be made cartilage-penetrating by functionalizing them with specialized positively charged protein domains. Finally, we emphasize that appropriate animal models, with cartilage thickness similar to that of humans, must be used for the study of drug transport and retention in cartilage.
Wang, Degao; Tian, Fulin; Yang, Meng; Liu, Chenlin; Li, Yi-Fan
2009-05-01
Soil derived sources of polycyclic aromatic hydrocarbons (PAHs) in the region of Dalian, China were investigated using positive matrix factorization (PMF). Three factors were separated based on PMF for the statistical investigation of the datasets both in summer and winter. These factors were dominated by the pattern of single sources or groups of similar sources, showing seasonal and regional variations. The main sources of PAHs in Dalian soil in summer were the emissions from coal combustion average (46%), diesel engine (30%), and gasoline engine (24%). In winter, the main sources were the emissions from coal-fired boiler (72%), traffic average (20%), and gasoline engine (8%). These factors with strong seasonality indicated that coal combustion in winter and traffic exhaust in summer dominated the sources of PAHs in soil. These results suggested that PMF model was a proper approach to identify the sources of PAHs in soil.
NASA Astrophysics Data System (ADS)
Ballinger, Marcel Y.; Larson, Timothy V.
2014-12-01
Research and development (R&D) facility emissions are difficult to characterize due to their variable processes, changing nature of research, and large number of chemicals. Positive matrix factorization (PMF) was applied to volatile organic compound (VOC) concentrations measured in the main exhaust stacks of four different R&D buildings to identify the number and composition of major contributing sources. PMF identified between 9 and 11 source-related factors contributing to stack emissions, depending on the building. Similar factors between buildings were major contributors to trichloroethylene (TCE), acetone, and ethanol emissions; other factors had similar profiles for two or more buildings but not all four. At least one factor for each building was identified that contained a broad mix of many species and constraints were used in PMF to modify the factors to resemble more closely the off-shift concentration profiles. PMF accepted the constraints with little decrease in model fit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okabe, T.; Takeda, N.; Komotori, J.
1999-11-26
A new model is proposed for multiple matrix cracking in order to take into account the role of matrix-rich regions in the cross section in initiating crack growth. The model is used to predict the matrix cracking stress and the total number of matrix cracks. The model converts the matrix-rich regions into equivalent penny shape crack sizes and predicts the matrix cracking stress with a fracture mechanics crack-bridging model. The estimated distribution of matrix cracking stresses is used as statistical input to predict the number of matrix cracks. The results show good agreement with the experimental results by replica observations.more » Therefore, it is found that the matrix cracking behavior mainly depends on the distribution of matrix-rich regions in the composite.« less
The Φ43 and Φ63 matricial QFT models have reflection positive two-point function
NASA Astrophysics Data System (ADS)
Grosse, Harald; Sako, Akifumi; Wulkenhaar, Raimar
2018-01-01
We extend our previous work (on D = 2) to give an exact solution of the ΦD3 large- N matrix model (or renormalised Kontsevich model) in D = 4 and D = 6 dimensions. Induction proofs and the difficult combinatorics are unchanged compared with D = 2, but the renormalisation - performed according to Zimmermann - is much more involved. As main result we prove that the Schwinger 2-point function resulting from the ΦD3 -QFT model on Moyal space satisfies, for real coupling constant, reflection positivity in D = 4 and D = 6 dimensions. The Källén-Lehmann mass spectrum of the associated Wightman 2-point function describes a scattering part | p|2 ≥ 2μ2 and an isolated broadened mass shell around | p|2 =μ2.
Lattice modeling and calibration with turn-by-turn orbit data
NASA Astrophysics Data System (ADS)
Huang, Xiaobiao; Sebek, Jim; Martin, Don
2010-11-01
A new method that explores turn-by-turn beam position monitor (BPM) data to calibrate lattice models of accelerators is proposed. The turn-by-turn phase space coordinates at one location of the ring are first established using data from two BPMs separated by a simple section with a known transfer matrix, such as a drift space. The phase space coordinates are then tracked with the model to predict positions at other BPMs, which can be compared to measurements. The model is adjusted to minimize the difference between the measured and predicted orbit data. BPM gains and rolls are included as fitting variables. This technique can be applied to either the entire or a section of the ring. We have tested the method experimentally on a part of the SPEAR3 ring.
LCMV beamforming for a novel wireless local positioning system: a stationarity analysis
NASA Astrophysics Data System (ADS)
Tong, Hui; Zekavat, Seyed A.
2005-05-01
In this paper, we discuss the implementation of Linear Constrained Minimum Variance (LCMV) beamforming (BF) for a novel Wireless Local Position System (WLPS). WLPS main components are: (a) a dynamic base station (DBS), and (b) a transponder (TRX), both mounted on mobiles. WLPS might be considered as a node in a Mobile Adhoc NETwork (MANET). Each TRX is assigned an identification (ID) code. DBS transmits periodic short bursts of energy which contains an ID request (IDR) signal. The TRX transmits back its ID code (a signal with a limited duration) to the DBS as soon as it detects the IDR signal. Hence, the DBS receives non-continuous signals transmitted by TRX. In this work, we assume asynchronous Direct-Sequence Code Division Multiple Access (DS-CDMA) transmission from the TRX with antenna array/LCMV BF mounted at the DBS, and we discuss the implementation of the observed signal covariance matrix for LCMV BF. In LCMV BF, the observed covariance matrix should be estimated. Usually sample covariance matrix (SCM) is used to estimate this covariance matrix assuming a stationary model for the observed data which is the case in many communication systems. However, due to the non-stationary behavior of the received signal in WLPS systems, SCM does not lead to a high WLPS performance compared to even a conventional beamformer. A modified covariance matrix estimation method which utilizes the cyclostationarity property of WLPS system is introduced as a solution to this problem. It is shown that this method leads to a significant improvement in the WLPS performance.
On the cross-stream spectral method for the Orr-Sommerfeld equation
NASA Technical Reports Server (NTRS)
Zorumski, William E.; Hodge, Steven L.
1993-01-01
Cross-stream models are defined as solutions to the Orr-Sommerfeld equation which are propagating normal to the flow direction. These models are utilized as a basis for a Hilbert space to approximate the spectrum of the Orr-Sommerfeld equation with plane Poiseuille flow. The cross-stream basis leads to a standard eigenvalue problem for the frequencies of Poiseuille flow instability waves. The coefficient matrix in the eigenvalue problem is shown to be the sum of a real matrix and a negative-imaginary diagonal matrix which represents the frequencies of the cross-stream modes. The real coefficient matrix is shown to approach a Toeplitz matrix when the row and column indices are large. The Toeplitz matrix is diagonally dominant, and the diagonal elements vary inversely in magnitude with diagonal position. The Poiseuille flow eigenvalues are shown to lie within Gersgorin disks with radii bounded by the product of the average flow speed and the axial wavenumber. It is shown that the eigenvalues approach the Gersgorin disk centers when the mode index is large, so that the method may be used to compute spectra with an essentially unlimited number of elements. When the mode index is large, the real part of the eigenvalue is the product of the axial wavenumber and the average flow speed, and the imaginary part of the eigen value is identical to the corresponding cross-stream mode frequency. The cross-stream method is numerically well-conditioned in comparison to Chebyshev based methods, providing equivalent accuracy for small mode indices and superior accuracy for large indices.
Distributed Matrix Completion: Applications to Cooperative Positioning in Noisy Environments
2013-12-11
positioning, and a gossip version of low-rank approximation were developed. A convex relaxation for positioning in the presence of noise was shown...computing the leading eigenvectors of a large data matrix through gossip algorithms. A new algorithm is proposed that amounts to iteratively multiplying...generalization of gossip algorithms for consensus. The algorithms outperform state-of-the-art methods in a communication-limited scenario. Positioning via
ERIC Educational Resources Information Center
Ponterotto, Joseph G.
2010-01-01
The present article provides an update of the author's evolving theory of the "multicultural personality" (MP). The MP is conceptualized as a narrow matrix of personality traits or dispositions (characteristic adaptations) that can be subsumed under broad trait models of personality (e.g., Big Five). MP theory posits that its constituent factors…
NASA Astrophysics Data System (ADS)
Saputro, Dewi Retno Sari; Widyaningsih, Purnami
2017-08-01
In general, the parameter estimation of GWOLR model uses maximum likelihood method, but it constructs a system of nonlinear equations, making it difficult to find the solution. Therefore, an approximate solution is needed. There are two popular numerical methods: the methods of Newton and Quasi-Newton (QN). Newton's method requires large-scale time in executing the computation program since it contains Jacobian matrix (derivative). QN method overcomes the drawback of Newton's method by substituting derivative computation into a function of direct computation. The QN method uses Hessian matrix approach which contains Davidon-Fletcher-Powell (DFP) formula. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is categorized as the QN method which has the DFP formula attribute of having positive definite Hessian matrix. The BFGS method requires large memory in executing the program so another algorithm to decrease memory usage is needed, namely Low Memory BFGS (LBFGS). The purpose of this research is to compute the efficiency of the LBFGS method in the iterative and recursive computation of Hessian matrix and its inverse for the GWOLR parameter estimation. In reference to the research findings, we found out that the BFGS and LBFGS methods have arithmetic operation schemes, including O(n2) and O(nm).
Nonlinear hyperspectral unmixing based on sparse non-negative matrix factorization
NASA Astrophysics Data System (ADS)
Li, Jing; Li, Xiaorun; Zhao, Liaoying
2016-01-01
Hyperspectral unmixing aims at extracting pure material spectra, accompanied by their corresponding proportions, from a mixed pixel. Owing to modeling more accurate distribution of real material, nonlinear mixing models (non-LMM) are usually considered to hold better performance than LMMs in complicated scenarios. In the past years, numerous nonlinear models have been successfully applied to hyperspectral unmixing. However, most non-LMMs only think of sum-to-one constraint or positivity constraint while the widespread sparsity among real materials mixing is the very factor that cannot be ignored. That is, for non-LMMs, a pixel is usually composed of a few spectral signatures of different materials from all the pure pixel set. Thus, in this paper, a smooth sparsity constraint is incorporated into the state-of-the-art Fan nonlinear model to exploit the sparsity feature in nonlinear model and use it to enhance the unmixing performance. This sparsity-constrained Fan model is solved with the non-negative matrix factorization. The algorithm was implemented on synthetic and real hyperspectral data and presented its advantage over those competing algorithms in the experiments.
Schiereck, P; de Beer, E L; Grundeman, R L; Manussen, T; Kylstra, N; Bras, W
1992-10-01
Single skinned skeletal muscle fibres were immersed in solutions containing two different levels of activator calcium (pCa: 4.4; 6.0). Sarcomere length was varied from 1.6 to 3.5 microns and recorded by laser diffraction. Slack length was 2.0 microns. Small-angle equatorial X-ray diffraction patterns of relaxed and activated fibres at different sarcomere lengths were recorded using synchrotron radiation. The position and amplitude of the diffraction peaks were calculated from the spectra based on the hexagonal arrangement of the myofilament matrix, relating the position of the (1.0)- and (1.1)-diffraction peaks in this model by square root of 3. The diffraction peaks were fitted by five Gaussian functions (1.0, 1.1, 2.0, 2.1 and Z-line) and residual background was corrected by means of a hyperbola. The coupling of the position of the (1.0)- and (1.1)-peak was expressed as a factor: FAC = [d(1.0)/d(1.1)]/square root 3. In the relaxed state this coupling factor decreased at increasing sarcomere length (0.9880 +/- 0.002 at 2.0 microns; 0.900 +/- 0.01 at 3.5 microns). The coupling factor tends toward the one that will be obtained from the squared structure of actin filaments near the Z-discs. At shorter sarcomere lengths a decrease of the coupling factor has also been seen (0.9600 +/- 0.005 at 1.6 microns), giving rise to an increased uniform deformation of the hexagonal matrix, when sarcomere length is changed from slack length. From these experiments we conclude that a change in sarcomere length (from slack length) increases the deformation of the actin-myosin matrix to a tetragonal lattice.
Bottagisio, Marta; Lovati, Arianna B; Lopa, Silvia; Moretti, Matteo
2015-08-01
Bone defects are severe burdens in clinics, and thus cell therapy offers an alternative strategy exploiting the features of bone marrow stromal cells (BMSCs). Sheep are a suitable orthopedic preclinical model for similarities with humans. This study compares the influence of two phosphate sources combined with bone morphogenetic protein-2 (BMP-2) on the osteogenic potential of human and ovine BMSCs. β-Glycerophosphate (β-GlyP) and monosodium phosphate (NaH2PO4) were used as organic and inorganic phosphate sources. Osteogenic differentiation of the BMSCs was assessed by calcified matrix, alkaline phosphatase (ALP) activity, and gene expression analysis. A higher calcified matrix deposition was detected in BMSCs cultured with NaH2PO4. Although no significant differences were detected among media for human BMSCs, β-GlyP with or without BMP-2 determined a positive trend in ALP levels compared to NaH2PO4. In contrast, NaH2PO4 had a positive effect on ALP levels in ovine BMSCs. β-GlyP better supported the expression of COL1A1 in human BMSCs, whereas all media enhanced RUNX2 and SPARC expression. Ovine BMSCs responded poorly to any media for RUNX2, COL1A1, and SPARC expression. NaH2PO4 improved calcified matrix deposition without upregulating the transcriptional expression of osteogenic markers. A further optimization of differentiation protocols needs to be performed to translate the procedures from preclinical to clinical models.
Optical drift effects in general relativity
NASA Astrophysics Data System (ADS)
Korzyński, Mikołaj; Kopiński, Jarosław
2018-03-01
We consider the question of determining the optical drift effects in general relativity, i.e. the rate of change of the apparent position, redshift, Jacobi matrix, angular distance and luminosity distance of a distant object as registered by an observer in an arbitrary spacetime. We present a fully relativistic and covariant approach, in which the problem is reduced to a hierarchy of ODE's solved along the line of sight. The 4-velocities and 4-accelerations of the observer and the emitter and the geometry of the spacetime along the line of sight constitute the input data. We build on the standard relativistic geometric optics formalism and extend it to include the time derivatives of the observables. In the process we obtain two general, non-perturbative relations: the first one between the gravitational lensing, represented by the Jacobi matrix, and the apparent position drift, also called the cosmic parallax, and the second one between the apparent position drift and the redshift drift. The applications of the results include the theoretical study of the drift effects of cosmological origin (so-called real-time cosmology) in numerical or exact Universe models.
NASA Astrophysics Data System (ADS)
Silalahi, R. L. R.; Mustaniroh, S. A.; Ikasari, D. M.; Sriulina, R. P.
2018-03-01
UD. Bunda Foods is an SME located in the district of Sidoarjo. UD. Bunda Foods has problems of maintaining its milkfish’s quality assurance and developing marketing strategies. Improving those problems enables UD. Bunda Foods to compete with other similar SMEs and to market its product for further expansion of their business. The objectives of this study were to determine the model of the institutional structure of the milkfish supply chain, to determine the elements, the sub-elements, and the relationship among each element. The method used in this research was Interpretive Structural Modeling (ISM), involving 5 experts as respondents consisting of 1 practitioner, 1 academician, and 3 government organisation employees. The results showed that there were two key elements include requirement and goals elements. Based on the Drive Power-Dependence (DP-D) matrix, the key sub-elements of requirement element, consisted of raw material continuity, appropriate marketing strategy, and production capital, were positioned in the Linkage sector quadrant. The DP-D matrix for the key sub-elements of the goal element also showed a similar position. The findings suggested several managerial implications to be carried out by UD. Bunda Foods include establishing good relationships with all involved institutions, obtaining capital assistance, and attending the marketing training provided by the government.
Mechanical models for the self-organization of tubular patterns.
Guo, Chin-Lin
2013-01-01
Organogenesis, such as long tubule self-organization, requires long-range coordination of cell mechanics to arrange cell positions and to remodel the extracellular matrix. While the current mainstream in the field of tissue morphogenesis focuses primarily on genetics and chemical signaling, the influence of cell mechanics on the programming of patterning cues in tissue morphogenesis has not been adequately addressed. Here, we review experimental evidence and propose quantitative mechanical models by which cells can create tubular patterns.
Zyout, Imad; Czajkowska, Joanna; Grzegorzek, Marcin
2015-12-01
The high number of false positives and the resulting number of avoidable breast biopsies are the major problems faced by current mammography Computer Aided Detection (CAD) systems. False positive reduction is not only a requirement for mass but also for calcification CAD systems which are currently deployed for clinical use. This paper tackles two problems related to reducing the number of false positives in the detection of all lesions and masses, respectively. Firstly, textural patterns of breast tissue have been analyzed using several multi-scale textural descriptors based on wavelet and gray level co-occurrence matrix. The second problem addressed in this paper is the parameter selection and performance optimization. For this, we adopt a model selection procedure based on Particle Swarm Optimization (PSO) for selecting the most discriminative textural features and for strengthening the generalization capacity of the supervised learning stage based on a Support Vector Machine (SVM) classifier. For evaluating the proposed methods, two sets of suspicious mammogram regions have been used. The first one, obtained from Digital Database for Screening Mammography (DDSM), contains 1494 regions (1000 normal and 494 abnormal samples). The second set of suspicious regions was obtained from database of Mammographic Image Analysis Society (mini-MIAS) and contains 315 (207 normal and 108 abnormal) samples. Results from both datasets demonstrate the efficiency of using PSO based model selection for optimizing both classifier hyper-parameters and parameters, respectively. Furthermore, the obtained results indicate the promising performance of the proposed textural features and more specifically, those based on co-occurrence matrix of wavelet image representation technique. Copyright © 2015 Elsevier Ltd. All rights reserved.
Study on individual stochastic model of GNSS observations for precise kinematic applications
NASA Astrophysics Data System (ADS)
Próchniewicz, Dominik; Szpunar, Ryszard
2015-04-01
The proper definition of mathematical positioning model, which is defined by functional and stochastic models, is a prerequisite to obtain the optimal estimation of unknown parameters. Especially important in this definition is realistic modelling of stochastic properties of observations, which are more receiver-dependent and time-varying than deterministic relationships. This is particularly true with respect to precise kinematic applications which are characterized by weakening model strength. In this case, incorrect or simplified definition of stochastic model causes that the performance of ambiguity resolution and accuracy of position estimation can be limited. In this study we investigate the methods of describing the measurement noise of GNSS observations and its impact to derive precise kinematic positioning model. In particular stochastic modelling of individual components of the variance-covariance matrix of observation noise performed using observations from a very short baseline and laboratory GNSS signal generator, is analyzed. Experimental test results indicate that the utilizing the individual stochastic model of observations including elevation dependency and cross-correlation instead of assumption that raw measurements are independent with the same variance improves the performance of ambiguity resolution as well as rover positioning accuracy. This shows that the proposed stochastic assessment method could be a important part in complex calibration procedure of GNSS equipment.
A semiparametric separation curve approach for comparing correlated ROC data from multiple markers
Tang, Liansheng Larry; Zhou, Xiao-Hua
2012-01-01
In this article we propose a separation curve method to identify the range of false positive rates for which two ROC curves differ or one ROC curve is superior to the other. Our method is based on a general multivariate ROC curve model, including interaction terms between discrete covariates and false positive rates. It is applicable with most existing ROC curve models. Furthermore, we introduce a semiparametric least squares ROC estimator and apply the estimator to the separation curve method. We derive a sandwich estimator for the covariance matrix of the semiparametric estimator. We illustrate the application of our separation curve method through two real life examples. PMID:23074360
Behavior of the maximum likelihood in quantum state tomography
NASA Astrophysics Data System (ADS)
Scholten, Travis L.; Blume-Kohout, Robin
2018-02-01
Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) should not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.
Behavior of the maximum likelihood in quantum state tomography
Blume-Kohout, Robin J; Scholten, Travis L.
2018-02-22
Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) shouldmore » not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.« less
Behavior of the maximum likelihood in quantum state tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blume-Kohout, Robin J; Scholten, Travis L.
Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) shouldmore » not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.« less
A reassessment of the taxonomic position of mesosaurs, and a surprising phylogeny of early amniotes
NASA Astrophysics Data System (ADS)
Laurin, Michel; Piñeiro, Graciela H.
2017-11-01
We reassess the phylogenetic position of mesosaurs by using a data matrix that is updated and slightly expanded from a matrix that the first author published in 1995 with his former thesis advisor. The revised matrix, which incorporates anatomical information published in the last twenty years and observations on several mesosaur specimens (mostly from Uruguay) includes seventeen terminal taxa and 129 characters (four more taxa and five more characters than the original matrix from 1995). The new matrix also differs by incorporating more ordered characters (all morphoclines were ordered). Parsimony analyses in PAUP 4 using the branch and bound algorithm show that the new matrix supports a position of mesosaurs at the very base of Sauropsida, as suggested by the first author in 1995. The exclusion of mesosaurs from a less inclusive clade of sauropsids is supported by a Bremer (Decay) index of 4 and a bootstrap frequency of 66%, both of which suggest that this result is moderately robust. The most parsimonious trees include some unexpected results, such as placing the anapsid reptile Paleothyris near the base of diapsids, and all of parareptiles as the sister-group of younginiforms (the most crownward diapsids included in the analyses). Turtles are placed among parareptiles, as the sister-group of pareiasaurs (and in diapsids, given that parareptiles are nested within diapsids). This unexpected result offers a potential solution to the long-lasting controversy about the position of turtles because previous studies viewed a position among diapsids and among parareptiles as mutually exclusive alternatives.
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2015-01-01
Upper bounds on high speed satellite collision probability, P (sub c), have been investigated. Previous methods assume an individual position error covariance matrix is available for each object. The two matrices being combined into a single, relative position error covariance matrix. Components of the combined error covariance are then varied to obtain a maximum P (sub c). If error covariance information for only one of the two objects was available, either some default shape has been used or nothing could be done. An alternative is presented that uses the known covariance information along with a critical value of the missing covariance to obtain an approximate but useful P (sub c) upper bound. There are various avenues along which an upper bound on the high speed satellite collision probability has been pursued. Typically, for the collision plane representation of the high speed collision probability problem, the predicted miss position in the collision plane is assumed fixed. Then the shape (aspect ratio of ellipse), the size (scaling of standard deviations) or the orientation (rotation of ellipse principal axes) of the combined position error ellipse is varied to obtain a maximum P (sub c). Regardless as to the exact details of the approach, previously presented methods all assume that an individual position error covariance matrix is available for each object and the two are combined into a single, relative position error covariance matrix. This combined position error covariance matrix is then modified according to the chosen scheme to arrive at a maximum P (sub c). But what if error covariance information for one of the two objects is not available? When error covariance information for one of the objects is not available the analyst has commonly defaulted to the situation in which only the relative miss position and velocity are known without any corresponding state error covariance information. The various usual methods of finding a maximum P (sub c) do no good because the analyst defaults to no knowledge of the combined, relative position error covariance matrix. It is reasonable to think, given an assumption of no covariance information, an analyst might still attempt to determine the error covariance matrix that results in an upper bound on the P (sub c). Without some guidance on limits to the shape, size and orientation of the unknown covariance matrix, the limiting case is a degenerate ellipse lying along the relative miss vector in the collision plane. Unless the miss position is exceptionally large or the at-risk object is exceptionally small, this method results in a maximum P (sub c) too large to be of practical use. For example, assuming that the miss distance is equal to the current ISS alert volume along-track (+ or -) distance of 25 kilometers and that the at-risk area has a 70 meter radius. The maximum (degenerate ellipse) P (sub c) is about 0.00136. At 40 kilometers, the maximum P (sub c) would be 0.00085 which is still almost an order of magnitude larger than the ISS maneuver threshold of 0.0001. In fact, a miss distance of almost 340 kilometers is necessary to reduce the maximum P (sub c) associated with this degenerate ellipse to the ISS maneuver threshold value. Such a result is frequently of no practical value to the analyst. Some improvement may be made with respect to this problem by realizing that while the position error covariance matrix of one of the objects (usually the debris object) may not be known the position error covariance matrix of the other object (usually the asset) is almost always available. Making use of the position error covariance information for the one object provides an improvement in finding a maximum P (sub c) which, in some cases, may offer real utility. The equations to be used are presented and their use discussed.
Skogman, Malena Elise; Vuorela, Pia Maarit; Fallarero, Adyary
2012-09-01
Despite that three types of assays (measuring biofilm viability, biomass, or matrix) are described to assess anti-biofilm activity, they are rarely used together. As infections can easily reappear if the matrix is not affected after antibiotic treatments, our goal was to explore the simultaneous effects of antibiotics on the viability, biomass and matrix of Staphylococcus aureus biofilms (ATCC 25923). Viability and biomass were quantified using resazurin and crystal violet staining sequentially in the same plate, while matrix staining was conducted with a wheat germ agglutinin-Alexa Fluor 488 fluorescent conjugate. Establishment of the detection limits and linearity ranges allowed concluding that all three methods were able to estimate biofilm formation in a similar fashion. In a susceptibility study with 18-h biofilms, two model compounds (penicillin G and ciprofloxacin) caused a reduction on the viability and biomass accompanied by an increase or not changed levels of the matrix, respectively. This response pattern was also proven for S. aureus Newman, S. epidermidis and E. coli biofilms. A classification of antibiotics based on five categories according to their effects on viability and matrix has been proposed earlier. Our data suggests a sixth group, represented by penicillin, causing decrease in bacterial viability but showing stimulatory effects on the matrix. Further, if effects on the matrix are not taken into account, the long-term chemotherapeutic effect of antibiotics can be jeopardized in spite of the positive effects on biofilms viability and biomass. Thus, measuring all these three endpoints simultaneously provide a more complete and accurate picture.
This work reports the results of a regional receptor-based source apportionment analysis using the Positive Matrix Factorization (PMF) model on chemically speciated PM2.5 data from 36 urban and rural monitoring sites within the U.S. Pacific Northwest. The approach taken is to mo...
Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.
Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing
2016-07-26
This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches.
Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems
Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing
2016-01-01
This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches. PMID:27472336
Robust Hinfinity position control synthesis of an electro-hydraulic servo system.
Milić, Vladimir; Situm, Zeljko; Essert, Mario
2010-10-01
This paper focuses on the use of the techniques based on linear matrix inequalities for robust H(infinity) position control synthesis of an electro-hydraulic servo system. A nonlinear dynamic model of the hydraulic cylindrical actuator with a proportional valve has been developed. For the purpose of the feedback control an uncertain linearized mathematical model of the system has been derived. The structured (parametric) perturbations in the electro-hydraulic coefficients are taken into account. H(infinity) controller extended with an integral action is proposed. To estimate internal states of the electro-hydraulic servo system an observer is designed. Developed control algorithms have been tested experimentally in the laboratory model of an electro-hydraulic servo system. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Ivanova, Kristina; Fernandes, Margarida M; Francesko, Antonio; Mendoza, Ernest; Guezguez, Jamil; Burnet, Michael; Tzanov, Tzanko
2015-12-16
Bacteria often colonize in-dwelling medical devices and grow as complex biofilm communities of cells embedded in a self-produced extracellular polymeric matrix, which increases their resistance to antibiotics and the host immune system. During biofilm growth, bacterial cells cooperate through specific quorum-sensing (QS) signals. Taking advantage of this mechanism of biofilm formation, we hypothesized that interrupting the communication among bacteria and simultaneously degrading the extracellular matrix would inhibit biofilm growth. To this end, coatings composed of the enzymes acylase and α-amylase, able to degrade bacterial QS molecules and polysaccharides, respectively, were built on silicone urinary catheters using a layer-by-layer deposition technique. Multilayer coatings of either acylase or amylase alone suppressed the biofilm formation of corresponding Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. Further assembly of both enzymes in hybrid nanocoatings resulted in stronger biofilm inhibition as a function of acylase or amylase position in the layers. Hybrid coatings, with the QS-signal-degrading acylase as outermost layer, demonstrated 30% higher antibiofilm efficiency against medically relevant Gram-negative bacteria compared to that of the other assemblies. These nanocoatings significantly reduced the occurrence of single-species (P. aeruginosa) and mixed-species (P. aeruginosa and Escherichia coli) biofilms on silicone catheters under both static and dynamic conditions. Moreover, in an in vivo animal model, the quorum quenching and matrix degrading enzyme assemblies delayed the biofilm growth up to 7 days.
Wang, An; Cao, Yang; Shi, Quan
2018-01-01
In this paper, we demonstrate a complete version of the convergence theory of the modulus-based matrix splitting iteration methods for solving a class of implicit complementarity problems proposed by Hong and Li (Numer. Linear Algebra Appl. 23:629-641, 2016). New convergence conditions are presented when the system matrix is a positive-definite matrix and an [Formula: see text]-matrix, respectively.
Carbó-Dorca, Ramon; Gallegos, Ana; Sánchez, Angel J
2009-05-01
Classical quantitative structure-properties relationship (QSPR) statistical techniques unavoidably present an inherent paradoxical computational context. They rely on the definition of a Gram matrix in descriptor spaces, which is used afterwards to reduce the original dimension via several possible kinds of algebraic manipulations. From there, effective models for the computation of unknown properties of known molecular structures are obtained. However, the reduced descriptor dimension causes linear dependence within the set of discrete vector molecular representations, leading to positive semi-definite Gram matrices in molecular spaces. To resolve this QSPR dimensionality paradox (QSPR DP) here is proposed to adopt as starting point the quantum QSPR (QQSPR) computational framework perspective, where density functions act as infinite dimensional descriptors. The fundamental QQSPR equation, deduced from employing quantum expectation value numerical evaluation, can be approximately solved in order to obtain models exempt of the QSPR DP. The substitution of the quantum similarity matrix by an empirical Gram matrix in molecular spaces, build up with the original non manipulated discrete molecular descriptor vectors, permits to obtain classical QSPR models with the same characteristics as in QQSPR, that is: possessing a certain degree of causality and explicitly independent of the descriptor dimension. 2008 Wiley Periodicals, Inc.
Simple Derivation of the Lindblad Equation
ERIC Educational Resources Information Center
Pearle, Philip
2012-01-01
The Lindblad equation is an evolution equation for the density matrix in quantum theory. It is the general linear, Markovian, form which ensures that the density matrix is Hermitian, trace 1, positive and completely positive. Some elementary examples of the Lindblad equation are given. The derivation of the Lindblad equation presented here is…
The discrete hungry Lotka Volterra system and a new algorithm for computing matrix eigenvalues
NASA Astrophysics Data System (ADS)
Fukuda, Akiko; Ishiwata, Emiko; Iwasaki, Masashi; Nakamura, Yoshimasa
2009-01-01
The discrete hungry Lotka-Volterra (dhLV) system is a generalization of the discrete Lotka-Volterra (dLV) system which stands for a prey-predator model in mathematical biology. In this paper, we show that (1) some invariants exist which are expressed by dhLV variables and are independent from the discrete time and (2) a dhLV variable converges to some positive constant or zero as the discrete time becomes sufficiently large. Some characteristic polynomial is then factorized with the help of the dhLV system. The asymptotic behaviour of the dhLV system enables us to design an algorithm for computing complex eigenvalues of a certain band matrix.
Battery element and method for making same
NASA Technical Reports Server (NTRS)
Clough, Thomas J. (Inventor); Pinsky, Naum (Inventor)
1989-01-01
In a method for producing a battery element useful as at least a positive plate in a lead-acid battery, the element comprising a fluid impervious, electrically conductive matrix having mutually opposing first and second surfaces and positive active electrode material associated with the first surface of the matrix, the improvement which comprises: conditioning the first surface to enhance the association of the positive active electrode material and the first surface; and applying and associating the positive active electrode material to the first surface.
Information matrix estimation procedures for cognitive diagnostic models.
Liu, Yanlou; Xin, Tao; Andersson, Björn; Tian, Wei
2018-03-06
Two new methods to estimate the asymptotic covariance matrix for marginal maximum likelihood estimation of cognitive diagnosis models (CDMs), the inverse of the observed information matrix and the sandwich-type estimator, are introduced. Unlike several previous covariance matrix estimators, the new methods take into account both the item and structural parameters. The relationships between the observed information matrix, the empirical cross-product information matrix, the sandwich-type covariance matrix and the two approaches proposed by de la Torre (2009, J. Educ. Behav. Stat., 34, 115) are discussed. Simulation results show that, for a correctly specified CDM and Q-matrix or with a slightly misspecified probability model, the observed information matrix and the sandwich-type covariance matrix exhibit good performance with respect to providing consistent standard errors of item parameter estimates. However, with substantial model misspecification only the sandwich-type covariance matrix exhibits robust performance. © 2018 The British Psychological Society.
FTIR studies of gluten matrix dehydration after fibre polysaccharide addition.
Nawrocka, Agnieszka; Krekora, Magdalena; Niewiadomski, Zbigniew; Miś, Antoni
2018-06-30
FTIR spectroscopy was used to determine changes in secondary structure, as well as water state, in gluten and model doughs supplemented by four fibre polysaccharides (microcrystalline cellulose, inulin, apple pectin and citrus pectin). The gluten and model doughs were obtained from commercially available wheat gluten and model flour, respectively. The polysaccharides were used in five concentrations: 3%, 6%, 9%, 12% and 18%. Analysis of the FTIR spectra indicated that polysaccharides could be divided into two groups: first - microcrystalline cellulose and inulin, second - apple and citrus pectins that induced opposite structural changes. Changes in secondary structure concern mainly β-sheets and β-turns that form aggregated β-structures, suggesting dehydration of the gluten matrix as a result of competition for water between gluten proteins and polysaccharides. Moreover, the positive band at ca. 1226 cm -1 in the spectra of pectin-modified samples indicates formation of 'ether' type hydrogen bonds between gluten proteins and pectins. Copyright © 2018 Elsevier Ltd. All rights reserved.
Testability analysis on a hydraulic system in a certain equipment based on simulation model
NASA Astrophysics Data System (ADS)
Zhang, Rui; Cong, Hua; Liu, Yuanhong; Feng, Fuzhou
2018-03-01
Aiming at the problem that the complicated structure and the shortage of fault statistics information in hydraulic systems, a multi value testability analysis method based on simulation model is proposed. Based on the simulation model of AMESim, this method injects the simulated faults and records variation of test parameters ,such as pressure, flow rate, at each test point compared with those under normal conditions .Thus a multi-value fault-test dependency matrix is established. Then the fault detection rate (FDR) and fault isolation rate (FIR) are calculated based on the dependency matrix. Finally the system of testability and fault diagnosis capability are analyzed and evaluated, which can only reach a lower 54%(FDR) and 23%(FIR). In order to improve testability performance of the system,. number and position of the test points are optimized on the system. Results show the proposed test placement scheme can be used to solve the problems that difficulty, inefficiency and high cost in the system maintenance.
A structure-based extracellular matrix expansion mechanism of fibrous tissue growth
Kalson, Nicholas S; Lu, Yinhui; Taylor, Susan H; Starborg, Tobias; Holmes, David F; Kadler, Karl E
2015-01-01
Embryonic growth occurs predominately by an increase in cell number; little is known about growth mechanisms later in development when fibrous tissues account for the bulk of adult vertebrate mass. We present a model for fibrous tissue growth based on 3D-electron microscopy of mouse tendon. We show that the number of collagen fibrils increases during embryonic development and then remains constant during postnatal growth. Embryonic growth was explained predominately by increases in fibril number and length. Postnatal growth arose predominately from increases in fibril length and diameter. A helical crimp structure was established in embryogenesis, and persisted postnatally. The data support a model where the shape and size of tendon is determined by the number and position of embryonic fibroblasts. The collagen fibrils that these cells synthesise provide a template for postnatal growth by structure-based matrix expansion. The model has important implications for growth of other fibrous tissues and fibrosis. DOI: http://dx.doi.org/10.7554/eLife.05958.001 PMID:25992598
NASA Technical Reports Server (NTRS)
Habiby, Sarry F.
1987-01-01
The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. The objective is to demonstrate the operation of an optical processor designed to minimize computation time in performing a practical computing application. This is done by using the large array of processing elements in a Hughes liquid crystal light valve, and relying on the residue arithmetic representation, a holographic optical memory, and position coded optical look-up tables. In the design, all operations are performed in effectively one light valve response time regardless of matrix size. The features of the design allowing fast computation include the residue arithmetic representation, the mapping approach to computation, and the holographic memory. In addition, other features of the work include a practical light valve configuration for efficient polarization control, a model for recording multiple exposures in silver halides with equal reconstruction efficiency, and using light from an optical fiber for a reference beam source in constructing the hologram. The design can be extended to implement larger matrix arrays without increasing computation time.
Savinov, Alexei Y; Rozanov, Dmitri V; Golubkov, Vladislav S; Wong, F Susan; Strongin, Alex Y
2005-07-29
We have discovered that clinically tested inhibitors of matrix metalloproteinases can control the functional activity of T cell membrane type-1 matrix metalloproteinase (MT1-MMP) and the onset of disease in a rodent model of type 1 diabetes in non-obese diabetic mice. We determined that MT1-MMP proteolysis of the T cell surface CD44 adhesion receptor affects the homing of T cells into the pancreas. We also determined that both the induction of the intrinsic T cell MT1-MMP activity and the shedding of cellular CD44 follow the adhesion of insulin-specific, CD8-positive, Kd-restricted T cells to the matrix. Conversely, inhibition of these events by AG3340 (a potent hydroxamate inhibitor that was widely used in clinical trials in cancer patents) impedes the transmigration of diabetogenic T cells into the pancreas and protects non-obese diabetic mice from diabetes onset. Overall, our studies have divulged a previously unknown function of MT1-MMP and identified a promising novel drug target in type I diabetes.
Zhang, J; Feng, J-Y; Ni, Y-L; Wen, Y-J; Niu, Y; Tamba, C L; Yue, C; Song, Q; Zhang, Y-M
2017-06-01
Multilocus genome-wide association studies (GWAS) have become the state-of-the-art procedure to identify quantitative trait nucleotides (QTNs) associated with complex traits. However, implementation of multilocus model in GWAS is still difficult. In this study, we integrated least angle regression with empirical Bayes to perform multilocus GWAS under polygenic background control. We used an algorithm of model transformation that whitened the covariance matrix of the polygenic matrix K and environmental noise. Markers on one chromosome were included simultaneously in a multilocus model and least angle regression was used to select the most potentially associated single-nucleotide polymorphisms (SNPs), whereas the markers on the other chromosomes were used to calculate kinship matrix as polygenic background control. The selected SNPs in multilocus model were further detected for their association with the trait by empirical Bayes and likelihood ratio test. We herein refer to this method as the pLARmEB (polygenic-background-control-based least angle regression plus empirical Bayes). Results from simulation studies showed that pLARmEB was more powerful in QTN detection and more accurate in QTN effect estimation, had less false positive rate and required less computing time than Bayesian hierarchical generalized linear model, efficient mixed model association (EMMA) and least angle regression plus empirical Bayes. pLARmEB, multilocus random-SNP-effect mixed linear model and fast multilocus random-SNP-effect EMMA methods had almost equal power of QTN detection in simulation experiments. However, only pLARmEB identified 48 previously reported genes for 7 flowering time-related traits in Arabidopsis thaliana.
2015-04-04
system j, Mj(q∗j) is a 3×3 positive- definite symmetric matrix, Cj(q∗j , q̇∗j)q̇∗j represents centripetal and Coriolis force, Gj(q∗j) is the...states of system j, Mj(q∗j) is a 3×3 positive- definite symmetric matrix, Cj(q∗j , q̇∗j)q̇∗j represents centripetal and Coriolis force, Gj(q∗j) is the...positive- definite symmetric matrix, Cj(q∗j , q̇∗j)q̇∗j is cen- tripetal and Coriolis force, Gj(q∗j) is gravitational force, Bj(q∗j) is an 4 × 2 input
Convergence Results on Iteration Algorithms to Linear Systems
Wang, Zhuande; Yang, Chuansheng; Yuan, Yubo
2014-01-01
In order to solve the large scale linear systems, backward and Jacobi iteration algorithms are employed. The convergence is the most important issue. In this paper, a unified backward iterative matrix is proposed. It shows that some well-known iterative algorithms can be deduced with it. The most important result is that the convergence results have been proved. Firstly, the spectral radius of the Jacobi iterative matrix is positive and the one of backward iterative matrix is strongly positive (lager than a positive constant). Secondly, the mentioned two iterations have the same convergence results (convergence or divergence simultaneously). Finally, some numerical experiments show that the proposed algorithms are correct and have the merit of backward methods. PMID:24991640
Sakaris, P.C.; Irwin, E.R.
2010-01-01
We developed stochastic matrix models to evaluate the effects of hydrologic alteration and variable mortality on the population dynamics of a lotie fish in a regulated river system. Models were applied to a representative lotic fish species, the flathead catfish (Pylodictis olivaris), for which two populations were examined: a native population from a regulated reach of the Coosa River (Alabama, USA) and an introduced population from an unregulated section of the Ocmulgee River (Georgia, USA). Size-classified matrix models were constructed for both populations, and residuals from catch-curve regressions were used as indices of year class strength (i.e., recruitment). A multiple regression model indicated that recruitment of flathead catfish in the Coosa River was positively related to the frequency of spring pulses between 283 and 566 m3/s. For the Ocmulgee River population, multiple regression models indicated that year class strength was negatively related to mean March discharge and positively related to June low flow. When the Coosa population was modeled to experience five consecutive years of favorable hydrologic conditions during a 50-year projection period, it exhibited a substantial spike in size and increased at an overall 0.2% annual rate. When modeled to experience five years of unfavorable hydrologic conditions, the Coosa population initially exhibited a decrease in size but later stabilized and increased at a 0.4% annual rate following the decline. When the Ocmulgee River population was modeled to experience five years of favorable conditions, it exhibited a substantial spike in size and increased at an overall 0.4% annual rate. After the Ocmulgee population experienced five years of unfavorable conditions, a sharp decline in population size was predicted. However, the population quickly recovered, with population size increasing at a 0.3% annual rate following the decline. In general, stochastic population growth in the Ocmulgee River was more erratic and variable than population growth in the Coosa River. We encourage ecologists to develop similar models for other lotic species, particularly in regulated river systems. Successful management of fish populations in regulated systems requires that we are able to predict how hydrology affects recruitment and will ultimately influence the population dynamics of fishes. ?? 2010 by the Ecological Society of America.
Table-sized matrix model in fractional learning
NASA Astrophysics Data System (ADS)
Soebagyo, J.; Wahyudin; Mulyaning, E. C.
2018-05-01
This article provides an explanation of the fractional learning model i.e. a Table-Sized Matrix model in which fractional representation and its operations are symbolized by the matrix. The Table-Sized Matrix are employed to develop problem solving capabilities as well as the area model. The Table-Sized Matrix model referred to in this article is used to develop an understanding of the fractional concept to elementary school students which can then be generalized into procedural fluency (algorithm) in solving the fractional problem and its operation.
The "Box"ing Match: Narratives from Queer Adults Growing up through the Heterosexual Matrix
ERIC Educational Resources Information Center
Leonardi, Bethy
2017-01-01
Using queer theories of sexuality and gender, this study centers on "coming out" stories of ten queer adults. Engaging Butler's heterosexual matrix (1990) as an analytic tool, stories are analyzed with respect to agency and positioning. Findings suggest that participants' positioning and agency were largely affected by gender identity…
NASA Astrophysics Data System (ADS)
Dehghan, Mehdi; Mohammadi, Vahid
2017-08-01
In this research, we investigate the numerical solution of nonlinear Schrödinger equations in two and three dimensions. The numerical meshless method which will be used here is RBF-FD technique. The main advantage of this method is the approximation of the required derivatives based on finite difference technique at each local-support domain as Ωi. At each Ωi, we require to solve a small linear system of algebraic equations with a conditionally positive definite matrix of order 1 (interpolation matrix). This scheme is efficient and its computational cost is same as the moving least squares (MLS) approximation. A challengeable issue is choosing suitable shape parameter for interpolation matrix in this way. In order to overcome this matter, an algorithm which was established by Sarra (2012), will be applied. This algorithm computes the condition number of the local interpolation matrix using the singular value decomposition (SVD) for obtaining the smallest and largest singular values of that matrix. Moreover, an explicit method based on Runge-Kutta formula of fourth-order accuracy will be applied for approximating the time variable. It also decreases the computational costs at each time step since we will not solve a nonlinear system. On the other hand, to compare RBF-FD method with another meshless technique, the moving kriging least squares (MKLS) approximation is considered for the studied model. Our results demonstrate the ability of the present approach for solving the applicable model which is investigated in the current research work.
Gaussian-Beam Laser-Resonator Program
NASA Technical Reports Server (NTRS)
Cross, Patricia L.; Bair, Clayton H.; Barnes, Norman
1989-01-01
Gaussian Beam Laser Resonator Program models laser resonators by use of Gaussian-beam-propagation techniques. Used to determine radii of beams as functions of position in laser resonators. Algorithm used in program has three major components. First, ray-transfer matrix for laser resonator must be calculated. Next, initial parameters of beam calculated. Finally, propagation of beam through optical elements computed. Written in Microsoft FORTRAN (Version 4.01).
The crypto-Hermitian smeared-coordinate representation of wave functions
NASA Astrophysics Data System (ADS)
Znojil, Miloslav
2011-08-01
In discrete-coordinate quantum models the kinematical observable of position need not necessarily be chosen local (i.e., diagonal). Its smearing is selected in the nearest-neighbor form of a real asymmetric (i.e., crypto-Hermitian) tridiagonal matrix Qˆ. Via Gauss-Hermite illustrative example we show how such an option restricts the class of admissible dynamical observables (sampled here just by the Hamiltonian).
Source apportionment of VOCs in the Los Angeles area using positive matrix factorization
NASA Astrophysics Data System (ADS)
Brown, Steven G.; Frankel, Anna; Hafner, Hilary R.
Eight 3-h speciated hydrocarbon measurements were collected daily by the South Coast Air Quality Management District (SCAQMD) as part of the Photochemical Assessment Monitoring Stations (PAMS) program during the summers of 2001-03 at two sites in the Los Angeles air basin, Azusa and Hawthorne. Over 30 hydrocarbons from over 500 samples at Azusa and 600 samples at Hawthorne were subsequently analyzed using the multivariate receptor model positive matrix factorization (PMF). At Azusa and Hawthorne, five and six factors were identified, respectively, with a good comparison between predicted and measured mass. At Azusa, evaporative emissions (a median of 31% of the total mass), motor vehicle exhaust (22%), liquid/unburned gasoline (27%), coatings (17%), and biogenic emissions (3%) factors were identified. Factors identified at Hawthorne were evaporative emissions (a median of 34% of the total mass), motor vehicle exhaust (24%), industrial process losses (15%), natural gas (13%), liquid/unburned gasoline (13%), and biogenic emissions (1%). Together, the median contribution from mobile source-related factors (exhaust, evaporative emissions, and liquid/unburned gasoline) was 80% and 71% at Azusa and Hawthorne, respectively, similar to previous source apportionment results using the chemical mass balance (CMB) model. There is a difference in the distribution among mobile source factors compared to the CMB work, with an increase in the contribution from evaporative emissions, though the cause (changes in emissions or differences between models) is unknown.
Ren, Wen-Long; Wen, Yang-Jun; Dunwell, Jim M; Zhang, Yuan-Ming
2018-03-01
Although nonparametric methods in genome-wide association studies (GWAS) are robust in quantitative trait nucleotide (QTN) detection, the absence of polygenic background control in single-marker association in genome-wide scans results in a high false positive rate. To overcome this issue, we proposed an integrated nonparametric method for multi-locus GWAS. First, a new model transformation was used to whiten the covariance matrix of polygenic matrix K and environmental noise. Using the transferred model, Kruskal-Wallis test along with least angle regression was then used to select all the markers that were potentially associated with the trait. Finally, all the selected markers were placed into multi-locus model, these effects were estimated by empirical Bayes, and all the nonzero effects were further identified by a likelihood ratio test for true QTN detection. This method, named pKWmEB, was validated by a series of Monte Carlo simulation studies. As a result, pKWmEB effectively controlled false positive rate, although a less stringent significance criterion was adopted. More importantly, pKWmEB retained the high power of Kruskal-Wallis test, and provided QTN effect estimates. To further validate pKWmEB, we re-analyzed four flowering time related traits in Arabidopsis thaliana, and detected some previously reported genes that were not identified by the other methods.
Hernández-Ruedas, Manuel A; Arroyo-Rodríguez, Víctor; Morante-Filho, José Carlos; Meave, Jorge A; Martínez-Ramos, Miguel
2018-05-04
Understanding the patterns and processes driving biodiversity maintenance in fragmented tropical forests is urgently needed for conservation planning, especially in species-rich forest reserves. Of particular concern are the effects that habitat modifications at the landscape scale may have on forest regeneration and ecosystem functioning: a topic that has received limited attention. Here, we assessed the effects of landscape structure (i.e., forest cover, open area matrices, forest fragmentation, and mean inter-patch isolation distance) on understory plant assemblages in the Los Tuxtlas Biosphere Reserve, Mexico. Previous studies suggest that the demographic burst of the strong competitor palm Astrocaryum mexicanum in the core area of this reserve limits plant recruitment and imperils biodiversity conservation within this protected area. Yet, the local and landscape predictors of this palm, and its impact on tree recruitment at a regional scale are unknown. Thus, we used structural equation modeling to assess the direct and cascading effects of landscape structure on stem and species density in the understory of 20 forest sites distributed across this biodiversity hotspot. Indirect paths included the effect of landscape structure on tree basal area (a proxy of local disturbance), and the effects of these variables on A. mexicanum. Density of A. mexicanum mainly increased with decreasing both fragmentation and open areas in the matrix (matrix contrast, hereafter), and such an increase in palm density negatively affected stem and species density in the understory. The negative direct effect of matrix contrast on stem density was overridden by the indirect positive effects (i.e., through negative cascading effects on A. mexicanum), resulting in a weak effect of matrix contrast on stem density. These findings suggest that dispersal limitation and negative edge effects in more fragmented landscapes dominated by open areas prevent the proliferation of this palm species, enhancing the diversity and abundance of understory trees. This "positive" news adds to an increasing line of evidence suggesting that fragmentation may have some positive effects on biodiversity, in this case by preventing the proliferation of species that can jeopardize biodiversity conservation within tropical reserves. © 2018 by the Ecological Society of America.
Oktem, G; Vatansever, S; Ayla, S; Uysal, A; Aktas, S; Karabulut, B; Bilir, A
2006-02-01
Multicellular tumor spheroid (MTS) represents a three-dimensional structural form of tumors in laboratory conditions, and it has the characteristics of avascular micrometastases or intervascular spaces of big tumors. Recent studies indicate that extracellular matrix (ECM) proteins play a critical role in tumor metastasis, therefore normal and cancer cells require an ECM for survival, proliferation and differentiation. Doxorubicin and Docetaxel are widely used in the therapy of breast cancer, as well as in in vivo and in vitro studies. In this study, we examined the effect of apoptosis and proliferation of cells on the human breast cancer cell line, MCF-7, by using p53, bcl-2 and Ki67 gene expression, and the tendency to metastasis with extracellular matrix proteins, laminin and type IV collagen after chemotherapy in the spheroid model. The apoptotic cell death in situ was detected by TUNEL method. TUNEL-positive cells and positive immunoreactivities of laminin, type IV collagen, p53 and, bcl-2 were detected in the control group. There was no laminin and type IV collagen immunoreactivities in spheroids of drug groups. While TUNEL-positive cells and p53 immunoreactivity were detected in Docetaxel, Doxorubicin and Docetaxel/Doxorubicin groups, p53 immunoreactivity was not observed in the Docetaxel group. There was no bcl-2 immunoreactivity in either drug group. In addition, we did not detect Ki67 immunoreactivity in both control and drug treatment groups. However, the absence of Ki67 protein in MCF-7 breast multicellular tumor spheroids is possibly related to the cells in G0 or S phase. These chemotherapeutic agents may affect the presence of ECM proteins in this in vitro model of micrometastasis of spheroids. These findings suggest that the possible mechanism of cell death in Doxorubicin and Docetaxel/Doxorubicin treatment groups is related to apoptosis through the p53 pathway. However, we considered the possibility that there is another control mechanism for the Docetaxel group.
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.
2017-12-01
The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.
Exact solution of matricial Φ23 quantum field theory
NASA Astrophysics Data System (ADS)
Grosse, Harald; Sako, Akifumi; Wulkenhaar, Raimar
2017-12-01
We apply a recently developed method to exactly solve the Φ3 matrix model with covariance of a two-dimensional theory, also known as regularised Kontsevich model. Its correlation functions collectively describe graphs on a multi-punctured 2-sphere. We show how Ward-Takahashi identities and Schwinger-Dyson equations lead in a special large- N limit to integral equations that we solve exactly for all correlation functions. The solved model arises from noncommutative field theory in a special limit of strong deformation parameter. The limit defines ordinary 2D Schwinger functions which, however, do not satisfy reflection positivity.
Sutter, Richard C; Verano, John W
2007-02-01
The purpose of this study is to test two competing models regarding the origins of Early Intermediate Period (AD 200-750) sacrificial victims from the Huacas de Moche site using the matrix correlation method. The first model posits the sacrificial victims represent local elites who lost competitions in ritual battles with one another, while the other model suggests the victims were nonlocal warriors captured during warfare with nearby polities. We estimate biodistances for sacrificial victims from Huaca de la Luna Plaza 3C (AD 300-550) with eight previously reported samples from the north coast of Peru using both the mean measure of divergence (MMD) and Mahalanobis' distance (d2). Hypothetical matrices are developed based upon the assumptions of each of the two competing models regarding the origins of Moche sacrificial victims. When the MMD matrix is compared to the two hypothetical matrices using a partial-Mantel test (Smouse et al.: Syst Zool 35 (1986) 627-632), the ritual combat model (i.e. local origins) has a low and nonsignificant correlation (r = 0.134, P = 0.163), while the nonlocal origins model is highly correlated and significant (r = 0.688, P = 0.001). Comparisons of the d2 results and the two hypothetical matrices also produced low and nonsignificant correlation for the ritual combat model (r = 0.210, P = 0.212), while producing a higher and statistically significant result with the nonlocal origins model (r = 0.676, P = 0.002). We suggest that the Moche sacrificial victims represent nonlocal warriors captured in territorial combat with nearby competing polities. Copyright 2006 Wiley-Liss, Inc.
