Sample records for model predicted responses

  1. Prediction of chemo-response in serous ovarian cancer.

    PubMed

    Gonzalez Bosquet, Jesus; Newtson, Andreea M; Chung, Rebecca K; Thiel, Kristina W; Ginader, Timothy; Goodheart, Michael J; Leslie, Kimberly K; Smith, Brian J

    2016-10-19

    Nearly one-third of serous ovarian cancer (OVCA) patients will not respond to initial treatment with surgery and chemotherapy and die within one year of diagnosis. If patients who are unlikely to respond to current standard therapy can be identified up front, enhanced tumor analyses and treatment regimens could potentially be offered. Using the Cancer Genome Atlas (TCGA) serous OVCA database, we previously identified a robust molecular signature of 422-genes associated with chemo-response. Our objective was to test whether this signature is an accurate and sensitive predictor of chemo-response in serous OVCA. We first constructed prediction models to predict chemo-response using our previously described 422-gene signature that was associated with response to treatment in serous OVCA. Performance of all prediction models were measured with area under the curves (AUCs, a measure of the model's accuracy) and their respective confidence intervals (CIs). To optimize the prediction process, we determined which elements of the signature most contributed to chemo-response prediction. All prediction models were replicated and validated using six publicly available independent gene expression datasets. The 422-gene signature prediction models predicted chemo-response with AUCs of ~70 %. Optimization of prediction models identified the 34 most important genes in chemo-response prediction. These 34-gene models had improved performance, with AUCs approaching 80 %. Both 422-gene and 34-gene prediction models were replicated and validated in six independent datasets. These prediction models serve as the foundation for the future development and implementation of a diagnostic tool to predict response to chemotherapy for serous OVCA patients.

  2. Analysis and test evaluation of the dynamic response and stability of three advanced turboprop models

    NASA Technical Reports Server (NTRS)

    Bansal, P. N.; Arseneaux, P. J.; Smith, A. F.; Turnberg, J. E.; Brooks, B. M.

    1985-01-01

    Results of dynamic response and stability wind tunnel tests of three 62.2 cm (24.5 in) diameter models of the Prop-Fan, advanced turboprop, are presented. Measurements of dynamic response were made with the rotors mounted on an isolated nacelle, with varying tilt for nonuniform inflow. One model was also tested using a semi-span wing and fuselage configuration for response to realistic aircraft inflow. Stability tests were performed using tunnel turbulence or a nitrogen jet for excitation. Measurements are compared with predictions made using beam analysis methods for the model with straight blades, and finite element analysis methods for the models with swept blades. Correlations between measured and predicted rotating blade natural frequencies for all the models are very good. The IP dynamic response of the straight blade model is reasonably well predicted. The IP response of the swept blades is underpredicted and the wing induced response of the straight blade is overpredicted. Two models did not flutter, as predicted. One swept blade model encountered an instability at a higher RPM than predicted, showing predictions to be conservative.

  3. Response Surface Modeling Using Multivariate Orthogonal Functions

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; DeLoach, Richard

    2001-01-01

    A nonlinear modeling technique was used to characterize response surfaces for non-dimensional longitudinal aerodynamic force and moment coefficients, based on wind tunnel data from a commercial jet transport model. Data were collected using two experimental procedures - one based on modem design of experiments (MDOE), and one using a classical one factor at a time (OFAT) approach. The nonlinear modeling technique used multivariate orthogonal functions generated from the independent variable data as modeling functions in a least squares context to characterize the response surfaces. Model terms were selected automatically using a prediction error metric. Prediction error bounds computed from the modeling data alone were found to be- a good measure of actual prediction error for prediction points within the inference space. Root-mean-square model fit error and prediction error were less than 4 percent of the mean response value in all cases. Efficacy and prediction performance of the response surface models identified from both MDOE and OFAT experiments were investigated.

  4. Selecting an Informative/Discriminating Multivariate Response for Inverse Prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Edward V.; Lewis, John. R.; Anderson-Cook, Christine Michaela

    The inverse prediction is important in a variety of scientific and engineering applications, such as to predict properties/characteristics of an object by using multiple measurements obtained from it. Inverse prediction can be accomplished by inverting parameterized forward models that relate the measurements (responses) to the properties/characteristics of interest. Sometimes forward models are computational/science based; but often, forward models are empirically based response surface models, obtained by using the results of controlled experimentation. For empirical models, it is important that the experiments provide a sound basis to develop accurate forward models in terms of the properties/characteristics (factors). And while nature dictatesmore » the causal relationships between factors and responses, experimenters can control the complexity, accuracy, and precision of forward models constructed via selection of factors, factor levels, and the set of trials that are performed. Recognition of the uncertainty in the estimated forward models leads to an errors-in-variables approach for inverse prediction. The forward models (estimated by experiments or science based) can also be used to analyze how well candidate responses complement one another for inverse prediction over the range of the factor space of interest. Furthermore, one may find that some responses are complementary, redundant, or noninformative. Simple analysis and examples illustrate how an informative and discriminating subset of responses could be selected among candidates in cases where the number of responses that can be acquired during inverse prediction is limited by difficulty, expense, and/or availability of material.« less

  5. Selecting an Informative/Discriminating Multivariate Response for Inverse Prediction

    DOE PAGES

    Thomas, Edward V.; Lewis, John. R.; Anderson-Cook, Christine Michaela; ...

    2017-07-01

    The inverse prediction is important in a variety of scientific and engineering applications, such as to predict properties/characteristics of an object by using multiple measurements obtained from it. Inverse prediction can be accomplished by inverting parameterized forward models that relate the measurements (responses) to the properties/characteristics of interest. Sometimes forward models are computational/science based; but often, forward models are empirically based response surface models, obtained by using the results of controlled experimentation. For empirical models, it is important that the experiments provide a sound basis to develop accurate forward models in terms of the properties/characteristics (factors). And while nature dictatesmore » the causal relationships between factors and responses, experimenters can control the complexity, accuracy, and precision of forward models constructed via selection of factors, factor levels, and the set of trials that are performed. Recognition of the uncertainty in the estimated forward models leads to an errors-in-variables approach for inverse prediction. The forward models (estimated by experiments or science based) can also be used to analyze how well candidate responses complement one another for inverse prediction over the range of the factor space of interest. Furthermore, one may find that some responses are complementary, redundant, or noninformative. Simple analysis and examples illustrate how an informative and discriminating subset of responses could be selected among candidates in cases where the number of responses that can be acquired during inverse prediction is limited by difficulty, expense, and/or availability of material.« less

  6. Predicting multi-level drug response with gene expression profile in multiple myeloma using hierarchical ordinal regression.

    PubMed

    Zhang, Xinyan; Li, Bingzong; Han, Huiying; Song, Sha; Xu, Hongxia; Hong, Yating; Yi, Nengjun; Zhuang, Wenzhuo

    2018-05-10

    Multiple myeloma (MM), like other cancers, is caused by the accumulation of genetic abnormalities. Heterogeneity exists in the patients' response to treatments, for example, bortezomib. This urges efforts to identify biomarkers from numerous molecular features and build predictive models for identifying patients that can benefit from a certain treatment scheme. However, previous studies treated the multi-level ordinal drug response as a binary response where only responsive and non-responsive groups are considered. It is desirable to directly analyze the multi-level drug response, rather than combining the response to two groups. In this study, we present a novel method to identify significantly associated biomarkers and then develop ordinal genomic classifier using the hierarchical ordinal logistic model. The proposed hierarchical ordinal logistic model employs the heavy-tailed Cauchy prior on the coefficients and is fitted by an efficient quasi-Newton algorithm. We apply our hierarchical ordinal regression approach to analyze two publicly available datasets for MM with five-level drug response and numerous gene expression measures. Our results show that our method is able to identify genes associated with the multi-level drug response and to generate powerful predictive models for predicting the multi-level response. The proposed method allows us to jointly fit numerous correlated predictors and thus build efficient models for predicting the multi-level drug response. The predictive model for the multi-level drug response can be more informative than the previous approaches. Thus, the proposed approach provides a powerful tool for predicting multi-level drug response and has important impact on cancer studies.

  7. Modeling human vestibular responses during eccentric rotation and off vertical axis rotation

    NASA Technical Reports Server (NTRS)

    Merfeld, D. M.; Paloski, W. H. (Principal Investigator)

    1995-01-01

    A mathematical model has been developed to help explain human multi-sensory interactions. The most important constituent of the model is the hypothesis that the nervous system incorporates knowledge of sensory dynamics into an "internal model" of these dynamics. This internal model allows the nervous system to integrate the sensory information from many different sensors into a coherent estimate of self-motion. The essence of the model is unchanged from a previously published model of monkey eye movement responses; only a few variables have been adjusted to yield the prediction of human responses. During eccentric rotation, the model predicts that the axis of eye rotation shifts slightly toward alignment with gravito-inertial force. The model also predicts that the time course of the perception of tilt following the acceleration phase of eccentric rotation is much slower than that during deceleration. During off vertical axis rotation (OVAR) the model predicts a small horizontal bias along with small horizontal, vertical, and torsional oscillations. Following OVAR stimulation, when stopped right- or left-side down, a small vertical component is predicted that decays with the horizontal post-rotatory response. All of the predictions are consistent with measurements of human responses.

  8. Population activity statistics dissect subthreshold and spiking variability in V1.

    PubMed

    Bányai, Mihály; Koman, Zsombor; Orbán, Gergő

    2017-07-01

    Response variability, as measured by fluctuating responses upon repeated performance of trials, is a major component of neural responses, and its characterization is key to interpret high dimensional population recordings. Response variability and covariability display predictable changes upon changes in stimulus and cognitive or behavioral state, providing an opportunity to test the predictive power of models of neural variability. Still, there is little agreement on which model to use as a building block for population-level analyses, and models of variability are often treated as a subject of choice. We investigate two competing models, the doubly stochastic Poisson (DSP) model assuming stochasticity at spike generation, and the rectified Gaussian (RG) model tracing variability back to membrane potential variance, to analyze stimulus-dependent modulation of both single-neuron and pairwise response statistics. Using a pair of model neurons, we demonstrate that the two models predict similar single-cell statistics. However, DSP and RG models have contradicting predictions on the joint statistics of spiking responses. To test the models against data, we build a population model to simulate stimulus change-related modulations in pairwise response statistics. We use single-unit data from the primary visual cortex (V1) of monkeys to show that while model predictions for variance are qualitatively similar to experimental data, only the RG model's predictions are compatible with joint statistics. These results suggest that models using Poisson-like variability might fail to capture important properties of response statistics. We argue that membrane potential-level modeling of stochasticity provides an efficient strategy to model correlations. NEW & NOTEWORTHY Neural variability and covariability are puzzling aspects of cortical computations. For efficient decoding and prediction, models of information encoding in neural populations hinge on an appropriate model of variability. Our work shows that stimulus-dependent changes in pairwise but not in single-cell statistics can differentiate between two widely used models of neuronal variability. Contrasting model predictions with neuronal data provides hints on the noise sources in spiking and provides constraints on statistical models of population activity. Copyright © 2017 the American Physiological Society.

  9. Silent Expectations: Dynamic Causal Modeling of Cortical Prediction and Attention to Sounds That Weren't.

    PubMed

    Chennu, Srivas; Noreika, Valdas; Gueorguiev, David; Shtyrov, Yury; Bekinschtein, Tristan A; Henson, Richard

    2016-08-10

    There is increasing evidence that human perception is realized by a hierarchy of neural processes in which predictions sent backward from higher levels result in prediction errors that are fed forward from lower levels, to update the current model of the environment. Moreover, the precision of prediction errors is thought to be modulated by attention. Much of this evidence comes from paradigms in which a stimulus differs from that predicted by the recent history of other stimuli (generating a so-called "mismatch response"). There is less evidence from situations where a prediction is not fulfilled by any sensory input (an "omission" response). This situation arguably provides a more direct measure of "top-down" predictions in the absence of confounding "bottom-up" input. We applied Dynamic Causal Modeling of evoked electromagnetic responses recorded by EEG and MEG to an auditory paradigm in which we factorially crossed the presence versus absence of "bottom-up" stimuli with the presence versus absence of "top-down" attention. Model comparison revealed that both mismatch and omission responses were mediated by increased forward and backward connections, differing primarily in the driving input. In both responses, modeling results suggested that the presence of attention selectively modulated backward "prediction" connections. Our results provide new model-driven evidence of the pure top-down prediction signal posited in theories of hierarchical perception, and highlight the role of attentional precision in strengthening this prediction. Human auditory perception is thought to be realized by a network of neurons that maintain a model of and predict future stimuli. Much of the evidence for this comes from experiments where a stimulus unexpectedly differs from previous ones, which generates a well-known "mismatch response." But what happens when a stimulus is unexpectedly omitted altogether? By measuring the brain's electromagnetic activity, we show that it also generates an "omission response" that is contingent on the presence of attention. We model these responses computationally, revealing that mismatch and omission responses only differ in the location of inputs into the same underlying neuronal network. In both cases, we show that attention selectively strengthens the brain's prediction of the future. Copyright © 2016 Chennu et al.

  10. Thermal cut-off response modelling of universal motors

    NASA Astrophysics Data System (ADS)

    Thangaveloo, Kashveen; Chin, Yung Shin

    2017-04-01

    This paper presents a model to predict the thermal cut-off (TCO) response behaviour in universal motors. The mathematical model includes the calculations of heat loss in the universal motor and the flow characteristics around the TCO component which together are the main parameters for TCO response prediction. In order to accurately predict the TCO component temperature, factors like the TCO component resistance, the effect of ambient, and the flow conditions through the motor are taken into account to improve the prediction accuracy of the model.

  11. Fourier and non-Fourier bio-heat transfer models to predict ex vivo temperature response to focused ultrasound heating

    NASA Astrophysics Data System (ADS)

    Li, Chenghai; Miao, Jiaming; Yang, Kexin; Guo, Xiasheng; Tu, Juan; Huang, Pintong; Zhang, Dong

    2018-05-01

    Although predicting temperature variation is important for designing treatment plans for thermal therapies, research in this area is yet to investigate the applicability of prevalent thermal conduction models, such as the Pennes equation, the thermal wave model of bio-heat transfer, and the dual phase lag (DPL) model. To address this shortcoming, we heated a tissue phantom and ex vivo bovine liver tissues with focused ultrasound (FU), measured the temperature response, and compared the results with those predicted by these models. The findings show that, for a homogeneous-tissue phantom, the initial temperature increase is accurately predicted by the Pennes equation at the onset of FU irradiation, although the prediction deviates from the measured temperature with increasing FU irradiation time. For heterogeneous liver tissues, the predicted response is closer to the measured temperature for the non-Fourier models, especially the DPL model. Furthermore, the DPL model accurately predicts the temperature response in biological tissues because it increases the phase lag, which characterizes microstructural thermal interactions. These findings should help to establish more precise clinical treatment plans for thermal therapies.

  12. Prediction and control of neural responses to pulsatile electrical stimulation

    NASA Astrophysics Data System (ADS)

    Campbell, Luke J.; Sly, David James; O'Leary, Stephen John

    2012-04-01

    This paper aims to predict and control the probability of firing of a neuron in response to pulsatile electrical stimulation of the type delivered by neural prostheses such as the cochlear implant, bionic eye or in deep brain stimulation. Using the cochlear implant as a model, we developed an efficient computational model that predicts the responses of auditory nerve fibers to electrical stimulation and evaluated the model's accuracy by comparing the model output with pooled responses from a group of guinea pig auditory nerve fibers. It was found that the model accurately predicted the changes in neural firing probability over time to constant and variable amplitude electrical pulse trains, including speech-derived signals, delivered at rates up to 889 pulses s-1. A simplified version of the model that did not incorporate adaptation was used to adaptively predict, within its limitations, the pulsatile electrical stimulus required to cause a desired response from neurons up to 250 pulses s-1. Future stimulation strategies for cochlear implants and other neural prostheses may be enhanced using similar models that account for the way that neural responses are altered by previous stimulation.

  13. Clinical Predictive Modeling Development and Deployment through FHIR Web Services.

    PubMed

    Khalilia, Mohammed; Choi, Myung; Henderson, Amelia; Iyengar, Sneha; Braunstein, Mark; Sun, Jimeng

    2015-01-01

    Clinical predictive modeling involves two challenging tasks: model development and model deployment. In this paper we demonstrate a software architecture for developing and deploying clinical predictive models using web services via the Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) standard. The services enable model development using electronic health records (EHRs) stored in OMOP CDM databases and model deployment for scoring individual patients through FHIR resources. The MIMIC2 ICU dataset and a synthetic outpatient dataset were transformed into OMOP CDM databases for predictive model development. The resulting predictive models are deployed as FHIR resources, which receive requests of patient information, perform prediction against the deployed predictive model and respond with prediction scores. To assess the practicality of this approach we evaluated the response and prediction time of the FHIR modeling web services. We found the system to be reasonably fast with one second total response time per patient prediction.

  14. Clinical Predictive Modeling Development and Deployment through FHIR Web Services

    PubMed Central

    Khalilia, Mohammed; Choi, Myung; Henderson, Amelia; Iyengar, Sneha; Braunstein, Mark; Sun, Jimeng

    2015-01-01

    Clinical predictive modeling involves two challenging tasks: model development and model deployment. In this paper we demonstrate a software architecture for developing and deploying clinical predictive models using web services via the Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) standard. The services enable model development using electronic health records (EHRs) stored in OMOP CDM databases and model deployment for scoring individual patients through FHIR resources. The MIMIC2 ICU dataset and a synthetic outpatient dataset were transformed into OMOP CDM databases for predictive model development. The resulting predictive models are deployed as FHIR resources, which receive requests of patient information, perform prediction against the deployed predictive model and respond with prediction scores. To assess the practicality of this approach we evaluated the response and prediction time of the FHIR modeling web services. We found the system to be reasonably fast with one second total response time per patient prediction. PMID:26958207

  15. Metabolomics biomarkers to predict acamprosate treatment response in alcohol-dependent subjects.

    PubMed

    Hinton, David J; Vázquez, Marely Santiago; Geske, Jennifer R; Hitschfeld, Mario J; Ho, Ada M C; Karpyak, Victor M; Biernacka, Joanna M; Choi, Doo-Sup

    2017-05-31

    Precision medicine for alcohol use disorder (AUD) allows optimal treatment of the right patient with the right drug at the right time. Here, we generated multivariable models incorporating clinical information and serum metabolite levels to predict acamprosate treatment response. The sample of 120 patients was randomly split into a training set (n = 80) and test set (n = 40) five independent times. Treatment response was defined as complete abstinence (no alcohol consumption during 3 months of acamprosate treatment) while nonresponse was defined as any alcohol consumption during this period. In each of the five training sets, we built a predictive model using a least absolute shrinkage and section operator (LASSO) penalized selection method and then evaluated the predictive performance of each model in the corresponding test set. The models predicted acamprosate treatment response with a mean sensitivity and specificity in the test sets of 0.83 and 0.31, respectively, suggesting our model performed well at predicting responders, but not non-responders (i.e. many non-responders were predicted to respond). Studies with larger sample sizes and additional biomarkers will expand the clinical utility of predictive algorithms for pharmaceutical response in AUD.

  16. On the effect of acoustic coupling on random and harmonic plate vibrations

    NASA Technical Reports Server (NTRS)

    Frendi, A.; Robinson, J. H.

    1993-01-01

    The effect of acoustic coupling on random and harmonic plate vibrations is studied using two numerical models. In the coupled model, the plate response is obtained by integration of the nonlinear plate equation coupled with the nonlinear Euler equations for the surrounding acoustic fluid. In the uncoupled model, the nonlinear plate equation with an equivalent linear viscous damping term is integrated to obtain the response of the plate subject to the same excitation field. For a low-level, narrow-band excitation, the two models predict the same plate response spectra. As the excitation level is increased, the response power spectrum predicted by the uncoupled model becomes broader and more shifted towards the high frequencies than that obtained by the coupled model. In addition, the difference in response between the coupled and uncoupled models at high frequencies becomes larger. When a high intensity harmonic excitation is used, causing a nonlinear plate response, both models predict the same frequency content of the response. However, the level of the harmonics and subharmonics are higher for the uncoupled model. Comparisons to earlier experimental and numerical results show that acoustic coupling has a significant effect on the plate response at high excitation levels. Its absence in previous models may explain the discrepancy between predicted and measured responses.

  17. Development of a computer model for prediction of collision response of a railroad passenger car

    DOT National Transportation Integrated Search

    2002-04-23

    The paper describes the development of a detailed finite element model that is capable of predicting the response of a rail passenger car to collision conditions. This model was developed to predict the car crush, the three-dimensional gross motions ...

  18. Prediction suppression and surprise enhancement in monkey inferotemporal cortex.

    PubMed

    Ramachandran, Suchitra; Meyer, Travis; Olson, Carl R

    2017-07-01

    Exposing monkeys, over the course of days and weeks, to pairs of images presented in fixed sequence, so that each leading image becomes a predictor for the corresponding trailing image, affects neuronal visual responsiveness in area TE. At the end of the training period, neurons respond relatively weakly to a trailing image when it appears in a trained sequence and, thus, confirms prediction, whereas they respond relatively strongly to the same image when it appears in an untrained sequence and, thus, violates prediction. This effect could arise from prediction suppression (reduced firing in response to the occurrence of a probable event) or surprise enhancement (elevated firing in response to the omission of a probable event). To identify its cause, we compared firing under the prediction-confirming and prediction-violating conditions to firing under a prediction-neutral condition. The results provide strong evidence for prediction suppression and limited evidence for surprise enhancement. NEW & NOTEWORTHY In predictive coding models of the visual system, neurons carry signed prediction error signals. We show here that monkey inferotemporal neurons exhibit prediction-modulated firing, as posited by these models, but that the signal is unsigned. The response to a prediction-confirming image is suppressed, and the response to a prediction-violating image may be enhanced. These results are better explained by a model in which the visual system emphasizes unpredicted events than by a predictive coding model. Copyright © 2017 the American Physiological Society.

  19. A competitive binding model predicts the response of mammalian olfactory receptors to mixtures

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Murphy, Nicolle; Mainland, Joel; Balasubramanian, Vijay

    Most natural odors are complex mixtures of many odorants, but due to the large number of possible mixtures only a small fraction can be studied experimentally. To get a realistic understanding of the olfactory system we need methods to predict responses to complex mixtures from single odorant responses. Focusing on mammalian olfactory receptors (ORs in mouse and human), we propose a simple biophysical model for odor-receptor interactions where only one odor molecule can bind to a receptor at a time. The resulting competition for occupancy of the receptor accounts for the experimentally observed nonlinear mixture responses. We first fit a dose-response relationship to individual odor responses and then use those parameters in a competitive binding model to predict mixture responses. With no additional parameters, the model predicts responses of 15 (of 18 tested) receptors to within 10 - 30 % of the observed values, for mixtures with 2, 3 and 12 odorants chosen from a panel of 30. Extensions of our basic model with odorant interactions lead to additional nonlinearities observed in mixture response like suppression, cooperativity, and overshadowing. Our model provides a systematic framework for characterizing and parameterizing such mixing nonlinearities from mixture response data.

  20. Applying the age-shift approach to model responses to midrotation fertilization

    Treesearch

    Colleen A. Carlson; Thomas R. Fox; H. Lee Allen; Timothy J. Albaugh

    2010-01-01

    Growth and yield models used to evaluate midrotation fertilization economics require adjustments to account for the typically observed responses. This study investigated the use of age-shift models to predict midrotation fertilizer responses. Age-shift prediction models were constructed from a regional study consisting of 43 installations of a nitrogen (N) by...

  1. Testing of the European Union exposure-response relationships and annoyance equivalents model for annoyance due to transportation noises: The need of revised exposure-response relationships and annoyance equivalents model.

    PubMed

    Gille, Laure-Anne; Marquis-Favre, Catherine; Morel, Julien

    2016-09-01

    An in situ survey was performed in 8 French cities in 2012 to study the annoyance due to combined transportation noises. As the European Commission recommends to use the exposure-response relationships suggested by Miedema and Oudshoorn [Environmental Health Perspective, 2001] to predict annoyance due to single transportation noise, these exposure-response relationships were tested using the annoyance due to each transportation noise measured during the French survey. These relationships only enabled a good prediction in terms of the percentages of people highly annoyed by road traffic noise. For the percentages of people annoyed and a little annoyed by road traffic noise, the quality of prediction is weak. For aircraft and railway noises, prediction of annoyance is not satisfactory either. As a consequence, the annoyance equivalents model of Miedema [The Journal of the Acoustical Society of America, 2004], based on these exposure-response relationships did not enable a good prediction of annoyance due to combined transportation noises. Local exposure-response relationships were derived, following the whole computation suggested by Miedema and Oudshoorn [Environmental Health Perspective, 2001]. They led to a better calculation of annoyance due to each transportation noise in the French cities. A new version of the annoyance equivalents model was proposed using these new exposure-response relationships. This model enabled a better prediction of the total annoyance due to the combined transportation noises. These results encourage therefore to improve the annoyance prediction for noise in isolation with local or revised exposure-response relationships, which will also contribute to improve annoyance modeling for combined noises. With this aim in mind, a methodology is proposed to consider noise sensitivity in exposure-response relationships and in the annoyance equivalents model. The results showed that taking into account such variable did not enable to enhance both exposure-response relationships and the annoyance equivalents model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Bayesian Mapping Reveals That Attention Boosts Neural Responses to Predicted and Unpredicted Stimuli.

    PubMed

    Garrido, Marta I; Rowe, Elise G; Halász, Veronika; Mattingley, Jason B

    2018-05-01

    Predictive coding posits that the human brain continually monitors the environment for regularities and detects inconsistencies. It is unclear, however, what effect attention has on expectation processes, as there have been relatively few studies and the results of these have yielded contradictory findings. Here, we employed Bayesian model comparison to adjudicate between 2 alternative computational models. The "Opposition" model states that attention boosts neural responses equally to predicted and unpredicted stimuli, whereas the "Interaction" model assumes that attentional boosting of neural signals depends on the level of predictability. We designed a novel, audiospatial attention task that orthogonally manipulated attention and prediction by playing oddball sequences in either the attended or unattended ear. We observed sensory prediction error responses, with electroencephalography, across all attentional manipulations. Crucially, posterior probability maps revealed that, overall, the Opposition model better explained scalp and source data, suggesting that attention boosts responses to predicted and unpredicted stimuli equally. Furthermore, Dynamic Causal Modeling showed that these Opposition effects were expressed in plastic changes within the mismatch negativity network. Our findings provide empirical evidence for a computational model of the opposing interplay of attention and expectation in the brain.

  3. Impact of Future Climate on Radial Growth of Four Major Boreal Tree Species in the Eastern Canadian Boreal Forest

    PubMed Central

    Huang, Jian-Guo; Bergeron, Yves; Berninger, Frank; Zhai, Lihong; Tardif, Jacques C.; Denneler, Bernhard

    2013-01-01

    Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010–2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections. Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model), in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints. Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere. PMID:23468879

  4. Impact of future climate on radial growth of four major boreal tree species in the Eastern Canadian boreal forest.

    PubMed

    Huang, Jian-Guo; Bergeron, Yves; Berninger, Frank; Zhai, Lihong; Tardif, Jacques C; Denneler, Bernhard

    2013-01-01

    Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010-2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections. Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model), in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints. Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere.

  5. A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis

    PubMed Central

    Noren, David P.; Long, Byron L.; Norel, Raquel; Rrhissorrakrai, Kahn; Hess, Kenneth; Hu, Chenyue Wendy; Bisberg, Alex J.; Schultz, Andre; Engquist, Erik; Liu, Li; Lin, Xihui; Chen, Gregory M.; Xie, Honglei; Hunter, Geoffrey A. M.; Norman, Thea; Friend, Stephen H.; Stolovitzky, Gustavo; Kornblau, Steven; Qutub, Amina A.

    2016-01-01

    Acute Myeloid Leukemia (AML) is a fatal hematological cancer. The genetic abnormalities underlying AML are extremely heterogeneous among patients, making prognosis and treatment selection very difficult. While clinical proteomics data has the potential to improve prognosis accuracy, thus far, the quantitative means to do so have yet to be developed. Here we report the results and insights gained from the DREAM 9 Acute Myeloid Prediction Outcome Prediction Challenge (AML-OPC), a crowdsourcing effort designed to promote the development of quantitative methods for AML prognosis prediction. We identify the most accurate and robust models in predicting patient response to therapy, remission duration, and overall survival. We further investigate patient response to therapy, a clinically actionable prediction, and find that patients that are classified as resistant to therapy are harder to predict than responsive patients across the 31 models submitted to the challenge. The top two performing models, which held a high sensitivity to these patients, substantially utilized the proteomics data to make predictions. Using these models, we also identify which signaling proteins were useful in predicting patient therapeutic response. PMID:27351836

  6. Fitting a Mixture Item Response Theory Model to Personality Questionnaire Data: Characterizing Latent Classes and Investigating Possibilities for Improving Prediction

    ERIC Educational Resources Information Center

    Maij-de Meij, Annette M.; Kelderman, Henk; van der Flier, Henk

    2008-01-01

    Mixture item response theory (IRT) models aid the interpretation of response behavior on personality tests and may provide possibilities for improving prediction. Heterogeneity in the population is modeled by identifying homogeneous subgroups that conform to different measurement models. In this study, mixture IRT models were applied to the…

  7. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for component-loaded curved orthogrid panels typical of launch vehicle skin structures. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was applied to correlate the measured input sound pressures across the energized panel. This application quantifies the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software developed for the RPTF method allows easy replacement of the diffuse acoustic field with other pressure fields such as a turbulent boundary layer (TBL) model suitable for vehicle ascent. Structural responses using a TBL model were demonstrated, and wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this environment. Finally, design load factors were developed from the measured and predicted responses and compared with those derived from traditional techniques such as historical Mass Acceleration Curves and Barrett scaling methods for acreage and component-loaded panels.

  8. Driver Vision Based Perception-Response Time Prediction and Assistance Model on Mountain Highway Curve.

    PubMed

    Li, Yi; Chen, Yuren

    2016-12-30

    To make driving assistance system more humanized, this study focused on the prediction and assistance of drivers' perception-response time on mountain highway curves. Field tests were conducted to collect real-time driving data and driver vision information. A driver-vision lane model quantified curve elements in drivers' vision. A multinomial log-linear model was established to predict perception-response time with traffic/road environment information, driver-vision lane model, and mechanical status (last second). A corresponding assistance model showed a positive impact on drivers' perception-response times on mountain highway curves. Model results revealed that the driver-vision lane model and visual elements did have important influence on drivers' perception-response time. Compared with roadside passive road safety infrastructure, proper visual geometry design, timely visual guidance, and visual information integrality of a curve are significant factors for drivers' perception-response time.

  9. Selecting an Informative/Discriminating Multivariate Response for Inverse Prediction

    DOE PAGES

    Thomas, Edward V.; Lewis, John R.; Anderson-Cook, Christine M.; ...

    2017-11-21

    nverse prediction is important in a wide variety of scientific and engineering contexts. One might use inverse prediction to predict fundamental properties/characteristics of an object using measurements obtained from it. This can be accomplished by “inverting” parameterized forward models that relate the measurements (responses) to the properties/characteristics of interest. Sometimes forward models are science based; but often, forward models are empirically based, using the results of experimentation. For empirically-based forward models, it is important that the experiments provide a sound basis to develop accurate forward models in terms of the properties/characteristics (factors). While nature dictates the causal relationship between factorsmore » and responses, experimenters can influence control of the type, accuracy, and precision of forward models that can be constructed via selection of factors, factor levels, and the set of trials that are performed. Whether the forward models are based on science, experiments or both, researchers can influence the ability to perform inverse prediction by selecting informative response variables. By using an errors-in-variables framework for inverse prediction, this paper shows via simple analysis and examples how the capability of a multivariate response (with respect to being informative and discriminating) can vary depending on how well the various responses complement one another over the range of the factor-space of interest. Insights derived from this analysis could be useful for selecting a set of response variables among candidates in cases where the number of response variables that can be acquired is limited by difficulty, expense, and/or availability of material.« less

  10. Selecting an Informative/Discriminating Multivariate Response for Inverse Prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Edward V.; Lewis, John R.; Anderson-Cook, Christine M.

    nverse prediction is important in a wide variety of scientific and engineering contexts. One might use inverse prediction to predict fundamental properties/characteristics of an object using measurements obtained from it. This can be accomplished by “inverting” parameterized forward models that relate the measurements (responses) to the properties/characteristics of interest. Sometimes forward models are science based; but often, forward models are empirically based, using the results of experimentation. For empirically-based forward models, it is important that the experiments provide a sound basis to develop accurate forward models in terms of the properties/characteristics (factors). While nature dictates the causal relationship between factorsmore » and responses, experimenters can influence control of the type, accuracy, and precision of forward models that can be constructed via selection of factors, factor levels, and the set of trials that are performed. Whether the forward models are based on science, experiments or both, researchers can influence the ability to perform inverse prediction by selecting informative response variables. By using an errors-in-variables framework for inverse prediction, this paper shows via simple analysis and examples how the capability of a multivariate response (with respect to being informative and discriminating) can vary depending on how well the various responses complement one another over the range of the factor-space of interest. Insights derived from this analysis could be useful for selecting a set of response variables among candidates in cases where the number of response variables that can be acquired is limited by difficulty, expense, and/or availability of material.« less

  11. An empirical propellant response function for combustion stability predictions

    NASA Technical Reports Server (NTRS)

    Hessler, R. O.

    1980-01-01

    An empirical response function model was developed for ammonium perchlorate propellants to supplant T-burner testing at the preliminary design stage. The model was developed by fitting a limited T-burner data base, in terms of oxidizer size and concentration, to an analytical two parameter response function expression. Multiple peaks are predicted, but the primary effect is of a single peak for most formulations, with notable bulges for the various AP size fractions. The model was extended to velocity coupling with the assumption that dynamic response was controlled primarily by the solid phase described by the two parameter model. The magnitude of velocity coupling was then scaled using an erosive burning law. Routine use of the model for stability predictions on a number of propulsion units indicates that the model tends to overpredict propellant response. It is concluded that the model represents a generally conservative prediction tool, suited especially for the preliminary design stage when T-burner data may not be readily available. The model work included development of a rigorous summation technique for pseudopropellant properties and of a concept for modeling ordered packing of particulates.

  12. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    A rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for a curved orthogrid panel typical of launch vehicle skin structures. Several test article configurations were produced by adding component equipment of differing weights to the flight-like vehicle panel. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was employed to describe the assumed correlation of phased input sound pressures across the energized panel. This application demonstrates the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software modules developed for the RPTF method can be easily adapted for quick replacement of the diffuse acoustic field with other pressure field models; for example a turbulent boundary layer (TBL) model suitable for vehicle ascent. Wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this type of environment. Finally, component vibration environments for design were developed from the measured and predicted responses and compared with those derived from traditional techniques such as Barrett scaling methods for unloaded and component-loaded panels.

  13. Modeling Rabbit Responses to Single and Multiple Aerosol ...

    EPA Pesticide Factsheets

    Journal Article Survival models are developed here to predict response and time-to-response for mortality in rabbits following exposures to single or multiple aerosol doses of Bacillus anthracis spores. Hazard function models were developed for a multiple dose dataset to predict the probability of death through specifying dose-response functions and the time between exposure and the time-to-death (TTD). Among the models developed, the best-fitting survival model (baseline model) has an exponential dose-response model with a Weibull TTD distribution. Alternative models assessed employ different underlying dose-response functions and use the assumption that, in a multiple dose scenario, earlier doses affect the hazard functions of each subsequent dose. In addition, published mechanistic models are analyzed and compared with models developed in this paper. None of the alternative models that were assessed provided a statistically significant improvement in fit over the baseline model. The general approach utilizes simple empirical data analysis to develop parsimonious models with limited reliance on mechanistic assumptions. The baseline model predicts TTDs consistent with reported results from three independent high-dose rabbit datasets. More accurate survival models depend upon future development of dose-response datasets specifically designed to assess potential multiple dose effects on response and time-to-response. The process used in this paper to dev

  14. Improved partition equilibrium model for predicting analyte response in electrospray ionization mass spectrometry.

    PubMed

    Du, Lihong; White, Robert L

    2009-02-01

    A previously proposed partition equilibrium model for quantitative prediction of analyte response in electrospray ionization mass spectrometry is modified to yield an improved linear relationship. Analyte mass spectrometer response is modeled by a competition mechanism between analyte and background electrolytes that is based on partition equilibrium considerations. The correlation between analyte response and solution composition is described by the linear model over a wide concentration range and the improved model is shown to be valid for a wide range of experimental conditions. The behavior of an analyte in a salt solution, which could not be explained by the original model, is correctly predicted. The ion suppression effects of 16:0 lysophosphatidylcholine (LPC) on analyte signals are attributed to a combination of competition for excess charge and reduction of total charge due to surface tension effects. In contrast to the complicated mathematical forms that comprise the original model, the simplified model described here can more easily be employed to predict analyte mass spectrometer responses for solutions containing multiple components. Copyright (c) 2008 John Wiley & Sons, Ltd.

  15. TThe role of nitrogen availability in land-atmosphere interactions: a systematic evaluation of carbon-nitrogen coupling in a global land surface model using plot-level nitrogen fertilization experiments

    NASA Astrophysics Data System (ADS)

    Thomas, R. Q.; Goodale, C. L.; Bonan, G. B.; Mahowald, N. M.; Ricciuto, D. M.; Thornton, P. E.

    2010-12-01

    Recent research from global land surface models emphasizes the important role of nitrogen cycling on global climate, via its control on the terrestrial carbon balance. Despite the implications of nitrogen cycling on global climate predictions, the research community has not performed a systematic evaluation of nitrogen cycling in global models. Here, we present such an evaluation for one global land model, CLM-CN. In the evaluation we simulated 45 plot-scale nitrogen-fertilization experiments distributed across 33 temperate and boreal forest sites. Model predictions were evaluated against field observations by comparing the vegetation and soil carbon responses to the additional nitrogen. Aggregated across all experiments, the model predicted a larger vegetation carbon response and a smaller soil carbon response than observed; the responses partially offset each other, leading to a slightly larger total ecosystem carbon response than observed. However, the model-observation agreement improved for vegetation carbon when the sites with observed negative carbon responses to nitrogen were excluded, which may be because the model lacks mechanisms whereby nitrogen additions increase tree mortality. Among experiments, younger forests and boreal forests’ vegetation carbon responses were less than predicted and mature forests (> 40 years old) were greater than predicted. Specific to the CLM-CN, this study used a systematic evaluation to identify key areas to focus model development, especially soil carbon- nitrogen interactions and boreal forest nitrogen cycling. Applicable to the modeling community, this study demonstrates a standardized protocol for comparing carbon-nitrogen interactions among global land models.

  16. Model-based predictions for dopamine.

    PubMed

    Langdon, Angela J; Sharpe, Melissa J; Schoenbaum, Geoffrey; Niv, Yael

    2018-04-01

    Phasic dopamine responses are thought to encode a prediction-error signal consistent with model-free reinforcement learning theories. However, a number of recent findings highlight the influence of model-based computations on dopamine responses, and suggest that dopamine prediction errors reflect more dimensions of an expected outcome than scalar reward value. Here, we review a selection of these recent results and discuss the implications and complications of model-based predictions for computational theories of dopamine and learning. Copyright © 2017. Published by Elsevier Ltd.

  17. A model for predicting aortic dynamic response to -G sub z impact acceleration.

    NASA Technical Reports Server (NTRS)

    Advani, S. H.; Tarnay, T. J.; Byars, E. F.; Love, J. S.

    1972-01-01

    A steady state dynamic response model for the radial motion of the aorta is developed from in vivo pressure-displacement and nerve stimulation experiments on canines. The model represented by a modified Van der Pol wave motion oscillator closely predicts steady state and perturbed response results. The applicability of the steady state canine aortic model to tailward acting impact forces is studied by means of the perturbed phase plane of the oscillator. The backflow through the aortic arch resulting from a specified acceleration-time profile is computed and an analysis for predicting the forced motion aortic response is presented.

  18. Can a Mathematical Model Predict an Individual’s Trait-like Response to Both Total and Partial Sleep Loss?

    DTIC Science & Technology

    2015-01-01

    Can a mathematical model predict an individual’s trait-like response to both total and partial sleep loss? SR IDHAR RAMAKR I SHNAN 1 , WE I LU 1 , SR...biomathematical model, psychomotor vigilance task, sleep -loss phenotype, trait preservation, two-process model Correspondence Jaques Reifman, PhD...trait-like response to sleep loss. However, it is not known whether this trait-like response can be captured by a mathemat- ical model from only one

  19. Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses

    NASA Astrophysics Data System (ADS)

    Rowland, L.; Harper, A.; Christoffersen, B. O.; Galbraith, D. R.; Imbuzeiro, H. M. A.; Powell, T. L.; Doughty, C.; Levine, N. M.; Malhi, Y.; Saleska, S. R.; Moorcroft, P. R.; Meir, P.; Williams, M.

    2014-11-01

    Accurately predicting the response of Amazonia to climate change is important for predicting changes across the globe. However, changes in multiple climatic factors simultaneously may result in complex non-linear responses, which are difficult to predict using vegetation models. Using leaf and canopy scale observations, this study evaluated the capability of five vegetation models (CLM3.5, ED2, JULES, SiB3, and SPA) to simulate the responses of canopy and leaf scale productivity to changes in temperature and drought in an Amazonian forest. The models did not agree as to whether gross primary productivity (GPP) was more sensitive to changes in temperature or precipitation. There was greater model-data consistency in the response of net ecosystem exchange to changes in temperature, than in the response to temperature of leaf area index (LAI), net photosynthesis (An) and stomatal conductance (gs). Modelled canopy scale fluxes are calculated by scaling leaf scale fluxes to LAI, and therefore in this study similarities in modelled ecosystem scale responses to drought and temperature were the result of inconsistent leaf scale and LAI responses among models. Across the models, the response of An to temperature was more closely linked to stomatal behaviour than biochemical processes. Consequently all the models predicted that GPP would be higher if tropical forests were 5 °C colder, closer to the model optima for gs. There was however no model consistency in the response of the An-gs relationship when temperature changes and drought were introduced simultaneously. The inconsistencies in the An-gs relationships amongst models were caused by to non-linear model responses induced by simultaneous drought and temperature change. To improve the reliability of simulations of the response of Amazonian rainforest to climate change the mechanistic underpinnings of vegetation models need more complete validation to improve accuracy and consistency in the scaling of processes from leaf to canopy.

  20. Predicting Response to Neoadjuvant Chemoradiotherapy in Esophageal Cancer with Textural Features Derived from Pretreatment 18F-FDG PET/CT Imaging.