Guo, Yin; Sun, LiQun; Yang, Zheng; Liu, Zilong
2016-02-20
During this study we constructed a generalized parametric modified four-objective multipass matrix system (MMS). We used an optical system comprising four asymmetrical spherical mirrors to improve the alignment process. The use of a paraxial equation for the design of the front transfer optics yielded the initial condition for modeling our MMS. We performed a ray tracing simulation to calculate the significant aberration of the system (astigmatism). Based on the calculated meridional and sagittal focus positions, the complementary focusing mirror was easily designed to provide an output beam free of astigmatism. We have presented an example of a 108-transit multipass system (5×7 matrix arrangement) with a relatively larger numerical aperture source (xenon light source). The whole system exhibits zero theoretical geometrical loss when simulated with Zemax software. The MMS construction strategy described in this study provides an anastigmatic output beam and the generalized approach to design a controllable matrix spot pattern on the field mirrors. Asymmetrical reflective mirrors aid in aligning the whole system with high efficiency. With the generalized design strategy in terms of optics configuration and asymmetrical fabrication method in this paper, other kinds of multipass matrix system coupled with different sources and detector systems also can be achieved.
NASA Astrophysics Data System (ADS)
Ballard, S.; Hipp, J. R.; Encarnacao, A.; Young, C. J.; Begnaud, M. L.; Phillips, W. S.
2012-12-01
Seismic event locations can be made more accurate and precise by computing predictions of seismic travel time through high fidelity 3D models of the wave speed in the Earth's interior. Given the variable data quality and uneven data sampling associated with this type of model, it is essential that there be a means to calculate high-quality estimates of the path-dependent variance and covariance associated with the predicted travel times of ray paths through the model. In this paper, we describe a methodology for accomplishing this by exploiting the full model covariance matrix and show examples of path-dependent travel time prediction uncertainty computed from SALSA3D, our global, seamless 3D tomographic P-velocity model. Typical global 3D models have on the order of 1/2 million nodes, so the challenge in calculating the covariance matrix is formidable: 0.9 TB storage for 1/2 of a symmetric matrix, necessitating an Out-Of-Core (OOC) blocked matrix solution technique. With our approach the tomography matrix (G which includes Tikhonov regularization terms) is multiplied by its transpose (GTG) and written in a blocked sub-matrix fashion. We employ a distributed parallel solution paradigm that solves for (GTG)-1 by assigning blocks to individual processing nodes for matrix decomposition update and scaling operations. We first find the Cholesky decomposition of GTG which is subsequently inverted. Next, we employ OOC matrix multiplication methods to calculate the model covariance matrix from (GTG)-1 and an assumed data covariance matrix. Given the model covariance matrix, we solve for the travel-time covariance associated with arbitrary ray-paths by summing the model covariance along both ray paths. Setting the paths equal and taking the square root yields the travel prediction uncertainty for the single path.
Nurses in corporate America: embracing power through influence.
Weaver, Charlotte A
2002-06-01
Executive positions in corporate America offer nurse leaders the opportunity to influence product development and services delivered to ensure that the best possible solutions are provided to health care organizations, providers, and patients. This opportunity to "make a difference" is a critical component for nurses' attraction to migrating to the business side of the health care industry. However, making the transition from leadership positions in health care delivery organizations to corporate businesses carries big challenges. A major demand is for nurse leaders to adjust from direct span of control organizational models to matrix management structures used in complex business organizations.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2017-06-01
In this paper, the synergistic effects of temperatrue and oxidation on matrix cracking in fiber-reinforced ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The shear-lag model cooperated with damage models, i.e., the interface oxidation model, interface debonding model, fiber strength degradation model and fiber failure model, has been adopted to analyze microstress field in the composite. The relationships between matrix cracking stress, interface debonding and slipping, fiber fracture, oxidation temperatures and time have been established. The effects of fiber volume fraction, interface properties, fiber strength and oxidation temperatures on the evolution of matrix cracking stress versus oxidation time have been analyzed. The matrix cracking stresses of C/SiC composite with strong and weak interface bonding after unstressed oxidation at an elevated temperature of 700 °C in air condition have been predicted for different oxidation time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Bo, E-mail: luboufl@gmail.com; Park, Justin C.; Fan, Qiyong
Purpose: Accurately localizing lung tumor localization is essential for high-precision radiation therapy techniques such as stereotactic body radiation therapy (SBRT). Since direct monitoring of tumor motion is not always achievable due to the limitation of imaging modalities for treatment guidance, placement of fiducial markers on the patient’s body surface to act as a surrogate for tumor position prediction is a practical alternative for tracking lung tumor motion during SBRT treatments. In this work, the authors propose an innovative and robust model to solve the multimarker position optimization problem. The model is able to overcome the major drawbacks of the sparsemore » optimization approach (SOA) model. Methods: The principle-component-analysis (PCA) method was employed as the framework to build the authors’ statistical prediction model. The method can be divided into two stages. The first stage is to build the surrogate tumor matrix and calculate its eigenvalues and associated eigenvectors. The second stage is to determine the “best represented” columns of the eigenvector matrix obtained from stage one and subsequently acquire the optimal marker positions as well as numbers. Using 4-dimensional CT (4DCT) and breath hold CT imaging data, the PCA method was compared to the SOA method with respect to calculation time, average prediction accuracy, prediction stability, noise resistance, marker position consistency, and marker distribution. Results: The PCA and SOA methods which were both tested were on all 11 patients for a total of 130 cases including 4DCT and breath-hold CT scenarios. The maximum calculation time for the PCA method was less than 1 s with 64 752 surface points, whereas the average calculation time for the SOA method was over 12 min with 400 surface points. Overall, the tumor center position prediction errors were comparable between the two methods, and all were less than 1.5 mm. However, for the extreme scenarios (breath hold), the prediction errors for the PCA method were not only smaller, but were also more stable than for the SOA method. Results obtained by imposing a series of random noises to the surrogates indicated that the PCA method was much more noise resistant than the SOA method. The marker position consistency tests using various combinations of 4DCT phases to construct the surrogates suggested that the marker position predictions of the PCA method were more consistent than those of the SOA method, in spite of surrogate construction. Marker distribution tests indicated that greater than 80% of the calculated marker positions fell into the high cross correlation and high motion magnitude regions for both of the algorithms. Conclusions: The PCA model is an accurate, efficient, robust, and practical model for solving the multimarker position optimization problem to predict lung tumor motion during SBRT treatments. Due to its generality, PCA model can also be applied to other imaging guidance system whichever using surface motion as the surrogates.« less
A potential role for cell-based therapeutics in the treatment of intervertebral disc herniation.
Ganey, Timothy M; Meisel, Hans Joerg
2002-10-01
Lower back pain and disc degeneration negatively affect quality of life and impose an enormous financial burden. An extensive body of scientific work has evolved that characterizes the disc, demonstrating spinal anatomy and morphology that contribute to risk and likely promote failure. Ultimately, matrix failure is responsible for mechanical failure, which in turn results in spinal compromise anatomically and subsequent pain. One intervening approach to breaking this sequence has been to repopulate the anatomy with autologous disc chondrocytes--cells capable of restoring the matrix and retaining the mechanical balance by which the disc functions. This strategy has been implemented both in patients and in animal models, and early results, although preliminary, support the premise as a positive approach.
NASA Astrophysics Data System (ADS)
Hendges, Carla D.; Melo, Geruza L.; Gonçalves, Alberto S.; Cerezer, Felipe O.; Cáceres, Nilton C.
2017-10-01
Neotropical primates are among the most well studied forest mammals concerning their population densities. However, few studies have evaluated the factors that influence the spatial variation in the population density of primates, which limits the possibility of inferences towards this animal group, especially at the landscape-level. Here, we compiled density data of Sapajus nigritus from 21 forest patches of the Brazilian Atlantic Forest. We tested the effects of climatic variables (temperature, precipitation), landscape attributes (number of patches, mean inter-patch isolation distance, matrix modification index) and patch size on the population density using linear models and the Akaike information criterion. Our findings showed that the density of S. nigritus is influenced by landscape attributes, particularly by fragmentation and matrix modification. Overall, moderately fragmented landscapes and those surrounded by matrices with intermediate indexes of temporal modification (i.e., crop plantations, forestry) are related to high densities of this species. These results support the assumptions that ecologically flexible species respond positively to forest fragmentation. However, the non-linear relationship between S. nigritus density and number of patches suggests that even the species that are most tolerant to forest cover changes seem to respond positively only at an intermediate level of habitat fragmentation, being dependent of both a moderate degree of forest cover and a high quality matrix. The results we found here can be a common response to fragmentation for those forest dweller species that are able to use the matrix as complementary foraging sites.
NASA Astrophysics Data System (ADS)
Kostyuk, Oksana P.; Brown, Robert A.
2004-07-01
Elastic light scattering spectroscopy was applied to monitor the development of alignment in fibroblast-populated collagen gels. Gels were seeded with human dermal fibroblasts in rectangular moulds so uniaxial tension was generated in the central zone of the gels due to cell contraction. There was a gradual transition from a disorganized matrix with round cells to highly organized cell/collagen matrix, aligned in the direction of the principal strain developed during gel contraction (observed with light microscopy under phase contrast). Spectra of the backscattered light (320 - 850 nm) were acquired via an optical probe with 2.75-mm source-detector separation, positioned perpendicularly to the gel surface, at 0, 17, 24, 41, 47, 65 and 72h. Spectra were registered for light propagating along, perpendicular and at intermediate angles relative to the cell/collagen matrix alignment, at 45° intervals. Backscatter was isotropic for non-contracted gels. However, as gels contracted, anisotropy of backscatter gradually increased. This was characterized by an 'anisotropy factor,' AF (500 nm), calculated as the ratio of backscatter intensities at 90° and 0° positions of the probe, at 500 nm. AF (500nm) increased from 1.2 +/- 0.1 at 0h up to 2.6 +/- 0.4 at 72h of contraction, with more backscatter detected perpendicular to the cell/collagen matrix alignment than in parallel direction. Thus, backscatter anisotropy allows determination of the direction of the preferential alignment and quantitative monitoring of its development during gel contraction. It is possible to use measurements of this type to quantify a proportion of oriented fibrils in the gel using modeling.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Stouffer, Donald C.
1998-01-01
Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.
Gabor-based kernel PCA with fractional power polynomial models for face recognition.
Liu, Chengjun
2004-05-01
This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.
NASA Astrophysics Data System (ADS)
Kumenko, A. I.; Kostyukov, V. N.; Kuz'minykh, N. Yu.; Timin, A. V.; Boichenko, S. N.
2017-09-01
Examples of using the method developed for the earlier proposed concept of the monitoring system of the technical condition of a turbounit are presented. The solution methods of the inverse problem—the calculation of misalignments of supports based on the measurement results of positions of rotor pins in the borings of bearings during the operation of a turbounit—are demonstrated. The results of determination of static responses of supports at operation misalignments are presented. The examples of simulation and calculation of misalignments of supports are made for the three-bearing "high-pressure rotor-middle-pressure rotor" (HPR-MPR) system of a turbounit with 250 MW capacity and for 14-supporting shafting of a turbounit with 1000 MW capacity. The calculation results of coefficients of the stiffness matrix of shaftings and testing of methods for solving the inverse problem by modeling are presented. The high accuracy of the solution of the inverse problem at the inversion of the stiffness matrix of shafting used for determining the correcting centerings of rotors of multisupporting shafting is revealed. The stiffness matrix can be recommended to analyze the influence of displacements of one or several supports on changing the support responses of shafting of the turbounit during adjustment after assembling or repair. It is proposed to use the considered methods of evaluation of misalignments in the monitoring systems of changing the mutual position of supports and centerings of rotors by half-couplings of turbounits, especially for seismically dangerous regions and regions with increased sagging of foundations due to watering of soils.
Designing Hyperchaotic Cat Maps With Any Desired Number of Positive Lyapunov Exponents.
Hua, Zhongyun; Yi, Shuang; Zhou, Yicong; Li, Chengqing; Wu, Yue
2018-02-01
Generating chaotic maps with expected dynamics of users is a challenging topic. Utilizing the inherent relation between the Lyapunov exponents (LEs) of the Cat map and its associated Cat matrix, this paper proposes a simple but efficient method to construct an -dimensional ( -D) hyperchaotic Cat map (HCM) with any desired number of positive LEs. The method first generates two basic -D Cat matrices iteratively and then constructs the final -D Cat matrix by performing similarity transformation on one basic -D Cat matrix by the other. Given any number of positive LEs, it can generate an -D HCM with desired hyperchaotic complexity. Two illustrative examples of -D HCMs were constructed to show the effectiveness of the proposed method, and to verify the inherent relation between the LEs and Cat matrix. Theoretical analysis proves that the parameter space of the generated HCM is very large. Performance evaluations show that, compared with existing methods, the proposed method can construct -D HCMs with lower computation complexity and their outputs demonstrate strong randomness and complex ergodicity.
Applications of stochastic mechanics to polyatomic lattices
NASA Astrophysics Data System (ADS)
Beumée, J. G. B.; Vilallonga, E.; Rabitz, H.
1990-03-01
Stochastic quantization in the sense of Nelson provides an alternative interpretation of some aspects of quantum mechanics in the coordinate representation, and it was combined recently with the Ford, Kac, and Mazur (FKM) approximation [J. Math. Phys. 6, 504 (1965)] for large lattices to construct a quantum analog to the Brownian motion process. In this paper a similar approach is applied to model the effect of temperature fluctuations in a one-dimensional ordered chain of atoms with nearest-neighbor linear forces. However, we do not make use of the FKM approximation, and as a consequence the statistical properties of the involved processes are exactly determined by the lattice force field. In particular, we evaluate the covariance matrix for the fluctuations, and we examine its high- and low-temperature behavior. Because of the translation invariance of the interaction potential, the covariance matrix for the fluctuations becomes singular implying that the associated probability density has equal density along the zero eigenvector of the interaction matrix. This behavior is readily interpreted in terms of the motion of the center of mass of the system, which corresponds to a stochastically perturbed translation, while all other modes are bounded with a probability of 1. As is well known, the transformation to internal (bondlength) coordinates leads to a Hamiltonian specified by a nonsingular interaction matrix. We examine the variance of the fluctuations for the internal coordinates, and we show that in the high-temperature limit the result agrees with that of classical statistical mechanics. Both the position and bondlength of the surface atom decrease with time as is expected for a semi-infinite lattice. However, the position of the surface atom is less dependent on substrate-atom positions than is the surface bondlength on substrate bondlengths. Finally, the autocorrelation function of the surface bondlength in the case of a semi-infinite lattice limit is investigated for low- and high-temperature limits.
Chen, Suming; Zheng, Huzhi; Wang, Jianing; Hou, Jian; He, Qing; Liu, Huihui; Xiong, Caiqiao; Kong, Xianglei; Nie, Zongxiu
2013-07-16
Carbon nanodots were applied for the first time as a new matrix for the analysis of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in both positive- and negative-ion modes. A wide range of small molecules including amino acids, peptides, fatty acids, as well as β-agonists and neutral oligosaccharides were analyzed by MALDI MS with carbon nanodots as the matrix, and the lowest 0.2 fmol limits-of-detection were obtained for octadecanoic acid. Clear sodium and potassium adducts and deprotonated signals were produced in positive- and negative-ion modes. Furthermore, the glucose and uric acid in real samples were quantitatively determined by the internal standard method with the linear range of 0.5-9 mM and 0.1-1.8 mM (R(2) > 0.999), respectively. This work gives new insight into the application of carbon nanodots and provides a general approach for rapid analysis of low-molecular-weight compounds.
Communication: Symmetrical quasi-classical analysis of linear optical spectroscopy
NASA Astrophysics Data System (ADS)
Provazza, Justin; Coker, David F.
2018-05-01
The symmetrical quasi-classical approach for propagation of a many degree of freedom density matrix is explored in the context of computing linear spectra. Calculations on a simple two state model for which exact results are available suggest that the approach gives a qualitative description of peak positions, relative amplitudes, and line broadening. Short time details in the computed dipole autocorrelation function result in exaggerated tails in the spectrum.
Jones, Dustin P; Hanna, William; El-Hamidi, Hamid; Celli, Jonathan P
2014-06-10
The mechanical microenvironment has been shown to act as a crucial regulator of tumor growth behavior and signaling, which is itself remodeled and modified as part of a set of complex, two-way mechanosensitive interactions. While the development of biologically-relevant 3D tumor models have facilitated mechanistic studies on the impact of matrix rheology on tumor growth, the inverse problem of mapping changes in the mechanical environment induced by tumors remains challenging. Here, we describe the implementation of particle-tracking microrheology (PTM) in conjunction with 3D models of pancreatic cancer as part of a robust and viable approach for longitudinally monitoring physical changes in the tumor microenvironment, in situ. The methodology described here integrates a system of preparing in vitro 3D models embedded in a model extracellular matrix (ECM) scaffold of Type I collagen with fluorescently labeled probes uniformly distributed for position- and time-dependent microrheology measurements throughout the specimen. In vitro tumors are plated and probed in parallel conditions using multiwell imaging plates. Drawing on established methods, videos of tracer probe movements are transformed via the Generalized Stokes Einstein Relation (GSER) to report the complex frequency-dependent viscoelastic shear modulus, G*(ω). Because this approach is imaging-based, mechanical characterization is also mapped onto large transmitted-light spatial fields to simultaneously report qualitative changes in 3D tumor size and phenotype. Representative results showing contrasting mechanical response in sub-regions associated with localized invasion-induced matrix degradation as well as system calibration, validation data are presented. Undesirable outcomes from common experimental errors and troubleshooting of these issues are also presented. The 96-well 3D culture plating format implemented in this protocol is conducive to correlation of microrheology measurements with therapeutic screening assays or molecular imaging to gain new insights into impact of treatments or biochemical stimuli on the mechanical microenvironment.
Convergence of Transition Probability Matrix in CLVMarkov Models
NASA Astrophysics Data System (ADS)
Permana, D.; Pasaribu, U. S.; Indratno, S. W.; Suprayogi, S.
2018-04-01
A transition probability matrix is an arrangement of transition probability from one states to another in a Markov chain model (MCM). One of interesting study on the MCM is its behavior for a long time in the future. The behavior is derived from one property of transition probabilty matrix for n steps. This term is called the convergence of the n-step transition matrix for n move to infinity. Mathematically, the convergence of the transition probability matrix is finding the limit of the transition matrix which is powered by n where n moves to infinity. The convergence form of the transition probability matrix is very interesting as it will bring the matrix to its stationary form. This form is useful for predicting the probability of transitions between states in the future. The method usually used to find the convergence of transition probability matrix is through the process of limiting the distribution. In this paper, the convergence of the transition probability matrix is searched using a simple concept of linear algebra that is by diagonalizing the matrix.This method has a higher level of complexity because it has to perform the process of diagonalization in its matrix. But this way has the advantage of obtaining a common form of power n of the transition probability matrix. This form is useful to see transition matrix before stationary. For example cases are taken from CLV model using MCM called Model of CLV-Markov. There are several models taken by its transition probability matrix to find its convergence form. The result is that the convergence of the matrix of transition probability through diagonalization has similarity with convergence with commonly used distribution of probability limiting method.
Simple derivation of the Lindblad equation
NASA Astrophysics Data System (ADS)
Pearle, Philip
2012-07-01
The Lindblad equation is an evolution equation for the density matrix in quantum theory. It is the general linear, Markovian, form which ensures that the density matrix is Hermitian, trace 1, positive and completely positive. Some elementary examples of the Lindblad equation are given. The derivation of the Lindblad equation presented here is ‘simple’ in that all it uses is the expression of a Hermitian matrix in terms of its orthonormal eigenvectors and real eigenvalues. Thus, it is appropriate for students who have learned the algebra of quantum theory. Where helpful, arguments are first given in a two-dimensional Hilbert space.
Wang, Xiaofeng; Zhang, Aiqun; Ren, Weizheng; Chen, Caiyu; Dong, Jiahong
2012-11-01
The cell growth, development, and regeneration of tissue and organ are associated with a large number of gene regulation events, which are mediated in part by transcription factors (TFs) binding to cis-regulatory elements involved in the genome. Predicting the binding affinity and inferring the binding specificity of TF-DNA interactions at the genomic level would be fundamentally helpful for our understanding of the molecular mechanism and biological implication underlying sequence-specific TF-DNA recognition. In this study, we report the development of a combination method to characterize the interaction behavior of a 11-mer oligonucleotide segment and its mutations with the Gcn4p protein, a homodimeric, basic leucine zipper TF, and to predict the binding affinity and specificity of potential Gcn4p binders in the genome-wide scale. In this procedure, a position-mutated energy matrix is created based on molecular modeling analysis of native and mutated Gcn4p-DNA complex structures to describe the position-independent interaction energy profile of Gcn4p with different nucleotide types at each position of the oligonucleotide, and the energy terms extracted from the matrix and their interactives are then correlated with experimentally measured affinities of 19268 distinct oligonucleotides using statistical modeling methodology. Subsequently, the best one of built regression models is successfully applied to screen those of potential high-affinity Gcn4p binders from the complete genome. The findings arising from this study are briefly listed below: (i) The 11 positions of oligonucleotides are highly interactive and non-additive in contribution to Gcn4p-DNA binding affinity; (ii) Indirect conformational effects upon nucleotide mutations as well as associated subtle changes in interfacial atomic contacts, but not the direct nonbonded interactions, are primarily responsible for the sequence-specific recognition; (iii) The intrinsic synergistic effects among the sequence positions of oligonucleotides determine Gcn4p-DNA binding affinity and specificity; (iv) Linear regression models in conjunction with variable selection seem to perform fairly well in capturing the internal dependences hidden in the Gcn4p-DNA system, albeit ignoring nonlinear factors may lead the models to systematically underestimate and overestimate high- and low-affinity samples, respectively. © 2012 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Hipp, J. R.; Ballard, S.; Begnaud, M. L.; Encarnacao, A. V.; Young, C. J.; Phillips, W. S.
2015-12-01
Recently our combined SNL-LANL research team has succeeded in developing a global, seamless 3D tomographic P- and S-velocity model (SALSA3D) that provides superior first P and first S travel time predictions at both regional and teleseismic distances. However, given the variable data quality and uneven data sampling associated with this type of model, it is essential that there be a means to calculate high-quality estimates of the path-dependent variance and covariance associated with the predicted travel times of ray paths through the model. In this paper, we describe a methodology for accomplishing this by exploiting the full model covariance matrix and show examples of path-dependent travel time prediction uncertainty computed from our latest tomographic model. Typical global 3D SALSA3D models have on the order of 1/2 million nodes, so the challenge in calculating the covariance matrix is formidable: 0.9 TB storage for 1/2 of a symmetric matrix, necessitating an Out-Of-Core (OOC) blocked matrix solution technique. With our approach the tomography matrix (G which includes a prior model covariance constraint) is multiplied by its transpose (GTG) and written in a blocked sub-matrix fashion. We employ a distributed parallel solution paradigm that solves for (GTG)-1 by assigning blocks to individual processing nodes for matrix decomposition update and scaling operations. We first find the Cholesky decomposition of GTG which is subsequently inverted. Next, we employ OOC matrix multiplication methods to calculate the model covariance matrix from (GTG)-1 and an assumed data covariance matrix. Given the model covariance matrix, we solve for the travel-time covariance associated with arbitrary ray-paths by summing the model covariance along both ray paths. Setting the paths equal and taking the square root yields the travel prediction uncertainty for the single path.
A Gaussian random field model for similarity-based smoothing in Bayesian disease mapping.
Baptista, Helena; Mendes, Jorge M; MacNab, Ying C; Xavier, Miguel; Caldas-de-Almeida, José
2016-08-01
Conditionally specified Gaussian Markov random field (GMRF) models with adjacency-based neighbourhood weight matrix, commonly known as neighbourhood-based GMRF models, have been the mainstream approach to spatial smoothing in Bayesian disease mapping. In the present paper, we propose a conditionally specified Gaussian random field (GRF) model with a similarity-based non-spatial weight matrix to facilitate non-spatial smoothing in Bayesian disease mapping. The model, named similarity-based GRF, is motivated for modelling disease mapping data in situations where the underlying small area relative risks and the associated determinant factors do not vary systematically in space, and the similarity is defined by "similarity" with respect to the associated disease determinant factors. The neighbourhood-based GMRF and the similarity-based GRF are compared and accessed via a simulation study and by two case studies, using new data on alcohol abuse in Portugal collected by the World Mental Health Survey Initiative and the well-known lip cancer data in Scotland. In the presence of disease data with no evidence of positive spatial correlation, the simulation study showed a consistent gain in efficiency from the similarity-based GRF, compared with the adjacency-based GMRF with the determinant risk factors as covariate. This new approach broadens the scope of the existing conditional autocorrelation models. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Song, Yongjia; Hu, Hengshan; Rudnicki, John W.; Duan, Yunda
2016-09-01
An exact analytical solution is presented for the effective dynamic transverse shear modulus in a heterogeneous fluid-filled porous solid containing cylindrical inclusions. The complex and frequency-dependent properties of the dynamic shear modulus are caused by the physical mechanism of mesoscopic-scale wave-induced fluid flow whose scale is smaller than wavelength but larger than the size of pores. Our model consists of three phases: a long cylindrical inclusion, a cylindrical shell of poroelastic matrix material with different mechanical and/or hydraulic properties than the inclusion and an outer region of effective homogeneous medium of laterally infinite extent. The behavior of both the inclusion and the matrix is described by Biot's consolidation equations, whereas the surrounding effective medium which is used to describe the effective transverse shear properties of the inner poroelastic composite is assumed to be a viscoelastic solid whose complex transverse shear modulus needs to be determined. The determined effective transverse shear modulus is used to quantify the S-wave attenuation and velocity dispersion in heterogeneous fluid-filled poroelastic rocks. The calculation shows the relaxation frequency and relative position of various fluid saturation dispersion curves predicted by this study exhibit very good agreement with those of a previous 2-D finite-element simulation. For the double-porosity model (inclusions having a different solid frame than the matrix but the same pore fluid as the matrix) the effective shear modulus also exhibits a size-dependent characteristic that the relaxation frequency moves to lower frequencies by two orders of magnitude if the radius of the cylindrical poroelastic composite increases by one order of magnitude. For the patchy-saturation model (inclusions having the same solid frame as the matrix but with a different pore fluid from the matrix), the heterogeneity in pore fluid cannot cause any attenuation in the transverse shear modulus at all. A comparison with the case of spherical inclusions illustrates that the transverse shear modulus for the cylindrical inclusion exhibits more S-wave attenuation than spherical inclusions.
NASA Technical Reports Server (NTRS)
Guo, Tong-Yi; Hwang, Chyi; Shieh, Leang-San
1994-01-01
This paper deals with the multipoint Cauer matrix continued-fraction expansion (MCFE) for model reduction of linear multi-input multi-output (MIMO) systems with various numbers of inputs and outputs. A salient feature of the proposed MCFE approach to model reduction of MIMO systems with square transfer matrices is its equivalence to the matrix Pade approximation approach. The Cauer second form of the ordinary MCFE for a square transfer function matrix is generalized in this paper to a multipoint and nonsquare-matrix version. An interesting connection of the multipoint Cauer MCFE method to the multipoint matrix Pade approximation method is established. Also, algorithms for obtaining the reduced-degree matrix-fraction descriptions and reduced-dimensional state-space models from a transfer function matrix via the multipoint Cauer MCFE algorithm are presented. Practical advantages of using the multipoint Cauer MCFE are discussed and a numerical example is provided to illustrate the algorithms.
Wang, Ming-Cheng; Lin, Wei-Hung; Yan, Jing-Jou; Fang, Hsin-Yi; Kuo, Te-Hui; Tseng, Chin-Chung; Wu, Jiunn-Jong
2015-08-01
Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) is a valuable method for rapid identification of blood stream infection (BSI) pathogens. Integration of MALDI-TOF MS and blood culture system can speed the identification of causative BSI microorganisms. We investigated the minimal microorganism concentrations of common BSI pathogens required for positive blood culture using BACTEC FX and for positive identification using MALDI-TOF MS. The time to detection with positive BACTEC FX and minimal incubation time with positive MALDI-TOF MS identification were determined for earlier identification of common BSI pathogens. The minimal microorganism concentrations required for positive blood culture using BACTEC FX were >10(7)-10(8) colony forming units/mL for most of the BSI pathogens. The minimal microorganism concentrations required for identification using MALDI-TOF MS were > 10(7) colony forming units/mL. Using simulated BSI models, one can obtain enough bacterial concentration from blood culture bottles for successful identification of five common Gram-positive and Gram-negative bacteria using MALDI-TOF MS 1.7-2.3 hours earlier than the usual time to detection in blood culture systems. This study provides an approach to earlier identification of BSI pathogens prior to the detection of a positive signal in the blood culture system using MALDI-TOF MS, compared to current methods. It can speed the time for identification of BSI pathogens and may have benefits of earlier therapy choice and on patient outcome. Copyright © 2013. Published by Elsevier B.V.
Reducing the Matrix Effect in Organic Cluster SIMS Using Dynamic Reactive Ionization
NASA Astrophysics Data System (ADS)
Tian, Hua; Wucher, Andreas; Winograd, Nicholas
2016-12-01
Dynamic reactive ionization (DRI) utilizes a reactive molecule, HCl, which is doped into an Ar cluster projectile and activated to produce protons at the bombardment site on the cold sample surface with the presence of water. The methodology has been shown to enhance the ionization of protonated molecular ions and to reduce salt suppression in complex biomatrices. In this study, we further examine the possibility of obtaining improved quantitation with DRI during depth profiling of thin films. Using a trehalose film as a model system, we are able to define optimal DRI conditions for depth profiling. Next, the strategy is applied to a multilayer system consisting of the polymer antioxidants Irganox 1098 and 1010. These binary mixtures have demonstrated large matrix effects, making quantitative SIMS measurement not feasible. Systematic comparisons of depth profiling of this multilayer film between directly using GCIB, and under DRI conditions, show that the latter enhances protonated ions for both components by 4- to 15-fold, resulting in uniform depth profiling in positive ion mode and almost no matrix effect in negative ion mode. The methodology offers a new strategy to tackle the matrix effect and should lead to improved quantitative measurement using SIMS.
NASA Astrophysics Data System (ADS)
Ostrosablin, N. I.
2017-05-01
The anisotropy matrices (tensors) of quasielastic (Cauchy-elastic) materials were obtained for all classes of crystallographic symmetries in explicit form. The fourth-rank anisotropy tensors of such materials do not have the main symmetry, in which case the anisotropy matrix is not symmetric. As a result of introducing various bases in the space of symmetric stress and strain tensors, the linear relationship between stresses and strains is represented in invariant form similar to the form in which generalized Hooke's law is written for the case of anisotropic hyperelastic materials and contains six positive Kelvin eigen moduli. It is shown that the introduction of modified rotation-induced deformation in the strain space can cause a transition to the symmetric anisotropy matrix observed in the case of hyperelasticity. For the case of transverse isotropy, there are examples of determination of the Kelvin eigen moduli and eigen bases and the rotation matrix in the strain space. It is shown that there is a possibility of existence of quasielastic media with a skew-symmetric anisotropy matrix with no symmetric part. Some techniques for the experimental testing of the quasielasticity model are proposed.
Meng, Lingbin; Teng, Zhongqiu; Zheng, Nannan; Meng, Weiwei; Dai, Rongji; Deng, Yulin
2013-01-01
The aim of this study was to develop a derivative of chitosan as pharmaceutical excipient used in sustained-release matrix tablets of poorly soluble drugs. A water-soluble quaternary ammonium carboxymethylchitosan was synthesized by a two-step reaction with carboxymethylchitosan (CMCTS), decylalkyl dimethyl ammonium and epichlorohydrin. The elemental analysis showed that the target product with 10.27% of the maximum grafting degree was obtained. To assess the preliminary safety of this biopolymer, cell toxicity assay was employed. In order to further investigate quaternary ammonium carboxymethylchitosan application as pharmaceutical excipient, aspirin was chosen as model drug. The effect of quaternary ammonium CMCTS on aspirin release rate from sustained-release matrix tablets was examined by in-vitro dissolution experiments. The results showed that this biopolymer had a great potential in increasing the dissolution of poorly soluble drug. With the addition of CMCTS-CEDA, the final cumulative release rate of drug rose up to 90%. After 12 h, at the grade of 10, 20 and 50 cps, the drug release rate increased from 58.1 to 90.7%, from 64.1 to 93.9%, from 69.3 to 96.1%, respectively. At the same time, aspirin release rate from sustainedrelease model was found to be related to the amount of quaternary ammonium CMCTS employed. With the increase of CMCTS-CEDA content, the accumulated release rate increased from 69.1% to 86.7%. The mechanism of aspirin release from sustained-release matrix tablets was also preliminary studied to be Fick diffusion. These data demonstrated that the chitosan derivative has positive effect on drug release from sustained-release matrix tablets. PMID:24250627
A novel image encryption algorithm based on the chaotic system and DNA computing
NASA Astrophysics Data System (ADS)
Chai, Xiuli; Gan, Zhihua; Lu, Yang; Chen, Yiran; Han, Daojun
A novel image encryption algorithm using the chaotic system and deoxyribonucleic acid (DNA) computing is presented. Different from the traditional encryption methods, the permutation and diffusion of our method are manipulated on the 3D DNA matrix. Firstly, a 3D DNA matrix is obtained through bit plane splitting, bit plane recombination, DNA encoding of the plain image. Secondly, 3D DNA level permutation based on position sequence group (3DDNALPBPSG) is introduced, and chaotic sequences generated from the chaotic system are employed to permutate the positions of the elements of the 3D DNA matrix. Thirdly, 3D DNA level diffusion (3DDNALD) is given, the confused 3D DNA matrix is split into sub-blocks, and XOR operation by block is manipulated to the sub-DNA matrix and the key DNA matrix from the chaotic system. At last, by decoding the diffused DNA matrix, we get the cipher image. SHA 256 hash of the plain image is employed to calculate the initial values of the chaotic system to avoid chosen plaintext attack. Experimental results and security analyses show that our scheme is secure against several known attacks, and it can effectively protect the security of the images.
Dengler, Vanina; Foulston, Lucy; DeFrancesco, Alicia S; Losick, Richard
2015-12-01
Staphylococcus aureus is an important human pathogen that can form biofilms on various surfaces. These cell communities are protected from the environment by a self-produced extracellular matrix composed of proteins, DNA, and polysaccharide. The exact compositions and roles of the different components are not fully understood. In this study, we investigated the role of extracellular DNA (eDNA) and its interaction with the recently identified cytoplasmic proteins that have a moonlighting role in the biofilm matrix. These matrix proteins associate with the cell surface upon the drop in pH that naturally occurs during biofilm formation, and we found here that this association is independent of eDNA. Conversely, the association of eDNA with the matrix was dependent on matrix proteins. Both proteinase and DNase treatments severely reduced clumping of resuspended biofilms; highlighting the importance of both proteins and eDNA in connecting cells together. By adding an excess of exogenous DNA to DNase-treated biofilm, clumping was partially restored, confirming the crucial role of eDNA in the interconnection of cells. On the basis of our results, we propose that eDNA acts as an electrostatic net, interconnecting cells surrounded by positively charged matrix proteins at a low pH. Extracellular DNA (eDNA) is an important component of the biofilm matrix of diverse bacteria, but its role in biofilm formation is not well understood. Here we report that in Staphylococcus aureus, eDNA associates with cells in a manner that depends on matrix proteins and that eDNA is required to link cells together in the biofilm. These results confirm previous studies that showed that eDNA is an important component of the S. aureus biofilm matrix and also suggest that eDNA acts as an electrostatic net that tethers cells together via the proteinaceous layer of the biofilm matrix. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Qin, Xulei; Cong, Zhibin; Fei, Baowei
2013-11-01
An automatic segmentation framework is proposed to segment the right ventricle (RV) in echocardiographic images. The method can automatically segment both epicardial and endocardial boundaries from a continuous echocardiography series by combining sparse matrix transform, a training model, and a localized region-based level set. First, the sparse matrix transform extracts main motion regions of the myocardium as eigen-images by analyzing the statistical information of the images. Second, an RV training model is registered to the eigen-images in order to locate the position of the RV. Third, the training model is adjusted and then serves as an optimized initialization for the segmentation of each image. Finally, based on the initializations, a localized, region-based level set algorithm is applied to segment both epicardial and endocardial boundaries in each echocardiograph. Three evaluation methods were used to validate the performance of the segmentation framework. The Dice coefficient measures the overall agreement between the manual and automatic segmentation. The absolute distance and the Hausdorff distance between the boundaries from manual and automatic segmentation were used to measure the accuracy of the segmentation. Ultrasound images of human subjects were used for validation. For the epicardial and endocardial boundaries, the Dice coefficients were 90.8 ± 1.7% and 87.3 ± 1.9%, the absolute distances were 2.0 ± 0.42 mm and 1.79 ± 0.45 mm, and the Hausdorff distances were 6.86 ± 1.71 mm and 7.02 ± 1.17 mm, respectively. The automatic segmentation method based on a sparse matrix transform and level set can provide a useful tool for quantitative cardiac imaging.
Herford, Alan Scott; Cicciù, Marco
2012-01-01
Purpose: The aim of this investigation was to evaluate whether the addition of the platelet derived growth factor type BB (PDGF-BB) to a collagen matrix applied on a titanium mesh would favor healing and resorption onto the grafted bone. A histologic and radiographic study of two different groups (test and control) was performed. Designs: A surgical procedure was performed on 8 pigs to obtain 16 bilateral mandibular alveolar defects. All the defects were then reconstructed with a mixture of autogenous bovine bone using titanium mesh positioning. Two groups, with a total of 16 defects were created: The first to study collagen sponge and PDGF-BB and the second to control collagen only. The collagen matrix was positioned directly over the mesh and soft tissue was closed without tensions onto both groups without attempting to obtain primary closure. Possible exposure of the titanium mesh as well as the height and volume of the new bone was recorded. Results: New bone formation averaged about 6.68 mm in the test group studied; the control group had less regenerated bone at 4.62 mm. Conclusion: PDGF-BB addition to the collagen matrix induced a strong increase in hard and soft tissue healing and favored bone formation, reducing bone resorption even if the mesh was exposed. PMID:23833493
Fast Low-Rank Bayesian Matrix Completion With Hierarchical Gaussian Prior Models
NASA Astrophysics Data System (ADS)
Yang, Linxiao; Fang, Jun; Duan, Huiping; Li, Hongbin; Zeng, Bing
2018-06-01
The problem of low rank matrix completion is considered in this paper. To exploit the underlying low-rank structure of the data matrix, we propose a hierarchical Gaussian prior model, where columns of the low-rank matrix are assumed to follow a Gaussian distribution with zero mean and a common precision matrix, and a Wishart distribution is specified as a hyperprior over the precision matrix. We show that such a hierarchical Gaussian prior has the potential to encourage a low-rank solution. Based on the proposed hierarchical prior model, a variational Bayesian method is developed for matrix completion, where the generalized approximate massage passing (GAMP) technique is embedded into the variational Bayesian inference in order to circumvent cumbersome matrix inverse operations. Simulation results show that our proposed method demonstrates superiority over existing state-of-the-art matrix completion methods.
Beyond the buildingcentric approach: A vision for an integrated evaluation of sustainable buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conte, Emilia, E-mail: conte@poliba.it; Monno, Valeria, E-mail: vmonno@poliba.it
2012-04-15
The available sustainable building evaluation systems have produced a new environmental design paradigm. However, there is an increasing need to overcome the buildingcentric approach of these systems, in order to further exploit their innovate potential for sustainable building practices. The paper takes this challenge by developing a cross-scale evaluation approach focusing on the reliability of sustainable building design solutions for the context in which the building is situated. An integrated building-urban evaluation model is proposed based on the urban matrix, which is a conceptualisation of the built environment as a social-ecological system. The model aims at evaluating the sustainability ofmore » a building considering it as an active entity contributing to the resilience of the urban matrix. Few holistic performance indicators are used for evaluating such contribution, so expressing the building reliability. The discussion on the efficacy of the model shows that it works as a heuristic tool, supporting the acquisition of a better insight into the complexity which characterises the relationships between the building and the built environment sustainability. Shading new lights on the meaning of sustainable buildings, the model can play a positive role in innovating sustainable building design practices, thus complementing current evaluation systems. - Highlights: Black-Right-Pointing-Pointer We model an integrated building-urban evaluation approach. Black-Right-Pointing-Pointer The urban matrix represents the social-ecological functioning of the urban context. Black-Right-Pointing-Pointer We introduce the concept of reliability to evaluate sustainable buildings. Black-Right-Pointing-Pointer Holistic indicators express the building reliability. Black-Right-Pointing-Pointer The evaluation model works as heuristic tool and complements other tools.« less
Ruiz-Aragón, Jesús; Ballestero-Téllez, Mónica; Gutiérrez-Gutiérrez, Belén; de Cueto, Marina; Rodríguez-Baño, Jesús; Pascual, Álvaro
2017-10-27
The rapid identification of bacteraemia-causing pathogens could assist clinicians in the timely prescription of targeted therapy, thereby reducing the morbidity and mortality of this infection. In recent years, numerous techniques that rapidly and directly identify positive blood cultures have been marketed, with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) being one of the most commonly used. The aim of this systematic review and meta-analysis was to evaluate the accuracy of MALDI-TOF (Bruker ® ) for the direct identification of positive blood culture bottles. A meta-analysis was performed to summarize the results of the 32 studies evaluated. The overall quality of the studies was moderate. For Gram-positive bacteria, overall rates of correct identification of the species ranged from 0.17 to 0.98, with a cumulative rate (random-effects model) of 0.72 (95% CI: 0.64-0.80). For Gram-negative bacteria, correct identification rates ranged from 0.66 to 1.00, with a cumulative effect of 0.92 (95% CI: 0.88-0.95). For Enterobacteriaceae, the rate was 0.96 (95% CI: 0.94-0.97). MALDI-TOF mass spectrometry shows high accuracy for the correct identification of Gram-negative bacteria, particularly Enterobacteriaceae, directly from positive blood culture bottles, and moderate accuracy for the identification of Gram-positive bacteria (low for some species). Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Metal chloride cathode for a battery
NASA Technical Reports Server (NTRS)
Bugga, Ratnakumar V. (Inventor); Distefano, Salvador (Inventor); Bankston, C. Perry (Inventor)
1991-01-01
A method of fabricating a rechargeable battery is disclosed which includes a positive electrode which contains a chloride of a selected metal when the electrode is in its active state. The improvement comprises fabricating the positive electrode by: providing a porous matrix composed of a metal; providing a solution of the chloride of the selected metal; and impregnating the matrix with the chloride from the solution.
NASA Astrophysics Data System (ADS)
Havelund, R.; Seah, M. P.; Tiddia, M.; Gilmore, I. S.
2018-02-01
A procedure has been established to define the interface position in depth profiles accurately when using secondary ion mass spectrometry and the negative secondary ions. The interface position varies strongly with the extent of the matrix effect and so depends on the secondary ion measured. Intensity profiles have been measured at both fluorenylmethyloxycarbonyl-uc(l)-pentafluorophenylalanine (FMOC) to Irganox 1010 and Irganox 1010 to FMOC interfaces for many secondary ions. These profiles show separations of the two interfaces that vary over some 10 nm depending on the secondary ion selected. The shapes of these profiles are strongly governed by matrix effects, slightly weakened by a long wavelength roughening. The matrix effects are separately measured using homogeneous, known mixtures of these two materials. Removal of the matrix and roughening effects give consistent compositional profiles for all ions that are described by an integrated exponentially modified Gaussian (EMG) profile. Use of a simple integrated Gaussian may lead to significant errors. The average interface positions in the compositional profiles are determined to standard uncertainties of 0.19 and 0.14 nm, respectively, using the integrated EMG function. Alternatively, and more simply, it is shown that interface positions and profiles may be deduced from data for several secondary ions with measured matrix factors by simply extrapolating the result to Ξ = 0. Care must be taken in quoting interface resolutions since those measured for predominantly Gaussian interfaces with Ξ above or below zero, without correction, appear significantly better than the true resolution.
Vanacker, Julie; Luyckx, Valérie; Dolmans, Marie-Madeleine; Des Rieux, Anne; Jaeger, Jonathan; Van Langendonckt, Anne; Donnez, Jacques; Amorim, Christiani A
2012-09-01
For women diagnosed with leukemia, transplantation of cryopreserved ovarian tissue after disease remission is not advisable. Therefore, to restore fertility in these patients, we aim to develop a biodegradable artificial ovary that offers an environment where isolated follicles and ovarian cells (OCs) can survive and grow. Four NMRI mice were ovariectomized and their ovaries used to isolate OCs. Groups of 50,000 OCs were embedded in an alginate-matrigel matrix for further fixation (fresh controls), one week of in vitro culture (IVC) or heterotopic autografting. OC proliferation (Ki67), apoptosis (TUNEL), scaffold degradation, vessel formation (CD34) and inflammation (CD45) were analyzed. Ki67-positive OCs were found in 2.3%, 9.0% and 15.5% cells of cases in fresh, IVC and grafted beads respectively, while cells were TUNEL-positive in 0%, 1.5% and 6.9% of cases. After IVC or grafting, the beads degraded, losing their original round aspect, and infiltrating blood capillaries could be observed in the grafted beads. CD34-positive cells and 22% CD45-positive cells were found around and inside the matrix. In conclusion, our results demonstrate that an alginate-based matrix is a promising proposition to graft isolated OCs. After transplantation, this matrix was able to degrade, allowed vascularization and elicited a low inflammatory response. Copyright © 2012 Elsevier Ltd. All rights reserved.
Data-Driven Learning of Q-Matrix
Liu, Jingchen; Xu, Gongjun; Ying, Zhiliang
2013-01-01
The recent surge of interests in cognitive assessment has led to developments of novel statistical models for diagnostic classification. Central to many such models is the well-known Q-matrix, which specifies the item–attribute relationships. This article proposes a data-driven approach to identification of the Q-matrix and estimation of related model parameters. A key ingredient is a flexible T-matrix that relates the Q-matrix to response patterns. The flexibility of the T-matrix allows the construction of a natural criterion function as well as a computationally amenable algorithm. Simulations results are presented to demonstrate usefulness and applicability of the proposed method. Extension to handling of the Q-matrix with partial information is presented. The proposed method also provides a platform on which important statistical issues, such as hypothesis testing and model selection, may be formally addressed. PMID:23926363
NASA Astrophysics Data System (ADS)
Hipp, J. R.; Encarnacao, A.; Ballard, S.; Young, C. J.; Phillips, W. S.; Begnaud, M. L.
2011-12-01
Recently our combined SNL-LANL research team has succeeded in developing a global, seamless 3D tomographic P-velocity model (SALSA3D) that provides superior first P travel time predictions at both regional and teleseismic distances. However, given the variable data quality and uneven data sampling associated with this type of model, it is essential that there be a means to calculate high-quality estimates of the path-dependent variance and covariance associated with the predicted travel times of ray paths through the model. In this paper, we show a methodology for accomplishing this by exploiting the full model covariance matrix. Our model has on the order of 1/2 million nodes, so the challenge in calculating the covariance matrix is formidable: 0.9 TB storage for 1/2 of a symmetric matrix, necessitating an Out-Of-Core (OOC) blocked matrix solution technique. With our approach the tomography matrix (G which includes Tikhonov regularization terms) is multiplied by its transpose (GTG) and written in a blocked sub-matrix fashion. We employ a distributed parallel solution paradigm that solves for (GTG)-1 by assigning blocks to individual processing nodes for matrix decomposition update and scaling operations. We first find the Cholesky decomposition of GTG which is subsequently inverted. Next, we employ OOC matrix multiply methods to calculate the model covariance matrix from (GTG)-1 and an assumed data covariance matrix. Given the model covariance matrix we solve for the travel-time covariance associated with arbitrary ray-paths by integrating the model covariance along both ray paths. Setting the paths equal gives variance for that path. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Modeling the role of quorum sensing in interspecies competition in biofilms
NASA Astrophysics Data System (ADS)
Narla, Avaneesh V.; Wingreen, Ned S.; Borenstein, David B.
Bacteria grow on surfaces in complex immobile communities known as biofilms, composed of cells embedded in an extracellular matrix. Within biofilms, bacteria often communicate, cooperate, and compete within their own species and with other species using Quorum Sensing (QS). QS refers to the process by which bacteria produce, secrete, and subsequently detect small molecules called autoinducers as a way to assess the local population density of their species, or of other species. QS is known to regulate the production of extracellular matrix. We investigated the possible benefit of QS in regulating matrix production to best gain access to a nutrient that diffuses from a source positioned away from the surface on which the biofilm grows. We employed Agent-Based Modeling (ABM), a form of simulation that allows cells to modify their behavior based on local inputs, e.g. nutrient and QS concentrations. We first determined the optimal fixed strategies (that do not use QS) for pairwise competitions, and then demonstrated that simple QS-based strategies can be superior to any fixed strategy. In nature, species can compete by sensing and/or interfering with each other's QS signals, and we explore approaches for targeting specific species via QS-interference. A.V.N. and N.S.W. contributed equally to this project.
[Self-assembly tissue engineering fibrocartilage model of goat temporomandibular joint disc].
Kang, Hong; Li, Zhen-Qiang; Bi, Yan-Da
2011-06-01
To construct self-assembly fibrocartilage model of goat temporomandibular joint disc and observe the biological characteristics of the self-assembled fibrocartilage constructs, further to provide a basis for tissue engineering of the temporomandibular joint disc and other fibrocartilage. Cells from temporomandibular joint discs of goats were harvested and cultured. 5.5 x 10(6) cells were seeded in each agarose well with diameter 5 mm x depth 10 mm, daily replace of medium, cultured for 2 weeks. One day after seeding, goat temporomandibular joint disc cells in agarose wells were gathered and began to self-assemble into a disc-shaped base, then gradually turned into a round shape. When cultured for 2 weeks, hematoxylin-eosin staining was conducted and observed that cells were round and wrapped around by the matrix. Positive Safranin-O/fast green staining for glycosaminoglycans was observed throughout the entire constructs, and picro-sirius red staining was examined and distribution of numerous type I collagen was found. Immunohistochemistry staining demonstrated brown yellow particles in cytoplasm and around extracellular matrix, which showed self-assembly construct can produce type I collagen as native temporomandibular joint disc tissue. Production of extracellular matrix in self-assembly construct as native temporomandibular joint disc tissue indicates that the use of agarose wells to construct engineered temporomandibular joint disc will be possible and practicable.
Krams, Indrikis A; Niemelä, Petri T; Trakimas, Giedrius; Krams, Ronalds; Burghardt, Gordon M; Krama, Tatjana; Kuusik, Aare; Mänd, Marika; Rantala, Markus J; Mänd, Raivo; Kekäläinen, Jukka; Sirkka, Ilkka; Luoto, Severi; Kortet, Raine
2017-03-29
The causes and consequences of among-individual variation and covariation in behaviours are of substantial interest to behavioural ecology, but the proximate mechanisms underpinning this (co)variation are still unclear. Previous research suggests metabolic rate as a potential proximate mechanism to explain behavioural covariation. We measured the resting metabolic rate (RMR), boldness and exploration in western stutter-trilling crickets, Gryllus integer , selected differentially for short and fast development over two generations. After applying mixed-effects models to reveal the sign of the covariation, we applied structural equation models to an individual-level covariance matrix to examine whether the RMR generates covariation between the measured behaviours. All traits showed among-individual variation and covariation: RMR and boldness were positively correlated, RMR and exploration were negatively correlated, and boldness and exploration were negatively correlated. However, the RMR was not a causal factor generating covariation between boldness and exploration. Instead, the covariation between all three traits was explained by another, unmeasured mechanism. The selection lines differed from each other in all measured traits and significantly affected the covariance matrix structure between the traits, suggesting that there is a genetic component in the trait integration. Our results emphasize that interpretations made solely from the correlation matrix might be misleading. © 2017 The Author(s).
Trakimas, Giedrius; Krams, Ronalds; Burghardt, Gordon M.; Krama, Tatjana; Kuusik, Aare; Mänd, Marika; Rantala, Markus J.; Mänd, Raivo; Sirkka, Ilkka; Luoto, Severi; Kortet, Raine
2017-01-01
The causes and consequences of among-individual variation and covariation in behaviours are of substantial interest to behavioural ecology, but the proximate mechanisms underpinning this (co)variation are still unclear. Previous research suggests metabolic rate as a potential proximate mechanism to explain behavioural covariation. We measured the resting metabolic rate (RMR), boldness and exploration in western stutter-trilling crickets, Gryllus integer, selected differentially for short and fast development over two generations. After applying mixed-effects models to reveal the sign of the covariation, we applied structural equation models to an individual-level covariance matrix to examine whether the RMR generates covariation between the measured behaviours. All traits showed among-individual variation and covariation: RMR and boldness were positively correlated, RMR and exploration were negatively correlated, and boldness and exploration were negatively correlated. However, the RMR was not a causal factor generating covariation between boldness and exploration. Instead, the covariation between all three traits was explained by another, unmeasured mechanism. The selection lines differed from each other in all measured traits and significantly affected the covariance matrix structure between the traits, suggesting that there is a genetic component in the trait integration. Our results emphasize that interpretations made solely from the correlation matrix might be misleading. PMID:28330918
On evolutionary spatial heterogeneous games
NASA Astrophysics Data System (ADS)
Fort, H.
2008-03-01
How cooperation between self-interested individuals evolve is a crucial problem, both in biology and in social sciences, that is far from being well understood. Evolutionary game theory is a useful approach to this issue. The simplest model to take into account the spatial dimension in evolutionary games is in terms of cellular automata with just a one-parameter payoff matrix. Here, the effects of spatial heterogeneities of the environment and/or asymmetries in the interactions among the individuals are analysed through different extensions of this model. Instead of using the same universal payoff matrix, bimatrix games in which each cell at site ( i, j) has its own different ‘temptation to defect’ parameter T(i,j) are considered. First, the case in which these individual payoffs are constant in time is studied. Second, an evolving evolutionary spatial game such that T=T(i,j;t), i.e. besides depending on the position evolves (by natural selection), is used to explore the combination of spatial heterogeneity and natural selection of payoff matrices.
Dynamical Causal Modeling from a Quantum Dynamical Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demiralp, Emre; Demiralp, Metin
Recent research suggests that any set of first order linear vector ODEs can be converted to a set of specific vector ODEs adhering to what we have called ''Quantum Harmonical Form (QHF)''. QHF has been developed using a virtual quantum multi harmonic oscillator system where mass and force constants are considered to be time variant and the Hamiltonian is defined as a conic structure over positions and momenta to conserve the Hermiticity. As described in previous works, the conversion to QHF requires the matrix coefficient of the first set of ODEs to be a normal matrix. In this paper, thismore » limitation is circumvented using a space extension approach expanding the potential applicability of this method. Overall, conversion to QHF allows the investigation of a set of ODEs using mathematical tools available to the investigation of the physical concepts underlying quantum harmonic oscillators. The utility of QHF in the context of dynamical systems and dynamical causal modeling in behavioral and cognitive neuroscience is briefly discussed.« less
Sensor management in RADAR/IRST track fusion
NASA Astrophysics Data System (ADS)
Hu, Shi-qiang; Jing, Zhong-liang
2004-07-01
In this paper, a novel radar management strategy technique suitable for RADAR/IRST track fusion, which is based on Fisher Information Matrix (FIM) and fuzzy stochastic decision approach, is put forward. Firstly, optimal radar measurements' scheduling is obtained by the method of maximizing determinant of the Fisher information matrix of radar and IRST measurements, which is managed by the expert system. Then, suggested a "pseudo sensor" to predict the possible target position using the polynomial method based on the radar and IRST measurements, using "pseudo sensor" model to estimate the target position even if the radar is turned off. At last, based on the tracking performance and the state of target maneuver, fuzzy stochastic decision is used to adjust the optimal radar scheduling and retrieve the module parameter of "pseudo sensor". The experiment result indicates that the algorithm can not only limit Radar activity effectively but also keep the tracking accuracy of active/passive system well. And this algorithm eliminates the drawback of traditional Radar management methods that the Radar activity is fixed and not easy to control and protect.
Application of geometric algebra for the description of polymer conformations.
Chys, Pieter
2008-03-14
In this paper a Clifford algebra-based method is applied to calculate polymer chain conformations. The approach enables the calculation of the position of an atom in space with the knowledge of the bond length (l), valence angle (theta), and rotation angle (phi) of each of the preceding bonds in the chain. Hence, the set of geometrical parameters {l(i),theta(i),phi(i)} yields all the position coordinates p(i) of the main chain atoms. Moreover, the method allows the calculation of side chain conformations and the computation of rotations of chain segments. With these features it is, in principle, possible to generate conformations of any type of chemical structure. This method is proposed as an alternative for the classical approach by matrix algebra. It is more straightforward and its final symbolic representation considerably simpler than that of matrix algebra. Approaches for realistic modeling by means of incorporation of energetic considerations can be combined with it. This article, however, is entirely focused at showing the suitable mathematical framework on which further developments and applications can be built.
Unexpected role of the IMD pathway in Drosophila gut defense against Staphylococcus aureus.
Hori, Aki; Kurata, Shoichiro; Kuraishi, Takayuki
2018-01-01
In this study, fruit fly of the genus Drosophila is utilized as a suitable model animal to investigate the molecular mechanisms of innate immunity. To combat orally transmitted pathogenic Gram-negative bacteria, the Drosophila gut is armed with the peritrophic matrix, which is a physical barrier composed of chitin and glycoproteins: the Duox system that produces reactive oxygen species (ROS), which in turn sterilize infected microbes, and the IMD pathway that regulates the expression of antimicrobial peptides (AMPs), which in turn control ROS-resistant pathogens. However, little is known about the defense mechanisms against Gram-positive bacteria in the fly gut. Here, we show that the peritrophic matrix protects Drosophila against Gram-positive bacteria S. aureus. We also define the few roles of ROS in response to the infection and show that the IMD pathway is required for the clearance of ingested microbes, possibly independently from AMP expression. These findings provide a new aspect of the gut defense system of Drosophila, and helps to elucidate the processes of gut-microbe symbiosis and pathogenesis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
GPS Spoofing Attack Characterization and Detection in Smart Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blum, Rick S.; Pradhan, Parth; Nagananda, Kyatsandra
The problem of global positioning system (GPS) spoofing attacks on smart grids endowed with phasor measurement units (PMUs) is addressed, taking into account the dynamical behavior of the states of the system. First, it is shown how GPS spoofing introduces a timing synchronization error in the phasor readings recorded by the PMUs and alters the measurement matrix of the dynamical model. Then, a generalized likelihood ratio-based hypotheses testing procedure is devised to detect changes in the measurement matrix when the system is subjected to a spoofing attack. Monte Carlo simulations are performed on the 9-bus, 3-machine test grid to demonstratemore » the implication of the spoofing attack on dynamic state estimation and to analyze the performance of the proposed hypotheses test.« less
Investigation of podosome ring protein arrangement using localization microscopy images.
Staszowska, Adela D; Fox-Roberts, Patrick; Foxall, Elizabeth; Jones, Gareth E; Cox, Susan
2017-02-15
Podosomes are adhesive structures formed on the plasma membrane abutting the extracellular matrix of macrophages, osteoclasts, and dendritic cells. They consist of an f-actin core and a ring structure composed of integrins and integrin-associated proteins. The podosome ring plays a major role in adhesion to the underlying extracellular matrix, but its detailed structure is poorly understood. Recently, it has become possible to study the nano-scale structure of podosome rings using localization microscopy. Unlike traditional microscopy images, localization microscopy images are reconstructed using discrete points, meaning that standard image analysis methods cannot be applied. Here, we present a pipeline for podosome identification, protein position calculation, and creating a podosome ring model for use with localization microscopy data. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
QCD dirac operator at nonzero chemical potential: lattice data and matrix model.
Akemann, Gernot; Wettig, Tilo
2004-03-12
Recently, a non-Hermitian chiral random matrix model was proposed to describe the eigenvalues of the QCD Dirac operator at nonzero chemical potential. This matrix model can be constructed from QCD by mapping it to an equivalent matrix model which has the same symmetries as QCD with chemical potential. Its microscopic spectral correlations are conjectured to be identical to those of the QCD Dirac operator. We investigate this conjecture by comparing large ensembles of Dirac eigenvalues in quenched SU(3) lattice QCD at a nonzero chemical potential to the analytical predictions of the matrix model. Excellent agreement is found in the two regimes of weak and strong non-Hermiticity, for several different lattice volumes.
Vortex manipulation in a superconducting matrix with view on applications
NASA Astrophysics Data System (ADS)
Milošević, M. V.; Peeters, F. M.
2010-05-01
We show how a single flux quantum can be effectively manipulated in a superconducting film with a matrix of blind holes. Such a sample can serve as a basic memory element, where the position of the vortex in a k ×l matrix of pinning sites defines the desired combination of n bits of information (2n=k×l). Vortex placement is achieved by strategically applied current and the resulting position is read out via generated voltage between metallic contacts on the sample. Such a device can also act as a controllable source of a nanoengineered local magnetic field for, e.g., spintronics applications.
NASA Technical Reports Server (NTRS)
Bakuckas, J. G., Jr.; Johnson, W. S.
1992-01-01
Several fiber bridging models were reviewed and applied to study the matrix fatigue crack growth behavior in center notched (0)(sub 8) SCS-6/Ti-15-3 and (0)(sub 4) SCS-6/Ti-6Al-4V laminates. Observations revealed that fatigue damage consisted primarily of matrix cracks and fiber matrix interfacial failure in the (0)(sub 8) SCS-6/Ti-15-3 laminates. Fiber-matrix interface failure included fracture of the brittle reaction zone and cracking between the two carbon rich fiber coatings. Intact fibers in the wake of the matrix cracks reduce the stress intensity factor range. Thus, an applied stress intensity factor range is inappropriate to characterize matrix crack growth behavior. Fiber bridging models were used to determine the matrix stress intensity factor range in titanium metal matrix composites. In these models, the fibers in the wake of the crack are idealized as a closure pressure. An unknown constant frictional shear stress is assumed to act along the debond or slip length of the bridging fibers. The frictional shear stress was used as a curve fitting parameter to available data (crack growth data, crack opening displacement data, and debond length data). Large variations in the frictional shear stress required to fit the experimental data indicate that the fiber bridging models in their present form lack predictive capabilities. However, these models provide an efficient and relatively simple engineering method for conducting parametric studies of the matrix growth behavior based on constituent properties.
A creep cavity growth model for creep-fatigue life prediction of a unidirectional W/Cu composite
NASA Astrophysics Data System (ADS)
Kim, Young-Suk; Verrilli, Michael J.; Halford, Gary R.
1992-05-01
A microstructural model was developed to predict creep-fatigue life in a (0)(sub 4), 9 volume percent tungsten fiber-reinforced copper matrix composite at the temperature of 833 K. The mechanism of failure of the composite is assumed to be governed by the growth of quasi-equilibrium cavities in the copper matrix of the composite, based on the microscopically observed failure mechanisms. The methodology uses a cavity growth model developed for prediction of creep fracture. Instantaneous values of strain rate and stress in the copper matrix during fatigue cycles were calculated and incorporated in the model to predict cyclic life. The stress in the copper matrix was determined by use of a simple two-bar model for the fiber and matrix during cyclic loading. The model successfully predicted the composite creep-fatigue life under tension-tension cyclic loading through the use of this instantaneous matrix stress level. Inclusion of additional mechanisms such as cavity nucleation, grain boundary sliding, and the effect of fibers on matrix-stress level would result in more generalized predictions of creep-fatigue life.
Temperature dependent nonlinear metal matrix laminae behavior
NASA Technical Reports Server (NTRS)
Barrett, D. J.; Buesking, K. W.
1986-01-01
An analytical method is described for computing the nonlinear thermal and mechanical response of laminated plates. The material model focuses upon the behavior of metal matrix materials by relating the nonlinear composite response to plasticity effects in the matrix. The foundation of the analysis is the unidirectional material model which is used to compute the instantaneous properties of the lamina based upon the properties of the fibers and matrix. The unidirectional model assumes that the fibers properties are constant with temperature and assumes that the matrix can be modelled as a temperature dependent, bilinear, kinematically hardening material. An incremental approach is used to compute average stresses in the fibers and matrix caused by arbitrary mechanical and thermal loads. The layer model is incorporated in an incremental laminated plate theory to compute the nonlinear response of laminated metal matrix composites of general orientation and stacking sequence. The report includes comparisons of the method with other analytical approaches and compares theoretical calculations with measured experimental material behavior. A section is included which describes the limitations of the material model.
A creep cavity growth model for creep-fatigue life prediction of a unidirectional W/Cu composite
NASA Technical Reports Server (NTRS)
Kim, Young-Suk; Verrilli, Michael J.; Halford, Gary R.
1992-01-01
A microstructural model was developed to predict creep-fatigue life in a (0)(sub 4), 9 volume percent tungsten fiber-reinforced copper matrix composite at the temperature of 833 K. The mechanism of failure of the composite is assumed to be governed by the growth of quasi-equilibrium cavities in the copper matrix of the composite, based on the microscopically observed failure mechanisms. The methodology uses a cavity growth model developed for prediction of creep fracture. Instantaneous values of strain rate and stress in the copper matrix during fatigue cycles were calculated and incorporated in the model to predict cyclic life. The stress in the copper matrix was determined by use of a simple two-bar model for the fiber and matrix during cyclic loading. The model successfully predicted the composite creep-fatigue life under tension-tension cyclic loading through the use of this instantaneous matrix stress level. Inclusion of additional mechanisms such as cavity nucleation, grain boundary sliding, and the effect of fibers on matrix-stress level would result in more generalized predictions of creep-fatigue life.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2015-12-01
The matrix multicracking evolution of cross-ply ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The multicracking of cross-ply CMCs was classified into five modes, i.e., (1) mode 1: transverse multicracking; (2) mode 2: transverse multicracking and matrix multicracking with perfect fiber/matrix interface bonding; (3) mode 3: transverse multicracking and matrix multicracking with fiber/matrix interface debonding; (4) mode 4: matrix multicracking with perfect fiber/matrix interface bonding; and (5) mode 5: matrix multicracking with fiber/matrix interface debonding. The stress distributions of four cracking modes, i.e., mode 1, mode 2, mode 3 and mode 5, are analysed using shear-lag model. The matrix multicracking evolution of mode 1, mode 2, mode 3 and mode 5, has been determined using energy balance approach. The effects of ply thickness and fiber volume fraction on matrix multicracking evolution of cross-ply CMCs have been investigated.
Nanostructural Characteristics and Interfacial Properties of Polymer Fibers in Cement Matrix.
Shalchy, Faezeh; Rahbar, Nima
2015-08-12
Concrete is the most used material in the world. It is also one of the most versatile yet complex materials that humans have used for construction. However, an important weakness of concrete (cement-based composites) is its low tensile properties. Therefore, over the past 30 years many studies were focused on improving its tensile properties using a variety of physical and chemical methods. One of the most successful attempts is to use polymer fibers in the structure of concrete to obtain a composite with high tensile strength and ductility. The advantages of polymer fiber as reinforcing material in concrete, both with regard to reducing environmental pollution and the positive effects on a country's economy, are beyond dispute. However, a thorough understanding of the mechanical behavior of fiber-reinforced concrete requires a knowledge of fiber/matrix interfaces at the nanoscale. In this study, a combination of atomistic simulations and experimental techniques has been used to study the nanostructure of fiber/matrix interfaces. A new model for calcium-silicate-hydrate (C-S-H)/fiber interfaces is also proposed on the basis of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) analyses. Finally, the adhesion energy between the C-S-H gel and three different polymeric fibers (poly(vinyl alcohol), nylon-6, and polypropylene) were numerically studied at the atomistic level because adhesion plays a key role in the design of ductile fiber-reinforced composites. The mechanisms of adhesion as a function of the nanostructure of fiber/matrix interfaces are further studied and discussed. It is observed that the functional group in the structure of polymer macromolecule affects the adhesion energy primarily by changing the C/S ratio of the C-S-H at the interface and by absorbing additional positive ions in the C-S-H structure.
ERIC Educational Resources Information Center
Alpert, Daniel
Features of the matrix model of the research university and myths about the academic enterprise are described, along with serious dissonances in the U.S. university system. The linear model, from which the matrix model evolved, describes the university's structure, perceived mission, and organizational behavior. A matrix model portrays in concise,…
Hoy, Erik P; Mazziotti, David A
2015-08-14
Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory.
2012-08-03
is unlimited. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar ®-Fiber-Reinforced Polymer-Matrix Composites The views, opinions...12211 Research Triangle Park, NC 27709-2211 ballistics, composites, Kevlar , material models, microstructural defects REPORT DOCUMENTATION PAGE 11... Kevlar ®-Fiber-Reinforced Polymer-Matrix Composites Report Title Fiber-reinforced polymer matrix composite materials display quite complex deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, Jesper Lykke; Salas, Jesus; Scullard, Christian R.
Here, we study the phase diagram of the triangular-lattice Q-state Potts model in the realmore » $(Q, v)$ -plane, where $$v={\\rm e}^J-1$$ is the temperature variable. Our first goal is to provide an obviously missing feature of this diagram: the position of the antiferromagnetic critical curve. This curve turns out to possess a bifurcation point with two branches emerging from it, entailing important consequences for the global phase diagram. We have obtained accurate numerical estimates for the position of this curve by combining the transfer-matrix approach for strip graphs with toroidal boundary conditions and the recent method of critical polynomials. The second goal of this work is to study the corresponding $$A_{p-1}$$ RSOS model on the torus, for integer $$p=4, 5, \\ldots, 8$$ . We clarify its relation to the corresponding Potts model, in particular concerning the role of boundary conditions. For certain values of p, we identify several new critical points and regimes for the RSOS model and we initiate the study of the flows between the corresponding field theories.« less
Bayesian parameter estimation for stochastic models of biological cell migration
NASA Astrophysics Data System (ADS)
Dieterich, Peter; Preuss, Roland
2013-08-01
Cell migration plays an essential role under many physiological and patho-physiological conditions. It is of major importance during embryonic development and wound healing. In contrast, it also generates negative effects during inflammation processes, the transmigration of tumors or the formation of metastases. Thus, a reliable quantification and characterization of cell paths could give insight into the dynamics of these processes. Typically stochastic models are applied where parameters are extracted by fitting models to the so-called mean square displacement of the observed cell group. We show that this approach has several disadvantages and problems. Therefore, we propose a simple procedure directly relying on the positions of the cell's trajectory and the covariance matrix of the positions. It is shown that the covariance is identical with the spatial aging correlation function for the supposed linear Gaussian models of Brownian motion with drift and fractional Brownian motion. The technique is applied and illustrated with simulated data showing a reliable parameter estimation from single cell paths.
A System for Discovering Bioengineered Threats by Knowledge Base Driven Mining of Toxin Data
2004-08-01
RMSD cut - off and select a residue substitution matrix. The user is also allowed...in the sense that after super-positioning, the RMSD between the substructures is no more than the cut - off RMSD . * Residue substitutions are allowed...during super-positioning. Default RMSD cut - off and residue substitution matrix are provided. Users can specify their own RMSD cut - offs as well as
Wang, Yafei; Yu, Dongsheng; Liu, Zhiming; Zhou, Fang; Dai, Jun; Wu, Bingbing; Zhou, Jing; Heng, Boon Chin; Zou, Xiao Hui; Ouyang, Hongwei; Liu, Hua
2017-08-14
Mesenchymal stem cell therapy for osteoarthritis (OA) has been widely investigated, but the mechanisms are still unclear. Exosomes that serve as carriers of genetic information have been implicated in many diseases and are known to participate in many physiological processes. Here, we investigate the therapeutic potential of exosomes from human embryonic stem cell-induced mesenchymal stem cells (ESC-MSCs) in alleviating osteoarthritis (OA). Exosomes were harvested from conditioned culture media of ESC-MSCs by a sequential centrifugation process. Primary mouse chondrocytes treated with interleukin 1 beta (IL-1β) were used as an in vitro model to evaluate the effects of the conditioned medium with or without exosomes and titrated doses of isolated exosomes for 48 hours, prior to immunocytochemistry or western blot analysis. Destabilization of the medial meniscus (DMM) surgery was performed on the knee joints of C57BL/6 J mice as an OA model. This was followed by intra-articular injection of either ESC-MSCs or their exosomes. Cartilage destruction and matrix degradation were evaluated with histological staining and OARSI scores at the post-surgery 8 weeks. We found that intra-articular injection of ESC-MSCs alleviated cartilage destruction and matrix degradation in the DMM model. Further in vitro studies illustrated that this effect was exerted through ESC-MSC-derived exosomes. These exosomes maintained the chondrocyte phenotype by increasing collagen type II synthesis and decreasing ADAMTS5 expression in the presence of IL-1β. Immunocytochemistry revealed colocalization of the exosomes and collagen type II-positive chondrocytes. Subsequent intra-articular injection of exosomes derived from ESC-MSCs successfully impeded cartilage destruction in the DMM model. The exosomes from ESC-MSCs exert a beneficial therapeutic effect on OA by balancing the synthesis and degradation of chondrocyte extracellular matrix (ECM), which in turn provides a new target for OA drug and drug-delivery system development.
Luo, Man-Li; Zhou, Zhuan; Sun, Lichao; Yu, Long; Sun, Lixin; Liu, Jun; Yang, Zhihua; Ran, Yuliang; Yao, Yandan; Hu, Hai
2018-05-28
Esophageal squamous cell carcinomas (ESCCs) have a poor prognosis mostly due to early metastasis. To explore the early event of metastasis in ESCC, we established an in vitro selection model to mimic the interaction of tumor cells with extracellular matrix, through which a sub-line of ESCC cells with high invasive ability was generated. By comparing the gene expression profile of the highly invasive sub-line to that of the parental cells, ADAM12-L was identified as a candidate gene promoting ESCC cell invasion. Immunohistochemistry revealed that the ADAM12-L was overexpressed in human ESCC tissues, especially at cancer invasive edge, and ADAM12-L overexpression tightly correlated with increased metastasis and poor outcome of ESCC patients. Indeed, ADAM12-L knockdown reduced the invasion and metastasis of ESCC cells both in vitro and in vivo. Furthermore, we demonstrated that ADAM12-L participated in focal adhesion turnover and promoted the activation of focal adhesion kinase (FAK), which in turn increased ADAM12-L transcription through FAK/JNK/c-Jun axis. Therefore, a loop initiated from the cancer cell upon the engagement with extracellular matrix through FAK and c-Jun to enhance ADAM12-L expression is established, leading to the positive feedback of further FAK activation and prompting metastasis. Our study indicates that overexpression of ADAM12-L can serve as a precision marker to determine the activation of this loop. Targeting ADAM12-L to disrupt this positive feedback loop represents a promising strategy to treat the metastasis of esophageal cancers. Copyright © 2018 Elsevier B.V. All rights reserved.
The Tetrahedral Zamolodchikov Algebra and the {AdS_5× S^5} S-matrix
NASA Astrophysics Data System (ADS)
Mitev, Vladimir; Staudacher, Matthias; Tsuboi, Zengo
2017-08-01
The S-matrix of the {AdS_5× S^5} string theory is a tensor product of two centrally extended su{(2|2)\\ltimes R^2 S-matrices, each of which is related to the R-matrix of the Hubbard model. The R-matrix of the Hubbard model was first found by Shastry, who ingeniously exploited the fact that, for zero coupling, the Hubbard model can be decomposed into two XX models. In this article, we review and clarify this construction from the AdS/CFT perspective and investigate the implications this has for the {AdS_5× S^5} S-matrix.
Fast time- and frequency-domain finite-element methods for electromagnetic analysis
NASA Astrophysics Data System (ADS)
Lee, Woochan
Fast electromagnetic analysis in time and frequency domain is of critical importance to the design of integrated circuits (IC) and other advanced engineering products and systems. Many IC structures constitute a very large scale problem in modeling and simulation, the size of which also continuously grows with the advancement of the processing technology. This results in numerical problems beyond the reach of existing most powerful computational resources. Different from many other engineering problems, the structure of most ICs is special in the sense that its geometry is of Manhattan type and its dielectrics are layered. Hence, it is important to develop structure-aware algorithms that take advantage of the structure specialties to speed up the computation. In addition, among existing time-domain methods, explicit methods can avoid solving a matrix equation. However, their time step is traditionally restricted by the space step for ensuring the stability of a time-domain simulation. Therefore, making explicit time-domain methods unconditionally stable is important to accelerate the computation. In addition to time-domain methods, frequency-domain methods have suffered from an indefinite system that makes an iterative solution difficult to converge fast. The first contribution of this work is a fast time-domain finite-element algorithm for the analysis and design of very large-scale on-chip circuits. The structure specialty of on-chip circuits such as Manhattan geometry and layered permittivity is preserved in the proposed algorithm. As a result, the large-scale matrix solution encountered in the 3-D circuit analysis is turned into a simple scaling of the solution of a small 1-D matrix, which can be obtained in linear (optimal) complexity with negligible cost. Furthermore, the time step size is not sacrificed, and the total number of time steps to be simulated is also significantly reduced, thus achieving a total cost reduction in CPU time. The second contribution is a new method for making an explicit time-domain finite-element method (TDFEM) unconditionally stable for general electromagnetic analysis. In this method, for a given time step, we find the unstable modes that are the root cause of instability, and deduct them directly from the system matrix resulting from a TDFEM based analysis. As a result, an explicit TDFEM simulation is made stable for an arbitrarily large time step irrespective of the space step. The third contribution is a new method for full-wave applications from low to very high frequencies in a TDFEM based on matrix exponential. In this method, we directly deduct the eigenmodes having large eigenvalues from the system matrix, thus achieving a significantly increased time step in the matrix exponential based TDFEM. The fourth contribution is a new method for transforming the indefinite system matrix of a frequency-domain FEM to a symmetric positive definite one. We deduct non-positive definite component directly from the system matrix resulting from a frequency-domain FEM-based analysis. The resulting new representation of the finite-element operator ensures an iterative solution to converge in a small number of iterations. We then add back the non-positive definite component to synthesize the original solution with negligible cost.
A Feature-Based Approach to Modeling Protein–DNA Interactions
Segal, Eran
2008-01-01
Transcription factor (TF) binding to its DNA target site is a fundamental regulatory interaction. The most common model used to represent TF binding specificities is a position specific scoring matrix (PSSM), which assumes independence between binding positions. However, in many cases, this simplifying assumption does not hold. Here, we present feature motif models (FMMs), a novel probabilistic method for modeling TF–DNA interactions, based on log-linear models. Our approach uses sequence features to represent TF binding specificities, where each feature may span multiple positions. We develop the mathematical formulation of our model and devise an algorithm for learning its structural features from binding site data. We also developed a discriminative motif finder, which discovers de novo FMMs that are enriched in target sets of sequences compared to background sets. We evaluate our approach on synthetic data and on the widely used TF chromatin immunoprecipitation (ChIP) dataset of Harbison et al. We then apply our algorithm to high-throughput TF ChIP data from mouse and human, reveal sequence features that are present in the binding specificities of mouse and human TFs, and show that FMMs explain TF binding significantly better than PSSMs. Our FMM learning and motif finder software are available at http://genie.weizmann.ac.il/. PMID:18725950
Constructing service-oriented architecture adoption maturity matrix using Kano model
NASA Astrophysics Data System (ADS)
Hamzah, Mohd Hamdi Irwan; Baharom, Fauziah; Mohd, Haslina
2017-10-01
Commonly, organizations adopted Service-Oriented Architecture (SOA) because it can provide a flexible reconfiguration and can reduce the development time and cost. In order to guide the SOA adoption, previous industry and academia have constructed SOA maturity model. However, there is a limited number of works on how to construct the matrix in the previous SOA maturity model. Therefore, this study is going to provide a method that can be used in order to construct the matrix in the SOA maturity model. This study adapts Kano Model to construct the cross evaluation matrix focused on SOA adoption IT and business benefits. This study found that Kano Model can provide a suitable and appropriate method for constructing the cross evaluation matrix in SOA maturity model. Kano model also can be used to plot, organize and better represent the evaluation dimension for evaluating the SOA adoption.
Stage-structured matrix models for organisms with non-geometric development times
Andrew Birt; Richard M. Feldman; David M. Cairns; Robert N. Coulson; Maria Tchakerian; Weimin Xi; James M. Guldin
2009-01-01
Matrix models have been used to model population growth of organisms for many decades. They are popular because of both their conceptual simplicity and their computational efficiency. For some types of organisms they are relatively accurate in predicting population growth; however, for others the matrix approach does not adequately model...
NASA Astrophysics Data System (ADS)
Wen, Zijuan; Fu, Shengmao
2009-08-01
In this paper, an n-species strongly coupled cooperating diffusive system is considered in a bounded smooth domain, subject to homogeneous Neumann boundary conditions. Employing the method of energy estimates, we obtain some conditions on the diffusion matrix and inter-specific cooperatives to ensure the global existence and uniform boundedness of a nonnegative solution. The globally asymptotical stability of the constant positive steady state is also discussed. As a consequence, all the results hold true for multi-species Lotka-Volterra type competition model and prey-predator model.
Theory-Based Parameterization of Semiotics for Measuring Pre-literacy Development
NASA Astrophysics Data System (ADS)
Bezruczko, N.
2013-09-01
A probabilistic model was applied to problem of measuring pre-literacy in young children. First, semiotic philosophy and contemporary cognition research were conceptually integrated to establish theoretical foundations for rating 14 characteristics of children's drawings and narratives (N = 120). Then ratings were transformed with a Rasch model, which estimated linear item parameter values that accounted for 79 percent of rater variance. Principle Components Analysis of item residual matrix confirmed variance remaining after item calibration was largely unsystematic. Validation analyses found positive correlations between semiotic measures and preschool literacy outcomes. Practical implications of a semiotics dimension for preschool practice were discussed.
Automated side-chain model building and sequence assignment by template matching.
Terwilliger, Thomas C
2003-01-01
An algorithm is described for automated building of side chains in an electron-density map once a main-chain model is built and for alignment of the protein sequence to the map. The procedure is based on a comparison of electron density at the expected side-chain positions with electron-density templates. The templates are constructed from average amino-acid side-chain densities in 574 refined protein structures. For each contiguous segment of main chain, a matrix with entries corresponding to an estimate of the probability that each of the 20 amino acids is located at each position of the main-chain model is obtained. The probability that this segment corresponds to each possible alignment with the sequence of the protein is estimated using a Bayesian approach and high-confidence matches are kept. Once side-chain identities are determined, the most probable rotamer for each side chain is built into the model. The automated procedure has been implemented in the RESOLVE software. Combined with automated main-chain model building, the procedure produces a preliminary model suitable for refinement and extension by an experienced crystallographer.
A review of failure models for unidirectional ceramic matrix composites under monotonic loads
NASA Technical Reports Server (NTRS)
Tripp, David E.; Hemann, John H.; Gyekenyesi, John P.
1989-01-01
Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by trial and error since the emphasis of feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.
Bienvenu, François; Akçay, Erol; Legendre, Stéphane; McCandlish, David M
2017-06-01
Matrix projection models are a central tool in many areas of population biology. In most applications, one starts from the projection matrix to quantify the asymptotic growth rate of the population (the dominant eigenvalue), the stable stage distribution, and the reproductive values (the dominant right and left eigenvectors, respectively). Any primitive projection matrix also has an associated ergodic Markov chain that contains information about the genealogy of the population. In this paper, we show that these facts can be used to specify any matrix population model as a triple consisting of the ergodic Markov matrix, the dominant eigenvalue and one of the corresponding eigenvectors. This decomposition of the projection matrix separates properties associated with lineages from those associated with individuals. It also clarifies the relationships between many quantities commonly used to describe such models, including the relationship between eigenvalue sensitivities and elasticities. We illustrate the utility of such a decomposition by introducing a new method for aggregating classes in a matrix population model to produce a simpler model with a smaller number of classes. Unlike the standard method, our method has the advantage of preserving reproductive values and elasticities. It also has conceptually satisfying properties such as commuting with changes of units. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Heo, Jongbae; Dulger, Muaz; Olson, Michael R.; McGinnis, Jerome E.; Shelton, Brandon R.; Matsunaga, Aiko; Sioutas, Constantinos; Schauer, James J.
2013-07-01
Four hundred fine particulate matter (PM2.5) samples collected over a 1-year period at two sites in the Los Angeles Basin were analyzed for organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC) and organic molecular markers. The results were used in a Positive Matrix Factorization (PMF) receptor model to obtain daily, monthly and annual average source contributions to PM2.5 OC. Results of the PMF model showed similar source categories with comparable year-long contributions to PM2.5 OC across the sites. Five source categories providing reasonably stable profiles were identified: mobile, wood smoke, primary biogenic, and two types of secondary organic carbon (SOC) (i.e., anthropogenic and biogenic emissions). Total primary emission factors and total SOC factors contributed approximately 60% and 40%, respectively, to the annual-average OC concentrations. Primary sources showed strong seasonal patterns with high winter peaks and low summer peaks, while SOC showed a reverse pattern with highs in the spring and summer in the region. Interestingly, smoke from forest fires which occurred episodically in California during the summer and fall of 2009 was identified and combined with the primary biogenic source as one distinct factor to the OC budget. The PMF resolved factors were further investigated and compared to a chemical mass balance (CMB) model and a second multi-variant receptor model (UNMIX) using molecular markers considered in the PMF. Good agreement between the source contribution from mobile sources and biomass burning for three models were obtained, providing additional weight of evidence that these source apportionment techniques are sufficiently accurate for policy development. However, the CMB model did not quantify primary biogenic emissions, which were included in other sources with the SOC. Both multivariate receptor models, the PMF and the UNMIX, were unable to separate source contributions from diesel and gasoline engines.
Expert elicitation, uncertainty, and the value of information in controlling invasive species
Johnson, Fred A.; Smith, Brian J.; Bonneau, Mathieu; Martin, Julien; Romagosa, Christina; Mazzotti, Frank J.; Waddle, J. Hardin; Reed, Robert; Eckles, Jennifer Kettevrlin; Vitt, Laurie J.
2017-01-01
We illustrate the utility of expert elicitation, explicit recognition of uncertainty, and the value of information for directing management and research efforts for invasive species, using tegu lizards (Salvator merianae) in southern Florida as a case study. We posited a post-birth pulse, matrix model in which four age classes of tegus are recognized: hatchlings, 1 year-old, 2 year-olds, and 3 + year-olds. This matrix model was parameterized using a 3-point process to elicit estimates of tegu demographic rates in southern Florida from 10 herpetology experts. We fit statistical distributions for each parameter and for each expert, then drew and pooled a large number of replicate samples from these to form a distribution for each demographic parameter. Using these distributions, as well as the observed correlations among elicited values, we generated a large sample of matrix population models to infer how the tegu population would respond to control efforts. We used the concepts of Pareto efficiency and stochastic dominance to conclude that targeting older age classes at relatively high rates appears to have the best chance of minimizing tegu abundance and control costs. We conclude that expert opinion combined with an explicit consideration of uncertainty can be valuable in conducting an initial assessment of what control strategy, effort, and monetary resources are needed to reduce and eventually eliminate the invader. Scientists, in turn, can use the value of information to focus research in a way that not only increases the efficacy of control, but minimizes costs as well.
A stochastic Markov chain model to describe lung cancer growth and metastasis.
Newton, Paul K; Mason, Jeremy; Bethel, Kelly; Bazhenova, Lyudmila A; Nieva, Jorge; Kuhn, Peter
2012-01-01
A stochastic Markov chain model for metastatic progression is developed for primary lung cancer based on a network construction of metastatic sites with dynamics modeled as an ensemble of random walkers on the network. We calculate a transition matrix, with entries (transition probabilities) interpreted as random variables, and use it to construct a circular bi-directional network of primary and metastatic locations based on postmortem tissue analysis of 3827 autopsies on untreated patients documenting all primary tumor locations and metastatic sites from this population. The resulting 50 potential metastatic sites are connected by directed edges with distributed weightings, where the site connections and weightings are obtained by calculating the entries of an ensemble of transition matrices so that the steady-state distribution obtained from the long-time limit of the Markov chain dynamical system corresponds to the ensemble metastatic distribution obtained from the autopsy data set. We condition our search for a transition matrix on an initial distribution of metastatic tumors obtained from the data set. Through an iterative numerical search procedure, we adjust the entries of a sequence of approximations until a transition matrix with the correct steady-state is found (up to a numerical threshold). Since this constrained linear optimization problem is underdetermined, we characterize the statistical variance of the ensemble of transition matrices calculated using the means and variances of their singular value distributions as a diagnostic tool. We interpret the ensemble averaged transition probabilities as (approximately) normally distributed random variables. The model allows us to simulate and quantify disease progression pathways and timescales of progression from the lung position to other sites and we highlight several key findings based on the model.
Micromechanical Modeling of Woven Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Pindera, Marek-Jerzy
1997-01-01
This report presents the results of an extensive micromechanical modeling effort for woven metal matrix composites. The model is employed to predict the mechanical response of 8-harness (8H) satin weave carbon/copper (C/Cu) composites. Experimental mechanical results for this novel high thermal conductivity material were recently reported by Bednarcyk et al. along with preliminary model results. The micromechanics model developed herein is based on an embedded approach. A micromechanics model for the local (micro-scale) behavior of the woven composite, the original method of cells (Aboudi), is embedded in a global (macro-scale) micromechanics model (the three-dimensional generalized method of cells (GMC-3D) (Aboudi). This approach allows representation of true repeating unit cells for woven metal matrix composites via GMC-3D, and representation of local effects, such as matrix plasticity, yarn porosity, and imperfect fiber-matrix bonding. In addition, the equations of GMC-3D were reformulated to significantly reduce the number of unknown quantities that characterize the deformation fields at the microlevel in order to make possible the analysis of actual microstructures of woven composites. The resulting micromechanical model (WCGMC) provides an intermediate level of geometric representation, versatility, and computational efficiency with respect to previous analytical and numerical models for woven composites, but surpasses all previous modeling work by allowing the mechanical response of a woven metal matrix composite, with an elastoplastic matrix, to be examined for the first time. WCGMC is employed to examine the effects of composite microstructure, porosity, residual stresses, and imperfect fiber-matrix bonding on the predicted mechanical response of 8H satin C/Cu. The previously reported experimental results are summarized, and the model predictions are compared to monotonic and cyclic tensile and shear test data. By considering appropriate levels of porosity, residual stresses, and imperfect fiber-matrix debonding, reasonably good qualitative and quantitative correlation is achieved between model and experiment.
Najafi, Aref; Fontoura, Dulce; Valent, Erik; Goebel, Max; Kardux, Kim; Falcão‐Pires, Inês; van der Velden, Jolanda
2017-01-01
Key points This paper describes a novel model that allows exploration of matrix‐induced cardiomyocyte adaptations independent of the passive effect of matrix rigidity on cardiomyocyte function.Detachment of adult cardiomyocytes from the matrix enables the study of matrix effects on cell shortening, Ca2+ handling and myofilament function.Cell shortening and Ca2+ handling are altered in cardiomyocytes cultured for 24 h on a stiff matrix.Matrix stiffness‐impaired cardiomyocyte contractility is reversed upon normalization of extracellular stiffness.Matrix stiffness‐induced reduction in unloaded shortening is more pronounced in cardiomyocytes isolated from obese ZSF1 rats with heart failure with preserved ejection fraction compared to lean ZSF1 rats. Abstract Extracellular matrix (ECM) stiffening is a key element of cardiac disease. Increased rigidity of the ECM passively inhibits cardiac contraction, but if and how matrix stiffening also actively alters cardiomyocyte contractility is incompletely understood. In vitro models designed to study cardiomyocyte–matrix interaction lack the possibility to separate passive inhibition by a stiff matrix from active matrix‐induced alterations of cardiomyocyte properties. Here we introduce a novel experimental model that allows exploration of cardiomyocyte functional alterations in response to matrix stiffening. Adult rat cardiomyocytes were cultured for 24 h on matrices of tuneable stiffness representing the healthy and the diseased heart and detached from their matrix before functional measurements. We demonstrate that matrix stiffening, independent of passive inhibition, reduces cell shortening and Ca2+ handling but does not alter myofilament‐generated force. Additionally, detachment of adult cultured cardiomyocytes allowed the transfer of cells from one matrix to another. This revealed that stiffness‐induced cardiomyocyte changes are reversed when matrix stiffness is normalized. These matrix stiffness‐induced changes in cardiomyocyte function could not be explained by adaptation in the microtubules. Additionally, cardiomyocytes isolated from stiff hearts of the obese ZSF1 rat model of heart failure with preserved ejection fraction show more pronounced reduction in unloaded shortening in response to matrix stiffening. Taken together, we introduce a method that allows evaluation of the influence of ECM properties on cardiomyocyte function separate from the passive inhibitory component of a stiff matrix. As such, it adds an important and physiologically relevant tool to investigate the functional consequences of cardiomyocyte–matrix interactions. PMID:28485491
NASA Astrophysics Data System (ADS)
Liu, Alan S.; Wang, Hailong; Copeland, Craig R.; Chen, Christopher S.; Shenoy, Vivek B.; Reich, Daniel H.
2016-09-01
The biomechanical behavior of tissues under mechanical stimulation is critically important to physiological function. We report a combined experimental and modeling study of bioengineered 3D smooth muscle microtissues that reveals a previously unappreciated interaction between active cell mechanics and the viscoplastic properties of the extracellular matrix. The microtissues’ response to stretch/unstretch actuations, as probed by microcantilever force sensors, was dominated by cellular actomyosin dynamics. However, cell lysis revealed a viscoplastic response of the underlying model collagen/fibrin matrix. A model coupling Hill-type actomyosin dynamics with a plastic perfectly viscoplastic description of the matrix quantitatively accounts for the microtissue dynamics, including notably the cells’ shielding of the matrix plasticity. Stretch measurements of single cells confirmed the active cell dynamics, and were well described by a single-cell version of our model. These results reveal the need for new focus on matrix plasticity and its interactions with active cell mechanics in describing tissue dynamics.
Liu, Alan S.; Wang, Hailong; Copeland, Craig R.; Chen, Christopher S.; Shenoy, Vivek B.; Reich, Daniel H.
2016-01-01
The biomechanical behavior of tissues under mechanical stimulation is critically important to physiological function. We report a combined experimental and modeling study of bioengineered 3D smooth muscle microtissues that reveals a previously unappreciated interaction between active cell mechanics and the viscoplastic properties of the extracellular matrix. The microtissues’ response to stretch/unstretch actuations, as probed by microcantilever force sensors, was dominated by cellular actomyosin dynamics. However, cell lysis revealed a viscoplastic response of the underlying model collagen/fibrin matrix. A model coupling Hill-type actomyosin dynamics with a plastic perfectly viscoplastic description of the matrix quantitatively accounts for the microtissue dynamics, including notably the cells’ shielding of the matrix plasticity. Stretch measurements of single cells confirmed the active cell dynamics, and were well described by a single-cell version of our model. These results reveal the need for new focus on matrix plasticity and its interactions with active cell mechanics in describing tissue dynamics. PMID:27671239
State-Space System Realization with Input- and Output-Data Correlation
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan
1997-01-01
This paper introduces a general version of the information matrix consisting of the autocorrelation and cross-correlation matrices of the shifted input and output data. Based on the concept of data correlation, a new system realization algorithm is developed to create a model directly from input and output data. The algorithm starts by computing a special type of correlation matrix derived from the information matrix. The special correlation matrix provides information on the system-observability matrix and the state-vector correlation. A system model is then developed from the observability matrix in conjunction with other algebraic manipulations. This approach leads to several different algorithms for computing system matrices for use in representing the system model. The relationship of the new algorithms with other realization algorithms in the time and frequency domains is established with matrix factorization of the information matrix. Several examples are given to illustrate the validity and usefulness of these new algorithms.
Gas chromatography/matrix-isolation apparatus
Reedy, G.T.
1986-06-10
A gas-sample collection device provides matrix isolation of individual gas bands from a gas chromatographic separation and for the spectroscopic analysis of the individual sample bands. The device includes a vacuum chamber containing a rotatably supported, specular carousel having at least one reflecting surface for holding a sample deposited thereon. A gas inlet is provided for depositing a mixture of sample and matrix material on the reflecting surface which is maintained at a sufficiently low temperature to cause solidification. A first parabolic mirror directs an incident beam of electromagnetic radiation, such as in the infrared (IR) spectrum, from a source onto the sample/matrix mixture while a second parabolic mirror directs a second beam of electromagnetic radiation reflected by the specular surface to an IR spectrometer for determining the absorption spectra of the sample material deposited on the reflecting surface. The pair of off-axis parabolic mirrors having a common focal point are positioned outside of the vacuum chamber and may be displaced in combination for improved beam positioning and alignment. The carousel is provided with an aperture for each reflecting surface to facilitate accurate positioning of the incident beam relative to the gas-samples under analysis. Improved gas-sample deposition is insured by the use of a long focal length stereomicroscope positioned outside of the vacuum chamber for monitoring sample formation through a window, while the sample collector is positioned outside of the zone bounded by the incident and reflected electromagnetic beams for improved sample access and monitoring. 10 figs.
Gas chromatography/matrix-isolation apparatus
Reedy, Gerald T.
1986-01-01
A gas-sample collection device provides matrix isolation of individual gas bands from a gas chromatographic separation and for the spectroscopic analysis of the individual sample bands. The device includes a vacuum chamber containing a rotatably supported, specular carousel having at least one reflecting surface for holding a sample deposited thereon. A gas inlet is provided for depositing a mixture of sample and matrix material on the reflecting surface which is maintained at a sufficiently low temperature to cause solidification. A first parabolic mirror directs an incident beam of electromagnetic radiation, such as in the infrared (IR) spectrum, from a source onto the sample/matrix mixture while a second parabolic mirror directs a second beam of electromagnetic radiation reflected by the specular surface to an IR spectrometer for determining the absorption spectra of the sample material deposited on the reflecting surface. The pair of off-axis parabolic mirrors having a common focal point are positioned outside of the vacuum chamber and may be displaced in combination for improved beam positioning and alignment. The carousel is provided with an aperture for each reflecting surface to facilitate accurate positioning of the incident beam relative to the gas-samples under analysis. Improved gas-sample deposition is insured by the use of a long focal length stereomicroscope positioned outside of the vacuum chamber for monitoring sample formation through a window, while the sample collector is positioned outside of the zone bounded by the incident and reflected electromagnetic beams for improved sample access and monitoring.
Fusion-based multi-target tracking and localization for intelligent surveillance systems
NASA Astrophysics Data System (ADS)
Rababaah, Haroun; Shirkhodaie, Amir
2008-04-01
In this paper, we have presented two approaches addressing visual target tracking and localization in complex urban environment. The two techniques presented in this paper are: fusion-based multi-target visual tracking, and multi-target localization via camera calibration. For multi-target tracking, the data fusion concepts of hypothesis generation/evaluation/selection, target-to-target registration, and association are employed. An association matrix is implemented using RGB histograms for associated tracking of multi-targets of interests. Motion segmentation of targets of interest (TOI) from the background was achieved by a Gaussian Mixture Model. Foreground segmentation, on other hand, was achieved by the Connected Components Analysis (CCA) technique. The tracking of individual targets was estimated by fusing two sources of information, the centroid with the spatial gating, and the RGB histogram association matrix. The localization problem is addressed through an effective camera calibration technique using edge modeling for grid mapping (EMGM). A two-stage image pixel to world coordinates mapping technique is introduced that performs coarse and fine location estimation of moving TOIs. In coarse estimation, an approximate neighborhood of the target position is estimated based on nearest 4-neighbor method, and in fine estimation, we use Euclidean interpolation to localize the position within the estimated four neighbors. Both techniques were tested and shown reliable results for tracking and localization of Targets of interests in complex urban environment.
Structure of the two-neutrino double-β decay matrix elements within perturbation theory
NASA Astrophysics Data System (ADS)
Štefánik, Dušan; Šimkovic, Fedor; Faessler, Amand
2015-06-01
The two-neutrino double-β Gamow-Teller and Fermi transitions are studied within an exactly solvable model, which allows a violation of both spin-isospin SU(4) and isospin SU(2) symmetries, and is expressed with generators of the SO(8) group. It is found that this model reproduces the main features of realistic calculation within the quasiparticle random-phase approximation with isospin symmetry restoration concerning the dependence of the two-neutrino double-β decay matrix elements on isovector and isoscalar particle-particle interactions. By using perturbation theory an explicit dependence of the two-neutrino double-β decay matrix elements on the like-nucleon pairing, particle-particle T =0 and T =1 , and particle-hole proton-neutron interactions is obtained. It is found that double-β decay matrix elements do not depend on the mean field part of Hamiltonian and that they are governed by a weak violation of both SU(2) and SU(4) symmetries by the particle-particle interaction of Hamiltonian. It is pointed out that there is a dominance of two-neutrino double-β decay transition through a single state of intermediate nucleus. The energy position of this state relative to energies of initial and final ground states is given by a combination of strengths of residual interactions. Further, energy-weighted Fermi and Gamow-Teller sum rules connecting Δ Z =2 nuclei are discussed. It is proposed that these sum rules can be used to study the residual interactions of the nuclear Hamiltonian, which are relevant for charge-changing nuclear transitions.
The Impact of Goal Setting and Empowerment on Governmental Matrix Organizations
1993-09-01
shared. In a study of matrix management, Eduardo Vasconcellos further describes various matrix structures in the Galbraith model. In a functional...Technology/LAR, Wright-Patterson AFB OH, 1992. Vasconcellos , Eduardo . "A Model For a Better Understanding of the Matrix Structure," IEEE Transactions on...project matrix, the project manager maintains more influence and the structure lies to the right-of center ( Vasconcellos , 1979:58). Different Types of
Efficient system modeling for a small animal PET scanner with tapered DOI detectors.
Zhang, Mengxi; Zhou, Jian; Yang, Yongfeng; Rodríguez-Villafuerte, Mercedes; Qi, Jinyi
2016-01-21
A prototype small animal positron emission tomography (PET) scanner for mouse brain imaging has been developed at UC Davis. The new scanner uses tapered detector arrays with depth of interaction (DOI) measurement. In this paper, we present an efficient system model for the tapered PET scanner using matrix factorization and a virtual scanner geometry. The factored system matrix mainly consists of two components: a sinogram blurring matrix and a geometrical matrix. The geometric matrix is based on a virtual scanner geometry. The sinogram blurring matrix is estimated by matrix factorization. We investigate the performance of different virtual scanner geometries. Both simulation study and real data experiments are performed in the fully 3D mode to study the image quality under different system models. The results indicate that the proposed matrix factorization can maintain image quality while substantially reduce the image reconstruction time and system matrix storage cost. The proposed method can be also applied to other PET scanners with DOI measurement.
A Model for Physician Leadership Development and Succession Planning.
Dubinsky, Isser; Feerasta, Nadia; Lash, Rick
2015-01-01
Although the presence of physicians in formal leadership positions has often been limited to roles of department chiefs, MAC chairs, etc., a growing number of organizations are recruiting physicians to other leadership positions (e.g., VP, CEO) where their involvement is being genuinely sought and valued. While physicians have traditionally risen to leadership positions based on clinical excellence or on a rotational basis, truly effective physician leadership that includes competencies such as strategic planning, budgeting, mentoring, network development, etc., is essential to support organizational goals, improve performance and overall efficiency as well as ensuring the quality of care. In this context, the authors have developed a physician leader development and succession planning matrix and supporting toolkit to assist hospitals in identifying and nurturing the next generation of physician leaders.
NASA Astrophysics Data System (ADS)
Chen, Yongli; Gao, Dan; Bai, Hangrui; Liu, Hongxia; Lin, Shuo; Jiang, Yuyang
2016-07-01
Application of matrix-assisted laser-desorption/ionization mass spectrometry (MALDI MS) to analyze small molecules have some limitations, due to the inhomogeneous analyte/matrix co-crystallization and interference of matrix-related peaks in low m/z region. In this work, carbon dots (CDs) were for the first time applied as a binary matrix with 9-Aminoacridine (9AA) in MALDI MS for small molecules analysis. By 9AA/CDs assisted desorption/ionization (D/I) process, a wide range of small molecules, including nucleosides, amino acids, oligosaccharides, peptides, and anticancer drugs with a higher sensitivity were demonstrated in the positive ion mode. A detection limit down to 5 fmol was achieved for cytidine. 9AA/CDs matrix also exhibited excellent reproducibility compared with 9AA matrix. Moreover, by exploring the ionization mechanism of the matrix, the influence factors might be attributed to the four parts: (1) the strong UV absorption of 9AA/CDs due to their π-conjugated network; (2) the carboxyl groups modified on the CDs surface act as protonation sites for proton transfer in positive ion mode; (3) the thin layer crystal of 9AA/CDs could reach a high surface temperature more easily and lower transfer energy for LDI MS; (4) CDs could serve as a matrix additive to suppress 9AA ionization. Furthermore, this matrix was allowed for the analysis of glucose as well as nucleosides in human urine, and the level of cytidine was quantified with a linear range of 0.05-5 mM (R2 > 0.99). Therefore, the 9AA/CDs matrix was proven to be an effective MALDI matrix for the analysis of small molecules with improved sensitivity and reproducibility. This work provides an alternative solution for small molecules detection that can be further used in complex samples analysis.
van Deel, Elza D; Najafi, Aref; Fontoura, Dulce; Valent, Erik; Goebel, Max; Kardux, Kim; Falcão-Pires, Inês; van der Velden, Jolanda
2017-07-15
This paper describes a novel model that allows exploration of matrix-induced cardiomyocyte adaptations independent of the passive effect of matrix rigidity on cardiomyocyte function. Detachment of adult cardiomyocytes from the matrix enables the study of matrix effects on cell shortening, Ca 2+ handling and myofilament function. Cell shortening and Ca 2+ handling are altered in cardiomyocytes cultured for 24 h on a stiff matrix. Matrix stiffness-impaired cardiomyocyte contractility is reversed upon normalization of extracellular stiffness. Matrix stiffness-induced reduction in unloaded shortening is more pronounced in cardiomyocytes isolated from obese ZSF1 rats with heart failure with preserved ejection fraction compared to lean ZSF1 rats. Extracellular matrix (ECM) stiffening is a key element of cardiac disease. Increased rigidity of the ECM passively inhibits cardiac contraction, but if and how matrix stiffening also actively alters cardiomyocyte contractility is incompletely understood. In vitro models designed to study cardiomyocyte-matrix interaction lack the possibility to separate passive inhibition by a stiff matrix from active matrix-induced alterations of cardiomyocyte properties. Here we introduce a novel experimental model that allows exploration of cardiomyocyte functional alterations in response to matrix stiffening. Adult rat cardiomyocytes were cultured for 24 h on matrices of tuneable stiffness representing the healthy and the diseased heart and detached from their matrix before functional measurements. We demonstrate that matrix stiffening, independent of passive inhibition, reduces cell shortening and Ca 2+ handling but does not alter myofilament-generated force. Additionally, detachment of adult cultured cardiomyocytes allowed the transfer of cells from one matrix to another. This revealed that stiffness-induced cardiomyocyte changes are reversed when matrix stiffness is normalized. These matrix stiffness-induced changes in cardiomyocyte function could not be explained by adaptation in the microtubules. Additionally, cardiomyocytes isolated from stiff hearts of the obese ZSF1 rat model of heart failure with preserved ejection fraction show more pronounced reduction in unloaded shortening in response to matrix stiffening. Taken together, we introduce a method that allows evaluation of the influence of ECM properties on cardiomyocyte function separate from the passive inhibitory component of a stiff matrix. As such, it adds an important and physiologically relevant tool to investigate the functional consequences of cardiomyocyte-matrix interactions. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Matrix approach to land carbon cycle modeling: A case study with the Community Land Model.