    PubMed

    Beukinga, Roelof J; Hulshoff, Jan B; van Dijk, Lisanne V; Muijs, Christina T; Burgerhof, Johannes G M; Kats-Ugurlu, Gursah; Slart, Riemer H J A; Slump, Cornelis H; Mul, Véronique E M; Plukker, John Th M

    2017-05-01

    Adequate prediction of tumor response to neoadjuvant chemoradiotherapy (nCRT) in esophageal cancer (EC) patients is important in a more personalized treatment. The current best clinical method to predict pathologic complete response is SUV max in 18 F-FDG PET/CT imaging. To improve the prediction of response, we constructed a model to predict complete response to nCRT in EC based on pretreatment clinical parameters and 18 F-FDG PET/CT-derived textural features. Methods: From a prospectively maintained single-institution database, we reviewed 97 consecutive patients with locally advanced EC and a pretreatment 18 F-FDG PET/CT scan between 2009 and 2015. All patients were treated with nCRT (carboplatin/paclitaxel/41.4 Gy) followed by esophagectomy. We analyzed clinical, geometric, and pretreatment textural features extracted from both 18 F-FDG PET and CT. The current most accurate prediction model with SUV max as a predictor variable was compared with 6 different response prediction models constructed using least absolute shrinkage and selection operator regularized logistic regression. Internal validation was performed to estimate the model's performances. Pathologic response was defined as complete versus incomplete response (Mandard tumor regression grade system 1 vs. 2-5). Results: Pathologic examination revealed 19 (19.6%) complete and 78 (80.4%) incomplete responders. Least absolute shrinkage and selection operator regularization selected the clinical parameters: histologic type and clinical T stage, the 18 F-FDG PET-derived textural feature long run low gray level emphasis, and the CT-derived textural feature run percentage. Introducing these variables to a logistic regression analysis showed areas under the receiver-operating-characteristic curve (AUCs) of 0.78 compared with 0.58 in the SUV max model. The discrimination slopes were 0.17 compared with 0.01, respectively. After internal validation, the AUCs decreased to 0.74 and 0.54, respectively. Conclusion: The predictive values of the constructed models were superior to the standard method (SUV max ). These results can be considered as an initial step in predicting tumor response to nCRT in locally advanced EC. Further research in refining the predictive value of these models is needed to justify omission of surgery. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  1. Modeling the Non-Linear Response of Fiber-Reinforced Laminates Using a Combined Damage/Plasticity Model

    NASA Technical Reports Server (NTRS)

    Schuecker, Clara; Davila, Carlos G.; Pettermann, Heinz E.

    2008-01-01

    The present work is concerned with modeling the non-linear response of fiber reinforced polymer laminates. Recent experimental data suggests that the non-linearity is not only caused by matrix cracking but also by matrix plasticity due to shear stresses. To capture the effects of those two mechanisms, a model combining a plasticity formulation with continuum damage has been developed to simulate the non-linear response of laminates under plane stress states. The model is used to compare the predicted behavior of various laminate lay-ups to experimental data from the literature by looking at the degradation of axial modulus and Poisson s ratio of the laminates. The influence of residual curing stresses and in-situ effect on the predicted response is also investigated. It is shown that predictions of the combined damage/plasticity model, in general, correlate well with the experimental data. The test data shows that there are two different mechanisms that can have opposite effects on the degradation of the laminate Poisson s ratio which is captured correctly by the damage/plasticity model. Residual curing stresses are found to have a minor influence on the predicted response for the cases considered here. Some open questions remain regarding the prediction of damage onset.

  2. Quantitative imaging features of pretreatment CT predict volumetric response to chemotherapy in patients with colorectal liver metastases.

    PubMed

    Creasy, John M; Midya, Abhishek; Chakraborty, Jayasree; Adams, Lauryn B; Gomes, Camilla; Gonen, Mithat; Seastedt, Kenneth P; Sutton, Elizabeth J; Cercek, Andrea; Kemeny, Nancy E; Shia, Jinru; Balachandran, Vinod P; Kingham, T Peter; Allen, Peter J; DeMatteo, Ronald P; Jarnagin, William R; D'Angelica, Michael I; Do, Richard K G; Simpson, Amber L

    2018-06-19

    This study investigates whether quantitative image analysis of pretreatment CT scans can predict volumetric response to chemotherapy for patients with colorectal liver metastases (CRLM). Patients treated with chemotherapy for CRLM (hepatic artery infusion (HAI) combined with systemic or systemic alone) were included in the study. Patients were imaged at baseline and approximately 8 weeks after treatment. Response was measured as the percentage change in tumour volume from baseline. Quantitative imaging features were derived from the index hepatic tumour on pretreatment CT, and features statistically significant on univariate analysis were included in a linear regression model to predict volumetric response. The regression model was constructed from 70% of data, while 30% were reserved for testing. Test data were input into the trained model. Model performance was evaluated with mean absolute prediction error (MAPE) and R 2 . Clinicopatholologic factors were assessed for correlation with response. 157 patients were included, split into training (n = 110) and validation (n = 47) sets. MAPE from the multivariate linear regression model was 16.5% (R 2 = 0.774) and 21.5% in the training and validation sets, respectively. Stratified by HAI utilisation, MAPE in the validation set was 19.6% for HAI and 25.1% for systemic chemotherapy alone. Clinical factors associated with differences in median tumour response were treatment strategy, systemic chemotherapy regimen, age and KRAS mutation status (p < 0.05). Quantitative imaging features extracted from pretreatment CT are promising predictors of volumetric response to chemotherapy in patients with CRLM. Pretreatment predictors of response have the potential to better select patients for specific therapies. • Colorectal liver metastases (CRLM) are downsized with chemotherapy but predicting the patients that will respond to chemotherapy is currently not possible. • Heterogeneity and enhancement patterns of CRLM can be measured with quantitative imaging. • Prediction model constructed that predicts volumetric response with 20% error suggesting that quantitative imaging holds promise to better select patients for specific treatments.

  3. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 2; Composite Micromechanical Model

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this second paper of a two part report, a three-dimensional composite micromechanical model is described which allows for the analysis of the rate dependent, nonlinear deformation response of a polymer matrix composite. Strain rate dependent inelastic constitutive equations utilized to model the deformation response of a polymer are implemented within the micromechanics method. The deformation response of two representative laminated carbon fiber reinforced composite materials with varying fiber orientation has been predicted using the described technique. The predicted results compare favorably to both experimental values and the response predicted by the Generalized Method of Cells, a well-established micromechanics analysis method.

  4. Predictive Ensemble Decoding of Acoustical Features Explains Context-Dependent Receptive Fields.

    PubMed

    Yildiz, Izzet B; Mesgarani, Nima; Deneve, Sophie

    2016-12-07

    A primary goal of auditory neuroscience is to identify the sound features extracted and represented by auditory neurons. Linear encoding models, which describe neural responses as a function of the stimulus, have been primarily used for this purpose. Here, we provide theoretical arguments and experimental evidence in support of an alternative approach, based on decoding the stimulus from the neural response. We used a Bayesian normative approach to predict the responses of neurons detecting relevant auditory features, despite ambiguities and noise. We compared the model predictions to recordings from the primary auditory cortex of ferrets and found that: (1) the decoding filters of auditory neurons resemble the filters learned from the statistics of speech sounds; (2) the decoding model captures the dynamics of responses better than a linear encoding model of similar complexity; and (3) the decoding model accounts for the accuracy with which the stimulus is represented in neural activity, whereas linear encoding model performs very poorly. Most importantly, our model predicts that neuronal responses are fundamentally shaped by "explaining away," a divisive competition between alternative interpretations of the auditory scene. Neural responses in the auditory cortex are dynamic, nonlinear, and hard to predict. Traditionally, encoding models have been used to describe neural responses as a function of the stimulus. However, in addition to external stimulation, neural activity is strongly modulated by the responses of other neurons in the network. We hypothesized that auditory neurons aim to collectively decode their stimulus. In particular, a stimulus feature that is decoded (or explained away) by one neuron is not explained by another. We demonstrated that this novel Bayesian decoding model is better at capturing the dynamic responses of cortical neurons in ferrets. Whereas the linear encoding model poorly reflects selectivity of neurons, the decoding model can account for the strong nonlinearities observed in neural data. Copyright © 2016 Yildiz et al.

  5. Optimal temperature for malaria transmission is dramaticallylower than previously predicted

    USGS Publications Warehouse

    Mordecai, Eerin A.; Paaijmans, Krijin P.; Johnson, Leah R.; Balzer, Christian; Ben-Horin, Tal; de Moor, Emily; McNally, Amy; Pawar, Samraat; Ryan, Sadie J.; Smith, Thomas C.; Lafferty, Kevin D.

    2013-01-01

    The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life-history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal-response models will aid in understanding the effects of current and future temperature regimes on disease transmission.

  6. Optimal temperature for malaria transmission is dramatically lower than previously predicted

    USGS Publications Warehouse

    Mordecai, Erin A.; Paaijmans, Krijn P.; Johnson, Leah R.; Balzer, Christian; Ben-Horin, Tal; de Moor, Emily; McNally, Amy; Pawar, Samraat; Ryan, Sadie J.; Smith, Thomas C.; Lafferty, Kevin D.

    2013-01-01

    The ecology of mosquito vectors and malaria parasites affect the incidence, seasonal transmission and geographical range of malaria. Most malaria models to date assume constant or linear responses of mosquito and parasite life-history traits to temperature, predicting optimal transmission at 31 °C. These models are at odds with field observations of transmission dating back nearly a century. We build a model with more realistic ecological assumptions about the thermal physiology of insects. Our model, which includes empirically derived nonlinear thermal responses, predicts optimal malaria transmission at 25 °C (6 °C lower than previous models). Moreover, the model predicts that transmission decreases dramatically at temperatures > 28 °C, altering predictions about how climate change will affect malaria. A large data set on malaria transmission risk in Africa validates both the 25 °C optimum and the decline above 28 °C. Using these more accurate nonlinear thermal-response models will aid in understanding the effects of current and future temperature regimes on disease transmission.

  7. Incorporating Midbrain Adaptation to Mean Sound Level Improves Models of Auditory Cortical Processing

    PubMed Central

    Schoppe, Oliver; King, Andrew J.; Schnupp, Jan W.H.; Harper, Nicol S.

    2016-01-01

    Adaptation to stimulus statistics, such as the mean level and contrast of recently heard sounds, has been demonstrated at various levels of the auditory pathway. It allows the nervous system to operate over the wide range of intensities and contrasts found in the natural world. Yet current standard models of the response properties of auditory neurons do not incorporate such adaptation. Here we present a model of neural responses in the ferret auditory cortex (the IC Adaptation model), which takes into account adaptation to mean sound level at a lower level of processing: the inferior colliculus (IC). The model performs high-pass filtering with frequency-dependent time constants on the sound spectrogram, followed by half-wave rectification, and passes the output to a standard linear–nonlinear (LN) model. We find that the IC Adaptation model consistently predicts cortical responses better than the standard LN model for a range of synthetic and natural stimuli. The IC Adaptation model introduces no extra free parameters, so it improves predictions without sacrificing parsimony. Furthermore, the time constants of adaptation in the IC appear to be matched to the statistics of natural sounds, suggesting that neurons in the auditory midbrain predict the mean level of future sounds and adapt their responses appropriately. SIGNIFICANCE STATEMENT An ability to accurately predict how sensory neurons respond to novel stimuli is critical if we are to fully characterize their response properties. Attempts to model these responses have had a distinguished history, but it has proven difficult to improve their predictive power significantly beyond that of simple, mostly linear receptive field models. Here we show that auditory cortex receptive field models benefit from a nonlinear preprocessing stage that replicates known adaptation properties of the auditory midbrain. This improves their predictive power across a wide range of stimuli but keeps model complexity low as it introduces no new free parameters. Incorporating the adaptive coding properties of neurons will likely improve receptive field models in other sensory modalities too. PMID:26758822

  8. Probabilistic prediction of barrier-island response to hurricanes

    USGS Publications Warehouse

    Plant, Nathaniel G.; Stockdon, Hilary F.

    2012-01-01

    Prediction of barrier-island response to hurricane attack is important for assessing the vulnerability of communities, infrastructure, habitat, and recreational assets to the impacts of storm surge, waves, and erosion. We have demonstrated that a conceptual model intended to make qualitative predictions of the type of beach response to storms (e.g., beach erosion, dune erosion, dune overwash, inundation) can be reformulated in a Bayesian network to make quantitative predictions of the morphologic response. In an application of this approach at Santa Rosa Island, FL, predicted dune-crest elevation changes in response to Hurricane Ivan explained about 20% to 30% of the observed variance. An extended Bayesian network based on the original conceptual model, which included dune elevations, storm surge, and swash, but with the addition of beach and dune widths as input variables, showed improved skill compared to the original model, explaining 70% of dune elevation change variance and about 60% of dune and shoreline position change variance. This probabilistic approach accurately represented prediction uncertainty (measured with the log likelihood ratio), and it outperformed the baseline prediction (i.e., the prior distribution based on the observations). Finally, sensitivity studies demonstrated that degrading the resolution of the Bayesian network or removing data from the calibration process reduced the skill of the predictions by 30% to 40%. The reduction in skill did not change conclusions regarding the relative importance of the input variables, and the extended model's skill always outperformed the original model.

  9. Proposal of a clinical response score and predictors of clinical response to 2 years of GH replacement therapy in adult GH deficiency.

    PubMed

    Schneider, Harald J; Buchfelder, Michael; Wallaschofski, Henri; Luger, Anton; Johannsson, Gudmundur; Kann, Peter H; Mattsson, Anders

    2015-12-01

    There is no single clinical marker to reliably assess the clinical response to growth hormone replacement therapy (GHRT) in adults with growth hormone deficiency (GHD). The objective of this study was to propose a clinical response score to GHRT in adult GHD and to establish clinical factors that predict clinical response. This was a prospective observational cohort study from the international KIMS database (Pfizer International Metabolic Database). We included 3612 adult patients with GHD for proposing the response score and 844 patients for assessing predictors of response. We propose a clinical response score based on changes in total cholesterol, waist circumference and QoL-AGHDA quality of life measurements after 2 years of GHRT. A score point was added for each quintile of change in each variable, resulting in a sum score ranging from 3 to 15. For clinical response at 2 years, we analysed predictors at baseline and after 6 months using logistic regression analyses. In a baseline prediction model, IGF1, QoL-AGHDA, total cholesterol and waist circumference predicted response, with worse baseline parameters being associated with a favourable response (AUC 0.736). In a combined baseline and 6-month prediction model, baseline QoL-AGHDA, total cholesterol and waist circumference, and 6-month change in waist circumference were significant predictors of response (AUC 0.815). A simple clinical response score might be helpful in evaluating the success of GHRT. The baseline prediction model may aid in the decision to initiate GHRT and the combined prediction model may be helpful in the decision to continue GHRT. © 2015 European Society of Endocrinology.

  10. Incorporating Psychological Predictors of Treatment Response into Health Economic Simulation Models: A Case Study in Type 1 Diabetes.

    PubMed

    Kruger, Jen; Pollard, Daniel; Basarir, Hasan; Thokala, Praveen; Cooke, Debbie; Clark, Marie; Bond, Rod; Heller, Simon; Brennan, Alan

    2015-10-01

    . Health economic modeling has paid limited attention to the effects that patients' psychological characteristics have on the effectiveness of treatments. This case study tests 1) the feasibility of incorporating psychological prediction models of treatment response within an economic model of type 1 diabetes, 2) the potential value of providing treatment to a subgroup of patients, and 3) the cost-effectiveness of providing treatment to a subgroup of responders defined using 5 different algorithms. . Multiple linear regressions were used to investigate relationships between patients' psychological characteristics and treatment effectiveness. Two psychological prediction models were integrated with a patient-level simulation model of type 1 diabetes. Expected value of individualized care analysis was undertaken. Five different algorithms were used to provide treatment to a subgroup of predicted responders. A cost-effectiveness analysis compared using the algorithms to providing treatment to all patients. . The psychological prediction models had low predictive power for treatment effectiveness. Expected value of individualized care results suggested that targeting education at responders could be of value. The cost-effectiveness analysis suggested, for all 5 algorithms, that providing structured education to a subgroup of predicted responders would not be cost-effective. . The psychological prediction models tested did not have sufficient predictive power to make targeting treatment cost-effective. The psychological prediction models are simple linear models of psychological behavior. Collection of data on additional covariates could potentially increase statistical power. . By collecting data on psychological variables before an intervention, we can construct predictive models of treatment response to interventions. These predictive models can be incorporated into health economic models to investigate more complex service delivery and reimbursement strategies. © The Author(s) 2015.

  11. A Multidimensional Item Response Model: Constrained Latent Class Analysis Using the Gibbs Sampler and Posterior Predictive Checks.

    ERIC Educational Resources Information Center

    Hoijtink, Herbert; Molenaar, Ivo W.

    1997-01-01

    This paper shows that a certain class of constrained latent class models may be interpreted as a special case of nonparametric multidimensional item response models. Parameters of this latent class model are estimated using an application of the Gibbs sampler, and model fit is investigated using posterior predictive checks. (SLD)

  12. A linear model fails to predict orientation selectivity of cells in the cat visual cortex.

    PubMed Central

    Volgushev, M; Vidyasagar, T R; Pei, X

    1996-01-01

    1. Postsynaptic potentials (PSPs) evoked by visual stimulation in simple cells in the cat visual cortex were recorded using in vivo whole-cell technique. Responses to small spots of light presented at different positions over the receptive field and responses to elongated bars of different orientations centred on the receptive field were recorded. 2. To test whether a linear model can account for orientation selectivity of cortical neurones, responses to elongated bars were compared with responses predicted by a linear model from the receptive field map obtained from flashing spots. 3. The linear model faithfully predicted the preferred orientation, but not the degree of orientation selectivity or the sharpness of orientation tuning. The ratio of optimal to non-optimal responses was always underestimated by the model. 4. Thus non-linear mechanisms, which can include suppression of non-optimal responses and/or amplification of optimal responses, are involved in the generation of orientation selectivity in the primary visual cortex. PMID:8930828

  13. Predicting People's Environmental Behaviour: Theory of Planned Behaviour and Model of Responsible Environmental Behaviour

    ERIC Educational Resources Information Center

    Chao, Yu-Long

    2012-01-01

    Using different measures of self-reported and other-reported environmental behaviour (EB), two important theoretical models explaining EB--Hines, Hungerford and Tomera's model of responsible environmental behaviour (REB) and Ajzen's theory of planned behaviour (TPB)--were compared regarding the fit between model and data, predictive ability,…

  14. Optimal plant nitrogen use improves model representation of vegetation response to elevated CO2

    NASA Astrophysics Data System (ADS)

    Caldararu, Silvia; Kern, Melanie; Engel, Jan; Zaehle, Sönke

    2017-04-01

    Existing global vegetation models often cannot accurately represent observed ecosystem behaviour under transient conditions such as elevated atmospheric CO2, a problem that can be attributed to an inflexibility in model representation of plant responses. Plant optimality concepts have been proposed as a solution to this problem as they offer a way to represent plastic plant responses in complex models. Here we present a novel, next generation vegetation model which includes optimal nitrogen allocation to and within the canopy as well as optimal biomass allocation between above- and belowground components in response to nutrient and water availability. The underlying hypothesis is that plants adjust their use of nitrogen in response to environmental conditions and nutrient availability in order to maximise biomass growth. We show that for two FACE (Free Air CO2 enrichment) experiments, the Duke forest and Oak Ridge forest sites, the model can better predict vegetation responses over the duration of the experiment when optimal processes are included. Specifically, under elevated CO2 conditions, the model predicts a lower optimal leaf N concentration as well as increased biomass allocation to fine roots, which, combined with a redistribution of leaf N between the Rubisco and chlorophyll components, leads to a continued NPP response under high CO2, where models with a fixed canopy stoichiometry predict a quick onset of N limitation.Existing global vegetation models often cannot accurately represent observed ecosystem behaviour under transient conditions such as elevated atmospheric CO2, a problem that can be attributed to an inflexibility in model representation of plant responses. Plant optimality concepts have been proposed as a solution to this problem as they offer a way to represent plastic plant responses in complex models. Here we present a novel, next generation vegetation model which includes optimal nitrogen allocation to and within the canopy as well as optimal biomass allocation between above- and belowground components in response to nutrient and water availability. The underlying hypothesis is that plants adjust their use of nitrogen in response to environmental conditions and nutrient availability in order to maximise biomass growth. We show that for two FACE (Free Air CO2 enrichment) experiments, the Duke forest and Oak Ridge forest sites, the model can better predict vegetation responses over the duration of the experiment when optimal processes are included. Specifically, under elevated CO2 conditions, the model predicts a lower optimal leaf N concentration as well as increased biomass allocation to fine roots, which, combined with a redistribution of leaf N between the Rubisco and chlorophyll components, leads to a continued NPP response under high CO2, where models with a fixed canopy stoichiometry predict a quick onset of N limitation.

  15. Outcome Prediction in Mathematical Models of Immune Response to Infection.

    PubMed

    Mai, Manuel; Wang, Kun; Huber, Greg; Kirby, Michael; Shattuck, Mark D; O'Hern, Corey S

    2015-01-01

    Clinicians need to predict patient outcomes with high accuracy as early as possible after disease inception. In this manuscript, we show that patient-to-patient variability sets a fundamental limit on outcome prediction accuracy for a general class of mathematical models for the immune response to infection. However, accuracy can be increased at the expense of delayed prognosis. We investigate several systems of ordinary differential equations (ODEs) that model the host immune response to a pathogen load. Advantages of systems of ODEs for investigating the immune response to infection include the ability to collect data on large numbers of 'virtual patients', each with a given set of model parameters, and obtain many time points during the course of the infection. We implement patient-to-patient variability v in the ODE models by randomly selecting the model parameters from distributions with coefficients of variation v that are centered on physiological values. We use logistic regression with one-versus-all classification to predict the discrete steady-state outcomes of the system. We find that the prediction algorithm achieves near 100% accuracy for v = 0, and the accuracy decreases with increasing v for all ODE models studied. The fact that multiple steady-state outcomes can be obtained for a given initial condition, i.e. the basins of attraction overlap in the space of initial conditions, limits the prediction accuracy for v > 0. Increasing the elapsed time of the variables used to train and test the classifier, increases the prediction accuracy, while adding explicit external noise to the ODE models decreases the prediction accuracy. Our results quantify the competition between early prognosis and high prediction accuracy that is frequently encountered by clinicians.

  16. MATHEMATICAL MODEL OF STERIODOGENESIS TO PREDICT DYNAMIC RESPONSE TO ENDOCRINE DISRUPTORS

    EPA Science Inventory

    WE ARE DEVELOPING A MECHANISTIC MATHEMATICAL MODEL OF THE INTRATESTICULAR AND INTRAOVARIAN METABOLIC NETWORK THAT MEDIATES STEROID SYNTHESIS, AND THE KINETICS FOR ENZYME INHIBITION BY EDCs TO PREDICT THE TIME AND DOSE-RESPONSE.

  17. The spatial structure of a nonlinear receptive field.

    PubMed

    Schwartz, Gregory W; Okawa, Haruhisa; Dunn, Felice A; Morgan, Josh L; Kerschensteiner, Daniel; Wong, Rachel O; Rieke, Fred

    2012-11-01

    Understanding a sensory system implies the ability to predict responses to a variety of inputs from a common model. In the retina, this includes predicting how the integration of signals across visual space shapes the outputs of retinal ganglion cells. Existing models of this process generalize poorly to predict responses to new stimuli. This failure arises in part from properties of the ganglion cell response that are not well captured by standard receptive-field mapping techniques: nonlinear spatial integration and fine-scale heterogeneities in spatial sampling. Here we characterize a ganglion cell's spatial receptive field using a mechanistic model based on measurements of the physiological properties and connectivity of only the primary excitatory circuitry of the retina. The resulting simplified circuit model successfully predicts ganglion-cell responses to a variety of spatial patterns and thus provides a direct correspondence between circuit connectivity and retinal output.

  18. Model of the transient neurovascular response based on prompt arterial dilation

    PubMed Central

    Kim, Jung Hwan; Khan, Reswanul; Thompson, Jeffrey K; Ress, David

    2013-01-01

    Brief neural stimulation results in a stereotypical pattern of vascular and metabolic response that is the basis for popular brain-imaging methods such as functional magnetic resonance imagine. However, the mechanisms of transient oxygen transport and its coupling to cerebral blood flow (CBF) and oxygen metabolism (CMRO2) are poorly understood. Recent experiments show that brief stimulation produces prompt arterial vasodilation rather than venous vasodilation. This work provides a neurovascular response model for brief stimulation based on transient arterial effects using one-dimensional convection–diffusion transport. Hemoglobin oxygen dissociation is included to enable predictions of absolute oxygen concentrations. Arterial CBF response is modeled using a lumped linear flow model, and CMRO2 response is modeled using a gamma function. Using six parameters, the model successfully fit 161/166 measured extravascular oxygen time courses obtained for brief visual stimulation in cat cerebral cortex. Results show how CBF and CMRO2 responses compete to produce the observed features of the hemodynamic response: initial dip, hyperoxic peak, undershoot, and ringing. Predicted CBF and CMRO2 response amplitudes are consistent with experimental measurements. This model provides a powerful framework to quantitatively interpret oxygen transport in the brain; in particular, its intravascular oxygen concentration predictions provide a new model for fMRI responses. PMID:23756690

  19. Microbial models with data-driven parameters predict stronger soil carbon responses to climate change.

    PubMed

    Hararuk, Oleksandra; Smith, Matthew J; Luo, Yiqi

    2015-06-01

    Long-term carbon (C) cycle feedbacks to climate depend on the future dynamics of soil organic carbon (SOC). Current models show low predictive accuracy at simulating contemporary SOC pools, which can be improved through parameter estimation. However, major uncertainty remains in global soil responses to climate change, particularly uncertainty in how the activity of soil microbial communities will respond. To date, the role of microbes in SOC dynamics has been implicitly described by decay rate constants in most conventional global carbon cycle models. Explicitly including microbial biomass dynamics into C cycle model formulations has shown potential to improve model predictive performance when assessed against global SOC databases. This study aimed to data-constrained parameters of two soil microbial models, evaluate the improvements in performance of those calibrated models in predicting contemporary carbon stocks, and compare the SOC responses to climate change and their uncertainties between microbial and conventional models. Microbial models with calibrated parameters explained 51% of variability in the observed total SOC, whereas a calibrated conventional model explained 41%. The microbial models, when forced with climate and soil carbon input predictions from the 5th Coupled Model Intercomparison Project (CMIP5), produced stronger soil C responses to 95 years of climate change than any of the 11 CMIP5 models. The calibrated microbial models predicted between 8% (2-pool model) and 11% (4-pool model) soil C losses compared with CMIP5 model projections which ranged from a 7% loss to a 22.6% gain. Lastly, we observed unrealistic oscillatory SOC dynamics in the 2-pool microbial model. The 4-pool model also produced oscillations, but they were less prominent and could be avoided, depending on the parameter values. © 2014 John Wiley & Sons Ltd.

  20. Explaining neural signals in human visual cortex with an associative learning model.

    PubMed

    Jiang, Jiefeng; Schmajuk, Nestor; Egner, Tobias

    2012-08-01

    "Predictive coding" models posit a key role for associative learning in visual cognition, viewing perceptual inference as a process of matching (learned) top-down predictions (or expectations) against bottom-up sensory evidence. At the neural level, these models propose that each region along the visual processing hierarchy entails one set of processing units encoding predictions of bottom-up input, and another set computing mismatches (prediction error or surprise) between predictions and evidence. This contrasts with traditional views of visual neurons operating purely as bottom-up feature detectors. In support of the predictive coding hypothesis, a recent human neuroimaging study (Egner, Monti, & Summerfield, 2010) showed that neural population responses to expected and unexpected face and house stimuli in the "fusiform face area" (FFA) could be well-described as a summation of hypothetical face-expectation and -surprise signals, but not by feature detector responses. Here, we used computer simulations to test whether these imaging data could be formally explained within the broader framework of a mathematical neural network model of associative learning (Schmajuk, Gray, & Lam, 1996). Results show that FFA responses could be fit very closely by model variables coding for conditional predictions (and their violations) of stimuli that unconditionally activate the FFA. These data document that neural population signals in the ventral visual stream that deviate from classic feature detection responses can formally be explained by associative prediction and surprise signals.

  1. MiRNA Expression Analysis of Pretreatment Biopsies Predicts the Pathological Response of Esophageal Squamous Cell Carcinomas to Neoadjuvant Chemoradiotherapy.

    PubMed

    Wen, Jing; Luo, Kongjia; Liu, Hui; Liu, Shiliang; Lin, Guangrong; Hu, Yi; Zhang, Xu; Wang, Geng; Chen, Yuping; Chen, Zhijian; Li, Yi; Lin, Ting; Xie, Xiuying; Liu, Mengzhong; Wang, Huiyun; Yang, Hong; Fu, Jianhua

    2016-05-01

    To identify miRNA markers useful for esophageal squamous cell carcinoma (ESCC) neoadjuvant chemoradiotherapy (neo-CRT) response prediction. Neo-CRT followed by surgery improves ESCC patients' survival compared with surgery alone. However, CRT outcomes are heterogeneous, and no current methods can predict CRT responses. Differentially expressed miRNAs between ESCC pathological responders and nonresponders after neo-CRT were identified by miRNA profiling and verified by real-time quantitative polymerase chain reaction (qPCR) of 27 ESCCs in the training set. Several class prediction algorithms were used to build the response-classifying models with the qPCR data. Predictive powers of the models were further assessed with a second set of 79 ESCCs. Ten miRNAs with greater than a 1.5-fold change between pathological responders and nonresponders were identified and verified, respectively. A support vector machine (SVM) prediction model, composed of 4 miRNAs (miR-145-5p, miR-152, miR-193b-3p, and miR-376a-3p), were developed. It provided overall accuracies of 100% and 87.3% for discriminating pathological responders and nonresponders in the training and external validation sets, respectively. In multivariate analysis, the subgroup determined by the SVM model was the only independent factor significantly associated with neo-CRT response in the external validation sets. Combined qPCR of the 4 miRNAs provides the possibility of ESCC neo-CRT response prediction, which may facilitate individualized ESCC treatment. Further prospective validation in larger independent cohorts is necessary to fully assess its predictive power.

  2. Causes of variation among rice models in yield response to CO2 examined with Free-Air CO2 Enrichment and growth chamber experiments.

    PubMed

    Hasegawa, Toshihiro; Li, Tao; Yin, Xinyou; Zhu, Yan; Boote, Kenneth; Baker, Jeffrey; Bregaglio, Simone; Buis, Samuel; Confalonieri, Roberto; Fugice, Job; Fumoto, Tamon; Gaydon, Donald; Kumar, Soora Naresh; Lafarge, Tanguy; Marcaida Iii, Manuel; Masutomi, Yuji; Nakagawa, Hiroshi; Oriol, Philippe; Ruget, Françoise; Singh, Upendra; Tang, Liang; Tao, Fulu; Wakatsuki, Hitomi; Wallach, Daniel; Wang, Yulong; Wilson, Lloyd Ted; Yang, Lianxin; Yang, Yubin; Yoshida, Hiroe; Zhang, Zhao; Zhu, Jianguo

    2017-11-01

    The CO 2 fertilization effect is a major source of uncertainty in crop models for future yield forecasts, but coordinated efforts to determine the mechanisms of this uncertainty have been lacking. Here, we studied causes of uncertainty among 16 crop models in predicting rice yield in response to elevated [CO 2 ] (E-[CO 2 ]) by comparison to free-air CO 2 enrichment (FACE) and chamber experiments. The model ensemble reproduced the experimental results well. However, yield prediction in response to E-[CO 2 ] varied significantly among the rice models. The variation was not random: models that overestimated at one experiment simulated greater yield enhancements at the others. The variation was not associated with model structure or magnitude of photosynthetic response to E-[CO 2 ] but was significantly associated with the predictions of leaf area. This suggests that modelled secondary effects of E-[CO 2 ] on morphological development, primarily leaf area, are the sources of model uncertainty. Rice morphological development is conservative to carbon acquisition. Uncertainty will be reduced by incorporating this conservative nature of the morphological response to E-[CO 2 ] into the models. Nitrogen levels, particularly under limited situations, make the prediction more uncertain. Improving models to account for [CO 2 ] × N interactions is necessary to better evaluate management practices under climate change.

  3. Modeling rate sensitivity of exercise transient responses to limb motion.

    PubMed

    Yamashiro, Stanley M; Kato, Takahide

    2014-10-01

    Transient responses of ventilation (V̇e) to limb motion can exhibit predictive characteristics. In response to a change in limb motion, a rapid change in V̇e is commonly observed with characteristics different than during a change in workload. This rapid change has been attributed to a feed-forward or adaptive response. Rate sensitivity was explored as a specific hypothesis to explain predictive V̇e responses to limb motion. A simple model assuming an additive feed-forward summation of V̇e proportional to the rate of change of limb motion was studied. This model was able to successfully account for the adaptive phase correction observed during human sinusoidal changes in limb motion. Adaptation of rate sensitivity might also explain the reduction of the fast component of V̇e responses previously reported following sudden exercise termination. Adaptation of the fast component of V̇e response could occur by reduction of rate sensitivity. Rate sensitivity of limb motion was predicted by the model to reduce the phase delay between limb motion and V̇e response without changing the steady-state response to exercise load. In this way, V̇e can respond more quickly to an exercise change without interfering with overall feedback control. The asymmetry between responses to an incremental and decremental ramp change in exercise can also be accounted for by the proposed model. Rate sensitivity leads to predicted behavior, which resembles responses observed in exercise tied to expiratory reserve volume. Copyright © 2014 the American Physiological Society.

  4. Predicting the Best Fit: A Comparison of Response Surface Models for Midazolam and Alfentanil Sedation in Procedures With Varying Stimulation.

    PubMed

    Liou, Jing-Yang; Ting, Chien-Kun; Mandell, M Susan; Chang, Kuang-Yi; Teng, Wei-Nung; Huang, Yu-Yin; Tsou, Mei-Yung

    2016-08-01

    Selecting an effective dose of sedative drugs in combined upper and lower gastrointestinal endoscopy is complicated by varying degrees of pain stimulation. We tested the ability of 5 response surface models to predict depth of sedation after administration of midazolam and alfentanil in this complex model. The procedure was divided into 3 phases: esophagogastroduodenoscopy (EGD), colonoscopy, and the time interval between the 2 (intersession). The depth of sedation in 33 adult patients was monitored by Observer Assessment of Alertness/Scores. A total of 218 combinations of midazolam and alfentanil effect-site concentrations derived from pharmacokinetic models were used to test 5 response surface models in each of the 3 phases of endoscopy. Model fit was evaluated with objective function value, corrected Akaike Information Criterion (AICc), and Spearman ranked correlation. A model was arbitrarily defined as accurate if the predicted probability is <0.5 from the observed response. The effect-site concentrations tested ranged from 1 to 76 ng/mL and from 5 to 80 ng/mL for midazolam and alfentanil, respectively. Midazolam and alfentanil had synergistic effects in colonoscopy and EGD, but additivity was observed in the intersession group. Adequate prediction rates were 84% to 85% in the intersession group, 84% to 88% during colonoscopy, and 82% to 87% during EGD. The reduced Greco and Fixed alfentanil concentration required for 50% of the patients to achieve targeted response Hierarchy models performed better with comparable predictive strength. The reduced Greco model had the lowest AICc with strong correlation in all 3 phases of endoscopy. Dynamic, rather than fixed, γ and γalf in the Hierarchy model improved model fit. The reduced Greco model had the lowest objective function value and AICc and thus the best fit. This model was reliable with acceptable predictive ability based on adequate clinical correlation. We suggest that this model has practical clinical value for patients undergoing procedures with varying degrees of stimulation.

  5. EVALUATION OF THE EFFICACY OF EXTRAPOLATION POPULATION MODELING TO PREDICT THE DYNAMICS OF AMERICAMYSIS BAHIA POPULATIONS IN THE LABORATORY

    EPA Science Inventory

    An age-classified projection matrix model has been developed to extrapolate the chronic (28-35d) demographic responses of Americamysis bahia (formerly Mysidopsis bahia) to population-level response. This study was conducted to evaluate the efficacy of this model for predicting t...

  6. Expectation and Surprise Determine Neural Population Responses in the Ventral Visual Stream

    PubMed Central

    Egner, Tobias; Monti, Jim M.; Summerfield, Christopher

    2014-01-01

    Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by bottom-up stimulus features. Conversely, “predictive coding” models propose that each stage of the visual hierarchy harbors two computationally distinct classes of processing unit: representational units that encode the conditional probability of a stimulus and provide predictions to the next lower level; and error units that encode the mismatch between predictions and bottom-up evidence, and forward prediction error to the next higher level. Predictive coding therefore suggests that neural population responses in category-selective visual regions, like the fusiform face area (FFA), reflect a summation of activity related to prediction (“face expectation”) and prediction error (“face surprise”), rather than a homogenous feature detection response. We tested the rival hypotheses of the feature detection and predictive coding models by collecting functional magnetic resonance imaging data from the FFA while independently varying both stimulus features (faces vs houses) and subjects’ perceptual expectations regarding those features (low vs medium vs high face expectation). The effects of stimulus and expectation factors interacted, whereby FFA activity elicited by face and house stimuli was indistinguishable under high face expectation and maximally differentiated under low face expectation. Using computational modeling, we show that these data can be explained by predictive coding but not by feature detection models, even when the latter are augmented with attentional mechanisms. Thus, population responses in the ventral visual stream appear to be determined by feature expectation and surprise rather than by stimulus features per se. PMID:21147999

  7. Mechanisms governing the visco-elastic responses of living cells assessed by foam and tensegrity models.

    PubMed

    Cañadas, P; Laurent, V M; Chabrand, P; Isabey, D; Wendling-Mansuy, S

    2003-11-01

    The visco-elastic properties of living cells, measured to date by various authors, vary considerably, depending on the experimental methods and/or on the theoretical models used. In the present study, two mechanisms thought to be involved in cellular visco-elastic responses were analysed, based on the idea that the cytoskeleton plays a fundamental role in cellular mechanical responses. For this purpose, the predictions of an open unit-cell model and a 30-element visco-elastic tensegrity model were tested, taking into consideration similar properties of the constitutive F-actin. The quantitative predictions of the time constant and viscosity modulus obtained by both models were compared with previously published experimental data obtained from living cells. The small viscosity modulus values (10(0)-10(3) Pa x s) predicted by the tensegrity model may reflect the combined contributions of the spatially rearranged constitutive filaments and the internal tension to the overall cytoskeleton response to external loading. In contrast, the high viscosity modulus values (10(3)-10(5) Pa x s) predicted by the unit-cell model may rather reflect the mechanical response of the cytoskeleton to the bending of the constitutive filaments and/or to the deformation of internal components. The present results suggest the existence of a close link between the overall visco-elastic response of micromanipulated cells and the underlying architecture.

  8. Mysid Population Responses to Resource Limitation Differ from those Predicted by Cohort Studies

    EPA Science Inventory

    Effects of anthropogenic stressors on animal populations are often evaluated by assembling vital rate responses from isolated cohort studies into a single demographic model. However, models constructed from cohort studies are difficult to translate into ecological predictions be...

  9. Computational Modeling in Concert with Laboratory Studies: Application to B Cell Differentiation

    EPA Science Inventory

    Remediation is expensive, so accurate prediction of dose-response is important to help control costs. Dose response is a function of biological mechanisms. Computational models of these mechanisms improve the efficiency of research and provide the capability for prediction.

  10. Incorporating drug delivery into an imaging-driven, mechanics-coupled reaction diffusion model for predicting the response of breast cancer to neoadjuvant chemotherapy: theory and preliminary clinical results

    NASA Astrophysics Data System (ADS)

    Jarrett, Angela M.; Hormuth, David A.; Barnes, Stephanie L.; Feng, Xinzeng; Huang, Wei; Yankeelov, Thomas E.

    2018-05-01

    Clinical methods for assessing tumor response to therapy are largely rudimentary, monitoring only temporal changes in tumor size. Our goal is to predict the response of breast tumors to therapy using a mathematical model that utilizes magnetic resonance imaging (MRI) data obtained non-invasively from individual patients. We extended a previously established, mechanically coupled, reaction-diffusion model for predicting tumor response initialized with patient-specific diffusion weighted MRI (DW-MRI) data by including the effects of chemotherapy drug delivery, which is estimated using dynamic contrast-enhanced (DCE-) MRI data. The extended, drug incorporated, model is initialized using patient-specific DW-MRI and DCE-MRI data. Data sets from five breast cancer patients were used—obtained before, after one cycle, and at mid-point of neoadjuvant chemotherapy. The DCE-MRI data was used to estimate spatiotemporal variations in tumor perfusion with the extended Kety–Tofts model. The physiological parameters derived from DCE-MRI were used to model changes in delivery of therapy drugs within the tumor for incorporation in the extended model. We simulated the original model and the extended model in both 2D and 3D and compare the results for this five-patient cohort. Preliminary results show reductions in the error of model predicted tumor cellularity and size compared to the experimentally-measured results for the third MRI scan when therapy was incorporated. Comparing the two models for agreement between the predicted total cellularity and the calculated total cellularity (from the DW-MRI data) reveals an increased concordance correlation coefficient from 0.81 to 0.98 for the 2D analysis and 0.85 to 0.99 for the 3D analysis (p  <  0.01 for each) when the extended model was used in place of the original model. This study demonstrates the plausibility of using DCE-MRI data as a means to estimate drug delivery on a patient-specific basis in predictive models and represents a step toward the goal of achieving individualized prediction of tumor response to therapy.

  11. Mesoscale atmospheric modeling for emergency response

    NASA Astrophysics Data System (ADS)

    Osteen, B. L.; Fast, J. D.

    Atmospheric transport models for emergency response have traditionally utilized meteorological fields interpolated from sparse data to predict contaminant transport. Often these fields are adjusted to satisfy constraints derived from the governing equations of geophysical fluid dynamics, e.g. mass continuity. Gaussian concentration distributions or stochastic models are then used to represent turbulent diffusion of a contaminant in the diagnosed meteorological fields. The popularity of these models derives from their relative simplicity, ability to make reasonable short-term predictions, and, most important, execution speed. The ability to generate a transport prediction for an accidental release from the Savannah River Site in a time frame which will allow protective action to be taken is essential in an emergency response operation.

  12. Validation and Use of a Predictive Modeling Tool: Employing Scientific Findings to Improve Responsible Conduct of Research Education.

    PubMed

    Mulhearn, Tyler J; Watts, Logan L; Todd, E Michelle; Medeiros, Kelsey E; Connelly, Shane; Mumford, Michael D

    2017-01-01

    Although recent evidence suggests ethics education can be effective, the nature of specific training programs, and their effectiveness, varies considerably. Building on a recent path modeling effort, the present study developed and validated a predictive modeling tool for responsible conduct of research education. The predictive modeling tool allows users to enter ratings in relation to a given ethics training program and receive instantaneous evaluative information for course refinement. Validation work suggests the tool's predicted outcomes correlate strongly (r = 0.46) with objective course outcomes. Implications for training program development and refinement are discussed.