Huang, Yuanyuan; Lu, Xingjie; Shi, Zheng; Lawrence, David; Koven, Charles D; Xia, Jianyang; Du, Zhenggang; Kluzek, Erik; Luo, Yiqi
2018-03-01
The terrestrial carbon (C) cycle has been commonly represented by a series of C balance equations to track C influxes into and effluxes out of individual pools in earth system models (ESMs). This representation matches our understanding of C cycle processes well but makes it difficult to track model behaviors. It is also computationally expensive, limiting the ability to conduct comprehensive parametric sensitivity analyses. To overcome these challenges, we have developed a matrix approach, which reorganizes the C balance equations in the original ESM into one matrix equation without changing any modeled C cycle processes and mechanisms. We applied the matrix approach to the Community Land Model (CLM4.5) with vertically-resolved biogeochemistry. The matrix equation exactly reproduces litter and soil organic carbon (SOC) dynamics of the standard CLM4.5 across different spatial-temporal scales. The matrix approach enables effective diagnosis of system properties such as C residence time and attribution of global change impacts to relevant processes. We illustrated, for example, the impacts of CO 2 fertilization on litter and SOC dynamics can be easily decomposed into the relative contributions from C input, allocation of external C into different C pools, nitrogen regulation, altered soil environmental conditions, and vertical mixing along the soil profile. In addition, the matrix tool can accelerate model spin-up, permit thorough parametric sensitivity tests, enable pool-based data assimilation, and facilitate tracking and benchmarking of model behaviors. Overall, the matrix approach can make a broad range of future modeling activities more efficient and effective. © 2017 John Wiley & Sons Ltd.
Chen, Lei; Johnston, Joseph A; Kinon, Bruce J; Stauffer, Virginia; Succop, Paul; Marques, Tiago R; Ascher-Svanum, Haya
2013-11-28
Schizophrenia is a highly heterogeneous disorder with positive and negative symptoms being characteristic manifestations of the disease. While these two symptom domains are usually construed as distinct and orthogonal, little is known about the longitudinal pattern of negative symptoms and their linkage with the positive symptoms. This study assessed the temporal interplay between these two symptom domains and evaluated whether the improvements in these symptoms were inversely correlated or independent with each other. This post hoc analysis used data from a multicenter, randomized, open-label, 1-year pragmatic trial of patients with schizophrenia spectrum disorder who were treated with first- and second-generation antipsychotics in the usual clinical settings. Data from all treatment groups were pooled resulting in 399 patients with complete data on both the negative and positive subscale scores from the Positive and Negative Syndrome Scale (PANSS). Individual-based growth mixture modeling combined with interplay matrix was used to identify the latent trajectory patterns in terms of both the negative and positive symptoms. Pearson correlation coefficients were calculated to examine the relationship between the changes of these two symptom domains within each combined trajectory pattern. We identified four distinct negative symptom trajectories and three positive symptom trajectories. The trajectory matrix formed 11 combined trajectory patterns, which evidenced that negative and positive symptom trajectories moved generally in parallel. Correlation coefficients for changes in negative and positive symptom subscale scores were positive and statistically significant (P < 0.05). Overall, the combined trajectories indicated three major distinct patterns: (1) dramatic and sustained early improvement in both negative and positive symptoms (n = 70, 18%), (2) mild and sustained improvement in negative and positive symptoms (n = 237, 59%), and (3) no improvement in either negative or positive symptoms (n = 82, 21%). This study of symptom trajectories over 1 year shows that changes in negative and positive symptoms were neither inversely nor independently related with each other. The positive association between these two symptom domains supports the notion that different symptom domains in schizophrenia may depend on each other through a unified upstream pathological disease process.
Li, Hongxia; Tyndale, Sélène T; Heath, Daniel D; Letcher, Robert J
2005-02-25
A novel method was developed for the combined determination of carotenoids and retinoids in fish eggs, which incorporates prior analyte isolation using liquid-liquid partitioning to minimize analyte degradation, and fraction analysis using high-performance liquid chromatography-electrospray (positive)-quadrupole mass spectrometry (LC-ESI(+)-MS; SIM or MRM modes). Eggs from Chinook salmon (Oncorhynchus tshawytscha) were used as the model fish egg matrix. The methodology was assessed and validated for beta-carotene, lutein, zeaxanthin, and beta-cryptoxanthin (molecular ion radicals [M](+)), canthaxanthin and astaxanthin ([M+Na](+) adducts) and all-trans-retinol ([(M+H)-H(2)O](+)). Using replicate egg samples (n=5) spiked with beta-cryptoxanthin and beta-carotene before and after extraction, matrix-sourced ESI(+) enhancement was observed as evidenced by comparable %matrix effect and %process efficiency values for beta-cryptoxanthin and beta-carotene of 114-119%. In aquaculture-raised eggs from adult Chinook salmon astaxanthin, all-trans-retinol, lutein and canthaxanthin were identified and determined at concentrations of 4.12, 1.06, 0.12 and 0.45 microg/g (egg wet weight), respectively. To our knowledge, this is the first report on a method for LC-MS determination of carotenoids and retinoids in a fish egg matrix, and the first carotenoid-specific determination in any fish egg sample.
Continued-fraction representation of the Kraus map for non-Markovian reservoir damping
NASA Astrophysics Data System (ADS)
van Wonderen, A. J.; Suttorp, L. G.
2018-04-01
Quantum dissipation is studied for a discrete system that linearly interacts with a reservoir of harmonic oscillators at thermal equilibrium. Initial correlations between system and reservoir are assumed to be absent. The dissipative dynamics as determined by the unitary evolution of system and reservoir is described by a Kraus map consisting of an infinite number of matrices. For all Laplace-transformed Kraus matrices exact solutions are constructed in terms of continued fractions that depend on the pair correlation functions of the reservoir. By performing factorizations in the Kraus map a perturbation theory is set up that conserves in arbitrary perturbative order both positivity and probability of the density matrix. The latter is determined by an integral equation for a bitemporal matrix and a finite hierarchy for Kraus matrices. In the lowest perturbative order this hierarchy reduces to one equation for one Kraus matrix. Its solution is given by a continued fraction of a much simpler structure as compared to the non-perturbative case. In the lowest perturbative order our non-Markovian evolution equations are applied to the damped Jaynes–Cummings model. From the solution for the atomic density matrix it is found that the atom may remain in the state of maximum entropy for a significant time span that depends on the initial energy of the radiation field.
Djafarzadeh, Roghieh; Conrad, Claudius; Notohamiprodjo, Susan; Hipp, Stephanie; Niess, Hanno; Bruns, Christiane J; Nelson, Peter J
2014-01-01
The balance between matrix metalloproteinases and their endogenous tissue inhibitors (TIMPs) is an important component in effective wound healing. The biologic action of these proteins is linked in part to the stoichiometry of TIMP/matrix metalloproteinases/surface protein interactions. We recently described the effect of a glycosylphosphatidylinositol (GPI) anchored version of TIMP-1 on dermal fibroblast biology. Here, cell proliferation assays, in vitro wound healing, electrical wound, and impedance measurements were used to characterize effects of TIMP-1-GPI treatment on primary human epidermal keratinocytes. TIMP-1-GPI stimulated keratinocyte proliferation, as well as mobilization and migration. In parallel, it suppressed the migration and matrix secretion of dermal myofibroblasts, and reduced their secretion of active TGF-β1. Topical application of TIMP-1-GPI in an in vivo excisional wound model increased the rate of wound healing. The agent positively influenced different aspects of wound healing depending on the cell type studied. TIMP-1-GPI counters potential negative effects of overactive myofibroblasts and enhances the mobilization and proliferation of keratinocytes essential for effective wound healing. The application of TIMP-1-GPI represents a novel and practical clinical solution for facilitating healing of difficult wounds. © 2014 by the Wound Healing Society.
Endothelial MMP-9 drives the inflammatory response in abdominal aortic aneurysm (AAA).
Ramella, Martina; Boccafoschi, Francesca; Bellofatto, Kevin; Md, Antonia Follenzi; Fusaro, Luca; Boldorini, Renzo; Casella, Francesco; Porta, Carla; Settembrini, Piergiorgio; Cannas, Mario
2017-01-01
Progression of abdominal aortic aneurysm (AAA) is typified by chronic inflammation and extracellular matrix (ECM) degradation of the aortic wall. Vascular inflammation involves complex interactions among inflammatory cells, endothelial cells (ECs), vascular smooth muscle cells (vSMCs), and ECM. Although vascular endothelium and medial neoangiogenesis play a key role in AAA, the molecular mechanisms underlying their involvement are only partially understood. In AAA biopsies, we found increased MMP-9, IL-6, and monocyte chemoattractant protein-1 (MCP-1), which correlated with massive medial neo-angiogenesis (C4d positive staining). In this study, we developed an in vitro model in order to characterize the role of endothelial matrix metalloproteinase-9 (e-MMP-9) as a potential trigger of medial disruption and in the inflammatory response bridging between ECs and vSMC. Lentiviral-mediated silencing of e-MMP-9 through RNA interference inhibited TNF-alpha-mediated activation of NF-κB in EA.hy926 human endothelial cells. In addition, EA.hy926 cells void of MMP-9 failed to migrate in a 3D matrix. Moreover, silenced EA.hy926 affected vSMC behavior in terms of matrix remodeling. In fact, also MMP-9 in vSMC resulted inhibited when endothelial MMP-9 was suppressed.
Wright, Maynard K.
1989-01-01
A fuel cell having an electrolyte control volume includes a pair of porous opposed electrodes. A maxtrix is positioned between the pair of electrodes for containing an electrolyte. A first layer of backing paper is positioned adjacent to one of the electrodes. A portion of the paper is substantially previous to the acceptance of the electrolyte so as to absorb electrolyte when there is an excess in the matrix and to desorb electrolyte when there is a shortage in the matrix. A second layer of backing paper is positioned adjacent to the first layer of paper and is substantially impervious to the acceptance of electrolyte.
Local stresses in metal matrix composites subjected to thermal and mechanical loading
NASA Technical Reports Server (NTRS)
Highsmith, Alton L.; Shin, Donghee; Naik, Rajiv A.
1990-01-01
An elasticity solution has been used to analyze matrix stresses near the fiber/matrix interface in continuous fiber-reinforced metal-matrix composites, modeling the micromechanics in question in terms of a cylindrical fiber and cylindrical matrix sheath which is embedded in an orthotropic medium representing the composite. The model's predictions for lamina thermal and mechanical properties are applied to a laminate analysis determining ply-level stresses due to thermomechanical loading. A comparison is made between these results, which assume cylindrical symmetry, and the predictions yielded by a FEM model in which the fibers are arranged in a square array.
Comparison Of Models Of Metal-Matrix Composites
NASA Technical Reports Server (NTRS)
Bigelow, C. A.; Johnson, W. S.; Naik, R. A.
1994-01-01
Report presents comparative review of four mathematical models of micromechanical behaviors of fiber/metal-matrix composite materials. Models differ in various details, all based on properties of fiber and matrix constituent materials, all involve square arrays of fibers continuous and parallel and all assume complete bonding between constituents. Computer programs implementing models used to predict properties and stress-vs.-strain behaviors of unidirectional- and cross-ply laminated composites made of boron fibers in aluminum matrices and silicon carbide fibers in titanium matrices. Stresses in fiber and matrix constituent materials also predicted.
Unified continuum damage model for matrix cracking in composite rotor blades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollayi, Hemaraju; Harursampath, Dineshkumar
This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system undermore » various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.« less
Apparent mass matrix of standing subjects exposed to multi-axial whole-body vibration.
Tarabini, Marco; Solbiati, Stefano; Saggin, Bortolino; Scaccabarozzi, Diego
2016-08-01
This paper describes the experimental characterisation of the apparent mass matrix of eight male subjects in standing position and the identification of nonlinearities under both mono-axial and dual-axis whole-body vibration. The nonlinear behaviour of the response was studied using the conditioned response techniques considering models of increasing complexity. Results showed that the cross-axis terms are comparable to the diagonal terms. The contribution of the nonlinear effects are minor and can be endorsed to the change of modal parameters during the tests. The nonlinearity generated by the vibration magnitude is more evident in the subject response, since magnitude-dependent effects in the population are overlaid by the scatter in the subjects' biometric data. The biodynamic response is influenced by the addition of a secondary vibration axis and, in case of dual-axis vibrations, the overall magnitude has a marginal contribution. Practitioner Summary: We have measured both the diagonal and cross-axis elements of the apparent mass matrix. The effect of nonlinearities and the simultaneous presence of vibration along two axes are smaller than the inter-subject variability.
The wasteland of random supergravities
NASA Astrophysics Data System (ADS)
Marsh, David; McAllister, Liam; Wrase, Timm
2012-03-01
We show that in a general {N} = {1} supergravity with N ≫ 1 scalar fields, an exponentially small fraction of the de Sitter critical points are metastable vacua. Taking the superpotential and Kähler potential to be random functions, we construct a random matrix model for the Hessian matrix, which is well-approximated by the sum of a Wigner matrix and two Wishart matrices. We compute the eigenvalue spectrum analytically from the free convolution of the constituent spectra and find that in typical configurations, a significant fraction of the eigenvalues are negative. Building on the Tracy-Widom law governing fluctuations of extreme eigenvalues, we determine the probability P of a large fluctuation in which all the eigenvalues become positive. Strong eigenvalue repulsion makes this extremely unlikely: we find P ∝ exp(- c N p ), with c, p being constants. For generic critical points we find p ≈ 1 .5, while for approximately-supersymmetric critical points, p ≈ 1 .3. Our results have significant implications for the counting of de Sitter vacua in string theory, but the number of vacua remains vast.
Information of group-correlations in Korean financial market
NASA Astrophysics Data System (ADS)
Choi, Jaewon; Lim, Gyuchang; Kim, Soo Yong; Kim, Kyungsik
2011-01-01
We study two sides of the KOSPI, classified as an emerging market. First, the evolutionary property is examined in terms of overlapping matrix and survival ratios. To this end, we apply the random matrix theory (RMT) and the one-factor model to analyzing correlation matrix and finding business clusters. Second, we examine the relations between the market capitalization and the business. For the well-developed markets such as NYSE, the contribution of the firms to the second-largest eigenvector shows an exponential function of the market capitalizations while no clue is observed for the KOSPI. We confirm that the market capitalization is distributed in a power-law with the exponent 1.2 like a Pareto's distribution. Particulary, the KOSPI shows a different behavior compared to the mature market, that is, one or two companies lead a number of companies with the little money and big companies competed to win each other. The clusters also represent by largest eigenstates show a weak affiliation compared to smaller ones. These results imply that the KOSPI is the target for the short-positioned investors.
NASA Astrophysics Data System (ADS)
Moraes Rêgo, Patrícia Helena; Viana da Fonseca Neto, João; Ferreira, Ernesto M.
2015-08-01
The main focus of this article is to present a proposal to solve, via UDUT factorisation, the convergence and numerical stability problems that are related to the covariance matrix ill-conditioning of the recursive least squares (RLS) approach for online approximations of the algebraic Riccati equation (ARE) solution associated with the discrete linear quadratic regulator (DLQR) problem formulated in the actor-critic reinforcement learning and approximate dynamic programming context. The parameterisations of the Bellman equation, utility function and dynamic system as well as the algebra of Kronecker product assemble a framework for the solution of the DLQR problem. The condition number and the positivity parameter of the covariance matrix are associated with statistical metrics for evaluating the approximation performance of the ARE solution via RLS-based estimators. The performance of RLS approximators is also evaluated in terms of consistence and polarisation when associated with reinforcement learning methods. The used methodology contemplates realisations of online designs for DLQR controllers that is evaluated in a multivariable dynamic system model.
Neutron diffraction measurements and modeling of residual strains in metal matrix composites
NASA Technical Reports Server (NTRS)
Saigal, A.; Leisk, G. G.; Hubbard, C. R.; Misture, S. T.; Wang, X. L.
1996-01-01
Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.
Silva-Santiago, Evangelina; Pardo, Juan Pablo; Hernández-Muñoz, Rolando; Aranda-Anzaldo, Armando
2017-01-15
During the interphase the nuclear DNA of metazoan cells is organized in supercoiled loops anchored to constituents of a nuclear substructure or compartment known as the nuclear matrix. The stable interactions between DNA and the nuclear matrix (NM) correspond to a set of topological relationships that define a nuclear higher-order structure (NHOS). Current evidence suggests that the NHOS is cell-type-specific. Biophysical evidence and theoretical models suggest that thermodynamic and structural constraints drive the actualization of DNA-NM interactions. However, if the topological relationships between DNA and the NM were the subject of any biological constraint with functional significance then they must be adaptive and thus be positively selected by natural selection and they should be reasonably conserved, at least within closely related species. We carried out a coarse-grained, comparative evaluation of the DNA-NM topological relationships in primary hepatocytes from two closely related mammals: rat and mouse, by determining the relative position to the NM of a limited set of target sequences corresponding to highly-conserved genomic regions that also represent a sample of distinct chromosome territories within the interphase nucleus. Our results indicate that the pattern of topological relationships between DNA and the NM is not conserved between the hepatocytes of the two closely related species, suggesting that the NHOS, like the karyotype, is species-specific. Copyright © 2016 Elsevier B.V. All rights reserved.
A Flight Dynamics Model for a Multi-Actuated Flexible Rocket Vehicle
NASA Technical Reports Server (NTRS)
Orr, Jeb S.
2011-01-01
A comprehensive set of motion equations for a multi-actuated flight vehicle is presented. The dynamics are derived from a vector approach that generalizes the classical linear perturbation equations for flexible launch vehicles into a coupled three-dimensional model. The effects of nozzle and aerosurface inertial coupling, sloshing propellant, and elasticity are incorporated without restrictions on the position, orientation, or number of model elements. The present formulation is well suited to matrix implementation for large-scale linear stability and sensitivity analysis and is also shown to be extensible to nonlinear time-domain simulation through the application of a special form of Lagrange s equations in quasi-coordinates. The model is validated through frequency-domain response comparison with a high-fidelity planar implementation.
Micro-mechanics modelling of smart materials
NASA Astrophysics Data System (ADS)
Shah, Syed Asim Ali
Metal Matrix ceramic-reinforced composites are rapidly becoming strong candidates as structural materials for many high temperature and engineering applications. Metal matrix composites (MMC) combine the ductile properties of the matrix with a brittle phase of the reinforcement, leading to high stiffness and strength with a reduction in structural weight. The main objective of using a metal matrix composite system is to increase service temperature or improve specific mechanical properties of structural components by replacing existing super alloys.The purpose of the study is to investigate, develop and implement second phase reinforcement alloy strengthening empirical model with SiCp reinforced A359 aluminium alloy composites on the particle-matrix interface and the overall mechanical properties of the material.To predict the interfacial fracture strength of aluminium, in the presence of silicon segregation, an empirical model has been modified. This model considers the interfacial energy caused by segregation of impurities at the interface and uses Griffith crack type arguments to predict the formation energies of impurities at the interface. Based on this, model simulations were conducted at nano scale specifically at the interface and the interfacial strengthening behaviour of reinforced aluminium alloy system was expressed in terms of elastic modulus.The numerical model shows success in making prediction possible of trends in relation to segregation and interfacial fracture strength behaviour in SiC particle-reinforced aluminium matrix composites. The simulation models using various micro scale modelling techniques to the aluminum alloy matrix composite, strengthenedwith varying amounts of silicon carbide particulate were done to predict the material state at critical points with properties of Al-SiC which had been heat treated.In this study an algorithm is developed to model a hard ceramic particle in a soft matrix with a clear distinct interface and a strain based relationship has been proposed for the strengthening behaviour of the MMC at the interface rather than stress based, by successfully completing the numerical modelling of particulate reinforced metal matrix composites.
Application of mathematical modeling in sustained release delivery systems.
Grassi, Mario; Grassi, Gabriele
2014-08-01
This review, presenting as starting point the concept of the mathematical modeling, is aimed at the physical and mathematical description of the most important mechanisms regulating drug delivery from matrix systems. The precise knowledge of the delivery mechanisms allows us to set up powerful mathematical models which, in turn, are essential for the design and optimization of appropriate drug delivery systems. The fundamental mechanisms for drug delivery from matrices are represented by drug diffusion, matrix swelling, matrix erosion, drug dissolution with possible recrystallization (e.g., as in the case of amorphous and nanocrystalline drugs), initial drug distribution inside the matrix, matrix geometry, matrix size distribution (in the case of spherical matrices of different diameter) and osmotic pressure. Depending on matrix characteristics, the above-reported variables may play a different role in drug delivery; thus the mathematical model needs to be built solely on the most relevant mechanisms of the particular matrix considered. Despite the somewhat diffident behavior of the industrial world, in the light of the most recent findings, we believe that mathematical modeling may have a tremendous potential impact in the pharmaceutical field. We do believe that mathematical modeling will be more and more important in the future especially in the light of the rapid advent of personalized medicine, a novel therapeutic approach intended to treat each single patient instead of the 'average' patient.
BIPAD: A web server for modeling bipartite sequence elements
Bi, Chengpeng; Rogan, Peter K
2006-01-01
Background Many dimeric protein complexes bind cooperatively to families of bipartite nucleic acid sequence elements, which consist of pairs of conserved half-site sequences separated by intervening distances that vary among individual sites. Results We introduce the Bipad Server [1], a web interface to predict sequence elements embedded within unaligned sequences. Either a bipartite model, consisting of a pair of one-block position weight matrices (PWM's) with a gap distribution, or a single PWM matrix for contiguous single block motifs may be produced. The Bipad program performs multiple local alignment by entropy minimization and cyclic refinement using a stochastic greedy search strategy. The best models are refined by maximizing incremental information contents among a set of potential models with varying half site and gap lengths. Conclusion The web service generates information positional weight matrices, identifies binding site motifs, graphically represents the set of discovered elements as a sequence logo, and depicts the gap distribution as a histogram. Server performance was evaluated by generating a collection of bipartite models for distinct DNA binding proteins. PMID:16503993
NASA Astrophysics Data System (ADS)
Sturtz, Timothy M.
Source apportionment models attempt to untangle the relationship between pollution sources and the impacts at downwind receptors. Two frameworks of source apportionment models exist: source-oriented and receptor-oriented. Source based apportionment models use presumed emissions and atmospheric processes to estimate the downwind source contributions. Conversely, receptor based models leverage speciated concentration data from downwind receptors and apply statistical methods to predict source contributions. Integration of both source-oriented and receptor-oriented models could lead to a better understanding of the implications sources have on the environment and society. The research presented here investigated three different types of constraints applied to the Positive Matrix Factorization (PMF) receptor model within the framework of the Multilinear Engine (ME-2): element ratio constraints, spatial separation constraints, and chemical transport model (CTM) source attribution constraints. PM10-2.5 mass and trace element concentrations were measured in Winston-Salem, Chicago, and St. Paul at up to 60 sites per city during two different seasons in 2010. PMF was used to explore the underlying sources of variability. Information on previously reported PM10-2.5 tire and brake wear profiles were used to constrain these features in PMF by prior specification of selected species ratios. We also modified PMF to allow for combining the measurements from all three cities into a single model while preserving city-specific soil features. Relatively minor differences were observed between model predictions with and without the prior ratio constraints, increasing confidence in our ability to identify separate brake wear and tire wear features. Using separate data, source contributions to total fine particle carbon predicted by a CTM were incorporated into the PMF receptor model to form a receptor-oriented hybrid model. The level of influence of the CTM versus traditional PMF was varied using a weighting parameter applied to an object function as implemented in ME-2. The resulting hybrid model was used to quantify the contributions of total carbon from both wildfires and biogenic sources at two Interagency Monitoring of Protected Visual Environment monitoring sites, Monture and Sula Peak, Montana, from 2006 through 2008.
Chen, Peng; Yang, Yixin; Wang, Yong; Ma, Yuanliang
2018-05-08
When sensor position errors exist, the performance of recently proposed interference-plus-noise covariance matrix (INCM)-based adaptive beamformers may be severely degraded. In this paper, we propose a weighted subspace fitting-based INCM reconstruction algorithm to overcome sensor displacement for linear arrays. By estimating the rough signal directions, we construct a novel possible mismatched steering vector (SV) set. We analyze the proximity of the signal subspace from the sample covariance matrix (SCM) and the space spanned by the possible mismatched SV set. After solving an iterative optimization problem, we reconstruct the INCM using the estimated sensor position errors. Then we estimate the SV of the desired signal by solving an optimization problem with the reconstructed INCM. The main advantage of the proposed algorithm is its robustness against SV mismatches dominated by unknown sensor position errors. Numerical examples show that even if the position errors are up to half of the assumed sensor spacing, the output signal-to-interference-plus-noise ratio is only reduced by 4 dB. Beam patterns plotted using experiment data show that the interference suppression capability of the proposed beamformer outperforms other tested beamformers.
Accuracy limitations of hyperbolic multilateration systems
DOT National Transportation Integrated Search
1973-03-22
The report is an analysis of the accuracy limitations of hyperbolic multilateration systems. A central result is a demonstration that the inverse of the covariance matrix for positional errors corresponds to the moment of inertia matrix of a simple m...
Nonlinear Penalized Estimation of True Q-Matrix in Cognitive Diagnostic Models
ERIC Educational Resources Information Center
Xiang, Rui
2013-01-01
A key issue of cognitive diagnostic models (CDMs) is the correct identification of Q-matrix which indicates the relationship between attributes and test items. Previous CDMs typically assumed a known Q-matrix provided by domain experts such as those who developed the questions. However, misspecifications of Q-matrix had been discovered in the past…
Assessing Fit of Item Response Models Using the Information Matrix Test
ERIC Educational Resources Information Center
Ranger, Jochen; Kuhn, Jorg-Tobias
2012-01-01
The information matrix can equivalently be determined via the expectation of the Hessian matrix or the expectation of the outer product of the score vector. The identity of these two matrices, however, is only valid in case of a correctly specified model. Therefore, differences between the two versions of the observed information matrix indicate…
Statistical Analysis of Q-matrix Based Diagnostic Classification Models
Chen, Yunxiao; Liu, Jingchen; Xu, Gongjun; Ying, Zhiliang
2014-01-01
Diagnostic classification models have recently gained prominence in educational assessment, psychiatric evaluation, and many other disciplines. Central to the model specification is the so-called Q-matrix that provides a qualitative specification of the item-attribute relationship. In this paper, we develop theories on the identifiability for the Q-matrix under the DINA and the DINO models. We further propose an estimation procedure for the Q-matrix through the regularized maximum likelihood. The applicability of this procedure is not limited to the DINA or the DINO model and it can be applied to essentially all Q-matrix based diagnostic classification models. Simulation studies are conducted to illustrate its performance. Furthermore, two case studies are presented. The first case is a data set on fraction subtraction (educational application) and the second case is a subsample of the National Epidemiological Survey on Alcohol and Related Conditions concerning the social anxiety disorder (psychiatric application). PMID:26294801
System and method for object localization
NASA Technical Reports Server (NTRS)
Kelly, Alonzo J. (Inventor); Zhong, Yu (Inventor)
2005-01-01
A computer-assisted method for localizing a rack, including sensing an image of the rack, detecting line segments in the sensed image, recognizing a candidate arrangement of line segments in the sensed image indicative of a predetermined feature of the rack, generating a matrix of correspondence between the candidate arrangement of line segments and an expected position and orientation of the predetermined feature of the rack, and estimating a position and orientation of the rack based on the matrix of correspondence.
A New Measure of Wireless Network Connectivity
2014-10-31
matrix QG. From Lemma 1, QG is a non-zero nonnegative matrix. Thus from the Perron - Frobenius Theorem, [24], its largest magni- tude eigenvalue, known as...the Perron - Frobenius eigenvalue is real and positive. Further as QG is symmetric, all its eigenval- ues are real, and its largest magnitude...eigenvalue λmax(QG) is also its largest singular value. Also from the Perron - Frobenius Theorem, should the network be connected, i.e. QG is positive as opposed
Prod'hom, Guy; Bizzini, Alain; Durussel, Christian; Bille, Jacques; Greub, Gilbert
2010-04-01
An ammonium chloride erythrocyte-lysing procedure was used to prepare a bacterial pellet from positive blood cultures for direct matrix-assisted laser desorption-ionization time of flight (MALDI-TOF) mass spectrometry analysis. Identification was obtained for 78.7% of the pellets tested. Moreover, 99% of the MALDI-TOF identifications were congruent at the species level when considering valid scores. This fast and accurate method is promising.
Kao, Hui-Ju; Weng, Shun-Long; Huang, Kai-Yao; Kaunang, Fergie Joanda; Hsu, Justin Bo-Kai; Huang, Chien-Hsun; Lee, Tzong-Yi
2017-12-21
Carbonylation, which takes place through oxidation of reactive oxygen species (ROS) on specific residues, is an irreversibly oxidative modification of proteins. It has been reported that the carbonylation is related to a number of metabolic or aging diseases including diabetes, chronic lung disease, Parkinson's disease, and Alzheimer's disease. Due to the lack of computational methods dedicated to exploring motif signatures of protein carbonylation sites, we were motivated to exploit an iterative statistical method to characterize and identify carbonylated sites with motif signatures. By manually curating experimental data from research articles, we obtained 332, 144, 135, and 140 verified substrate sites for K (lysine), R (arginine), T (threonine), and P (proline) residues, respectively, from 241 carbonylated proteins. In order to examine the informative attributes for classifying between carbonylated and non-carbonylated sites, multifarious features including composition of twenty amino acids (AAC), composition of amino acid pairs (AAPC), position-specific scoring matrix (PSSM), and positional weighted matrix (PWM) were investigated in this study. Additionally, in an attempt to explore the motif signatures of carbonylation sites, an iterative statistical method was adopted to detect statistically significant dependencies of amino acid compositions between specific positions around substrate sites. Profile hidden Markov model (HMM) was then utilized to train a predictive model from each motif signature. Moreover, based on the method of support vector machine (SVM), we adopted it to construct an integrative model by combining the values of bit scores obtained from profile HMMs. The combinatorial model could provide an enhanced performance with evenly predictive sensitivity and specificity in the evaluation of cross-validation and independent testing. This study provides a new scheme for exploring potential motif signatures at substrate sites of protein carbonylation. The usefulness of the revealed motifs in the identification of carbonylated sites is demonstrated by their effective performance in cross-validation and independent testing. Finally, these substrate motifs were adopted to build an available online resource (MDD-Carb, http://csb.cse.yzu.edu.tw/MDDCarb/ ) and are also anticipated to facilitate the study of large-scale carbonylated proteomes.
The Cauchy Two-Matrix Model, C-Toda Lattice and CKP Hierarchy
NASA Astrophysics Data System (ADS)
Li, Chunxia; Li, Shi-Hao
2018-06-01
This paper mainly talks about the Cauchy two-matrix model and its corresponding integrable hierarchy with the help of orthogonal polynomial theory and Toda-type equations. Starting from the symmetric reduction in Cauchy biorthogonal polynomials, we derive the Toda equation of CKP type (or the C-Toda lattice) as well as its Lax pair by introducing time flows. Then, matrix integral solutions to the C-Toda lattice are extended to give solutions to the CKP hierarchy which reveals the time-dependent partition function of the Cauchy two-matrix model is nothing but the τ -function of the CKP hierarchy. At last, the connection between the Cauchy two-matrix model and Bures ensemble is established from the point of view of integrable systems.
NASA Technical Reports Server (NTRS)
Goldblum, A.; Rein, R.
1987-01-01
Analysis of C-alpha atom positions from cysteines involved in disulphide bridges in protein crystals shows that their geometric characteristics are unique with respect to other Cys-Cys, non-bridging pairs. They may be used for predicting disulphide connections in incompletely determined protein structures, such as low resolution crystallography or theoretical folding experiments. The basic unit for analysis and prediction is the 3 x 3 distance matrix for Cx positions of residues (i - 1), Cys(i), (i +1) with (j - 1), Cys(j), (j + 1). In each of its columns, row and diagonal vector--outer distances are larger than the central distance. This analysis is compared with some analytical models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yongzheng, E-mail: yzsung@gmail.com; Li, Wang; Zhao, Donghua
In this paper, we propose a new consensus model in which the interactions among agents stochastically switch between attraction and repulsion. Such a positive-and-negative mechanism is described by the white-noise-based coupling. Analytic criteria for the consensus and non-consensus in terms of the eigenvalues of the noise intensity matrix are derived, which provide a better understanding of the constructive roles of random interactions. Specifically, we discover a positive role of noise coupling that noise can accelerate the emergence of consensus. We find that the converging speed of the multi-agent network depends on the square of the second smallest eigenvalue of itsmore » graph Laplacian. The influence of network topologies on the consensus time is also investigated.« less
Mathematical model of water transport in Bacon and alkaline matrix-type hydrogen-oxygen fuel cells
NASA Technical Reports Server (NTRS)
Prokopius, P. R.; Easter, R. W.
1972-01-01
Based on general mass continuity and diffusive transport equations, a mathematical model was developed that simulates the transport of water in Bacon and alkaline-matrix fuel cells. The derived model was validated by using it to analytically reproduce various Bacon and matrix-cell experimental water transport transients.
Take the Red Pill: A New Matrix of Literacy
ERIC Educational Resources Information Center
Brabazon, Tara
2011-01-01
Using "The Matrix" film series as an inspiration, aspiration and model, this article integrates horizontal and vertical models of literacy. My goal is to create a new matrix for media literacy, aligning the best of analogue depth models for meaning making with the rapid scrolling, clicking and moving through the read-write web. To…
Snorradóttir, Bergthóra S; Jónsdóttir, Fjóla; Sigurdsson, Sven Th; Másson, Már
2014-08-01
A model is presented for transdermal drug delivery from single-layered silicone matrix systems. The work is based on our previous results that, in particular, extend the well-known Higuchi model. Recently, we have introduced a numerical transient model describing matrix systems where the drug dissolution can be non-instantaneous. Furthermore, our model can describe complex interactions within a multi-layered matrix and the matrix to skin boundary. The power of the modelling approach presented here is further illustrated by allowing the possibility of a donor solution. The model is validated by a comparison with experimental data, as well as validating the parameter values against each other, using various configurations with donor solution, silicone matrix and skin. Our results show that the model is a good approximation to real multi-layered delivery systems. The model offers the ability of comparing drug release for ibuprofen and diclofenac, which cannot be analysed by the Higuchi model because the dissolution in the latter case turns out to be limited. The experiments and numerical model outlined in this study could also be adjusted to more general formulations, which enhances the utility of the numerical model as a design tool for the development of drug-loaded matrices for trans-membrane and transdermal delivery. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Adolph, Elizabeth J.; Hafeman, Andrea E.; Davidson, Jeffrey M.; Nanney, Lillian B.; Guelcher, Scott A.
2011-01-01
Injectable scaffolds present compelling opportunities for wound repair and regeneration due to their ability to fill irregularly shaped defects and deliver biologics such as growth factors. In this study, we investigated the properties of injectable polyurethane biocomposite scaffolds and their application in cutaneous wound repair using a rat excisional model. The scaffolds have a minimal reaction exotherm and clinically relevant working and setting times. Moreover, the biocomposites have mechanical and thermal properties consistent with rubbery elastomers. In the rat excisional wound model, injection of settable biocomposite scaffolds stented the wounds at early time points, resulting in a regenerative rather than a scarring phenotype at later time points. Measurements of wound width and thickness revealed that the treated wounds were less contracted at day 7 compared to blank wounds. Analysis of cell proliferation and apoptosis showed that the scaffolds were biocompatible and supported tissue ingrowth. Myofibroblast formation and collagen fiber organization provided evidence that the scaffolds have a positive effect on extracellular matrix remodeling by disrupting the formation of an aligned matrix under elevated tension. In summary, we have developed an injectable biodegradable polyurethane biocomposite scaffold that enhances cutaneous wound healing in a rat model. PMID:22105887
NASA Technical Reports Server (NTRS)
Williams, Robert L., II
1992-01-01
The forward position and velocity kinematics for the redundant eight-degree-of-freedom Advanced Research Manipulator 2 (ARM2) are presented. Inverse position and velocity kinematic solutions are also presented. The approach in this paper is to specify two of the unknowns and solve for the remaining six unknowns. Two unknowns can be specified with two restrictions. First, the elbow joint angle and rate cannot be specified because they are known from the end-effector position and velocity. Second, one unknown must be specified from the four-jointed wrist, and the second from joints that translate the wrist, elbow joint excluded. There are eight solutions to the inverse position problem. The inverse velocity solution is unique, assuming the Jacobian matrix is not singular. A discussion of singularities is based on specifying two joint rates and analyzing the reduced Jacobian matrix. When this matrix is singular, the generalized inverse may be used as an alternate solution. Computer simulations were developed to verify the equations. Examples demonstrate agreement between forward and inverse solutions.
A math model for high velocity sensoring with a focal plane shuttered camera.
NASA Technical Reports Server (NTRS)
Morgan, P.
1971-01-01
A new mathematical model is presented which describes the image produced by a focal plane shutter-equipped camera. The model is based upon the well-known collinearity condition equations and incorporates both the translational and rotational motion of the camera during the exposure interval. The first differentials of the model with respect to exposure interval, delta t, yield the general matrix expressions for image velocities which may be simplified to known cases. The exposure interval, delta t, may be replaced under certain circumstances with a function incorporating blind velocity and image position if desired. The model is tested using simulated Lunar Orbiter data and found to be computationally stable as well as providing excellent results, provided that some external information is available on the velocity parameters.
Identification of Boolean Network Models From Time Series Data Incorporating Prior Knowledge.
Leifeld, Thomas; Zhang, Zhihua; Zhang, Ping
2018-01-01
Motivation: Mathematical models take an important place in science and engineering. A model can help scientists to explain dynamic behavior of a system and to understand the functionality of system components. Since length of a time series and number of replicates is limited by the cost of experiments, Boolean networks as a structurally simple and parameter-free logical model for gene regulatory networks have attracted interests of many scientists. In order to fit into the biological contexts and to lower the data requirements, biological prior knowledge is taken into consideration during the inference procedure. In the literature, the existing identification approaches can only deal with a subset of possible types of prior knowledge. Results: We propose a new approach to identify Boolean networks from time series data incorporating prior knowledge, such as partial network structure, canalizing property, positive and negative unateness. Using vector form of Boolean variables and applying a generalized matrix multiplication called the semi-tensor product (STP), each Boolean function can be equivalently converted into a matrix expression. Based on this, the identification problem is reformulated as an integer linear programming problem to reveal the system matrix of Boolean model in a computationally efficient way, whose dynamics are consistent with the important dynamics captured in the data. By using prior knowledge the number of candidate functions can be reduced during the inference. Hence, identification incorporating prior knowledge is especially suitable for the case of small size time series data and data without sufficient stimuli. The proposed approach is illustrated with the help of a biological model of the network of oxidative stress response. Conclusions: The combination of efficient reformulation of the identification problem with the possibility to incorporate various types of prior knowledge enables the application of computational model inference to systems with limited amount of time series data. The general applicability of this methodological approach makes it suitable for a variety of biological systems and of general interest for biological and medical research.
Jacob, Benjamin G; Griffith, Daniel A; Muturi, Ephantus J; Caamano, Erick X; Githure, John I; Novak, Robert J
2009-01-01
Background Autoregressive regression coefficients for Anopheles arabiensis aquatic habitat models are usually assessed using global error techniques and are reported as error covariance matrices. A global statistic, however, will summarize error estimates from multiple habitat locations. This makes it difficult to identify where there are clusters of An. arabiensis aquatic habitats of acceptable prediction. It is therefore useful to conduct some form of spatial error analysis to detect clusters of An. arabiensis aquatic habitats based on uncertainty residuals from individual sampled habitats. In this research, a method of error estimation for spatial simulation models was demonstrated using autocorrelation indices and eigenfunction spatial filters to distinguish among the effects of parameter uncertainty on a stochastic simulation of ecological sampled Anopheles aquatic habitat covariates. A test for diagnostic checking error residuals in an An. arabiensis aquatic habitat model may enable intervention efforts targeting productive habitats clusters, based on larval/pupal productivity, by using the asymptotic distribution of parameter estimates from a residual autocovariance matrix. The models considered in this research extends a normal regression analysis previously considered in the literature. Methods Field and remote-sampled data were collected during July 2006 to December 2007 in Karima rice-village complex in Mwea, Kenya. SAS 9.1.4® was used to explore univariate statistics, correlations, distributions, and to generate global autocorrelation statistics from the ecological sampled datasets. A local autocorrelation index was also generated using spatial covariance parameters (i.e., Moran's Indices) in a SAS/GIS® database. The Moran's statistic was decomposed into orthogonal and uncorrelated synthetic map pattern components using a Poisson model with a gamma-distributed mean (i.e. negative binomial regression). The eigenfunction values from the spatial configuration matrices were then used to define expectations for prior distributions using a Markov chain Monte Carlo (MCMC) algorithm. A set of posterior means were defined in WinBUGS 1.4.3®. After the model had converged, samples from the conditional distributions were used to summarize the posterior distribution of the parameters. Thereafter, a spatial residual trend analyses was used to evaluate variance uncertainty propagation in the model using an autocovariance error matrix. Results By specifying coefficient estimates in a Bayesian framework, the covariate number of tillers was found to be a significant predictor, positively associated with An. arabiensis aquatic habitats. The spatial filter models accounted for approximately 19% redundant locational information in the ecological sampled An. arabiensis aquatic habitat data. In the residual error estimation model there was significant positive autocorrelation (i.e., clustering of habitats in geographic space) based on log-transformed larval/pupal data and the sampled covariate depth of habitat. Conclusion An autocorrelation error covariance matrix and a spatial filter analyses can prioritize mosquito control strategies by providing a computationally attractive and feasible description of variance uncertainty estimates for correctly identifying clusters of prolific An. arabiensis aquatic habitats based on larval/pupal productivity. PMID:19772590
Modeling extracellular matrix degradation balance with proteinase/transglutaminase cycle.
Larreta-Garde, Veronique; Berry, Hugues
2002-07-07
Extracellular matrix mass balance is implied in many physiological and pathological events, such as metastasis dissemination. Widely studied, its destructive part is mainly catalysed by extracellular proteinases. Conversely, the properties of the constructive part are less obvious, cellular neo-synthesis being usually considered as its only element. In this paper, we introduce the action of transglutaminase in a mathematical model for extracellular matrix remodeling. This extracellular enzyme, catalysing intermolecular protein cross-linking, is considered here as a reverse proteinase as far as the extracellular matrix physical state is concerned. The model is based on a proteinase/transglutaminase cycle interconverting insoluble matrix and soluble proteolysis fragments, with regulation of cellular proteinase expression by the fragments. Under "closed" (batch) conditions, i.e. neglecting matrix influx and fragment efflux from the system, the model is bistable, with reversible hysteresis. Extracellular matrix proteins concentration abruptly switches from low to high levels when transglutaminase activity exceeds a threshold value. Proteinase concentration usually follows the reverse complementary kinetics, but can become apparently uncoupled from extracellular matrix concentration for some parameter values. When matrix production by the cells and fragment degradation are taken into account, the dynamics change to sustained oscillations because of the emergence of a stable limit cycle. Transitions out of and into oscillation areas are controlled by the model parameters. Biological interpretation indicates that these oscillations could represent the normal homeostatic situation, whereas the other exhibited dynamics can be related to pathologies such as tumor invasion or fibrosis. These results allow to discuss the insights that the model could contribute to the comprehension of these complex biological events.
Stereo-tomography in triangulated models
NASA Astrophysics Data System (ADS)
Yang, Kai; Shao, Wei-Dong; Xing, Feng-yuan; Xiong, Kai
2018-04-01
Stereo-tomography is a distinctive tomographic method. It is capable of estimating the scatterer position, the local dip of scatterer and the background velocity simultaneously. Building a geologically consistent velocity model is always appealing for applied and earthquake seismologists. Differing from the previous work to incorporate various regularization techniques into the cost function of stereo-tomography, we think extending stereo-tomography to the triangulated model will be the most straightforward way to achieve this goal. In this paper, we provided all the Fréchet derivatives of stereo-tomographic data components with respect to model components for slowness-squared triangulated model (or sloth model) in 2D Cartesian coordinate based on the ray perturbation theory for interfaces. A sloth model representation means a sparser model representation when compared with conventional B-spline model representation. A sparser model representation leads to a smaller scale of stereo-tomographic (Fréchet) matrix, a higher-accuracy solution when solving linear equations, a faster convergence rate and a lower requirement for quantity of data space. Moreover, a quantitative representation of interface strengthens the relationships among different model components, which makes the cross regularizations among these model components, such as node coordinates, scatterer coordinates and scattering angles, etc., more straightforward and easier to be implemented. The sensitivity analysis, the model resolution matrix analysis and a series of synthetic data examples demonstrate the correctness of the Fréchet derivatives, the applicability of the regularization terms and the robustness of the stereo-tomography in triangulated model. It provides a solid theoretical foundation for the real applications in the future.
NASA Astrophysics Data System (ADS)
Islamiyati, A.; Fatmawati; Chamidah, N.
2018-03-01
The correlation assumption of the longitudinal data with bi-response occurs on the measurement between the subjects of observation and the response. It causes the auto-correlation of error, and this can be overcome by using a covariance matrix. In this article, we estimate the covariance matrix based on the penalized spline regression model. Penalized spline involves knot points and smoothing parameters simultaneously in controlling the smoothness of the curve. Based on our simulation study, the estimated regression model of the weighted penalized spline with covariance matrix gives a smaller error value compared to the error of the model without covariance matrix.
Time-dependent deformation of titanium metal matrix composites
NASA Technical Reports Server (NTRS)
Bigelow, C. A.; Bahei-El-din, Y. A.; Mirdamadi, M.
1995-01-01
A three-dimensional finite element program called VISCOPAC was developed and used to conduct a micromechanics analysis of titanium metal matrix composites. The VISCOPAC program uses a modified Eisenberg-Yen thermo-viscoplastic constitutive model to predict matrix behavior under thermomechanical fatigue loading. The analysis incorporated temperature-dependent elastic properties in the fiber and temperature-dependent viscoplastic properties in the matrix. The material model was described and the necessary material constants were determined experimentally. Fiber-matrix interfacial behavior was analyzed using a discrete fiber-matrix model. The thermal residual stresses due to the fabrication cycle were predicted with a failed interface, The failed interface resulted in lower thermal residual stresses in the matrix and fiber. Stresses due to a uniform transverse load were calculated at two temperatures, room temperature and an elevated temperature of 650 C. At both temperatures, a large stress concentration was calculated when the interface had failed. The results indicate the importance of accuracy accounting for fiber-matrix interface failure and the need for a micromechanics-based analytical technique to understand and predict the behavior of titanium metal matrix composites.
NASA Astrophysics Data System (ADS)
Roura, Álvaro; Álvarez-Salgado, Xosé A.; González, Ángel F.; Gregori, María; Rosón, Gabriel; Guerra, Ángel
2013-02-01
The short-term, meso-scale variability of the mesozooplankton community present in the coastal upwelling system of the Ría de Vigo (NW Spain) has been analysed. Three well-defined communities were identified: coastal, frontal and oceanic, according to their holoplankton-meroplankton ratio, richness, and total abundance. These communities changed from summer to autumn due to a shift from downwelling to upwelling-favourable conditions coupled with taxa dependent changes in life strategies. Relationships between the resemblance matrix of mesozooplankton and the resemblance matrices of meteorologic, hydrographic and community-derived biotic variables were determined with distance-based linear models (DistLM, 18 variables), showing an increasing amount of explained variability of 6%, 16.1% and 54.5%, respectively. A simplified model revealed that the variability found in the resemblance matrix of mesozooplankton was mainly described by the holoplankton-meroplankton ratio, the total abundance, the influence of lunar cycles, the upwelling index and the richness; altogether accounting for 64% of the total variability. The largest variability of the mesozooplankton resemblance matrix (39.6%) is accounted by the holoplankton-meroplankton ratio, a simple index that describes appropriately the coastal-ocean gradient. The communities described herein kept their integrity in the studied upwelling and downwelling episodes in spite of the highly advective environment off the Ría de Vigo, presumably due to behavioural changes in the vertical position of the zooplankton.
NASA Astrophysics Data System (ADS)
Morozov, A.
2012-08-01
Partition functions of eigenvalue matrix models possess a number of very different descriptions: as matrix integrals, as solutions to linear and nonlinear equations, as τ-functions of integrable hierarchies and as special-geometry prepotentials, as result of the action of W-operators and of various recursions on elementary input data, as gluing of certain elementary building blocks. All this explains the central role of such matrix models in modern mathematical physics: they provide the basic "special functions" to express the answers and relations between them, and they serve as a dream model of what one should try to achieve in any other field.
NLTE steady-state response matrix method.
NASA Astrophysics Data System (ADS)
Faussurier, G.; More, R. M.
2000-05-01
A connection between atomic kinetics and non-equilibrium thermodynamics has been recently established by using a collisional-radiative model modified to include line absorption. The calculated net emission can be expressed as a non-local thermodynamic equilibrium (NLTE) symmetric response matrix. In the paper, this connection is extended to both cases of the average-atom model and the Busquet's model (RAdiative-Dependent IOnization Model, RADIOM). The main properties of the response matrix still remain valid. The RADIOM source function found in the literature leads to a diagonal response matrix, stressing the absence of any frequency redistribution among the frequency groups at this order of calculation.
Fiber-Level Modeling of Dynamic Strength of Kevlar (registered trademark) KM2 Ballistic Fabric
2012-07-01
Ballistic-Performance Optimization of a Hybrid Carbon - Nanotube /E-glass Reinforced Poly-Vinyl-Ester-Epoxy-Matrix Com- posite Armor, J. Mater. Sci...2007, 42, p 5347–5359 4. M. Grujicic, W.C. Bell, L.L. Thompson, K.L. Koudela, and B.A. Cheeseman, Ballistic-Protection Performance of Carbon - Nanotube ...Armor via the Use of a Carbon - Nanotube Forest-Mat Strike Face, Mater. Des. Appl., 2008, 222, p 15–28 6. Y. Wang and X. Sun, Determining the Geometry
Matrix approach to uncertainty assessment and reduction for modeling terrestrial carbon cycle
NASA Astrophysics Data System (ADS)
Luo, Y.; Xia, J.; Ahlström, A.; Zhou, S.; Huang, Y.; Shi, Z.; Wang, Y.; Du, Z.; Lu, X.
2017-12-01
Terrestrial ecosystems absorb approximately 30% of the anthropogenic carbon dioxide emissions. This estimate has been deduced indirectly: combining analyses of atmospheric carbon dioxide concentrations with ocean observations to infer the net terrestrial carbon flux. In contrast, when knowledge about the terrestrial carbon cycle is integrated into different terrestrial carbon models they make widely different predictions. To improve the terrestrial carbon models, we have recently developed a matrix approach to uncertainty assessment and reduction. Specifically, the terrestrial carbon cycle has been commonly represented by a series of carbon balance equations to track carbon influxes into and effluxes out of individual pools in earth system models. This representation matches our understanding of carbon cycle processes well and can be reorganized into one matrix equation without changing any modeled carbon cycle processes and mechanisms. We have developed matrix equations of several global land C cycle models, including CLM3.5, 4.0 and 4.5, CABLE, LPJ-GUESS, and ORCHIDEE. Indeed, the matrix equation is generic and can be applied to other land carbon models. This matrix approach offers a suite of new diagnostic tools, such as the 3-dimensional (3-D) parameter space, traceability analysis, and variance decomposition, for uncertainty analysis. For example, predictions of carbon dynamics with complex land models can be placed in a 3-D parameter space (carbon input, residence time, and storage potential) as a common metric to measure how much model predictions are different. The latter can be traced to its source components by decomposing model predictions to a hierarchy of traceable components. Then, variance decomposition can help attribute the spread in predictions among multiple models to precisely identify sources of uncertainty. The highly uncertain components can be constrained by data as the matrix equation makes data assimilation computationally possible. We will illustrate various applications of this matrix approach to uncertainty assessment and reduction for terrestrial carbon cycle models.
Davydyan, Garri
2015-12-01
The evolution of biologic systems (BS) includes functional mechanisms that in some conditions may lead to the development of cancer. Using mathematical group theory and matrix analysis, previously, it was shown that normally functioning BS are steady functional structures regulated by three basis regulatory components: reciprocal links (RL), negative feedback (NFB) and positive feedback (PFB). Together, they form an integrative unit maintaining system's autonomy and functional stability. It is proposed that phylogenetic development of different species is implemented by the splitting of "rudimentary" characters into two relatively independent functional parts that become encoded in chromosomes. The functional correlate of splitting mechanisms is RL. Inversion of phylogenetic mechanisms during ontogenetic development leads cell differentiation until cells reach mature states. Deterioration of reciprocal structure in the genome during ontogenesis gives rise of pathological conditions characterized by unsteadiness of the system. Uncontrollable cell proliferation and invasive cell growth are the leading features of the functional outcomes of malfunctioning systems. The regulatory element responsible for these changes is RL. In matrix language, pathological regulation is represented by matrices having positive values of diagonal elements ( TrA > 0) and also positive values of matrix determinant ( detA > 0). Regulatory structures of that kind can be obtained if the negative entry of the matrix corresponding to RL is replaced with the positive one. To describe not only normal but also pathological states of BS, a unit matrix should be added to the basis matrices representing RL, NFB and PFB. A mathematical structure corresponding to the set of these four basis functional patterns (matrices) is a split quaternion (coquaternion). The structure and specific role of basis elements comprising four-dimensional linear space of split quaternions help to understand what changes in mechanism of cell differentiation may lead to cancer development.