  13. Conflict effects without conflict in anterior cingulate cortex: multiple response effects and context specific representations

    PubMed Central

    Brown, Joshua W.

    2009-01-01

    The error likelihood computational model of anterior cingulate cortex (ACC) (Brown & Braver, 2005) has successfully predicted error likelihood effects, risk prediction effects, and how individual differences in conflict and error likelihood effects vary with trait differences in risk aversion. The same computational model now makes a further prediction that apparent conflict effects in ACC may result in part from an increasing number of simultaneously active responses, regardless of whether or not the cued responses are mutually incompatible. In Experiment 1, the model prediction was tested with a modification of the Eriksen flanker task, in which some task conditions require two otherwise mutually incompatible responses to be generated simultaneously. In that case, the two response processes are no longer in conflict with each other. The results showed small but significant medial PFC effects in the incongruent vs. congruent contrast, despite the absence of response conflict, consistent with model predictions. This is the multiple response effect. Nonetheless, actual response conflict led to greater ACC activation, suggesting that conflict effects are specific to particular task contexts. In Experiment 2, results from a change signal task suggested that the context dependence of conflict signals does not depend on error likelihood effects. Instead, inputs to ACC may reflect complex and task specific representations of motor acts, such as bimanual responses. Overall, the results suggest the existence of a richer set of motor signals monitored by medial PFC and are consistent with distinct effects of multiple responses, conflict, and error likelihood in medial PFC. PMID:19375509

  14. The dynamics of learning about a climate threshold

    NASA Astrophysics Data System (ADS)

    Keller, Klaus; McInerney, David

    2008-02-01

    Anthropogenic greenhouse gas emissions may trigger threshold responses of the climate system. One relevant example of such a potential threshold response is a shutdown of the North Atlantic meridional overturning circulation (MOC). Numerous studies have analyzed the problem of early MOC change detection (i.e., detection before the forcing has committed the system to a threshold response). Here we analyze the early MOC prediction problem. To this end, we virtually deploy an MOC observation system into a simple model that mimics potential future MOC responses and analyze the timing of confident detection and prediction. Our analysis suggests that a confident prediction of a potential threshold response can require century time scales, considerably longer that the time required for confident detection. The signal enabling early prediction of an approaching MOC threshold in our model study is associated with the rate at which the MOC intensity decreases for a given forcing. A faster MOC weakening implies a higher MOC sensitivity to forcing. An MOC sensitivity exceeding a critical level results in a threshold response. Determining whether an observed MOC trend in our model differs in a statistically significant way from an unforced scenario (the detection problem) imposes lower requirements on an observation system than the determination whether the MOC will shut down in the future (the prediction problem). As a result, the virtual observation systems designed in our model for early detection of MOC changes might well fail at the task of early and confident prediction. Transferring this conclusion to the real world requires a considerably refined MOC model, as well as a more complete consideration of relevant observational constraints.

  15. A gentle introduction to quantile regression for ecologists

    USGS Publications Warehouse

    Cade, B.S.; Noon, B.R.

    2003-01-01

    Quantile regression is a way to estimate the conditional quantiles of a response variable distribution in the linear model that provides a more complete view of possible causal relationships between variables in ecological processes. Typically, all the factors that affect ecological processes are not measured and included in the statistical models used to investigate relationships between variables associated with those processes. As a consequence, there may be a weak or no predictive relationship between the mean of the response variable (y) distribution and the measured predictive factors (X). Yet there may be stronger, useful predictive relationships with other parts of the response variable distribution. This primer relates quantile regression estimates to prediction intervals in parametric error distribution regression models (eg least squares), and discusses the ordering characteristics, interval nature, sampling variation, weighting, and interpretation of the estimates for homogeneous and heterogeneous regression models.

  16. Development of structural and material clavicle response corridors under axial compression and three point bending loading for clavicle finite element model validation.

    PubMed

    Zhang, Qi; Kindig, Matthew; Li, Zuoping; Crandall, Jeff R; Kerrigan, Jason R

    2014-08-22

    Clavicle injuries were frequently observed in automotive side and frontal crashes. Finite element (FE) models have been developed to understand the injury mechanism, although no clavicle loading response corridors yet exist in the literature to ensure the model response biofidelity. Moreover, the typically developed structural level (e.g., force-deflection) response corridors were shown to be insufficient for verifying the injury prediction capacity of FE model, which usually is based on strain related injury criteria. Therefore, the purpose of this study is to develop both the structural (force vs deflection) and material level (strain vs force) clavicle response corridors for validating FE models for injury risk modeling. 20 Clavicles were loaded to failure under loading conditions representative of side and frontal crashes respectively, half of which in axial compression, and the other half in three point bending. Both structural and material response corridors were developed for each loading condition. FE model that can accurately predict structural response and strain level provides a more useful tool in injury risk modeling and prediction. The corridor development method in this study could also be extended to develop corridors for other components of the human body. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Chemical Sensor Array Response Modeling Using Quantitative Structure-Activity Relationships Technique

    NASA Astrophysics Data System (ADS)

    Shevade, Abhijit V.; Ryan, Margaret A.; Homer, Margie L.; Zhou, Hanying; Manfreda, Allison M.; Lara, Liana M.; Yen, Shiao-Pin S.; Jewell, April D.; Manatt, Kenneth S.; Kisor, Adam K.

    We have developed a Quantitative Structure-Activity Relationships (QSAR) based approach to correlate the response of chemical sensors in an array with molecular descriptors. A novel molecular descriptor set has been developed; this set combines descriptors of sensing film-analyte interactions, representing sensor response, with a basic analyte descriptor set commonly used in QSAR studies. The descriptors are obtained using a combination of molecular modeling tools and empirical and semi-empirical Quantitative Structure-Property Relationships (QSPR) methods. The sensors under investigation are polymer-carbon sensing films which have been exposed to analyte vapors at parts-per-million (ppm) concentrations; response is measured as change in film resistance. Statistically validated QSAR models have been developed using Genetic Function Approximations (GFA) for a sensor array for a given training data set. The applicability of the sensor response models has been tested by using it to predict the sensor activities for test analytes not considered in the training set for the model development. The validated QSAR sensor response models show good predictive ability. The QSAR approach is a promising computational tool for sensing materials evaluation and selection. It can also be used to predict response of an existing sensing film to new target analytes.

  18. 3D Finite Element Analysis of Particle-Reinforced Aluminum

    NASA Technical Reports Server (NTRS)

    Shen, H.; Lissenden, C. J.

    2002-01-01

    Deformation in particle-reinforced aluminum has been simulated using three distinct types of finite element model: a three-dimensional repeating unit cell, a three-dimensional multi-particle model, and two-dimensional multi-particle models. The repeating unit cell model represents a fictitious periodic cubic array of particles. The 3D multi-particle (3D-MP) model represents randomly placed and oriented particles. The 2D generalized plane strain multi-particle models were obtained from planar sections through the 3D-MP model. These models were used to study the tensile macroscopic stress-strain response and the associated stress and strain distributions in an elastoplastic matrix. The results indicate that the 2D model having a particle area fraction equal to the particle representative volume fraction of the 3D models predicted the same macroscopic stress-strain response as the 3D models. However, there are fluctuations in the particle area fraction in a representative volume element. As expected, predictions from 2D models having different particle area fractions do not agree with predictions from 3D models. More importantly, it was found that the microscopic stress and strain distributions from the 2D models do not agree with those from the 3D-MP model. Specifically, the plastic strain distribution predicted by the 2D model is banded along lines inclined at 45 deg from the loading axis while the 3D model prediction is not. Additionally, the triaxial stress and maximum principal stress distributions predicted by 2D and 3D models do not agree. Thus, it appears necessary to use a multi-particle 3D model to accurately predict material responses that depend on local effects, such as strain-to-failure, fracture toughness, and fatigue life.

  19. A Task-Optimized Neural Network Replicates Human Auditory Behavior, Predicts Brain Responses, and Reveals a Cortical Processing Hierarchy.

    PubMed

    Kell, Alexander J E; Yamins, Daniel L K; Shook, Erica N; Norman-Haignere, Sam V; McDermott, Josh H

    2018-05-02

    A core goal of auditory neuroscience is to build quantitative models that predict cortical responses to natural sounds. Reasoning that a complete model of auditory cortex must solve ecologically relevant tasks, we optimized hierarchical neural networks for speech and music recognition. The best-performing network contained separate music and speech pathways following early shared processing, potentially replicating human cortical organization. The network performed both tasks as well as humans and exhibited human-like errors despite not being optimized to do so, suggesting common constraints on network and human performance. The network predicted fMRI voxel responses substantially better than traditional spectrotemporal filter models throughout auditory cortex. It also provided a quantitative signature of cortical representational hierarchy-primary and non-primary responses were best predicted by intermediate and late network layers, respectively. The results suggest that task optimization provides a powerful set of tools for modeling sensory systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Predictors of responses to stress among families coping with poverty-related stress.

    PubMed

    Santiago, Catherine DeCarlo; Etter, Erica Moran; Wadsworth, Martha E; Raviv, Tali

    2012-05-01

    This study tested how poverty-related stress (PRS), psychological distress, and responses to stress predicted future effortful coping and involuntary stress responses one year later. In addition, we explored age, sex, ethnicity, and parental influences on responses to stress over time. Hierarchical linear modeling analyses conducted with 98 low-income families (300 family members: 136 adults, 82 school-aged children, 82 adolescents) revealed that primary control coping, secondary control coping, disengagement, involuntary engagement, and involuntary disengagement each significantly predicted future use of that response. Primary and secondary control coping also predicted less maladaptive future responses to stress, while involuntary responses to stress undermined the development of adaptive responding. Age, sex, and interactions among PRS and prior coping were also found to predict certain responses to stress. In addition, child subgroup analyses demonstrate the importance of parental modeling of coping and involuntary stress responses, and warmth/nurturance and monitoring practices. Results are discussed with regard to the implications for preventive interventions with families in poverty.

  1. Review of Nearshore Morphologic Prediction

    NASA Astrophysics Data System (ADS)

    Plant, N. G.; Dalyander, S.; Long, J.

    2014-12-01

    The evolution of the world's erodible coastlines will determine the balance between the benefits and costs associated with human and ecological utilization of shores, beaches, dunes, barrier islands, wetlands, and estuaries. So, we would like to predict coastal evolution to guide management and planning of human and ecological response to coastal changes. After decades of research investment in data collection, theoretical and statistical analysis, and model development we have a number of empirical, statistical, and deterministic models that can predict the evolution of the shoreline, beaches, dunes, and wetlands over time scales of hours to decades, and even predict the evolution of geologic strata over the course of millennia. Comparisons of predictions to data have demonstrated that these models can have meaningful predictive skill. But these comparisons also highlight the deficiencies in fundamental understanding, formulations, or data that are responsible for prediction errors and uncertainty. Here, we review a subset of predictive models of the nearshore to illustrate tradeoffs in complexity, predictive skill, and sensitivity to input data and parameterization errors. We identify where future improvement in prediction skill will result from improved theoretical understanding, and data collection, and model-data assimilation.

  2. Prediction of Response to Preoperative Chemoradiotherapy in Rectal Cancer by Multiplex Kinase Activity Profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Folkvord, Sigurd; Flatmark, Kjersti; Department of Cancer and Surgery, Norwegian Radium Hospital, Oslo University Hospital

    2010-10-01

    Purpose: Tumor response of rectal cancer to preoperative chemoradiotherapy (CRT) varies considerably. In experimental tumor models and clinical radiotherapy, activity of particular subsets of kinase signaling pathways seems to predict radiation response. This study aimed to determine whether tumor kinase activity profiles might predict tumor response to preoperative CRT in locally advanced rectal cancer (LARC). Methods and Materials: Sixty-seven LARC patients were treated with a CRT regimen consisting of radiotherapy, fluorouracil, and, where possible, oxaliplatin. Pretreatment tumor biopsy specimens were analyzed using microarrays with kinase substrates, and the resulting substrate phosphorylation patterns were correlated with tumor response to preoperative treatmentmore » as assessed by histomorphologic tumor regression grade (TRG). A predictive model for TRG scores from phosphosubstrate signatures was obtained by partial-least-squares discriminant analysis. Prediction performance was evaluated by leave-one-out cross-validation and use of an independent test set. Results: In the patient population, 73% and 15% were scored as good responders (TRG 1-2) or intermediate responders (TRG 3), whereas 12% were assessed as poor responders (TRG 4-5). In a subset of 7 poor responders and 12 good responders, treatment outcome was correctly predicted for 95%. Application of the prediction model on the remaining patient samples resulted in correct prediction for 85%. Phosphosubstrate signatures generated by poor-responding tumors indicated high kinase activity, which was inhibited by the kinase inhibitor sunitinib, and several discriminating phosphosubstrates represented proteins derived from signaling pathways implicated in radioresistance. Conclusions: Multiplex kinase activity profiling may identify functional biomarkers predictive of tumor response to preoperative CRT in LARC.« less

  3. Identifying a predictive model for response to atypical antipsychotic monotherapy treatment in south Indian schizophrenia patients.

    PubMed

    Gupta, Meenal; Moily, Nagaraj S; Kaur, Harpreet; Jajodia, Ajay; Jain, Sanjeev; Kukreti, Ritushree

    2013-08-01

    Atypical antipsychotic (AAP) drugs are the preferred choice of treatment for schizophrenia patients. Patients who do not show favorable response to AAP monotherapy are subjected to random prolonged therapeutic treatment with AAP multitherapy, typical antipsychotics or a combination of both. Therefore, prior identification of patients' response to drugs can be an important step in providing efficacious and safe therapeutic treatment. We thus attempted to elucidate a genetic signature which could predict patients' response to AAP monotherapy. Our logistic regression analyses indicated the probability that 76% patients carrying combination of four SNPs will not show favorable response to AAP therapy. The robustness of this prediction model was assessed using repeated 10-fold cross validation method, and the results across n-fold cross-validations (mean accuracy=71.91%; 95%CI=71.47-72.35) suggest high accuracy and reliability of the prediction model. Further validations of these results in large sample sets are likely to establish their clinical applicability. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Developing and implementing the use of predictive models for estimating water quality at Great Lakes beaches

    USGS Publications Warehouse

    Francy, Donna S.; Brady, Amie M.G.; Carvin, Rebecca B.; Corsi, Steven R.; Fuller, Lori M.; Harrison, John H.; Hayhurst, Brett A.; Lant, Jeremiah; Nevers, Meredith B.; Terrio, Paul J.; Zimmerman, Tammy M.

    2013-01-01

    Predictive models have been used at beaches to improve the timeliness and accuracy of recreational water-quality assessments over the most common current approach to water-quality monitoring, which relies on culturing fecal-indicator bacteria such as Escherichia coli (E. coli.). Beach-specific predictive models use environmental and water-quality variables that are easily and quickly measured as surrogates to estimate concentrations of fecal-indicator bacteria or to provide the probability that a State recreational water-quality standard will be exceeded. When predictive models are used for beach closure or advisory decisions, they are referred to as “nowcasts.” During the recreational seasons of 2010-12, the U.S. Geological Survey (USGS), in cooperation with 23 local and State agencies, worked to improve existing nowcasts at 4 beaches, validate predictive models at another 38 beaches, and collect data for predictive-model development at 7 beaches throughout the Great Lakes. This report summarizes efforts to collect data and develop predictive models by multiple agencies and to compile existing information on the beaches and beach-monitoring programs into one comprehensive report. Local agencies measured E. coli concentrations and variables expected to affect E. coli concentrations such as wave height, turbidity, water temperature, and numbers of birds at the time of sampling. In addition to these field measurements, equipment was installed by the USGS or local agencies at or near several beaches to collect water-quality and metrological measurements in near real time, including nearshore buoys, weather stations, and tributary staff gages and monitors. The USGS worked with local agencies to retrieve data from existing sources either manually or by use of tools designed specifically to compile and process data for predictive-model development. Predictive models were developed by use of linear regression and (or) partial least squares techniques for 42 beaches that had at least 2 years of data (2010-11 and sometimes earlier) and for 1 beach that had 1 year of data. For most models, software designed for model development by the U.S. Environmental Protection Agency (Virtual Beach) was used. The selected model for each beach was based on a combination of explanatory variables including, most commonly, turbidity, day of the year, change in lake level over 24 hours, wave height, wind direction and speed, and antecedent rainfall for various time periods. Forty-two predictive models were validated against data collected during an independent year (2012) and compared to the current method for assessing recreational water quality-using the previous day’s E. coli concentration (persistence model). Goals for good predictive-model performance were responses that were at least 5 percent greater than the persistence model and overall correct responses greater than or equal to 80 percent, sensitivities (percentage of exceedances of the bathing-water standard that were correctly predicted by the model) greater than or equal to 50 percent, and specificities (percentage of nonexceedances correctly predicted by the model) greater than or equal to 85 percent. Out of 42 predictive models, 24 models yielded over-all correct responses that were at least 5 percent greater than the use of the persistence model. Predictive-model responses met the performance goals more often than the persistence-model responses in terms of overall correctness (28 versus 17 models, respectively), sensitivity (17 versus 4 models), and specificity (34 versus 25 models). Gaining knowledge of each beach and the factors that affect E. coli concentrations is important for developing good predictive models. Collection of additional years of data with a wide range of environmental conditions may also help to improve future model performance. The USGS will continue to work with local agencies in 2013 and beyond to develop and validate predictive models at beaches and improve existing nowcasts, restructuring monitoring activities to accommodate future uncertainties in funding and resources.

  5. Validation of catchment models for predicting land-use and climate change impacts. 2. Case study for a Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Parkin, G.; O'Donnell, G.; Ewen, J.; Bathurst, J. C.; O'Connell, P. E.; Lavabre, J.

    1996-02-01

    Validation methods commonly used to test catchment models are not capable of demonstrating a model's fitness for making predictions for catchments where the catchment response is not known (including hypothetical catchments, and future conditions of existing catchments which are subject to land-use or climate change). This paper describes the first use of a new method of validation (Ewen and Parkin, 1996. J. Hydrol., 175: 583-594) designed to address these types of application; the method involves making 'blind' predictions of selected hydrological responses which are considered important for a particular application. SHETRAN (a physically based, distributed catchment modelling system) is tested on a small Mediterranean catchment. The test involves quantification of the uncertainty in four predicted features of the catchment response (continuous hydrograph, peak discharge rates, monthly runoff, and total runoff), and comparison of observations with the predicted ranges for these features. The results of this test are considered encouraging.

  6. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling.

    PubMed

    Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha; Thompson, Jill; Zimmerman, Jess K; Murphy, Lora

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here, we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured interannual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including aboveground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate. © 2017 John Wiley & Sons Ltd.

  7. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling

    USGS Publications Warehouse

    Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha C.; Thompson, Jill; Zimmerman, Jess K.; Murphy, Lora

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured inter-annual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including above-ground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.

  8. The importance of measuring growth in response to intervention models: Testing a core assumption✩

    PubMed Central

    Schatschneider, Christopher; Wagner, Richard K.; Crawford, Elizabeth C.

    2011-01-01

    A core assumption of response to instruction or intervention (RTI) models is the importance of measuring growth in achievement over time in response to effective instruction or intervention. Many RTI models actively monitor growth for identifying individuals who need different levels of intervention. A large-scale (N=23,438), two-year longitudinal study of first grade children was carried out to compare the predictive validity of measures of achievement status, growth in achievement, and their combination for predicting future reading achievement. The results indicate that under typical conditions, measures of growth do not make a contribution to prediction that is independent of measures of achievement status. These results question the validity of a core assumption of RTI models. PMID:22224065

  9. Computational Simulation of the High Strain Rate Tensile Response of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2002-01-01

    A research program is underway to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Under these types of loading conditions, the material response can be highly strain rate dependent and nonlinear. State variable constitutive equations based on a viscoplasticity approach have been developed to model the deformation of the polymer matrix. The constitutive equations are then combined with a mechanics of materials based micromechanics model which utilizes fiber substructuring to predict the effective mechanical and thermal response of the composite. To verify the analytical model, tensile stress-strain curves are predicted for a representative composite over strain rates ranging from around 1 x 10(exp -5)/sec to approximately 400/sec. The analytical predictions compare favorably to experimentally obtained values both qualitatively and quantitatively. Effective elastic and thermal constants are predicted for another composite, and compared to finite element results.

  10. Developing Predictive Approaches to Characterize Adaptive Responses of the Reproductive Endocrine Axis to Aromatase Inhibition: Computational Modeling

    EPA Science Inventory

    Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We developed a mechanistic mathematical model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict dose-response and time-course (DRTC)...

  11. REVIEW OF NUMERICAL MODELS FOR PREDICTING THE ENERGY DEPOSITION AND RESULTANT THERMAL RESPONSE OF HUMANS EXPOSED TO ELECTROMAGNETIC FIELDS

    EPA Science Inventory

    For humans exposed to electromagnetic (EM) radiation, the resulting thermophysiologic response is not well understood. Because it is unlikely that this information will be determined from quantitative experimentation, it is necessary to develop theoretical models which predict th...

  12. Predicting Adaptive Response to Fadrozole Exposure: Computational Model of the Fathead Minnow Hypothalamic-Pituitary-Gonadal Axis

    EPA Science Inventory

    Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We are developing a mechanistic mathematical model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict dose-response and time-course (...

  13. Predictive models to determine imagery strategies employed by children to judge hand laterality.

    PubMed

    Spruijt, Steffie; Jongsma, Marijtje L A; van der Kamp, John; Steenbergen, Bert

    2015-01-01

    A commonly used paradigm to study motor imagery is the hand laterality judgment task. The present study aimed to determine which strategies young children employ to successfully perform this task. Children of 5 to 8 years old (N = 92) judged laterality of back and palm view hand pictures in different rotation angles. Response accuracy and response duration were registered. Response durations of the trials with a correct judgment were fitted to a-priori defined predictive sinusoid models, representing different strategies to successfully perform the hand laterality judgment task. The first model predicted systematic changes in response duration as a function of rotation angle of the displayed hand. The second model predicted that response durations are affected by biomechanical constraints of hand rotation. If observed data could be best described by the first model, this would argue for a mental imagery strategy that does not involve motor processes to solve the task. The second model reflects a motor imagery strategy to solve the task. In line with previous research, we showed an age-related increase in response accuracy and decrease in response duration in children. Observed data for both back and palm view showed that motor imagery strategies were used to perform hand laterality judgments, but that not all the children use these strategies (appropriately) at all times. A direct comparison of response duration patterns across age sheds new light on age-related differences in the strategies employed to solve the task. Importantly, the employment of the motor imagery strategy for successful task performance did not change with age.

  14. Chlorine truck attack consequences and mitigation.

    PubMed

    Barrett, Anthony Michael; Adams, Peter J

    2011-08-01

    We develop and apply an integrated modeling system to estimate fatalities from intentional release of 17 tons of chlorine from a tank truck in a generic urban area. A public response model specifies locations and actions of the populace. A chemical source term model predicts initial characteristics of the chlorine vapor and aerosol cloud. An atmospheric dispersion model predicts cloud spreading and movement. A building air exchange model simulates movement of chlorine from outdoors into buildings at each location. A dose-response model translates chlorine exposures into predicted fatalities. Important parameters outside defender control include wind speed, atmospheric stability class, amount of chlorine released, and dose-response model parameters. Without fast and effective defense response, with 2.5 m/sec wind and stability class F, we estimate approximately 4,000 (half within ∼10 minutes) to 30,000 fatalities (half within ∼20 minutes), depending on dose-response model. Although we assume 7% of the population was outdoors, they represent 60-90% of fatalities. Changing weather conditions result in approximately 50-90% lower total fatalities. Measures such as sheltering in place, evacuation, and use of security barriers and cryogenic storage can reduce fatalities, sometimes by 50% or more, depending on response speed and other factors. © 2011 Society for Risk Analysis.

  15. Genetic Markers Predict Primary Non-Response and Durable Response To Anti-TNF Biologic Therapies in Crohn's Disease.

    PubMed

    Barber, Grant E; Yajnik, Vijay; Khalili, Hamed; Giallourakis, Cosmas; Garber, John; Xavier, Ramnik; Ananthakrishnan, Ashwin N

    2016-12-01

    One-fifth of patients with Crohn's disease (CD) are primary non-responders to anti-tumor necrosis factor (anti-TNF) therapy, and an estimated 10-15% will fail therapy annually. Little is known about the genetics of response to anti-TNF therapy. The aim of our study was to identify genetic factors associated with primary non-response (PNR) and loss of response to anti-TNFs in CD. From a prospective registry, we characterized the response of 427 CD patients to their first anti-TNF therapy. Patients were designated as achieving primary response, durable response, and non-durable response based on clinical, endoscopic, and radiologic criteria. Genotyping was performed on the Illumina Immunochip. Separate genetic scores based on presence of predictive genetic alleles were calculated for PNR and durable response and performance of clinical and genetics models were compared. From 359 patients, 36 were adjudged to have PNR (10%), 200 had durable response, and 74 had non-durable response. PNRs had longer disease duration and were more likely to be smokers. Fifteen risk alleles were associated with PNR. Patients with PNR had a significantly higher genetic risk score (GRS) (P =8 × 10 -12 ). A combined clinical-genetic model more accurately predicted PNR when compared with a clinical only model (0.93 vs. 0.70, P <0.001). Sixteen distinct single nucleotide polymorphisms predicted durable response with a higher GRS (P =7 × 10 -13 ). The GRSs for PNR and durable response were not mutually correlated, suggesting distinct mechanisms. Genetic risk alleles can predict primary non-response and durable response to anti-TNF therapy in CD.

  16. AAA gunnermodel based on observer theory. [predicting a gunner's tracking response

    NASA Technical Reports Server (NTRS)

    Kou, R. S.; Glass, B. C.; Day, C. N.; Vikmanis, M. M.

    1978-01-01

    The Luenberger observer theory is used to develop a predictive model of a gunner's tracking response in antiaircraft artillery systems. This model is composed of an observer, a feedback controller and a remnant element. An important feature of the model is that the structure is simple, hence a computer simulation requires only a short execution time. A parameter identification program based on the least squares curve fitting method and the Gauss Newton gradient algorithm is developed to determine the parameter values of the gunner model. Thus, a systematic procedure exists for identifying model parameters for a given antiaircraft tracking task. Model predictions of tracking errors are compared with human tracking data obtained from manned simulation experiments. Model predictions are in excellent agreement with the empirical data for several flyby and maneuvering target trajectories.

  17. Petri Net computational modelling of Langerhans cell Interferon Regulatory Factor Network predicts their role in T cell activation.

    PubMed

    Polak, Marta E; Ung, Chuin Ying; Masapust, Joanna; Freeman, Tom C; Ardern-Jones, Michael R

    2017-04-06

    Langerhans cells (LCs) are able to orchestrate adaptive immune responses in the skin by interpreting the microenvironmental context in which they encounter foreign substances, but the regulatory basis for this has not been established. Utilising systems immunology approaches combining in silico modelling of a reconstructed gene regulatory network (GRN) with in vitro validation of the predictions, we sought to determine the mechanisms of regulation of immune responses in human primary LCs. The key role of Interferon regulatory factors (IRFs) as controllers of the human Langerhans cell response to epidermal cytokines was revealed by whole transcriptome analysis. Applying Boolean logic we assembled a Petri net-based model of the IRF-GRN which provides molecular pathway predictions for the induction of different transcriptional programmes in LCs. In silico simulations performed after model parameterisation with transcription factor expression values predicted that human LC activation of antigen-specific CD8 T cells would be differentially regulated by epidermal cytokine induction of specific IRF-controlled pathways. This was confirmed by in vitro measurement of IFN-γ production by activated T cells. As a proof of concept, this approach shows that stochastic modelling of a specific immune networks renders transcriptome data valuable for the prediction of functional outcomes of immune responses.

  18. Development of a Response Surface Thermal Model for Orion Mated to the International Space Station

    NASA Technical Reports Server (NTRS)

    Miller, Stephen W.; Meier, Eric J.

    2010-01-01

    A study was performed to determine if a Design of Experiments (DOE)/Response Surface Methodology could be applied to on-orbit thermal analysis and produce a set of Response Surface Equations (RSE) that accurately predict vehicle temperatures. The study used an integrated thermal model of the International Space Station and the Orion Outer mold line model. Five separate factors were identified for study: yaw, pitch, roll, beta angle, and the environmental parameters. Twenty external Orion temperatures were selected as the responses. A DOE case matrix of 110 runs was developed. The data from these cases were analyzed to produce an RSE for each of the temperature responses. The initial agreement between the engineering data and the RSE predictions was encouraging, although many RSEs had large uncertainties on their predictions. Fourteen verification cases were developed to test the predictive powers of the RSEs. The verification showed mixed results with some RSE predicting temperatures matching the engineering data within the uncertainty bands, while others had very large errors. While this study to not irrefutably prove that the DOE/RSM approach can be applied to on-orbit thermal analysis, it does demonstrate that technique has the potential to predict temperatures. Additional work is needed to better identify the cases needed to produce the RSEs

  19. Prediction of individual response to anticancer therapy: historical and future perspectives.

    PubMed

    Unger, Florian T; Witte, Irene; David, Kerstin A

    2015-02-01

    Since the introduction of chemotherapy for cancer treatment in the early 20th century considerable efforts have been made to maximize drug efficiency and at the same time minimize side effects. As there is a great interpatient variability in response to chemotherapy, the development of predictive biomarkers is an ambitious aim for the rapidly growing research area of personalized molecular medicine. The individual prediction of response will improve treatment and thus increase survival and life quality of patients. In the past, cell cultures were used as in vitro models to predict in vivo response to chemotherapy. Several in vitro chemosensitivity assays served as tools to measure miscellaneous endpoints such as DNA damage, apoptosis and cytotoxicity or growth inhibition. Twenty years ago, the development of high-throughput technologies, e.g. cDNA microarrays enabled a more detailed analysis of drug responses. Thousands of genes were screened and expression levels were correlated to drug responses. In addition, mutation analysis became more and more important for the prediction of therapeutic success. Today, as research enters the area of -omics technologies, identification of signaling pathways is a tool to understand molecular mechanism underlying drug resistance. Combining new tissue models, e.g. 3D organoid cultures with modern technologies for biomarker discovery will offer new opportunities to identify new drug targets and in parallel predict individual responses to anticancer therapy. In this review, we present different currently used chemosensitivity assays including 2D and 3D cell culture models and several -omics approaches for the discovery of predictive biomarkers. Furthermore, we discuss the potential of these assays and biomarkers to predict the clinical outcome of individual patients and future perspectives.

  20. A study on the predictability of acute lymphoblastic leukaemia response to treatment using a hybrid oncosimulator.

    PubMed

    Ouzounoglou, Eleftherios; Kolokotroni, Eleni; Stanulla, Martin; Stamatakos, Georgios S

    2018-02-06

    Efficient use of Virtual Physiological Human (VPH)-type models for personalized treatment response prediction purposes requires a precise model parameterization. In the case where the available personalized data are not sufficient to fully determine the parameter values, an appropriate prediction task may be followed. This study, a hybrid combination of computational optimization and machine learning methods with an already developed mechanistic model called the acute lymphoblastic leukaemia (ALL) Oncosimulator which simulates ALL progression and treatment response is presented. These methods are used in order for the parameters of the model to be estimated for retrospective cases and to be predicted for prospective ones. The parameter value prediction is based on a regression model trained on retrospective cases. The proposed Hybrid ALL Oncosimulator system has been evaluated when predicting the pre-phase treatment outcome in ALL. This has been correctly achieved for a significant percentage of patient cases tested (approx. 70% of patients). Moreover, the system is capable of denying the classification of cases for which the results are not trustworthy enough. In that case, potentially misleading predictions for a number of patients are avoided, while the classification accuracy for the remaining patient cases further increases. The results obtained are particularly encouraging regarding the soundness of the proposed methodologies and their relevance to the process of achieving clinical applicability of the proposed Hybrid ALL Oncosimulator system and VPH models in general.

  1. Model Prediction Results for 2007 Ultrasonic Benchmark Problems

    NASA Astrophysics Data System (ADS)

    Kim, Hak-Joon; Song, Sung-Jin

    2008-02-01

    The World Federation of NDE Centers (WFNDEC) has addressed two types of problems for the 2007 ultrasonic benchmark problems: prediction of side-drilled hole responses with 45° and 60° refracted shear waves, and effects of surface curvatures on the ultrasonic responses of flat-bottomed hole. To solve this year's ultrasonic benchmark problems, we applied multi-Gaussian beam models for calculation of ultrasonic beam fields and the Kirchhoff approximation and the separation of variables method for calculation of far-field scattering amplitudes of flat-bottomed holes and side-drilled holes respectively In this paper, we present comparison results of model predictions to experiments for side-drilled holes and discuss effect of interface curvatures on ultrasonic responses by comparison of peak-to-peak amplitudes of flat-bottomed hole responses with different sizes and interface curvatures.

  2. Fast and Slow Precipitation Responses to Individual Climate Forcers: A PDRMIP Multimodel Study

    NASA Technical Reports Server (NTRS)

    Samset, B. H.; Myhre, G.; Forster, P.M.; Hodnebrog, O.; Andrews, T.; Faluvegi, G.; Flaschner, D.; Kasoar, M.; Kharin, V.; Kirkevag, A.; hide

    2016-01-01

    Precipitation is expected to respond differently to various drivers of anthropogenic climate change. We present the first results from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), where nine global climate models have perturbed CO2, CH4, black carbon, sulfate, and solar insolation. We divide the resulting changes to global mean and regional precipitation into fast responses that scale with changes in atmospheric absorption and slow responses scaling with surface temperature change. While the overall features are broadly similar between models, we find significant regional intermodel variability, especially over land. Black carbon stands out as a component that may cause significant model diversity in predicted precipitation change. Processes linked to atmospheric absorption are less consistently modeled than those linked to top-of-atmosphere radiative forcing. We identify a number of land regions where the model ensemble consistently predicts that fast precipitation responses to climate perturbations dominate over the slow, temperature-driven responses.

  3. Experimental and numerical study of physiological responses in hot environments.

    PubMed

    Yang, Jie; Weng, Wenguo; Zhang, Baoting

    2014-10-01

    This paper proposed a multi-node human thermal model to predict human thermal responses in hot environments. The model was extended based on the Tanabe's work by considering the effects of high temperature on heat production, blood flow rate, and heat exchange coefficients. Five healthy men dressed in shorts were exposed in thermal neutral (29 °C) and high temperature (45 °C) environments. The rectal temperatures and skin temperatures of seven human body segments were continuously measured during the experiment. Validation of this model was conducted with experimental data. The results showed that the current model could accurately predict the skin and core temperatures in terms of the tendency and absolute values. In the human body segments expect calf and trunk, the temperature differences between the experimental data and the predicted results in high temperature environment were smaller than those in the thermally neutral environment conditions. The extended model was proved to be capable of predicting accurately human physiological responses in hot environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Synthesising empirical results to improve predictions of post-wildfire runoff and erosion response

    USGS Publications Warehouse

    Shakesby, Richard A.; Moody, John A.; Martin, Deborah A.; Robichaud, Peter R.

    2016-01-01

    Advances in research into wildfire impacts on runoff and erosion have demonstrated increasing complexity of controlling factors and responses, which, combined with changing fire frequency, present challenges for modellers. We convened a conference attended by experts and practitioners in post-wildfire impacts, meteorology and related research, including modelling, to focus on priority research issues. The aim was to improve our understanding of controls and responses and the predictive capabilities of models. This conference led to the eight selected papers in this special issue. They address aspects of the distinctiveness in the controls and responses among wildfire regions, spatiotemporal rainfall variability, infiltration, runoff connectivity, debris flow formation and modelling applications. Here we summarise key findings from these papers and evaluate their contribution to improving understanding and prediction of post-wildfire runoff and erosion under changes in climate, human intervention and population pressure on wildfire-prone areas.

  5. Responses to single photons in visual cells of Limulus

    PubMed Central

    Borsellino, A.; Fuortes, M. G. F.

    1968-01-01

    1. A system proposed in a previous article as a model of responses of visual cells has been analysed with the purpose of predicting the features of responses to single absorbed photons. 2. As a result of this analysis, the stochastic variability of responses has been expressed as a function of the amplification of the system. 3. The theoretical predictions have been compared to the results obtained by recording electrical responses of visual cells of Limulus to flashes delivering only few photons. 4. Experimental responses to single photons have been tentatively identified and it was shown that the stochastic variability of these responses is similar to that predicted for a model with a multiplication factor of at least twenty-five. 5. These results lead to the conclusion that the processes responsible for visual responses incorporate some form of amplification. This conclusion may prove useful for identifying the physical mechanisms underlying the transducer action of visual cells. PMID:5664231

  6. A neuronal model of predictive coding accounting for the mismatch negativity.

    PubMed

    Wacongne, Catherine; Changeux, Jean-Pierre; Dehaene, Stanislas

    2012-03-14

    The mismatch negativity (MMN) is thought to index the activation of specialized neural networks for active prediction and deviance detection. However, a detailed neuronal model of the neurobiological mechanisms underlying the MMN is still lacking, and its computational foundations remain debated. We propose here a detailed neuronal model of auditory cortex, based on predictive coding, that accounts for the critical features of MMN. The model is entirely composed of spiking excitatory and inhibitory neurons interconnected in a layered cortical architecture with distinct input, predictive, and prediction error units. A spike-timing dependent learning rule, relying upon NMDA receptor synaptic transmission, allows the network to adjust its internal predictions and use a memory of the recent past inputs to anticipate on future stimuli based on transition statistics. We demonstrate that this simple architecture can account for the major empirical properties of the MMN. These include a frequency-dependent response to rare deviants, a response to unexpected repeats in alternating sequences (ABABAA…), a lack of consideration of the global sequence context, a response to sound omission, and a sensitivity of the MMN to NMDA receptor antagonists. Novel predictions are presented, and a new magnetoencephalography experiment in healthy human subjects is presented that validates our key hypothesis: the MMN results from active cortical prediction rather than passive synaptic habituation.

  7. Predicting the shock compression response of heterogeneous powder mixtures

    NASA Astrophysics Data System (ADS)

    Fredenburg, D. A.; Thadhani, N. N.

    2013-06-01

    A model framework for predicting the dynamic shock-compression response of heterogeneous powder mixtures using readily obtained measurements from quasi-static tests is presented. Low-strain-rate compression data are first analyzed to determine the region of the bulk response over which particle rearrangement does not contribute to compaction. This region is then fit to determine the densification modulus of the mixture, σD, an newly defined parameter describing the resistance of the mixture to yielding. The measured densification modulus, reflective of the diverse yielding phenomena that occur at the meso-scale, is implemented into a rate-independent formulation of the P-α model, which is combined with an isobaric equation of state to predict the low and high stress dynamic compression response of heterogeneous powder mixtures. The framework is applied to two metal + metal-oxide (thermite) powder mixtures, and good agreement between the model and experiment is obtained for all mixtures at stresses near and above those required to reach full density. At lower stresses, rate-dependencies of the constituents, and specifically those of the matrix constituent, determine the ability of the model to predict the measured response in the incomplete compaction regime.

  8. Serum metabolites predict response to angiotensin II receptor blockers in patients with diabetes mellitus.

    PubMed

    Pena, Michelle J; Heinzel, Andreas; Rossing, Peter; Parving, Hans-Henrik; Dallmann, Guido; Rossing, Kasper; Andersen, Steen; Mayer, Bernd; Heerspink, Hiddo J L

    2016-07-05

    Individual patients show a large variability in albuminuria response to angiotensin receptor blockers (ARB). Identifying novel biomarkers that predict ARB response may help tailor therapy. We aimed to discover and validate a serum metabolite classifier that predicts albuminuria response to ARBs in patients with diabetes mellitus and micro- or macroalbuminuria. Liquid chromatography-tandem mass spectrometry metabolomics was performed on serum samples. Data from patients with type 2 diabetes and microalbuminuria (n = 49) treated with irbesartan 300 mg/day were used for discovery. LASSO and ridge regression were performed to develop the classifier. Improvement in albuminuria response prediction was assessed by calculating differences in R(2) between a reference model of clinical parameters and a model with clinical parameters and the classifier. The classifier was externally validated in patients with type 1 diabetes and macroalbuminuria (n = 50) treated with losartan 100 mg/day. Molecular process analysis was performed to link metabolites to molecular mechanisms contributing to ARB response. In discovery, median change in urinary albumin excretion (UAE) was -42 % [Q1-Q3: -69 to -8]. The classifier, consisting of 21 metabolites, was significantly associated with UAE response to irbesartan (p < 0.001) and improved prediction of UAE response on top of the clinical reference model (R(2) increase from 0.10 to 0.70; p < 0.001). In external validation, median change in UAE was -43 % [Q1-Q35: -63 to -23]. The classifier improved prediction of UAE response to losartan (R(2) increase from 0.20 to 0.59; p < 0.001). Specifically ADMA impacting eNOS activity appears to be a relevant factor in ARB response. A serum metabolite classifier was discovered and externally validated to significantly improve prediction of albuminuria response to ARBs in diabetes mellitus.

  9. Modeling the effect of shroud contact and friction dampers on the mistuned response of turbopumps

    NASA Technical Reports Server (NTRS)

    Griffin, Jerry H.; Yang, M.-T.

    1994-01-01

    The contract has been revised. Under the revised scope of work a reduced order model has been developed that can be used to predict the steady-state response of mistuned bladed disks. The approach has been implemented in a computer code, LMCC. It is concluded that: the reduced order model displays structural fidelity comparable to that of a finite element model of an entire bladed disk system with significantly improved computational efficiency; and, when the disk is stiff, both the finite element model and LMCC predict significantly more amplitude variation than was predicted by earlier models. This second result may have important practical ramifications, especially in the case of integrally bladed disks.

  10. Adaptive Anchoring Model: How Static and Dynamic Presentations of Time Series Influence Judgments and Predictions.

    PubMed

    Kusev, Petko; van Schaik, Paul; Tsaneva-Atanasova, Krasimira; Juliusson, Asgeir; Chater, Nick

    2018-01-01

    When attempting to predict future events, people commonly rely on historical data. One psychological characteristic of judgmental forecasting of time series, established by research, is that when people make forecasts from series, they tend to underestimate future values for upward trends and overestimate them for downward ones, so-called trend-damping (modeled by anchoring on, and insufficient adjustment from, the average of recent time series values). Events in a time series can be experienced sequentially (dynamic mode), or they can also be retrospectively viewed simultaneously (static mode), not experienced individually in real time. In one experiment, we studied the influence of presentation mode (dynamic and static) on two sorts of judgment: (a) predictions of the next event (forecast) and (b) estimation of the average value of all the events in the presented series (average estimation). Participants' responses in dynamic mode were anchored on more recent events than in static mode for all types of judgment but with different consequences; hence, dynamic presentation improved prediction accuracy, but not estimation. These results are not anticipated by existing theoretical accounts; we develop and present an agent-based model-the adaptive anchoring model (ADAM)-to account for the difference between processing sequences of dynamically and statically presented stimuli (visually presented data). ADAM captures how variation in presentation mode produces variation in responses (and the accuracy of these responses) in both forecasting and judgment tasks. ADAM's model predictions for the forecasting and judgment tasks fit better with the response data than a linear-regression time series model. Moreover, ADAM outperformed autoregressive-integrated-moving-average (ARIMA) and exponential-smoothing models, while neither of these models accounts for people's responses on the average estimation task. Copyright © 2017 The Authors. Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.