Self-organization of meaning and the reflexive communication of information
Leydesdorff, Loet; Petersen, Alexander M.; Ivanova, Inga
2017-01-01
Following a suggestion from Warren Weaver, we extend the Shannon model of communication piecemeal into a complex systems model in which communication is differentiated both vertically and horizontally. This model enables us to bridge the divide between Niklas Luhmann’s theory of the self-organization of meaning in communications and empirical research using information theory. First, we distinguish between communication relations and correlations among patterns of relations. The correlations span a vector space in which relations are positioned and can be provided with meaning. Second, positions provide reflexive perspectives. Whereas the different meanings are integrated locally, each instantiation opens global perspectives – ‘horizons of meaning’ – along eigenvectors of the communication matrix. These next-order codifications of meaning can be expected to generate redundancies when interacting in instantiations. Increases in redundancy indicate new options and can be measured as local reduction of prevailing uncertainty (in bits). The systemic generation of new options can be considered as a hallmark of the knowledge-based economy. PMID:28232771
NASA Astrophysics Data System (ADS)
Adhikari, Nilanjan; Amin, Sk. Abdul; Saha, Achintya; Jha, Tarun
2018-03-01
Matrix metalloproteinase-2 (MMP-2) is a promising pharmacological target for designing potential anticancer drugs. MMP-2 plays critical functions in apoptosis by cleaving the DNA repair enzyme namely poly (ADP-ribose) polymerase (PARP). Moreover, MMP-2 expression triggers the vascular endothelial growth factor (VEGF) having a positive influence on tumor size, invasion, and angiogenesis. Therefore, it is an urgent need to develop potential MMP-2 inhibitors without any toxicity but better pharmacokinetic property. In this article, robust validated multi-quantitative structure-activity relationship (QSAR) modeling approaches were attempted on a dataset of 222 MMP-2 inhibitors to explore the important structural and pharmacophoric requirements for higher MMP-2 inhibition. Different validated regression and classification-based QSARs, pharmacophore mapping and 3D-QSAR techniques were performed. These results were challenged and subjected to further validation to explain 24 in house MMP-2 inhibitors to judge the reliability of these models further. All these models were individually validated internally as well as externally and were supported and validated by each other. These results were further justified by molecular docking analysis. Modeling techniques adopted here not only helps to explore the necessary structural and pharmacophoric requirements but also for the overall validation and refinement techniques for designing potential MMP-2 inhibitors.
Panchapagesan, Sankaran; Alwan, Abeer
2011-01-01
In this paper, a quantitative study of acoustic-to-articulatory inversion for vowel speech sounds by analysis-by-synthesis using the Maeda articulatory model is performed. For chain matrix calculation of vocal tract (VT) acoustics, the chain matrix derivatives with respect to area function are calculated and used in a quasi-Newton method for optimizing articulatory trajectories. The cost function includes a distance measure between natural and synthesized first three formants, and parameter regularization and continuity terms. Calibration of the Maeda model to two speakers, one male and one female, from the University of Wisconsin x-ray microbeam (XRMB) database, using a cost function, is discussed. Model adaptation includes scaling the overall VT and the pharyngeal region and modifying the outer VT outline using measured palate and pharyngeal traces. The inversion optimization is initialized by a fast search of an articulatory codebook, which was pruned using XRMB data to improve inversion results. Good agreement between estimated midsagittal VT outlines and measured XRMB tongue pellet positions was achieved for several vowels and diphthongs for the male speaker, with average pellet-VT outline distances around 0.15 cm, smooth articulatory trajectories, and less than 1% average error in the first three formants. PMID:21476670
Continuous fiber ceramic matrix composites for heat engine components
NASA Technical Reports Server (NTRS)
Tripp, David E.
1988-01-01
High strength at elevated temperatures, low density, resistance to wear, and abundance of nonstrategic raw materials make structural ceramics attractive for advanced heat engine applications. Unfortunately, ceramics have a low fracture toughness and fail catastrophically because of overload, impact, and contact stresses. Ceramic matrix composites provide the means to achieve improved fracture toughness while retaining desirable characteristics, such as high strength and low density. Materials scientists and engineers are trying to develop the ideal fibers and matrices to achieve the optimum ceramic matrix composite properties. A need exists for the development of failure models for the design of ceramic matrix composite heat engine components. Phenomenological failure models are currently the most frequently used in industry, but they are deterministic and do not adequately describe ceramic matrix composite behavior. Semi-empirical models were proposed, which relate the failure of notched composite laminates to the stress a characteristic distance away from the notch. Shear lag models describe composite failure modes at the micromechanics level. The enhanced matrix cracking stress occurs at the same applied stress level predicted by the two models of steady state cracking. Finally, statistical models take into consideration the distribution in composite failure strength. The intent is to develop these models into computer algorithms for the failure analysis of ceramic matrix composites under monotonically increasing loads. The algorithms will be included in a postprocessor to general purpose finite element programs.
Harmonic elastic inclusions in the presence of point moment
NASA Astrophysics Data System (ADS)
Wang, Xu; Schiavone, Peter
2017-12-01
We employ conformal mapping techniques to design harmonic elastic inclusions when the surrounding matrix is simultaneously subjected to remote uniform stresses and a point moment located at an arbitrary position in the matrix. Our analysis indicates that the uniform and hydrostatic stress field inside the inclusion as well as the constant hoop stress along the entire inclusion-matrix interface (on the matrix side) are independent of the action of the point moment. In contrast, the non-elliptical shape of the harmonic inclusion depends on both the remote uniform stresses and the point moment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Druskin, V.; Lee, Ping; Knizhnerman, L.
There is now a growing interest in the area of using Krylov subspace approximations to compute the actions of matrix functions. The main application of this approach is the solution of ODE systems, obtained after discretization of partial differential equations by method of lines. In the event that the cost of computing the matrix inverse is relatively inexpensive, it is sometimes attractive to solve the ODE using the extended Krylov subspaces, originated by actions of both positive and negative matrix powers. Examples of such problems can be found frequently in computational electromagnetics.
Control of electrolyte fill to fuel cell stack
Pollack, William
1982-01-01
A fuel cell stack which can be operated with cells in a horizontal position so that the fuel cell stack does not have to be taken out of operation when adding an electrolyte such as an acid. Acid is supplied to each matrix in a stack of fuel cells at a uniform, low pressure so that the matrix can either be filled initially or replenished with acid lost in operation of the cell, without exceeding the bubble pressure of the matrix or the flooding pressure of the electrodes on either side of the matrix. Acid control to each cell is achieved by restricting and offsetting the opening of electrolyte fill holes in the matrix relative to openings in the plates which sandwich the matrix and electrodes therebetween.
Dependency structure and scaling properties of financial time series are related
Morales, Raffaello; Di Matteo, T.; Aste, Tomaso
2014-01-01
We report evidence of a deep interplay between cross-correlations hierarchical properties and multifractality of New York Stock Exchange daily stock returns. The degree of multifractality displayed by different stocks is found to be positively correlated to their depth in the hierarchy of cross-correlations. We propose a dynamical model that reproduces this observation along with an array of other empirical properties. The structure of this model is such that the hierarchical structure of heterogeneous risks plays a crucial role in the time evolution of the correlation matrix, providing an interpretation to the mechanism behind the interplay between cross-correlation and multifractality in financial markets, where the degree of multifractality of stocks is associated to their hierarchical positioning in the cross-correlation structure. Empirical observations reported in this paper present a new perspective towards the merging of univariate multi scaling and multivariate cross-correlation properties of financial time series. PMID:24699417
Dependency structure and scaling properties of financial time series are related
NASA Astrophysics Data System (ADS)
Morales, Raffaello; Di Matteo, T.; Aste, Tomaso
2014-04-01
We report evidence of a deep interplay between cross-correlations hierarchical properties and multifractality of New York Stock Exchange daily stock returns. The degree of multifractality displayed by different stocks is found to be positively correlated to their depth in the hierarchy of cross-correlations. We propose a dynamical model that reproduces this observation along with an array of other empirical properties. The structure of this model is such that the hierarchical structure of heterogeneous risks plays a crucial role in the time evolution of the correlation matrix, providing an interpretation to the mechanism behind the interplay between cross-correlation and multifractality in financial markets, where the degree of multifractality of stocks is associated to their hierarchical positioning in the cross-correlation structure. Empirical observations reported in this paper present a new perspective towards the merging of univariate multi scaling and multivariate cross-correlation properties of financial time series.
Brief announcement: Hypergraph parititioning for parallel sparse matrix-matrix multiplication
Ballard, Grey; Druinsky, Alex; Knight, Nicholas; ...
2015-01-01
The performance of parallel algorithms for sparse matrix-matrix multiplication is typically determined by the amount of interprocessor communication performed, which in turn depends on the nonzero structure of the input matrices. In this paper, we characterize the communication cost of a sparse matrix-matrix multiplication algorithm in terms of the size of a cut of an associated hypergraph that encodes the computation for a given input nonzero structure. Obtaining an optimal algorithm corresponds to solving a hypergraph partitioning problem. Furthermore, our hypergraph model generalizes several existing models for sparse matrix-vector multiplication, and we can leverage hypergraph partitioners developed for that computationmore » to improve application-specific algorithms for multiplying sparse matrices.« less
Forecasting extinction risk with nonstationary matrix models.
Gotelli, Nicholas J; Ellison, Aaron M
2006-02-01
Matrix population growth models are standard tools for forecasting population change and for managing rare species, but they are less useful for predicting extinction risk in the face of changing environmental conditions. Deterministic models provide point estimates of lambda, the finite rate of increase, as well as measures of matrix sensitivity and elasticity. Stationary matrix models can be used to estimate extinction risk in a variable environment, but they assume that the matrix elements are randomly sampled from a stationary (i.e., non-changing) distribution. Here we outline a method for using nonstationary matrix models to construct realistic forecasts of population fluctuation in changing environments. Our method requires three pieces of data: (1) field estimates of transition matrix elements, (2) experimental data on the demographic responses of populations to altered environmental conditions, and (3) forecasting data on environmental drivers. These three pieces of data are combined to generate a series of sequential transition matrices that emulate a pattern of long-term change in environmental drivers. Realistic estimates of population persistence and extinction risk can be derived from stochastic permutations of such a model. We illustrate the steps of this analysis with data from two populations of Sarracenia purpurea growing in northern New England. Sarracenia purpurea is a perennial carnivorous plant that is potentially at risk of local extinction because of increased nitrogen deposition. Long-term monitoring records or models of environmental change can be used to generate time series of driver variables under different scenarios of changing environments. Both manipulative and natural experiments can be used to construct a linking function that describes how matrix parameters change as a function of the environmental driver. This synthetic modeling approach provides quantitative estimates of extinction probability that have an explicit mechanistic basis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chukbar, B. K., E-mail: bchukbar@mail.ru
Two methods of modeling a double-heterogeneity fuel are studied: the deterministic positioning and the statistical method CORN of the MCU software package. The effect of distribution of microfuel in a pebble bed on the calculation results is studied. The results of verification of the statistical method CORN for the cases of the microfuel concentration up to 170 cm{sup –3} in a pebble bed are presented. The admissibility of homogenization of the microfuel coating with the graphite matrix is studied. The dependence of the reactivity on the relative location of fuel and graphite spheres in a pebble bed is found.
Namciu, Stephanie J.; Fournier, R. E. K.
2004-01-01
Human matrix attachment regions (MARs) can insulate transgene expression from chromosomal position effects in Drosophila melanogaster. To gain insight into the mechanism(s) by which chromosomal insulation occurs, we studied the expression phenotypes of Drosophila transformants expressing mini-white transgenes in which MAR sequences from the human apoB gene were arranged in a variety of ways. In agreement with previous reports, we found that a single copy of the insulating element was not sufficient for position-independent transgene expression; rather, two copies were required. However, the arrangement of the two elements within the transgene was unimportant, since chromosomal insulation was equally apparent when both copies of the insulator were upstream of the mini-white reporter as when the transcription unit was flanked by insulator elements. Moreover, experiments in which apoB 3′ MAR sequences were removed from integrated transgenes in vivo by site-specific recombination demonstrated that MAR sequences were required for the establishment but not for the maintenance of chromosomal insulation. These observations are not compatible with the chromosomal loop model in its simplest form. Alternate mechanisms for MAR function in this system are proposed. PMID:15542833
NASA Astrophysics Data System (ADS)
Jurčo, Branislav
We describe an integrable model, related to the Gaudin magnet, and its relation to the matrix model of Brézin, Itzykson, Parisi and Zuber. Relation is based on Bethe ansatz for the integrable model and its interpretation using orthogonal polynomials and saddle point approximation. Large-N limit of the matrix model corresponds to the thermodynamic limit of the integrable system. In this limit (functional) Bethe ansatz is the same as the generating function for correlators of the matrix models.
NASA Technical Reports Server (NTRS)
Schuecker, Clara; Davila, Carlos G.; Rose, Cheryl A.
2010-01-01
Five models for matrix damage in fiber reinforced laminates are evaluated for matrix-dominated loading conditions under plane stress and are compared both qualitatively and quantitatively. The emphasis of this study is on a comparison of the response of embedded plies subjected to a homogeneous stress state. Three of the models are specifically designed for modeling the non-linear response due to distributed matrix cracking under homogeneous loading, and also account for non-linear (shear) behavior prior to the onset of cracking. The remaining two models are localized damage models intended for predicting local failure at stress concentrations. The modeling approaches of distributed vs. localized cracking as well as the different formulations of damage initiation and damage progression are compared and discussed.
Matrix approaches to assess terrestrial nitrogen scheme in CLM4.5
NASA Astrophysics Data System (ADS)
Du, Z.
2017-12-01
Terrestrial carbon (C) and nitrogen (N) cycles have been commonly represented by a series of balance equations to track their influxes into and effluxes out of individual pools in earth system models (ESMs). This representation matches our understanding of C and N cycle processes well but makes it difficult to track model behaviors. To overcome these challenges, we developed a matrix approach, which reorganizes the series of terrestrial C and N balance equations in the CLM4.5 into two matrix equations based on original representation of C and N cycle processes and mechanisms. The matrix approach would consequently help improve the comparability of models and data, evaluate impacts of additional model components, facilitate benchmark analyses, model intercomparisons, and data-model fusion, and improve model predictive power.
Quasi-model free control for the post-capture operation of a non-cooperative target
NASA Astrophysics Data System (ADS)
She, Yuchen; Sun, Jun; Li, Shuang; Li, Wendan; Song, Ting
2018-06-01
This paper investigates a quasi-model free control (QMFC) approach for the post-capture control of a non-cooperative space object. The innovation of this paper lies in the following three aspects, which correspond to the three challenges presented in the mission scenario. First, an excitation-response mapping search strategy is developed based on the linearization of the system in terms of a set of parameters, which is efficient in handling the combined spacecraft with a high coupling effect on the inertia matrix. Second, a virtual coordinate system is proposed to efficiently compute the center of mass (COM) of the combined system, which improves the COM tracking efficiency for time-varying COM positions. Third, a linear online corrector is built to reduce the control error to further improve the control accuracy, which helps control the tracking mode within the combined system's time-varying inertia matrix. Finally, simulation analyses show that the proposed control framework is able to realize combined spacecraft post-capture control in extremely unfavorable conditions with high control accuracy.
Ghanaati, Shahram; Orth, Carina; Barbeck, Mike; Willershausen, Ines; Thimm, Benjamin W; Booms, Patrick; Stübinger, Stefan; Landes, Constantin; Sader, Robert Anton; Kirkpatrick, Charles James
2010-06-01
The clinical suitability of a bone substitute material is determined by the ability to induce a tissue reaction specific to its composition. The aim of this in vivo study was to analyze the tissue reaction to a silica matrix-embedded, nanocrystalline hydroxyapatite bone substitute.The subcutaneous implantation model in Wistar rats was chosen to assess the effect of silica degradation on the vascularization of the biomaterial and its biodegradation within a time period of 6 months. Already at day 10 after implantation, histomorphometrical analysis showed that the vascularization of the implantation bed reached its peak value compared to all other time points. Both vessel density and vascularization significantly decreased until day 90 after implantation. In this time period, the bone substitute underwent a significant degradation initiated by TRAP-positive and TRAP-negative multinucleated giant cells together with macrophages and lymphocytes. Although no specific tissue reaction could be related to the described silica degradation, the biomaterial was close to being fully degraded without a severe inflammatory response. These characteristics are advantageous for bone regeneration and remodeling processes.
Effect of the Microstructure on the Fracture Mode of Short-Fiber Reinforced Plastic Composites
NASA Astrophysics Data System (ADS)
Nishikawa, Masaaki; Okabe, Tomonaga; Takeda, Nobuo
A numerical simulation was presented to discuss the microscopic damage and its influence on the strength and energy-absorbing capability of short-fiber reinforced plastic composites. The dominant damage includes matrix crack and/or interfacial debonding, when the fibers are shorter than the critical length for fiber breakage. The simulation addressed the matrix crack with a continuum damage mechanics (CDM) model and the interfacial debonding with an embedded process zone (EPZ) model. Fictitious free-edge effects on the fracture modes were successfully eliminated with the periodic-cell simulation. The advantage of our simulation was pointed out by demonstrating that the simulation with edge effects significantly overestimates the dissipative energy of the composites. We then investigated the effect of the material microstructure on the fracture modes in the composites. The simulated results clarified that the inter-fiber distance affects the breaking strain of the composites and the fiber-orientation angle affects the position of the damage initiation. These factors influence the strength and energy-absorbing capability of short fiber-reinforced composites.
Fricain, J C; Aid, R; Lanouar, S; Maurel, D B; Le Nihouannen, D; Delmond, S; Letourneur, D; Amedee Vilamitjana, J; Catros, S
2018-04-07
Polysaccharide-based composite matrices consisting of natural polysaccharides, pullulan and dextran supplemented with hydroxyapatite (Matrix-HA) have recently been developed. The principal objective of this study was to evaluate the capacities of this composite material to promote new bone formation in a sinus lift model in the sheep. Secondary objectives were to evaluate in vitro properties of the material regarding cell adhesion and proliferation. In this report, once such composite matrix was prepared as injectable beads after dispersion in a physiological buffer, and evaluated using a large animal model (sheep) for a sinus lift procedure. In vitro studies revealed that these microbeads (250-550μm in diameter) allow vascular cell adhesion and proliferation of Endothelial Cells (EC) after 1 and 7 days of culture. In vivo studies were performed in 12 adult sheep, and newly formed tissue was analyzed by Cone Beam Computed Tomography (CBCT scanning electron microscopy (SEM) and by histology 3 and 6 months post-implantation. CBCT analyses at the implantation time revealed the radiolucent properties of these matrices. Quantitative analysis showed an increase of a dense mineralized tissue in the Matrix-HA group up to 3 months of implantation. The mineralized volume over total volume after 6 months reached comparable values to those obtained for Bio-Oss ® used as positive control. Histological examination confirmed that the Matrix-HA did not induce any long term inflammatory events, and promoted direct contact between the osteoid tissue and lamellar bone structures and beads. After 6 months, we observed a dense network of osteocytes surrounding both biomaterials as well as a newly vascularized formed tissue in close contact to the biomaterials. In conclusion, the absence of animal components in Matrix-HA, the osteoconductive property of Matrix-HA in sheep, resulting in a dense bone and vascularized tissue, and the initial radiolucent property to follow graft integration offer great promises of this composite material for clinical use. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Stability analysis of an autocatalytic protein model
NASA Astrophysics Data System (ADS)
Lee, Julian
2016-05-01
A self-regulatory genetic circuit, where a protein acts as a positive regulator of its own production, is known to be the simplest biological network with a positive feedback loop. Although at least three components—DNA, RNA, and the protein—are required to form such a circuit, stability analysis of the fixed points of this self-regulatory circuit has been performed only after reducing the system to a two-component system, either by assuming a fast equilibration of the DNA component or by removing the RNA component. Here, stability of the fixed points of the three-component positive feedback loop is analyzed by obtaining eigenvalues of the full three-dimensional Hessian matrix. In addition to rigorously identifying the stable fixed points and saddle points, detailed information about the system can be obtained, such as the existence of complex eigenvalues near a fixed point.
Evaluating Process Improvement Courses of Action Through Modeling and Simulation
2017-09-16
changes to a process is time consuming and has potential to overlook stochastic effects. By modeling a process as a Numerical Design Structure Matrix...13 Methods to Evaluate Process Performance ................................................................15 The Design Structure...Matrix ......................................................................................16 Numerical Design Structure Matrix
Cavaliere, Rosalia; Ball, Jessica L; Turnbull, Lynne; Whitchurch, Cynthia B
2014-01-01
Nontypeable Hemophilus influenzae (NTHi) is a Gram-negative bacterial pathogen that causes chronic biofilm infections of the ears and airways. The biofilm matrix provides structural integrity to the biofilm and protects biofilm cells from antibiotic exposure by reducing penetration of antimicrobial compounds into the biofilm. Extracellular DNA (eDNA) has been found to be a major matrix component of biofilms formed by many species of Gram-positive and Gram-negative bacteria, including NTHi. Interestingly, the cation chelator ethylenediaminetetra-acetic acid (EDTA) has been shown to reduce the matrix strength of biofilms of several bacterial species as well as to have bactericidal activity against various pathogens. EDTA exerts its antimicrobial activity by chelating divalent cations necessary for growth and membrane stability and by destabilizing the matrix thus enhancing the detachment of bacterial cells from the biofilm. In this study, we have explored the role of divalent cations in NTHi biofilm development and stability. We have utilized in vitro static and continuous flow models of biofilm development by NTHi to demonstrate that magnesium cations enhance biofilm formation by NTHi. We found that the divalent cation chelator EDTA is effective at both preventing NTHi biofilm formation and at treating established NTHi biofilms. Furthermore, we found that the matrix destablilizers EDTA and DNaseI increase the susceptibility of NTHi biofilms to ampicillin and ciprofloxacin. Our observations indicate that DNaseI and EDTA enhance the efficacy of antibiotic treatment of NTHi biofilms. These observations may lead to new strategies that will improve the treatment options available to patients with chronic NTHi infections. PMID:25044339
Cavaliere, Rosalia; Ball, Jessica L; Turnbull, Lynne; Whitchurch, Cynthia B
2014-08-01
Nontypeable Hemophilus influenzae (NTHi) is a Gram-negative bacterial pathogen that causes chronic biofilm infections of the ears and airways. The biofilm matrix provides structural integrity to the biofilm and protects biofilm cells from antibiotic exposure by reducing penetration of antimicrobial compounds into the biofilm. Extracellular DNA (eDNA) has been found to be a major matrix component of biofilms formed by many species of Gram-positive and Gram-negative bacteria, including NTHi. Interestingly, the cation chelator ethylenediaminetetra-acetic acid (EDTA) has been shown to reduce the matrix strength of biofilms of several bacterial species as well as to have bactericidal activity against various pathogens. EDTA exerts its antimicrobial activity by chelating divalent cations necessary for growth and membrane stability and by destabilizing the matrix thus enhancing the detachment of bacterial cells from the biofilm. In this study, we have explored the role of divalent cations in NTHi biofilm development and stability. We have utilized in vitro static and continuous flow models of biofilm development by NTHi to demonstrate that magnesium cations enhance biofilm formation by NTHi. We found that the divalent cation chelator EDTA is effective at both preventing NTHi biofilm formation and at treating established NTHi biofilms. Furthermore, we found that the matrix destablilizers EDTA and DNaseI increase the susceptibility of NTHi biofilms to ampicillin and ciprofloxacin. Our observations indicate that DNaseI and EDTA enhance the efficacy of antibiotic treatment of NTHi biofilms. These observations may lead to new strategies that will improve the treatment options available to patients with chronic NTHi infections. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Bilici, Suat; Yiğit, Özgür; Dönmez, Zehra; Huq, Gülben Erdem; Aktaş, Şamil
2015-04-01
The aim of the study is to investigate the histopathologic and cartilage mass changes in hyperbaric oxygen (HBO)-treated auricular cartilage grafts either crushed or fascia wrapped in a rabbit model. This is a prospective, controlled experimental study. Sixteen rabbits were randomly allocated into control (n = 8) and treatment groups (n = 8). Each group was further grouped as crushed cartilage (n = 4) and fascia wrapped crushed cartilage (n = 4). The eight rabbits in the treatment group had HBO once daily for 10 days as total of 10 sessions. The mass of cartilage, cartilage edge layout, structural layout, staining disorders of the chondroid matrix, necrosis, calcification besides bone metaplasia, chronic inflammation in the surrounding tissues, fibrosis, and increased vascularity were evaluated in the hematoxylin and eosin (H&E)-stained sections. Fibrosis in the surrounding tissue and cartilage matrix was evaluated with Masson's trichrome stain. The toluidine blue staining was used to evaluate loss of metachromasia in matrix. The prevalence of glial fibrillary acidic protein (GFAP) staining in chondrocytes was also evaluated. Although the remaining amount of cartilage mass after implantation does not show a significant difference between the control and the study group (p = 0.322, p <0.05).The difference between control and study group in terms of positive staining with GFAP was statistically significant (p = 0.01, p <0.05). Necrosis and loss of matrix metachromasia were significantly low in the study group compared with control group (p = 0.001, p = 0.006, p <0.05). HBO therapy did not have significant effect on the mass of rabbit auricular cartilage graft. HBO therapy significantly reduced loss of metachromasia, necrosis, and GFAP staining in the auricular cartilage grafts of the animal model. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Cobimaximal lepton mixing from soft symmetry breaking
NASA Astrophysics Data System (ADS)
Grimus, W.; Lavoura, L.
2017-11-01
Cobimaximal lepton mixing, i.e.θ23 = 45 ° and δ = ± 90 ° in the lepton mixing matrix V, arises as a consequence of SV =V* P, where S is the permutation matrix that interchanges the second and third rows of V and P is a diagonal matrix of phase factors. We prove that any such V may be written in the form V = URP, where U is any predefined unitary matrix satisfying SU =U*, R is an orthogonal, i.e. real, matrix, and P is a diagonal matrix satisfying P2 = P. Using this theorem, we demonstrate the equivalence of two ways of constructing models for cobimaximal mixing-one way that uses a standard CP symmetry and a different way that uses a CP symmetry including μ-τ interchange. We also present two simple seesaw models to illustrate this equivalence; those models have, in addition to the CP symmetry, flavour symmetries broken softly by the Majorana mass terms of the right-handed neutrino singlets. Since each of the two models needs four scalar doublets, we investigate how to accommodate the Standard Model Higgs particle in them.
Phase diagram of the triangular-lattice Potts antiferromagnet
Jacobsen, Jesper Lykke; Salas, Jesus; Scullard, Christian R.
2017-07-28
Here, we study the phase diagram of the triangular-lattice Q-state Potts model in the realmore » $(Q, v)$ -plane, where $$v={\\rm e}^J-1$$ is the temperature variable. Our first goal is to provide an obviously missing feature of this diagram: the position of the antiferromagnetic critical curve. This curve turns out to possess a bifurcation point with two branches emerging from it, entailing important consequences for the global phase diagram. We have obtained accurate numerical estimates for the position of this curve by combining the transfer-matrix approach for strip graphs with toroidal boundary conditions and the recent method of critical polynomials. The second goal of this work is to study the corresponding $$A_{p-1}$$ RSOS model on the torus, for integer $$p=4, 5, \\ldots, 8$$ . We clarify its relation to the corresponding Potts model, in particular concerning the role of boundary conditions. For certain values of p, we identify several new critical points and regimes for the RSOS model and we initiate the study of the flows between the corresponding field theories.« less
A Comprehensive X-Ray Absorption Model for Atomic Oxygen
NASA Technical Reports Server (NTRS)
Gorczyca, T. W.; Bautista, M. A.; Hasoglu, M. F.; Garcia, J.; Gatuzz, E.; Kaastra, J. S.; Kallman, T. R.; Manson, S. T.; Mendoza, C.; Raassen, A. J. J.;
2013-01-01
An analytical formula is developed to accurately represent the photoabsorption cross section of atomic Oxygen for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.
Zhao, Yubin; Li, Xiaofan; Zhang, Sha; Meng, Tianhui; Zhang, Yiwen
2016-08-23
In practical localization system design, researchers need to consider several aspects to make the positioning efficiently and effectively, e.g., the available auxiliary information, sensing devices, equipment deployment and the environment. Then, these practical concerns turn out to be the technical problems, e.g., the sequential position state propagation, the target-anchor geometry effect, the Non-line-of-sight (NLOS) identification and the related prior information. It is necessary to construct an efficient framework that can exploit multiple available information and guide the system design. In this paper, we propose a scalable method to analyze system performance based on the Cramér-Rao lower bound (CRLB), which can fuse all of the information adaptively. Firstly, we use an abstract function to represent all of the wireless localization system model. Then, the unknown vector of the CRLB consists of two parts: the first part is the estimated vector, and the second part is the auxiliary vector, which helps improve the estimation accuracy. Accordingly, the Fisher information matrix is divided into two parts: the state matrix and the auxiliary matrix. Unlike the theoretical analysis, our CRLB can be a practical fundamental limit to denote the system that fuses multiple information in the complicated environment, e.g., recursive Bayesian estimation based on the hidden Markov model, the map matching method and the NLOS identification and mitigation methods. Thus, the theoretical results are approaching the real case more. In addition, our method is more adaptable than other CRLBs when considering more unknown important factors. We use the proposed method to analyze the wireless sensor network-based indoor localization system. The influence of the hybrid LOS/NLOS channels, the building layout information and the relative height differences between the target and anchors are analyzed. It is demonstrated that our method exploits all of the available information for the indoor localization systems and serves as an indicator for practical system evaluation.
Goeyvaerts, Nele; Leuridan, Elke; Faes, Christel; Van Damme, Pierre; Hens, Niel
2015-09-10
Biomedical studies often generate repeated measures of multiple outcomes on a set of subjects. It may be of interest to develop a biologically intuitive model for the joint evolution of these outcomes while assessing inter-subject heterogeneity. Even though it is common for biological processes to entail non-linear relationships, examples of multivariate non-linear mixed models (MNMMs) are still fairly rare. We contribute to this area by jointly analyzing the maternal antibody decay for measles, mumps, rubella, and varicella, allowing for a different non-linear decay model for each infectious disease. We present a general modeling framework to analyze multivariate non-linear longitudinal profiles subject to censoring, by combining multivariate random effects, non-linear growth and Tobit regression. We explore the hypothesis of a common infant-specific mechanism underlying maternal immunity using a pairwise correlated random-effects approach and evaluating different correlation matrix structures. The implied marginal correlation between maternal antibody levels is estimated using simulations. The mean duration of passive immunity was less than 4 months for all diseases with substantial heterogeneity between infants. The maternal antibody levels against rubella and varicella were found to be positively correlated, while little to no correlation could be inferred for the other disease pairs. For some pairs, computational issues occurred with increasing correlation matrix complexity, which underlines the importance of further developing estimation methods for MNMMs. Copyright © 2015 John Wiley & Sons, Ltd.
Li, Xinpeng; Li, Hong; Liu, Yun; Xiong, Wei; Fang, Sheng
2018-03-05
The release rate of atmospheric radionuclide emissions is a critical factor in the emergency response to nuclear accidents. However, there are unavoidable biases in radionuclide transport models, leading to inaccurate estimates. In this study, a method that simultaneously corrects these biases and estimates the release rate is developed. Our approach provides a more complete measurement-by-measurement correction of the biases with a coefficient matrix that considers both deterministic and stochastic deviations. This matrix and the release rate are jointly solved by the alternating minimization algorithm. The proposed method is generic because it does not rely on specific features of transport models or scenarios. It is validated against wind tunnel experiments that simulate accidental releases in a heterogonous and densely built nuclear power plant site. The sensitivities to the position, number, and quality of measurements and extendibility of the method are also investigated. The results demonstrate that this method effectively corrects the model biases, and therefore outperforms Tikhonov's method in both release rate estimation and model prediction. The proposed approach is robust to uncertainties and extendible with various center estimators, thus providing a flexible framework for robust source inversion in real accidents, even if large uncertainties exist in multiple factors. Copyright © 2017 Elsevier B.V. All rights reserved.
Efficient Simulation of Secondary Fluorescence Via NIST DTSA-II Monte Carlo.
Ritchie, Nicholas W M
2017-06-01
Secondary fluorescence, the final term in the familiar matrix correction triumvirate Z·A·F, is the most challenging for Monte Carlo models to simulate. In fact, only two implementations of Monte Carlo models commonly used to simulate electron probe X-ray spectra can calculate secondary fluorescence-PENEPMA and NIST DTSA-II a (DTSA-II is discussed herein). These two models share many physical models but there are some important differences in the way each implements X-ray emission including secondary fluorescence. PENEPMA is based on PENELOPE, a general purpose software package for simulation of both relativistic and subrelativistic electron/positron interactions with matter. On the other hand, NIST DTSA-II was designed exclusively for simulation of X-ray spectra generated by subrelativistic electrons. NIST DTSA-II uses variance reduction techniques unsuited to general purpose code. These optimizations help NIST DTSA-II to be orders of magnitude more computationally efficient while retaining detector position sensitivity. Simulations execute in minutes rather than hours and can model differences that result from detector position. Both PENEPMA and NIST DTSA-II are capable of handling complex sample geometries and we will demonstrate that both are of similar accuracy when modeling experimental secondary fluorescence data from the literature.
Enhancing Three-dimensional Movement Control System for Assemblies of Machine-Building Facilities
NASA Astrophysics Data System (ADS)
Kuzyakov, O. N.; Andreeva, M. A.
2018-01-01
Aspects of enhancing three-dimensional movement control system are given in the paper. Such system is to be used while controlling assemblies of machine-building facilities, which is a relevant issue. The base of the system known is three-dimensional movement control device with optical principle of action. The device consists of multi point light emitter and light receiver matrix. The processing of signals is enhanced to increase accuracy of measurements by switching from discrete to analog signals. Light receiver matrix is divided into four areas, and the output value of each light emitter in each matrix area is proportional to its luminance level. Thus, determing output electric signal value of each light emitter in corresponding area leads to determing position of multipoint light emitter and position of object tracked. This is done by using Case-based reasoning method, the precedent in which is described as integral signal value of each matrix area, coordinates of light receivers, which luminance level is high, and decision to be made in this situation.
On Connected Diagrams and Cumulants of Erdős-Rényi Matrix Models
NASA Astrophysics Data System (ADS)
Khorunzhiy, O.
2008-08-01
Regarding the adjacency matrices of n-vertex graphs and related graph Laplacian we introduce two families of discrete matrix models constructed both with the help of the Erdős-Rényi ensemble of random graphs. Corresponding matrix sums represent the characteristic functions of the average number of walks and closed walks over the random graph. These sums can be considered as discrete analogues of the matrix integrals of random matrix theory. We study the diagram structure of the cumulant expansions of logarithms of these matrix sums and analyze the limiting expressions as n → ∞ in the cases of constant and vanishing edge probabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carneiro, Karina M. M.; Zhai, Halei; Zhu, Li
We report that enamel, the outermost layer of teeth, is an acellular mineralized tissue that cannot regenerate; the mature tissue is composed of high aspect ratio apatite nanocrystals organized into rods and inter-rod regions. Amelogenin constitutes 90% of the protein matrix in developing enamel and plays a central role in guiding the hierarchical organization of apatite crystals observed in mature enamel. To date, a convincing link between amelogenin supramolecular structures and mature enamel has yet to be described, in part because the protein matrix is degraded during tissue maturation. Here we show compelling evidence that amelogenin self-assembles into an amyloid-likemore » structure in vitro and in vivo. We show that enamel matrices stain positive for amyloids and we identify a specific region within amelogenin that self-assembles into β-sheets. Lastly, we propose that amelogenin nanoribbons template the growth of apatite mineral in human enamel. This is a paradigm shift from the current model of enamel development.« less
Assessment of two-dimensional induced accelerations from measured kinematic and kinetic data.
Hof, A L; Otten, E
2005-11-01
A simple algorithm is presented to calculate the induced accelerations of body segments in human walking for the sagittal plane. The method essentially consists of setting up 2x4 force equations, 4 moment equations, 2x3 joint constraint equations and two constraints related to the foot-ground interaction. Data needed for the equations are, next to masses and moments of inertia, the positions of ankle, knee and hip. This set of equations is put in the form of an 18x18 matrix or 20x20 matrix, the solution of which can be found by inversion. By applying input vectors related to gravity, to centripetal accelerations or to muscle moments, the 'induced' accelerations and reaction forces related to these inputs can be found separately. The method was tested for walking in one subject. Good agreement was found with published results obtained by much more complicated three-dimensional forward dynamic models.
UB Matrix Implementation for Inelastic Neutron Scattering Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumsden, Mark D; Robertson, Lee; Yethiraj, Mohana
The UB matrix approach has been extended to handle inelastic neutron scattering experiments with differing k{sub i} and k{sub f}. We have considered the typical goniometer employed on triple-axis and time-of-flight spectrometers. Expressions are derived to allow for calculation of the UB matrix and for converting from observables to Q-energy space. In addition, we have developed appropriate modes for calculation of angles for a specified Q-energy position.
Cao, Li; Guilak, Farshid; Setton, Lori A
2011-02-01
Nucleus pulposus (NP) cells of the intervertebral disk (IVD) have unique morphological characteristics and biologic responses to mechanical stimuli that may regulate maintenance and health of the IVD. NP cells reside as single cell, paired or multiple cells in a contiguous pericellular matrix (PCM), whose structure and properties may significantly influence cell and extracellular matrix mechanics. In this study, a computational model was developed to predict the stress-strain, fluid pressure and flow fields for cells and their surrounding PCM in the NP using three-dimensional (3D) finite element models based on the in situ morphology of cell-PCM regions of the mature rat NP, measured using confocal microscopy. Three-dimensional geometries of the extracellular matrix and representative cell-matrix units were used to construct 3D finite element models of the structures as isotropic and biphasic materials. In response to compressive strain of the extracellular matrix, NP cells and PCM regions were predicted to experience volumetric strains that were 1.9-3.7 and 1.4-2.1 times greater than the extracellular matrix, respectively. Volumetric and deviatoric strain concentrations were generally found at the cell/PCM interface, while von Mises stress concentrations were associated with the PCM/extracellular matrix interface. Cell-matrix units containing greater cell numbers were associated with higher peak cell strains and lower rates of fluid pressurization upon loading. These studies provide new model predictions for micromechanics of NP cells that can contribute to an understanding of mechanotransduction in the IVD and its changes with aging and degeneration.
Weighted Geometric Dilution of Precision Calculations with Matrix Multiplication
Chen, Chien-Sheng
2015-01-01
To enhance the performance of location estimation in wireless positioning systems, the geometric dilution of precision (GDOP) is widely used as a criterion for selecting measurement units. Since GDOP represents the geometric effect on the relationship between measurement error and positioning determination error, the smallest GDOP of the measurement unit subset is usually chosen for positioning. The conventional GDOP calculation using matrix inversion method requires many operations. Because more and more measurement units can be chosen nowadays, an efficient calculation should be designed to decrease the complexity. Since the performance of each measurement unit is different, the weighted GDOP (WGDOP), instead of GDOP, is used to select the measurement units to improve the accuracy of location. To calculate WGDOP effectively and efficiently, the closed-form solution for WGDOP calculation is proposed when more than four measurements are available. In this paper, an efficient WGDOP calculation method applying matrix multiplication that is easy for hardware implementation is proposed. In addition, the proposed method can be used when more than exactly four measurements are available. Even when using all-in-view method for positioning, the proposed method still can reduce the computational overhead. The proposed WGDOP methods with less computation are compatible with global positioning system (GPS), wireless sensor networks (WSN) and cellular communication systems. PMID:25569755
NASA Astrophysics Data System (ADS)
González, C.; Segurado, J.; LLorca, J.
2004-07-01
The deformation of a composite made up of a random and homogeneous dispersion of elastic spheres in an elasto-plastic matrix was simulated by the finite element analysis of three-dimensional multiparticle cubic cells with periodic boundary conditions. "Exact" results (to a few percent) in tension and shear were determined by averaging 12 stress-strain curves obtained from cells containing 30 spheres, and they were compared with the predictions of secant homogenization models. In addition, the numerical simulations supplied detailed information of the stress microfields, which was used to ascertain the accuracy and the limitations of the homogenization models to include the nonlinear deformation of the matrix. It was found that secant approximations based on the volume-averaged second-order moment of the matrix stress tensor, combined with a highly accurate linear homogenization model, provided excellent predictions of the composite response when the matrix strain hardening rate was high. This was not the case, however, in composites which exhibited marked plastic strain localization in the matrix. The analysis of the evolution of the matrix stresses revealed that better predictions of the composite behavior can be obtained with new homogenization models which capture the essential differences in the stress carried by the elastic and plastic regions in the matrix at the onset of plastic deformation.
A Deep Stochastic Model for Detecting Community in Complex Networks
NASA Astrophysics Data System (ADS)
Fu, Jingcheng; Wu, Jianliang
2017-01-01
Discovering community structures is an important step to understanding the structure and dynamics of real-world networks in social science, biology and technology. In this paper, we develop a deep stochastic model based on non-negative matrix factorization to identify communities, in which there are two sets of parameters. One is the community membership matrix, of which the elements in a row correspond to the probabilities of the given node belongs to each of the given number of communities in our model, another is the community-community connection matrix, of which the element in the i-th row and j-th column represents the probability of there being an edge between a randomly chosen node from the i-th community and a randomly chosen node from the j-th community. The parameters can be evaluated by an efficient updating rule, and its convergence can be guaranteed. The community-community connection matrix in our model is more precise than the community-community connection matrix in traditional non-negative matrix factorization methods. Furthermore, the method called symmetric nonnegative matrix factorization, is a special case of our model. Finally, based on the experiments on both synthetic and real-world networks data, it can be demonstrated that our algorithm is highly effective in detecting communities.
A Note on Alternating Minimization Algorithm for the Matrix Completion Problem
Gamarnik, David; Misra, Sidhant
2016-06-06
Here, we consider the problem of reconstructing a low-rank matrix from a subset of its entries and analyze two variants of the so-called alternating minimization algorithm, which has been proposed in the past.We establish that when the underlying matrix has rank one, has positive bounded entries, and the graph underlying the revealed entries has diameter which is logarithmic in the size of the matrix, both algorithms succeed in reconstructing the matrix approximately in polynomial time starting from an arbitrary initialization.We further provide simulation results which suggest that the second variant which is based on the message passing type updates performsmore » significantly better.« less
Multiscale Modeling of Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.
2015-01-01
Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.
Madison, Matthew J; Bradshaw, Laine P
2015-06-01
Diagnostic classification models are psychometric models that aim to classify examinees according to their mastery or non-mastery of specified latent characteristics. These models are well-suited for providing diagnostic feedback on educational assessments because of their practical efficiency and increased reliability when compared with other multidimensional measurement models. A priori specifications of which latent characteristics or attributes are measured by each item are a core element of the diagnostic assessment design. This item-attribute alignment, expressed in a Q-matrix, precedes and supports any inference resulting from the application of the diagnostic classification model. This study investigates the effects of Q-matrix design on classification accuracy for the log-linear cognitive diagnosis model. Results indicate that classification accuracy, reliability, and convergence rates improve when the Q-matrix contains isolated information from each measured attribute.
Koens, M J W; Krasznai, A G; Hanssen, A E J; Hendriks, T; Praster, R; Daamen, W F; van der Vliet, J A; van Kuppevelt, T H
2015-01-01
abstract A persistent clinical demand exists for a suitable arterial prosthesis. In this study, a vascular conduit mimicking the native 3-layered artery, and constructed from the extracellular matrix proteins type I collagen and elastin, was evaluated for its performance as a blood vessel equivalent. A tubular 3-layered graft (elastin-collagen-collagen) was prepared using highly purified type I collagen fibrils and elastin fibers, resembling the 3-layered native blood vessel architecture. The vascular graft was crosslinked and heparinised (37 ± 4 μg heparin/mg graft), and evaluated as a vascular graft using a porcine bilateral iliac artery model. An intra-animal comparison with clinically-used heparinised ePTFE (Propaten®) was made. Analyses included biochemical characterization, duplex scanning, (immuno)histochemistry and scanning electron microscopy. The tubular graft was easy to handle with adequate suturability. Implantation resulted in pulsating grafts without leakage. One week after implantation, both ePTFE and the natural acellular graft had 100% patencies on duplex scanning. Grafts were partially endothelialised (Von Willebrand-positive endothelium with a laminin-positive basal membrane layer). After one month, layered thrombi were found in the natural (4/4) and ePTFE graft (1/4), resulting in occlusion which in case of the natural graft is likely due to the porosity of the inner elastin layer. In vivo application of a molecularly-defined tubular graft, based on nature's matrix proteins, for vascular surgery is feasible. PMID:26060888
A study of blood contamination of Siqveland matrix bands.
Lowe, A H; Bagg, J; Burke, F J T; MacKenzie, D; McHugh, S
2002-01-12
AIMS To use a sensitive forensic test to measure blood contamination of used Siqveland matrix bands following routine cleaning and sterilisation procedures in general dental practice. Sixteen general dental practices in the West of Scotland participated. Details of instrument cleaning procedures were recorded for each practice. A total of 133 Siqveland matrix bands were recovered following cleaning and sterilisation and were examined for residual blood contamination by the Kastle-Meyer test, a well-recognised forensic technique. Ultrasonic baths were used for the cleaning of 62 (47%) bands and retainers and the remainder (53%) were hand scrubbed prior to autoclaving. Overall, 21% of the matrix bands and 19% of the retainers gave a positive Kastle-Meyer test, indicative of residual blood contamination, following cleaning and sterilisation. In relation to cleaning method, 34% of hand-scrubbed bands and 32% of hand-scrubbed retainers were positive for residual blood by the Kastle-Meyer test compared with 6% and 3% respectively of ultrasonically cleaned bands and retainers (P < 0.001). If Siqveland matrix bands are re-processed in the assembled state, then adequate pre-sterilisation cleaning cannot be achieved reliably. Ultrasonic baths are significantly more effective than hand cleaning for these items of equipment.
NASA Astrophysics Data System (ADS)
Li, L. B.
2018-05-01
The deformation of 2D and 2.5 C/SiC woven ceramic-matrix composites (CMCs) in monotonic and cyclic loadings has been investigated. Statistical matrix multicracking and fiber failure models and the fracture mechanics interface debonding approach are used to determine the spacing of matrix cracks, the debonded length of interface, and the fraction of broken fibers. The effects of fiber volume fraction and fiber Weibull modulus on the damage evolution in the composites and on their tensile stress-strain curves are analyzed. When matrix multicracking and fiber/matrix interface debonding occur, the fiber slippage relative to the matrix in the debonded interface region of the 0° warp yarns is the main reason for the emergance of stress-strain hysteresis loops for 2D and 2.5D woven CMCs. A model of these loops is developed, and histeresis loops for the composites in cyclic loadings/unloadings are predicted.
Finite-range Coulomb gas models of banded random matrices and quantum kicked rotors
NASA Astrophysics Data System (ADS)
Pandey, Akhilesh; Kumar, Avanish; Puri, Sanjay
2017-11-01
Dyson demonstrated an equivalence between infinite-range Coulomb gas models and classical random matrix ensembles for the study of eigenvalue statistics. We introduce finite-range Coulomb gas (FRCG) models via a Brownian matrix process, and study them analytically and by Monte Carlo simulations. These models yield new universality classes, and provide a theoretical framework for the study of banded random matrices (BRMs) and quantum kicked rotors (QKRs). We demonstrate that, for a BRM of bandwidth b and a QKR of chaos parameter α , the appropriate FRCG model has the effective range d =b2/N =α2/N , for large N matrix dimensionality. As d increases, there is a transition from Poisson to classical random matrix statistics.
Modeling the Tensile Behavior of Cross-Ply C/SiC Ceramic-Matrix Composites
NASA Astrophysics Data System (ADS)
Li, L. B.; Song, Y. D.; Sun, Y. C.
2015-07-01
The tensile behavior of cross-ply C/SiC ceramic-matrix composites (CMCs) at room temperature has been investigated. Under tensile loading, the damage evolution process was observed with an optical microscope. A micromechanical approach was developed to predict the tensile stress-strain curve, which considers the damage mechanisms of transverse multicracking, matrix multicracking, fiber/matrix interface debonding, and fiber fracture. The shear-lag model was used to describe the microstress field of the damaged composite. By combining the shear-lag model with different damage models, the tensile stress-strain curve of cross-ply CMCs corresponding to each damage stage was modeled. The predicted tensile stress-strain curves of cross-ply C/SiC composites agreed with experimental data.
Finite-range Coulomb gas models of banded random matrices and quantum kicked rotors.
Pandey, Akhilesh; Kumar, Avanish; Puri, Sanjay
2017-11-01
Dyson demonstrated an equivalence between infinite-range Coulomb gas models and classical random matrix ensembles for the study of eigenvalue statistics. We introduce finite-range Coulomb gas (FRCG) models via a Brownian matrix process, and study them analytically and by Monte Carlo simulations. These models yield new universality classes, and provide a theoretical framework for the study of banded random matrices (BRMs) and quantum kicked rotors (QKRs). We demonstrate that, for a BRM of bandwidth b and a QKR of chaos parameter α, the appropriate FRCG model has the effective range d=b^{2}/N=α^{2}/N, for large N matrix dimensionality. As d increases, there is a transition from Poisson to classical random matrix statistics.
Symmetry Transition Preserving Chirality in QCD: A Versatile Random Matrix Model
NASA Astrophysics Data System (ADS)
Kanazawa, Takuya; Kieburg, Mario
2018-06-01
We consider a random matrix model which interpolates between the chiral Gaussian unitary ensemble and the Gaussian unitary ensemble while preserving chiral symmetry. This ensemble describes flavor symmetry breaking for staggered fermions in 3D QCD as well as in 4D QCD at high temperature or in 3D QCD at a finite isospin chemical potential. Our model is an Osborn-type two-matrix model which is equivalent to the elliptic ensemble but we consider the singular value statistics rather than the complex eigenvalue statistics. We report on exact results for the partition function and the microscopic level density of the Dirac operator in the ɛ regime of QCD. We compare these analytical results with Monte Carlo simulations of the matrix model.
Marto, J A; White, F M; Seldomridge, S; Marshall, A G
1995-11-01
Matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry provides for structural analysis of the principal biological phospholipids: glycerophosphatidylcholine, -ethanolamine, -serine, and -inositol. Both positive and negative molecular or quasimolecular ions are generated in high abundance. Isolated molecular ions may be collisionally activated in the source side of a dual trap mass analyzer, yielding fragments serving to identify the polar head group (positive ion mode) and fatty acid side chains (negative ion mode). Azimuthal quadrupolar excitation following collisionally activated dissociation refocuses productions close to the solenoid axis; subsequent transfer of product ions to the analyzer ion trap allows for high-resolution mass analysis. Cyro-cooling of the sample probe with liquid nitrogen greatly reduces matrix adduction encountered in the negative ion mode.
A robust method of computing finite difference coefficients based on Vandermonde matrix
NASA Astrophysics Data System (ADS)
Zhang, Yijie; Gao, Jinghuai; Peng, Jigen; Han, Weimin
2018-05-01
When the finite difference (FD) method is employed to simulate the wave propagation, high-order FD method is preferred in order to achieve better accuracy. However, if the order of FD scheme is high enough, the coefficient matrix of the formula for calculating finite difference coefficients is close to be singular. In this case, when the FD coefficients are computed by matrix inverse operator of MATLAB, inaccuracy can be produced. In order to overcome this problem, we have suggested an algorithm based on Vandermonde matrix in this paper. After specified mathematical transformation, the coefficient matrix is transformed into a Vandermonde matrix. Then the FD coefficients of high-order FD method can be computed by the algorithm of Vandermonde matrix, which prevents the inverse of the singular matrix. The dispersion analysis and numerical results of a homogeneous elastic model and a geophysical model of oil and gas reservoir demonstrate that the algorithm based on Vandermonde matrix has better accuracy compared with matrix inverse operator of MATLAB.