  11. Predictive models of poly(ethylene-terephthalate) film degradation under multi-factor accelerated weathering exposures

    PubMed Central

    Ngendahimana, David K.; Fagerholm, Cara L.; Sun, Jiayang; Bruckman, Laura S.

    2017-01-01

    Accelerated weathering exposures were performed on poly(ethylene-terephthalate) (PET) films. Longitudinal multi-level predictive models as a function of PET grades and exposure types were developed for the change in yellowness index (YI) and haze (%). Exposures with similar change in YI were modeled using a linear fixed-effects modeling approach. Due to the complex nature of haze formation, measurement uncertainty, and the differences in the samples’ responses, the change in haze (%) depended on individual samples’ responses and a linear mixed-effects modeling approach was used. When compared to fixed-effects models, the addition of random effects in the haze formation models significantly increased the variance explained. For both modeling approaches, diagnostic plots confirmed independence and homogeneity with normally distributed residual errors. Predictive R2 values for true prediction error and predictive power of the models demonstrated that the models were not subject to over-fitting. These models enable prediction under pre-defined exposure conditions for a given exposure time (or photo-dosage in case of UV light exposure). PET degradation under cyclic exposures combining UV light and condensing humidity is caused by photolytic and hydrolytic mechanisms causing yellowing and haze formation. Quantitative knowledge of these degradation pathways enable cross-correlation of these lab-based exposures with real-world conditions for service life prediction. PMID:28498875

  12. High Resolution Flash Flood Forecasting Using a Wireless Sensor Network in the Dallas-Fort Worth Metroplex

    NASA Astrophysics Data System (ADS)

    Bartos, M. D.; Kerkez, B.; Noh, S.; Seo, D. J.

    2017-12-01

    In this study, we develop and evaluate a high resolution urban flash flood monitoring system using a wireless sensor network (WSN), a real-time rainfall-runoff model, and spatially-explicit radar rainfall predictions. Flooding is the leading cause of natural disaster fatalities in the US, with flash flooding in particular responsible for a majority of flooding deaths. While many riverine flood models have been operationalized into early warning systems, there is currently no model that is capable of reliably predicting flash floods in urban areas. Urban flash floods are particularly difficult to model due to a lack of rainfall and runoff data at appropriate scales. To address this problem, we develop a wide-area flood-monitoring wireless sensor network for the Dallas-Fort Worth metroplex, and use this network to characterize rainfall-runoff response over multiple heterogeneous catchments. First, we deploy a network of 22 wireless sensor nodes to collect real-time stream stage measurements over catchments ranging from 2-80 km2 in size. Next, we characterize the rainfall-runoff response of each catchment by combining stream stage data with gage and radar-based precipitation measurements. Finally, we demonstrate the potential for real-time flash flood prediction by joining the derived rainfall-runoff models with real-time radar rainfall predictions. We find that runoff response is highly heterogeneous among catchments, with large variabilities in runoff response detected even among nearby gages. However, when spatially-explicit rainfall fields are included, spatial variability in runoff response is largely captured. This result highlights the importance of increased spatial coverage for flash flood prediction.

  13. Predicting streamflow response to fire-induced landcover change: implications of parameter uncertainty in the MIKE SHE model.

    PubMed

    McMichael, Christine E; Hope, Allen S

    2007-08-01

    Fire is a primary agent of landcover transformation in California semi-arid shrubland watersheds, however few studies have examined the impacts of fire and post-fire succession on streamflow dynamics in these basins. While it may seem intuitive that larger fires will have a greater impact on streamflow response than smaller fires in these watersheds, the nature of these relationships has not been determined. The effects of fire size on seasonal and annual streamflow responses were investigated for a medium-sized basin in central California using a modified version of the MIKE SHE model which had been previously calibrated and tested for this watershed using the Generalized Likelihood Uncertainty Estimation methodology. Model simulations were made for two contrasting periods, wet and dry, in order to assess whether fire size effects varied with weather regime. Results indicated that seasonal and annual streamflow response increased nearly linearly with fire size in a given year under both regimes. Annual flow response was generally higher in wetter years for both weather regimes, however a clear trend was confounded by the effect of stand age. These results expand our understanding of the effects of fire size on hydrologic response in chaparral watersheds, but it is important to note that the majority of model predictions were largely indistinguishable from the predictive uncertainty associated with the calibrated model - a key finding that highlights the importance of analyzing hydrologic predictions for altered landcover conditions in the context of model uncertainty. Future work is needed to examine how alternative decisions (e.g., different likelihood measures) may influence GLUE-based MIKE SHE streamflow predictions following different size fires, and how the effect of fire size on streamflow varies with other factors such as fire location.

  14. Computational Modeling of Hypothalamic-Pituitary-Gonadal Axis to Predict Adaptive Responses in Female Fathead Minnows Exposed to an Aromatase Inhibitor

    EPA Science Inventory

    Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We are developing a mechanistic computational model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict dose response and time-course...

  15. [Optimal extraction of effective constituents from Aralia elata by central composite design and response surface methodology].

    PubMed

    Lv, Shao-Wa; Liu, Dong; Hu, Pan-Pan; Ye, Xu-Yan; Xiao, Hong-Bin; Kuang, Hai-Xue

    2010-03-01

    To optimize the process of extracting effective constituents from Aralia elata by response surface methodology. The independent variables were ethanol concentration, reflux time and solvent fold, the dependent variable was extraction rate of total saponins in Aralia elata. Linear or no-linear mathematic models were used to estimate the relationship between independent and dependent variables. Response surface methodology was used to optimize the process of extraction. The prediction was carried out through comparing the observed and predicted values. Regression coefficient of binomial fitting complex model was as high as 0.9617, the optimum conditions of extraction process were 70% ethanol, 2.5 hours for reflux, 20-fold solvent and 3 times for extraction. The bias between observed and predicted values was -2.41%. It shows the optimum model is highly predictive.

  16. Species co-occurrence analysis predicts management outcomes for multiple threats.

    PubMed

    Tulloch, Ayesha I T; Chadès, Iadine; Lindenmayer, David B

    2018-03-01

    Mitigating the impacts of global anthropogenic change on species is conservation's greatest challenge. Forecasting the effects of actions to mitigate threats is hampered by incomplete information on species' responses. We develop an approach to predict community restructuring under threat management, which combines models of responses to threats with network analyses of species co-occurrence. We discover that contributions by species to network co-occurrence predict their recovery under reduction of multiple threats. Highly connected species are likely to benefit more from threat management than poorly connected species. Importantly, we show that information from a few species on co-occurrence and expected responses to alternative threat management actions can be used to train a response model for an entire community. We use a unique management dataset for a threatened bird community to validate our predictions and, in doing so, demonstrate positive feedbacks in occurrence and co-occurrence resulting from shared threat management responses during ecosystem recovery.

  17. Application of nomographs for analysis and prediction of receiver spurious response EMI

    NASA Astrophysics Data System (ADS)

    Heather, F. W.

    1985-07-01

    Spurious response EMI for the front end of a superheterodyne receiver follows a simple mathematic formula; however, the application of the formula to predict test frequencies produces more data than can be evaluated. An analysis technique has been developed to graphically depict all receiver spurious responses usig a nomograph and to permit selection of optimum test frequencies. The discussion includes the math model used to simulate a superheterodyne receiver, the implementation of the model in the computer program, the approach to test frequency selection, interpretation of the nomographs, analysis and prediction of receiver spurious response EMI from the nomographs, and application of the nomographs. In addition, figures are provided of sample applications. This EMI analysis and prediction technique greatly improves the Electromagnetic Compatibility (EMC) test engineer's ability to visualize the scope of receiver spurious response EMI testing and optimize test frequency selection.

  18. Predicting musically induced emotions from physiological inputs: linear and neural network models.

    PubMed

    Russo, Frank A; Vempala, Naresh N; Sandstrom, Gillian M

    2013-01-01

    Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of "felt" emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants-heart rate (HR), respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA) dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a non-linear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The non-linear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the non-linear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.

  19. Modeling responses of large-river fish populations to global climate change through downscaling and incorporation of predictive uncertainty

    USGS Publications Warehouse

    Wildhaber, Mark L.; Wikle, Christopher K.; Anderson, Christopher J.; Franz, Kristie J.; Moran, Edward H.; Dey, Rima; Mader, Helmut; Kraml, Julia

    2012-01-01

    Climate change operates over a broad range of spatial and temporal scales. Understanding its effects on ecosystems requires multi-scale models. For understanding effects on fish populations of riverine ecosystems, climate predicted by coarse-resolution Global Climate Models must be downscaled to Regional Climate Models to watersheds to river hydrology to population response. An additional challenge is quantifying sources of uncertainty given the highly nonlinear nature of interactions between climate variables and community level processes. We present a modeling approach for understanding and accomodating uncertainty by applying multi-scale climate models and a hierarchical Bayesian modeling framework to Midwest fish population dynamics and by linking models for system components together by formal rules of probability. The proposed hierarchical modeling approach will account for sources of uncertainty in forecasts of community or population response. The goal is to evaluate the potential distributional changes in an ecological system, given distributional changes implied by a series of linked climate and system models under various emissions/use scenarios. This understanding will aid evaluation of management options for coping with global climate change. In our initial analyses, we found that predicted pallid sturgeon population responses were dependent on the climate scenario considered.

  20. Clinical utility of pretreatment prediction of chemoradiotherapy response in rectal cancer: a review.

    PubMed

    Yoo, Byong Chul; Yeo, Seung-Gu

    2017-03-01

    Approximately 20% of all patients with locally advanced rectal cancer experience pathologically complete responses following neoadjuvant chemoradiotherapy (CRT) and standard surgery. The utility of radical surgery for patients exhibiting good CRT responses has been challenged. Organ-sparing strategies for selected patients exhibiting complete clinical responses include local excision or no immediate surgery. The subjects of this tailored management are patients whose presenting disease corresponds to current indications of neoadjuvant CRT, and their post-CRT tumor response is assessed by clinical and radiological examinations. However, a model predictive of the CRT response, applied before any treatment commenced, would be valuable to facilitate such a personalized approach. This would increase organ preservation, particularly in patients for whom upfront CRT is not generally prescribed. Molecular biomarkers hold the greatest promise for development of a pretreatment predictive model of CRT response. A combination of clinicopathological, radiological, and molecular markers will be necessary to render the model robust. Molecular research will also contribute to the development of drugs that can overcome the radioresistance of rectal tumors. Current treatments for rectal cancer are based on the expected prognosis given the presenting disease extent. In the future, treatment schemes may be modified by including the predicted CRT response evaluated at presentation.

  1. Modelling the spatio-temporal modulation response of ganglion cells with difference-of-Gaussians receptive fields: relation to photoreceptor response kinetics.

    PubMed

    Donner, K; Hemilä, S

    1996-01-01

    Difference-of-Gaussians (DOG) models for the receptive fields of retinal ganglion cells accurately predict linear responses to both periodic stimuli (typically moving sinusoidal gratings) and aperiodic stimuli (typically circular fields presented as square-wave pulses). While the relation of spatial organization to retinal anatomy has received considerable attention, temporal characteristics have been only loosely connected to retinal physiology. Here we integrate realistic photoreceptor response waveforms into the DOG model to clarify how far a single set of physiological parameters predict temporal aspects of linear responses to both periodic and aperiodic stimuli. Traditional filter-cascade models provide a useful first-order approximation of the single-photon response in photoreceptors. The absolute time scale of these, plus a time for retinal transmission, here construed as a fixed delay, are obtained from flash/step data. Using these values, we find that the DOG model predicts the main features of both the amplitude and phase response of linear cat ganglion cells to sinusoidal flicker. Where the simplest model formulation fails, it serves to reveal additional mechanisms. Unforeseen facts are the attenuation of low temporal frequencies even in pure center-type responses, and the phase advance of the response relative to the stimulus at low frequencies. Neither can be explained by any experimentally documented cone response waveform, but both would be explained by signal differentiation, e.g. in the retinal transmission pathway, as demonstrated at least in turtle retina.

  2. Climate model diversity in the Northern Hemisphere Polar vortex response to climate change.

    NASA Astrophysics Data System (ADS)

    Simpson, I.; Seager, R.; Hitchcock, P.; Cohen, N.

    2017-12-01

    Global climate models vary widely in their predictions of the future of the Northern Hemisphere stratospheric polar vortex, with some showing a significant strengthening of the vortex, some showing a significant weakening and others displaying a response that is not outside of the range expected from internal variability alone. This inter-model spread in stratospheric predictions may account for some inter-model spread in tropospheric predictions with important implications for the storm tracks and regional climate change, particularly for the North Atlantic sector. Here, our current state of understanding of this model spread and its tropospheric impacts will be reviewed. Previous studies have proposed relationships between a models polar vortex response to climate change and its present day vortex climatology while others have demonstrated links between a models polar vortex response and changing wave activity coming up from the troposphere below under a warming climate. The extent to which these mechanisms can account for the spread in polar vortex changes exhibited by the Coupled Model Intercomparison Project, phase 5 models will be assessed. In addition, preliminary results from a series of idealized experiments with the Community Atmosphere Model will be presented. In these experiments, nudging of the stratospheric zonal mean state has been imposed to mimic the inter-model spread in the polar vortex response to climate change so that the downward influence of the spread in zonal mean stratospheric responses on the tropospheric circulation can be assessed within one model.

  3. A computer program for predicting nonlinear uniaxial material responses using viscoplastic models

    NASA Technical Reports Server (NTRS)

    Chang, T. Y.; Thompson, R. L.

    1984-01-01

    A computer program was developed for predicting nonlinear uniaxial material responses using viscoplastic constitutive models. Four specific models, i.e., those due to Miller, Walker, Krieg-Swearengen-Rhode, and Robinson, are included. Any other unified model is easily implemented into the program in the form of subroutines. Analysis features include stress-strain cycling, creep response, stress relaxation, thermomechanical fatigue loop, or any combination of these responses. An outline is given on the theoretical background of uniaxial constitutive models, analysis procedure, and numerical integration methods for solving the nonlinear constitutive equations. In addition, a discussion on the computer program implementation is also given. Finally, seven numerical examples are included to demonstrate the versatility of the computer program developed.

  4. Predictions of the pathological response to neoadjuvant chemotherapy in patients with primary breast cancer using a data mining technique.

    PubMed

    Takada, M; Sugimoto, M; Ohno, S; Kuroi, K; Sato, N; Bando, H; Masuda, N; Iwata, H; Kondo, M; Sasano, H; Chow, L W C; Inamoto, T; Naito, Y; Tomita, M; Toi, M

    2012-07-01

    Nomogram, a standard technique that utilizes multiple characteristics to predict efficacy of treatment and likelihood of a specific status of an individual patient, has been used for prediction of response to neoadjuvant chemotherapy (NAC) in breast cancer patients. The aim of this study was to develop a novel computational technique to predict the pathological complete response (pCR) to NAC in primary breast cancer patients. A mathematical model using alternating decision trees, an epigone of decision tree, was developed using 28 clinicopathological variables that were retrospectively collected from patients treated with NAC (n = 150), and validated using an independent dataset from a randomized controlled trial (n = 173). The model selected 15 variables to predict the pCR with yielding area under the receiver operating characteristics curve (AUC) values of 0.766 [95 % confidence interval (CI)], 0.671-0.861, P value < 0.0001) in cross-validation using training dataset and 0.787 (95 % CI 0.716-0.858, P value < 0.0001) in the validation dataset. Among three subtypes of breast cancer, the luminal subgroup showed the best discrimination (AUC = 0.779, 95 % CI 0.641-0.917, P value = 0.0059). The developed model (AUC = 0.805, 95 % CI 0.716-0.894, P value < 0.0001) outperformed multivariate logistic regression (AUC = 0.754, 95 % CI 0.651-0.858, P value = 0.00019) of validation datasets without missing values (n = 127). Several analyses, e.g. bootstrap analysis, revealed that the developed model was insensitive to missing values and also tolerant to distribution bias among the datasets. Our model based on clinicopathological variables showed high predictive ability for pCR. This model might improve the prediction of the response to NAC in primary breast cancer patients.

  5. [Application of three compartment model and response surface model to clinical anesthesia using Microsoft Excel].

    PubMed

    Abe, Eiji; Abe, Mari

    2011-08-01

    With the spread of total intravenous anesthesia, clinical pharmacology has become more important. We report Microsoft Excel file applying three compartment model and response surface model to clinical anesthesia. On the Microsoft Excel sheet, propofol, remifentanil and fentanyl effect-site concentrations are predicted (three compartment model), and probabilities of no response to prodding, shaking, surrogates of painful stimuli and laryngoscopy are calculated using predicted effect-site drug concentration. Time-dependent changes in these calculated values are shown graphically. Recent development in anesthetic drug interaction studies are remarkable, and its application to clinical anesthesia with this Excel file is simple and helpful for clinical anesthesia.

  6. A local circuit model of learned striatal and dopamine cell responses under probabilistic schedules of reward.

    PubMed

    Tan, Can Ozan; Bullock, Daniel

    2008-10-01

    Recently, dopamine (DA) neurons of the substantia nigra pars compacta (SNc) were found to exhibit sustained responses related to reward uncertainty, in addition to the phasic responses related to reward-prediction errors (RPEs). Thus, cue-dependent anticipations of the timing, magnitude, and uncertainty of rewards are learned and reflected in components of DA signals. Here we simulate a local circuit model to show how learned uncertainty responses are generated, along with phasic RPE responses, on single trials. Both types of simulated DA responses exhibit the empirically observed dependencies on conditional probability, expected value of reward, and time since onset of the reward-predicting cue. The model's three major pathways compute expected values of cues, timed predictions of reward magnitudes, and uncertainties associated with these predictions. The first two pathways' computations refine those modeled by Brown et al. (1999). The third, newly modeled, pathway involves medium spiny projection neurons (MSPNs) of the striatal matrix, whose axons corelease GABA and substance P, both at synapses with GABAergic neurons in the substantia nigra pars reticulata (SNr) and with distal dendrites (in SNr) of DA neurons whose somas are located in ventral SNc. Corelease enables efficient computation of uncertainty responses that are a nonmonotonic function of the conditional probability of reward, and variability in striatal cholinergic transmission can explain observed individual differences in the amplitudes of uncertainty responses. The involvement of matricial MSPNs and cholinergic transmission within the striatum implies a relation between uncertainty in cue-reward contingencies and action-selection functions of the basal ganglia.

  7. Numerical investigations of rib fracture failure models in different dynamic loading conditions.

    PubMed

    Wang, Fang; Yang, Jikuang; Miller, Karol; Li, Guibing; Joldes, Grand R; Doyle, Barry; Wittek, Adam

    2016-01-01

    Rib fracture is one of the most common thoracic injuries in vehicle traffic accidents that can result in fatalities associated with seriously injured internal organs. A failure model is critical when modelling rib fracture to predict such injuries. Different rib failure models have been proposed in prediction of thorax injuries. However, the biofidelity of the fracture failure models when varying the loading conditions and the effects of a rib fracture failure model on prediction of thoracic injuries have been studied only to a limited extent. Therefore, this study aimed to investigate the effects of three rib failure models on prediction of thoracic injuries using a previously validated finite element model of the human thorax. The performance and biofidelity of each rib failure model were first evaluated by modelling rib responses to different loading conditions in two experimental configurations: (1) the three-point bending on the specimen taken from rib and (2) the anterior-posterior dynamic loading to an entire bony part of the rib. Furthermore, the simulation of the rib failure behaviour in the frontal impact to an entire thorax was conducted at varying velocities and the effects of the failure models were analysed with respect to the severity of rib cage damages. Simulation results demonstrated that the responses of the thorax model are similar to the general trends of the rib fracture responses reported in the experimental literature. However, they also indicated that the accuracy of the rib fracture prediction using a given failure model varies for different loading conditions.

  8. Logical-rule models of classification response times: a synthesis of mental-architecture, random-walk, and decision-bound approaches.

    PubMed

    Fific, Mario; Little, Daniel R; Nosofsky, Robert M

    2010-04-01

    We formalize and provide tests of a set of logical-rule models for predicting perceptual classification response times (RTs) and choice probabilities. The models are developed by synthesizing mental-architecture, random-walk, and decision-bound approaches. According to the models, people make independent decisions about the locations of stimuli along a set of component dimensions. Those independent decisions are then combined via logical rules to determine the overall categorization response. The time course of the independent decisions is modeled via random-walk processes operating along individual dimensions. Alternative mental architectures are used as mechanisms for combining the independent decisions to implement the logical rules. We derive fundamental qualitative contrasts for distinguishing among the predictions of the rule models and major alternative models of classification RT. We also use the models to predict detailed RT-distribution data associated with individual stimuli in tasks of speeded perceptual classification. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  9. Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge.

    PubMed

    Lowe, B M; Skylaris, C-K; Green, N G; Shibuta, Y; Sakata, T

    2018-05-10

    The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.

  10. Probabilistic Thermal Analysis During Mars Reconnaissance Orbiter Aerobraking

    NASA Technical Reports Server (NTRS)

    Dec, John A.

    2007-01-01

    A method for performing a probabilistic thermal analysis during aerobraking has been developed. The analysis is performed on the Mars Reconnaissance Orbiter solar array during aerobraking. The methodology makes use of a response surface model derived from a more complex finite element thermal model of the solar array. The response surface is a quadratic equation which calculates the peak temperature for a given orbit drag pass at a specific location on the solar panel. Five different response surface equations are used, one of which predicts the overall maximum solar panel temperature, and the remaining four predict the temperatures of the solar panel thermal sensors. The variables used to define the response surface can be characterized as either environmental, material property, or modeling variables. Response surface variables are statistically varied in a Monte Carlo simulation. The Monte Carlo simulation produces mean temperatures and 3 sigma bounds as well as the probability of exceeding the designated flight allowable temperature for a given orbit. Response surface temperature predictions are compared with the Mars Reconnaissance Orbiter flight temperature data.

  11. Prediction Models for Dynamic Demand Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aman, Saima; Frincu, Marc; Chelmis, Charalampos

    2015-11-02

    As Smart Grids move closer to dynamic curtailment programs, Demand Response (DR) events will become necessary not only on fixed time intervals and weekdays predetermined by static policies, but also during changing decision periods and weekends to react to real-time demand signals. Unique challenges arise in this context vis-a-vis demand prediction and curtailment estimation and the transformation of such tasks into an automated, efficient dynamic demand response (D 2R) process. While existing work has concentrated on increasing the accuracy of prediction models for DR, there is a lack of studies for prediction models for D 2R, which we address inmore » this paper. Our first contribution is the formal definition of D 2R, and the description of its challenges and requirements. Our second contribution is a feasibility analysis of very-short-term prediction of electricity consumption for D 2R over a diverse, large-scale dataset that includes both small residential customers and large buildings. Our third, and major contribution is a set of insights into the predictability of electricity consumption in the context of D 2R. Specifically, we focus on prediction models that can operate at a very small data granularity (here 15-min intervals), for both weekdays and weekends - all conditions that characterize scenarios for D 2R. We find that short-term time series and simple averaging models used by Independent Service Operators and utilities achieve superior prediction accuracy. We also observe that workdays are more predictable than weekends and holiday. Also, smaller customers have large variation in consumption and are less predictable than larger buildings. Key implications of our findings are that better models are required for small customers and for non-workdays, both of which are critical for D 2R. Also, prediction models require just few days’ worth of data indicating that small amounts of historical training data can be used to make reliable predictions, simplifying the complexity of big data challenge associated with D 2R.« less

  12. Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses

    NASA Astrophysics Data System (ADS)

    Rowland, L.; Harper, A.; Christoffersen, B. O.; Galbraith, D. R.; Imbuzeiro, H. M. A.; Powell, T. L.; Doughty, C.; Levine, N. M.; Malhi, Y.; Saleska, S. R.; Moorcroft, P. R.; Meir, P.; Williams, M.

    2015-04-01

    Accurately predicting the response of Amazonia to climate change is important for predicting climate change across the globe. Changes in multiple climatic factors simultaneously result in complex non-linear ecosystem responses, which are difficult to predict using vegetation models. Using leaf- and canopy-scale observations, this study evaluated the capability of five vegetation models (Community Land Model version 3.5 coupled to the Dynamic Global Vegetation model - CLM3.5-DGVM; Ecosystem Demography model version 2 - ED2; the Joint UK Land Environment Simulator version 2.1 - JULES; Simple Biosphere model version 3 - SiB3; and the soil-plant-atmosphere model - SPA) to simulate the responses of leaf- and canopy-scale productivity to changes in temperature and drought in an Amazonian forest. The models did not agree as to whether gross primary productivity (GPP) was more sensitive to changes in temperature or precipitation, but all the models were consistent with the prediction that GPP would be higher if tropical forests were 5 °C cooler than current ambient temperatures. There was greater model-data consistency in the response of net ecosystem exchange (NEE) to changes in temperature than in the response to temperature by net photosynthesis (An), stomatal conductance (gs) and leaf area index (LAI). Modelled canopy-scale fluxes are calculated by scaling leaf-scale fluxes using LAI. At the leaf-scale, the models did not agree on the temperature or magnitude of the optimum points of An, Vcmax or gs, and model variation in these parameters was compensated for by variations in the absolute magnitude of simulated LAI and how it altered with temperature. Across the models, there was, however, consistency in two leaf-scale responses: (1) change in An with temperature was more closely linked to stomatal behaviour than biochemical processes; and (2) intrinsic water use efficiency (IWUE) increased with temperature, especially when combined with drought. These results suggest that even up to fairly extreme temperature increases from ambient levels (+6 °C), simulated photosynthesis becomes increasingly sensitive to gs and remains less sensitive to biochemical changes. To improve the reliability of simulations of the response of Amazonian rainforest to climate change, the mechanistic underpinnings of vegetation models need to be validated at both leaf- and canopy-scales to improve accuracy and consistency in the quantification of processes within and across an ecosystem.

  13. Spectral response model for a multibin photon-counting spectral computed tomography detector and its applications.

    PubMed

    Liu, Xuejin; Persson, Mats; Bornefalk, Hans; Karlsson, Staffan; Xu, Cheng; Danielsson, Mats; Huber, Ben

    2015-07-01

    Variations among detector channels in computed tomography can lead to ring artifacts in the reconstructed images and biased estimates in projection-based material decomposition. Typically, the ring artifacts are corrected by compensation methods based on flat fielding, where transmission measurements are required for a number of material-thickness combinations. Phantoms used in these methods can be rather complex and require an extensive number of transmission measurements. Moreover, material decomposition needs knowledge of the individual response of each detector channel to account for the detector inhomogeneities. For this purpose, we have developed a spectral response model that binwise predicts the response of a multibin photon-counting detector individually for each detector channel. The spectral response model is performed in two steps. The first step employs a forward model to predict the expected numbers of photon counts, taking into account parameters such as the incident x-ray spectrum, absorption efficiency, and energy response of the detector. The second step utilizes a limited number of transmission measurements with a set of flat slabs of two absorber materials to fine-tune the model predictions, resulting in a good correspondence with the physical measurements. To verify the response model, we apply the model in two cases. First, the model is used in combination with a compensation method which requires an extensive number of transmission measurements to determine the necessary parameters. Our spectral response model successfully replaces these measurements by simulations, saving a significant amount of measurement time. Second, the spectral response model is used as the basis of the maximum likelihood approach for projection-based material decomposition. The reconstructed basis images show a good separation between the calcium-like material and the contrast agents, iodine and gadolinium. The contrast agent concentrations are reconstructed with more than 94% accuracy.

  14. Spectral response model for a multibin photon-counting spectral computed tomography detector and its applications

    PubMed Central

    Liu, Xuejin; Persson, Mats; Bornefalk, Hans; Karlsson, Staffan; Xu, Cheng; Danielsson, Mats; Huber, Ben

    2015-01-01

    Abstract. Variations among detector channels in computed tomography can lead to ring artifacts in the reconstructed images and biased estimates in projection-based material decomposition. Typically, the ring artifacts are corrected by compensation methods based on flat fielding, where transmission measurements are required for a number of material-thickness combinations. Phantoms used in these methods can be rather complex and require an extensive number of transmission measurements. Moreover, material decomposition needs knowledge of the individual response of each detector channel to account for the detector inhomogeneities. For this purpose, we have developed a spectral response model that binwise predicts the response of a multibin photon-counting detector individually for each detector channel. The spectral response model is performed in two steps. The first step employs a forward model to predict the expected numbers of photon counts, taking into account parameters such as the incident x-ray spectrum, absorption efficiency, and energy response of the detector. The second step utilizes a limited number of transmission measurements with a set of flat slabs of two absorber materials to fine-tune the model predictions, resulting in a good correspondence with the physical measurements. To verify the response model, we apply the model in two cases. First, the model is used in combination with a compensation method which requires an extensive number of transmission measurements to determine the necessary parameters. Our spectral response model successfully replaces these measurements by simulations, saving a significant amount of measurement time. Second, the spectral response model is used as the basis of the maximum likelihood approach for projection-based material decomposition. The reconstructed basis images show a good separation between the calcium-like material and the contrast agents, iodine and gadolinium. The contrast agent concentrations are reconstructed with more than 94% accuracy. PMID:26839904

  15. A meta-analysis of response-time tests of the sequential two-systems model of moral judgment.

    PubMed

    Baron, Jonathan; Gürçay, Burcu

    2017-05-01

    The (generalized) sequential two-system ("default interventionist") model of utilitarian moral judgment predicts that utilitarian responses often arise from a system-two correction of system-one deontological intuitions. Response-time (RT) results that seem to support this model are usually explained by the fact that low-probability responses have longer RTs. Following earlier results, we predicted response probability from each subject's tendency to make utilitarian responses (A, "Ability") and each dilemma's tendency to elicit deontological responses (D, "Difficulty"), estimated from a Rasch model. At the point where A = D, the two responses are equally likely, so probability effects cannot account for any RT differences between them. The sequential two-system model still predicts that many of the utilitarian responses made at this point will result from system-two corrections of system-one intuitions, hence should take longer. However, when A = D, RT for the two responses was the same, contradicting the sequential model. Here we report a meta-analysis of 26 data sets, which replicated the earlier results of no RT difference overall at the point where A = D. The data sets used three different kinds of moral judgment items, and the RT equality at the point where A = D held for all three. In addition, we found that RT increased with A-D. This result holds for subjects (characterized by Ability) but not for items (characterized by Difficulty). We explain the main features of this unanticipated effect, and of the main results, with a drift-diffusion model.

  16. Genomics of NSCLC patients both affirm PD-L1 expression and predict their clinical responses to anti-PD-1 immunotherapy.

    PubMed

    Brogden, Kim A; Parashar, Deepak; Hallier, Andrea R; Braun, Terry; Qian, Fang; Rizvi, Naiyer A; Bossler, Aaron D; Milhem, Mohammed M; Chan, Timothy A; Abbasi, Taher; Vali, Shireen

    2018-02-27

    Programmed Death Ligand 1 (PD-L1) is a co-stimulatory and immune checkpoint protein. PD-L1 expression in non-small cell lung cancers (NSCLC) is a hallmark of adaptive resistance and its expression is often used to predict the outcome of Programmed Death 1 (PD-1) and PD-L1 immunotherapy treatments. However, clinical benefits do not occur in all patients and new approaches are needed to assist in selecting patients for PD-1 or PD-L1 immunotherapies. Here, we hypothesized that patient tumor cell genomics influenced cell signaling and expression of PD-L1, chemokines, and immunosuppressive molecules and these profiles could be used to predict patient clinical responses. We used a recent dataset from NSCLC patients treated with pembrolizumab. Deleterious gene mutational profiles in patient exomes were identified and annotated into a cancer network to create NSCLC patient-specific predictive computational simulation models. Validation checks were performed on the cancer network, simulation model predictions, and PD-1 match rates between patient-specific predicted and clinical responses. Expression profiles of these 24 chemokines and immunosuppressive molecules were used to identify patients who would or would not respond to PD-1 immunotherapy. PD-L1 expression alone was not sufficient to predict which patients would or would not respond to PD-1 immunotherapy. Adding chemokine and immunosuppressive molecule expression profiles allowed patient models to achieve a greater than 85.0% predictive correlation among predicted and reported patient clinical responses. Our results suggested that chemokine and immunosuppressive molecule expression profiles can be used to accurately predict clinical responses thus differentiating among patients who would and would not benefit from PD-1 or PD-L1 immunotherapies.

  17. XBeach-G: a tool for predicting gravel barrier response to extreme storm conditions

    NASA Astrophysics Data System (ADS)

    Masselink, Gerd; Poate, Tim; McCall, Robert; Roelvink, Dano; Russell, Paul; Davidson, Mark

    2014-05-01

    Gravel beaches protect low-lying back-barrier regions from flooding during storm events and their importance to society is widely acknowledged. Unfortunately, breaching and extensive storm damage has occurred at many gravel sites and this is likely to increase as a result of sea-level rise and enhanced storminess due to climate change. Limited scientific guidance is currently available to provide beach managers with operational management tools to predict the response of gravel beaches to storms. The New Understanding and Prediction of Storm Impacts on Gravel beaches (NUPSIG) project aims to improve our understanding of storm impacts on gravel coastal environments and to develop a predictive capability by modelling these impacts. The NUPSIG project uses a 5-pronged approach to address its aim: (1) analyse hydrodynamic data collected during a proto-type laboratory experiment on a gravel beach; (2) collect hydrodynamic field data on a gravel beach under a range of conditions, including storm waves with wave heights up to 3 m; (3) measure swash dynamics and beach response on 10 gravel beaches during extreme wave conditions with wave heights in excess of 3 m; (4) use the data collected under 1-3 to develop and validate a numerical model to model hydrodynamics and morphological response of gravel beaches under storm conditions; and (5) develop a tool for end-users, based on the model formulated under (4), for predicting storm response of gravel beaches and barriers. The aim of this presentation is to present the key results of the NUPSIG project and introduce the end-user tool for predicting storm response on gravel beaches. The model is based on the numerical model XBeach, and different forcing scenarios (wave and tides), barrier configurations (dimensions) and sediment characteristics are easily uploaded for model simulations using a Graphics User Interface (GUI). The model can be used to determine the vulnerability of gravel barriers to storm events, but can also be used to help optimise design criteria for gravel barriers to reduce their vulnerability and enhance their coastal protection ability.

  18. Predicting the threshold of pulse-train electrical stimuli using a stochastic auditory nerve model: the effects of stimulus noise.

    PubMed

    Xu, Yifang; Collins, Leslie M

    2004-04-01

    The incorporation of low levels of noise into an electrical stimulus has been shown to improve auditory thresholds in some human subjects (Zeng et al., 2000). In this paper, thresholds for noise-modulated pulse-train stimuli are predicted utilizing a stochastic neural-behavioral model of ensemble fiber responses to bi-phasic stimuli. The neural refractory effect is described using a Markov model for a noise-free pulse-train stimulus and a closed-form solution for the steady-state neural response is provided. For noise-modulated pulse-train stimuli, a recursive method using the conditional probability is utilized to track the neural responses to each successive pulse. A neural spike count rule has been presented for both threshold and intensity discrimination under the assumption that auditory perception occurs via integration over a relatively long time period (Bruce et al., 1999). An alternative approach originates from the hypothesis of the multilook model (Viemeister and Wakefield, 1991), which argues that auditory perception is based on several shorter time integrations and may suggest an NofM model for prediction of pulse-train threshold. This motivates analyzing the neural response to each individual pulse within a pulse train, which is considered to be the brief look. A logarithmic rule is hypothesized for pulse-train threshold. Predictions from the multilook model are shown to match trends in psychophysical data for noise-free stimuli that are not always matched by the long-time integration rule. Theoretical predictions indicate that threshold decreases as noise variance increases. Theoretical models of the neural response to pulse-train stimuli not only reduce calculational overhead but also facilitate utilization of signal detection theory and are easily extended to multichannel psychophysical tasks.

  19. Application of a Physiologically Based Pharmacokinetic Model to Predict OATP1B1-Related Variability in Pharmacodynamics of Rosuvastatin

    PubMed Central

    Rose, R H; Neuhoff, S; Abduljalil, K; Chetty, M; Rostami-Hodjegan, A; Jamei, M

    2014-01-01

    Typically, pharmacokinetic–pharmacodynamic (PK/PD) models use plasma concentration as the input that drives the PD model. However, interindividual variability in uptake transporter activity can lead to variable drug concentrations in plasma without discernible impact on the effect site organ concentration. A physiologically based PK/PD model for rosuvastatin was developed that linked the predicted liver concentration to the PD response model. The model was then applied to predict the effect of genotype-dependent uptake by the organic anion-transporting polypeptide 1B1 (OATP1B1) transporter on the pharmacological response. The area under the plasma concentration–time curve (AUC0–∞) was increased by 63 and 111% for the c.521TC and c.521CC genotypes vs. the c.521TT genotype, while the PD response remained relatively unchanged (3.1 and 5.8% reduction). Using local concentration at the effect site to drive the PD response enabled us to explain the observed disconnect between the effect of the OATP1B1 c521T>C polymorphism on rosuvastatin plasma concentration and the cholesterol synthesis response. PMID:25006781

  20. Application of a baseflow filter for evaluating model structure suitability of the IHACRES CMD

    NASA Astrophysics Data System (ADS)

    Kim, H. S.

    2015-02-01

    The main objective of this study was to assess the predictive uncertainty from the rainfall-runoff model structure coupling a conceptual module (non-linear module) with a metric transfer function module (linear module). The methodology was primarily based on the comparison between the outputs of the rainfall-runoff model and those from an alternative model approach. An alternative model approach was used to minimise uncertainties arising from data and the model structure. A baseflow filter was adopted to better understand deficiencies in the forms of the rainfall-runoff model by avoiding the uncertainties related to data and the model structure. The predictive uncertainty from the model structure was investigated for representative groups of catchments having similar hydrological response characteristics in the upper Murrumbidgee Catchment. In the assessment of model structure suitability, the consistency (or variability) of catchment response over time and space in model performance and parameter values has been investigated to detect problems related to the temporal and spatial variability of the model accuracy. The predictive error caused by model uncertainty was evaluated through analysis of the variability of the model performance and parameters. A graphical comparison of model residuals, effective rainfall estimates and hydrographs was used to determine a model's ability related to systematic model deviation between simulated and observed behaviours and general behavioural differences in the timing and magnitude of peak flows. The model's predictability was very sensitive to catchment response characteristics. The linear module performs reasonably well in the wetter catchments but has considerable difficulties when applied to the drier catchments where a hydrologic response is dominated by quick flow. The non-linear module has a potential limitation in its capacity to capture non-linear processes for converting observed rainfall into effective rainfall in both the wetter and drier catchments. The comparative study based on a better quantification of the accuracy and precision of hydrological modelling predictions yields a better understanding for the potential improvement of model deficiencies.

  1. Systems biology as a conceptual framework for research in family medicine; use in predicting response to influenza vaccination.

    PubMed

    Majnarić-Trtica, Ljiljana; Vitale, Branko

    2011-10-01

    To introduce systems biology as a conceptual framework for research in family medicine, based on empirical data from a case study on the prediction of influenza vaccination outcomes. This concept is primarily oriented towards planning preventive interventions and includes systematic data recording, a multi-step research protocol and predictive modelling. Factors known to affect responses to influenza vaccination include older age, past exposure to influenza viruses, and chronic diseases; however, constructing useful prediction models remains a challenge, because of the need to identify health parameters that are appropriate for general use in modelling patients' responses. The sample consisted of 93 patients aged 50-89 years (median 69), with multiple medical conditions, who were vaccinated against influenza. Literature searches identified potentially predictive health-related parameters, including age, gender, diagnoses of the main chronic ageing diseases, anthropometric measures, and haematological and biochemical tests. By applying data mining algorithms, patterns were identified in the data set. Candidate health parameters, selected in this way, were then combined with information on past influenza virus exposure to build the prediction model using logistic regression. A highly significant prediction model was obtained, indicating that by using a systems biology approach it is possible to answer unresolved complex medical uncertainties. Adopting this systems biology approach can be expected to be useful in identifying the most appropriate target groups for other preventive programmes.

  2. Predicting beneficial effects of atomoxetine and citalopram on response inhibition in Parkinson's disease with clinical and neuroimaging measures

    PubMed Central

    Ye, Zheng; Rae, Charlotte L.; Nombela, Cristina; Ham, Timothy; Rittman, Timothy; Jones, Peter Simon; Rodríguez, Patricia Vázquez; Coyle‐Gilchrist, Ian; Regenthal, Ralf; Altena, Ellemarije; Housden, Charlotte R.; Maxwell, Helen; Sahakian, Barbara J.; Barker, Roger A.; Robbins, Trevor W.

    2016-01-01

    Abstract Recent studies indicate that selective noradrenergic (atomoxetine) and serotonergic (citalopram) reuptake inhibitors may improve response inhibition in selected patients with Parkinson's disease, restoring behavioral performance and brain activity. We reassessed the behavioral efficacy of these drugs in a larger cohort and developed predictive models to identify patient responders. We used a double‐blind randomized three‐way crossover design to investigate stopping efficiency in 34 patients with idiopathic Parkinson's disease after 40 mg atomoxetine, 30 mg citalopram, or placebo. Diffusion‐weighted and functional imaging measured microstructural properties and regional brain activations, respectively. We confirmed that Parkinson's disease impairs response inhibition. Overall, drug effects on response inhibition varied substantially across patients at both behavioral and brain activity levels. We therefore built binary classifiers with leave‐one‐out cross‐validation (LOOCV) to predict patients’ responses in terms of improved stopping efficiency. We identified two optimal models: (1) a “clinical” model that predicted the response of an individual patient with 77–79% accuracy for atomoxetine and citalopram, using clinically available information including age, cognitive status, and levodopa equivalent dose, and a simple diffusion‐weighted imaging scan; and (2) a “mechanistic” model that explained the behavioral response with 85% accuracy for each drug, using drug‐induced changes of brain activations in the striatum and presupplementary motor area from functional imaging. These data support growing evidence for the role of noradrenaline and serotonin in inhibitory control. Although noradrenergic and serotonergic drugs have highly variable effects in patients with Parkinson's disease, the individual patient's response to each drug can be predicted using a pattern of clinical and neuroimaging features. Hum Brain Mapp 37:1026–1037, 2016. © 2016 Wiley Periodicals, Inc. PMID:26757216

  3. Stall flutter analysis of propfans

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.

    1988-01-01

    Three semi-empirical aerodynamic stall models are compared with respect to their lift and moment hysteresis loop prediction, limit cycle behavior, easy implementation, and feasibility in developing the parameters required for stall flutter prediction of advanced turbines. For the comparison of aeroelastic response prediction including stall, a typical section model and a plate structural model are considered. The response analysis includes both plunging and pitching motions of the blades. In model A, a correction of the angle of attack is applied when the angle of attack exceeds the static stall angle. In model B, a synthesis procedure is used for angles of attack above static stall angles, and the time history effects are accounted for through the Wagner function.

  4. Model updating strategy for structures with localised nonlinearities using frequency response measurements

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Hill, Thomas L.; Neild, Simon A.; Shaw, Alexander D.; Haddad Khodaparast, Hamed; Friswell, Michael I.

    2018-02-01

    This paper proposes a model updating strategy for localised nonlinear structures. It utilises an initial finite-element (FE) model of the structure and primary harmonic response data taken from low and high amplitude excitations. The underlying linear part of the FE model is first updated using low-amplitude test data with established techniques. Then, using this linear FE model, the nonlinear elements are localised, characterised, and quantified with primary harmonic response data measured under stepped-sine or swept-sine excitations. Finally, the resulting model is validated by comparing the analytical predictions with both the measured responses used in the updating and with additional test data. The proposed strategy is applied to a clamped beam with a nonlinear mechanism and good agreements between the analytical predictions and measured responses are achieved. Discussions on issues of damping estimation and dealing with data from amplitude-varying force input in the updating process are also provided.

  5. Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits.

    PubMed

    Sperry, John S; Wang, Yujie; Wolfe, Brett T; Mackay, D Scott; Anderegg, William R L; McDowell, Nate G; Pockman, William T

    2016-11-01

    Ecosystem models have difficulty predicting plant drought responses, partially from uncertainty in the stomatal response to water deficits in soil and atmosphere. We evaluate a 'supply-demand' theory for water-limited stomatal behavior that avoids the typical scaffold of empirical response functions. The premise is that canopy water demand is regulated in proportion to threat to supply posed by xylem cavitation and soil drying. The theory was implemented in a trait-based soil-plant-atmosphere model. The model predicted canopy transpiration (E), canopy diffusive conductance (G), and canopy xylem pressure (P canopy ) from soil water potential (P soil ) and vapor pressure deficit (D). Modeled responses to D and P soil were consistent with empirical response functions, but controlling parameters were hydraulic traits rather than coefficients. Maximum hydraulic and diffusive conductances and vulnerability to loss in hydraulic conductance dictated stomatal sensitivity and hence the iso- to anisohydric spectrum of regulation. The model matched wide fluctuations in G and P canopy across nine data sets from seasonally dry tropical forest and piñon-juniper woodland with < 26% mean error. Promising initial performance suggests the theory could be useful in improving ecosystem models. Better understanding of the variation in hydraulic properties along the root-stem-leaf continuum will simplify parameterization. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. Injection-Molded Long-Fiber Thermoplastic Composites: From Process Modeling to Prediction of Mechanical Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Jin, Xiaoshi

    2013-12-18

    This article illustrates the predictive capabilities for long-fiber thermoplastic (LFT) composites that first simulate the injection molding of LFT structures by Autodesk® Simulation Moldflow® Insight (ASMI) to accurately predict fiber orientation and length distributions in these structures. After validating fiber orientation and length predictions against the experimental data, the predicted results are used by ASMI to compute distributions of elastic properties in the molded structures. In addition, local stress-strain responses and damage accumulation under tensile loading are predicted by an elastic-plastic damage model of EMTA-NLA, a nonlinear analysis tool implemented in ABAQUS® via user-subroutines using an incremental Eshelby-Mori-Tanaka approach. Predictedmore » stress-strain responses up to failure and damage accumulations are compared to the experimental results to validate the model.« less

  7. Personalized Cancer Medicine: An Organoid Approach.

    PubMed

    Aboulkheyr Es, Hamidreza; Montazeri, Leila; Aref, Amir Reza; Vosough, Massoud; Baharvand, Hossein

    2018-04-01

    Personalized cancer therapy applies specific treatments to each patient. Using personalized tumor models with similar characteristics to the original tumors may result in more accurate predictions of drug responses in patients. Tumor organoid models have several advantages over pre-existing models, including conserving the molecular and cellular composition of the original tumor. These advantages highlight the tremendous potential of tumor organoids in personalized cancer therapy, particularly preclinical drug screening and predicting patient responses to selected treatment regimens. Here, we highlight the advantages, challenges, and translational potential of tumor organoids in personalized cancer therapy and focus on gene-drug associations, drug response prediction, and treatment selection. Finally, we discuss how microfluidic technology can contribute to immunotherapy drug screening in tumor organoids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Spatial Prediction of Coxiella burnetii Outbreak Exposure via Notified Case Counts in a Dose-Response Model.

    PubMed

    Brooke, Russell J; Kretzschmar, Mirjam E E; Hackert, Volker; Hoebe, Christian J P A; Teunis, Peter F M; Waller, Lance A

    2017-01-01

    We develop a novel approach to study an outbreak of Q fever in 2009 in the Netherlands by combining a human dose-response model with geostatistics prediction to relate probability of infection and associated probability of illness to an effective dose of Coxiella burnetii. The spatial distribution of the 220 notified cases in the at-risk population are translated into a smooth spatial field of dose. Based on these symptomatic cases, the dose-response model predicts a median of 611 asymptomatic infections (95% range: 410, 1,084) for the 220 reported symptomatic cases in the at-risk population; 2.78 (95% range: 1.86, 4.93) asymptomatic infections for each reported case. The low attack rates observed during the outbreak range from (Equation is included in full-text article.)to (Equation is included in full-text article.). The estimated peak levels of exposure extend to the north-east from the point source with an increasing proportion of asymptomatic infections further from the source. Our work combines established methodology from model-based geostatistics and dose-response modeling allowing for a novel approach to study outbreaks. Unobserved infections and the spatially varying effective dose can be predicted using the flexible framework without assuming any underlying spatial structure of the outbreak process. Such predictions are important for targeting interventions during an outbreak, estimating future disease burden, and determining acceptable risk levels.

  9. Prediction of clinical response based on pharmacokinetic/pharmacodynamic models of 5-hydroxytryptamine reuptake inhibitors in mice

    PubMed Central

    Kreilgaard, M; Smith, D G; Brennum, L T; Sánchez, C

    2008-01-01

    Background and purpose: Bridging the gap between preclinical research and clinical trials is vital for drug development. Predicting clinically relevant steady-state drug concentrations (Css) in serum from preclinical animal models may facilitate this transition. Here we used a pharmacokinetic/pharmacodynamic (PK/PD) modelling approach to evaluate the predictive validity of 5-hydroxytryptamine (5-HT; serotonin) transporter (SERT) occupancy and 5-hydroxytryptophan (5-HTP)-potentiated behavioral syndrome induced by 5-HT reuptake inhibitor (SRI) antidepressants in mice. Experimental approach: Serum and whole brain drug concentrations, cortical SERT occupancy and 5-HTP-potentiated behavioral syndrome were measured over 6 h after a single subcutaneous injection of escitalopram, paroxetine or sertraline. [3H]2-(2-dimethylaminomethylphenylsulphanyl)-5-methyl-phenylamine ([3H]MADAM) was used to assess SERT occupancy. For PK/PD modelling, an effect-compartment model was applied to collapse the hysteresis and predict the steady-state relationship between drug exposure and PD response. Key results: The predicted Css for escitalopram, paroxetine and sertraline at 80% SERT occupancy in mice are 18 ng mL−1, 18 ng mL−1 and 24 ng mL−1, respectively, with corresponding responses in the 5-HTP behavioral model being between 20–40% of the maximum. Conclusions and implications: Therapeutically effective SERT occupancy for SRIs in depressed patients is approximately 80%, and the corresponding plasma Css are 6–21 ng mL−1, 21-95 ng mL−1 and 20–48 ng mL−1 for escitalopram, paroxetine and sertraline, respectively. Thus, PK/PD modelling using SERT occupancy and 5-HTP-potentiated behavioral syndrome as response markers in mice may be a useful tool to predict clinically relevant plasma Css values. PMID:18552871

  10. Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction.

    PubMed

    Patel, Meenal J; Andreescu, Carmen; Price, Julie C; Edelman, Kathryn L; Reynolds, Charles F; Aizenstein, Howard J

    2015-10-01

    Currently, depression diagnosis relies primarily on behavioral symptoms and signs, and treatment is guided by trial and error instead of evaluating associated underlying brain characteristics. Unlike past studies, we attempted to estimate accurate prediction models for late-life depression diagnosis and treatment response using multiple machine learning methods with inputs of multi-modal imaging and non-imaging whole brain and network-based features. Late-life depression patients (medicated post-recruitment) (n = 33) and older non-depressed individuals (n = 35) were recruited. Their demographics and cognitive ability scores were recorded, and brain characteristics were acquired using multi-modal magnetic resonance imaging pretreatment. Linear and nonlinear learning methods were tested for estimating accurate prediction models. A learning method called alternating decision trees estimated the most accurate prediction models for late-life depression diagnosis (87.27% accuracy) and treatment response (89.47% accuracy). The diagnosis model included measures of age, Mini-mental state examination score, and structural imaging (e.g. whole brain atrophy and global white mater hyperintensity burden). The treatment response model included measures of structural and functional connectivity. Combinations of multi-modal imaging and/or non-imaging measures may help better predict late-life depression diagnosis and treatment response. As a preliminary observation, we speculate that the results may also suggest that different underlying brain characteristics defined by multi-modal imaging measures-rather than region-based differences-are associated with depression versus depression recovery because to our knowledge this is the first depression study to accurately predict both using the same approach. These findings may help better understand late-life depression and identify preliminary steps toward personalized late-life depression treatment. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Modeling winter wheat phenological responses to water deficits in the Unified Plant Growth Model (UPGM) component of the spatially distributed Agricultural Ecosystem Services (AgES) model

    USDA-ARS?s Scientific Manuscript database

    Accurately predicting phenology in crop simulation models is critical for correctly simulating crop production. While extensive work in modeling phenology has focused on the temperature response function (resulting in robust phenology models), limited work on quantifying the phenological responses t...

  12. Response surface modeling for hot, humid air decontamination of materials contaminated with Bacillus anthracis ∆Sterne and Bacillus thuringiensis Al Hakam spores

    PubMed Central

    2014-01-01

    Response surface methodology using a face-centered cube design was used to describe and predict spore inactivation of Bacillus anthracis ∆Sterne and Bacillus thuringiensis Al Hakam spores after exposure of six spore-contaminated materials to hot, humid air. For each strain/material pair, an attempt was made to fit a first or second order model. All three independent predictor variables (temperature, relative humidity, and time) were significant in the models except that time was not significant for B. thuringiensis Al Hakam on nylon. Modeling was unsuccessful for wiring insulation and wet spores because there was complete spore inactivation in the majority of the experimental space. In cases where a predictive equation could be fit, response surface plots with time set to four days were generated. The survival of highly purified Bacillus spores can be predicted for most materials tested when given the settings for temperature, relative humidity, and time. These predictions were cross-checked with spore inactivation measurements. PMID:24949256

  13. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming.

    PubMed

    Cotto, Olivier; Wessely, Johannes; Georges, Damien; Klonner, Günther; Schmid, Max; Dullinger, Stefan; Thuiller, Wilfried; Guillaume, Frédéric

    2017-05-05

    Withstanding extinction while facing rapid climate change depends on a species' ability to track its ecological niche or to evolve a new one. Current methods that predict climate-driven species' range shifts use ecological modelling without eco-evolutionary dynamics. Here we present an eco-evolutionary forecasting framework that combines niche modelling with individual-based demographic and genetic simulations. Applying our approach to four endemic perennial plant species of the Austrian Alps, we show that accounting for eco-evolutionary dynamics when predicting species' responses to climate change is crucial. Perennial species persist in unsuitable habitats longer than predicted by niche modelling, causing delayed range losses; however, their evolutionary responses are constrained because long-lived adults produce increasingly maladapted offspring. Decreasing population size due to maladaptation occurs faster than the contraction of the species range, especially for the most abundant species. Monitoring of species' local abundance rather than their range may likely better inform on species' extinction risks under climate change.

  14. [Application of decision curve on evaluation of MRI predictive model for early assessing pathological complete response to neoadjuvant therapy in breast cancer].

    PubMed

    He, Y J; Li, X T; Fan, Z Q; Li, Y L; Cao, K; Sun, Y S; Ouyang, T

    2018-01-23

    Objective: To construct a dynamic enhanced MR based predictive model for early assessing pathological complete response (pCR) to neoadjuvant therapy in breast cancer, and to evaluate the clinical benefit of the model by using decision curve. Methods: From December 2005 to December 2007, 170 patients with breast cancer treated with neoadjuvant therapy were identified and their MR images before neoadjuvant therapy and at the end of the first cycle of neoadjuvant therapy were collected. Logistic regression model was used to detect independent factors for predicting pCR and construct the predictive model accordingly, then receiver operating characteristic (ROC) curve and decision curve were used to evaluate the predictive model. Results: ΔArea(max) and Δslope(max) were independent predictive factors for pCR, OR =0.942 (95% CI : 0.918-0.967) and 0.961 (95% CI : 0.940-0.987), respectively. The area under ROC curve (AUC) for the constructed model was 0.886 (95% CI : 0.820-0.951). Decision curve showed that in the range of the threshold probability above 0.4, the predictive model presented increased net benefit as the threshold probability increased. Conclusions: The constructed predictive model for pCR is of potential clinical value, with an AUC>0.85. Meanwhile, decision curve analysis indicates the constructed predictive model has net benefit from 3 to 8 percent in the likely range of probability threshold from 80% to 90%.

  15. The viscoelastic standard nonlinear solid model: predicting the response of the lumbar intervertebral disk to low-frequency vibrations.

    PubMed

    Groth, Kevin M; Granata, Kevin P

    2008-06-01

    Due to the mathematical complexity of current musculoskeletal spine models, there is a need for computationally efficient models of the intervertebral disk (IVD). The aim of this study is to develop a mathematical model that will adequately describe the motion of the IVD under axial cyclic loading as well as maintain computational efficiency for use in future musculoskeletal spine models. Several studies have successfully modeled the creep characteristics of the IVD using the three-parameter viscoelastic standard linear solid (SLS) model. However, when the SLS model is subjected to cyclic loading, it underestimates the load relaxation, the cyclic modulus, and the hysteresis of the human lumbar IVD. A viscoelastic standard nonlinear solid (SNS) model was used to predict the response of the human lumbar IVD subjected to low-frequency vibration. Nonlinear behavior of the SNS model was simulated by a strain-dependent elastic modulus on the SLS model. Parameters of the SNS model were estimated from experimental load deformation and stress-relaxation curves obtained from the literature. The SNS model was able to predict the cyclic modulus of the IVD at frequencies of 0.01 Hz, 0.1 Hz, and 1 Hz. Furthermore, the SNS model was able to quantitatively predict the load relaxation at a frequency of 0.01 Hz. However, model performance was unsatisfactory when predicting load relaxation and hysteresis at higher frequencies (0.1 Hz and 1 Hz). The SLS model of the lumbar IVD may require strain-dependent elastic and viscous behavior to represent the dynamic response to compressive strain.

  16. Multi-step rhodopsin inactivation schemes can account for the size variability of single photon responses in Limulus ventral photoreceptors

    PubMed Central

    1994-01-01

    Limulus ventral photoreceptors generate highly variable responses to the absorption of single photons. We have obtained data on the size distribution of these responses, derived the distribution predicted from simple transduction cascade models and compared the theory and data. In the simplest of models, the active state of the visual pigment (defined by its ability to activate G protein) is turned off in a single reaction. The output of such a cascade is predicted to be highly variable, largely because of stochastic variation in the number of G proteins activated. The exact distribution predicted is exponential, but we find that an exponential does not adequately account for the data. The data agree much better with the predictions of a cascade model in which the active state of the visual pigment is turned off by a multi-step process. PMID:8057085

  17. Predictive Multiple Model Switching Control with the Self-Organizing Map

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2000-01-01

    A predictive, multiple model control strategy is developed by extension of self-organizing map (SOM) local dynamic modeling of nonlinear autonomous systems to a control framework. Multiple SOMs collectively model the global response of a nonautonomous system to a finite set of representative prototype controls. Each SOM provides a codebook representation of the dynamics corresponding to a prototype control. Different dynamic regimes are organized into topological neighborhoods where the adjacent entries in the codebook represent the global minimization of a similarity metric. The SOM is additionally employed to identify the local dynamical regime, and consequently implements a switching scheme that selects the best available model for the applied control. SOM based linear models are used to predict the response to a larger family of control sequences which are clustered on the representative prototypes. The control sequence which corresponds to the prediction that best satisfies the requirements on the system output is applied as the external driving signal.

  18. Multi-time-scale heat transfer modeling of turbid tissues exposed to short-pulsed irradiations.

    PubMed

    Kim, Kyunghan; Guo, Zhixiong

    2007-05-01

    A combined hyperbolic radiation and conduction heat transfer model is developed to simulate multi-time-scale heat transfer in turbid tissues exposed to short-pulsed irradiations. An initial temperature response of a tissue to an ultrashort pulse irradiation is analyzed by the volume-average method in combination with the transient discrete ordinates method for modeling the ultrafast radiation heat transfer. This response is found to reach pseudo steady state within 1 ns for the considered tissues. The single pulse result is then utilized to obtain the temperature response to pulse train irradiation at the microsecond/millisecond time scales. After that, the temperature field is predicted by the hyperbolic heat conduction model which is solved by the MacCormack's scheme with error terms correction. Finally, the hyperbolic conduction is compared with the traditional parabolic heat diffusion model. It is found that the maximum local temperatures are larger in the hyperbolic prediction than the parabolic prediction. In the modeled dermis tissue, a 7% non-dimensional temperature increase is found. After about 10 thermal relaxation times, thermal waves fade away and the predictions between the hyperbolic and parabolic models are consistent.

  19. Novel biomarker-based model for the prediction of sorafenib response and overall survival in advanced hepatocellular carcinoma: a prospective cohort study.

    PubMed

    Kim, Hwi Young; Lee, Dong Hyeon; Lee, Jeong-Hoon; Cho, Young Youn; Cho, Eun Ju; Yu, Su Jong; Kim, Yoon Jun; Yoon, Jung-Hwan

    2018-03-20

    Prediction of the outcome of sorafenib therapy using biomarkers is an unmet clinical need in patients with advanced hepatocellular carcinoma (HCC). The aim was to develop and validate a biomarker-based model for predicting sorafenib response and overall survival (OS). This prospective cohort study included 124 consecutive HCC patients (44 with disease control, 80 with progression) with Child-Pugh class A liver function, who received sorafenib. Potential serum biomarkers (namely, hepatocyte growth factor [HGF], fibroblast growth factor [FGF], vascular endothelial growth factor receptor-1, CD117, and angiopoietin-2) were tested. After identifying independent predictors of tumor response, a risk scoring system for predicting OS was developed and 3-fold internal validation was conducted. A risk scoring system was developed with six covariates: etiology, platelet count, Barcelona Clinic Liver Cancer stage, protein induced by vitamin K absence-II, HGF, and FGF. When patients were stratified into low-risk (score ≤ 5), intermediate-risk (score 6), and high-risk (score ≥ 7) groups, the model provided good discriminant functions on tumor response (concordance [c]-index, 0.884) and 12-month survival (area under the curve [AUC], 0.825). The median OS was 19.0, 11.2, and 6.1 months in the low-, intermediate-, and high-risk group, respectively (P < 0.001). In internal validation, the model maintained good discriminant functions on tumor response (c-index, 0.825) and 12-month survival (AUC, 0.803), and good calibration functions (all P > 0.05 between expected and observed values). This new model including serum FGF and HGF showed good performance in predicting the response to sorafenib and survival in patients with advanced HCC.

  20. A Kinetic Model for Calcium Dynamics in RAW 264.7 Cells: 2. Knockdown Response and Long-Term Response

    PubMed Central

    Maurya, Mano Ram; Subramaniam, Shankar

    2007-01-01

    This article addresses how quantitative models such as the one proposed in the companion article can be used to study cellular network perturbations such as knockdowns and pharmacological perturbations in a predictive manner. Using the kinetic model for cytosolic calcium dynamics in RAW 264.7 cells developed in the companion article, the calcium response to complement 5a (C5a) for the knockdown of seven proteins (C5a receptor; G-β-2; G-α,i-2,3; regulator of G-protein signaling-10; G-protein coupled receptor kinase-2; phospholipase C β-3; arrestin) is predicted and validated against the data from the Alliance for Cellular Signaling. The knockdown responses provide insights into how altered expressions of important proteins in disease states result in intermediate measurable phenotypes. Long-term response and long-term dose response have also been predicted, providing insights into how the receptor desensitization, internalization, and recycle result in tolerance. Sensitivity analysis of long-term response shows that the mechanisms and parameters in the receptor recycle path are important for long-term calcium dynamics. PMID:17483189

  1. Predictions of psychophysical measurements for sinusoidal amplitude modulated (SAM) pulse-train stimuli from a stochastic model.

    PubMed

    Xu, Yifang; Collins, Leslie M

    2007-08-01

    Two approaches have been proposed to reduce the synchrony of the neural response to electrical stimuli in cochlear implants. One approach involves adding noise to the pulse-train stimulus, and the other is based on using a high-rate pulse-train carrier. Hypotheses regarding the efficacy of the two approaches can be tested using computational models of neural responsiveness prior to time-intensive psychophysical studies. In our previous work, we have used such models to examine the effects of noise on several psychophysical measures important to speech recognition. However, to date there has been no parallel analytic solution investigating the neural response to the high-rate pulse-train stimuli and their effect on psychophysical measures. This work investigates the properties of the neural response to high-rate pulse-train stimuli with amplitude modulated envelopes using a stochastic auditory nerve model. The statistics governing the neural response to each pulse are derived using a recursive method. The agreement between the theoretical predictions and model simulations is demonstrated for sinusoidal amplitude modulated (SAM) high rate pulse-train stimuli. With our approach, predicting the neural response in modern implant devices becomes tractable. Psychophysical measurements are also predicted using the stochastic auditory nerve model for SAM high-rate pulse-train stimuli. Changes in dynamic range (DR) and intensity discrimination are compared with that observed for noise-modulated pulse-train stimuli. Modulation frequency discrimination is also studied as a function of stimulus level and pulse rate. Results suggest that high rate carriers may positively impact such psychophysical measures.

  2. Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Paul R., E-mail: pwest@stemina.co; Weir, April M.; Smith, Alan M.

    2010-08-15

    Teratogens, substances that may cause fetal abnormalities during development, are responsible for a significant number of birth defects. Animal models used to predict teratogenicity often do not faithfully correlate to human response. Here, we seek to develop a more predictive developmental toxicity model based on an in vitro method that utilizes both human embryonic stem (hES) cells and metabolomics to discover biomarkers of developmental toxicity. We developed a method where hES cells were dosed with several drugs of known teratogenicity then LC-MS analysis was performed to measure changes in abundance levels of small molecules in response to drug dosing. Statisticalmore » analysis was employed to select for specific mass features that can provide a prediction of the developmental toxicity of a substance. These molecules can serve as biomarkers of developmental toxicity, leading to better prediction of teratogenicity. In particular, our work shows a correlation between teratogenicity and changes of greater than 10% in the ratio of arginine to asymmetric dimethylarginine levels. In addition, this study resulted in the establishment of a predictive model based on the most informative mass features. This model was subsequently tested for its predictive accuracy in two blinded studies using eight drugs of known teratogenicity, where it correctly predicted the teratogenicity for seven of the eight drugs. Thus, our initial data shows that this platform is a robust alternative to animal and other in vitro models for the prediction of the developmental toxicity of chemicals that may also provide invaluable information about the underlying biochemical pathways.« less

  3. A Combined Pharmacokinetic and Radiologic Assessment of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Predicts Response to Chemoradiation in Locally Advanced Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semple, Scott; Harry, Vanessa N. MRCOG.; Parkin, David E.

    2009-10-01

    Purpose: To investigate the combination of pharmacokinetic and radiologic assessment of dynamic contrast-enhanced magnetic resonance imaging (MRI) as an early response indicator in women receiving chemoradiation for advanced cervical cancer. Methods and Materials: Twenty women with locally advanced cervical cancer were included in a prospective cohort study. Dynamic contrast-enhanced MRI was carried out before chemoradiation, after 2 weeks of therapy, and at the conclusion of therapy using a 1.5-T MRI scanner. Radiologic assessment of uptake parameters was obtained from resultant intensity curves. Pharmacokinetic analysis using a multicompartment model was also performed. General linear modeling was used to combine radiologic andmore » pharmacokinetic parameters and correlated with eventual response as determined by change in MRI tumor size and conventional clinical response. A subgroup of 11 women underwent repeat pretherapy MRI to test pharmacokinetic reproducibility. Results: Pretherapy radiologic parameters and pharmacokinetic K{sup trans} correlated with response (p < 0.01). General linear modeling demonstrated that a combination of radiologic and pharmacokinetic assessments before therapy was able to predict more than 88% of variance of response. Reproducibility of pharmacokinetic modeling was confirmed. Conclusions: A combination of radiologic assessment with pharmacokinetic modeling applied to dynamic MRI before the start of chemoradiation improves the predictive power of either by more than 20%. The potential improvements in therapy response prediction using this type of combined analysis of dynamic contrast-enhanced MRI may aid in the development of more individualized, effective therapy regimens for this patient group.« less

  4. Linearized blade row compression component model. Stability and frequency response analysis of a J85-3 compressor

    NASA Technical Reports Server (NTRS)

    Tesch, W. A.; Moszee, R. H.; Steenken, W. G.

    1976-01-01

    NASA developed stability and frequency response analysis techniques were applied to a dynamic blade row compression component stability model to provide a more economic approach to surge line and frequency response determination than that provided by time-dependent methods. This blade row model was linearized and the Jacobian matrix was formed. The clean-inlet-flow stability characteristics of the compressors of two J85-13 engines were predicted by applying the alternate Routh-Hurwitz stability criterion to the Jacobian matrix. The predicted surge line agreed with the clean-inlet-flow surge line predicted by the time-dependent method to a high degree except for one engine at 94% corrected speed. No satisfactory explanation of this discrepancy was found. The frequency response of the linearized system was determined by evaluating its Laplace transfer function. The results of the linearized-frequency-response analysis agree with the time-dependent results when the time-dependent inlet total-pressure and exit-flow function amplitude boundary conditions are less than 1 percent and 3 percent, respectively. The stability analysis technique was extended to a two-sector parallel compressor model with and without interstage crossflow and predictions were carried out for total-pressure distortion extents of 180 deg, 90 deg, 60 deg, and 30 deg.

  5. Computer modeling of fan-exit-splitter spacing effects on F100 response to distortion

    NASA Technical Reports Server (NTRS)

    Shaw, M.; Murdoch, R. W.

    1982-01-01

    The distortion response of the F100(3) engine was effected by the fan exit splitter configuration. The sensitivity for a proximate splitter fan is calculated to be slightly greater than a remote splitter configuration with identical airfoils. Predicted response was based upon a multiple segment parallel compressor Model modified to include a bypass ratio representation that effects the performance characteristics of the last rotor and intermediate case struts. The predicted distortion response required an accurate definition of row pre- and post-stall undistorted operation.

  6. Stem mortality in surface fires: Part II, experimental methods for characterizing the thermal response of tree stems to heating by fires

    Treesearch

    D. M. Jimenez; B. W. Butler; J. Reardon

    2003-01-01

    Current methods for predicting fire-induced plant mortality in shrubs and trees are largely empirical. These methods are not readily linked to duff burning, soil heating, and surface fire behavior models. In response to the need for a physics-based model of this process, a detailed model for predicting the temperature distribution through a tree stem as a function of...

  7. Predictive Feedback Can Account for Biphasic Responses in the Lateral Geniculate Nucleus

    PubMed Central

    Jehee, Janneke F. M.; Ballard, Dana H.

    2009-01-01

    Biphasic neural response properties, where the optimal stimulus for driving a neural response changes from one stimulus pattern to the opposite stimulus pattern over short periods of time, have been described in several visual areas, including lateral geniculate nucleus (LGN), primary visual cortex (V1), and middle temporal area (MT). We describe a hierarchical model of predictive coding and simulations that capture these temporal variations in neuronal response properties. We focus on the LGN-V1 circuit and find that after training on natural images the model exhibits the brain's LGN-V1 connectivity structure, in which the structure of V1 receptive fields is linked to the spatial alignment and properties of center-surround cells in the LGN. In addition, the spatio-temporal response profile of LGN model neurons is biphasic in structure, resembling the biphasic response structure of neurons in cat LGN. Moreover, the model displays a specific pattern of influence of feedback, where LGN receptive fields that are aligned over a simple cell receptive field zone of the same polarity decrease their responses while neurons of opposite polarity increase their responses with feedback. This phase-reversed pattern of influence was recently observed in neurophysiology. These results corroborate the idea that predictive feedback is a general coding strategy in the brain. PMID:19412529

  8. Drug Intervention Response Predictions with PARADIGM (DIRPP) identifies drug resistant cancer cell lines and pathway mechanisms of resistance.

    PubMed

    Brubaker, Douglas; Difeo, Analisa; Chen, Yanwen; Pearl, Taylor; Zhai, Kaide; Bebek, Gurkan; Chance, Mark; Barnholtz-Sloan, Jill

    2014-01-01

    The revolution in sequencing techniques in the past decade has provided an extensive picture of the molecular mechanisms behind complex diseases such as cancer. The Cancer Cell Line Encyclopedia (CCLE) and The Cancer Genome Project (CGP) have provided an unprecedented opportunity to examine copy number, gene expression, and mutational information for over 1000 cell lines of multiple tumor types alongside IC50 values for over 150 different drugs and drug related compounds. We present a novel pipeline called DIRPP, Drug Intervention Response Predictions with PARADIGM7, which predicts a cell line's response to a drug intervention from molecular data. PARADIGM (Pathway Recognition Algorithm using Data Integration on Genomic Models) is a probabilistic graphical model used to infer patient specific genetic activity by integrating copy number and gene expression data into a factor graph model of a cellular network. We evaluated the performance of DIRPP on endometrial, ovarian, and breast cancer related cell lines from the CCLE and CGP for nine drugs. The pipeline is sensitive enough to predict the response of a cell line with accuracy and precision across datasets as high as 80 and 88% respectively. We then classify drugs by the specific pathway mechanisms governing drug response. This classification allows us to compare drugs by cellular response mechanisms rather than simply by their specific gene targets. This pipeline represents a novel approach for predicting clinical drug response and generating novel candidates for drug repurposing and repositioning.

  9. Multi-scale Modeling of the Impact Response of a Strain Rate Sensitive High-Manganese Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Önal, Orkun; Ozmenci, Cemre; Canadinc, Demircan

    2014-09-01

    A multi-scale modeling approach was applied to predict the impact response of a strain rate sensitive high-manganese austenitic steel. The roles of texture, geometry and strain rate sensitivity were successfully taken into account all at once by coupling crystal plasticity and finite element (FE) analysis. Specifically, crystal plasticity was utilized to obtain the multi-axial flow rule at different strain rates based on the experimental deformation response under uniaxial tensile loading. The equivalent stress - equivalent strain response was then incorporated into the FE model for the sake of a more representative hardening rule under impact loading. The current results demonstrate that reliable predictions can be obtained by proper coupling of crystal plasticity and FE analysis even if the experimental flow rule of the material is acquired under uniaxial loading and at moderate strain rates that are significantly slower than those attained during impact loading. Furthermore, the current findings also demonstrate the need for an experiment-based multi-scale modeling approach for the sake of reliable predictions of the impact response.

  10. Posterior Predictive Checks for Conditional Independence between Response Time and Accuracy

    ERIC Educational Resources Information Center

    Bolsinova, Maria; Tijmstra, Jesper

    2016-01-01

    Conditional independence (CI) between response time and response accuracy is a fundamental assumption of many joint models for time and accuracy used in educational measurement. In this study, posterior predictive checks (PPCs) are proposed for testing this assumption. These PPCs are based on three discrepancy measures reflecting different…

  11. Prediction of lung function response for populations exposed to a wide range of ozone conditions

    EPA Science Inventory

    Abstract Context: A human exposure-response (E-R) model that has previously been demonstrated to accurately predict population mean FEV1 response to ozone exposure has been proposed as the foundation for future risk assessments for ambient ozone. Objective: Fit the origi...

  12. A coupled aero-structural model of a HAWT blade for dynamic load and response prediction in time-domain for health monitoring applications

    NASA Astrophysics Data System (ADS)

    Sauder, Heather Scot

    To reach the high standards set for renewable energy production in the US and around the globe, wind turbines with taller towers and longer blades are being designed for onshore and offshore wind developments to capture more energy from higher winds aloft and a larger rotor diameter. However, amongst all the wind turbine components wind turbine blades are still the most prone to damage. Given that wind turbine blades experience dynamic loads from multiple sources, there is a need to be able to predict the real-time load, stress distribution and response of the blade in a given wind environment for damage, flutter and fatigue life predictions. Current methods of wind-induced response analysis for wind turbine blades use approximations that are not suitable for wind turbine blade airfoils which are thick, and therefore lead to inaccurate life predictions. Additionally, a time-domain formulation can prove to be especially advantageous for predicting aerodynamic loads on wind turbine blades since they operate in a turbulent atmospheric boundary layer. This will help to analyze the blades on wind turbines that operate individually or in a farm setting where they experience high turbulence in the wake of another wind turbine. A time-domain formulation is also useful for examining the effects of gusty winds that are transient in nature like in gust fronts, thunderstorms or extreme events such as hurricanes, microbursts, and tornadoes. Time-domain methods present the opportunity for real-time health monitoring strategies that can easily be used with finite element methods for prediction of fatigue life or onset of flutter instability. The purpose of the proposed work is to develop a robust computational model to predict the loads, stresses and response of a wind turbine blade in operating and extreme wind conditions. The model can be used to inform health monitoring strategies for preventative maintenance and provide a realistic number of stress cycles that the blade will experience for fatigue life prediction procedures. To fill in the gaps in the existing knowledge and meet the overall goal of the proposed research, the following objectives were accomplished: (a) improve the existing aeroelastic (motion- and turbulence-induced) load models to predict the response of wind turbine blade airfoils to understand its behavior in turbulent wind, (b) understand, model and predict the response of wind turbine blades in transient or gusty wind, boundary-layer wind and incoherent wind over the span of the blade, (c) understand the effects of aero-structural coupling between the along-wind, cross-wind and torsional vibrations, and finally (d) develop a computational tool using the improved time-domain load model to predict the real-time load, stress distribution and response of a given wind turbine blade during operating and parked conditions subject to a specific wind environment both in a short and long term for damage, flutter and fatigue life predictions.

  13. Improvements to a Response Surface Thermal Model for Orion Mated to the International Space Station

    NASA Technical Reports Server (NTRS)

    Miller, StephenW.; Walker, William Q.

    2011-01-01

    This study is an extension of previous work to evaluate the applicability of Design of Experiments (DOE)/Response Surface Methodology to on-orbit thermal analysis. The goal was to determine if the methodology could produce a Response Surface Equation (RSE) that predicted the thermal model temperature results within +/-10 F. An RSE is a polynomial expression that can then be used to predict temperatures for a defined range of factor combinations. Based on suggestions received from the previous work, this study used a model with simpler geometry, considered polynomials up to fifth order, and evaluated orbital temperature variations to establish a minimum and maximum temperature for each component. A simplified Outer Mold Line (OML) thermal model of the Orion spacecraft was used in this study. The factors chosen were the vehicle's Yaw, Pitch, and Roll (defining the on-orbit attitude), the Beta angle (restricted to positive beta angles from 0 to 75), and the environmental constants (varying from cold to hot). All factors were normalized from their native ranges to a non-dimensional range from -1.0 to 1.0. Twenty-three components from the OML were chosen and the minimum and maximum orbital temperatures were calculated for each to produce forty-six responses for the DOE model. A customized DOE case matrix of 145 analysis cases was developed which used analysis points at the factor corners, mid-points, and center. From this data set, RSE s were developed which consisted of cubic, quartic, and fifth order polynomials. The results presented are for the fifth order RSE. The RSE results were then evaluated for agreement with the analytical model predictions to produce a +/-3(sigma) error band. Forty of the 46 responses had a +/-3(sigma) value of 10 F or less. Encouraged by this initial success, two additional sets of verification cases were selected. One contained 20 cases, the other 50 cases. These cases were evaluated both with the fifth order RSE and with the analytical model. For the maximum temperature predictions, 12 of the 23 components had all predictions within +/-10 F and 17 were within +/-20 F. For the minimum temperature predictions, only 4 of the 23 components (the four radiator temperatures), were within the 10 F goal. The maximum temperature RSEs were then run through 59,049 screening cases. The RSE predictions were then filtered to find 55 cases that produced the hottest temperatures. These 55 cases were then analyzed using the thermal model and the results compared against the RSE predictions. As noted earlier, 12 of the 23 responses were within +/-10 F at 17 within +/-20 F. These results demonstrate that if properly formulated, an RSE can provide a reliable, fast temperature prediction. Despite this progress, additional work is needed to determine why the minimum temperatures responses and 6 of the hot temperature responses did not produce reliable RSEs. Recommend focus areas are the model itself (arithmetic vs. diffusion nodes) and seeking consultations with statistical application experts.

  14. The DoE method as an efficient tool for modeling the behavior of monocrystalline Si-PV module

    NASA Astrophysics Data System (ADS)

    Kessaissia, Fatma Zohra; Zegaoui, Abdallah; Boutoubat, Mohamed; Allouache, Hadj; Aillerie, Michel; Charles, Jean-Pierre

    2018-05-01

    The objective of this paper is to apply the Design of Experiments (DoE) method to study and to obtain a predictive model of any marketed monocrystalline photovoltaic (mc-PV) module. This technique allows us to have a mathematical model that represents the predicted responses depending upon input factors and experimental data. Therefore, the DoE model for characterization and modeling of mc-PV module behavior can be obtained by just performing a set of experimental trials. The DoE model of the mc-PV panel evaluates the predictive maximum power, as a function of irradiation and temperature in a bounded domain of study for inputs. For the mc-PV panel, the predictive model for both one level and two levels were developed taking into account both influences of the main effect and the interactive effects on the considered factors. The DoE method is then implemented by developing a code under Matlab software. The code allows us to simulate, characterize, and validate the predictive model of the mc-PV panel. The calculated results were compared to the experimental data, errors were estimated, and an accurate validation of the predictive models was evaluated by the surface response. Finally, we conclude that the predictive models reproduce the experimental trials and are defined within a good accuracy.

  15. The Impact of Truth Surrogate Variance on Quality Assessment/Assurance in Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2016-01-01

    Minimum data volume requirements for wind tunnel testing are reviewed and shown to depend on error tolerance, response model complexity, random error variance in the measurement environment, and maximum acceptable levels of inference error risk. Distinctions are made between such related concepts as quality assurance and quality assessment in response surface modeling, as well as between precision and accuracy. Earlier research on the scaling of wind tunnel tests is extended to account for variance in the truth surrogates used at confirmation sites in the design space to validate proposed response models. A model adequacy metric is presented that represents the fraction of the design space within which model predictions can be expected to satisfy prescribed quality specifications. The impact of inference error on the assessment of response model residuals is reviewed. The number of sites where reasonably well-fitted response models actually predict inadequately is shown to be considerably less than the number of sites where residuals are out of tolerance. The significance of such inference error effects on common response model assessment strategies is examined.

  16. Modeling and predicting vegetation response of western USA grasslands, shrublands, and deserts to climate change (Chapter 1)

    Treesearch

    Megan M. Friggens; Marcus V. Warwell; Jeanne C. Chambers; Stanley G. Kitchen

    2012-01-01

    Experimental research and species distribution modeling predict large changes in the distributions of species and vegetation types in the Interior West due to climate change. Species’ responses will depend not only on their physiological tolerances but also on their phenology, establishment properties, biotic interactions, and capacity to evolve and migrate. Because...

  17. A shock absorber model for structure-borne noise analyses

    NASA Astrophysics Data System (ADS)

    Benaziz, Marouane; Nacivet, Samuel; Thouverez, Fabrice

    2015-08-01

    Shock absorbers are often responsible for undesirable structure-borne noise in cars. The early numerical prediction of this noise in the automobile development process can save time and money and yet remains a challenge for industry. In this paper, a new approach to predicting shock absorber structure-borne noise is proposed; it consists in modelling the shock absorber and including the main nonlinear phenomena responsible for discontinuities in the response. The model set forth herein features: compressible fluid behaviour, nonlinear flow rate-pressure relations, valve mechanical equations and rubber mounts. The piston, base valve and complete shock absorber model are compared with experimental results. Sensitivity of the shock absorber response is evaluated and the most important parameters are classified. The response envelope is also computed. This shock absorber model is able to accurately reproduce local nonlinear phenomena and improves our state of knowledge on potential noise sources within the shock absorber.

  18. 2018 update to the HIV-TRePS system: the development of new computational models to predict HIV treatment outcomes, with or without a genotype, with enhanced usability for low-income settings.

    PubMed

    Revell, Andrew D; Wang, Dechao; Perez-Elias, Maria-Jesus; Wood, Robin; Cogill, Dolphina; Tempelman, Hugo; Hamers, Raph L; Reiss, Peter; van Sighem, Ard I; Rehm, Catherine A; Pozniak, Anton; Montaner, Julio S G; Lane, H Clifford; Larder, Brendan A

    2018-06-08

    Optimizing antiretroviral drug combination on an individual basis can be challenging, particularly in settings with limited access to drugs and genotypic resistance testing. Here we describe our latest computational models to predict treatment responses, with or without a genotype, and compare their predictive accuracy with that of genotyping. Random forest models were trained to predict the probability of virological response to a new therapy introduced following virological failure using up to 50 000 treatment change episodes (TCEs) without a genotype and 18 000 TCEs including genotypes. Independent data sets were used to evaluate the models. This study tested the effects on model accuracy of relaxing the baseline data timing windows, the use of a new filter to exclude probable non-adherent cases and the addition of maraviroc, tipranavir and elvitegravir to the system. The no-genotype models achieved area under the receiver operator characteristic curve (AUC) values of 0.82 and 0.81 using the standard and relaxed baseline data windows, respectively. The genotype models achieved AUC values of 0.86 with the new non-adherence filter and 0.84 without. Both sets of models were significantly more accurate than genotyping with rules-based interpretation, which achieved AUC values of only 0.55-0.63, and were marginally more accurate than previous models. The models were able to identify alternative regimens that were predicted to be effective for the vast majority of cases in which the new regimen prescribed in the clinic failed. These latest global models predict treatment responses accurately even without a genotype and have the potential to help optimize therapy, particularly in resource-limited settings.