Villaroel, Erica; Silva-Agredo, Javier; Petrier, Christian; Taborda, Gonzalo; Torres-Palma, Ricardo A
2014-09-01
This paper deals about the sonochemical water treatment of acetaminophen (ACP, N-acetyl-p-aminophenol or paracetamol), one of the most popular pharmaceutical compounds found in natural and drinking waters. Effect of ultrasonic power (20-60 W), initial ACP concentration (33-1323 μmol L(-1)) and pH (3-12) were evaluated. High ultrasonic powers and, low and natural acidic pH values favored the efficiency of the treatment. Effect of initial substrate concentration showed that the Langmuir-type kinetic model fit well the ACP sonochemical degradation. The influence of organic compounds in the water matrix, at concentrations 10-fold higher than ACP, was also evaluated. The results indicated that only organic compounds having a higher value of the Henry's law constant than the substrate decrease the efficiency of the treatment. On the other hand, ACP degradation in mineral natural water showed to be strongly dependent of the initial substrate concentration. A positive matrix effect was observed at low ACP concentrations (1.65 μmol L(-1)), which was attributed to the presence of bicarbonate ion in solution. However, at relative high ACP concentrations a detrimental effect of matrix components was noticed. Finally, the results indicated that ultrasonic action is able to transform ACP in aliphatic organic compounds that could be subsequently eliminated in a biological system. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Devi, Jutika; Datta, Pranayee
2018-07-01
Complex permittivities of cadmium sulfide (CdS), zinc sulfide (ZnS), and of cadmium sulfide-zinc sulfide (CdS/ZnS) core-shell nanoparticles embedded in a polyvinyl alcohol matrix (PVA) were measured in liquid phase using a VectorNetwork Analyzer in the frequency range of 500 MHz-10 GHz. These nanocomposites are modeled as an embedded capacitor, and their electric field distribution and polarization have been studied using COMSOL Multiphysics software. By varying the thickness of the shell and the number of inclusions, the capacitance values were estimated. It was observed that CdS, ZnS and CdS/ZnS core-shell nanoparticles embedded in a polyvinyl alcohol matrix show capacitive behavior. There is a strong influence of the dielectric properties in the capacitive behavior of the embedded nanocapacitor. The capping matrix, position and filling factors of nanoinclusions all affect the capacitive behavior of the tested nanocomposites. Application of the CdS, ZnS and CdS/ZnS core-shell nanocomposite as the passive low-pass filter circuit has also been investigated. From the present study, it has been found that CdS/ZnS core-shell nanoparticles embedded in PVA matrix are potential structures for application as nanoelectronic filter components in different areas of communication.
NASA Astrophysics Data System (ADS)
Devi, Jutika; Datta, Pranayee
2018-03-01
Complex permittivities of cadmium sulfide (CdS), zinc sulfide (ZnS), and of cadmium sulfide-zinc sulfide (CdS/ZnS) core-shell nanoparticles embedded in a polyvinyl alcohol matrix (PVA) were measured in liquid phase using a VectorNetwork Analyzer in the frequency range of 500 MHz-10 GHz. These nanocomposites are modeled as an embedded capacitor, and their electric field distribution and polarization have been studied using COMSOL Multiphysics software. By varying the thickness of the shell and the number of inclusions, the capacitance values were estimated. It was observed that CdS, ZnS and CdS/ZnS core-shell nanoparticles embedded in a polyvinyl alcohol matrix show capacitive behavior. There is a strong influence of the dielectric properties in the capacitive behavior of the embedded nanocapacitor. The capping matrix, position and filling factors of nanoinclusions all affect the capacitive behavior of the tested nanocomposites. Application of the CdS, ZnS and CdS/ZnS core-shell nanocomposite as the passive low-pass filter circuit has also been investigated. From the present study, it has been found that CdS/ZnS core-shell nanoparticles embedded in PVA matrix are potential structures for application as nanoelectronic filter components in different areas of communication.
NASA Astrophysics Data System (ADS)
Joshi, Nitin; Ojha, C. S. P.; Sharma, P. K.
2012-10-01
In this study a conceptual model that accounts for the effects of nonequilibrium contaminant transport in a fractured porous media is developed. Present model accounts for both physical and sorption nonequilibrium. Analytical solution was developed using the Laplace transform technique, which was then numerically inverted to obtain solute concentration in the fracture matrix system. The semianalytical solution developed here can incorporate both semi-infinite and finite fracture matrix extent. In addition, the model can account for flexible boundary conditions and nonzero initial condition in the fracture matrix system. The present semianalytical solution was validated against the existing analytical solutions for the fracture matrix system. In order to differentiate between various sorption/transport mechanism different cases of sorption and mass transfer were analyzed by comparing the breakthrough curves and temporal moments. It was found that significant differences in the signature of sorption and mass transfer exists. Applicability of the developed model was evaluated by simulating the published experimental data of Calcium and Strontium transport in a single fracture. The present model simulated the experimental data reasonably well in comparison to the model based on equilibrium sorption assumption in fracture matrix system, and multi rate mass transfer model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detwiler, Russell
Matrix diffusion and adsorption within a rock matrix are widely regarded as important mechanisms for retarding the transport of radionuclides and other solutes in fractured rock (e.g., Neretnieks, 1980; Tang et al., 1981; Maloszewski and Zuber, 1985; Novakowski and Lapcevic, 1994; Jardine et al., 1999; Zhou and Xie, 2003; Reimus et al., 2003a,b). When remediation options are being evaluated for old sources of contamination, where a large fraction of contaminants reside within the rock matrix, slow diffusion out of the matrix greatly increases the difficulty and timeframe of remediation. Estimating the rates of solute exchange between fractures and the adjacentmore » rock matrix is a critical factor in quantifying immobilization and/or remobilization of DOE-relevant contaminants within the subsurface. In principle, the most rigorous approach to modeling solute transport with fracture-matrix interaction would be based on local-scale coupled advection-diffusion/dispersion equations for the rock matrix and in discrete fractures that comprise the fracture network (Discrete Fracture Network and Matrix approach, hereinafter referred to as DFNM approach), fully resolving aperture variability in fractures and matrix property heterogeneity. However, such approaches are computationally demanding, and thus, many predictive models rely upon simplified models. These models typically idealize fracture rock masses as a single fracture or system of parallel fractures interacting with slabs of porous matrix or as a mobile-immobile or multi-rate mass transfer system. These idealizations provide tractable approaches for interpreting tracer tests and predicting contaminant mobility, but rely upon a fitted effective matrix diffusivity or mass-transfer coefficients. However, because these fitted parameters are based upon simplified conceptual models, their effectiveness at predicting long-term transport processes remains uncertain. Evidence of scale dependence of effective matrix diffusion coefficients obtained from tracer tests highlights this point and suggests that the underlying mechanisms and relationship between rock and fracture properties are not fully understood in large complex fracture networks. In this project, we developed a high-resolution DFN model of solute transport in fracture networks to explore and quantify the mechanisms that control transport in complex fracture networks and how these may give rise to observed scale-dependent matrix diffusion coefficients. Results demonstrate that small scale heterogeneity in the flow field caused by local aperture variability within individual fractures can lead to long-tailed breakthrough curves indicative of matrix diffusion, even in the absence of interactions with the fracture matrix. Furthermore, the temporal and spatial scale dependence of these processes highlights the inability of short-term tracer tests to estimate transport parameters that will control long-term fate and transport of contaminants in fractured aquifers.« less
Direct C P violation in charmless three-body decays of B mesons
NASA Astrophysics Data System (ADS)
Cheng, Hai-Yang; Chua, Chun-Khiang; Zhang, Zhi-Qing
2016-11-01
Direct C P violation in charmless three-body hadronic decays of B mesons is studied within the framework of a simple model based on the factorization approach. Three-body decays of heavy mesons receive both resonant and nonresonant contributions. Dominant nonresonant contributions to tree-dominated and penguin-dominated three-body decays arise from the b →u tree transition and b →s penguin transition, respectively. The former can be evaluated in the framework of heavy meson chiral perturbation theory with some modification, while the latter is governed by the matrix element of the scalar density ⟨M1M2|q¯1q2|0 ⟩. Resonant contributions to three-body decays are treated using the isobar model. Strong phases in this work reside in effective Wilson coefficients, propagators of resonances, and the matrix element of scalar density. In order to accommodate the branching fraction and C P asymmetries observed in B-→K-π+π- , the matrix element ⟨K π |s ¯q |0 ⟩ should have an additional strong phase, which might arise from some sort of power corrections such as final-state interactions. We calculate inclusive and regional C P asymmetries and find that nonresonant C P violation is usually much larger than the resonant one and that the interference effect between resonant and nonresonant components is generally quite significant. If nonresonant contributions are turned off in the K+K-K- mode, the predicted C P asymmetries due to resonances will be wrong in sign when confronted with experiment. In our study of B-→π-π+π-, we find that AC P(ρ0π-) should be positive in order to account for C P asymmetries observed in this decay. Indeed, both BABAR and LHCb measurements of B-→π+π-π- indicate positive C P asymmetry in the m (π+π-) region peaked at mρ. On the other hand, all theories predict a large and negative C P violation in B-→ρ0π-. Therefore, the issue with C P violation in B-→ρ0π- needs to be resolved. Measurements of C P -asymmetry Dalitz distributions put very stringent constraints on the theoretical models. We check the magnitude and the sign of C P violation in some (large) invariant mass regions to test our model.
Dhote, Valentin; Skaalure, Stacey; Akalp, Umut; Roberts, Justine; Bryant, Stephanie J; Vernerey, Franck J
2013-03-01
Damage to cartilage caused by injury or disease can lead to pain and loss of mobility, diminishing one's quality of life. Because cartilage has a limited capacity for self-repair, tissue engineering strategies, such as cells encapsulated in synthetic hydrogels, are being investigated as a means to restore the damaged cartilage. However, strategies to date are suboptimal in part because designing degradable hydrogels is complicated by structural and temporal complexities of the gel and evolving tissue along multiple length scales. To address this problem, this study proposes a multi-scale mechanical model using a triphasic formulation (solid, fluid, unbound matrix molecules) based on a single chondrocyte releasing extracellular matrix molecules within a degrading hydrogel. This model describes the key players (cells, proteoglycans, collagen) of the biological system within the hydrogel encompassing different length scales. Two mechanisms are included: temporal changes of bulk properties due to hydrogel degradation, and matrix transport. Numerical results demonstrate that the temporal change of bulk properties is a decisive factor in the diffusion of unbound matrix molecules through the hydrogel. Transport of matrix molecules in the hydrogel contributes both to the development of the pericellular matrix and the extracellular matrix and is dependent on the relative size of matrix molecules and the hydrogel mesh. The numerical results also demonstrate that osmotic pressure, which leads to changes in mesh size, is a key parameter for achieving a larger diffusivity for matrix molecules in the hydrogel. The numerical model is confirmed with experimental results of matrix synthesis by chondrocytes in biodegradable poly(ethylene glycol)-based hydrogels. This model may ultimately be used to predict key hydrogel design parameters towards achieving optimal cartilage growth. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dhote, Valentin; Skaalure, Stacey; Akalp, Umut; Roberts, Justine; Bryant, Stephanie J.; Vernerey, Franck J.
2012-01-01
Damage to cartilage caused by injury or disease can lead to pain and loss of mobility, diminishing one’s quality of life. Because cartilage has a limited capacity for self-repair, tissue engineering strategies, such as cells encapsulated in synthetic hydrogels, are being investigated as a means to restore the damaged cartilage. However, strategies to date are suboptimal in part because designing degradable hydrogels is complicated by structural and temporal complexities of the gel and evolving tissue along multiple length scales. To address this problem, this study proposes a multi-scale mechanical model using a triphasic formulation (solid, fluid, unbound matrix molecules) based on a single chondrocyte releasing extracellular matrix molecules within a degrading hydrogel. This model describes the key players (cells, proteoglycans, collagen) of the biological system within the hydrogel encompassing different length scales. Two mechanisms are included: temporal changes of bulk properties due to hydrogel degradation, and matrix transport. Numerical results demonstrate that the temporal change of bulk properties is a decisive factor in the diffusion of unbound matrix molecules through the hydrogel. Transport of matrix molecules in the hydrogel contributes both to the development of the pericellular matrix and the extracellular matrix and is dependent on the relative size of matrix molecules and the hydrogel mesh. The numerical results also demonstrate that osmotic pressure, which leads to changes in mesh size, is a key parameter for achieving a larger diffusivity for matrix molecules in the hydrogel. The numerical model is confirmed with experimental results of matrix synthesis by chondrocytes in biodegradable poly(ethylene glycol)-based hydrogels. This model may ultimately be used to predict key hydrogel design parameters towards achieving optimal cartilage growth. PMID:23276516
Wallis, Ilka; Pichler, Thomas
2018-08-01
Groundwater monitoring relies on the acquisition of 'representative' groundwater samples, which should reflect the ambient water quality at a given location. However, drilling of a monitoring well for sample acquisition has the potential to perturb groundwater conditions to a point that may prove to be detrimental to the monitoring objective. Following installation of 20 monitoring wells in close geographic proximity in central Florida, opposing concentration trends for As and Mo were observed. In the first year after well installation As and Mo concentrations increased in some wells by a factor of 2, while in others As and Mo concentrations decreased by a factor of up to 100. Given this relatively short period of time, a natural change in groundwater composition of such magnitude is not expected, leaving well installation itself as the likely cause for the observed concentration changes. Hence, initial concentrations were identified as 'false negatives' if concentrations increased with time or as 'false positives' if concentrations decreased. False negatives were observed if concentrations were already high, i.e., the As or Mo were present at the time of drilling. False positives were observed if concentrations were relatively lower, i.e., As or Mo were present at low concentrations of approximately 1 to 2μg/L before drilling, but then released from the aquifer matrix as a result of drilling. Generally, As and Mo were present in the aquifer matrix in either pyrite or organic matter, both of which are susceptible to dissolution if redox conditions change due to the addition of oxygen. Thus, introduction of an oxidant into an anoxic aquifer through use of an oxygen saturated drilling fluid served as the conceptual model for the trends where concentrations decreased with time. Mixing between drilling fluid and groundwater (i.e., dilution) was used as the conceptual model for scenarios where increasing trends were observed. Conceptual models were successfully tested through formulation and application of data-driven reactive transport models, using the USGS code MODFLOW in conjunction with the reactive multicomponent transport code PHT3D. Copyright © 2018 Elsevier B.V. All rights reserved.
CD-Based Indices for Link Prediction in Complex Network.
Wang, Tao; Wang, Hongjue; Wang, Xiaoxia
2016-01-01
Lots of similarity-based algorithms have been designed to deal with the problem of link prediction in the past decade. In order to improve prediction accuracy, a novel cosine similarity index CD based on distance between nodes and cosine value between vectors is proposed in this paper. Firstly, node coordinate matrix can be obtained by node distances which are different from distance matrix and row vectors of the matrix are regarded as coordinates of nodes. Then, cosine value between node coordinates is used as their similarity index. A local community density index LD is also proposed. Then, a series of CD-based indices include CD-LD-k, CD*LD-k, CD-k and CDI are presented and applied in ten real networks. Experimental results demonstrate the effectiveness of CD-based indices. The effects of network clustering coefficient and assortative coefficient on prediction accuracy of indices are analyzed. CD-LD-k and CD*LD-k can improve prediction accuracy without considering the assortative coefficient of network is negative or positive. According to analysis of relative precision of each method on each network, CD-LD-k and CD*LD-k indices have excellent average performance and robustness. CD and CD-k indices perform better on positive assortative networks than on negative assortative networks. For negative assortative networks, we improve and refine CD index, referred as CDI index, combining the advantages of CD index and evolutionary mechanism of the network model BA. Experimental results reveal that CDI index can increase prediction accuracy of CD on negative assortative networks.
CD-Based Indices for Link Prediction in Complex Network
Wang, Tao; Wang, Hongjue; Wang, Xiaoxia
2016-01-01
Lots of similarity-based algorithms have been designed to deal with the problem of link prediction in the past decade. In order to improve prediction accuracy, a novel cosine similarity index CD based on distance between nodes and cosine value between vectors is proposed in this paper. Firstly, node coordinate matrix can be obtained by node distances which are different from distance matrix and row vectors of the matrix are regarded as coordinates of nodes. Then, cosine value between node coordinates is used as their similarity index. A local community density index LD is also proposed. Then, a series of CD-based indices include CD-LD-k, CD*LD-k, CD-k and CDI are presented and applied in ten real networks. Experimental results demonstrate the effectiveness of CD-based indices. The effects of network clustering coefficient and assortative coefficient on prediction accuracy of indices are analyzed. CD-LD-k and CD*LD-k can improve prediction accuracy without considering the assortative coefficient of network is negative or positive. According to analysis of relative precision of each method on each network, CD-LD-k and CD*LD-k indices have excellent average performance and robustness. CD and CD-k indices perform better on positive assortative networks than on negative assortative networks. For negative assortative networks, we improve and refine CD index, referred as CDI index, combining the advantages of CD index and evolutionary mechanism of the network model BA. Experimental results reveal that CDI index can increase prediction accuracy of CD on negative assortative networks. PMID:26752405
Wiegand, Cornelia; Springer, Steffen; Abel, Martin; Wesarg, Falko; Ruth, Peter; Hipler, Uta-Christina
2013-01-01
Negative-pressure wound therapy (NPWT) is an advantageous treatment option in wound management to promote healing and reduce the risk of complications. NPWT is mainly carried out using open-cell polyurethane (PU) foams that stimulate granulation tissue formation. However, growth of wound bed tissue into foam material, leading to disruption of newly formed tissue upon dressing removal, has been observed. Consequently, it would be of clinical interest to preserve the positive effects of open-cell PU foams while avoiding cellular ingrowth. The study presented analyzed effects of NPWT using large-pored PU foam, fine-pored PU foam, and the combination of large-pored foam with drainage film on human dermal fibroblasts grown in a collagen matrix. The results showed no difference between the dressings in stimulating cellular migration during NPWT. However, when NPWT was applied using a large-pored PU foam, the fibroblasts continued to migrate into the dressing. This led to significant breaches in the cell layers upon removal of the samples after vacuum treatment. In contrast, cell migration stopped at the collagen matrix edge when fine-pored PU foam was used, as well as with the combination of PU foam and drainage film. In conclusion, placing a drainage film between collagen matrix and the large-pored PU foam dressing reduced the ingrowth of cells into the foam significantly. Moreover, positive effects on cellular migration were not affected, and the effect of the foam on tissue surface roughness in vitro was also reduced. © 2013 by the Wound Healing Society.
NASA Technical Reports Server (NTRS)
Covey, Steven J.
1993-01-01
Notched unidirectional SCS-6/Ti-15-3 composite of three different fiber volume fractions (vf = 0.15, 0.37, and 0.41) was investigated for various room temperature microstructural and material properties including: fatigue crack initiation, fatigue crack growth, and fracture toughness. While the matrix hardness is similar for all fiber volume fractions, the fiber/matrix interfacial shear strength and matrix residual stress increases with fiber volume fraction. The composite fatigue crack initiation stress is shown to be matrix controlled and occurs when the net maximum matrix stress approaches the endurance limit stress of the matrix. A model is presented which includes residual stresses and presents the composite initiation stress as a function of fiber volume fraction. This model predicts a maximum composite initiation stress at vf approximately 0.15 which agrees with the experimental data. The applied composite stress levels were increased as necessary for continued crack growth. The applied Delta(K) values at crack arrest increase with fiber volume fraction by an amount better approximated using an energy based formulation rather than when scaled linear with modulus. After crack arrest, the crack growth rate exponents for vf37 and vf41 were much lower and toughness much higher, when compared to the unreinforced matrix, because of the bridged region which parades with the propagating fatigue crack. However, the vf15 material exhibited a higher crack growth rate exponent and lower toughness than the unreinforced matrix because once the bridged fibers nearest the crack mouth broke, the stress redistribution broke all bridged fibers, leaving an unbridged crack. Degraded, unbridged behavior is modeled using the residual stress state in the matrix ahead of the crack tip. Plastic zone sizes were directly measured using a metallographic technique and allow prediction of an effective matrix stress intensity which agrees with the fiber pressure model if residual stresses are considered. The sophisticated macro/micro finite element models of the 0.15 and 0.37 fiber volume fractions presented show good agreement with experimental data and the fiber pressure model when an estimated effective fiber/matrix debond length is used.
Data-Driven Learning of Q-Matrix
ERIC Educational Resources Information Center
Liu, Jingchen; Xu, Gongjun; Ying, Zhiliang
2012-01-01
The recent surge of interests in cognitive assessment has led to developments of novel statistical models for diagnostic classification. Central to many such models is the well-known "Q"-matrix, which specifies the item-attribute relationships. This article proposes a data-driven approach to identification of the "Q"-matrix and estimation of…
NASA Astrophysics Data System (ADS)
Sun, Jiasong; Zhang, Yuzhen; Chen, Qian; Zuo, Chao
2017-02-01
Fourier ptychographic microscopy (FPM) is a newly developed super-resolution technique, which employs angularly varying illuminations and a phase retrieval algorithm to surpass the diffraction limit of a low numerical aperture (NA) objective lens. In current FPM imaging platforms, accurate knowledge of LED matrix's position is critical to achieve good recovery quality. Furthermore, considering such a wide field-of-view (FOV) in FPM, different regions in the FOV have different sensitivity of LED positional misalignment. In this work, we introduce an iterative method to correct position errors based on the simulated annealing (SA) algorithm. To improve the efficiency of this correcting process, large number of iterations for several images with low illumination NAs are firstly implemented to estimate the initial values of the global positional misalignment model through non-linear regression. Simulation and experimental results are presented to evaluate the performance of the proposed method and it is demonstrated that this method can both improve the quality of the recovered object image and relax the LED elements' position accuracy requirement while aligning the FPM imaging platforms.
Semiclassical matrix model for quantum chaotic transport with time-reversal symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novaes, Marcel, E-mail: marcel.novaes@gmail.com
2015-10-15
We show that the semiclassical approach to chaotic quantum transport in the presence of time-reversal symmetry can be described by a matrix model. In other words, we construct a matrix integral whose perturbative expansion satisfies the semiclassical diagrammatic rules for the calculation of transport statistics. One of the virtues of this approach is that it leads very naturally to the semiclassical derivation of universal predictions from random matrix theory.
Deformation, Failure, and Fatigue Life of SiC/Ti-15-3 Laminates Accurately Predicted by MAC/GMC
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2002-01-01
NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) (ref.1) has been extended to enable fully coupled macro-micro deformation, failure, and fatigue life predictions for advanced metal matrix, ceramic matrix, and polymer matrix composites. Because of the multiaxial nature of the code's underlying micromechanics model, GMC--which allows the incorporation of complex local inelastic constitutive models--MAC/GMC finds its most important application in metal matrix composites, like the SiC/Ti-15-3 composite examined here. Furthermore, since GMC predicts the microscale fields within each constituent of the composite material, submodels for local effects such as fiber breakage, interfacial debonding, and matrix fatigue damage can and have been built into MAC/GMC. The present application of MAC/GMC highlights the combination of these features, which has enabled the accurate modeling of the deformation, failure, and life of titanium matrix composites.
Computational Modeling of Single-Cell Migration: The Leading Role of Extracellular Matrix Fibers
Schlüter, Daniela K.; Ramis-Conde, Ignacio; Chaplain, Mark A.J.
2012-01-01
Cell migration is vitally important in a wide variety of biological contexts ranging from embryonic development and wound healing to malignant diseases such as cancer. It is a very complex process that is controlled by intracellular signaling pathways as well as the cell’s microenvironment. Due to its importance and complexity, it has been studied for many years in the biomedical sciences, and in the last 30 years it also received an increasing amount of interest from theoretical scientists and mathematical modelers. Here we propose a force-based, individual-based modeling framework that links single-cell migration with matrix fibers and cell-matrix interactions through contact guidance and matrix remodelling. With this approach, we can highlight the effect of the cell’s environment on its migration. We investigate the influence of matrix stiffness, matrix architecture, and cell speed on migration using quantitative measures that allow us to compare the results to experiments. PMID:22995486
The Effect of Fiber Architecture on Matrix Cracking in Sic/sic Cmc's
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2005-01-01
Applications incorporating silicon carbide fiber reinforced silicon carbide matrix composites (CMC's) will require a wide range of fiber architectures in order to fabricate complex shape. The stress-strain response of a given SiC/SiC system for different architectures and orientations will be required in order to design and effectively life-model future components. The mechanism for non-linear stress-strain behavior in CMC's is the formation and propagation of bridged-matrix cracks throughout the composite. A considerable amount of understanding has been achieved for the stress-dependent matrix cracking behavior of SiC fiber reinforced SiC matrix systems containing melt-infiltrated Si. This presentation will outline the effect of 2D and 3D architectures and orientation on stress-dependent matrix-cracking and how this information can be used to model material behavior and serve as the starting point foe mechanistic-based life-models.
An A{sub r} threesome: Matrix models, 2d conformal field theories, and 4dN=2 gauge theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiappa, Ricardo; Wyllard, Niclas
We explore the connections between three classes of theories: A{sub r} quiver matrix models, d=2 conformal A{sub r} Toda field theories, and d=4N=2 supersymmetric conformal A{sub r} quiver gauge theories. In particular, we analyze the quiver matrix models recently introduced by Dijkgraaf and Vafa (unpublished) and make detailed comparisons with the corresponding quantities in the Toda field theories and the N=2 quiver gauge theories. We also make a speculative proposal for how the matrix models should be modified in order for them to reproduce the instanton partition functions in quiver gauge theories in five dimensions.
Han, Houzeng; Wang, Jian; Wang, Jinling; Tan, Xinglong
2015-01-01
The integration of Global Navigation Satellite Systems (GNSS) carrier phases with Inertial Navigation System (INS) measurements is essential to provide accurate and continuous position, velocity and attitude information, however it is necessary to fix ambiguities rapidly and reliably to obtain high accuracy navigation solutions. In this paper, we present the notion of combining the Global Positioning System (GPS), the BeiDou Navigation Satellite System (BDS) and low-cost micro-electro-mechanical sensors (MEMS) inertial systems for reliable navigation. An adaptive multipath factor-based tightly-coupled (TC) GPS/BDS/INS integration algorithm is presented and the overall performance of the integrated system is illustrated. A twenty seven states TC GPS/BDS/INS model is adopted with an extended Kalman filter (EKF), which is carried out by directly fusing ambiguity fixed double-difference (DD) carrier phase measurements with the INS predicted pseudoranges to estimate the error states. The INS-aided integer ambiguity resolution (AR) strategy is developed by using a dynamic model, a two-step estimation procedure is applied with adaptively estimated covariance matrix to further improve the AR performance. A field vehicular test was carried out to demonstrate the positioning performance of the combined system. The results show the TC GPS/BDS/INS system significantly improves the single-epoch AR reliability as compared to that of GPS/BDS-only or single satellite navigation system integrated strategy, especially for high cut-off elevations. The AR performance is also significantly improved for the combined system with adaptive covariance matrix in the presence of low elevation multipath related to the GNSS-only case. A total of fifteen simulated outage tests also show that the time to relock of the GPS/BDS signals is shortened, which improves the system availability. The results also indicate that TC integration system achieves a few centimeters accuracy in positioning based on the comparison analysis and covariance analysis, even in harsh environments (e.g., in urban canyons), thus we can see the advantage of positioning at high cut-off elevations that the combined GPS/BDS brings. PMID:25875191
Han, Houzeng; Wang, Jian; Wang, Jinling; Tan, Xinglong
2015-04-14
The integration of Global Navigation Satellite Systems (GNSS) carrier phases with Inertial Navigation System (INS) measurements is essential to provide accurate and continuous position, velocity and attitude information, however it is necessary to fix ambiguities rapidly and reliably to obtain high accuracy navigation solutions. In this paper, we present the notion of combining the Global Positioning System (GPS), the BeiDou Navigation Satellite System (BDS) and low-cost micro-electro-mechanical sensors (MEMS) inertial systems for reliable navigation. An adaptive multipath factor-based tightly-coupled (TC) GPS/BDS/INS integration algorithm is presented and the overall performance of the integrated system is illustrated. A twenty seven states TC GPS/BDS/INS model is adopted with an extended Kalman filter (EKF), which is carried out by directly fusing ambiguity fixed double-difference (DD) carrier phase measurements with the INS predicted pseudoranges to estimate the error states. The INS-aided integer ambiguity resolution (AR) strategy is developed by using a dynamic model, a two-step estimation procedure is applied with adaptively estimated covariance matrix to further improve the AR performance. A field vehicular test was carried out to demonstrate the positioning performance of the combined system. The results show the TC GPS/BDS/INS system significantly improves the single-epoch AR reliability as compared to that of GPS/BDS-only or single satellite navigation system integrated strategy, especially for high cut-off elevations. The AR performance is also significantly improved for the combined system with adaptive covariance matrix in the presence of low elevation multipath related to the GNSS-only case. A total of fifteen simulated outage tests also show that the time to relock of the GPS/BDS signals is shortened, which improves the system availability. The results also indicate that TC integration system achieves a few centimeters accuracy in positioning based on the comparison analysis and covariance analysis, even in harsh environments (e.g., in urban canyons), thus we can see the advantage of positioning at high cut-off elevations that the combined GPS/BDS brings.
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2015-01-01
Upper bounds on high speed satellite collision probability, PC †, have been investigated. Previous methods assume an individual position error covariance matrix is available for each object. The two matrices being combined into a single, relative position error covariance matrix. Components of the combined error covariance are then varied to obtain a maximum PC. If error covariance information for only one of the two objects was available, either some default shape has been used or nothing could be done. An alternative is presented that uses the known covariance information along with a critical value of the missing covariance to obtain an approximate but potentially useful Pc upper bound.
Duan, Bin; Yin, Ziying; Hockaday Kang, Laura; Magin, Richard L; Butcher, Jonathan T
2016-05-01
Calcific aortic valve disease (CAVD) progression is a highly dynamic process whereby normally fibroblastic valve interstitial cells (VIC) undergo osteogenic differentiation, maladaptive extracellular matrix (ECM) composition, structural remodeling, and tissue matrix stiffening. However, how VIC with different phenotypes dynamically affect matrix properties and how the altered matrix further affects VIC phenotypes in response to physiological and pathological conditions have not yet been determined. In this study, we develop 3D hydrogels with tunable matrix stiffness to investigate the dynamic interplay between VIC phenotypes and matrix biomechanics. We find that VIC populated within hydrogels with valve leaflet like stiffness differentiate towards myofibroblasts in osteogenic media, but surprisingly undergo osteogenic differentiation when cultured within lower initial stiffness hydrogels. VIC differentiation progressively stiffens the hydrogel microenvironment, which further upregulates both early and late osteogenic markers. These findings identify a dynamic positive feedback loop that governs acceleration of VIC calcification. Temporal stiffening of pathologically lower stiffness matrix back to normal level, or blocking the mechanosensitive RhoA/ROCK signaling pathway, delays the osteogenic differentiation process. Therefore, direct ECM biomechanical modulation can affect VIC phenotypes towards and against osteogenic differentiation in 3D culture. These findings highlight the importance of the homeostatic maintenance of matrix stiffness to restrict pathological VIC differentiation. We implement 3D hydrogels with tunable matrix stiffness to investigate the dynamic interaction between valve interstitial cells (VIC, major cell population in heart valve) and matrix biomechanics. This work focuses on how human VIC responses to changing 3D culture environments. Our findings identify a dynamic positive feedback loop that governs acceleration of VIC calcification, which is the hallmark of calcific aortic valve disease. Temporal stiffening of pathologically lower stiffness matrix back to normal level, or blocking the mechanosensitive signaling pathway, delays VIC osteogenic differentiation. Our findings provide an improved understanding of VIC-matrix interactions to aid in interpretation of VIC calcification studies in vitro and suggest that ECM disruption resulting in local tissue stiffness decreases may promote calcific aortic valve disease. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rahmani, M.; Moadhen, A.; Mabrouk Kamkoum, A.; Zaïbi, M.-A.; Chtourou, R.; Haji, L.; Oueslati, M.
2012-02-01
Photoluminescence (PL) measurements of porous silicon (PS) and iron-porous silicon nanocomposites (PS/Fe) with stable optical properties versus temperature and laser power density have been investigated. The presence of iron in PS matrix is confirmed by Raman spectroscopy. The PL intensity of PS and PS/Fe increases at low temperature, the evolution of integrated PL intensity follows the modified Arrhenius model. The incorporation of iron in PS matrix reduces the activation energy traducing the existence of shallow levels related to iron atoms. Also, the temperature dependence of the porous silicon PL peak position follows a linear evolution at high temperature and a quadratic one at low temperature. Such evolution is due to the thermal carriers' redistribution and an energy transfer. Similarly, we have compared the laser power dependence of the PL in PS and PS/Fe layers. The results prove that the recombination process in PS is realised through the lower energy traps localised in the electronic gap. However, the observed emission in PS/Fe is essentially due to direct transitions. So, we can conclude that the presence of iron in PS matrix induces a strong modification of the PL mechanisms.
A finite volume method for trace element diffusion and partitioning during crystal growth
NASA Astrophysics Data System (ADS)
Hesse, Marc A.
2012-09-01
A finite volume method on a uniform grid is presented to compute the polythermal diffusion and partitioning of a trace element during the growth of a porphyroblast crystal in a uniform matrix and in linear, cylindrical and spherical geometry. The motion of the crystal-matrix interface and the thermal evolution are prescribed functions of time. The motion of the interface is discretized and it advances from one cell boundary to next as the prescribed interface position passes the cell center. The appropriate conditions for the flux across the crystal-matrix interface are derived from discrete mass conservation. Numerical results are benchmarked against steady and transient analytic solutions for isothermal diffusion with partitioning and growth. Two applications illustrate the ability of the model to reproduce observed rare-earth element patterns in garnets (Skora et al., 2006) and water concentration profiles around spherulites in obsidian (Watkins et al., 2009). Simulations with diffusion inside the growing crystal show complex concentration evolutions for trace elements with high diffusion coefficients, such as argon or hydrogen, but demonstrate that rare-earth element concentrations in typical metamorphic garnets are not affected by intracrystalline diffusion.
Wet oxidation of real coke wastewater containing high thiocyanate concentration.
Oulego, Paula; Collado, Sergio; Garrido, Laura; Laca, Adriana; Rendueles, Manuel; Díaz, Mario
2014-01-01
Coke wastewaters, in particular those with high thiocyanate concentrations, represent an important environmental problem because of their very low biodegradability. In this work, the treatment by wet oxidation of real coke wastewaters containing concentrations of thiocyanate above 17 mM has been studied in a 1-L semi-batch reactor at temperatures between 453 and 493 K, with total oxygen pressures in the range of 2.0-8.0 MPa. A positive effect of the matrix of real coke wastewater was observed, resulting in faster thiocyanate degradation than was obtained with synthetic wastewaters. Besides, the effect of oxygen concentration and temperature on thiocyanate wet oxidation was more noticeable in real effluents than in synthetic wastewaters containing only thiocyanate. It was also observed that the degree of mineralization of the matrix organic compounds was higher when the initial thiocyanate concentration increased. Taking into account the experimental data, kinetic models were obtained, and a mechanism implying free radicals was proposed for thiocyanate oxidation in the matrix considered. In all cases, sulphate, carbonates and ammonium were identified as the main reaction products of thiocyanate wet oxidation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Matrix metalloproteinases in exercise and obesity.
Jaoude, Jonathan; Koh, Yunsuk
2016-01-01
Matrix metalloproteinases (MMPs) are zinc- and calcium-dependent endoproteinases that have the ability to break down extracellular matrix. The large range of MMPs' functions widens their spectrum of potential role as activators or inhibitors in tissue remodeling, cardiovascular diseases, and obesity. In particular, MMP-1, -2, and -9 may be associated with exercise and obesity. Thus, the current study reviewed the effects of different types of exercise (resistance and aerobic) on MMP-1, -2, and -9. Previous studies report that the response of MMP-2 and -9 to resistance exercise is dependent upon the length of exercise training, since long-term resistance exercise training increased both MMP-2 and -9, whereas acute bout of resistance exercise decreased these MMPs. Aerobic exercise produces an inconsistent result on MMPs, although some studies showed a decrease in MMP-1. Obesity is related to a relatively lower level of MMP-9, indicating that an exercise-induced increase in MMP-9 may positively influence obesity. A comprehensive understanding of the relationship between exercise, obesity, and MMPs does not exist yet. Future studies examining the acute and chronic responses of these MMPs using different subject models may provide a better understanding of the molecular mechanisms that are associated with exercise, obesity, and cardiovascular disease.
Modeling the Stress Strain Behavior of Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2006-01-01
Woven SiC fiber reinforced SiC matrix composites represent one of the most mature composite systems to date. Future components fabricated out of these woven ceramic matrix composites are expected to vary in shape, curvature, architecture, and thickness. The design of future components using woven ceramic matrix composites necessitates a modeling approach that can account for these variations which are physically controlled by local constituent contents and architecture. Research over the years supported primarily by NASA Glenn Research Center has led to the development of simple mechanistic-based models that can describe the entire stress-strain curve for composite systems fabricated with chemical vapor infiltrated matrices and melt-infiltrated matrices for a wide range of constituent content and architecture. Several examples will be presented that demonstrate the approach to modeling which incorporates a thorough understanding of the stress-dependent matrix cracking properties of the composite system.
Design and characterization of a plastic optical fiber pH sensor
NASA Astrophysics Data System (ADS)
Ferreira, Licínio; Simões, Pedro; Carvalho, Rui S.; Lopes, Paulo; Ferreira, Mário
2013-11-01
In this paper are present the design and characterization of a pH sensor using plastic optical fiber (POF) technology and a material produced by the sol-gel process with TEOS (tetraethyl orthosilicate) to immobilize universal indicator of pH (comprised of Thymol Blue, Methyl Red, Bromothymol Blue and Phenolphthalein) inside the silica matrix. This matrix is positioned between two extensions of plastic optical fiber tightly positioned at each side with both fibers aligned and sharing a common optical axis. This set will work as a pH sensor since the matrix embedded with indicator and in the presence of a solution (basic or acid solution) will change the optical transmittance properties. The optical source is a superluminescent white LED and the receiver is a photodiode having a good and linear responsivity in the visible spectrum. This pH sensitive matrix has large pores which allow the diffusion of the surrounding fluid molecules into the matrix and thus the close contact of these to the indicator molecules. This contact causes the change of color of the whole matrix allowing proper colorimetric detection by the photodiode. This variation of color associated with the detector wavelength linear response is the base of operation of the proposed device. This pH sensor presents many advantages over the standard and commercial pH meters namely, lightweight, portability and a low cost.
Sparse Covariance Matrix Estimation With Eigenvalue Constraints
LIU, Han; WANG, Lie; ZHAO, Tuo
2014-01-01
We propose a new approach for estimating high-dimensional, positive-definite covariance matrices. Our method extends the generalized thresholding operator by adding an explicit eigenvalue constraint. The estimated covariance matrix simultaneously achieves sparsity and positive definiteness. The estimator is rate optimal in the minimax sense and we develop an efficient iterative soft-thresholding and projection algorithm based on the alternating direction method of multipliers. Empirically, we conduct thorough numerical experiments on simulated datasets as well as real data examples to illustrate the usefulness of our method. Supplementary materials for the article are available online. PMID:25620866
Faron, Matthew L; Buchan, Blake W; Ledeboer, Nathan A
2017-12-01
Early initiation of effective antibiotics for septic patients is essential for patient survival. Matrix-assisted desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has revolutionized clinical microbiology for isolate identification and has the possibility to impact how blood culture testing is performed. This review discusses the various uses of MALDI-TOF MS for the identification and susceptibility testing of positive blood cultures, the performance of these methods, and the outcomes involved with its implementation. Copyright © 2017 American Society for Microbiology.
A Method of Q-Matrix Validation for the Linear Logistic Test Model
Baghaei, Purya; Hohensinn, Christine
2017-01-01
The linear logistic test model (LLTM) is a well-recognized psychometric model for examining the components of difficulty in cognitive tests and validating construct theories. The plausibility of the construct model, summarized in a matrix of weights, known as the Q-matrix or weight matrix, is tested by (1) comparing the fit of LLTM with the fit of the Rasch model (RM) using the likelihood ratio (LR) test and (2) by examining the correlation between the Rasch model item parameters and LLTM reconstructed item parameters. The problem with the LR test is that it is almost always significant and, consequently, LLTM is rejected. The drawback of examining the correlation coefficient is that there is no cut-off value or lower bound for the magnitude of the correlation coefficient. In this article we suggest a simulation method to set a minimum benchmark for the correlation between item parameters from the Rasch model and those reconstructed by the LLTM. If the cognitive model is valid then the correlation coefficient between the RM-based item parameters and the LLTM-reconstructed item parameters derived from the theoretical weight matrix should be greater than those derived from the simulated matrices. PMID:28611721
Perturbed generalized multicritical one-matrix models
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Chekhov, L.; Makeenko, Y.
2018-03-01
We study perturbations around the generalized Kazakov multicritical one-matrix model. The multicritical matrix model has a potential where the coefficients of zn only fall off as a power 1 /n s + 1. This implies that the potential and its derivatives have a cut along the real axis, leading to technical problems when one performs perturbations away from the generalized Kazakov model. Nevertheless it is possible to relate the perturbed partition function to the tau-function of a KdV hierarchy and solve the model by a genus expansion in the double scaling limit.
Habitat or matrix: which is more relevant to predict road-kill of vertebrates?
Bueno, C; Sousa, C O M; Freitas, S R
2015-11-01
We believe that in tropics we need a community approach to evaluate road impacts on wildlife, and thus, suggest mitigation measures for groups of species instead a focal-species approach. Understanding which landscape characteristics indicate road-kill events may also provide models that can be applied in other regions. We intend to evaluate if habitat or matrix is more relevant to predict road-kill events for a group of species. Our hypothesis is: more permeable matrix is the most relevant factor to explain road-kill events. To test this hypothesis, we chose vertebrates as the studied assemblage and a highway crossing in an Atlantic Forest region in southeastern Brazil as the study site. Logistic regression models were designed using presence/absence of road-kill events as dependent variables and landscape characteristics as independent variables, which were selected by Akaike's Information Criterion. We considered a set of candidate models containing four types of simple regression models: Habitat effect model; Matrix types effect models; Highway effect model; and, Reference models (intercept and buffer distance). Almost three hundred road-kills and 70 species were recorded. River proximity and herbaceous vegetation cover, both matrix effect models, were associated to most road-killed vertebrate groups. Matrix was more relevant than habitat to predict road-kill of vertebrates. The association between river proximity and road-kill indicates that rivers may be a preferential route for most species. We discuss multi-species mitigation measures and implications to movement ecology and conservation strategies.
2013-01-01
Background Schizophrenia is a highly heterogeneous disorder with positive and negative symptoms being characteristic manifestations of the disease. While these two symptom domains are usually construed as distinct and orthogonal, little is known about the longitudinal pattern of negative symptoms and their linkage with the positive symptoms. This study assessed the temporal interplay between these two symptom domains and evaluated whether the improvements in these symptoms were inversely correlated or independent with each other. Methods This post hoc analysis used data from a multicenter, randomized, open-label, 1-year pragmatic trial of patients with schizophrenia spectrum disorder who were treated with first- and second-generation antipsychotics in the usual clinical settings. Data from all treatment groups were pooled resulting in 399 patients with complete data on both the negative and positive subscale scores from the Positive and Negative Syndrome Scale (PANSS). Individual-based growth mixture modeling combined with interplay matrix was used to identify the latent trajectory patterns in terms of both the negative and positive symptoms. Pearson correlation coefficients were calculated to examine the relationship between the changes of these two symptom domains within each combined trajectory pattern. Results We identified four distinct negative symptom trajectories and three positive symptom trajectories. The trajectory matrix formed 11 combined trajectory patterns, which evidenced that negative and positive symptom trajectories moved generally in parallel. Correlation coefficients for changes in negative and positive symptom subscale scores were positive and statistically significant (P < 0.05). Overall, the combined trajectories indicated three major distinct patterns: 1) dramatic and sustained early improvement in both negative and positive symptoms (n = 70, 18%), 2) mild and sustained improvement in negative and positive symptoms (n = 237, 59%), and 3) no improvement in either negative or positive symptoms (n = 82, 21%). Conclusions This study of symptom trajectories over 1 year shows that changes in negative and positive symptoms were neither inversely nor independently related with each other. The positive association between these two symptom domains supports the notion that different symptom domains in schizophrenia may depend on each other through a unified upstream pathological disease process. PMID:24283222
Shrinkage estimation of the realized relationship matrix
USDA-ARS?s Scientific Manuscript database
The additive relationship matrix plays an important role in mixed model prediction of breeding values. For genotype matrix X (loci in columns), the product XX' is widely used as a realized relationship matrix, but the scaling of this matrix is ambiguous. Our first objective was to derive a proper ...
EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide
PMF is a multivariate factor analysis tool that decomposes a matrix of speciated sample data into two matrices: factor contributions (G) and factor profiles (F). These factor profiles need to be interpreted by the user to identify the source types that may be contributing to the ...
Yang, Xi; Han, Guoqiang; Cai, Hongmin; Song, Yan
2017-03-31
Revealing data with intrinsically diagonal block structures is particularly useful for analyzing groups of highly correlated variables. Earlier researches based on non-negative matrix factorization (NMF) have been shown to be effective in representing such data by decomposing the observed data into two factors, where one factor is considered to be the feature and the other the expansion loading from a linear algebra perspective. If the data are sampled from multiple independent subspaces, the loading factor would possess a diagonal structure under an ideal matrix decomposition. However, the standard NMF method and its variants have not been reported to exploit this type of data via direct estimation. To address this issue, a non-negative matrix factorization with multiple constraints model is proposed in this paper. The constraints include an sparsity norm on the feature matrix and a total variational norm on each column of the loading matrix. The proposed model is shown to be capable of efficiently recovering diagonal block structures hidden in observed samples. An efficient numerical algorithm using the alternating direction method of multipliers model is proposed for optimizing the new model. Compared with several benchmark models, the proposed method performs robustly and effectively for simulated and real biological data.
NASA Astrophysics Data System (ADS)
Bacigalupo, Andrea; Gambarotta, Luigi
2017-05-01
Dispersive waves in two-dimensional blocky materials with periodic microstructure made up of equal rigid units, having polygonal centro-symmetric shape with mass and gyroscopic inertia, connected with each other through homogeneous linear interfaces, have been analyzed. The acoustic behavior of the resulting discrete Lagrangian model has been obtained through a Floquet-Bloch approach. From the resulting eigenproblem derived by the Euler-Lagrange equations for harmonic wave propagation, two acoustic branches and an optical branch are obtained in the frequency spectrum. A micropolar continuum model to approximate the Lagrangian model has been derived based on a second-order Taylor expansion of the generalized macro-displacement field. The constitutive equations of the equivalent micropolar continuum have been obtained, with the peculiarity that the positive definiteness of the second-order symmetric tensor associated to the curvature vector is not guaranteed and depends both on the ratio between the local tangent and normal stiffness and on the block shape. The same results have been obtained through an extended Hamiltonian derivation of the equations of motion for the equivalent continuum that is related to the Hill-Mandel macro homogeneity condition. Moreover, it is shown that the hermitian matrix governing the eigenproblem of harmonic wave propagation in the micropolar model is exact up to the second order in the norm of the wave vector with respect to the same matrix from the discrete model. To appreciate the acoustic behavior of some relevant blocky materials and to understand the reliability and the validity limits of the micropolar continuum model, some blocky patterns have been analyzed: rhombic and hexagonal assemblages and running bond masonry. From the results obtained in the examples, the obtained micropolar model turns out to be particularly accurate to describe dispersive functions for wavelengths greater than 3-4 times the characteristic dimension of the block. Finally, in consideration that the positive definiteness of the second order elastic tensor of the micropolar model is not guaranteed, the hyperbolicity of the equation of motion has been investigated by considering the Legendre-Hadamard ellipticity conditions requiring real values for the wave velocity.
General structure of democratic mass matrix of quark sector in E6 model
NASA Astrophysics Data System (ADS)
Ciftci, R.; ćiftci, A. K.
2016-03-01
An extension of the Standard Model (SM) fermion sector, which is inspired by the E6 Grand Unified Theory (GUT) model, might be a good candidate to explain a number of unanswered questions in SM. Existence of the isosinglet quarks might explain great mass difference of bottom and top quarks. Also, democracy on mass matrix elements is a natural approach in SM. In this study, we have given general structure of Democratic Mass Matrix (DMM) of quark sector in E6 model.
Identification of the sources of PM10 in a subway tunnel using positive matrix factorization.
Park, Duckshin; Lee, Taejeong; Hwang, Doyeon; Jung, Wonseok; Lee, Yongil; Cho, KiChul; Kim, Dongsool; Lees, Kiyoung
2014-12-01
The level of particulate matter of less than 10 μm diameter (PM10) at subway platforms can be significantly reduced by installing a platform screen-door system. However, both workers and passengers might be exposed to higher PM10 levels while the cars are within the tunnel because it is a more confined environment. This study determined the PM10 levels in a subway tunnel, and identified the sources of PM10 using elemental analysis and receptor modeling. Forty-four PM10 samples were collected in the tunnel between the Gireum and Mia stations on Line 4 in metropolitan Seoul and analyzed using inductively coupled plasma-atomic emission spectrometry and ion chromatography. The major PM10 sources were identified using positive matrix factorization (PMF). The average PM10 concentration in the tunnels was 200.8 ± 22.0 μg/m3. Elemental analysis indicated that the PM10 consisted of 40.4% inorganic species, 9.1% anions, 4.9% cations, and 45.6% other materials. Iron was the most abundant element, with an average concentration of 72.5 ± 10.4 μg/m3. The PM10 sources characterized by PMF included rail, wheel, and brake wear (59.6%), soil combustion (17.0%), secondary aerosols (10.0%), electric cable wear (8.1%), and soil and road dust (5.4%). Internal sources comprising rail, wheel, brake, and electric cable wear made the greatest contribution to the PM10 (67.7%) in tunnel air. Implications: With installation of a platform screen door, PM10 levels in subway tunnels were higher than those on platforms. Tunnel PM10 levels exceeded 150 µg/m3 of the Korean standard for subway platform. Elemental analysis of PM10 in a tunnel showed that Fe was the most abundant element. Five PM10 sources in tunnel were identified by positive matrix factorization. Railroad-related sources contributed 68% of PM10 in the subway tunnel.
An analysis of the wear behavior of SiC whisker reinforced alumina from 25 to 1200 C
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
1991-01-01
A model is described for predicting the wear behavior of whisker reinforced ceramics. The model was successfully applied to a silicon carbide whisker reinforced alumina ceramic composite subjected to sliding contact. The model compares the friction forces on the whiskers due to sliding, which act to pull or push them out of the matrix, to the clamping or compressive forces on the whiskers due to the matrix, which act to hold the whiskers in the composite. At low temperatures, the whiskers are held strongly in the matrix and are fractured into pieces during the wear process along with the matrix. At elevated temperatures differential thermal expansion between the whiskers and matrix can cause loosening of the whiskers and lead to pullout during the wear process and to higher wear. The model, which represents the combination of elastic stress analysis and a friction heating analysis, predicts a transition temperature at which the strength of the whiskers equals the clamping force holding them in the matrix. Above the transition the whiskers are pulled out of the matrix during sliding, and below the transition the whiskers are simply fractured. The existence of the transition gives rise to a dual wear mode or mechanism behavior for this material which was observed in laboratory experiments. The results from this model correlate well with experimentally observed behavior indicating that the model may be useful in obtaining a better understanding of material behavior and in making material improvements.
An analysis of the wear behavior of SiC whisker-reinforced alumina from 25 to 1200 C
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
1993-01-01
A model is described for predicting the wear behavior of whisker reinforced ceramics. The model was successfully applied to a silicon carbide whisker reinforced alumina ceramic composite subjected to sliding contact. The model compares the friction forces on the whiskers due to sliding, which act to pull or push them out of the matrix, to the clamping or compressive forces on the whiskers due to the matrix, which act to hold the whiskers in the composite. At low temperatures, the whiskers are held strongly in the matrix and are fractured into pieces during the wear process along with the matrix. At elevated temperatures differential thermal expansion between the whiskers and matrix can cause loosening of the whiskers and lead to pullout during the wear process and to higher wear. The model, which represents the combination of elastic stress analysis and a friction heating analysis, predicts a transition temperature at which the strength of the whiskers equals the clamping force holding them in the matrix. Above the transition the whiskers are pulled out of the matrix during sliding, and below the transition the whiskers are simply fractured. The existence of the transition gives rise to a dual wear mode or mechanism behavior for this material which was observed in laboratory experiments. The results from this model correlate well with experimentally observed behavior indicating that the model may be useful in obtaining a better understanding of material behavior and in making material improvements.
NASA Technical Reports Server (NTRS)
Tsai, H. C.; Arocho, A. M.
1992-01-01
A simple one-dimensional fiber-matrix interphase model has been developed and analytical results obtained correlated well with available experimental data. It was found that by including the interphase between the fiber and matrix in the model, much better local stress results were obtained than with the model without the interphase. A more sophisticated two-dimensional micromechanical model, which included the interphase properties was also developed. Both one-dimensional and two-dimensional models were used to study the effect of the interphase properties on the local stresses at the fiber, interphase and matrix. From this study, it was found that interphase modulus and thickness have significant influence on the transverse tensile strength and mode of failure in fiber reinforced composites.
Verification of the karst flow model under laboratory controlled conditions
NASA Astrophysics Data System (ADS)
Gotovac, Hrvoje; Andric, Ivo; Malenica, Luka; Srzic, Veljko
2016-04-01
Karst aquifers are very important groundwater resources around the world as well as in coastal part of Croatia. They consist of extremely complex structure defining by slow and laminar porous medium and small fissures and usually fast turbulent conduits/karst channels. Except simple lumped hydrological models that ignore high karst heterogeneity, full hydraulic (distributive) models have been developed exclusively by conventional finite element and finite volume elements considering complete karst heterogeneity structure that improves our understanding of complex processes in karst. Groundwater flow modeling in complex karst aquifers are faced by many difficulties such as a lack of heterogeneity knowledge (especially conduits), resolution of different spatial/temporal scales, connectivity between matrix and conduits, setting of appropriate boundary conditions and many others. Particular problem of karst flow modeling is verification of distributive models under real aquifer conditions due to lack of above-mentioned information. Therefore, we will show here possibility to verify karst flow models under the laboratory controlled conditions. Special 3-D karst flow model (5.6*2.6*2 m) consists of concrete construction, rainfall platform, 74 piezometers, 2 reservoirs and other supply equipment. Model is filled by fine sand (3-D porous matrix) and drainage plastic pipes (1-D conduits). This model enables knowledge of full heterogeneity structure including position of different sand layers as well as conduits location and geometry. Moreover, we know geometry of conduits perforation that enable analysis of interaction between matrix and conduits. In addition, pressure and precipitation distribution and discharge flow rates from both phases can be measured very accurately. These possibilities are not present in real sites what this model makes much more useful for karst flow modeling. Many experiments were performed under different controlled conditions such as different levels in left and right end of reservoirs (boundary conditions), different flow regimes in conduits, flow with and without precipitation, free and pressurized discharge from conduits or influence of epikarst (top layer) on recession period. Experimental results are verified by conventional karst flow model (such as MODFLOW-CFP) showing that hydraulic (distributive) models can describe complex behavior of karst flow processes if substantial amount of input data are known from site investigations and monitoring. These results enable us to develop more advanced karst flow models that will improve understanding and analysis of complex flow processes in the real karst aquifers.
TRANSPOSABLE REGULARIZED COVARIANCE MODELS WITH AN APPLICATION TO MISSING DATA IMPUTATION
Allen, Genevera I.; Tibshirani, Robert
2015-01-01
Missing data estimation is an important challenge with high-dimensional data arranged in the form of a matrix. Typically this data matrix is transposable, meaning that either the rows, columns or both can be treated as features. To model transposable data, we present a modification of the matrix-variate normal, the mean-restricted matrix-variate normal, in which the rows and columns each have a separate mean vector and covariance matrix. By placing additive penalties on the inverse covariance matrices of the rows and columns, these so called transposable regularized covariance models allow for maximum likelihood estimation of the mean and non-singular covariance matrices. Using these models, we formulate EM-type algorithms for missing data imputation in both the multivariate and transposable frameworks. We present theoretical results exploiting the structure of our transposable models that allow these models and imputation methods to be applied to high-dimensional data. Simulations and results on microarray data and the Netflix data show that these imputation techniques often outperform existing methods and offer a greater degree of flexibility. PMID:26877823
TRANSPOSABLE REGULARIZED COVARIANCE MODELS WITH AN APPLICATION TO MISSING DATA IMPUTATION.
Allen, Genevera I; Tibshirani, Robert
2010-06-01
Missing data estimation is an important challenge with high-dimensional data arranged in the form of a matrix. Typically this data matrix is transposable , meaning that either the rows, columns or both can be treated as features. To model transposable data, we present a modification of the matrix-variate normal, the mean-restricted matrix-variate normal , in which the rows and columns each have a separate mean vector and covariance matrix. By placing additive penalties on the inverse covariance matrices of the rows and columns, these so called transposable regularized covariance models allow for maximum likelihood estimation of the mean and non-singular covariance matrices. Using these models, we formulate EM-type algorithms for missing data imputation in both the multivariate and transposable frameworks. We present theoretical results exploiting the structure of our transposable models that allow these models and imputation methods to be applied to high-dimensional data. Simulations and results on microarray data and the Netflix data show that these imputation techniques often outperform existing methods and offer a greater degree of flexibility.
NASA Technical Reports Server (NTRS)
Bakuckas, John G., Jr.; Johnson, W. Steven
1994-01-01
In this research, thermal residual stresses were incorporated in an analysis of fiber-bridged matrix cracks in unidirectional and cross-ply titanium matrix composites (TMC) containing center holes or center notches. Two TMC were investigated, namely, SCS-6/Timelal-21S laminates. Experimentally, matrix crack initiation and growth were monitored during tension-tension fatigue tests conducted at room temperature and at an elevated temperature of 200 C. Analytically, thermal residual stresses were included in a fiber bridging (FB) model. The local R-ratio and stress-intensity factor in the matrix due to thermal and mechanical loadings were calculated and used to evaluate the matrix crack growth behavior in the two materials studied. The frictional shear stress term, tau, assumed in this model was used as a curve-fitting parameter to matrix crack growth data. The scatter band in the values of tau used to fit the matrix crack growth data was significantly reduced when thermal residual stresses were included in the fiber bridging analysis. For a given material system, lay-up and temperature, a single value of tau was sufficient to analyze the crack growth data. It was revealed in this study that thermal residual stresses are an important factor overlooked in the original FB models.
Creep of Heat-Resistant Composites of an Oxide-Fiber/Ni-Matrix Family
NASA Astrophysics Data System (ADS)
Mileiko, S. T.
2001-09-01
A creep model of a composite with a creeping matrix and initially continuous elastic brittle fibers is developed. The model accounts for the fiber fragmentation in the stage of unsteady creep of the composite, which ends with a steady-state creep, where a minimum possible average length of the fiber is achieved. The model makes it possible to analyze the creep rate of the composite in relation to such parameters of its structure as the statistic characteristics of the fiber strength, the creep characteristics of the matrix, and the strength of the fiber-matrix interface, the latter being of fundamental importance. A comparison between the calculation results and the experimental ones obtained on composites with a Ni-matrix and monocrystalline and eutectic oxide fibers as well as on sapphire fiber/TiAl-matrix composites shows that the model is applicable to the computer simulation of the creep behavior of heat-resistant composites and to the optimization of the structure of such composites. By combining the experimental data with calculation results, it is possible to evaluate the heat resistance of composites and the potential of oxide-fiber/Ni-matrix composites. The composite specimens obtained and tested to date reveal their high creep resistance up to a temperature of 1150°C. The maximum operating temperature of the composites can be considerably raised by strengthening the fiber-matrix interface.
Full control of ligand positioning reveals spatial thresholds for T cell receptor triggering.
Cai, Haogang; Muller, James; Depoil, David; Mayya, Viveka; Sheetz, Michael P; Dustin, Michael L; Wind, Shalom J
2018-04-30
Elucidating the rules for receptor triggering in cell-cell and cell-matrix contacts requires precise control of ligand positioning in three dimensions. Here, we use the T cell receptor (TCR) as a model and subject T cells to different geometric arrangements of ligands, using a nanofabricated single-molecule array platform. This comprises monovalent TCR ligands anchored to lithographically patterned nanoparticle clusters surrounded by mobile adhesion molecules on a supported lipid bilayer. The TCR ligand could be co-planar with the supported lipid bilayer (2D), excluding the CD45 transmembrane tyrosine phosphatase, or elevated by 10 nm on solid nanopedestals (3D), allowing closer access of CD45 to engaged TCR. The two configurations resulted in different T cell responses, depending on the lateral spacing between the ligands. These results identify the important contributions of lateral and axial components of ligand positioning and create a more complete foundation for receptor engineering for immunotherapy.
Motif discovery and motif finding from genome-mapped DNase footprint data.
Kulakovskiy, Ivan V; Favorov, Alexander V; Makeev, Vsevolod J
2009-09-15
Footprint data is an important source of information on transcription factor recognition motifs. However, a footprinting fragment can contain no sequences similar to known protein recognition sites. Inspection of genome fragments nearby can help to identify missing site positions. Genome fragments containing footprints were supplied to a pipeline that constructed a position weight matrix (PWM) for different motif lengths and selected the optimal PWM. Fragments were aligned with the SeSiMCMC sampler and a new heuristic algorithm, Bigfoot. Footprints with missing hits were found for approximately 50% of factors. Adding only 2 bp on both sides of a footprinting fragment recovered most hits. We automatically constructed motifs for 41 Drosophila factors. New motifs can recognize footprints with a greater sensitivity at the same false positive rate than existing models. Also we discuss possible overfitting of constructed motifs. Software and the collection of regulatory motifs are freely available at http://line.imb.ac.ru/DMMPMM.
Coherent Microwave Scattering Model of Marsh Grass
NASA Astrophysics Data System (ADS)
Duan, Xueyang; Jones, Cathleen E.
2017-12-01
In this work, we developed an electromagnetic scattering model to analyze radar scattering from tall-grass-covered lands such as wetlands and marshes. The model adopts the generalized iterative extended boundary condition method (GIEBCM) algorithm, previously developed for buried cylindrical media such as vegetation roots, to simulate the scattering from the grass layer. The major challenge of applying GIEBCM to tall grass is the extremely time-consuming iteration among the large number of short subcylinders building up the grass. To overcome this issue, we extended the GIEBCM to multilevel GIEBCM, or M-GIEBCM, in which we first use GIEBCM to calculate a T matrix (transition matrix) database of "straws" with various lengths, thicknesses, orientations, curvatures, and dielectric properties; we then construct the grass with a group of straws from the database and apply GIEBCM again to calculate the T matrix of the overall grass scene. The grass T matrix is transferred to S matrix (scattering matrix) and combined with the ground S matrix, which is computed using the stabilized extended boundary condition method, to obtain the total scattering. In this article, we will demonstrate the capability of the model by simulating scattering from scenes with different grass densities, different grass structures, different grass water contents, and different ground moisture contents. This model will help with radar experiment design and image interpretation for marshland and wetland observations.
A model to predict thermal conductivity of irradiated U-Mo dispersion fuel
NASA Astrophysics Data System (ADS)
Burkes, Douglas E.; Huber, Tanja K.; Casella, Andrew M.
2016-05-01
Numerous global programs are focused on the continued development of existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world's remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Some of these programs are focused on assisting with the development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layer formation between the dispersed phase and matrix and upon the concentration of the dispersed phase within the matrix. This paper extends the use of a simple model developed previously to study the influence of interaction layer formation as well as the size and volume fraction of fuel particles dispersed in the matrix, Si additions to the matrix, and Mo concentration in the fuel particles on the effective thermal conductivity of the U-Mo/Al composite during irradiation. The model has been compared to experimental measurements recently conducted on U-Mo/Al dispersion fuels at two different fission densities with acceptable agreement. Observations of the modeled results indicate that formation of an interaction layer and subsequent consumption of the matrix reveals a rather significant effect on effective thermal conductivity. The modeled interaction layer formation and subsequent consumption of the high thermal conductivity matrix was sensitive to the average dispersed fuel particle size, suggesting this parameter as one of the most effective in minimizing thermal conductivity degradation of the composite, while the influence of Si additions to the matrix in the model was highly dependent upon irradiation conditions.
A model to predict thermal conductivity of irradiated U–Mo dispersion fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkes, Douglas E.; Huber, Tanja K.; Casella, Andrew M.
The Office of Materials Management and Minimization Reactor Conversion Program continues to develop existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. The program is focused on assisting with the development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layermore » formation between the dispersed phase and matrix and upon the concentration of the dispersed phase within the matrix. This paper extends the use of a simple model developed previously to study the influence of interaction layer formation as well as the size and volume fraction of fuel particles dispersed in the matrix, Si additions to the matrix, and Mo concentration in the fuel particles on the effective thermal conductivity of the U-Mo/Al composite during irradiation. The model has been compared to experimental measurements recently conducted on U-Mo/Al dispersion fuels at two different fission densities with acceptable agreement. Observations of the modeled results indicate that formation of an interaction layer and subsequent consumption of the matrix reveals a rather significant effect on effective thermal conductivity. The modeled interaction layer formation and subsequent consumption of the high thermal conductivity matrix was sensitive to the average dispersed fuel particle size, suggesting this parameter as one of the most effective in minimizing thermal conductivity degradation of the composite, while the influence of Si additions to the matrix in the model was highly dependent upon irradiation conditions.« less
Hiraga, Toru; Ninomiya, Tadashi; Hosoya, Akihiro; Takahashi, Masafumi; Nakamura, Hiroaki
2009-01-01
Periodontal ligament (PDL) is a unique connective tissue that not only connects cementum and alveolar bone to support teeth, but also plays an important role in reconstructing periodontal tissues. Previous studies have suggested that PDL cells have osteogenic potential; however, they lack precise histological examinations. Here, we studied bone-like matrix formation by PDL cells in rats using morphological techniques. Rat and human PDL cells exhibited substantial alkaline phosphatase activity and induced mineralization in vitro. RT-PCR analyses showed that PDL cells expressed the osteoblast markers, Runx2, osterix, and osteocalcin. These results suggest that PDL cells share similar phenotypes with osteoblasts. To examine the bone-like matrix formation in vivo, PDL cells isolated from green fluorescent protein (GFP)-transgenic rats were inoculated with hydroxyapatite (HA) disks into wild-type rats. Five weeks after the implantation, the pores in HA disks were occupied by GFP-positive cells. Mineralized matrix formation was also found on the surface of HA pores. At 12 weeks, some of the pores were filled with bone-like mineralized matrices (BLMM), which were positive for the bone matrix proteins, osteopontin, bone sialoprotein, and osteocalcin. Immunohistochemical examination revealed that most of the osteoblast- and osteocyte-like cells on or in the BLMM were GFP-positive, suggesting that the BLMM were directly formed by the inoculated PDL cells. On the pore surfaces, Sharpey's fiber-like structures embedded in cementum-like mineralized layers were also observed. These results collectively suggest that PDL cells have the ability to form periodontal tissues and could be a useful source for regenerative therapies of periodontal diseases.
ERIC Educational Resources Information Center
Zhang, Zhidong
2016-01-01
This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…
ERIC Educational Resources Information Center
Cudeck, Robert; Browne, Michael W.
1992-01-01
A method is proposed for constructing a population covariance matrix as the sum of a particular model plus a nonstochastic residual matrix, with the stipulation that the model holds with a prespecified lack of fit. The procedure is considered promising for Monte Carlo studies. (SLD)
Bayesian estimation of a source term of radiation release with approximately known nuclide ratios
NASA Astrophysics Data System (ADS)
Tichý, Ondřej; Šmídl, Václav; Hofman, Radek
2016-04-01
We are concerned with estimation of a source term in case of an accidental release from a known location, e.g. a power plant. Usually, the source term of an accidental release of radiation comprises of a mixture of nuclide. The gamma dose rate measurements do not provide a direct information on the source term composition. However, physical properties of respective nuclide (deposition properties, decay half-life) can be used when uncertain information on nuclide ratios is available, e.g. from known reactor inventory. The proposed method is based on linear inverse model where the observation vector y arise as a linear combination y = Mx of a source-receptor-sensitivity (SRS) matrix M and the source term x. The task is to estimate the unknown source term x. The problem is ill-conditioned and further regularization is needed to obtain a reasonable solution. In this contribution, we assume that nuclide ratios of the release is known with some degree of uncertainty. This knowledge is used to form the prior covariance matrix of the source term x. Due to uncertainty in the ratios the diagonal elements of the covariance matrix are considered to be unknown. Positivity of the source term estimate is guaranteed by using multivariate truncated Gaussian distribution. Following Bayesian approach, we estimate all parameters of the model from the data so that y, M, and known ratios are the only inputs of the method. Since the inference of the model is intractable, we follow the Variational Bayes method yielding an iterative algorithm for estimation of all model parameters. Performance of the method is studied on simulated 6 hour power plant release where 3 nuclide are released and 2 nuclide ratios are approximately known. The comparison with method with unknown nuclide ratios will be given to prove the usefulness of the proposed approach. This research is supported by EEA/Norwegian Financial Mechanism under project MSMT-28477/2014 Source-Term Determination of Radionuclide Releases by Inverse Atmospheric Dispersion Modelling (STRADI).
Metal matrix composite micromechanics: In-situ behavior influence on composite properties
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Hopkins, D. A.; Chamis, C. C.
1989-01-01
Recent efforts in computational mechanics methods for simulating the nonlinear behavior of metal matrix composites have culminated in the implementation of the Metal Matrix Composite Analyzer (METCAN) computer code. In METCAN material nonlinearity is treated at the constituent (fiber, matrix, and interphase) level where the current material model describes a time-temperature-stress dependency of the constituent properties in a material behavior space. The composite properties are synthesized from the constituent instantaneous properties by virtue of composite micromechanics and macromechanics models. The behavior of metal matrix composites depends on fabrication process variables, in situ fiber and matrix properties, bonding between the fiber and matrix, and/or the properties of an interphase between the fiber and matrix. Specifically, the influence of in situ matrix strength and the interphase degradation on the unidirectional composite stress-strain behavior is examined. These types of studies provide insight into micromechanical behavior that may be helpful in resolving discrepancies between experimentally observed composite behavior and predicted response.
Polarimetry with multiple mirror telescopes
NASA Technical Reports Server (NTRS)
West, S. C.
1986-01-01
The polarizations of multiple mirror telescopes are calculated using Mueller calculus. It is found that the Multiple Mirror Telescope (MMT) produces a constant depolarization that is a function of wavelength and independent of sky position. The efficiency and crosstalk are modeled and experimentally verified. The two- and four-mirror new generation telescopes are found to produce sinusoidal depolarization for which an accurate interpretation of the incident Stokes vector requires inverse matrix calculations. Finally, the depolarization of f/1 paraboloids is calculated and found to be less than 0.1 percent at 3000 A.
Amerciamysis bahia Stochastic Matrix Population Model for Laboratory Populations
The population model described here is a stochastic, density-independent matrix model for integrating the effects of toxicants on survival and reproduction of the marine invertebrate, Americamysis bahia. The model was constructed using Microsoft® Excel 2003. The focus of the mode...
NASA Technical Reports Server (NTRS)
Oshman, Yaakov; Markley, Landis
1998-01-01
A sequential filtering algorithm is presented for attitude and attitude-rate estimation from Global Positioning System (GPS) differential carrier phase measurements. A third-order, minimal-parameter method for solving the attitude matrix kinematic equation is used to parameterize the filter's state, which renders the resulting estimator computationally efficient. Borrowing from tracking theory concepts, the angular acceleration is modeled as an exponentially autocorrelated stochastic process, thus avoiding the use of the uncertain spacecraft dynamic model. The new formulation facilitates the use of aiding vector observations in a unified filtering algorithm, which can enhance the method's robustness and accuracy. Numerical examples are used to demonstrate the performance of the method.
Global Radius of Curvature Estimation and Control System for Segmented Mirrors
NASA Technical Reports Server (NTRS)
Rakoczy, John M. (Inventor)
2006-01-01
An apparatus controls positions of plural mirror segments in a segmented mirror with an edge sensor system and a controller. Current mirror segment edge sensor measurements and edge sensor reference measurements are compared with calculated edge sensor bias measurements representing a global radius of curvature. Accumulated prior actuator commands output from an edge sensor control unit are combined with an estimator matrix to form the edge sensor bias measurements. An optimal control matrix unit then accumulates the plurality of edge sensor error signals calculated by the summation unit and outputs the corresponding plurality of actuator commands. The plural mirror actuators respond to the actuator commands by moving respective positions of the mixor segments. A predetermined number of boundary conditions, corresponding to a plurality of hexagonal mirror locations, are removed to afford mathematical matrix calculation.
Cushing, J M; Henson, Shandelle M
2018-02-03
For structured populations with an annual breeding season, life-stage interactions and behavioral tactics may occur on a faster time scale than that of population dynamics. Motivated by recent field studies of the effect of rising sea surface temperature (SST) on within-breeding-season behaviors in colonial seabirds, we formulate and analyze a general class of discrete-time matrix models designed to account for changes in behavioral tactics within the breeding season and their dynamic consequences at the population level across breeding seasons. As a specific example, we focus on egg cannibalism and the daily reproductive synchrony observed in seabirds. Using the model, we investigate circumstances under which these life history tactics can be beneficial or non-beneficial at the population level in light of the expected continued rise in SST. Using bifurcation theoretic techniques, we study the nature of non-extinction, seasonal cycles as a function of environmental resource availability as they are created upon destabilization of the extinction state. Of particular interest are backward bifurcations in that they typically create strong Allee effects in population models which, in turn, lead to the benefit of possible (initial condition dependent) survival in adverse environments. We find that positive density effects (component Allee effects) due to increased adult survival from cannibalism and the propensity of females to synchronize daily egg laying can produce a strong Allee effect due to a backward bifurcation.
Robust Gaussian Graphical Modeling via l1 Penalization
Sun, Hokeun; Li, Hongzhe
2012-01-01
Summary Gaussian graphical models have been widely used as an effective method for studying the conditional independency structure among genes and for constructing genetic networks. However, gene expression data typically have heavier tails or more outlying observations than the standard Gaussian distribution. Such outliers in gene expression data can lead to wrong inference on the dependency structure among the genes. We propose a l1 penalized estimation procedure for the sparse Gaussian graphical models that is robustified against possible outliers. The likelihood function is weighted according to how the observation is deviated, where the deviation of the observation is measured based on its own likelihood. An efficient computational algorithm based on the coordinate gradient descent method is developed to obtain the minimizer of the negative penalized robustified-likelihood, where nonzero elements of the concentration matrix represents the graphical links among the genes. After the graphical structure is obtained, we re-estimate the positive definite concentration matrix using an iterative proportional fitting algorithm. Through simulations, we demonstrate that the proposed robust method performs much better than the graphical Lasso for the Gaussian graphical models in terms of both graph structure selection and estimation when outliers are present. We apply the robust estimation procedure to an analysis of yeast gene expression data and show that the resulting graph has better biological interpretation than that obtained from the graphical Lasso. PMID:23020775
NASA Astrophysics Data System (ADS)
Brenner, Konstantin; Hennicker, Julian; Masson, Roland; Samier, Pierre
2018-03-01
In this work, we extend, to two-phase flow, the single-phase Darcy flow model proposed in [26], [12] in which the (d - 1)-dimensional flow in the fractures is coupled with the d-dimensional flow in the matrix. Three types of so called hybrid-dimensional two-phase Darcy flow models are proposed. They all account for fractures acting either as drains or as barriers, since they allow pressure jumps at the matrix-fracture interfaces. The models also permit to treat gravity dominated flow as well as discontinuous capillary pressure at the material interfaces. The three models differ by their transmission conditions at matrix fracture interfaces: while the first model accounts for the nonlinear two-phase Darcy flux conservations, the second and third ones are based on the linear single phase Darcy flux conservations combined with different approximations of the mobilities. We adapt the Vertex Approximate Gradient (VAG) scheme to this problem, in order to account for anisotropy and heterogeneity aspects as well as for applicability on general meshes. Several test cases are presented to compare our hybrid-dimensional models to the generic equi-dimensional model, in which fractures have the same dimension as the matrix, leading to deep insight about the quality of the proposed reduced models.
Investigation on Constrained Matrix Factorization for Hyperspectral Image Analysis
2005-07-25
analysis. Keywords: matrix factorization; nonnegative matrix factorization; linear mixture model ; unsupervised linear unmixing; hyperspectral imagery...spatial resolution permits different materials present in the area covered by a single pixel. The linear mixture model says that a pixel reflectance in...in r. In the linear mixture model , r is considered as the linear mixture of m1, m2, …, mP as nMαr += (1) where n is included to account for
ERIC Educational Resources Information Center
Anuar, Azad Athahiri; Rozubi, Norsayyidatina Che; Abdullah, Haslee Sharil
2015-01-01
The aims of this study were to develop and validate a MCC training module for trainee counselor based on MCC matrix model by Sue et al. (1992). This module encompassed five sub modules and 11 activities developed along the concepts and components of the MCC matrix model developed by Sue, Arredondo dan McDavis (1992). The design method used in this…
NASA Astrophysics Data System (ADS)
Mao, Chao; Chen, Shou
2017-01-01
According to the traditional entropy value method still have low evaluation accuracy when evaluating the performance of mining projects, a performance evaluation model of mineral project founded on improved entropy is proposed. First establish a new weight assignment model founded on compatible matrix analysis of analytic hierarchy process (AHP) and entropy value method, when the compatibility matrix analysis to achieve consistency requirements, if it has differences between subjective weights and objective weights, moderately adjust both proportions, then on this basis, the fuzzy evaluation matrix for performance evaluation. The simulation experiments show that, compared with traditional entropy and compatible matrix analysis method, the proposed performance evaluation model of mining project based on improved entropy value method has higher accuracy assessment.
Supersymmetric gauged matrix models from dimensional reduction on a sphere
NASA Astrophysics Data System (ADS)
Closset, Cyril; Ghim, Dongwook; Seong, Rak-Kyeong
2018-05-01
It was recently proposed that N = 1 supersymmetric gauged matrix models have a duality of order four — that is, a quadrality — reminiscent of infrared dualities of SQCD theories in higher dimensions. In this note, we show that the zero-dimensional quadrality proposal can be inferred from the two-dimensional Gadde-Gukov-Putrov triality. We consider two-dimensional N = (0, 2) SQCD compactified on a sphere with the half-topological twist. For a convenient choice of R-charge, the zero-mode sector on the sphere gives rise to a simple N = 1 gauged matrix model. Triality on the sphere then implies a triality relation for the supersymmetric matrix model, which can be completed to the full quadrality.
2015-03-01
General covariance intersection covariance matrix Σ1 Measurement 1’s covariance matrix I(X) Fisher information matrix g Confidence region L Lower... information in this chapter will discuss the motivation and background of the geolocation algorithm with the scope of the applications for this research. The...algorithm is able to produce the best description of an object given the information from a set of measurements. Determining a position requires the use of a
An Evaluation of Unit and ½ Mass Correction Approaches as a ...
Rare earth elements (REE) and certain alkaline earths can produce M+2 interferences in ICP-MS because they have sufficiently low second ionization energies. Four REEs (150Sm, 150Nd, 156Gd and 156Dy) produce false positives on 75As and 78Se and 132Ba can produce a false positive on 66Zn. Currently, US EPA Method 200.8 does not address these as sources of false positives. Additionally, these M+2 false positives are typically enhanced if collision cell technology is utilized to reduce polyatomic interferences associated with ICP-MS detection. A preliminary evaluation indicates that instrumental tuning conditions can impact the observed M+2/M+1 ratio and in turn the false positives generated on Zn, As and Se. Both unit and ½ mass approaches will be evaluated to correct for these false positives relative to the benchmark concentrations estimates from a triple quadrupole ICP-MS using standard solutions. The impact of matrix on these M+2 corrections will be evaluated over multiple analysis days with a focus on evaluating internal standards that mirror the matrix induced shifts in the M+2 ion transmission. The goal of this evaluation is to move away from fixed M+2 corrective approaches and move towards sample specific approaches that mimic the sample matrix induced variability while attempting to address intra-day variability of the M+2 correction factors through the use of internal standards. Oral Presentation via webinar for EPA Laboratory Technical Informati
Armbruster, Benjamin; Roy, Sourya; Kapur, Abhinav; Schneider, John A
2013-01-01
Men who have sex with men (MSM) practice role segregation - insertive or receptive only sex positions instead of a versatile role - in several international settings where candidate biomedical HIV prevention interventions (e.g., circumcision, anal microbicide) will be tested. The effects of these position-specific interventions on HIV incidence are modeled. We developed a deterministic compartmental model to predict HIV incidence among Indian MSM using data from 2003-2010. The model's sex mixing matrix was derived from network data of Indian MSM (n=4604). Our model captures changing distribution of sex roles over time. We modeled microbicide and circumcision efficacy on trials with heterosexuals. Increasing numbers of versatile MSM resulted in little change in HIV incidence over 20 years. Anal microbicides and circumcision would decrease the HIV prevalence at 10 years from 15.6% to 12.9% and 12.7% respectively. Anal microbicides would provide similar protection to circumcision at the population level despite lower modeled efficacy (54% and 60% risk reduction, respectively). Combination of the interventions were additive: in 5 years, the reduction in HIV prevalence of the combination (-3.2%) is almost the sum of their individual reductions in HIV prevalence (-1.8% and -1.7%). MSM sex role segregation and mixing, unlike changes in the sex role distribution, may be important for evaluating HIV prevention interventions in international settings. Synergies between some position-specific prevention interventions such as circumcision and anal microbicides warrant further study.
Three dimensional time reversal optical tomography
NASA Astrophysics Data System (ADS)
Wu, Binlin; Cai, W.; Alrubaiee, M.; Xu, M.; Gayen, S. K.
2011-03-01
Time reversal optical tomography (TROT) approach is used to detect and locate absorptive targets embedded in a highly scattering turbid medium to assess its potential in breast cancer detection. TROT experimental arrangement uses multi-source probing and multi-detector signal acquisition and Multiple-Signal-Classification (MUSIC) algorithm for target location retrieval. Light transport from multiple sources through the intervening medium with embedded targets to the detectors is represented by a response matrix constructed using experimental data. A TR matrix is formed by multiplying the response matrix by its transpose. The eigenvectors with leading non-zero eigenvalues of the TR matrix correspond to embedded objects. The approach was used to: (a) obtain the location and spatial resolution of an absorptive target as a function of its axial position between the source and detector planes; and (b) study variation in spatial resolution of two targets at the same axial position but different lateral positions. The target(s) were glass sphere(s) of diameter ~9 mm filled with ink (absorber) embedded in a 60 mm-thick slab of Intralipid-20% suspension in water with an absorption coefficient μa ~ 0.003 mm-1 and a transport mean free path lt ~ 1 mm at 790 nm, which emulate the average values of those parameters for human breast tissue. The spatial resolution and accuracy of target location depended on axial position, and target contrast relative to the background. Both the targets could be resolved and located even when they were only 4-mm apart. The TROT approach is fast, accurate, and has the potential to be useful in breast cancer detection and localization.
Applications of Perron-Frobenius theory to population dynamics.
Li, Chi-Kwong; Schneider, Hans
2002-05-01
By the use of Perron-Frobenius theory, simple proofs are given of the Fundamental Theorem of Demography and of a theorem of Cushing and Yicang on the net reproductive rate occurring in matrix models of population dynamics. The latter result, which is closely related to the Stein-Rosenberg theorem in numerical linear algebra, is further refined with some additional nonnegative matrix theory. When the fertility matrix is scaled by the net reproductive rate, the growth rate of the model is $1$. More generally, we show how to achieve a given growth rate for the model by scaling the fertility matrix. Demographic interpretations of the results are given.
Khairy, Mohammed; Barrett, Kirk; Lohmann, Rainer
2016-03-01
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were measured in sediments (surface and deeper sediments) and porewater of the lower Passaic River and Newark Bay (New Jersey, USA) to apportion their sources and conduct an ecological risk assessment. Positive matrix factorization was applied to identify sources of PCDD/Fs. Five source profiles were extracted from the positive matrix factorization model applied to the sediment samples including chloranil, combustion, polychlorinated biphenyl impurities, mixed urban sources, and the historical contamination from the former Diamond Alkali plant. The ecological risk assessment was estimated using several lines of evidence depending on site-specific data (blue crab and fish samples representing different feeding habits and positions in the trophic wood web of the river). Porewater concentrations gave the best estimates of lipid concentrations especially in the blue crab samples (with an average factor difference of 3.8). Calculated hazard quotients (HQs) for the fish samples and blue crab were >1 based on the no-effect concentration and tissue screening concentration approaches. At the same time, calculated porewater toxic units were >1. Sediment concentrations exceeded the published sediment quality guidelines for the protection of fish and benthic species, indicating the existence of significant risk to the aquatic life in the Passaic River. Accordingly, further actions and control measures are needed to reduce the emission of PCDD/Fs from ongoing sources. © 2015 SETAC.
Grassmann matrix quantum mechanics
Anninos, Dionysios; Denef, Frederik; Monten, Ruben
2016-04-21
We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit.more » In conclusion, we discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.« less
Salient Object Detection via Structured Matrix Decomposition.
Peng, Houwen; Li, Bing; Ling, Haibin; Hu, Weiming; Xiong, Weihua; Maybank, Stephen J
2016-05-04
Low-rank recovery models have shown potential for salient object detection, where a matrix is decomposed into a low-rank matrix representing image background and a sparse matrix identifying salient objects. Two deficiencies, however, still exist. First, previous work typically assumes the elements in the sparse matrix are mutually independent, ignoring the spatial and pattern relations of image regions. Second, when the low-rank and sparse matrices are relatively coherent, e.g., when there are similarities between the salient objects and background or when the background is complicated, it is difficult for previous models to disentangle them. To address these problems, we propose a novel structured matrix decomposition model with two structural regularizations: (1) a tree-structured sparsity-inducing regularization that captures the image structure and enforces patches from the same object to have similar saliency values, and (2) a Laplacian regularization that enlarges the gaps between salient objects and the background in feature space. Furthermore, high-level priors are integrated to guide the matrix decomposition and boost the detection. We evaluate our model for salient object detection on five challenging datasets including single object, multiple objects and complex scene images, and show competitive results as compared with 24 state-of-the-art methods in terms of seven performance metrics.
Dwell time algorithm based on the optimization theory for magnetorheological finishing
NASA Astrophysics Data System (ADS)
Zhang, Yunfei; Wang, Yang; Wang, Yajun; He, Jianguo; Ji, Fang; Huang, Wen
2010-10-01
Magnetorheological finishing (MRF) is an advanced polishing technique capable of rapidly converging to the required surface figure. This process can deterministically control the amount of the material removed by varying a time to dwell at each particular position on the workpiece surface. The dwell time algorithm is one of the most important key techniques of the MRF. A dwell time algorithm based on the1 matrix equation and optimization theory was presented in this paper. The conventional mathematical model of the dwell time was transferred to a matrix equation containing initial surface error, removal function and dwell time function. The dwell time to be calculated was just the solution to the large, sparse matrix equation. A new mathematical model of the dwell time based on the optimization theory was established, which aims to minimize the 2-norm or ∞-norm of the residual surface error. The solution meets almost all the requirements of precise computer numerical control (CNC) without any need for extra data processing, because this optimization model has taken some polishing condition as the constraints. Practical approaches to finding a minimal least-squares solution and a minimal maximum solution are also discussed in this paper. Simulations have shown that the proposed algorithm is numerically robust and reliable. With this algorithm an experiment has been performed on the MRF machine developed by ourselves. After 4.7 minutes' polishing, the figure error of a flat workpiece with a 50 mm diameter is improved by PV from 0.191λ(λ = 632.8 nm) to 0.087λ and RMS 0.041λ to 0.010λ. This algorithm can be constructed to polish workpieces of all shapes including flats, spheres, aspheres, and prisms, and it is capable of improving the polishing figures dramatically.
Makings of a brittle bone: Unexpected lessons from a low protein diet study of a mouse OI model
Mertz, E.L.; Makareeva, E.; Mirigian, L.S.; Koon, K.Y.; Perosky, J.E.; Kozloff, K.M.; Leikin, S.
2016-01-01
Glycine substitutions in type I collagen appear to cause osteogenesis imperfecta (OI) by disrupting folding of the triple helix, the structure of which requires Gly in every third position. It is less clear, however, whether the resulting bone malformations and fragility are caused by effects of intracellular accumulation of misfolded collagen on differentiation and function of osteoblasts, effects of secreted misfolded collagen on the function of bone matrix, or both. Here we describe a study originally conceived for testing how reducing intracellular accumulation of misfolded collagen would affect mice with a Gly610 to Cys substitution in the triple helical region of the α2(I) chain. To stimulate degradation of misfolded collagen by autophagy, we utilized a low protein diet. The diet had beneficial effects on osteoblast differentiation and bone matrix mineralization, but it also affected bone modeling and suppressed overall animal growth. Our more important observations, however, were not related to the diet. They revealed how altered osteoblast function and deficient bone formation by each cell caused by the G610C mutation combined with increased osteoblastogenesis might make the bone more brittle, all of which are common OI features. In G610C mice, increased bone formation surface compensated for reduced mineral apposition rate, resulting in normal cortical area and thickness at the cost of altering cortical modeling process, retaining woven bone, and reducing the ability of bone to absorb energy through plastic deformation. Reduced collagen and increased mineral density in extracellular matrix of lamellar bone compounded the problem, further reducing bone toughness. The latter observations might have particularly important implications for understanding OI pathophysiology and designing more effective therapeutic interventions. PMID:27039252
Combining cluster number counts and galaxy clustering
NASA Astrophysics Data System (ADS)
Lacasa, Fabien; Rosenfeld, Rogerio
2016-08-01
The abundance of clusters and the clustering of galaxies are two of the important cosmological probes for current and future large scale surveys of galaxies, such as the Dark Energy Survey. In order to combine them one has to account for the fact that they are not independent quantities, since they probe the same density field. It is important to develop a good understanding of their correlation in order to extract parameter constraints. We present a detailed modelling of the joint covariance matrix between cluster number counts and the galaxy angular power spectrum. We employ the framework of the halo model complemented by a Halo Occupation Distribution model (HOD). We demonstrate the importance of accounting for non-Gaussianity to produce accurate covariance predictions. Indeed, we show that the non-Gaussian covariance becomes dominant at small scales, low redshifts or high cluster masses. We discuss in particular the case of the super-sample covariance (SSC), including the effects of galaxy shot-noise, halo second order bias and non-local bias. We demonstrate that the SSC obeys mathematical inequalities and positivity. Using the joint covariance matrix and a Fisher matrix methodology, we examine the prospects of combining these two probes to constrain cosmological and HOD parameters. We find that the combination indeed results in noticeably better constraints, with improvements of order 20% on cosmological parameters compared to the best single probe, and even greater improvement on HOD parameters, with reduction of error bars by a factor 1.4-4.8. This happens in particular because the cross-covariance introduces a synergy between the probes on small scales. We conclude that accounting for non-Gaussian effects is required for the joint analysis of these observables in galaxy surveys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Dan, E-mail: danzhou@is.mpg.de; Sigle, Wilfried; Wang, Yi
We studied ZrO{sub 2} − La{sub 2/3}Sr{sub 1/3}MnO{sub 3} pillar–matrix thin films which were found to show anomalous magnetic and electron transport properties. With the application of an aberration-corrected transmission electron microscope, interfacial chemistry, and atomic-arrangement of the system, especially of the pillar–matrix interface were revealed at atomic resolution. Minor amounts of Zr were found to occupy Mn positions within the matrix. The Zr concentration reaches a minimum near the pillar–matrix interface accompanied by oxygen vacancies. La and Mn diffusion into the pillar was revealed at atomic resolution and a concomitant change of the Mn valence state was observed.
Position Error Covariance Matrix Validation and Correction
NASA Technical Reports Server (NTRS)
Frisbee, Joe, Jr.
2016-01-01
In order to calculate operationally accurate collision probabilities, the position error covariance matrices predicted at times of closest approach must be sufficiently accurate representations of the position uncertainties. This presentation will discuss why the Gaussian distribution is a reasonable expectation for the position uncertainty and how this assumed distribution type is used in the validation and correction of position error covariance matrices.
Can Condensing Organic Aerosols Lead to Less Cloud Particles?
NASA Astrophysics Data System (ADS)
Gao, C. Y.; Tsigaridis, K.; Bauer, S.
2017-12-01
We examined the impact of condensing organic aerosols on activated cloud number concentration in a new aerosol microphysics box model, MATRIX-VBS. The model includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) that resolves aerosol mass and number concentrations and aerosol mixing state. Preliminary results show that by including the condensation of organic aerosols, the new model (MATRIX-VBS) has less activated particles compared to the original model (MATRIX), which treats organic aerosols as non-volatile. Parameters such as aerosol chemical composition, mass and number concentrations, and particle sizes which affect activated cloud number concentration are thoroughly evaluated via a suite of Monte-Carlo simulations. The Monte-Carlo simulations also provide information on which climate-relevant parameters play a critical role in the aerosol evolution in the atmosphere. This study also helps simplifying the newly developed box model which will soon be implemented in the global model GISS ModelE as a module.
Gordo, D G M; Espigolan, R; Tonussi, R L; Júnior, G A F; Bresolin, T; Magalhães, A F Braga; Feitosa, F L; Baldi, F; Carvalheiro, R; Tonhati, H; de Oliveira, H N; Chardulo, L A L; de Albuquerque, L G
2016-05-01
The objective of this study was to determine whether visual scores used as selection criteria in Nellore breeding programs are effective indicators of carcass traits measured after slaughter. Additionally, this study evaluated the effect of different structures of the relationship matrix ( and ) on the estimation of genetic parameters and on the prediction accuracy of breeding values. There were 13,524 animals for visual scores of conformation (CS), finishing precocity (FP), and muscling (MS) and 1,753, 1,747, and 1,564 for LM area (LMA), backfat thickness (BF), and HCW, respectively. Of these, 1,566 animals were genotyped using a high-density panel containing 777,962 SNP. Six analyses were performed using multitrait animal models, each including the 3 visual scores and 1 carcass trait. For the visual scores, the model included direct additive genetic and residual random effects and the fixed effects of contemporary group (defined by year of birth, management group at yearling, and farm) and the linear effect of age of animal at yearling. The same model was used for the carcass traits, replacing the effect of age of animal at yearling with the linear effect of age of animal at slaughter. The variance and covariance components were estimated by the REML method in analyses using the numerator relationship matrix () or combining the genomic and the numerator relationship matrices (). The heritability estimates for the visual scores obtained with the 2 methods were similar and of moderate magnitude (0.23-0.34), indicating that these traits should response to direct selection. The heritabilities for LMA, BF, and HCW were 0.13, 0.07, and 0.17, respectively, using matrix and 0.29, 0.16, and 0.23, respectively, using matrix . The genetic correlations between the visual scores and carcass traits were positive, and higher correlations were generally obtained when matrix was used. Considering the difficulties and cost of measuring carcass traits postmortem, visual scores of CS, FP, and MS could be used as selection criteria to improve HCW, BF, and LMA. The use of genomic information permitted the detection of greater additive genetic variability for LMA and BF. For HCW, the high magnitude of the genetic correlations with visual scores was probably sufficient to recover genetic variability. The methods provided similar breeding value accuracies, especially for the visual scores.
An Alternating Least Squares Method for the Weighted Approximation of a Symmetric Matrix.
ERIC Educational Resources Information Center
ten Berge, Jos M. F.; Kiers, Henk A. L.
1993-01-01
R. A. Bailey and J. C. Gower explored approximating a symmetric matrix "B" by another, "C," in the least squares sense when the squared discrepancies for diagonal elements receive specific nonunit weights. A solution is proposed where "C" is constrained to be positive semidefinite and of a fixed rank. (SLD)
Zwolak, Pawel; Farei-Campagna, Jan; Jentzsch, Thorsten; von Rechenberg, Brigitte; Werner, Clément M
2018-01-01
Posterolateral spinal fusion is a common orthopaedic surgery performed to treat degenerative and traumatic deformities of the spinal column. In posteriolateral spinal fusion, different osteoinductive demineralized bone matrix products have been previously investigated. We evaluated the effect of locally applied zoledronic acid in combination with commercially available demineralized bone matrix putty on new bone formation in posterolateral spinal fusion in a murine in vivo model. A posterolateral sacral spine fusion in murine model was used to evaluate the new bone formation. We used the sacral spine fusion model to model the clinical situation in which a bone graft or demineralized bone matrix is applied after dorsal instrumentation of the spine. In our study, group 1 received decortications only (n = 10), group 2 received decortication, and absorbable collagen sponge carrier, group 3 received decortication and absorbable collagen sponge carrier with zoledronic acid in dose 10 µg, group 4 received demineralized bone matrix putty (DBM putty) plus decortication (n = 10), and group 5 received DBM putty, decortication and locally applied zoledronic acid in dose 10 µg. Imaging was performed using MicroCT for new bone formation assessment. Also, murine spines were harvested for histopathological analysis 10 weeks after surgery. The surgery performed through midline posterior approach was reproducible. In group with decortication alone there was no new bone formation. Application of demineralized bone matrix putty alone produced new bone formation which bridged the S1-S4 laminae. Local application of zoledronic acid to demineralized bone matrix putty resulted in significant increase of new bone formation as compared to demineralized bone matrix putty group alone. A single local application of zoledronic acid with DBM putty during posterolateral fusion in sacral murine spine model increased significantly new bone formation in situ in our model. Therefore, our results justify further investigations to potentially use local application of zoledronic acid in future clinical studies.
NASA Astrophysics Data System (ADS)
Xu, Xiankun; Li, Peiwen
2017-11-01
Fixman's work in 1974 and the follow-up studies have developed a method that can factorize the inverse of mass matrix into an arithmetic combination of three sparse matrices-one of them is positive definite and needs to be further factorized by using the Cholesky decomposition or similar methods. When the molecule subjected to study is of serial chain structure, this method can achieve O (n) time complexity. However, for molecules with long branches, Cholesky decomposition about the corresponding positive definite matrix will introduce massive fill-in due to its nonzero structure. Although there are several methods can be used to reduce the number of fill-in, none of them could strictly guarantee for zero fill-in for all molecules according to our test, and thus cannot obtain O (n) time complexity by using these traditional methods. In this paper we present a new method that can guarantee for no fill-in in doing the Cholesky decomposition, which was developed based on the correlations between the mass matrix and the geometrical structure of molecules. As a result, the inverting of mass matrix will remain the O (n) time complexity, no matter the molecule structure has long branches or not.
NASA Astrophysics Data System (ADS)
Mossoba, Magdi M.; McDonald, Richard E.; Chen, Jo-Yun T.; Page, Samuel W.
1989-12-01
Geometric and positional isomers of fatty acid methyl esters (FAME) derived from hydrogenated soybean oil and margarines were separated by silver nitrate-thin layer chromatography (AgNO3-TLC) followed by capillary gas chromatography (GC) and identified by matrix isolation / Fourier transform infrared (MI/FTIR) spectroscopyi,2. Because of the high specificity of the MI technique, it was possible to distinguish between different 18-carbon aliphatic chains of FAME positional isomers with cis or trans configuration, and to determine their degree of unsaturation. For the first time mid-IR spectra were observed for methylene-interrupted or isolated trans, trans or cis/ trans C18 FAME positional isomers. These spectra could be readily differentiated based on unique MI/FTIR spectral characteristics.
Automatic multi-camera calibration for deployable positioning systems
NASA Astrophysics Data System (ADS)
Axelsson, Maria; Karlsson, Mikael; Rudner, Staffan
2012-06-01
Surveillance with automated positioning and tracking of subjects and vehicles in 3D is desired in many defence and security applications. Camera systems with stereo or multiple cameras are often used for 3D positioning. In such systems, accurate camera calibration is needed to obtain a reliable 3D position estimate. There is also a need for automated camera calibration to facilitate fast deployment of semi-mobile multi-camera 3D positioning systems. In this paper we investigate a method for automatic calibration of the extrinsic camera parameters (relative camera pose and orientation) of a multi-camera positioning system. It is based on estimation of the essential matrix between each camera pair using the 5-point method for intrinsically calibrated cameras. The method is compared to a manual calibration method using real HD video data from a field trial with a multicamera positioning system. The method is also evaluated on simulated data from a stereo camera model. The results show that the reprojection error of the automated camera calibration method is close to or smaller than the error for the manual calibration method and that the automated calibration method can replace the manual calibration.
General structure of democratic mass matrix of quark sector in E{sub 6} model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciftci, R., E-mail: rciftci@cern.ch; Çiftci, A. K., E-mail: abbas.kenan.ciftci@cern.ch
2016-03-25
An extension of the Standard Model (SM) fermion sector, which is inspired by the E{sub 6} Grand Unified Theory (GUT) model, might be a good candidate to explain a number of unanswered questions in SM. Existence of the isosinglet quarks might explain great mass difference of bottom and top quarks. Also, democracy on mass matrix elements is a natural approach in SM. In this study, we have given general structure of Democratic Mass Matrix (DMM) of quark sector in E6 model.
Aspects géométriques et intégrables des modèles de matrices aléatoires
NASA Astrophysics Data System (ADS)
Marchal, Olivier
2010-12-01
This thesis deals with the geometric and integrable aspects associated with random matrix models. Its purpose is to provide various applications of random matrix theory, from algebraic geometry to partial differential equations of integrable systems. The variety of these applications shows why matrix models are important from a mathematical point of view. First, the thesis will focus on the study of the merging of two intervals of the eigenvalues density near a singular point. Specifically, we will show why this special limit gives universal equations from the Painlevé II hierarchy of integrable systems theory. Then, following the approach of (bi) orthogonal polynomials introduced by Mehta to compute partition functions, we will find Riemann-Hilbert and isomonodromic problems connected to matrix models, making the link with the theory of Jimbo, Miwa and Ueno. In particular, we will describe how the hermitian two-matrix models provide a degenerate case of Jimbo-Miwa-Ueno's theory that we will generalize in this context. Furthermore, the loop equations method, with its central notions of spectral curve and topological expansion, will lead to the symplectic invariants of algebraic geometry recently proposed by Eynard and Orantin. This last point will be generalized to the case of non-hermitian matrix models (arbitrary beta) paving the way to "quantum algebraic geometry" and to the generalization of symplectic invariants to "quantum curves". Finally, this set up will be applied to combinatorics in the context of topological string theory, with the explicit computation of an hermitian random matrix model enumerating the Gromov-Witten invariants of a toric Calabi-Yau threefold.
Model Based Reconstruction of UT Array Data
NASA Astrophysics Data System (ADS)
Calmon, P.; Iakovleva, E.; Fidahoussen, A.; Ribay, G.; Chatillon, S.
2008-02-01
Beyond the detection of defects, their characterization (identification, positioning, sizing) is one goal of great importance often assigned to the analysis of NDT data. The first step of such analysis in the case of ultrasonic testing amounts to image in the part the detected echoes. This operation is in general achieved by considering time of flights and by applying simplified algorithms which are often valid only on canonical situations. In this communication we present an overview of different imaging techniques studied at CEA LIST and based on the exploitation of direct models which enable to address complex configurations and are available in the CIVA software plat-form. We discuss in particular ray-model based algorithms, algorithms derived from classical synthetic focusing and processing of the full inter-element matrix (MUSIC algorithm).
Monocyte activation by smooth muscle cell-derived matrices.
Kaufmann, J; Jorgensen, R W; Martin, B M; Franzblau, C
1990-12-01
Mononuclear phagocytes adhere to and penetrate the vessel wall endothelium and contact the subendothelial space prior to the development of the atherosclerotic plaque. In an attempt to model the early events of plaque development we used an elastin-rich, multicomponent, cell-derived matrix from neonatal rat aortic smooth muscle cells as a substratum for monocytes. Using this model, we show that human monocyte morphology and metabolism are markedly altered by the matrix substratum. When a mixed mononuclear cell population is seeded on matrix or plastic, only monocytes adhere to the matrix surface. In contrast, lymphocytes as well as monocytes adhere to the plastic surface. The matrix-adherent monocytes develop large intracellular granules and form extensive clusters of individual cells. Metabolically, these cells develop sodium fluoride resistant non-specific esterase activity and their media contain more growth factor activity and PGE2. Although total protein synthesis is equivalent in both cultures, the matrix contact induces an increase in specific proteins in the media. We also show that a purified alpha-elastin substratum induces some, but not all, of the monocyte changes seen when using the matrix substratum. Using the alpha-elastin substratum, there is selective adhesion of monocytes and increased growth factor activity, however, the cells are morphologically different from the matrix-adherent cells. Thus, the use of the smooth muscle cell-derived matrix, in conjunction with purified matrix components, serves as a model that can provide insight into the mechanisms of monocyte adhesion and stimulation by the matrix environment that exists in vivo. Such mechanisms may be particularly important in atherogenesis.
Structure of right-handed neutrino mass matrix
NASA Astrophysics Data System (ADS)
Koide, Yoshio
2017-11-01
Recently, Nishiura and the author proposed a unified quark-lepton mass matrix model under a family symmetry U (3 )×U (3 )' . The model can give excellent parameter fitting to the observed quark and neutrino data. The model has a reasonable basis as far as the quark sector, but, in the neutrino sector, the form of the right-handed neutrino mass matrix MR does not have a theoretical basis; that is, it was nothing but a phenomenological assumption. In this paper, it is pointed out that the form of MR is originated in the structure of Majorana mass matrix (4 ×4 matrix) for the left-handed fields ((νL)i,(νRc)i,(NL)α,(NRc)α) where νi (i =1 , 2, 3) and Nα (α =1 , 2, 3) are U(3)-family and U(3 ) ' -family triplets, respectively.
Multistationarity in mass action networks with applications to ERK activation.
Conradi, Carsten; Flockerzi, Dietrich
2012-07-01
Ordinary Differential Equations (ODEs) are an important tool in many areas of Quantitative Biology. For many ODE systems multistationarity (i.e. the existence of at least two positive steady states) is a desired feature. In general establishing multistationarity is a difficult task as realistic biological models are large in terms of states and (unknown) parameters and in most cases poorly parameterized (because of noisy measurement data of few components, a very small number of data points and only a limited number of repetitions). For mass action networks establishing multistationarity hence is equivalent to establishing the existence of at least two positive solutions of a large polynomial system with unknown coefficients. For mass action networks with certain structural properties, expressed in terms of the stoichiometric matrix and the reaction rate-exponent matrix, we present necessary and sufficient conditions for multistationarity that take the form of linear inequality systems. Solutions of these inequality systems define pairs of steady states and parameter values. We also present a sufficient condition to identify networks where the aforementioned conditions hold. To show the applicability of our results we analyse an ODE system that is defined by the mass action network describing the extracellular signal-regulated kinase (ERK) cascade (i.e. ERK-activation).
Predators modify biogeographic constraints on species distributions in an insect metacommunity.
Grainger, Tess Nahanni; Germain, Rachel M; Jones, Natalie T; Gilbert, Benjamin
2017-03-01
Theory describing the positive effects of patch size and connectivity on diversity in fragmented systems has stimulated a large body of empirical work, yet predicting when and how local species interactions mediate these responses remains challenging. We used insects that specialize on milkweed plants as a model metacommunity to investigate how local predation alters the effects of biogeographic constraints on species distributions. Species-specific dispersal ability and susceptibility to predation were used to predict when patch size and connectivity should shape species distributions, and when these should be modified by local predator densities. We surveyed specialist herbivores and their predators in milkweed patches in two matrix types, a forest and an old field. Predator-resistant species showed the predicted direct positive effects of patch size and connectivity on occupancy rates. For predator-susceptible species, predators consistently altered the impact of biogeographic constraints, rather than acting independently. Finally, differences between matrix types in species' responses and overall occupancy rates indicate a potential role of the inter-patch environment in mediating the joint effects of predators and spatial drivers. Together, these results highlight the importance of local top-down pressure in mediating classic biogeographic relationships, and demonstrate how species-specific responses to local and regional constraints can be used to predict these effects. © 2017 by the Ecological Society of America.