  19. Virtual Institute of Microbial Stress and Survival: Deduction of Stress Response Pathways in Metal and Radionuclide Reducing Microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2004-04-17

    The projects application goals are to: (1) To understand bacterial stress-response to the unique stressors in metal/radionuclide contamination sites; (2) To turn this understanding into a quantitative, data-driven model for exploring policies for natural and biostimulatory bioremediation; (3) To implement proposed policies in the field and compare results to model predictions; and (4) Close the experimental/computation cycle by using discrepancies between models and predictions to drive new measurements and construction of new models. The projects science goals are to: (1) Compare physiological and molecular response of three target microorganisms to environmental perturbation; (2) Deduce the underlying regulatory pathways that controlmore » these responses through analysis of phenotype, functional genomic, and molecular interaction data; (3) Use differences in the cellular responses among the target organisms to understand niche specific adaptations of the stress and metal reduction pathways; (4) From this analysis derive an understanding of the mechanisms of pathway evolution in the environment; and (5) Ultimately, derive dynamical models for the control of these pathways to predict how natural stimulation can optimize growth and metal reduction efficiency at field sites.« less

  20. Nonlinear Visco-Elastic Response of Composites via Micro-Mechanical Models

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Sridharan, Srinivasan

    2005-01-01

    Micro-mechanical models for a study of nonlinear visco-elastic response of composite laminae are developed and their performance compared. A single integral constitutive law proposed by Schapery and subsequently generalized to multi-axial states of stress is utilized in the study for the matrix material. This is used in conjunction with a computationally facile scheme in which hereditary strains are computed using a recursive relation suggested by Henriksen. Composite response is studied using two competing micro-models, viz. a simplified Square Cell Model (SSCM) and a Finite Element based self-consistent Cylindrical Model (FECM). The algorithm is developed assuming that the material response computations are carried out in a module attached to a general purpose finite element program used for composite structural analysis. It is shown that the SSCM as used in investigations of material nonlinearity can involve significant errors in the prediction of transverse Young's modulus and shear modulus. The errors in the elastic strains thus predicted are of the same order of magnitude as the creep strains accruing due to visco-elasticity. The FECM on the other hand does appear to perform better both in the prediction of elastic constants and the study of creep response.

  1. Plant water potential improves prediction of empirical stomatal models.

    PubMed

    Anderegg, William R L; Wolf, Adam; Arango-Velez, Adriana; Choat, Brendan; Chmura, Daniel J; Jansen, Steven; Kolb, Thomas; Li, Shan; Meinzer, Frederick; Pita, Pilar; Resco de Dios, Víctor; Sperry, John S; Wolfe, Brett T; Pacala, Stephen

    2017-01-01

    Climate change is expected to lead to increases in drought frequency and severity, with deleterious effects on many ecosystems. Stomatal responses to changing environmental conditions form the backbone of all ecosystem models, but are based on empirical relationships and are not well-tested during drought conditions. Here, we use a dataset of 34 woody plant species spanning global forest biomes to examine the effect of leaf water potential on stomatal conductance and test the predictive accuracy of three major stomatal models and a recently proposed model. We find that current leaf-level empirical models have consistent biases of over-prediction of stomatal conductance during dry conditions, particularly at low soil water potentials. Furthermore, the recently proposed stomatal conductance model yields increases in predictive capability compared to current models, and with particular improvement during drought conditions. Our results reveal that including stomatal sensitivity to declining water potential and consequent impairment of plant water transport will improve predictions during drought conditions and show that many biomes contain a diversity of plant stomatal strategies that range from risky to conservative stomatal regulation during water stress. Such improvements in stomatal simulation are greatly needed to help unravel and predict the response of ecosystems to future climate extremes.

  2. A Simulation Framework for Battery Cell Impact Safety Modeling Using LS-DYNA

    DOE PAGES

    Marcicki, James; Zhu, Min; Bartlett, Alexander; ...

    2017-02-04

    The development process of electrified vehicles can benefit significantly from computer-aided engineering tools that predict themultiphysics response of batteries during abusive events. A coupled structural, electrical, electrochemical, and thermal model framework has been developed within the commercially available LS-DYNA software. The finite element model leverages a three-dimensional mesh structure that fully resolves the unit cell components. The mechanical solver predicts the distributed stress and strain response with failure thresholds leading to the onset of an internal short circuit. In this implementation, an arbitrary compressive strain criterion is applied locally to each unit cell. A spatially distributed equivalent circuit model providesmore » an empirical representation of the electrochemical responsewith minimal computational complexity.The thermalmodel provides state information to index the electrical model parameters, while simultaneously accepting irreversible and reversible sources of heat generation. The spatially distributed models of the electrical and thermal dynamics allow for the localization of current density and corresponding temperature response. The ability to predict the distributed thermal response of the cell as its stored energy is completely discharged through the short circuit enables an engineering safety assessment. A parametric analysis of an exemplary model is used to demonstrate the simulation capabilities.« less

  3. On-Line, Self-Learning, Predictive Tool for Determining Payload Thermal Response

    NASA Technical Reports Server (NTRS)

    Jen, Chian-Li; Tilwick, Leon

    2000-01-01

    This paper will present the results of a joint ManTech / Goddard R&D effort, currently under way, to develop and test a computer based, on-line, predictive simulation model for use by facility operators to predict the thermal response of a payload during thermal vacuum testing. Thermal response was identified as an area that could benefit from the algorithms developed by Dr. Jeri for complex computer simulations. Most thermal vacuum test setups are unique since no two payloads have the same thermal properties. This requires that the operators depend on their past experiences to conduct the test which requires time for them to learn how the payload responds while at the same time limiting any risk of exceeding hot or cold temperature limits. The predictive tool being developed is intended to be used with the new Thermal Vacuum Data System (TVDS) developed at Goddard for the Thermal Vacuum Test Operations group. This model can learn the thermal response of the payload by reading a few data points from the TVDS, accepting the payload's current temperature as the initial condition for prediction. The model can then be used as a predictive tool to estimate the future payload temperatures according to a predetermined shroud temperature profile. If the error of prediction is too big, the model can be asked to re-learn the new situation on-line in real-time and give a new prediction. Based on some preliminary tests, we feel this predictive model can forecast the payload temperature of the entire test cycle within 5 degrees Celsius after it has learned 3 times during the beginning of the test. The tool will allow the operator to play "what-if' experiments to decide what is his best shroud temperature set-point control strategy. This tool will save money by minimizing guess work and optimizing transitions as well as making the testing process safer and easier to conduct.

  4. Parental feeding practices predict authoritative, authoritarian, and permissive parenting styles.

    PubMed

    Hubbs-Tait, Laura; Kennedy, Tay Seacord; Page, Melanie C; Topham, Glade L; Harrist, Amanda W

    2008-07-01

    Our goal was to identify how parental feeding practices from the nutrition literature link to general parenting styles from the child development literature to understand how to target parenting practices to increase effectiveness of interventions. Stand-alone parental feeding practices could be targeted independently. However, parental feeding practices linked to parenting styles require interventions treating underlying family dynamics as a whole. To predict parenting styles from feeding practices and to test three hypotheses: restriction and pressure to eat are positively related whereas responsibility, monitoring, modeling, and encouraging are negatively related to an authoritarian parenting style; responsibility, monitoring, modeling, and encouraging are positively related whereas restriction and pressure to eat are negatively related to an authoritative parenting style; a permissive parenting style is negatively linked with all six feeding practices. Baseline data of a randomized-controlled intervention study. Two hundred thirty-nine parents (93.5% mothers) of first-grade children (134 boys, 105 girls) enrolled in rural public schools. Parental responses to encouraging and modeling questionnaires and the Child Feeding Questionnaire, as well as parenting styles measured by the Parenting Styles and Dimensions Questionnaire. Correlation and regression analyses. Feeding practices explained 21%, 15%, and 8% of the variance in authoritative, authoritarian, and permissive parenting, respectively. Restriction, pressure to eat, and monitoring (negative) significantly predicted an authoritarian style (Hypothesis 1); responsibility, restriction (negative), monitoring, and modeling predicted an authoritative style (Hypothesis 2); and modeling (negative) and restriction significantly predicted a permissive style (Hypothesis 3). Parental feeding practices with young children predict general parenting styles. Interventions that fail to address underlying parenting styles are not likely to be successful.

  5. Negative affective spillover from daily events predicts early response to cognitive therapy for depression.

    PubMed

    Cohen, Lawrence H; Gunthert, Kathleen C; Butler, Andrew C; Parrish, Brendt P; Wenze, Susan J; Beck, Judith S

    2008-12-01

    This study evaluated the predictive role of depressed outpatients' (N = 62) affective reactivity to daily stressors in their rates of improvement in cognitive therapy (CT). For 1 week before treatment, patients completed nightly electronic diaries that assessed daily stressors and negative affect (NA). The authors used multilevel modeling to compute each patient's within-day relationship between daily stressors and daily NA (within-day reactivity), as well as the relationship between daily stressors and next-day NA (next-day reactivity; affective spillover). In growth model analyses, the authors evaluated the predictive role of patients' NA reactivity in their early (Sessions 1-4) and late (Sessions 5-12) response to CT. Within-day NA reactivity did not predict early or late response to CT. However, next-day reactivity predicted early response to CT, such that patients who had greater NA spillover in response to negative events had a slower rate of symptom change during the first 4 sessions. Affective spillover did not influence later response to CT. The findings suggest that depressed patients who have difficulty bouncing back the next day from their NA reactions to a relative increase in daily negative events will respond less quickly to the early sessions of CT.

  6. Predicting Pilot Performance in Off-Nominal Conditions: A Meta-Analysis and Model Validation

    NASA Technical Reports Server (NTRS)

    Wickens, C.D.; Hooey, B.L.; Gore, B.F.; Sebok, A.; Koenecke, C.; Salud, E.

    2009-01-01

    Pilot response to off-nominal (very rare) events represents a critical component to understanding the safety of next generation airspace technology and procedures. We describe a meta-analysis designed to integrate the existing data regarding pilot accuracy of detecting rare, unexpected events such as runway incursions in realistic flight simulations. Thirty-five studies were identified and pilot responses were categorized by expectancy, event location, and whether the pilot was flying with a highway-in-the-sky display. All three dichotomies produced large, significant effects on event miss rate. A model of human attention and noticing, N-SEEV, was then used to predict event noticing performance as a function of event salience and expectancy, and retinal eccentricity. Eccentricity is predicted from steady state scanning by the SEEV model of attention allocation. The model was used to predict miss rates for the expectancy, location and highway-in-the-sky (HITS) effects identified in the meta-analysis. The correlation between model-predicted results and data from the meta-analysis was 0.72.

  7. Prediction of thermal conductivity of polyvinylpyrrolidone (PVP) electrospun nanocomposite fibers using artificial neural network and prey-predator algorithm.

    PubMed

    Khan, Waseem S; Hamadneh, Nawaf N; Khan, Waqar A

    2017-01-01

    In this study, multilayer perception neural network (MLPNN) was employed to predict thermal conductivity of PVP electrospun nanocomposite fibers with multiwalled carbon nanotubes (MWCNTs) and Nickel Zinc ferrites [(Ni0.6Zn0.4) Fe2O4]. This is the second attempt on the application of MLPNN with prey predator algorithm for the prediction of thermal conductivity of PVP electrospun nanocomposite fibers. The prey predator algorithm was used to train the neural networks to find the best models. The best models have the minimal of sum squared error between the experimental testing data and the corresponding models results. The minimal error was found to be 0.0028 for MWCNTs model and 0.00199 for Ni-Zn ferrites model. The predicted artificial neural networks (ANNs) responses were analyzed statistically using z-test, correlation coefficient, and the error functions for both inclusions. The predicted ANN responses for PVP electrospun nanocomposite fibers were compared with the experimental data and were found in good agreement.

  8. Alcohol use among university students: Considering a positive deviance approach.

    PubMed

    Tucker, Maryanne; Harris, Gregory E

    2016-09-01

    Harmful alcohol consumption among university students continues to be a significant issue. This study examined whether variables identified in the positive deviance literature would predict responsible alcohol consumption among university students. Surveyed students were categorized into three groups: abstainers, responsible drinkers and binge drinkers. Multinomial logistic regression modelling was significant (χ(2) = 274.49, degrees of freedom = 24, p < .001), with several variables predicting group membership. While the model classification accuracy rate (i.e. 71.2%) exceeded the proportional by chance accuracy rate (i.e. 38.4%), providing further support for the model, the model itself best predicted binge drinker membership over the other two groups. © The Author(s) 2015.

  9. Prediction of the interior noise levels of high-speed propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Rennison, D. C.; Wilby, J. F.; Wilby, E. G.

    1980-01-01

    The theoretical basis for an analytical model developed to predict the interior noise levels of high-speed propeller-driven airplanes is presented. Particular emphasis is given to modeling the transmission of discrete tones through a fuselage element into a cavity, estimates for the mean and standard deviation of the acoustic power flow, the coupling between a non-homogeneous excitation and the fuselage vibration response, and the prediction of maximum interior noise levels. The model allows for convenient examination of the various roles of the excitation and fuselage structural characteristics on the fuselage vibration response and the interior noise levels, as is required for the design of model or prototype noise control validation tests.

  10. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Ordway, David O; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approx. 9 inches from the source) dominated by direct wave propagation, mid-field environment (approx. 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This report documents the outcome of the assessment.

  11. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading. [Appendices

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  12. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading: Appendices

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approx. 9 inches from the source) dominated by direct wave propagation, mid-field environment (approx. 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  13. Vibration Response Models of a Stiffened Aluminum Plate Excited by a Shaker

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.

    2008-01-01

    Numerical models of structural-acoustic interactions are of interest to aircraft designers and the space program. This paper describes a comparison between two energy finite element codes, a statistical energy analysis code, a structural finite element code, and the experimentally measured response of a stiffened aluminum plate excited by a shaker. Different methods for modeling the stiffeners and the power input from the shaker are discussed. The results show that the energy codes (energy finite element and statistical energy analysis) accurately predicted the measured mean square velocity of the plate. In addition, predictions from an energy finite element code had the best spatial correlation with measured velocities. However, predictions from a considerably simpler, single subsystem, statistical energy analysis model also correlated well with the spatial velocity distribution. The results highlight a need for further work to understand the relationship between modeling assumptions and the prediction results.

  14. A combined-slip predictive control of vehicle stability with experimental verification

    NASA Astrophysics Data System (ADS)

    Jalali, Milad; Hashemi, Ehsan; Khajepour, Amir; Chen, Shih-ken; Litkouhi, Bakhtiar

    2018-02-01

    In this paper, a model predictive vehicle stability controller is designed based on a combined-slip LuGre tyre model. Variations in the lateral tyre forces due to changes in tyre slip ratios are considered in the prediction model of the controller. It is observed that the proposed combined-slip controller takes advantage of the more accurate tyre model and can adjust tyre slip ratios based on lateral forces of the front axle. This results in an interesting closed-loop response that challenges the notion of braking only the wheels on one side of the vehicle in differential braking. The performance of the proposed controller is evaluated in software simulations and is compared to a similar pure-slip controller. Furthermore, experimental tests are conducted on a rear-wheel drive electric Chevrolet Equinox equipped with differential brakes to evaluate the closed-loop response of the model predictive control controller.

  15. Prediction of Response to Neoadjuvant Chemotherapy and Radiation Therapy with Baseline and Restaging 18F-FDG PET Imaging Biomarkers in Patients with Esophageal Cancer.

    PubMed

    Beukinga, Roelof J; Hulshoff, Jan Binne; Mul, Véronique E M; Noordzij, Walter; Kats-Ugurlu, Gursah; Slart, Riemer H J A; Plukker, John T M

    2018-06-01

    Purpose To assess the value of baseline and restaging fluorine 18 ( 18 F) fluorodeoxyglucose (FDG) positron emission tomography (PET) radiomics in predicting pathologic complete response to neoadjuvant chemotherapy and radiation therapy (NCRT) in patients with locally advanced esophageal cancer. Materials and Methods In this retrospective study, 73 patients with histologic analysis-confirmed T1/N1-3/M0 or T2-4a/N0-3/M0 esophageal cancer were treated with NCRT followed by surgery (Chemoradiotherapy for Esophageal Cancer followed by Surgery Study regimen) between October 2014 and August 2017. Clinical variables and radiomic features from baseline and restaging 18 F-FDG PET were selected by univariable logistic regression and least absolute shrinkage and selection operator. The selected variables were used to fit a multivariable logistic regression model, which was internally validated by using bootstrap resampling with 20 000 replicates. The performance of this model was compared with reference prediction models composed of maximum standardized uptake value metrics, clinical variables, and maximum standardized uptake value at baseline NCRT radiomic features. Outcome was defined as complete versus incomplete pathologic response (tumor regression grade 1 vs 2-5 according to the Mandard classification). Results Pathologic response was complete in 16 patients (21.9%) and incomplete in 57 patients (78.1%). A prediction model combining clinical T-stage and restaging NCRT (post-NCRT) joint maximum (quantifying image orderliness) yielded an optimism-corrected area under the receiver operating characteristics curve of 0.81. Post-NCRT joint maximum was replaceable with five other redundant post-NCRT radiomic features that provided equal model performance. All reference prediction models exhibited substantially lower discriminatory accuracy. Conclusion The combination of clinical T-staging and quantitative assessment of post-NCRT 18 F-FDG PET orderliness (joint maximum) provided high discriminatory accuracy in predicting pathologic complete response in patients with esophageal cancer. © RSNA, 2018 Online supplemental material is available for this article.

  16. Response surface models for effects of temperature and previous growth sodium chloride on growth kinetics of Salmonella typhimurium on cooked chicken breast.

    PubMed

    Oscar, T P

    1999-12-01

    Response surface models were developed and validated for effects of temperature (10 to 40 degrees C) and previous growth NaCl (0.5 to 4.5%) on lag time (lambda) and specific growth rate (mu) of Salmonella Typhimurium on cooked chicken breast. Growth curves for model development (n = 55) and model validation (n = 16) were fit to a two-phase linear growth model to obtain lambda and mu of Salmonella Typhimurium on cooked chicken breast. Response surface models for natural logarithm transformations of lambda and mu as a function of temperature and previous growth NaCl were obtained by regression analysis. Both lambda and mu of Salmonella Typhimurium were affected (P < 0.0001) by temperature but not by previous growth NaCl. Models were validated against data not used in their development. Mean absolute relative error of predictions (model accuracy) was 26.6% for lambda and 15.4% for mu. Median relative error of predictions (model bias) was 0.9% for lambda and 5.2% for mu. Results indicated that the models developed provided reliable predictions of lambda and mu of Salmonella Typhimurium on cooked chicken breast within the matrix of conditions modeled. In addition, results indicated that previous growth NaCl (0.5 to 4.5%) was not a major factor affecting subsequent growth kinetics of Salmonella Typhimurium on cooked chicken breast. Thus, inclusion of previous growth NaCl in predictive models may not significantly improve our ability to predict growth of Salmonella spp. on food subjected to temperature abuse.

  17. Dose-Response Calculator for ArcGIS

    USGS Publications Warehouse

    Hanser, Steven E.; Aldridge, Cameron L.; Leu, Matthias; Nielsen, Scott E.

    2011-01-01

    The Dose-Response Calculator for ArcGIS is a tool that extends the Environmental Systems Research Institute (ESRI) ArcGIS 10 Desktop application to aid with the visualization of relationships between two raster GIS datasets. A dose-response curve is a line graph commonly used in medical research to examine the effects of different dosage rates of a drug or chemical (for example, carcinogen) on an outcome of interest (for example, cell mutations) (Russell and others, 1982). Dose-response curves have recently been used in ecological studies to examine the influence of an explanatory dose variable (for example, percentage of habitat cover, distance to disturbance) on a predicted response (for example, survival, probability of occurrence, abundance) (Aldridge and others, 2008). These dose curves have been created by calculating the predicted response value from a statistical model at different levels of the explanatory dose variable while holding values of other explanatory variables constant. Curves (plots) developed using the Dose-Response Calculator overcome the need to hold variables constant by using values extracted from the predicted response surface of a spatially explicit statistical model fit in a GIS, which include the variation of all explanatory variables, to visualize the univariate response to the dose variable. Application of the Dose-Response Calculator can be extended beyond the assessment of statistical model predictions and may be used to visualize the relationship between any two raster GIS datasets (see example in tool instructions). This tool generates tabular data for use in further exploration of dose-response relationships and a graph of the dose-response curve.

  18. Population pharmacodynamic modelling of midazolam induced sedation in terminally ill adult patients

    PubMed Central

    de Winter, Brenda C. M.; Masman, Anniek D.; van Dijk, Monique; Baar, Frans P. M.; Tibboel, Dick; Koch, Birgit C. P.; van Gelder, Teun; Mathot, Ron A. A.

    2017-01-01

    Aims Midazolam is the drug of choice for palliative sedation and is titrated to achieve the desired level of sedation. A previous pharmacokinetic (PK) study showed that variability between patients could be partly explained by renal function and inflammatory status. The goal of this study was to combine this PK information with pharmacodynamic (PD) data, to evaluate the variability in response to midazolam and to find clinically relevant covariates that may predict PD response. Method A population PD analysis using nonlinear mixed effect models was performed with data from 43 terminally ill patients. PK profiles were predicted by a previously described PK model and depth of sedation was measured using the Ramsay sedation score. Patient and disease characteristics were evaluated as possible covariates. The final model was evaluated using a visual predictive check. Results The effect of midazolam on the sedation level was best described by a differential odds model including a baseline probability, Emax model and interindividual variability on the overall effect. The EC50 value was 68.7 μg l–1 for a Ramsay score of 3–5 and 117.1 μg l–1 for a Ramsay score of 6. Comedication with haloperidol was the only significant covariate. The visual predictive check of the final model showed good model predictability. Conclusion We were able to describe the clinical response to midazolam accurately. As expected, there was large variability in response to midazolam. The use of haloperidol was associated with a lower probability of sedation. This may be a result of confounding by indication, as haloperidol was used to treat delirium, and deliria has been linked to a more difficult sedation procedure. PMID:28960387

  19. Pharmacogenetics-based area-under-curve model can predict efficacy and adverse events from axitinib in individual patients with advanced renal cell carcinoma.

    PubMed

    Yamamoto, Yoshiaki; Tsunedomi, Ryouichi; Fujita, Yusuke; Otori, Toru; Ohba, Mitsuyoshi; Kawai, Yoshihisa; Hirata, Hiroshi; Matsumoto, Hiroaki; Haginaka, Jun; Suzuki, Shigeo; Dahiya, Rajvir; Hamamoto, Yoshihiko; Matsuyama, Kenji; Hazama, Shoichi; Nagano, Hiroaki; Matsuyama, Hideyasu

    2018-03-30

    We investigated the relationship between axitinib pharmacogenetics and clinical efficacy/adverse events in advanced renal cell carcinoma (RCC) and established a model to predict clinical efficacy and adverse events using pharmacokinetic and gene polymorphisms related to drug metabolism and efflux in a phase II trial. We prospectively evaluated the area under the plasma concentration-time curve (AUC) of axitinib, objective response rate, and adverse events in 44 consecutive advanced RCC patients treated with axitinib. To establish a model for predicting clinical efficacy and adverse events, polymorphisms in genes including ABC transporters ( ABCB1 and ABCG2 ), UGT1A , and OR2B11 were analyzed by whole-exome sequencing, Sanger sequencing, and DNA microarray. To validate this prediction model, calculated AUC by 6 gene polymorphisms was compared with actual AUC in 16 additional consecutive patients prospectively. Actual AUC significantly correlated with the objective response rate ( P = 0.0002) and adverse events (hand-foot syndrome, P = 0.0055; and hypothyroidism, P = 0.0381). Calculated AUC significantly correlated with actual AUC ( P < 0.0001), and correctly predicted objective response rate ( P = 0.0044) as well as adverse events ( P = 0.0191 and 0.0082, respectively). In the validation study, calculated AUC prior to axitinib treatment precisely predicted actual AUC after axitinib treatment ( P = 0.0066). Our pharmacogenetics-based AUC prediction model may determine the optimal initial dose of axitinib, and thus facilitate better treatment of patients with advanced RCC.

  20. Pharmacogenetics-based area-under-curve model can predict efficacy and adverse events from axitinib in individual patients with advanced renal cell carcinoma

    PubMed Central

    Yamamoto, Yoshiaki; Tsunedomi, Ryouichi; Fujita, Yusuke; Otori, Toru; Ohba, Mitsuyoshi; Kawai, Yoshihisa; Hirata, Hiroshi; Matsumoto, Hiroaki; Haginaka, Jun; Suzuki, Shigeo; Dahiya, Rajvir; Hamamoto, Yoshihiko; Matsuyama, Kenji; Hazama, Shoichi; Nagano, Hiroaki; Matsuyama, Hideyasu

    2018-01-01

    We investigated the relationship between axitinib pharmacogenetics and clinical efficacy/adverse events in advanced renal cell carcinoma (RCC) and established a model to predict clinical efficacy and adverse events using pharmacokinetic and gene polymorphisms related to drug metabolism and efflux in a phase II trial. We prospectively evaluated the area under the plasma concentration–time curve (AUC) of axitinib, objective response rate, and adverse events in 44 consecutive advanced RCC patients treated with axitinib. To establish a model for predicting clinical efficacy and adverse events, polymorphisms in genes including ABC transporters (ABCB1 and ABCG2), UGT1A, and OR2B11 were analyzed by whole-exome sequencing, Sanger sequencing, and DNA microarray. To validate this prediction model, calculated AUC by 6 gene polymorphisms was compared with actual AUC in 16 additional consecutive patients prospectively. Actual AUC significantly correlated with the objective response rate (P = 0.0002) and adverse events (hand-foot syndrome, P = 0.0055; and hypothyroidism, P = 0.0381). Calculated AUC significantly correlated with actual AUC (P < 0.0001), and correctly predicted objective response rate (P = 0.0044) as well as adverse events (P = 0.0191 and 0.0082, respectively). In the validation study, calculated AUC prior to axitinib treatment precisely predicted actual AUC after axitinib treatment (P = 0.0066). Our pharmacogenetics-based AUC prediction model may determine the optimal initial dose of axitinib, and thus facilitate better treatment of patients with advanced RCC. PMID:29682213

  1. Modeling and predicting community responses to events using cultural demographics

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger M.; Handley, James W.; Hicklen, Michael L.

    2007-04-01

    This paper describes a novel capability for modeling and predicting community responses to events (specifically military operations) related to demographics. Demographics in the form of words and/or numbers are used. As an example, State of Alabama annual demographic data for retail sales, auto registration, wholesale trade, shopping goods, and population were used; from which we determined a ranked estimate of the sensitivity of the demographic parameters on the cultural group response. Our algorithm and results are summarized in this paper.

  2. 2012 Workplace and Gender Relations Survey of Reserve Component Members: Statistical Methodology Report

    DTIC Science & Technology

    2012-09-01

    3,435 10,461 9.1 3.1 63 Unmarried with Children+ Unmarried without Children 439,495 0.01 10,350 43,870 10.1 2.2 64 Married with Children+ Married ...logistic regression model was used to predict the probability of eligibility for the survey (known eligibility vs . unknown eligibility). A second logistic...regression model was used to predict the probability of response among eligible sample members (complete response vs . non-response). CHAID (Chi

  3. Computational modeling of in vitro biological responses on polymethacrylate surfaces

    PubMed Central

    Ghosh, Jayeeta; Lewitus, Dan Y; Chandra, Prafulla; Joy, Abraham; Bushman, Jared; Knight, Doyle; Kohn, Joachim

    2011-01-01

    The objective of this research was to examine the capabilities of QSPR (Quantitative Structure Property Relationship) modeling to predict specific biological responses (fibrinogen adsorption, cell attachment and cell proliferation index) on thin films of different polymethacrylates. Using 33 commercially available monomers it is theoretically possible to construct a library of over 40,000 distinct polymer compositions. A subset of these polymers were synthesized and solvent cast surfaces were prepared in 96 well plates for the measurement of fibrinogen adsorption. NIH 3T3 cell attachment and proliferation index were measured on spin coated thin films of these polymers. Based on the experimental results of these polymers, separate models were built for homo-, co-, and terpolymers in the library with good correlation between experiment and predicted values. The ability to predict biological responses by simple QSPR models for large numbers of polymers has important implications in designing biomaterials for specific biological or medical applications. PMID:21779132

  4. Analytical modeling of intumescent coating thermal protection system in a JP-5 fuel fire environment

    NASA Technical Reports Server (NTRS)

    Clark, K. J.; Shimizu, A. B.; Suchsland, K. E.; Moyer, C. B.

    1974-01-01

    The thermochemical response of Coating 313 when exposed to a fuel fire environment was studied to provide a tool for predicting the reaction time. The existing Aerotherm Charring Material Thermal Response and Ablation (CMA) computer program was modified to treat swelling materials. The modified code is now designated Aerotherm Transient Response of Intumescing Materials (TRIM) code. In addition, thermophysical property data for Coating 313 were analyzed and reduced for use in the TRIM code. An input data sensitivity study was performed, and performance tests of Coating 313/steel substrate models were carried out. The end product is a reliable computational model, the TRIM code, which was thoroughly validated for Coating 313. The tasks reported include: generation of input data, development of swell model and implementation in TRIM code, sensitivity study, acquisition of experimental data, comparisons of predictions with data, and predictions with intermediate insulation.

  5. Inhibitory control in mind and brain 2.0: Blocked-input models of saccadic countermanding

    PubMed Central

    Logan, Gordon D.; Yamaguchi, Motonori; Schall, Jeffrey D.; Palmeri, Thomas J.

    2015-01-01

    The interactive race model of saccadic countermanding assumes that response inhibition results from an interaction between a go unit, identified with gaze-shifting neurons, and a stop unit, identified with gaze-holding neurons, in which activation of the stop unit inhibits the growth of activation in the go unit to prevent it from reaching threshold. The interactive race model accounts for behavioral data and predicts physiological data in monkeys performing the stop-signal task. We propose an alternative model that assumes that response inhibition results from blocking the input to the go unit. We show that the blocked-input model accounts for behavioral data as accurately as the original interactive race model and predicts aspects of the physiological data more accurately. We extend the models to address the steady-state fixation period before the go stimulus is presented and find that the blocked-input model fits better than the interactive race model. We consider a model in which fixation activity is boosted when a stop signal occurs and find that it fits as well as the blocked input model but predicts very high steady-state fixation activity after the response is inhibited. We discuss the alternative linking propositions that connect computational models to neural mechanisms, the lessons to be learned from model mimicry, and generalization from countermanding saccades to countermanding other kinds of responses. PMID:25706403

  6. Contrasted demographic responses facing future climate change in Southern Ocean seabirds.

    PubMed

    Barbraud, Christophe; Rivalan, Philippe; Inchausti, Pablo; Nevoux, Marie; Rolland, Virginie; Weimerskirch, Henri

    2011-01-01

    1. Recent climate change has affected a wide range of species, but predicting population responses to projected climate change using population dynamics theory and models remains challenging, and very few attempts have been made. The Southern Ocean sea surface temperature and sea ice extent are projected to warm and shrink as concentrations of atmospheric greenhouse gases increase, and several top predator species are affected by fluctuations in these oceanographic variables. 2. We compared and projected the population responses of three seabird species living in sub-tropical, sub-Antarctic and Antarctic biomes to predicted climate change over the next 50 years. Using stochastic population models we combined long-term demographic datasets and projections of sea surface temperature and sea ice extent for three different IPCC emission scenarios (from most to least severe: A1B, A2, B1) from general circulation models of Earth's climate. 3. We found that climate mostly affected the probability to breed successfully, and in one case adult survival. Interestingly, frequent nonlinear relationships in demographic responses to climate were detected. Models forced by future predicted climatic change provided contrasted population responses depending on the species considered. The northernmost distributed species was predicted to be little affected by a future warming of the Southern Ocean, whereas steep declines were projected for the more southerly distributed species due to sea surface temperature warming and decrease in sea ice extent. For the most southerly distributed species, the A1B and B1 emission scenarios were respectively the most and less damaging. For the two other species, population responses were similar for all emission scenarios. 4. This is among the first attempts to study the demographic responses for several populations with contrasted environmental conditions, which illustrates that investigating the effects of climate change on core population dynamics is feasible for different populations using a common methodological framework. Our approach was limited to single populations and have neglected population settlement in new favourable habitats or changes in inter-specific relations as a potential response to future climate change. Predictions may be enhanced by merging demographic population models and climatic envelope models. © 2010 The Authors. Journal compilation © 2010 British Ecological Society.

  7. Comparison of Damage Models for Predicting the Non-Linear Response of Laminates Under Matrix Dominated Loading Conditions

    NASA Technical Reports Server (NTRS)

    Schuecker, Clara; Davila, Carlos G.; Rose, Cheryl A.

    2010-01-01

    Five models for matrix damage in fiber reinforced laminates are evaluated for matrix-dominated loading conditions under plane stress and are compared both qualitatively and quantitatively. The emphasis of this study is on a comparison of the response of embedded plies subjected to a homogeneous stress state. Three of the models are specifically designed for modeling the non-linear response due to distributed matrix cracking under homogeneous loading, and also account for non-linear (shear) behavior prior to the onset of cracking. The remaining two models are localized damage models intended for predicting local failure at stress concentrations. The modeling approaches of distributed vs. localized cracking as well as the different formulations of damage initiation and damage progression are compared and discussed.

  8. The Economics of Root Distributions of Terrestrial Biomes in Response to Elevated CO2

    NASA Astrophysics Data System (ADS)

    Lu, M.; Hedin, L. O. O.

    2017-12-01

    Belowground root distributions of terrestrial biomes are central to understanding soil biogeochemical processes and land carbon sink. Yet models are thus far not able to predict root distributions across plant functional groups and major biomes, limiting our ability to predict the response of land systems to elevated CO2 concentration. Of particular concern is the apparent lack of stimulation of the aboveground carbon sink despite 30% increase of atmospheric CO2 over the past half-century, and despite the clear acceleration of the land carbon sink over the same period. This apparent discrepancy in land ecosystem response has led to the proposition that changes in belowground root dynamics might be responsible for the overlooked land sink. We here present a new modeling approach for predicting the response of root biomass and soil carbon storage to increased CO2. Our approach considers the first-principle mechanisms and tradeoffs by which plants and plant roots invest carbon to gain belowground resources, in collaboration with distinct root symbioses. We allow plants to locally compete for nutrients, with the ability to allocate biomass at different depths in the soil profile. We parameterized our model using an unprecedented global dataset of root traits, and validated our biome-level predictions with a recently updated global root biomass database. Our results support the idea that plants "dig deeper" when exposed to increased CO2, and we offer an economic-based mechanism for predicting the plant root response across soil conditions, plant functional groups and major biomes. Our model also recreates the observed responses across a range of free-air CO2 enrichment experiments, including a distinct response between plants associated with ectomycorrhizal and arbuscular mycorrhizal fungi. Most broadly, our findings suggest that roots may be increasingly important in the land carbon sink, and call for a greater effort to quantify belowground responses to elevated atmospheric CO2.

  9. Predicting switched-bias response from steady-state irradiations

    NASA Astrophysics Data System (ADS)

    Fleetwood, D. M.; Winokur, P. S.; Riewe, L. C.

    1990-12-01

    A novel semiempirical model of radiation-induced charge neutralization is presented. This model is combined with 12 heuristic guidelines derived from studies of oxide- and interface-trap charge (Delta Vot and Delta Vit) buildup and annealing to develop a method to predict MOS switched-bias response from steady-state irradiations, with no free parameters. For n-channel MOS devices, predictions of Delta Vot, Delta Vit, and mobility degradation differ from experimental values through irradiation by less than 30 percent in all cases considered. This is demonstrated for gate oxides with widely varying Delta Vot and Delta Vit and for parasitic field oxides. Preliminary results suggest that n-channel MOS Delta Vot annealing and Delta Vit buildup following switched-bias irradiation and through switched-bias annealing also may be predicted with less than 30 percent error. The p-channel MOS response at high frequencies is more difficult to predict.

  10. Analytical Finite Element Simulation Model for Structural Crashworthiness Prediction

    DOT National Transportation Integrated Search

    1974-02-01

    The analytical development and appropriate derivations are presented for a simulation model of vehicle crashworthiness prediction. Incremental equations governing the nonlinear elasto-plastic dynamic response of three-dimensional frame structures are...

  11. Predicting wetland plant community responses to proposed water-level-regulation plans for Lake Ontario: GIS-based modeling

    USGS Publications Warehouse

    Wilcox, D.A.; Xie, Y.

    2007-01-01

    Integrated, GIS-based, wetland predictive models were constructed to assist in predicting the responses of wetland plant communities to proposed new water-level regulation plans for Lake Ontario. The modeling exercise consisted of four major components: 1) building individual site wetland geometric models; 2) constructing generalized wetland geometric models representing specific types of wetlands (rectangle model for drowned river mouth wetlands, half ring model for open embayment wetlands, half ellipse model for protected embayment wetlands, and ellipse model for barrier beach wetlands); 3) assigning wetland plant profiles to the generalized wetland geometric models that identify associations between past flooding / dewatering events and the regulated water-level changes of a proposed water-level-regulation plan; and 4) predicting relevant proportions of wetland plant communities and the time durations during which they would be affected under proposed regulation plans. Based on this conceptual foundation, the predictive models were constructed using bathymetric and topographic wetland models and technical procedures operating on the platform of ArcGIS. An example of the model processes and outputs for the drowned river mouth wetland model using a test regulation plan illustrates the four components and, when compared against other test regulation plans, provided results that met ecological expectations. The model results were also compared to independent data collected by photointerpretation. Although data collections were not directly comparable, the predicted extent of meadow marsh in years in which photographs were taken was significantly correlated with extent of mapped meadow marsh in all but barrier beach wetlands. The predictive model for wetland plant communities provided valuable input into International Joint Commission deliberations on new regulation plans and was also incorporated into faunal predictive models used for that purpose.

  12. Digital filtering and model updating methods for improving the robustness of near-infrared multivariate calibrations.

    PubMed

    Kramer, Kirsten E; Small, Gary W

    2009-02-01

    Fourier transform near-infrared (NIR) transmission spectra are used for quantitative analysis of glucose for 17 sets of prediction data sampled as much as six months outside the timeframe of the corresponding calibration data. Aqueous samples containing physiological levels of glucose in a matrix of bovine serum albumin and triacetin are used to simulate clinical samples such as blood plasma. Background spectra of a single analyte-free matrix sample acquired during the instrumental warm-up period on the prediction day are used for calibration updating and for determining the optimal frequency response of a preprocessing infinite impulse response time-domain digital filter. By tuning the filter and the calibration model to the specific instrumental response associated with the prediction day, the calibration model is given enhanced ability to operate over time. This methodology is demonstrated in conjunction with partial least squares calibration models built with a spectral range of 4700-4300 cm(-1). By using a subset of the background spectra to evaluate the prediction performance of the updated model, projections can be made regarding the success of subsequent glucose predictions. If a threshold standard error of prediction (SEP) of 1.5 mM is used to establish successful model performance with the glucose samples, the corresponding threshold for the SEP of the background spectra is found to be 1.3 mM. For calibration updating in conjunction with digital filtering, SEP values of all 17 prediction sets collected over 3-178 days displaced from the calibration data are below 1.5 mM. In addition, the diagnostic based on the background spectra correctly assesses the prediction performance in 16 of the 17 cases.

  13. Predicting Drug Combination Index and Simulating the Network-Regulation Dynamics by Mathematical Modeling of Drug-Targeted EGFR-ERK Signaling Pathway

    NASA Astrophysics Data System (ADS)

    Huang, Lu; Jiang, Yuyang; Chen, Yuzong

    2017-01-01

    Synergistic drug combinations enable enhanced therapeutics. Their discovery typically involves the measurement and assessment of drug combination index (CI), which can be facilitated by the development and applications of in-silico CI predictive tools. In this work, we developed and tested the ability of a mathematical model of drug-targeted EGFR-ERK pathway in predicting CIs and in analyzing multiple synergistic drug combinations against observations. Our mathematical model was validated against the literature reported signaling, drug response dynamics, and EGFR-MEK drug combination effect. The predicted CIs and combination therapeutic effects of the EGFR-BRaf, BRaf-MEK, FTI-MEK, and FTI-BRaf inhibitor combinations showed consistent synergism. Our results suggest that existing pathway models may be potentially extended for developing drug-targeted pathway models to predict drug combination CI values, isobolograms, and drug-response surfaces as well as to analyze the dynamics of individual and combinations of drugs. With our model, the efficacy of potential drug combinations can be predicted. Our method complements the developed in-silico methods (e.g. the chemogenomic profile and the statistically-inferenced network models) by predicting drug combination effects from the perspectives of pathway dynamics using experimental or validated molecular kinetic constants, thereby facilitating the collective prediction of drug combination effects in diverse ranges of disease systems.

  14. An Empirical Correction Method for Improving off-Axes Response Prediction in Component Type Flight Mechanics Helicopter Models

    NASA Technical Reports Server (NTRS)

    Mansur, M. Hossein; Tischler, Mark B.

    1997-01-01

    Historically, component-type flight mechanics simulation models of helicopters have been unable to satisfactorily predict the roll response to pitch stick input and the pitch response to roll stick input off-axes responses. In the study presented here, simple first-order low-pass filtering of the elemental lift and drag forces was considered as a means of improving the correlation. The method was applied to a blade-element model of the AH-64 APache, and responses of the modified model were compared with flight data in hover and forward flight. Results indicate that significant improvement in the off-axes responses can be achieved in hover. In forward flight, however, the best correlation in the longitudinal and lateral off-axes responses required different values of the filter time constant for each axis. A compromise value was selected and was shown to result in good overall improvement in the off-axes responses. The paper describes both the method and the model used for its implementation, and presents results obtained at hover and in forward flight.

  15. A new framework for climate sensitivity and prediction: a modelling perspective

    NASA Astrophysics Data System (ADS)

    Ragone, Francesco; Lucarini, Valerio; Lunkeit, Frank

    2016-03-01

    The sensitivity of climate models to increasing CO2 concentration and the climate response at decadal time-scales are still major factors of uncertainty for the assessment of the long and short term effects of anthropogenic climate change. While the relative slow progress on these issues is partly due to the inherent inaccuracies of numerical climate models, this also hints at the need for stronger theoretical foundations to the problem of studying climate sensitivity and performing climate change predictions with numerical models. Here we demonstrate that it is possible to use Ruelle's response theory to predict the impact of an arbitrary CO2 forcing scenario on the global surface temperature of a general circulation model. Response theory puts the concept of climate sensitivity on firm theoretical grounds, and addresses rigorously the problem of predictability at different time-scales. Conceptually, these results show that performing climate change experiments with general circulation models is a well defined problem from a physical and mathematical point of view. Practically, these results show that considering one single CO2 forcing scenario is enough to construct operators able to predict the response of climatic observables to any other CO2 forcing scenario, without the need to perform additional numerical simulations. We also introduce a general relationship between climate sensitivity and climate response at different time scales, thus providing an explicit definition of the inertia of the system at different time scales. This technique allows also for studying systematically, for a large variety of forcing scenarios, the time horizon at which the climate change signal (in an ensemble sense) becomes statistically significant. While what we report here refers to the linear response, the general theory allows for treating nonlinear effects as well. These results pave the way for redesigning and interpreting climate change experiments from a radically new perspective.

  16. Statistical analysis of modeling error in structural dynamic systems

    NASA Technical Reports Server (NTRS)

    Hasselman, T. K.; Chrostowski, J. D.

    1990-01-01

    The paper presents a generic statistical model of the (total) modeling error for conventional space structures in their launch configuration. Modeling error is defined as the difference between analytical prediction and experimental measurement. It is represented by the differences between predicted and measured real eigenvalues and eigenvectors. Comparisons are made between pre-test and post-test models. Total modeling error is then subdivided into measurement error, experimental error and 'pure' modeling error, and comparisons made between measurement error and total modeling error. The generic statistical model presented in this paper is based on the first four global (primary structure) modes of four different structures belonging to the generic category of Conventional Space Structures (specifically excluding large truss-type space structures). As such, it may be used to evaluate the uncertainty of predicted mode shapes and frequencies, sinusoidal response, or the transient response of other structures belonging to the same generic category.

  17. Nomogram predicting response after chemoradiotherapy in rectal cancer using sequential PETCT imaging: a multicentric prospective study with external validation.

    PubMed

    van Stiphout, Ruud G P M; Valentini, Vincenzo; Buijsen, Jeroen; Lammering, Guido; Meldolesi, Elisa; van Soest, Johan; Leccisotti, Lucia; Giordano, Alessandro; Gambacorta, Maria A; Dekker, Andre; Lambin, Philippe

    2014-11-01

    To develop and externally validate a predictive model for pathologic complete response (pCR) for locally advanced rectal cancer (LARC) based on clinical features and early sequential (18)F-FDG PETCT imaging. Prospective data (i.a. THUNDER trial) were used to train (N=112, MAASTRO Clinic) and validate (N=78, Università Cattolica del S. Cuore) the model for pCR (ypT0N0). All patients received long-course chemoradiotherapy (CRT) and surgery. Clinical parameters were age, gender, clinical tumour (cT) stage and clinical nodal (cN) stage. PET parameters were SUVmax, SUVmean, metabolic tumour volume (MTV) and maximal tumour diameter, for which response indices between pre-treatment and intermediate scan were calculated. Using multivariate logistic regression, three probability groups for pCR were defined. The pCR rates were 21.4% (training) and 23.1% (validation). The selected predictive features for pCR were cT-stage, cN-stage, response index of SUVmean and maximal tumour diameter during treatment. The models' performances (AUC) were 0.78 (training) and 0.70 (validation). The high probability group for pCR resulted in 100% correct predictions for training and 67% for validation. The model is available on the website www.predictcancer.org. The developed predictive model for pCR is accurate and externally validated. This model may assist in treatment decisions during CRT to select complete responders for a wait-and-see policy, good responders for extra RT boost and bad responders for additional chemotherapy. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. Development of Response Spectral Ground Motion Prediction Equations from Empirical Models for Fourier Spectra and Duration of Ground Motion

    NASA Astrophysics Data System (ADS)

    Bora, S. S.; Scherbaum, F.; Kuehn, N. M.; Stafford, P.; Edwards, B.

    2014-12-01

    In a probabilistic seismic hazard assessment (PSHA) framework, it still remains a challenge to adjust ground motion prediction equations (GMPEs) for application in different seismological environments. In this context, this study presents a complete framework for the development of a response spectral GMPE easily adjustable to different seismological conditions; and which does not suffer from the technical problems associated with the adjustment in response spectral domain. Essentially, the approach consists of an empirical FAS (Fourier Amplitude Spectrum) model and a duration model for ground motion which are combined within the random vibration theory (RVT) framework to obtain the full response spectral ordinates. Additionally, FAS corresponding to individual acceleration records are extrapolated beyond the frequency range defined by the data using the stochastic FAS model, obtained by inversion as described in Edwards & Faeh, (2013). To that end, an empirical model for a duration, which is tuned to optimize the fit between RVT based and observed response spectral ordinate, at each oscillator frequency is derived. Although, the main motive of the presented approach was to address the adjustability issues of response spectral GMPEs; comparison, of median predicted response spectra with the other regional models indicate that presented approach can also be used as a stand-alone model. Besides that, a significantly lower aleatory variability (σ<0.5 in log units) in comparison to other regional models, at shorter periods brands it to a potentially viable alternative to the classical regression (on response spectral ordinates) based GMPEs for seismic hazard studies in the near future. The dataset used for the presented analysis is a subset of the recently compiled database RESORCE-2012 across Europe, Middle East and the Mediterranean region.

  19. Performance Comparison of Systemic Inflammatory Response Syndrome with Logistic Regression Models to Predict Sepsis in Neonates

    PubMed Central

    Thakur, Jyoti; Pahuja, Sharvan Kumar; Pahuja, Roop

    2017-01-01

    In 2005, an international pediatric sepsis consensus conference defined systemic inflammatory response syndrome (SIRS) for children <18 years of age, but excluded premature infants. In 2012, Hofer et al. investigated the predictive power of SIRS for term neonates. In this paper, we examined the accuracy of SIRS in predicting sepsis in neonates, irrespective of their gestational age (i.e., pre-term, term, and post-term). We also created two prediction models, named Model A and Model B, using binary logistic regression. Both models performed better than SIRS. We also developed an android application so that physicians can easily use Model A and Model B in real-world scenarios. The sensitivity, specificity, positive likelihood ratio (PLR) and negative likelihood ratio (NLR) in cases of SIRS were 16.15%, 95.53%, 3.61, and 0.88, respectively, whereas they were 29.17%, 97.82%, 13.36, and 0.72, respectively, in the case of Model A, and 31.25%, 97.30%, 11.56, and 0.71, respectively, in the case of Model B. All models were significant with p < 0.001. PMID:29257099

  20. An Integrative Model of Physiological Traits Can be Used to Predict Obstructive Sleep Apnea and Response to Non Positive Airway Pressure Therapy.

    PubMed

    Owens, Robert L; Edwards, Bradley A; Eckert, Danny J; Jordan, Amy S; Sands, Scott A; Malhotra, Atul; White, David P; Loring, Stephen H; Butler, James P; Wellman, Andrew

    2015-06-01

    Both anatomical and nonanatomical traits are important in obstructive sleep apnea (OSA) pathogenesis. We have previously described a model combining these traits, but have not determined its diagnostic accuracy to predict OSA. A valid model, and knowledge of the published effect sizes of trait manipulation, would also allow us to predict the number of patients with OSA who might be effectively treated without using positive airway pressure (PAP). Fifty-seven subjects with and without OSA underwent standard clinical and research sleep studies to measure OSA severity and the physiological traits important for OSA pathogenesis, respectively. The traits were incorporated into a physiological model to predict OSA. The model validity was determined by comparing the model prediction of OSA to the clinical diagnosis of OSA. The effect of various trait manipulations was then simulated to predict the proportion of patients treated by each intervention. The model had good sensitivity (80%) and specificity (100%) for predicting OSA. A single intervention on one trait would be predicted to treat OSA in approximately one quarter of all patients. Combination therapy with two interventions was predicted to treat OSA in ∼50% of patients. An integrative model of physiological traits can be used to predict population-wide and individual responses to non-PAP therapy. Many patients with OSA would be expected to be treated based on known trait manipulations, making a strong case for the importance of non-anatomical traits in OSA pathogenesis and the effectiveness of non-PAP therapies. © 2015 Associated Professional Sleep Societies, LLC.

  1. Modeling water yield response to forest cover changes in northern Minnesota

    Treesearch

    S.C. Bernath; E.S. Verry; K.N. Brooks; P.F. Ffolliott

    1982-01-01

    A water yield model (TIMWAT) has been developed to predict changes in water yield following changes in forest cover in northern Minnesota. Two versions of the model exist; one predicts changes in water yield as a function of gross precipitation and time after clearcutting. The second version predicts changes in water yield due to changes in above-ground biomass...

  2. Prediction modeling of physiological responses and human performance in the heat with application to space operations

    NASA Technical Reports Server (NTRS)

    Pandolf, Kent B.; Stroschein, Leander A.; Gonzalez, Richard R.; Sawka, Michael N.

    1994-01-01

    This institute has developed a comprehensive USARIEM heat strain model for predicting physiological responses and soldier performance in the heat which has been programmed for use by hand-held calculators, personal computers, and incorporated into the development of a heat strain decision aid. This model deals directly with five major inputs: the clothing worn, the physical work intensity, the state of heat acclimation, the ambient environment (air temperature, relative humidity, wind speed, and solar load), and the accepted heat casualty level. In addition to predicting rectal temperature, heart rate, and sweat loss given the above inputs, our model predicts the expected physical work/rest cycle, the maximum safe physical work time, the estimated recovery time from maximal physical work, and the drinking water requirements associated with each of these situations. This model provides heat injury risk management guidance based on thermal strain predictions from the user specified environmental conditions, soldier characteristics, clothing worn, and the physical work intensity. If heat transfer values for space operations' clothing are known, NASA can use this prediction model to help avoid undue heat strain in astronauts during space flight.

  3. Validation of Shoulder Response of Human Body Finite-Element Model (GHBMC) Under Whole Body Lateral Impact Condition.

    PubMed

    Park, Gwansik; Kim, Taewung; Panzer, Matthew B; Crandall, Jeff R

    2016-08-01

    In previous shoulder impact studies, the 50th-percentile male GHBMC human body finite-element model was shown to have good biofidelity regarding impact force, but under-predicted shoulder deflection by 80% compared to those observed in the experiment. The goal of this study was to validate the response of the GHBMC M50 model by focusing on three-dimensional shoulder kinematics under a whole-body lateral impact condition. Five modifications, focused on material properties and modeling techniques, were introduced into the model and a supplementary sensitivity analysis was done to determine the influence of each modification to the biomechanical response of the body. The modified model predicted substantially improved shoulder response and peak shoulder deflection within 10% of the observed experimental data, and showed good correlation in the scapula kinematics on sagittal and transverse planes. The improvement in the biofidelity of the shoulder region was mainly due to the modifications of material properties of muscle, the acromioclavicular joint, and the attachment region between the pectoralis major and ribs. Predictions of rib fracture and chest deflection were also improved because of these modifications.

  4. Individualized Prediction of Heat Stress in Firefighters: A Data-Driven Approach Using Classification and Regression Trees.

    PubMed

    Mani, Ashutosh; Rao, Marepalli; James, Kelley; Bhattacharya, Amit

    2015-01-01

    The purpose of this study was to explore data-driven models, based on decision trees, to develop practical and easy to use predictive models for early identification of firefighters who are likely to cross the threshold of hyperthermia during live-fire training. Predictive models were created for three consecutive live-fire training scenarios. The final predicted outcome was a categorical variable: will a firefighter cross the upper threshold of hyperthermia - Yes/No. Two tiers of models were built, one with and one without taking into account the outcome (whether a firefighter crossed hyperthermia or not) from the previous training scenario. First tier of models included age, baseline heart rate and core body temperature, body mass index, and duration of training scenario as predictors. The second tier of models included the outcome of the previous scenario in the prediction space, in addition to all the predictors from the first tier of models. Classification and regression trees were used independently for prediction. The response variable for the regression tree was the quantitative variable: core body temperature at the end of each scenario. The predicted quantitative variable from regression trees was compared to the upper threshold of hyperthermia (38°C) to predict whether a firefighter would enter hyperthermia. The performance of classification and regression tree models was satisfactory for the second (success rate = 79%) and third (success rate = 89%) training scenarios but not for the first (success rate = 43%). Data-driven models based on decision trees can be a useful tool for predicting physiological response without modeling the underlying physiological systems. Early prediction of heat stress coupled with proactive interventions, such as pre-cooling, can help reduce heat stress in firefighters.

  5. Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment

    NASA Astrophysics Data System (ADS)

    Wang, Guiling

    2005-12-01

    This study examines the impact of greenhouse gas warming on soil moisture based on predictions of 15 global climate models by comparing the after-stabilization climate in the SRESA1b experiment with the pre-industrial control climate. The models are consistent in predicting summer dryness and winter wetness in only part of the northern middle and high latitudes. Slightly over half of the models predict year-round wetness in central Eurasia and/or year-round dryness in Siberia and mid-latitude Northeast Asia. One explanation is offered that relates such lack of seasonality to the carryover effect of soil moisture storage from season to season. In the tropics and subtropics, a decrease of soil moisture is the dominant response. The models are especially consistent in predicting drier soil over the southwest North America, Central America, the Mediterranean, Australia, and the South Africa in all seasons, and over much of the Amazon and West Africa in the June July August (JJA) season and the Asian monsoon region in the December January February (DJF) season. Since the only major areas of future wetness predicted with a high level of model consistency are part of the northern middle and high latitudes during the non-growing season, it is suggested that greenhouse gas warming will cause a worldwide agricultural drought. Over regions where there is considerable consistency among the analyzed models in predicting the sign of soil moisture changes, there is a wide range of magnitudes of the soil moisture response, indicating a high degree of model dependency in terrestrial hydrological sensitivity. A major part of the inter-model differences in the sensitivity of soil moisture response are attributable to differences in land surface parameterization.

  6. Predicting reasoning from memory.

    PubMed

    Heit, Evan; Hayes, Brett K

    2011-02-01

    In an effort to assess the relations between reasoning and memory, in 8 experiments, the authors examined how well responses on an inductive reasoning task are predicted from responses on a recognition memory task for the same picture stimuli. Across several experimental manipulations, such as varying study time, presentation frequency, and the presence of stimuli from other categories, there was a high correlation between reasoning and memory responses (average r = .87), and these manipulations showed similar effects on the 2 tasks. The results point to common mechanisms underlying inductive reasoning and recognition memory abilities. A mathematical model, GEN-EX (generalization from examples), derived from exemplar models of categorization, is presented, which predicts both reasoning and memory responses from pairwise similarities among the stimuli, allowing for additional influences of subtyping and deterministic responding. (c) 2010 APA, all rights reserved.

  7. Mouse Models as Predictors of Human Responses: Evolutionary Medicine.

    PubMed

    Uhl, Elizabeth W; Warner, Natalie J

    Mice offer a number of advantages and are extensively used to model human diseases and drug responses. Selective breeding and genetic manipulation of mice have made many different genotypes and phenotypes available for research. However, in many cases, mouse models have failed to be predictive. Important sources of the prediction problem have been the failure to consider the evolutionary basis for species differences, especially in drug metabolism, and disease definitions that do not reflect the complexity of gene expression underlying disease phenotypes. Incorporating evolutionary insights into mouse models allow for unique opportunities to characterize the effects of diet, different gene expression profiles, and microbiomics underlying human drug responses and disease phenotypes.

  8. Modeling the poroelastic response to megathrust earthquakes: A look at the 2012 Mw 7.6 Costa Rican event

    NASA Astrophysics Data System (ADS)

    McCormack, Kimberly A.; Hesse, Marc A.

    2018-04-01

    We model the subsurface hydrologic response to the 7.6 Mw subduction zone earthquake that occurred on the plate interface beneath the Nicoya peninsula in Costa Rica on September 5, 2012. The regional-scale poroelastic model of the overlying plate integrates seismologic, geodetic and hydrologic data sets to predict the post-seismic poroelastic response. A representative two-dimensional model shows that thrust earthquakes with a slip width less than a third of their depth produce complex multi-lobed pressure perturbations in the shallow subsurface. This leads to multiple poroelastic relaxation timescales that may overlap with the longer viscoelastic timescales. In the three-dimensional model, the complex slip distribution of 2012 Nicoya event and its small width to depth ratio lead to a pore pressure distribution comprising multiple trench parallel ridges of high and low pressure. This leads to complex groundwater flow patterns, non-monotonic variations in predicted well water levels, and poroelastic relaxation on multiple time scales. The model also predicts significant tectonically driven submarine groundwater discharge off-shore. In the weeks following the earthquake, the predicted net submarine groundwater discharge in the study area increases, creating a 100 fold increase in net discharge relative to topography-driven flow over the first 30 days. Our model suggests the hydrological response on land is more complex than typically acknowledged in tectonic studies. This may complicate the interpretation of transient post-seismic surface deformations. Combined tectonic-hydrological observation networks have the potential to reduce such ambiguities.

  9. Mathematics as a Conduit for Translational Research in Post-Traumatic Osteoarthritis

    PubMed Central

    Ayati, Bruce P.; Kapitanov, Georgi I.; Coleman, Mitchell C.; Anderson, Donald D.; Martin, James A.

    2016-01-01

    Biomathematical models offer a powerful method of clarifying complex temporal interactions and the relationships among multiple variables in a system. We present a coupled in silico biomathematical model of articular cartilage degeneration in response to impact and/or aberrant loading such as would be associated with injury to an articular joint. The model incorporates fundamental biological and mechanical information obtained from explant and small animal studies to predict post-traumatic osteoarthritis (PTOA) progression, with an eye toward eventual application in human patients. In this sense, we refer to the mathematics as a “conduit of translation”. The new in silico framework presented in this paper involves a biomathematical model for the cellular and biochemical response to strains computed using finite element analysis. The model predicts qualitative responses presently, utilizing system parameter values largely taken from the literature. To contribute to accurate predictions, models need to be accurately parameterized with values that are based on solid science. We discuss a parameter identification protocol that will enable us to make increasingly accurate predictions of PTOA progression using additional data from smaller scale explant and small animal assays as they become available. By distilling the data from the explant and animal assays into parameters for biomathematical models, mathematics can translate experimental data to clinically relevant knowledge. PMID:27653021

  10. Prediction of response of aircraft panels subjected to acoustic and thermal loads

    NASA Technical Reports Server (NTRS)

    Mei, Chuh

    1992-01-01

    The primary effort of this research project has been focused on the development of analytical methods for the prediction of random response of structural panels subjected to combined and intense acoustic and thermal loads. The accomplishments on various acoustic fatigue research activities are described first, then followed by publications and theses. Topics covered include: transverse shear deformation; finite element models of vibrating composite laminates; large deflection vibration modeling; finite element analysis of thermal buckling; and prediction of three dimensional duct using boundary element method.

  11. Predicting exposure-response associations of ambient particulate matter with mortality in 73 Chinese cities.

    PubMed

    Madaniyazi, Lina; Guo, Yuming; Chen, Renjie; Kan, Haidong; Tong, Shilu

    2016-01-01

    Estimating the burden of mortality associated with particulates requires knowledge of exposure-response associations. However, the evidence on exposure-response associations is limited in many cities, especially in developing countries. In this study, we predicted associations of particulates smaller than 10 μm in aerodynamic diameter (PM10) with mortality in 73 Chinese cities. The meta-regression model was used to test and quantify which city-specific characteristics contributed significantly to the heterogeneity of PM10-mortality associations for 16 Chinese cities. Then, those city-specific characteristics with statistically significant regression coefficients were treated as independent variables to build multivariate meta-regression models. The model with the best fitness was used to predict PM10-mortality associations in 73 Chinese cities in 2010. Mean temperature, PM10 concentration and green space per capita could best explain the heterogeneity in PM10-mortality associations. Based on city-specific characteristics, we were able to develop multivariate meta-regression models to predict associations between air pollutants and health outcomes reasonably well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Micromechanics of brain white matter tissue: A fiber-reinforced hyperelastic model using embedded element technique.

    PubMed

    Yousefsani, Seyed Abdolmajid; Shamloo, Amir; Farahmand, Farzam

    2018-04-01

    A transverse-plane hyperelastic micromechanical model of brain white matter tissue was developed using the embedded element technique (EET). The model consisted of a histology-informed probabilistic distribution of axonal fibers embedded within an extracellular matrix, both described using the generalized Ogden hyperelastic material model. A correcting method, based on the strain energy density function, was formulated to resolve the stiffness redundancy problem of the EET in large deformation regime. The model was then used to predict the homogenized tissue behavior and the associated localized responses of the axonal fibers under quasi-static, transverse, large deformations. Results indicated that with a sufficiently large representative volume element (RVE) and fine mesh, the statistically randomized microstructure implemented in the RVE exhibits directional independency in transverse plane, and the model predictions for the overall and local tissue responses, characterized by the normalized strain energy density and Cauchy and von Mises stresses, are independent from the modeling parameters. Comparison of the responses of the probabilistic model with that of a simple uniform RVE revealed that only the first one is capable of representing the localized behavior of the tissue constituents. The validity test of the model predictions for the corona radiata against experimental data from the literature indicated a very close agreement. In comparison with the conventional direct meshing method, the model provided almost the same results after correcting the stiffness redundancy, however, with much less computational cost and facilitated geometrical modeling, meshing, and boundary conditions imposing. It was concluded that the EET can be used effectively for detailed probabilistic micromechanical modeling of the white matter in order to provide more accurate predictions for the axonal responses, which are of great importance when simulating the brain trauma or tumor growth. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. A Biomathematical Model of Pneumococcal Lung Infection and Antibiotic Treatment in Mice.

    PubMed

    Schirm, Sibylle; Ahnert, Peter; Wienhold, Sandra; Mueller-Redetzky, Holger; Nouailles-Kursar, Geraldine; Loeffler, Markus; Witzenrath, Martin; Scholz, Markus

    2016-01-01

    Pneumonia is considered to be one of the leading causes of death worldwide. The outcome depends on both, proper antibiotic treatment and the effectivity of the immune response of the host. However, due to the complexity of the immunologic cascade initiated during infection, the latter cannot be predicted easily. We construct a biomathematical model of the murine immune response during infection with pneumococcus aiming at predicting the outcome of antibiotic treatment. The model consists of a number of non-linear ordinary differential equations describing dynamics of pneumococcal population, the inflammatory cytokine IL-6, neutrophils and macrophages fighting the infection and destruction of alveolar tissue due to pneumococcus. Equations were derived by translating known biological mechanisms and assuming certain response kinetics. Antibiotic therapy is modelled by a transient depletion of bacteria. Unknown model parameters were determined by fitting the predictions of the model to data sets derived from mice experiments of pneumococcal lung infection with and without antibiotic treatment. Time series of pneumococcal population, debris, neutrophils, activated epithelial cells, macrophages, monocytes and IL-6 serum concentrations were available for this purpose. The antibiotics Ampicillin and Moxifloxacin were considered. Parameter fittings resulted in a good agreement of model and data for all experimental scenarios. Identifiability of parameters is also estimated. The model can be used to predict the performance of alternative schedules of antibiotic treatment. We conclude that we established a biomathematical model of pneumococcal lung infection in mice allowing predictions regarding the outcome of different schedules of antibiotic treatment. We aim at translating the model to the human situation in the near future.

  14. Adaptation of non-linear mixed amount with zero amount response surface model for analysis of concentration-dependent synergism and safety with midazolam, alfentanil, and propofol sedation.

    PubMed

    Liou, J-Y; Ting, C-K; Teng, W-N; Mandell, M S; Tsou, M-Y

    2018-06-01

    The non-linear mixed amount with zero amounts response surface model can be used to describe drug interactions and predict loss of response to noxious stimuli and respiratory depression. We aimed to determine whether this response surface model could be used to model sedation with the triple drug combination of midazolam, alfentanil and propofol. Sedation was monitored in 56 patients undergoing gastrointestinal endoscopy (modelling group) using modified alertness/sedation scores. A total of 227 combinations of effect-site concentrations were derived from pharmacokinetic models. Accuracy and the area under the receiver operating characteristic curve were calculated. Accuracy was defined as an absolute difference <0.5 between the binary patient responses and the predicted probability of loss of responsiveness. Validation was performed with a separate group (validation group) of 47 patients. Effect-site concentration ranged from 0 to 108 ng ml -1 for midazolam, 0-156 ng ml -1 for alfentanil, and 0-2.6 μg ml -1 for propofol in both groups. Synergy was strongest with midazolam and alfentanil (24.3% decrease in U 50 , concentration for half maximal drug effect). Adding propofol, a third drug, offered little additional synergy (25.8% decrease in U 50 ). Two patients (3%) experienced respiratory depression. Model accuracy was 83% and 76%, area under the curve was 0.87 and 0.80 for the modelling and validation group, respectively. The non-linear mixed amount with zero amounts triple interaction response surface model predicts patient sedation responses during endoscopy with combinations of midazolam, alfentanil, or propofol that fall within clinical use. Our model also suggests a safety margin of alfentanil fraction <0.12 that avoids respiratory depression after loss of responsiveness. Copyright © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

  15. Perturbative tests of theoretical transport models using cold pulse and modulated electron cyclotron heating experiments

    NASA Astrophysics Data System (ADS)

    Kinsey, J. E.; Waltz, R. E.; DeBoo, J. C.

    1999-05-01

    It is difficult to discriminate between various tokamak transport models using standardized statistical measures to assess the goodness of fit with steady-state density and temperature profiles in tokamaks. This motivates consideration of transient transport experiments as a technique for testing the temporal response predicted by models. Results are presented comparing the predictions from the Institute for Fusion Studies—Princeton Plasma Physics Laboratory (IFS/PPPL), gyro-Landau-fluid (GLF23), Multi-mode (MM), Current Diffusive Ballooning Mode (CDBM), and Mixed-shear (MS) transport models against data from ohmic cold pulse and modulated electron cyclotron heating (ECH) experiments. In ohmically heated discharges with rapid edge cooling due to trace impurity injection, it is found that critical gradient models containing a strong temperature ratio (Ti/Te) dependence can exhibit behavior that is qualitatively consistent both spatially and temporally with experimental observation while depending solely on local parameters. On the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)], off-axis modulated ECH experiments have been conducted in L-mode (low confinement mode) and the perturbed electron and ion temperature response to multiple heat pulses has been measured across the plasma core. Comparing the predicted Fourier phase of the temperature perturbations, it is found that no single model yielded agreement with both electron and ion phases for all cases. In general, it was found that the IFS/PPPL, GLF23, and MS models agreed well with the ion response, but not with the electron response. The CDBM and MM models agreed well with the electron response, but not with the ion response. For both types of transient experiments, temperature coupling between the electron and ion transport is found to be an essential feature needed in the models for reproducing the observed perturbative response.

  16. Machine learning for predicting the response of breast cancer to neoadjuvant chemotherapy

    PubMed Central

    Mani, Subramani; Chen, Yukun; Li, Xia; Arlinghaus, Lori; Chakravarthy, A Bapsi; Abramson, Vandana; Bhave, Sandeep R; Levy, Mia A; Xu, Hua; Yankeelov, Thomas E

    2013-01-01

    Objective To employ machine learning methods to predict the eventual therapeutic response of breast cancer patients after a single cycle of neoadjuvant chemotherapy (NAC). Materials and methods Quantitative dynamic contrast-enhanced MRI and diffusion-weighted MRI data were acquired on 28 patients before and after one cycle of NAC. A total of 118 semiquantitative and quantitative parameters were derived from these data and combined with 11 clinical variables. We used Bayesian logistic regression in combination with feature selection using a machine learning framework for predictive model building. Results The best predictive models using feature selection obtained an area under the curve of 0.86 and an accuracy of 0.86, with a sensitivity of 0.88 and a specificity of 0.82. Discussion With the numerous options for NAC available, development of a method to predict response early in the course of therapy is needed. Unfortunately, by the time most patients are found not to be responding, their disease may no longer be surgically resectable, and this situation could be avoided by the development of techniques to assess response earlier in the treatment regimen. The method outlined here is one possible solution to this important clinical problem. Conclusions Predictive modeling approaches based on machine learning using readily available clinical and quantitative MRI data show promise in distinguishing breast cancer responders from non-responders after the first cycle of NAC. PMID:23616206

  17. The Mechanisms for Within-Host Influenza Virus Control Affect Model-Based Assessment and Prediction of Antiviral Treatment

    PubMed Central

    Cao, Pengxing

    2017-01-01

    Models of within-host influenza viral dynamics have contributed to an improved understanding of viral dynamics and antiviral effects over the past decade. Existing models can be classified into two broad types based on the mechanism of viral control: models utilising target cell depletion to limit the progress of infection and models which rely on timely activation of innate and adaptive immune responses to control the infection. In this paper, we compare how two exemplar models based on these different mechanisms behave and investigate how the mechanistic difference affects the assessment and prediction of antiviral treatment. We find that the assumed mechanism for viral control strongly influences the predicted outcomes of treatment. Furthermore, we observe that for the target cell-limited model the assumed drug efficacy strongly influences the predicted treatment outcomes. The area under the viral load curve is identified as the most reliable predictor of drug efficacy, and is robust to model selection. Moreover, with support from previous clinical studies, we suggest that the target cell-limited model is more suitable for modelling in vitro assays or infection in some immunocompromised/immunosuppressed patients while the immune response model is preferred for predicting the infection/antiviral effect in immunocompetent animals/patients. PMID:28933757

  18. A simple two-stage model predicts response time distributions.

    PubMed

    Carpenter, R H S; Reddi, B A J; Anderson, A J

    2009-08-15

    The neural mechanisms underlying reaction times have previously been modelled in two distinct ways. When stimuli are hard to detect, response time tends to follow a random-walk model that integrates noisy sensory signals. But studies investigating the influence of higher-level factors such as prior probability and response urgency typically use highly detectable targets, and response times then usually correspond to a linear rise-to-threshold mechanism. Here we show that a model incorporating both types of element in series - a detector integrating noisy afferent signals, followed by a linear rise-to-threshold performing decision - successfully predicts not only mean response times but, much more stringently, the observed distribution of these times and the rate of decision errors over a wide range of stimulus detectability. By reconciling what previously may have seemed to be conflicting theories, we are now closer to having a complete description of reaction time and the decision processes that underlie it.

  19. An Improved Dynamic Model for the Respiratory Response to Exercise

    PubMed Central

    Serna, Leidy Y.; Mañanas, Miguel A.; Hernández, Alher M.; Rabinovich, Roberto A.

    2018-01-01

    Respiratory system modeling has been extensively studied in steady-state conditions to simulate sleep disorders, to predict its behavior under ventilatory diseases or stimuli and to simulate its interaction with mechanical ventilation. Nevertheless, the studies focused on the instantaneous response are limited, which restricts its application in clinical practice. The aim of this study is double: firstly, to analyze both dynamic and static responses of two known respiratory models under exercise stimuli by using an incremental exercise stimulus sequence (to analyze the model responses when step inputs are applied) and experimental data (to assess prediction capability of each model). Secondly, to propose changes in the models' structures to improve their transient and stationary responses. The versatility of the resulting model vs. the other two is shown according to the ability to simulate ventilatory stimuli, like exercise, with a proper regulation of the arterial blood gases, suitable constant times and a better adjustment to experimental data. The proposed model adjusts the breathing pattern every respiratory cycle using an optimization criterion based on minimization of work of breathing through regulation of respiratory frequency. PMID:29467674

  20. Predicting biomaterial property-dendritic cell phenotype relationships from the multivariate analysis of responses to polymethacrylates

    PubMed Central

    Kou, Peng Meng; Pallassana, Narayanan; Bowden, Rebeca; Cunningham, Barry; Joy, Abraham; Kohn, Joachim; Babensee, Julia E.

    2011-01-01

    Dendritic cells (DCs) play a critical role in orchestrating the host responses to a wide variety of foreign antigens and are essential in maintaining immune tolerance. Distinct biomaterials have been shown to differentially affect the phenotype of DCs, which suggested that biomaterials may be used to modulate immune response towards the biologic component in combination products. The elucidation of biomaterial property-DC phenotype relationships is expected to inform rational design of immuno-modulatory biomaterials. In this study, DC response to a set of 12 polymethacrylates (pMAs) was assessed in terms of surface marker expression and cytokine profile. Principal component analysis (PCA) determined that surface carbon correlated with enhanced DC maturation, while surface oxygen was associated with an immature DC phenotype. Partial square linear regression, a multivariate modeling approach, was implemented and successfully predicted biomaterial-induced DC phenotype in terms of surface marker expression from biomaterial properties with R2prediction = 0.76. Furthermore, prediction of DC phenotype was effective based on only theoretical chemical composition of the bulk polymers with R2prediction = 0.80. These results demonstrated that immune cell response can be predicted from biomaterial properties, and computational models will expedite future biomaterial design and selection. PMID:22136715

  1. Stressor-response modeling using the 2D water quality model and regression trees to predict chlorophyll-a in a reservoir system

    USDA-ARS?s Scientific Manuscript database

    In order to control algal blooms, stressor-response relationships between water quality metrics, environmental variables, and algal growth should be understood and modeled. Machine-learning methods were suggested to express stressor-response relationships found by application of mechanistic water qu...

  2. Towards automating measurements and predictions of Escherichia coli concentrations in the Cuyahoga River, Cuyahoga Valley National Park, Ohio, 2012–14

    USGS Publications Warehouse

    Brady, Amie M. G.; Meg B. Plona,

    2015-07-30

    A computer program was developed to manage the nowcasts by running the predictive models and posting the results to a publicly accessible Web site daily by 9 a.m. The nowcasts were able to correctly predict E. coli concentrations above or below the water-quality standard at Jaite for 79 percent of the samples compared with the measured concentrations. In comparison, the persistence model (using the previous day’s sample concentration) correctly predicted concentrations above or below the water-quality standard in only 68 percent of the samples. To determine if the Jaite nowcast could be used for the stretch of the river between Lock 29 and Jaite, the model predictions for Jaite were compared with the measured concentrations at Lock 29. The Jaite nowcast provided correct responses for 77 percent of the Lock 29 samples, which was a greater percentage than the percentage of correct responses (58 percent) from the persistence model at Lock 29.

  3. Task relevance modulates the behavioural and neural effects of sensory predictions

    PubMed Central

    Friston, Karl J.; Nobre, Anna C.

    2017-01-01

    The brain is thought to generate internal predictions to optimize behaviour. However, it is unclear whether predictions signalling is an automatic brain function or depends on task demands. Here, we manipulated the spatial/temporal predictability of visual targets, and the relevance of spatial/temporal information provided by auditory cues. We used magnetoencephalography (MEG) to measure participants’ brain activity during task performance. Task relevance modulated the influence of predictions on behaviour: spatial/temporal predictability improved spatial/temporal discrimination accuracy, but not vice versa. To explain these effects, we used behavioural responses to estimate subjective predictions under an ideal-observer model. Model-based time-series of predictions and prediction errors (PEs) were associated with dissociable neural responses: predictions correlated with cue-induced beta-band activity in auditory regions and alpha-band activity in visual regions, while stimulus-bound PEs correlated with gamma-band activity in posterior regions. Crucially, task relevance modulated these spectral correlates, suggesting that current goals influence PE and prediction signalling. PMID:29206225

  4. Motion analysis study on sensitivity of finite element model of the cervical spine to geometry.

    PubMed

    Zafarparandeh, Iman; Erbulut, Deniz U; Ozer, Ali F

    2016-07-01

    Numerous finite element models of the cervical spine have been proposed, with exact geometry or with symmetric approximation in the geometry. However, few researches have investigated the sensitivity of predicted motion responses to the geometry of the cervical spine. The goal of this study was to evaluate the effect of symmetric assumption on the predicted motion by finite element model of the cervical spine. We developed two finite element models of the cervical spine C2-C7. One model was based on the exact geometry of the cervical spine (asymmetric model), whereas the other was symmetric (symmetric model) about the mid-sagittal plane. The predicted range of motion of both models-main and coupled motions-was compared with published experimental data for all motion planes under a full range of loads. The maximum differences between the asymmetric model and symmetric model predictions for the principal motion were 31%, 78%, and 126% for flexion-extension, right-left lateral bending, and right-left axial rotation, respectively. For flexion-extension and lateral bending, the minimum difference was 0%, whereas it was 2% for axial rotation. The maximum coupled motions predicted by the symmetric model were 1.5° axial rotation and 3.6° lateral bending, under applied lateral bending and axial rotation, respectively. Those coupled motions predicted by the asymmetric model were 1.6° axial rotation and 4° lateral bending, under applied lateral bending and axial rotation, respectively. In general, the predicted motion response of the cervical spine by the symmetric model was in the acceptable range and nonlinearity of the moment-rotation curve for the cervical spine was properly predicted. © IMechE 2016.

  5. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading. Volume 2, Part 1; Appendices

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approximately 9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  6. Physiological Response to Reward and Extinction Predicts Alcohol, Marijuana, and Cigarette Use Two Years Later

    PubMed Central

    Derefinko, Karen J.; Eisenlohr-Moul, Tory A.; Peters, Jessica R.; Roberts, Walter; Walsh, Erin C.; Milich, Richard; Lynam, Donald R.

    2017-01-01

    Background Physiological responses to reward and extinction are believed to represent the Behavioral Activation System (BAS) and Behavioral Inhibition System (BIS) constructs of Reinforcement Sensitivity Theory and underlie externalizing behaviors, including substance use. However, little research has examined these relations directly. Methods We assessed individuals’ cardiac pre-ejection periods (PEP) and electrodermal responses (EDR) during reward and extinction trials through the “Number Elimination Game” paradigm. Responses represented BAS and BIS, respectively. We then examined whether these responses provided incremental utility in the prediction of future alcohol, marijuana, and cigarette use. Results Zero-inflated Poisson (ZIP) regression models were used to examine the predictive utility of physiological BAS and BIS responses above and beyond previous substance use. Physiological responses accounted for incremental variance over previous use. Low BAS responses during reward predicted frequency of alcohol use at year 3. Low BAS responses during reward and extinction and high BIS responses during extinction predicted frequency of marijuana use at year 3. For cigarette use, low BAS response during extinction predicted use at year 3. Conclusions These findings suggest that the constructs of Reinforcement Sensitivity Theory, as assessed through physiology, contribute to the longitudinal maintenance of substance use. PMID:27306728

  7. Exposure–response model for sibutramine and placebo: suggestion for application to long-term weight-control drug development

    PubMed Central

    Han, Seunghoon; Jeon, Sangil; Hong, Taegon; Lee, Jongtae; Bae, Soo Hyeon; Park, Wan-su; Park, Gab-jin; Youn, Sunil; Jang, Doo Yeon; Kim, Kyung-Soo; Yim, Dong-Seok

    2015-01-01

    No wholly successful weight-control drugs have been developed to date, despite the tremendous demand. We present an exposure–response model of sibutramine mesylate that can be applied during clinical development of other weight-control drugs. Additionally, we provide a model-based evaluation of sibutramine efficacy. Data from a double-blind, randomized, placebo-controlled, multicenter study were used (N=120). Subjects in the treatment arm were initially given 8.37 mg sibutramine base daily, and those who lost <2 kg after 4 weeks’ treatment were escalated to 12.55 mg. The duration of treatment was 24 weeks. Drug concentration and body weight were measured predose and at 4 weeks, 8 weeks, and 24 weeks after treatment initiation. Exposure and response to sibutramine, including the placebo effect, were modeled using NONMEM 7.2. An asymptotic model approaching the final body weight was chosen to describe the time course of weight loss. Extent of weight loss was described successfully using a sigmoidal exposure–response relationship of the drug with a constant placebo effect in each individual. The placebo effect was influenced by subjects’ sex and baseline body mass index. Maximal weight loss was predicted to occur around 1 year after treatment initiation. The difference in mean weight loss between the sibutramine (daily 12.55 mg) and placebo groups was predicted to be 4.5% in a simulation of 1 year of treatment, with considerable overlap of prediction intervals. Our exposure–response model, which included the placebo effect, is the first example of a quantitative model that can be used to predict the efficacy of weight-control drugs. Similar approaches can help decision-making during clinical development of novel weight-loss drugs. PMID:26392753

  8. Exposure-response model for sibutramine and placebo: suggestion for application to long-term weight-control drug development.

    PubMed

    Han, Seunghoon; Jeon, Sangil; Hong, Taegon; Lee, Jongtae; Bae, Soo Hyeon; Park, Wan-su; Park, Gab-jin; Youn, Sunil; Jang, Doo Yeon; Kim, Kyung-Soo; Yim, Dong-Seok

    2015-01-01

    No wholly successful weight-control drugs have been developed to date, despite the tremendous demand. We present an exposure-response model of sibutramine mesylate that can be applied during clinical development of other weight-control drugs. Additionally, we provide a model-based evaluation of sibutramine efficacy. Data from a double-blind, randomized, placebo-controlled, multicenter study were used (N=120). Subjects in the treatment arm were initially given 8.37 mg sibutramine base daily, and those who lost <2 kg after 4 weeks' treatment were escalated to 12.55 mg. The duration of treatment was 24 weeks. Drug concentration and body weight were measured predose and at 4 weeks, 8 weeks, and 24 weeks after treatment initiation. Exposure and response to sibutramine, including the placebo effect, were modeled using NONMEM 7.2. An asymptotic model approaching the final body weight was chosen to describe the time course of weight loss. Extent of weight loss was described successfully using a sigmoidal exposure-response relationship of the drug with a constant placebo effect in each individual. The placebo effect was influenced by subjects' sex and baseline body mass index. Maximal weight loss was predicted to occur around 1 year after treatment initiation. The difference in mean weight loss between the sibutramine (daily 12.55 mg) and placebo groups was predicted to be 4.5% in a simulation of 1 year of treatment, with considerable overlap of prediction intervals. Our exposure-response model, which included the placebo effect, is the first example of a quantitative model that can be used to predict the efficacy of weight-control drugs. Similar approaches can help decision-making during clinical development of novel weight-loss drugs.

  9. Can responses to basic non-numerical visual features explain neural numerosity responses?

    PubMed

    Harvey, Ben M; Dumoulin, Serge O

    2017-04-01

    Humans and many animals can distinguish between stimuli that differ in numerosity, the number of objects in a set. Human and macaque parietal lobes contain neurons that respond to changes in stimulus numerosity. However, basic non-numerical visual features can affect neural responses to and perception of numerosity, and visual features often co-vary with numerosity. Therefore, it is debated whether numerosity or co-varying low-level visual features underlie neural and behavioral responses to numerosity. To test the hypothesis that non-numerical visual features underlie neural numerosity responses in a human parietal numerosity map, we analyze responses to a group of numerosity stimulus configurations that have the same numerosity progression but vary considerably in their non-numerical visual features. Using ultra-high-field (7T) fMRI, we measure responses to these stimulus configurations in an area of posterior parietal cortex whose responses are believed to reflect numerosity-selective activity. We describe an fMRI analysis method to distinguish between alternative models of neural response functions, following a population receptive field (pRF) modeling approach. For each stimulus configuration, we first quantify the relationships between numerosity and several non-numerical visual features that have been proposed to underlie performance in numerosity discrimination tasks. We then determine how well responses to these non-numerical visual features predict the observed fMRI responses, and compare this to the predictions of responses to numerosity. We demonstrate that a numerosity response model predicts observed responses more accurately than models of responses to simple non-numerical visual features. As such, neural responses in cognitive processing need not reflect simpler properties of early sensory inputs. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Controls on SOC across space and time: Models with different acclimation schemes make similar spatial predictions but divergent warming predictions

    NASA Astrophysics Data System (ADS)

    Abramoff, R. Z.; Torn, M. S.; Georgiou, K.; Tang, J.; Riley, W. J.