Source apportionment of PM10 by positive matrix factorization in urban area of Mumbai, India.
Gupta, Indrani; Salunkhe, Abhaysinh; Kumar, Rakesh
2012-01-01
Particulate Matter (PM(10)) has been one of the main air pollutants exceeding the ambient standards in most of the major cities in India. During last few years, receptor models such as Chemical Mass Balance, Positive Matrix Factorization (PMF), PCA-APCS and UNMIX have been used to provide solutions to the source identification and contributions which are accepted for developing effective and efficient air quality management plans. Each site poses different complexities while resolving PM(10) contributions. This paper reports the variability of four sites within Mumbai city using PMF. Industrial area of Mahul showed sources such as residual oil combustion and paved road dust (27%), traffic (20%), coal fired boiler (17%), nitrate (15%). Residential area of Khar showed sources such as residual oil combustion and construction (25%), motor vehicles (23%), marine aerosol and nitrate (19%), paved road dust (18%) compared to construction and natural dust (27%), motor vehicles and smelting work (25%), nitrate (16%) and biomass burning and paved road dust (15%) in Dharavi, a low income slum residential area. The major contributors of PM(10) at Colaba were marine aerosol, wood burning and ammonium sulphate (24%), motor vehicles and smelting work (22%), Natural soil (19%), nitrate and oil burning (18%).
Collapse of resilience patterns in generalized Lotka-Volterra dynamics and beyond.
Tu, Chengyi; Grilli, Jacopo; Schuessler, Friedrich; Suweis, Samir
2017-06-01
Recently, a theoretical framework aimed at separating the roles of dynamics and topology in multidimensional systems has been developed [Gao et al., Nature (London) 530, 307 (2016)10.1038/nature16948]. The validity of their method is assumed to hold depending on two main hypotheses: (i) The network determined by the the interaction between pairs of nodes has negligible degree correlations; (ii) the node activities are uniform across nodes on both the drift and the pairwise interaction functions. Moreover, the authors consider only positive (mutualistic) interactions. Here we show the conditions proposed by Gao and collaborators [Nature (London) 530, 307 (2016)10.1038/nature16948] are neither sufficient nor necessary to guarantee that their method works in general and validity of their results are not independent of the model chosen within the class of dynamics they considered. Indeed we find that a new condition poses effective limitations to their framework and we provide quantitative predictions of the quality of the one-dimensional collapse as a function of the properties of interaction networks and stable dynamics using results from random matrix theory. We also find that multidimensional reduction may work also for an interaction matrix with a mixture of positive and negative signs, opening up an application of the framework to food webs, neuronal networks, and social and economic interactions.
Collapse of resilience patterns in generalized Lotka-Volterra dynamics and beyond
NASA Astrophysics Data System (ADS)
Tu, Chengyi; Grilli, Jacopo; Schuessler, Friedrich; Suweis, Samir
2017-06-01
Recently, a theoretical framework aimed at separating the roles of dynamics and topology in multidimensional systems has been developed [Gao et al., Nature (London) 530, 307 (2016), 10.1038/nature16948]. The validity of their method is assumed to hold depending on two main hypotheses: (i) The network determined by the the interaction between pairs of nodes has negligible degree correlations; (ii) the node activities are uniform across nodes on both the drift and the pairwise interaction functions. Moreover, the authors consider only positive (mutualistic) interactions. Here we show the conditions proposed by Gao and collaborators [Nature (London) 530, 307 (2016), 10.1038/nature16948] are neither sufficient nor necessary to guarantee that their method works in general and validity of their results are not independent of the model chosen within the class of dynamics they considered. Indeed we find that a new condition poses effective limitations to their framework and we provide quantitative predictions of the quality of the one-dimensional collapse as a function of the properties of interaction networks and stable dynamics using results from random matrix theory. We also find that multidimensional reduction may work also for an interaction matrix with a mixture of positive and negative signs, opening up an application of the framework to food webs, neuronal networks, and social and economic interactions.
PP/PS anisotropic stereotomography
NASA Astrophysics Data System (ADS)
Nag, Steinar; Alerini, Mathias; Ursin, Bjørn
2010-04-01
Stereotomography is a slope tomographic method which gives good results for background velocity model estimation in 2-D isotropic media. We develop here the extension of the method to 3-D general anisotropic media for PP and PS events. We do not take into account the issue of shear wave degeneracy. As in isotropic media, the sensitivity matrix of the inversion can be computed by paraxial ray tracing. We introduce a `constant Z stereotomography' approach, which can reduce the size of the sensitivity matrix. Based on ray perturbation theory, we give all the derivatives of stereotomography data parameters with respect to model parameters in a 3-D general anisotropic medium. These general formulas for the derivatives can also be used in other applications that rely on anisotropic ray perturbation theory. In particular, we obtain derivatives of the phase velocity with respect to position, phase angle and elastic medium parameters, all for general anisotropic media. The derivatives are expressed using the Voigt notation for the elastic medium parameters. We include a Jacobian that allows to change the model parametrization from Voigt to Thomsen parameters. Explicit expressions for the derivatives of the data are given for the case of 2-D tilted transversely isotropic (TTI) media. We validate the method by single-parameter estimation of each Thomsen parameter field of a 2-D TTI synthetic model, where data are modelled by ray tracing. For each Thomsen parameter, the estimated velocity field fits well with the true velocity field.
NASA Astrophysics Data System (ADS)
Xu, Bin; Ye, Ming; Dong, Shuning; Dai, Zhenxue; Pei, Yongzhen
2018-07-01
Quantitative analysis of recession curves of karst spring hydrographs is a vital tool for understanding karst hydrology and inferring hydraulic properties of karst aquifers. This paper presents a new model for simulating karst spring recession curves. The new model has the following characteristics: (1) the model considers two separate but hydraulically connected reservoirs: matrix reservoir and conduit reservoir; (2) the model separates karst spring hydrograph recession into three stages: conduit-drainage stage, mixed-drainage stage (with both conduit drainage and matrix drainage), and matrix-drainage stage; and (3) in the mixed-drainage stage, the model uses multiple conduit layers to present different levels of conduit development. The new model outperforms the classical Mangin model and the recently developed Fiorillo model for simulating observed discharge at the Madison Blue Spring located in northern Florida. This is attributed to the latter two characteristics of the new model. Based on the new model, a method is developed for estimating effective porosity of the matrix and conduit reservoirs for the three drainage stages. The estimated porosity values are consistent with measured matrix porosity at the study site and with estimated conduit porosity reported in literature. The new model for simulating karst spring hydrograph recession is mathematically general, and can be applied to a wide range of karst spring hydrographs to understand groundwater flow in karst aquifers. The limitations of the model are discussed at the end of this paper.
Power-law expansion of the Universe from the bosonic Lorentzian type IIB matrix model
NASA Astrophysics Data System (ADS)
Ito, Yuta; Nishimura, Jun; Tsuchiya, Asato
2015-11-01
Recent studies on the Lorentzian version of the type IIB matrix model show that (3+1)D expanding universe emerges dynamically from (9+1)D space-time predicted by superstring theory. Here we study a bosonic matrix model obtained by omitting the fermionic matrices. With the adopted simplification and the usage of a large-scale parallel computer, we are able to perform Monte Carlo calculations with matrix size up to N = 512, which is twenty times larger than that used previously for the studies of the original model. When the matrix size is larger than some critical value N c ≃ 110, we find that (3+1)D expanding universe emerges dynamically with a clear large- N scaling property. Furthermore, the observed increase of the spatial extent with time t at sufficiently late times is consistent with a power-law behavior t 1/2, which is reminiscent of the expanding behavior of the Friedmann-Robertson-Walker universe in the radiation dominated era. We discuss possible implications of this result on the original supersymmetric model including fermionic matrices.
Field investigation into unsaturated flow and transport in a fault: Model analyses
Liu, H.-H.; Salve, R.; Wang, J.-S.; Bodvarsson, G.S.; Hudson, D.
2004-01-01
Results of a fault test performed in the unsaturated zone of Yucca Mountain, Nevada, were analyzed using a three-dimensional numerical model. The fault was explicitly represented as a discrete feature and the surrounding rock was treated as a dual-continuum (fracture-matrix) system. Model calibration against seepage and water-travel-velocity data suggests that lithophysal cavities connected to fractures can considerably enhance the effective fracture porosity and therefore retard water flow in fractures. Comparisons between simulation results and tracer concentration data also indicate that matrix diffusion is an important mechanism for solute transport in unsaturated fractured rock. We found that an increased fault-matrix and fracture-matrix interface areas were needed to match the observed tracer data, which is consistent with previous studies. The study results suggest that the current site-scale model for the unsaturated zone of Yucca Mountain may underestimate radionuclide transport time within the unsaturated zone, because an increased fracture-matrix interface area and the increased effective fracture porosity arising from lithophysal cavities are not considered in the current site-scale model. ?? 2004 Published by Elsevier B.V.
Unifying model for random matrix theory in arbitrary space dimensions
NASA Astrophysics Data System (ADS)
Cicuta, Giovanni M.; Krausser, Johannes; Milkus, Rico; Zaccone, Alessio
2018-03-01
A sparse random block matrix model suggested by the Hessian matrix used in the study of elastic vibrational modes of amorphous solids is presented and analyzed. By evaluating some moments, benchmarked against numerics, differences in the eigenvalue spectrum of this model in different limits of space dimension d , and for arbitrary values of the lattice coordination number Z , are shown and discussed. As a function of these two parameters (and their ratio Z /d ), the most studied models in random matrix theory (Erdos-Renyi graphs, effective medium, and replicas) can be reproduced in the various limits of block dimensionality d . Remarkably, the Marchenko-Pastur spectral density (which is recovered by replica calculations for the Laplacian matrix) is reproduced exactly in the limit of infinite size of the blocks, or d →∞ , which clarifies the physical meaning of space dimension in these models. We feel that the approximate results for d =3 provided by our method may have many potential applications in the future, from the vibrational spectrum of glasses and elastic networks to wave localization, disordered conductors, random resistor networks, and random walks.
Modeling cometary photopolarimetric characteristics with Sh-matrix method
NASA Astrophysics Data System (ADS)
Kolokolova, L.; Petrov, D.
2017-12-01
Cometary dust is dominated by particles of complex shape and structure, which are often considered as fractal aggregates. Rigorous modeling of light scattering by such particles, even using parallelized codes and NASA supercomputer resources, is very computer time and memory consuming. We are presenting a new approach to modeling cometary dust that is based on the Sh-matrix technique (e.g., Petrov et al., JQSRT, 112, 2012). This method is based on the T-matrix technique (e.g., Mishchenko et al., JQSRT, 55, 1996) and was developed after it had been found that the shape-dependent factors could be separated from the size- and refractive-index-dependent factors and presented as a shape matrix, or Sh-matrix. Size and refractive index dependences are incorporated through analytical operations on the Sh-matrix to produce the elements of T-matrix. Sh-matrix method keeps all advantages of the T-matrix method, including analytical averaging over particle orientation. Moreover, the surface integrals describing the Sh-matrix elements themselves can be solvable analytically for particles of any shape. This makes Sh-matrix approach an effective technique to simulate light scattering by particles of complex shape and surface structure. In this paper, we present cometary dust as an ensemble of Gaussian random particles. The shape of these particles is described by a log-normal distribution of their radius length and direction (Muinonen, EMP, 72, 1996). Changing one of the parameters of this distribution, the correlation angle, from 0 to 90 deg., we can model a variety of particles from spheres to particles of a random complex shape. We survey the angular and spectral dependencies of intensity and polarization resulted from light scattering by such particles, studying how they depend on the particle shape, size, and composition (including porous particles to simulate aggregates) to find the best fit to the cometary observations.
Mestas, Javier; Felsenstein, Susanna; Bard, Jennifer Dien
2014-11-01
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry is a fast and robust method for the identification of bacteria. In this study, we evaluate the performance of a laboratory-developed lysis method (LDT) for the rapid identification of bacteria from positive BacT/ALERT blood culture bottles. Of the 168 positive bottles tested, 159 were monomicrobial, the majority of which were Gram-positive organisms (61.0% versus 39.0%). Using a cut-off score of ≥1.7, 80.4% of the organisms were correctly identified to the species level, and the identification rate of Gram-negative organisms (90.3%) was found to be significantly greater than that of Gram-positive organisms (78.4%). The simplicity and cost-effectiveness of the LDT enable it to be fully integrated into the routine workflow of the clinical microbiology laboratory, allowing for rapid identification of Gram-positive and Gram-negative bacteria within an hour of blood culture positivity. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Melis, M. E.
1994-01-01
A significant percentage of time spent in a typical finite element analysis is taken up in the modeling and assignment of loads and constraints. This process not only requires the analyst to be well-versed in the art of finite element modeling, but also demands familiarity with some sort of preprocessing software in order to complete the task expediently. COMGEN (COmposite Model GENerator) is an interactive FORTRAN program which can be used to create a wide variety of finite element models of continuous fiber composite materials at the micro level. It quickly generates batch or "session files" to be submitted to the finite element pre- and post-processor program, PATRAN. (PDA Engineering, Costa Mesa, CA.) In modeling a composite material, COMGEN assumes that its constituents can be represented by a "unit cell" of a fiber surrounded by matrix material. Two basic cell types are available. The first is a square packing arrangement where the fiber is positioned in the center of a square matrix cell. The second type, hexagonal packing, has the fiber centered in a hexagonal matrix cell. Different models can be created using combinations of square and hexagonal packing schemes. Variations include two- and three- dimensional cases, models with a fiber-matrix interface, and different constructions of unit cells. User inputs include fiber diameter and percent fiber-volume of the composite to be analyzed. In addition, various mesh densities, boundary conditions, and loads can be assigned to the models within COMGEN. The PATRAN program then uses a COMGEN session file to generate finite element models and their associated loads which can then be translated to virtually any finite element analysis code such as NASTRAN or MARC. COMGEN is written in FORTRAN 77 and has been implemented on DEC VAX series computers under VMS and SGI IRIS series workstations under IRIX. If the user has the PATRAN package available, the output can be graphically displayed. Without PATRAN, the output is tabular. The VAX VMS version is available on a 5.25 inch 360K MS-DOS format diskette (standard distribution media) or a 9-track 1600 BPI DEC VAX FILES-11 format magnetic tape, and it requires about 124K of main memory. The standard distribution media for the IRIS version is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The memory requirement for the IRIS version is 627K. COMGEN was developed in 1990. DEC, VAX and VMS are trademarks of Digital Equipment Corporation. PATRAN is a registered trademark of PDA Engineering. SGI IRIS and IRIX are trademarks of Silicon Graphics, Inc. MS-DOS is a registered trademark of Microsoft Corporation. UNIX is a registered trademark of AT&T.
Fast iterative image reconstruction using sparse matrix factorization with GPU acceleration
NASA Astrophysics Data System (ADS)
Zhou, Jian; Qi, Jinyi
2011-03-01
Statistically based iterative approaches for image reconstruction have gained much attention in medical imaging. An accurate system matrix that defines the mapping from the image space to the data space is the key to high-resolution image reconstruction. However, an accurate system matrix is often associated with high computational cost and huge storage requirement. Here we present a method to address this problem by using sparse matrix factorization and parallel computing on a graphic processing unit (GPU).We factor the accurate system matrix into three sparse matrices: a sinogram blurring matrix, a geometric projection matrix, and an image blurring matrix. The sinogram blurring matrix models the detector response. The geometric projection matrix is based on a simple line integral model. The image blurring matrix is to compensate for the line-of-response (LOR) degradation due to the simplified geometric projection matrix. The geometric projection matrix is precomputed, while the sinogram and image blurring matrices are estimated by minimizing the difference between the factored system matrix and the original system matrix. The resulting factored system matrix has much less number of nonzero elements than the original system matrix and thus substantially reduces the storage and computation cost. The smaller size also allows an efficient implement of the forward and back projectors on GPUs, which have limited amount of memory. Our simulation studies show that the proposed method can dramatically reduce the computation cost of high-resolution iterative image reconstruction. The proposed technique is applicable to image reconstruction for different imaging modalities, including x-ray CT, PET, and SPECT.
Maximum entropy formalism for the analytic continuation of matrix-valued Green's functions
NASA Astrophysics Data System (ADS)
Kraberger, Gernot J.; Triebl, Robert; Zingl, Manuel; Aichhorn, Markus
2017-10-01
We present a generalization of the maximum entropy method to the analytic continuation of matrix-valued Green's functions. To treat off-diagonal elements correctly based on Bayesian probability theory, the entropy term has to be extended for spectral functions that are possibly negative in some frequency ranges. In that way, all matrix elements of the Green's function matrix can be analytically continued; we introduce a computationally cheap element-wise method for this purpose. However, this method cannot ensure important constraints on the mathematical properties of the resulting spectral functions, namely positive semidefiniteness and Hermiticity. To improve on this, we present a full matrix formalism, where all matrix elements are treated simultaneously. We show the capabilities of these methods using insulating and metallic dynamical mean-field theory (DMFT) Green's functions as test cases. Finally, we apply the methods to realistic material calculations for LaTiO3, where off-diagonal matrix elements in the Green's function appear due to the distorted crystal structure.
Engineering Three-Dimensional Collagen-IKVAV Matrix to Mimic Neural Microenvironment
2013-01-01
Engineering the cellular microenvironment has great potential to create a platform technology toward engineering of tissue and organs. This study aims to engineer a neural microenvironment through fabrication of three-dimensional (3D) engineered collagen matrixes mimicking in-vivo-like conditions. Collagen was chemically modified with a pentapeptide epitope consisting of isoleucine-lysine-valine-alanine-valine (IKVAV) to mimic laminin structure supports of the neural extracellular matrix (ECM). Three-dimensional collagen matrixes with and without IKVAV peptide modification were fabricated by freeze-drying technology and chemical cross-linking with glutaraldehyde. Structural information of 3D collagen matrixes indicated interconnected pores structure with an average pore size of 180 μm. Our results indicated that culture of dorsal root ganglion (DRG) cells in 3D collagen matrix was greatly influenced by 3D culture method and significantly enhanced with engineered collagen matrix conjugated with IKVAV peptide. It may be concluded that an appropriate 3D culture of neurons enables DRG to positively improve the cellular fate toward further acceleration in tissue regeneration. PMID:23705903
An Efficient Scheme for Updating Sparse Cholesky Factors
NASA Technical Reports Server (NTRS)
Raghavan, Padma
2002-01-01
Raghavan had earlier developed the software package DCSPACK which can be used for solving sparse linear systems where the coefficient matrix is symmetric and positive definite (this project was not funded by NASA but by agencies such as NSF). DSCPACK-S is the serial code and DSCPACK-P is a parallel implementation suitable for multiprocessors or networks-of-workstations with message passing using MCI. The main algorithm used is the Cholesky factorization of a sparse symmetric positive positive definite matrix A = LL(T). The code can also compute the factorization A = LDL(T). The complexity of the software arises from several factors relating to the sparsity of the matrix A. A sparse N x N matrix A has typically less that cN nonzeroes where c is a small constant. If the matrix were dense, it would have O(N2) nonzeroes. The most complicated part of such sparse Cholesky factorization relates to fill-in, i.e., zeroes in the original matrix that become nonzeroes in the factor L. An efficient implementation depends to a large extent on complex data structures and on techniques from graph theory to reduce, identify, and manage fill. DSCPACK is based on an efficient multifrontal implementation with fill-managing algorithms and implementation arising from earlier research by Raghavan and others. Sparse Cholesky factorization is typically a four step process: (1) ordering to compute a fill-reducing numbering, (2) symbolic factorization to determine the nonzero structure of L, (3) numeric factorization to compute L, and, (4) triangular solution to solve L(T)x = y and Ly = b. The first two steps are symbolic and are performed using the graph of the matrix. The numeric factorization step is of dominant cost and there are several schemes for improving performance by exploiting the nested and dense structure of groups of columns in the factor. The latter are aimed at better utilization of the cache-memory hierarchy on modem processors to prevent cache-misses and provide execution rates (operations/second) that are close to the peak rates for dense matrix computations. Currently, EPISCOPACY is being used in an application at NASA directed by J. Newman and M. James. We propose the implementation of efficient schemes for updating the LL(T) or LDL(T) factors computed in DSCPACK-S to meet the computational requirements of their project. A brief description is provided in the next section.
A Framework to Debug Diagnostic Matrices
NASA Technical Reports Server (NTRS)
Kodal, Anuradha; Robinson, Peter; Patterson-Hine, Ann
2013-01-01
Diagnostics is an important concept in system health and monitoring of space operations. Many of the existing diagnostic algorithms utilize system knowledge in the form of diagnostic matrix (D-matrix, also popularly known as diagnostic dictionary, fault signature matrix or reachability matrix) gleaned from physical models. But, sometimes, this may not be coherent to obtain high diagnostic performance. In such a case, it is important to modify this D-matrix based on knowledge obtained from other sources such as time-series data stream (simulated or maintenance data) within the context of a framework that includes the diagnostic/inference algorithm. A systematic and sequential update procedure, diagnostic modeling evaluator (DME) is proposed to modify D-matrix and wrapper logic considering least expensive solution first. This iterative procedure includes conditions ranging from modifying 0s and 1s in the matrix, or adding/removing the rows (failure sources) columns (tests). We will experiment this framework on datasets from DX challenge 2009.
Modeling the formation of cell-matrix adhesions on a single 3D matrix fiber.
Escribano, J; Sánchez, M T; García-Aznar, J M
2015-11-07
Cell-matrix adhesions are crucial in different biological processes like tissue morphogenesis, cell motility, and extracellular matrix remodeling. These interactions that link cell cytoskeleton and matrix fibers are built through protein clutches, generally known as adhesion complexes. The adhesion formation process has been deeply studied in two-dimensional (2D) cases; however, the knowledge is limited for three-dimensional (3D) cases. In this work, we simulate different local extracellular matrix properties in order to unravel the fundamental mechanisms that regulate the formation of cell-matrix adhesions in 3D. We aim to study the mechanical interaction of these biological structures through a three dimensional discrete approach, reproducing the transmission pattern force between the cytoskeleton and a single extracellular matrix fiber. This numerical model provides a discrete analysis of the proteins involved including spatial distribution, interaction between them, and study of the different phenomena, such as protein clutches unbinding or protein unfolding. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Battin, R. H.; Croopnick, S. R.; Edwards, J. A.
1977-01-01
The formulation of a recursive maximum likelihood navigation system employing reference position and velocity vectors as state variables is presented. Convenient forms of the required variational equations of motion are developed together with an explicit form of the associated state transition matrix needed to refer measurement data from the measurement time to the epoch time. Computational advantages accrue from this design in that the usual forward extrapolation of the covariance matrix of estimation errors can be avoided without incurring unacceptable system errors. Simulation data for earth orbiting satellites are provided to substantiate this assertion.
A methodology for physically based rockfall hazard assessment
NASA Astrophysics Data System (ADS)
Crosta, G. B.; Agliardi, F.
Rockfall hazard assessment is not simple to achieve in practice and sound, physically based assessment methodologies are still missing. The mobility of rockfalls implies a more difficult hazard definition with respect to other slope instabilities with minimal runout. Rockfall hazard assessment involves complex definitions for "occurrence probability" and "intensity". This paper is an attempt to evaluate rockfall hazard using the results of 3-D numerical modelling on a topography described by a DEM. Maps portraying the maximum frequency of passages, velocity and height of blocks at each model cell, are easily combined in a GIS in order to produce physically based rockfall hazard maps. Different methods are suggested and discussed for rockfall hazard mapping at a regional and local scale both along linear features or within exposed areas. An objective approach based on three-dimensional matrixes providing both a positional "Rockfall Hazard Index" and a "Rockfall Hazard Vector" is presented. The opportunity of combining different parameters in the 3-D matrixes has been evaluated to better express the relative increase in hazard. Furthermore, the sensitivity of the hazard index with respect to the included variables and their combinations is preliminarily discussed in order to constrain as objective as possible assessment criteria.
Optimal Magnetic Sensor Vests for Cardiac Source Imaging
Lau, Stephan; Petković, Bojana; Haueisen, Jens
2016-01-01
Magnetocardiography (MCG) non-invasively provides functional information about the heart. New room-temperature magnetic field sensors, specifically magnetoresistive and optically pumped magnetometers, have reached sensitivities in the ultra-low range of cardiac fields while allowing for free placement around the human torso. Our aim is to optimize positions and orientations of such magnetic sensors in a vest-like arrangement for robust reconstruction of the electric current distributions in the heart. We optimized a set of 32 sensors on the surface of a torso model with respect to a 13-dipole cardiac source model under noise-free conditions. The reconstruction robustness was estimated by the condition of the lead field matrix. Optimization improved the condition of the lead field matrix by approximately two orders of magnitude compared to a regular array at the front of the torso. Optimized setups exhibited distributions of sensors over the whole torso with denser sampling above the heart at the front and back of the torso. Sensors close to the heart were arranged predominantly tangential to the body surface. The optimized sensor setup could facilitate the definition of a standard for sensor placement in MCG and the development of a wearable MCG vest for clinical diagnostics. PMID:27231910
Lattanzi, Wanda; Parrilla, Claudio; Fetoni, Annarita; Logroscino, Giandomenico; Straface, Giuseppe; Pecorini, Giovanni; Stigliano, Egidio; Tampieri, Anna; Bedini, Rossella; Pecci, Raffaella; Michetti, Fabrizio; Gambotto, Andrea; Robbins, Paul D.; Pola, Enrico
2012-01-01
Local gene transfer of the human LIM Mineralization Protein (LMP), a novel intracellular positive regulator of the osteoblast differentiation program, can induce efficient bone formation in rodents. In order to develop a clinically relevant gene therapy approach to facilitate bone healing, we have used primary dermal fibroblasts transduced ex vivo with Ad.LMP3 and seeded on an hydroxyapatite/collagen matrix prior to autologous implantation. Here we demonstrate that genetically modified autologous dermal fibroblasts expressing Ad.LMP-3 are able to induce ectopic bone formation following implantation of the matrix into the mouse triceps and paravertebral muscles. Moreover, implantation of the Ad.LMP-3-modified dermal fibroblasts into a rat mandibular bone critical size defect model results in efficient healing as determined by X-ray, histology and three dimensional micro computed tomography (3DμCT). These results demonstrate the effectiveness of the non-secreted intracellular osteogenic factor LMP-3, in inducing bone formation in vivo. Moreover, the utilization of autologous dermal fibroblasts implanted on a biomaterial represents a promising approach for possible future clinical applications aimed at inducing new bone formation. PMID:18633445
NASA Astrophysics Data System (ADS)
Molina Garcia, Victor; Sasi, Sruthy; Efremenko, Dmitry; Doicu, Adrian; Loyola, Diego
2017-04-01
In this work, the requirements for the retrieval of cloud properties in the back-scattering region are described, and their application to the measurements taken by the Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR) is shown. Various radiative transfer models and their linearizations are implemented, and their advantages and issues are analyzed. As radiative transfer calculations in the back-scattering region are computationally time-consuming, several acceleration techniques are also studied. The radiative transfer models analyzed include the exact Discrete Ordinate method with Matrix Exponential (DOME), the Matrix Operator method with Matrix Exponential (MOME), and the approximate asymptotic and equivalent Lambertian cloud models. To reduce the computational cost of the line-by-line (LBL) calculations, the k-distribution method, the Principal Component Analysis (PCA) and a combination of the k-distribution method plus PCA are used. The linearized radiative transfer models for retrieval of cloud properties include the Linearized Discrete Ordinate method with Matrix Exponential (LDOME), the Linearized Matrix Operator method with Matrix Exponential (LMOME) and the Forward-Adjoint Discrete Ordinate method with Matrix Exponential (FADOME). These models were applied to the EPIC oxygen-A band absorption channel at 764 nm. It is shown that the approximate asymptotic and equivalent Lambertian cloud models give inaccurate results, so an offline processor for the retrieval of cloud properties in the back-scattering region requires the use of exact models such as DOME and MOME, which behave similarly. The combination of the k-distribution method plus PCA presents similar accuracy to the LBL calculations, but it is up to 360 times faster, and the relative errors for the computed radiances are less than 1.5% compared to the results when the exact phase function is used. Finally, the linearized models studied show similar behavior, with relative errors less than 1% for the radiance derivatives, but FADOME is 2 times faster than LDOME and 2.5 times faster than LMOME.
Predictive model to describe water migration in cellular solid foods during storage.
Voogt, Juliën A; Hirte, Anita; Meinders, Marcel B J
2011-11-01
Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. Water migration in cellular solid foods involves migration through both the air cells and the solid matrix. For systems in which the water migration distance is large compared with the cell wall thickness of the solid matrix, the overall water flux through the system is dominated by the flux through the air. For these systems, water migration can be approximated well by a Fickian diffusion model. The effective diffusion coefficient can be expressed in terms of the material properties of the solid matrix (i.e. the density, sorption isotherm and diffusion coefficient of water in the solid matrix) and the morphological properties of the cellular structure (i.e. water vapour permeability and volume fraction of the solid matrix). The water vapour permeability is estimated from finite element method modelling using a simplified model for the cellular structure. It is shown that experimentally observed dynamical water profiles of bread rolls that differ in crust permeability are predicted well by the Fickian diffusion model. Copyright © 2011 Society of Chemical Industry.
Unsupervised Bayesian linear unmixing of gene expression microarrays.
Bazot, Cécile; Dobigeon, Nicolas; Tourneret, Jean-Yves; Zaas, Aimee K; Ginsburg, Geoffrey S; Hero, Alfred O
2013-03-19
This paper introduces a new constrained model and the corresponding algorithm, called unsupervised Bayesian linear unmixing (uBLU), to identify biological signatures from high dimensional assays like gene expression microarrays. The basis for uBLU is a Bayesian model for the data samples which are represented as an additive mixture of random positive gene signatures, called factors, with random positive mixing coefficients, called factor scores, that specify the relative contribution of each signature to a specific sample. The particularity of the proposed method is that uBLU constrains the factor loadings to be non-negative and the factor scores to be probability distributions over the factors. Furthermore, it also provides estimates of the number of factors. A Gibbs sampling strategy is adopted here to generate random samples according to the posterior distribution of the factors, factor scores, and number of factors. These samples are then used to estimate all the unknown parameters. Firstly, the proposed uBLU method is applied to several simulated datasets with known ground truth and compared with previous factor decomposition methods, such as principal component analysis (PCA), non negative matrix factorization (NMF), Bayesian factor regression modeling (BFRM), and the gradient-based algorithm for general matrix factorization (GB-GMF). Secondly, we illustrate the application of uBLU on a real time-evolving gene expression dataset from a recent viral challenge study in which individuals have been inoculated with influenza A/H3N2/Wisconsin. We show that the uBLU method significantly outperforms the other methods on the simulated and real data sets considered here. The results obtained on synthetic and real data illustrate the accuracy of the proposed uBLU method when compared to other factor decomposition methods from the literature (PCA, NMF, BFRM, and GB-GMF). The uBLU method identifies an inflammatory component closely associated with clinical symptom scores collected during the study. Using a constrained model allows recovery of all the inflammatory genes in a single factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, H; Tome, W; FOX, J
2014-06-15
Purpose: To study the feasibility of applying cancer risk model established from treated patients to predict the risk of recurrence on follow-up mammography after radiation therapy for both ipsilateral and contralateral breast. Methods: An extensive set of textural feature functions was applied to a set of 196 Mammograms from 50 patients. 56 Mammograms from 28 patients were used as training set, 44 mammograms from 22 patients were used as test set and the rest were used for prediction. Feature functions include Histogram, Gradient, Co-Occurrence Matrix, Run-Length Matrix and Wavelet Energy. An optimum subset of the feature functions was selected bymore » Fisher Coefficient (FO) or Mutual Information (MI) (up to top 10 features) or a method combined FO, MI and Principal Component (FMP) (up to top 30 features). One-Nearest Neighbor (1-NN), Linear Discriminant Analysis (LDA) and Nonlinear Discriminant Analysis (NDA) were utilized to build a risk model of breast cancer from the training set of mammograms at the time of diagnosis. The risk model was then used to predict the risk of recurrence from mammogram taken one year and three years after RT. Results: FPM with NDA has the best classification power in classifying the training set of the mammogram with lesions versus those without lesions. The model of FPM with NDA achieved a true positive (TP) rate of 82% compared to 45.5% of using FO with 1-NN. The best false positive (FP) rates were 0% and 3.6% in contra-lateral breast of 1-year and 3-years after RT, and 10.9% in ipsi-lateral breast of 3-years after RT. Conclusion: Texture analysis offers high dimension to differentiate breast tissue in mammogram. Using NDA to classify mammogram with lesion from mammogram without lesion, it can achieve rather high TP and low FP in the surveillance of mammogram for patient with conservative surgery combined RT.« less
Indentation creep behaviors of amorphous Cu-based composite alloys
NASA Astrophysics Data System (ADS)
Song, Defeng; Ma, Xiangdong; Qian, Linfang
2018-04-01
This work reports the indentation creep behaviors of two Si2Zr3/amorphous Cu-based composite alloys utilizing nanoindentation technique. By analysis with Kelvin model, the retardation spectra of alloys at different positions, detached and attached regions to the intermetallics, were deduced. For the indentation of detached regions to Si2Zr3 intermetallics in both alloys, very similarity in creep displacement can be observed and retardation spectra show a distinct disparity in the second retardation peak. For the indentation of detached regions, the second retardation spectra also display distinct disparity. At both positions, the retardation spectra suggest that Si elements may lead to the relatively dense structure in the amorphous matrix and to form excessive Si2Zr3 intermetallics which may deteriorate the plastic deformation of current Cu-based composite alloys.
Modeling fatigue crack growth in cross ply titanium matrix composites
NASA Technical Reports Server (NTRS)
Bakuckas, J. G., Jr.; Johnson, W. S.
1993-01-01
In this study, the fatigue crack growth behavior of fiber bridging matrix cracks in cross-ply SCS-6/Ti-15-3 and SCS-6/Timetal-21S laminates containing center holes was investigated. Experimental observations revealed that matrix cracking was far more extensive and wide spread in the SCS-6/Ti-15-3 laminates compared to that in the SCS-6/Timetal-21S laminates. In addition, the fatigue life of the SCS-6/Ti-15-3 laminates was significantly longer than that of the SCS-6/Timetal-21S laminates. The matrix cracking observed in both material systems was analyzed using a fiber bridging (FB) model which was formulated using the boundary correction factors and weight functions for center hole specimen configurations. A frictional shear stress is assumed in the FB model and was used as a curve fitting parameter to model matrix crack growth data. The higher frictional shear stresses calculated in the SCS-6/Timetal-21S laminates resulted in lower stress intensity factors in the matrix and higher axial stresses in the fibers compared to those in the SCS-6/Ti-15-3 laminates at the same applied stress levels.
Acoustic 3D modeling by the method of integral equations
NASA Astrophysics Data System (ADS)
Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.
2018-02-01
This paper presents a parallel algorithm for frequency-domain acoustic modeling by the method of integral equations (IE). The algorithm is applied to seismic simulation. The IE method reduces the size of the problem but leads to a dense system matrix. A tolerable memory consumption and numerical complexity were achieved by applying an iterative solver, accompanied by an effective matrix-vector multiplication operation, based on the fast Fourier transform (FFT). We demonstrate that, the IE system matrix is better conditioned than that of the finite-difference (FD) method, and discuss its relation to a specially preconditioned FD matrix. We considered several methods of matrix-vector multiplication for the free-space and layered host models. The developed algorithm and computer code were benchmarked against the FD time-domain solution. It was demonstrated that, the method could accurately calculate the seismic field for the models with sharp material boundaries and a point source and receiver located close to the free surface. We used OpenMP to speed up the matrix-vector multiplication, while MPI was used to speed up the solution of the system equations, and also for parallelizing across multiple sources. The practical examples and efficiency tests are presented as well.
Xia, J.; Miller, R.D.; Xu, Y.
2008-01-01
Inversion of multimode surface-wave data is of increasing interest in the near-surface geophysics community. For a given near-surface geophysical problem, it is essential to understand how well the data, calculated according to a layered-earth model, might match the observed data. A data-resolution matrix is a function of the data kernel (determined by a geophysical model and a priori information applied to the problem), not the data. A data-resolution matrix of high-frequency (>2 Hz) Rayleigh-wave phase velocities, therefore, offers a quantitative tool for designing field surveys and predicting the match between calculated and observed data. We employed a data-resolution matrix to select data that would be well predicted and we find that there are advantages of incorporating higher modes in inversion. The resulting discussion using the data-resolution matrix provides insight into the process of inverting Rayleigh-wave phase velocities with higher-mode data to estimate S-wave velocity structure. Discussion also suggested that each near-surface geophysical target can only be resolved using Rayleigh-wave phase velocities within specific frequency ranges, and higher-mode data are normally more accurately predicted than fundamental-mode data because of restrictions on the data kernel for the inversion system. We used synthetic and real-world examples to demonstrate that selected data with the data-resolution matrix can provide better inversion results and to explain with the data-resolution matrix why incorporating higher-mode data in inversion can provide better results. We also calculated model-resolution matrices in these examples to show the potential of increasing model resolution with selected surface-wave data. ?? Birkhaueser 2008.
Du, Tianchuan; Liao, Li; Wu, Cathy H
2016-12-01
Identifying the residues in a protein that are involved in protein-protein interaction and identifying the contact matrix for a pair of interacting proteins are two computational tasks at different levels of an in-depth analysis of protein-protein interaction. Various methods for solving these two problems have been reported in the literature. However, the interacting residue prediction and contact matrix prediction were handled by and large independently in those existing methods, though intuitively good prediction of interacting residues will help with predicting the contact matrix. In this work, we developed a novel protein interacting residue prediction system, contact matrix-interaction profile hidden Markov model (CM-ipHMM), with the integration of contact matrix prediction and the ipHMM interaction residue prediction. We propose to leverage what is learned from the contact matrix prediction and utilize the predicted contact matrix as "feedback" to enhance the interaction residue prediction. The CM-ipHMM model showed significant improvement over the previous method that uses the ipHMM for predicting interaction residues only. It indicates that the downstream contact matrix prediction could help the interaction site prediction.
Effective Perron-Frobenius eigenvalue for a correlated random map
NASA Astrophysics Data System (ADS)
Pool, Roman R.; Cáceres, Manuel O.
2010-09-01
We investigate the evolution of random positive linear maps with various type of disorder by analytic perturbation and direct simulation. Our theoretical result indicates that the statistics of a random linear map can be successfully described for long time by the mean-value vector state. The growth rate can be characterized by an effective Perron-Frobenius eigenvalue that strongly depends on the type of correlation between the elements of the projection matrix. We apply this approach to an age-structured population dynamics model. We show that the asymptotic mean-value vector state characterizes the population growth rate when the age-structured model has random vital parameters. In this case our approach reveals the nontrivial dependence of the effective growth rate with cross correlations. The problem was reduced to the calculation of the smallest positive root of a secular polynomial, which can be obtained by perturbations in terms of Green’s function diagrammatic technique built with noncommutative cumulants for arbitrary n -point correlations.
Non-Parametric Collision Probability for Low-Velocity Encounters
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell
2007-01-01
An implicit, but not necessarily obvious, assumption in all of the current techniques for assessing satellite collision probability is that the relative position uncertainty is perfectly correlated in time. If there is any mis-modeling of the dynamics in the propagation of the relative position error covariance matrix, time-wise de-correlation of the uncertainty will increase the probability of collision over a given time interval. The paper gives some examples that illustrate this point. This paper argues that, for the present, Monte Carlo analysis is the best available tool for handling low-velocity encounters, and suggests some techniques for addressing the issues just described. One proposal is for the use of a non-parametric technique that is widely used in actuarial and medical studies. The other suggestion is that accurate process noise models be used in the Monte Carlo trials to which the non-parametric estimate is applied. A further contribution of this paper is a description of how the time-wise decorrelation of uncertainty increases the probability of collision.
Enhanced MALDI-TOF MS Analysis of Phosphopeptides Using an Optimized DHAP/DAHC Matrix
Hou, Junjie; Xie, Zhensheng; Xue, Peng; Cui, Ziyou; Chen, Xiulan; Li, Jing; Cai, Tanxi; Wu, Peng; Yang, Fuquan
2010-01-01
Selecting an appropriate matrix solution is one of the most effective means of increasing the ionization efficiency of phosphopeptides in matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). In this study, we systematically assessed matrix combinations of 2, 6-dihydroxyacetophenone (DHAP) and diammonium hydrogen citrate (DAHC), and demonstrated that the low ratio DHAP/DAHC matrix was more effective in enhancing the ionization of phosphopeptides. Low femtomole level of phosphopeptides from the tryptic digests of α-casein and β-casein was readily detected by MALDI-TOF-MS in both positive and negative ion mode without desalination or phosphopeptide enrichment. Compared with the DHB/PA matrix, the optimized DHAP/DAHC matrix yielded superior sample homogeneity and higher phosphopeptide measurement sensitivity, particularly when multiple phosphorylated peptides were assessed. Finally, the DHAP/DAHC matrix was applied to identify phosphorylation sites from α-casein and β-casein and to characterize two phosphorylation sites from the human histone H1 treated with Cyclin-Dependent Kinase-1 (CDK1) by MALDI-TOF/TOF MS. PMID:20339515
Quasi-normal modes from non-commutative matrix dynamics
NASA Astrophysics Data System (ADS)
Aprile, Francesco; Sanfilippo, Francesco
2017-09-01
We explore similarities between the process of relaxation in the BMN matrix model and the physics of black holes in AdS/CFT. Focusing on Dyson-fluid solutions of the matrix model, we perform numerical simulations of the real time dynamics of the system. By quenching the equilibrium distribution we study quasi-normal oscillations of scalar single trace observables, we isolate the lowest quasi-normal mode, and we determine its frequencies as function of the energy. Considering the BMN matrix model as a truncation of N=4 SYM, we also compute the frequencies of the quasi-normal modes of the dual scalar fields in the AdS5-Schwarzschild background. We compare the results, and we finda surprising similarity.
Micromechanical modeling of damage growth in titanium based metal-matrix composites
NASA Technical Reports Server (NTRS)
Sherwood, James A.; Quimby, Howard M.
1994-01-01
The thermomechanical behavior of continuous-fiber reinforced titanium based metal-matrix composites (MMC) is studied using the finite element method. A thermoviscoplastic unified state variable constitutive theory is employed to capture inelastic and strain-rate sensitive behavior in the Timetal-21s matrix. The SCS-6 fibers are modeled as thermoplastic. The effects of residual stresses generated during the consolidation process on the tensile response of the composites are investigated. Unidirectional and cross-ply geometries are considered. Differences between the tensile responses in composites with perfectly bonded and completely debonded fiber/matrix interfaces are discussed. Model simulations for the completely debonded-interface condition are shown to correlate well with experimental results.
The upper bounds of reduced axial and shear moduli in cross-ply laminates with matrix cracks
NASA Technical Reports Server (NTRS)
Lee, Jong-Won; Allen, D. H.; Harris, C. E.
1991-01-01
The present study proposes a mathematical model utilizing the internal state variable concept for predicting the upper bounds of the reduced axial and shear stiffnesses in cross-ply laminates with matrix cracks. The displacement components at the matrix crack surfaces are explicitly expressed in terms of the observable axial and shear strains and the undamaged material properties. The reduced axial and shear stiffnesses are predicted for glass/epoxy and graphite/epoxy laminates. Comparison of the model with other theoretical and experimental studies is also presented to confirm direct applicability of the model to angle-ply laminates with matrix cracks subjected to general in-plane loading.
Matrix change of bone grafting substitute after implantation into guinea pig bulla.
Punke, Ch; Zehlicke, T; Just, T; Holzhüter, G; Gerber, T; Pau, H W
2012-05-01
Many different surgical techniques have been developed to remove open mastoid cavities. In addition to autologous materials, alloplastic substances have been used. A very slow absorption of these materials and extrusion reactions have been reported. We investigated a newly developed, highly porous bone grafting material to eliminate open mastoid cavities, in an animal model. To characterise the transformation process, the early tissue reactions were studied in relation to the matrix transformation of the bone material. NanoBone (NB), a highly porous bone grafting material based on calcium phosphate and silica, was filled into the open bullae from 20 guinea pigs. The bullae were examined histologically. Energy dispersive X-ray spectroscopy (EDX) was used to investigate the change in the elemental composition at different sampling times. The surface topography of the sections was examined by electron microscopy. After 1 week, periodic acid-Schiffs (PAS) staining demonstrated accumulation of glycogen and proteins, particularly in the border area of the NB particles. After 2 weeks, the particles were evenly coloured after PAS staining. EDX analysis showed a rapid absorption of the silica in the bone grafting material. NanoBone showed a rapid matrix change after implantation in the bullae of guinea pigs. The absorption of the silica matrix and replacement by PAS-positive substances like glycoproteins and mucopolysaccharides seems to play a decisive role in the degradation processes of NB. This is associated with the good osteoinductive properties of the material.
Game and Information Theory Analysis of Electronic Counter Measures in Pursuit-Evasion Games
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Christopher H
Two-player Pursuit-Evasion games in the literature typically either assume both players have perfect knowledge of the opponent s positions or use primitive sensing models. This unrealistically skews the problem in favor of the pursuer who need only maintain a faster velocity at all turning radii. In real life, an evader usually escapes when the pursuer no longer knows the evader s position. In our previous work, we modeled pursuit-evasion without perfect information as a two-player bi-matrix game by using a realistic sensor model and information theory to compute game theoretic payoff matrices. That game has a saddle point when themore » evader uses strategies that exploit sensor limitations, while the pursuer relies on strategies that ignore the sensing limitations. In this paper, we consider for the first time the effect of many types of electronic counter measures (ECM) on pursuit evasion games. The evader s decision to initiate its ECM is modeled as a function of the distance between the players. Simulations show how to find optimal strategies for ECM use when initial conditions are known. We also discuss the effectiveness of different ECM technologies in pursuit-evasion games.« less
NASA Astrophysics Data System (ADS)
Pongsophon, Pongprapan; Herman, Benjamin C.
2017-07-01
Given the abundance of literature describing the strong relationship between inquiry-based teaching and student achievement, more should be known about the factors impacting science teachers' classroom inquiry implementation. This study utilises the theory of planned behaviour to propose and validate a causal model of inquiry-based teaching through analysing data relating to high-performing countries retrieved from the 2011 Trends in International Mathematics and Science Study assessments. Data analysis was completed through structural equation modelling using a polychoric correlation matrix for data input and diagonally weighted least squares estimation. Adequate fit of the full model to the empirical data was realised. The model demonstrates that the extent the teachers participated in academic collaborations was positively related to their occupational satisfaction, confidence in teaching inquiry, and classroom inquiry practices. Furthermore, the teachers' confidence with implementing inquiry was positively related to their classroom inquiry implementation and occupational satisfaction. However, perceived student-generated constraints demonstrated a negative relationship with the teachers' confidence with implementing inquiry and occupational satisfaction. Implications from this study include supporting teachers through promoting collaborative opportunities that facilitate inquiry-based practices and occupational satisfaction.
Characteristics of global organic matrix in normal and pimpled chicken eggshells.
Liu, Z; Song, L; Zhang, F; He, W; Linhardt, R J
2017-10-01
The organic matrix from normal and pimpled calcified chicken eggshells were dissociated into acid-insoluble, water-insoluble, and facultative-soluble (both acid- and water-soluble) components, to understand the influence of shell matrix on eggshell qualities. A linear correlation was shown among these 3 matrix components in normal eggshells but was not observed in pimpled eggshells. In pimpled eggshells, the percentage contents of all 4 groups of matrix (the total matrix, acid-insoluble matrix, water-insoluble matrix, and facultative-soluble matrix) were significantly higher than that in normal eggshells. The amounts of both total matrix and acid-insoluble matrix in individual pimpled calcified shells were high, even though their weight was much lower than a normal eggshell. In both normal and pimpled eggshells, the calcified eggshell weight and shell thickness significantly and positively correlated with the amounts of all 4 groups of matrix in an individual calcified shell. In normal eggshells, the calcified shell thickness and shell breaking strength showed no significant correlations with the percentage contents of all 4 groups of matrix. In normal eggshells, only the shell membrane weight significantly correlated with the constituent ratios of both acid-insoluble matrix and facultative-soluble matrix in the whole matrix. In pimpled eggshells, 3 variables (calcified shell weight, shell thickness, and breaking strength) were significantly correlated with the constituent proportions of both acid-insoluble matrix and facultative-matrix. This study suggests that mechanical properties of normal eggshells may not linearly depend on the organic matrix content in the calcified eggshells and that pimpled eggshells might result by the disequilibrium enrichment of some proteins with negative effects. © 2017 Poultry Science Association Inc.
Direct Position Determination of Multiple Non-Circular Sources with a Moving Coprime Array.
Zhang, Yankui; Ba, Bin; Wang, Daming; Geng, Wei; Xu, Haiyun
2018-05-08
Direct position determination (DPD) is currently a hot topic in wireless localization research as it is more accurate than traditional two-step positioning. However, current DPD algorithms are all based on uniform arrays, which have an insufficient degree of freedom and limited estimation accuracy. To improve the DPD accuracy, this paper introduces a coprime array to the position model of multiple non-circular sources with a moving array. To maximize the advantages of this coprime array, we reconstruct the covariance matrix by vectorization, apply a spatial smoothing technique, and converge the subspace data from each measuring position to establish the cost function. Finally, we obtain the position coordinates of the multiple non-circular sources. The complexity of the proposed method is computed and compared with that of other methods, and the Cramer⁻Rao lower bound of DPD for multiple sources with a moving coprime array, is derived. Theoretical analysis and simulation results show that the proposed algorithm is not only applicable to circular sources, but can also improve the positioning accuracy of non-circular sources. Compared with existing two-step positioning algorithms and DPD algorithms based on uniform linear arrays, the proposed technique offers a significant improvement in positioning accuracy with a slight increase in complexity.
Hohensinner, Philipp J.; Baumgartner, Johanna; Kral-Pointner, Julia B.; Uhrin, Pavel; Ebenbauer, Benjamin; Thaler, Barbara; Doberer, Konstantin; Stojkovic, Stefan; Demyanets, Svitlana; Fischer, Michael B.; Huber, Kurt; Schabbauer, Gernot; Speidl, Walter S.
2017-01-01
Objective— Macrophages are versatile immune cells capable of polarizing into functional subsets depending on environmental stimulation. In atherosclerotic lesions, proinflammatory polarized macrophages are associated with symptomatic plaques, whereas Th2 (T-helper cell type 2) cytokine–polarized macrophages are inversely related with disease progression. To establish a functional cause for these observations, we analyzed extracellular matrix degradation phenotypes in polarized macrophages. Approach and Results— We provide evidence that proinflammatory polarized macrophages rely on membrane-bound proteases including MMP-14 (matrix metalloproteinase-14) and the serine protease uPA (urokinase plasminogen activator) together with its receptor uPAR for extracellular matrix degradation. In contrast, Th2 cytokine alternatively primed macrophages do not show different proteolytic activity in comparison to unpolarized macrophages and lack increased localization of MMP-14 and uPA receptor to the cell membrane. Nonetheless, they express the highest amount of the serine protease uPA. However, uPA activity is blocked by similarly increased expression of its inhibitor PAI-1 (plasminogen activator inhibitor 1). When inhibiting PAI-1 or when analyzing macrophages deficient in PAI-1, Th2 cytokine–polarized macrophages display the same matrix degradation capability as proinflammatory-primed macrophages. Within atherosclerotic lesions, macrophages positive for the alternative activation marker CD206 express high levels of PAI-1. In addition, to test changed tissue remodeling capacities of alternatively activated macrophages, we used a bleomycin lung injury model in mice reconstituted with PAI-1−/− bone marrow. These results supported an enhanced remodeling phenotype displayed by increased fibrosis and elevated MMP activity in the lung after PAI-1 loss. Conclusions— We were able to demonstrate matrix degradation dependent on membrane-bound proteases in proinflammatory stimulated macrophages and a forced proteolytical quiescence in alternatively polarized macrophages by the expression of PAI-1. PMID:28818858
Zhang, Wenting; Zheng, Wenjie; Toh, Yukimatsu; Betancourt-Solis, Miguel A; Tu, Jiagang; Fan, Yanlin; Vakharia, Vikram N; Liu, Jun; McNew, James A; Jin, Meilin; Tao, Yizhi J
2017-08-08
Many enveloped viruses encode a matrix protein. In the influenza A virus, the matrix protein M1 polymerizes into a rigid protein layer underneath the viral envelope to help enforce the shape and structural integrity of intact viruses. The influenza virus M1 is also known to mediate virus budding as well as the nuclear export of the viral nucleocapsids and their subsequent packaging into nascent viral particles. Despite extensive studies on the influenza A virus M1 (FLUA-M1), only crystal structures of its N-terminal domain are available. Here we report the crystal structure of the full-length M1 from another orthomyxovirus that infects fish, the infectious salmon anemia virus (ISAV). The structure of ISAV-M1 assumes the shape of an elbow, with its N domain closely resembling that of the FLUA-M1. The C domain, which is connected to the N domain through a flexible linker, is made of four α-helices packed as a tight bundle. In the crystal, ISAV-M1 monomers form infinite 2D arrays with a network of interactions involving both the N and C domains. Results from liposome flotation assays indicated that ISAV-M1 binds membrane via electrostatic interactions that are primarily mediated by a positively charged surface loop from the N domain. Cryoelectron tomography reconstruction of intact ISA virions identified a matrix protein layer adjacent to the inner leaflet of the viral membrane. The physical dimensions of the virion-associated matrix layer are consistent with the 2D ISAV-M1 crystal lattice, suggesting that the crystal lattice is a valid model for studying M1-M1, M1-membrane, and M1-RNP interactions in the virion.