    2017-12-01

    Researchers use spatial gradients to estimate long-term ecosystem responses to perturbations. This approach is commonly applied to soil organic carbon (SOC) stocks which change slowly but store the majority of terrestrial carbon. Climate warming may reduce SOC stocks if higher temperatures increase decomposition rates. Yet, it is uncertain how vulnerable SOC is to warming, and whether the same factors - such as organo-mineral associations, climate, or plant inputs - determine SOC stocks across space and time. In order to test the "space for time" concept, we developed two versions of the Substrate-Mineral-Microbe Soil (SuMMS) model - one with microbial temperature acclimation and one without - to analyze observed SOC stocks at 24 sites spanning a wide range of soil types and climate. Both model predictions of SOC were strongly correlated with observations (R2 > 0.9), because mineral sorption capacity was the dominant control over steady-state SOC stock as determined by a Random Forest model. However, the two model versions made fundamentally different predictions of the change in SOC following 5°C soil warming from 2016 to 2100 because the initial mean annual temperature (MAT) was the dominant control over the SOC response. The model with microbial acclimation predicted that SOC would decline 10% at all sites along the transect, while the model with no acclimation predicted large surface SOC losses at high latitude sites and SOC gains at low latitude sites where microbial exoenzymes were already at or near their temperature optimum. These simulations suggest that gradient studies cannot be used to infer site-level responses to warming, because the dominant controls on SOC at steady state (i.e., mineral sorption capacity) are different than the dominant controls on the SOC response to a warming perturbation (i.e., initial MAT, capacity for acclimation).

  11. Impact of modellers' decisions on hydrological a priori predictions

    NASA Astrophysics Data System (ADS)

    Holländer, H. M.; Bormann, H.; Blume, T.; Buytaert, W.; Chirico, G. B.; Exbrayat, J.-F.; Gustafsson, D.; Hölzel, H.; Krauße, T.; Kraft, P.; Stoll, S.; Blöschl, G.; Flühler, H.

    2013-07-01

    The purpose of this paper is to stimulate a re-thinking of how we, the catchment hydrologists, could become reliable forecasters. A group of catchment modellers predicted the hydrological response of a man-made 6 ha catchment in its initial phase (Chicken Creek) without having access to the observed records. They used conceptually different model families. Their modelling experience differed largely. The prediction exercise was organized in three steps: (1) for the 1st prediction modellers received a basic data set describing the internal structure of the catchment (somewhat more complete than usually available to a priori predictions in ungauged catchments). They did not obtain time series of stream flow, soil moisture or groundwater response. (2) Before the 2nd improved prediction they inspected the catchment on-site and attended a workshop where the modellers presented and discussed their first attempts. (3) For their improved 3rd prediction they were offered additional data by charging them pro forma with the costs for obtaining this additional information. Holländer et al. (2009) discussed the range of predictions obtained in step 1. Here, we detail the modeller's decisions in accounting for the various processes based on what they learned during the field visit (step 2) and add the final outcome of step 3 when the modellers made use of additional data. We document the prediction progress as well as the learning process resulting from the availability of added information. For the 2nd and 3rd step, the progress in prediction quality could be evaluated in relation to individual modelling experience and costs of added information. We learned (i) that soft information such as the modeller's system understanding is as important as the model itself (hard information), (ii) that the sequence of modelling steps matters (field visit, interactions between differently experienced experts, choice of model, selection of available data, and methods for parameter guessing), and (iii) that added process understanding can be as efficient as adding data for improving parameters needed to satisfy model requirements.

  12. A clinician's perspective on memory reconsolidation as the primary basis for psychotherapeutic change in posttraumatic stress disorder (PTSD).

    PubMed

    Kimbrel, Nathan A; Meyer, Eric C; Beckham, Jean C

    2015-01-01

    Lane et al.'s proposal that psychotherapeutic change comes about through memory reconsolidation is compelling; however, the model would be strengthened by the inclusion of predictions regarding additional factors that might influence treatment response, predictions for improving outcomes for non-responsive patients, and a discussion of how the proposed model might explain individual differences in vulnerability for mental health problems.

  13. Prediction of different ovarian responses using anti-Müllerian hormone following a long agonist treatment protocol for IVF.

    PubMed

    Heidar, Z; Bakhtiyari, M; Mirzamoradi, M; Zadehmodarres, S; Sarfjoo, F S; Mansournia, M A

    2015-09-01

    The purpose of this study was to predict the poor and excessive ovarian response using anti-Müllerian hormone (AMH) levels following a long agonist protocol in IVF candidates. Through a prospective cohort study, the type of relationship and appropriate scale for AMH were determined using the fractional polynomial regression. To determine the effect of AMH on the outcomes of ovarian stimulation and different ovarian responses, the multi-nominal and negative binomial regression models were fitted using backward stepwise method. The ovarian response of study subject who entered a standard long-term treatment cycle with GnRH agonist was evaluated using prediction model, separately and in combined models with (ROC) curves. The use of standard long-term treatments with GnRH agonist led to positive pregnancy test results in 30% of treated patients. With each unit increase in the log of AMH, the odds ratio of having poor response compared to normal response decreases by 64% (OR 0.36, 95% CI 0.19-0.68). Also the results of negative binomial regression model indicated that for one unit increase in the log of AMH blood levels, the odds of releasing an oocyte increased 24% (OR 1.24, 95% CI 1.14-1.35). The optimal cut-off points of AMH for predicting excessive and poor ovarian responses were 3.4 and 1.2 ng/ml, respectively, with area under curves of 0.69 (0.60-0.77) and 0.76 (0.66-0.86), respectively. By considering the age of the patient undergoing infertility treatment as a variable affecting ovulation, use of AMH levels showed to be a good test to discriminate between different ovarian responses.

  14. Predicting the impact of combined therapies on myeloma cell growth using a hybrid multi-scale agent-based model.

    PubMed

    Ji, Zhiwei; Su, Jing; Wu, Dan; Peng, Huiming; Zhao, Weiling; Nlong Zhao, Brian; Zhou, Xiaobo

    2017-01-31

    Multiple myeloma is a malignant still incurable plasma cell disorder. This is due to refractory disease relapse, immune impairment, and development of multi-drug resistance. The growth of malignant plasma cells is dependent on the bone marrow (BM) microenvironment and evasion of the host's anti-tumor immune response. Hence, we hypothesized that targeting tumor-stromal cell interaction and endogenous immune system in BM will potentially improve the response of multiple myeloma (MM). Therefore, we proposed a computational simulation of the myeloma development in the complicated microenvironment which includes immune cell components and bone marrow stromal cells and predicted the effects of combined treatment with multi-drugs on myeloma cell growth. We constructed a hybrid multi-scale agent-based model (HABM) that combines an ODE system and Agent-based model (ABM). The ODEs was used for modeling the dynamic changes of intracellular signal transductions and ABM for modeling the cell-cell interactions between stromal cells, tumor, and immune components in the BM. This model simulated myeloma growth in the bone marrow microenvironment and revealed the important role of immune system in this process. The predicted outcomes were consistent with the experimental observations from previous studies. Moreover, we applied this model to predict the treatment effects of three key therapeutic drugs used for MM, and found that the combination of these three drugs potentially suppress the growth of myeloma cells and reactivate the immune response. In summary, the proposed model may serve as a novel computational platform for simulating the formation of MM and evaluating the treatment response of MM to multiple drugs.

  15. New Paradigm for Translational Modeling to Predict Long‐term Tuberculosis Treatment Response

    PubMed Central

    Bartelink, IH; Zhang, N; Keizer, RJ; Strydom, N; Converse, PJ; Dooley, KE; Nuermberger, EL

    2017-01-01

    Abstract Disappointing results of recent tuberculosis chemotherapy trials suggest that knowledge gained from preclinical investigations was not utilized to maximal effect. A mouse‐to‐human translational pharmacokinetics (PKs) – pharmacodynamics (PDs) model built on a rich mouse database may improve clinical trial outcome predictions. The model included Mycobacterium tuberculosis growth function in mice, adaptive immune response effect on bacterial growth, relationships among moxifloxacin, rifapentine, and rifampin concentrations accelerating bacterial death, clinical PK data, species‐specific protein binding, drug‐drug interactions, and patient‐specific pathology. Simulations of recent trials testing 4‐month regimens predicted 65% (95% confidence interval [CI], 55–74) relapse‐free patients vs. 80% observed in the REMox‐TB trial, and 79% (95% CI, 72–87) vs. 82% observed in the Rifaquin trial. Simulation of 6‐month regimens predicted 97% (95% CI, 93–99) vs. 92% and 95% observed in 2RHZE/4RH control arms, and 100% predicted and observed in the 35 mg/kg rifampin arm of PanACEA MAMS. These results suggest that the model can inform regimen optimization and predict outcomes of ongoing trials. PMID:28561946

  16. Detecting failure of climate predictions

    USGS Publications Warehouse

    Runge, Michael C.; Stroeve, Julienne C.; Barrett, Andrew P.; McDonald-Madden, Eve

    2016-01-01

    The practical consequences of climate change challenge society to formulate responses that are more suited to achieving long-term objectives, even if those responses have to be made in the face of uncertainty1, 2. Such a decision-analytic focus uses the products of climate science as probabilistic predictions about the effects of management policies3. Here we present methods to detect when climate predictions are failing to capture the system dynamics. For a single model, we measure goodness of fit based on the empirical distribution function, and define failure when the distribution of observed values significantly diverges from the modelled distribution. For a set of models, the same statistic can be used to provide relative weights for the individual models, and we define failure when there is no linear weighting of the ensemble models that produces a satisfactory match to the observations. Early detection of failure of a set of predictions is important for improving model predictions and the decisions based on them. We show that these methods would have detected a range shift in northern pintail 20 years before it was actually discovered, and are increasingly giving more weight to those climate models that forecast a September ice-free Arctic by 2055.

  17. REVIEW: Widespread access to predictive models in the motor system: a short review

    NASA Astrophysics Data System (ADS)

    Davidson, Paul R.; Wolpert, Daniel M.

    2005-09-01

    Recent behavioural and computational studies suggest that access to internal predictive models of arm and object dynamics is widespread in the sensorimotor system. Several systems, including those responsible for oculomotor and skeletomotor control, perceptual processing, postural control and mental imagery, are able to access predictions of the motion of the arm. A capacity to make and use predictions of object dynamics is similarly widespread. Here, we review recent studies looking at the predictive capacity of the central nervous system which reveal pervasive access to forward models of the environment.

  18. Structural and Acoustic Numerical Modeling of a Curved Composite Honeycomb Panel

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Buehrle, Ralph D.; Robinson, Jay H.

    2001-01-01

    The finite and boundary element modeling of the curved section of a composite honeycomb aircraft fuselage sidewall was validated for both structural response and acoustic radiation. The curved panel was modeled in the pre-processor MSC/PATRAN. Geometry models of the curved panel were constructed based on the physical dimensions of the test article. Material properties were obtained from the panel manufacturer. Finite element models were developed to predict the modal parameters for free and supported panel boundary conditions up to a frequency of 600 Hz. Free boundary conditions were simulated by providing soft foam support under the four comers of the panel or by suspending the panel from elastic bands. Supported boundary conditions were obtained by clamping the panel between plastic tubing seated in grooves along the perimeter of a stiff and heavy frame. The frame was installed in the transmission loss window of the Structural Acoustic Loads and Transmission (SALT) facility at NASA Langley Research Center. The structural response of the curved panel due to point force excitation was predicted using MSC/NASTRAN and the radiated sound was computed with COMET/Acoustics. The predictions were compared with the results from experimental modal surveys and forced response tests on the fuselage panel. The finite element models were refined and updated to provide optimum comparison with the measured modal data. Excellent agreement was obtained between the numerical and experimental modal data for the free as well as for the supported boundary conditions. Frequency response functions (FRF) were computed relating the input force excitation at one panel location to the surface acceleration response at five panel locations. Frequency response functions were measured at the same locations on the test specimen and were compared with the calculated FRF values. Good agreement was obtained for the real and imaginary parts of the transfer functions when modal participation was allowed up to 3000 Hz. The validated finite element model was used to predict the surface velocities due to the point force excitation. Good agreement was obtained between the spatial characteristics of the predicted and measured surface velocities. The measured velocity data were input into the acoustic boundary element code to compute the sound radiated by the panel. The predicted sound pressure levels in the far-field of the panel agreed well with the sound pressure levels measured at the same location.

  19. MCNP-REN - A Monte Carlo Tool for Neutron Detector Design Without Using the Point Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abhold, M.E.; Baker, M.C.

    1999-07-25

    The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo N-Particle code (MCNP) was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP - Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program (TAP) predict neutron detector response without using the pointmore » reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of MOX fresh fuel made using the Underwater Coincidence Counter (UWCC) as well as measurements of HEU reactor fuel using the active neutron Research Reactor Fuel Counter (RRFC) are compared with calculations. The method used in MCNP-REN is demonstrated to be fundamentally sound and shown to eliminate the need to use the point model for detector performance predictions.« less

  20. Analysis of bacterial migration. 2: Studies with multiple attractant gradients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, I.; Frymier, P.D.; Hahn, C.M.

    1995-02-01

    Many motile bacteria exhibit chemotaxis, the ability to bias their random motion toward or away from increasing concentrations of chemical substances which benefit or inhibit their survival, respectively. Since bacteria encounter numerous chemical concentration gradients simultaneously in natural surroundings, it is necessary to know quantitatively how a bacterial population responds in the presence of more than one chemical stimulus to develop predictive mathematical models describing bacterial migration in natural systems. This work evaluates three hypothetical models describing the integration of chemical signals from multiple stimuli: high sensitivity, maximum signal, and simple additivity. An expression for the tumbling probability for individualmore » stimuli is modified according to the proposed models and incorporated into the cell balance equation for a 1-D attractant gradient. Random motility and chemotactic sensitivity coefficients, required input parameters for the model, are measured for single stimulus responses. Theoretical predictions with the three signal integration models are compared to the net chemotactic response of Escherichia coli to co- and antidirectional gradients of D-fucose and [alpha]-methylaspartate in the stopped-flow diffusion chamber assay. Results eliminate the high-sensitivity model and favor the simple additivity over the maximum signal. None of the simple models, however, accurately predict the observed behavior, suggesting a more complex model with more steps in the signal processing mechanism is required to predict responses to multiple stimuli.« less

  1. A Population Genetics Model of Marker-Assisted Selection

    PubMed Central

    Luo, Z. W.; Thompson, R.; Woolliams, J. A.

    1997-01-01

    A deterministic two-loci model was developed to predict genetic response to marker-assisted selection (MAS) in one generation and in multiple generations. Formulas were derived to relate linkage disequilibrium in a population to the proportion of additive genetic variance used by MAS, and in turn to an extra improvement in genetic response over phenotypic selection. Predictions of the response were compared to those predicted by using an infinite-loci model and the factors affecting efficiency of MAS were examined. Theoretical analyses of the present study revealed the nonlinearity between the selection intensity and genetic response in MAS. In addition to the heritability of the trait and the proportion of the marker-associated genetic variance, the frequencies of the selectively favorable alleles at the two loci, one marker and one quantitative trait locus, were found to play an important role in determining both the short- and long-term efficiencies of MAS. The evolution of linkage disequilibrium and thus the genetic response over several generations were predicted theoretically and examined by simulation. MAS dissipated the disequilibrium more quickly than drift alone. In some cases studied, the rate of dissipation was as large as that to be expected in the circumstance where the true recombination fraction was increased by three times and selection was absent. PMID:9215918

  2. Dopamine cells respond to predicted events during classical conditioning: evidence for eligibility traces in the reward-learning network.

    PubMed

    Pan, Wei-Xing; Schmidt, Robert; Wickens, Jeffery R; Hyland, Brian I

    2005-06-29

    Behavioral conditioning of cue-reward pairing results in a shift of midbrain dopamine (DA) cell activity from responding to the reward to responding to the predictive cue. However, the precise time course and mechanism underlying this shift remain unclear. Here, we report a combined single-unit recording and temporal difference (TD) modeling approach to this question. The data from recordings in conscious rats showed that DA cells retain responses to predicted reward after responses to conditioned cues have developed, at least early in training. This contrasts with previous TD models that predict a gradual stepwise shift in latency with responses to rewards lost before responses develop to the conditioned cue. By exploring the TD parameter space, we demonstrate that the persistent reward responses of DA cells during conditioning are only accurately replicated by a TD model with long-lasting eligibility traces (nonzero values for the parameter lambda) and low learning rate (alpha). These physiological constraints for TD parameters suggest that eligibility traces and low per-trial rates of plastic modification may be essential features of neural circuits for reward learning in the brain. Such properties enable rapid but stable initiation of learning when the number of stimulus-reward pairings is limited, conferring significant adaptive advantages in real-world environments.

  3. Predictive control of intersegmental tarsal movements in an insect.

    PubMed

    Costalago-Meruelo, Alicia; Simpson, David M; Veres, Sandor M; Newland, Philip L

    2017-08-01

    In many animals intersegmental reflexes are important for postural and movement control but are still poorly undesrtood. Mathematical methods can be used to model the responses to stimulation, and thus go beyond a simple description of responses to specific inputs. Here we analyse an intersegmental reflex of the foot (tarsus) of the locust hind leg, which raises the tarsus when the tibia is flexed and depresses it when the tibia is extended. A novel method is described to measure and quantify the intersegmental responses of the tarsus to a stimulus to the femoro-tibial chordotonal organ. An Artificial Neural Network, the Time Delay Neural Network, was applied to understand the properties and dynamics of the reflex responses. The aim of this study was twofold: first to develop an accurate method to record and analyse the movement of an appendage and second, to apply methods to model the responses using Artificial Neural Networks. The results show that Artificial Neural Networks provide accurate predictions of tarsal movement when trained with an average reflex response to Gaussian White Noise stimulation compared to linear models. Furthermore, the Artificial Neural Network model can predict the individual responses of each animal and responses to others inputs such as a sinusoid. A detailed understanding of such a reflex response could be included in the design of orthoses or functional electrical stimulation treatments to improve walking in patients with neurological disorders as well as the bio/inspired design of robots.

  4. Modelling of individual subject ozone exposure response kinetics.

    PubMed

    Schelegle, Edward S; Adams, William C; Walby, William F; Marion, M Susan

    2012-06-01

    A better understanding of individual subject ozone (O(3)) exposure response kinetics will provide insight into how to improve models used in the risk assessment of ambient ozone exposure. To develop a simple two compartment exposure-response model that describes individual subject decrements in forced expiratory volume in one second (FEV(1)) induced by the acute inhalation of O(3) lasting up to 8 h. FEV(1) measurements of 220 subjects who participated in 14 previously completed studies were fit to the model using both particle swarm and nonlinear least squares optimization techniques to identify three subject-specific coefficients producing minimum "global" and local errors, respectively. Observed and predicted decrements in FEV(1) of the 220 subjects were used for validation of the model. Further validation was provided by comparing the observed O(3)-induced FEV(1) decrements in an additional eight studies with predicted values obtained using model coefficients estimated from the 220 subjects used in cross validation. Overall the individual subject measured and modeled FEV(1) decrements were highly correlated (mean R(2) of 0.69 ± 0.24). In addition, it was shown that a matrix of individual subject model coefficients can be used to predict the mean and variance of group decrements in FEV(1). This modeling approach provides insight into individual subject O(3) exposure response kinetics and provides a potential starting point for improving the risk assessment of environmental O(3) exposure.

  5. Climate-based models for pulsed resources improve predictability of consumer population dynamics: outbreaks of house mice in forest ecosystems.

    PubMed

    Holland, E Penelope; James, Alex; Ruscoe, Wendy A; Pech, Roger P; Byrom, Andrea E

    2015-01-01

    Accurate predictions of the timing and magnitude of consumer responses to episodic seeding events (masts) are important for understanding ecosystem dynamics and for managing outbreaks of invasive species generated by masts. While models relating consumer populations to resource fluctuations have been developed successfully for a range of natural and modified ecosystems, a critical gap that needs addressing is better prediction of resource pulses. A recent model used change in summer temperature from one year to the next (ΔT) for predicting masts for forest and grassland plants in New Zealand. We extend this climate-based method in the framework of a model for consumer-resource dynamics to predict invasive house mouse (Mus musculus) outbreaks in forest ecosystems. Compared with previous mast models based on absolute temperature, the ΔT method for predicting masts resulted in an improved model for mouse population dynamics. There was also a threshold effect of ΔT on the likelihood of an outbreak occurring. The improved climate-based method for predicting resource pulses and consumer responses provides a straightforward rule of thumb for determining, with one year's advance warning, whether management intervention might be required in invaded ecosystems. The approach could be applied to consumer-resource systems worldwide where climatic variables are used to model the size and duration of resource pulses, and may have particular relevance for ecosystems where global change scenarios predict increased variability in climatic events.

  6. Development of Web tools to predict axillary lymph node metastasis and pathological response to neoadjuvant chemotherapy in breast cancer patients.

    PubMed

    Sugimoto, Masahiro; Takada, Masahiro; Toi, Masakazu

    2014-12-09

    Nomograms are a standard computational tool to predict the likelihood of an outcome using multiple available patient features. We have developed a more powerful data mining methodology, to predict axillary lymph node (AxLN) metastasis and response to neoadjuvant chemotherapy (NAC) in primary breast cancer patients. We developed websites to use these tools. The tools calculate the probability of AxLN metastasis (AxLN model) and pathological complete response to NAC (NAC model). As a calculation algorithm, we employed a decision tree-based prediction model known as the alternative decision tree (ADTree), which is an analog development of if-then type decision trees. An ensemble technique was used to combine multiple ADTree predictions, resulting in higher generalization abilities and robustness against missing values. The AxLN model was developed with training datasets (n=148) and test datasets (n=143), and validated using an independent cohort (n=174), yielding an area under the receiver operating characteristic curve (AUC) of 0.768. The NAC model was developed and validated with n=150 and n=173 datasets from a randomized controlled trial, yielding an AUC of 0.787. AxLN and NAC models require users to input up to 17 and 16 variables, respectively. These include pathological features, including human epidermal growth factor receptor 2 (HER2) status and imaging findings. Each input variable has an option of "unknown," to facilitate prediction for cases with missing values. The websites developed facilitate the use of these tools, and serve as a database for accumulating new datasets.

  7. Hydrological-niche models predict water plant functional group distributions in diverse wetland types.

    PubMed

    Deane, David C; Nicol, Jason M; Gehrig, Susan L; Harding, Claire; Aldridge, Kane T; Goodman, Abigail M; Brookes, Justin D

    2017-06-01

    Human use of water resources threatens environmental water supplies. If resource managers are to develop policies that avoid unacceptable ecological impacts, some means to predict ecosystem response to changes in water availability is necessary. This is difficult to achieve at spatial scales relevant for water resource management because of the high natural variability in ecosystem hydrology and ecology. Water plant functional groups classify species with similar hydrological niche preferences together, allowing a qualitative means to generalize community responses to changes in hydrology. We tested the potential for functional groups in making quantitative prediction of water plant functional group distributions across diverse wetland types over a large geographical extent. We sampled wetlands covering a broad range of hydrogeomorphic and salinity conditions in South Australia, collecting both hydrological and floristic data from 687 quadrats across 28 wetland hydrological gradients. We built hydrological-niche models for eight water plant functional groups using a range of candidate models combining different surface inundation metrics. We then tested the predictive performance of top-ranked individual and averaged models for each functional group. Cross validation showed that models achieved acceptable predictive performance, with correct classification rates in the range 0.68-0.95. Model predictions can be made at any spatial scale that hydrological data are available and could be implemented in a geographical information system. We show the response of water plant functional groups to inundation is consistent enough across diverse wetland types to quantify the probability of hydrological impacts over regional spatial scales. © 2017 by the Ecological Society of America.

  8. On the prediction of the human response: a recycled mechanistic pharmacokinetic/pharmacodynamic approach.

    PubMed

    Meno-Tetang, Guy M L; Lowe, Philip J

    2005-03-01

    Although it is routine to predict the blood or plasma pharmacokinetics of compounds for man based upon preclinical studies, the real value of such predictions only comes when linked to drug effects. In the first example, the immunomodulator, FTY720, the first sphingosine-1-phosphate receptor agonist, stimulates the sequestration of lymphocytes into lymph nodes thus removing cells from blood circulation. A prior physiology-based pharmacokinetic model fitted the concentration-time course of FTY720 in rats. This was connected to an indirect response model of the lymphocyte system to characterise the cell trafficking effects. The IC(50) of FTY720 was different in the rat compared with the monkey; man was assumed to be similar to the monkey. The systemic lymphocyte half-lives were also different between species. To make predictions of the pharmacodynamic behaviour for man, two elements are required, i) systemic exposure, in this case from an upscaled physiology based model, and ii) an estimate of lymphocyte turnover in man, gained from the literature from other drug treatments. Predictions compared well with clinical results. The second example is the monoclonal antibody Xolair, designed to bind immunoglobulin E for atopic diseases. A mechanism based two-site binding model described the kinetics of both Xolair and endogenous IgE. This model has been reused for other monoclonal antibodies designed to bind fluid-phase ligands. Sensitivity analysis shows that if differences across species in the kinetics of the endogenous system are not accounted for, then pharmacokinetic/pharmacodynamic models may give misleading predictions of the time course and extent of the response.

  9. Using early biomarker data to predict long-term bone mineral density: application of semi-mechanistic bone cycle model on denosumab data.

    PubMed

    Zheng, Jenny; van Schaick, Erno; Wu, Liviawati Sutjandra; Jacqmin, Philippe; Perez Ruixo, Juan Jose

    2015-08-01

    Osteoporosis is a chronic skeletal disease characterized by low bone strength resulting in increased fracture risk. New treatments for osteoporosis are still an unmet medical need because current available treatments have various limitations. Bone mineral density (BMD) is an important endpoint for evaluating new osteoporosis treatments; however, the BMD response is often slower and less profound than that of bone turnover markers (BTMs). If the relationship between BTMs and BMD can be quantified, the BMD response can be predicted by the changes in BTM after a single dose; therefore, a decision based on BMD changes can be informed early. We have applied a bone cycle model to a phase 2 denosumab dose-ranging study in osteopenic women to quantitatively link serum denosumab pharmacokinetics, BTMs, and lumbar spine (LS) BMD. The data from two phase 3 denosumab studies in patients with low bone mass, FREEDOM and DEFEND, were used for external validation. Both internal and external visual predictive checks demonstrated that the model was capable of predicting LS BMD at the denosumab regimen of 60 mg every 6 months. It has been demonstrated that the model, in combination with the changes in BTMs observed from a single-dose study in men, is capable of predicting long-term BMD outcomes (e.g., LS BMD response in men after 1 year of treatment) in different populations. We propose that this model can be used to inform drug development decisions for osteoporosis treatment early via evaluating LS BMD response when BTM data become available in early trials.

  10. Hybrid experimental/analytical models of structural dynamics - Creation and use for predictions

    NASA Technical Reports Server (NTRS)

    Balmes, Etienne

    1993-01-01

    An original complete methodology for the construction of predictive models of damped structural vibrations is introduced. A consistent definition of normal and complex modes is given which leads to an original method to accurately identify non-proportionally damped normal mode models. A new method to create predictive hybrid experimental/analytical models of damped structures is introduced, and the ability of hybrid models to predict the response to system configuration changes is discussed. Finally a critical review of the overall methodology is made by application to the case of the MIT/SERC interferometer testbed.

  11. Clinical responses to ERK inhibition in BRAFV600E-mutant colorectal cancer predicted using a computational model.

    PubMed

    Kirouac, Daniel C; Schaefer, Gabriele; Chan, Jocelyn; Merchant, Mark; Orr, Christine; Huang, Shih-Min A; Moffat, John; Liu, Lichuan; Gadkar, Kapil; Ramanujan, Saroja

    2017-01-01

    Approximately 10% of colorectal cancers harbor BRAF V600E mutations, which constitutively activate the MAPK signaling pathway. We sought to determine whether ERK inhibitor (GDC-0994)-containing regimens may be of clinical benefit to these patients based on data from in vitro (cell line) and in vivo (cell- and patient-derived xenograft) studies of cetuximab (EGFR), vemurafenib (BRAF), cobimetinib (MEK), and GDC-0994 (ERK) combinations. Preclinical data was used to develop a mechanism-based computational model linking cell surface receptor (EGFR) activation, the MAPK signaling pathway, and tumor growth. Clinical predictions of anti-tumor activity were enabled by the use of tumor response data from three Phase 1 clinical trials testing combinations of EGFR, BRAF, and MEK inhibitors. Simulated responses to GDC-0994 monotherapy (overall response rate = 17%) accurately predicted results from a Phase 1 clinical trial regarding the number of responding patients (2/18) and the distribution of tumor size changes ("waterfall plot"). Prospective simulations were then used to evaluate potential drug combinations and predictive biomarkers for increasing responsiveness to MEK/ERK inhibitors in these patients.

  12. Design of optimal hyperthermia protocols for prostate cancer by controlling HSP expression through computer modeling (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Rylander, Marissa N.; Feng, Yusheng; Diller, Kenneth; Bass, J.

    2005-04-01

    Heat shock proteins (HSP) are critical components of a complex defense mechanism essential for preserving cell survival under adverse environmental conditions. It is inevitable that hyperthermia will enhance tumor tissue viability, due to HSP expression in regions where temperatures are insufficient to coagulate proteins, and would likely increase the probability of cancer recurrence. Although hyperthermia therapy is commonly used in conjunction with radiotherapy, chemotherapy, and gene therapy to increase therapeutic effectiveness, the efficacy of these therapies can be substantially hindered due to HSP expression when hyperthermia is applied prior to these procedures. Therefore, in planning hyperthermia protocols, prediction of the HSP response of the tumor must be incorporated into the treatment plan to optimize the thermal dose delivery and permit prediction of overall tissue response. In this paper, we present a highly accurate, adaptive, finite element tumor model capable of predicting the HSP expression distribution and tissue damage region based on measured cellular data when hyperthermia protocols are specified. Cubic spline representations of HSP27 and HSP70, and Arrhenius damage models were integrated into the finite element model to enable prediction of the HSP expression and damage distribution in the tissue following laser heating. Application of the model can enable optimized treatment planning by controlling of the tissue response to therapy based on accurate prediction of the HSP expression and cell damage distribution.

  13. Mathematical model for predicting human vertebral fracture

    NASA Technical Reports Server (NTRS)

    Benedict, J. V.

    1973-01-01

    Mathematical model has been constructed to predict dynamic response of tapered, curved beam columns in as much as human spine closely resembles this form. Model takes into consideration effects of impact force, mass distribution, and material properties. Solutions were verified by dynamic tests on curved, tapered, elastic polyethylene beam.

  14. Does the growth response of woody plants to elevated CO2 increase with temperature? A model-oriented meta-analysis.

    PubMed

    Baig, Sofia; Medlyn, Belinda E; Mercado, Lina M; Zaehle, Sönke

    2015-12-01

    The temperature dependence of the reaction kinetics of the Rubisco enzyme implies that, at the level of a chloroplast, the response of photosynthesis to rising atmospheric CO2 concentration (Ca ) will increase with increasing air temperature. Vegetation models incorporating this interaction predict that the response of net primary productivity (NPP) to elevated CO2 (eCa ) will increase with rising temperature and will be substantially larger in warm tropical forests than in cold boreal forests. We tested these model predictions against evidence from eCa experiments by carrying out two meta-analyses. Firstly, we tested for an interaction effect on growth responses in factorial eCa  × temperature experiments. This analysis showed a positive, but nonsignificant interaction effect (95% CI for above-ground biomass response = -0.8, 18.0%) between eCa and temperature. Secondly, we tested field-based eCa experiments on woody plants across the globe for a relationship between the eCa effect on plant biomass and mean annual temperature (MAT). This second analysis showed a positive but nonsignificant correlation between the eCa response and MAT. The magnitude of the interactions between CO2 and temperature found in both meta-analyses were consistent with model predictions, even though both analyses gave nonsignificant results. Thus, we conclude that it is not possible to distinguish between the competing hypotheses of no interaction vs. an interaction based on Rubisco kinetics from the available experimental database. Experiments in a wider range of temperature zones are required. Until such experimental data are available, model predictions should aim to incorporate uncertainty about this interaction. © 2015 John Wiley & Sons Ltd.

  15. Plasticity models of material variability based on uncertainty quantification techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Reese E.; Rizzi, Francesco; Boyce, Brad

    The advent of fabrication techniques like additive manufacturing has focused attention on the considerable variability of material response due to defects and other micro-structural aspects. This variability motivates the development of an enhanced design methodology that incorporates inherent material variability to provide robust predictions of performance. In this work, we develop plasticity models capable of representing the distribution of mechanical responses observed in experiments using traditional plasticity models of the mean response and recently developed uncertainty quantification (UQ) techniques. Lastly, we demonstrate that the new method provides predictive realizations that are superior to more traditional ones, and how these UQmore » techniques can be used in model selection and assessing the quality of calibrated physical parameters.« less

  16. Impact of modellers' decisions on hydrological a priori predictions

    NASA Astrophysics Data System (ADS)

    Holländer, H. M.; Bormann, H.; Blume, T.; Buytaert, W.; Chirico, G. B.; Exbrayat, J.-F.; Gustafsson, D.; Hölzel, H.; Krauße, T.; Kraft, P.; Stoll, S.; Blöschl, G.; Flühler, H.

    2014-06-01

    In practice, the catchment hydrologist is often confronted with the task of predicting discharge without having the needed records for calibration. Here, we report the discharge predictions of 10 modellers - using the model of their choice - for the man-made Chicken Creek catchment (6 ha, northeast Germany, Gerwin et al., 2009b) and we analyse how well they improved their prediction in three steps based on adding information prior to each following step. The modellers predicted the catchment's hydrological response in its initial phase without having access to the observed records. They used conceptually different physically based models and their modelling experience differed largely. Hence, they encountered two problems: (i) to simulate discharge for an ungauged catchment and (ii) using models that were developed for catchments, which are not in a state of landscape transformation. The prediction exercise was organized in three steps: (1) for the first prediction the modellers received a basic data set describing the catchment to a degree somewhat more complete than usually available for a priori predictions of ungauged catchments; they did not obtain information on stream flow, soil moisture, nor groundwater response and had therefore to guess the initial conditions; (2) before the second prediction they inspected the catchment on-site and discussed their first prediction attempt; (3) for their third prediction they were offered additional data by charging them pro forma with the costs for obtaining this additional information. Holländer et al. (2009) discussed the range of predictions obtained in step (1). Here, we detail the modeller's assumptions and decisions in accounting for the various processes. We document the prediction progress as well as the learning process resulting from the availability of added information. For the second and third steps, the progress in prediction quality is evaluated in relation to individual modelling experience and costs of added information. In this qualitative analysis of a statistically small number of predictions we learned (i) that soft information such as the modeller's system understanding is as important as the model itself (hard information), (ii) that the sequence of modelling steps matters (field visit, interactions between differently experienced experts, choice of model, selection of available data, and methods for parameter guessing), and (iii) that added process understanding can be as efficient as adding data for improving parameters needed to satisfy model requirements.

  17. Hydroelastic response of a floating runway to cnoidal waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ertekin, R. C., E-mail: ertekin@hawaii.edu; Xia, Dingwu

    2014-02-15

    The hydroelastic response of mat-type Very Large Floating Structures (VLFSs) to severe sea conditions, such as tsunamis and hurricanes, must be assessed for safety and survivability. An efficient and robust nonlinear hydroelastic model is required to predict accurately the motion of and the dynamic loads on a VLFS due to such large waves. We develop a nonlinear theory to predict the hydroelastic response of a VLFS in the presence of cnoidal waves and compare the predictions with the linear theory that is also developed here. This hydroelastic problem is formulated by directly coupling the structure with the fluid, by usemore » of the Level I Green-Naghdi theory for the fluid motion and the Kirchhoff thin plate theory for the runway. The coupled fluid structure system, together with the appropriate jump conditions are solved in two-dimensions by the finite-difference method. The numerical model is used to study the nonlinear response of a VLFS to storm waves which are modeled by use of the cnoidal-wave theory. Parametric studies show that the nonlinearity of the waves is very important in accurately predicting the dynamic bending moment and wave run-up on a VLFS in high seas.« less

  18. Intra- and interspecies gene expression models for predicting drug response in canine osteosarcoma.

    PubMed

    Fowles, Jared S; Brown, Kristen C; Hess, Ann M; Duval, Dawn L; Gustafson, Daniel L

    2016-02-19

    Genomics-based predictors of drug response have the potential to improve outcomes associated with cancer therapy. Osteosarcoma (OS), the most common primary bone cancer in dogs, is commonly treated with adjuvant doxorubicin or carboplatin following amputation of the affected limb. We evaluated the use of gene-expression based models built in an intra- or interspecies manner to predict chemosensitivity and treatment outcome in canine OS. Models were built and evaluated using microarray gene expression and drug sensitivity data from human and canine cancer cell lines, and canine OS tumor datasets. The "COXEN" method was utilized to filter gene signatures between human and dog datasets based on strong co-expression patterns. Models were built using linear discriminant analysis via the misclassification penalized posterior algorithm. The best doxorubicin model involved genes identified in human lines that were co-expressed and trained on canine OS tumor data, which accurately predicted clinical outcome in 73 % of dogs (p = 0.0262, binomial). The best carboplatin model utilized canine lines for gene identification and model training, with canine OS tumor data for co-expression. Dogs whose treatment matched our predictions had significantly better clinical outcomes than those that didn't (p = 0.0006, Log Rank), and this predictor significantly associated with longer disease free intervals in a Cox multivariate analysis (hazard ratio = 0.3102, p = 0.0124). Our data show that intra- and interspecies gene expression models can successfully predict response in canine OS, which may improve outcome in dogs and serve as pre-clinical validation for similar methods in human cancer research.

  19. Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection.

    PubMed

    Dong, Zuoli; Zhang, Naiqian; Li, Chun; Wang, Haiyun; Fang, Yun; Wang, Jun; Zheng, Xiaoqi

    2015-06-30

    An enduring challenge in personalized medicine is to select right drug for individual patients. Testing drugs on patients in large clinical trials is one way to assess their efficacy and toxicity, but it is impractical to test hundreds of drugs currently under development. Therefore the preclinical prediction model is highly expected as it enables prediction of drug response to hundreds of cell lines in parallel. Recently, two large-scale pharmacogenomic studies screened multiple anticancer drugs on over 1000 cell lines in an effort to elucidate the response mechanism of anticancer drugs. To this aim, we here used gene expression features and drug sensitivity data in Cancer Cell Line Encyclopedia (CCLE) to build a predictor based on Support Vector Machine (SVM) and a recursive feature selection tool. Robustness of our model was validated by cross-validation and an independent dataset, the Cancer Genome Project (CGP). Our model achieved good cross validation performance for most drugs in the Cancer Cell Line Encyclopedia (≥80% accuracy for 10 drugs, ≥75% accuracy for 19 drugs). Independent tests on eleven common drugs between CCLE and CGP achieved satisfactory performance for three of them, i.e., AZD6244, Erlotinib and PD-0325901, using expression levels of only twelve, six and seven genes, respectively. These results suggest that drug response could be effectively predicted from genomic features. Our model could be applied to predict drug response for some certain drugs and potentially play a complementary role in personalized medicine.

  20. Food allergy animal models: an overview.

    PubMed

    Helm, Ricki M

    2002-05-01

    Specific food allergy is characterized by sensitization to innocuous food proteins with production of allergen-specific IgE that binds to receptors on basophils and mast cells. Upon recurrent exposure to the same allergen, an allergic response is induced by mediator release following cross-linking of cell-bound allergen-specific IgE. The determination of what makes an innocuous food protein an allergen in predisposed individuals is unknown; however, mechanistic and protein allergen predictive models are being actively investigated in a number of animal models. Currently, there is no animal model that will actively profile known food allergens, predict the allergic potential of novel food proteins, or demonstrate clinically the human food allergic sensitization/allergic response. Animal models under investigation include mice, rats, the guinea pig, atopic dog, and neonatal swine. These models are being assessed for production of IgE, clinical responses to re-exposure, and a ranking of food allergens (based on potency) including a nonfood allergen protein source. A selection of animal models actively being investigated that will contribute to our understanding of what makes a protein an allergen and future predictive models for assessing the allergenicity of novel proteins is presented in this review.

  1. Passenger ride quality determined from commercial airline flights

    NASA Technical Reports Server (NTRS)

    Richards, L. G.; Kuhlthau, A. R.; Jacobson, I. D.

    1975-01-01

    The University of Virginia ride-quality research program is reviewed. Data from two flight programs, involving seven types of aircraft, are considered in detail. An apparatus for measuring physical variations in the flight environment and recording the subjective reactions of test subjects is described. Models are presented for predicting the comfort response of test subjects from the physical data, and predicting the overall comfort reaction of test subjects from their moment by moment responses. The correspondence of mean passenger comfort judgments and test subject response is shown. Finally, the models of comfort response based on data from the 5-point and 7-point comfort scales are shown to correspond.

  2. Quantifying and Generalizing Hydrologic Responses to Dam Regulation using a Statistical Modeling Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A

    2014-01-01

    Despite the ubiquitous existence of dams within riverscapes, much of our knowledge about dams and their environmental effects remains context-specific. Hydrology, more than any other environmental variable, has been studied in great detail with regard to dam regulation. While much progress has been made in generalizing the hydrologic effects of regulation by large dams, many aspects of hydrology show site-specific fidelity to dam operations, small dams (including diversions), and regional hydrologic regimes. A statistical modeling framework is presented to quantify and generalize hydrologic responses to varying degrees of dam regulation. Specifically, the objectives were to 1) compare the effects ofmore » local versus cumulative dam regulation, 2) determine the importance of different regional hydrologic regimes in influencing hydrologic responses to dams, and 3) evaluate how different regulation contexts lead to error in predicting hydrologic responses to dams. Overall, model performance was poor in quantifying the magnitude of hydrologic responses, but performance was sufficient in classifying hydrologic responses as negative or positive. Responses of some hydrologic indices to dam regulation were highly dependent upon hydrologic class membership and the purpose of the dam. The opposing coefficients between local and cumulative-dam predictors suggested that hydrologic responses to cumulative dam regulation are complex, and predicting the hydrology downstream of individual dams, as opposed to multiple dams, may be more easy accomplished using statistical approaches. Results also suggested that particular contexts, including multipurpose dams, high cumulative regulation by multiple dams, diversions, close proximity to dams, and certain hydrologic classes are all sources of increased error when predicting hydrologic responses to dams. Statistical models, such as the ones presented herein, show promise in their ability to model the effects of dam regulation effects at large spatial scales as to generalize the directionality of hydrologic responses.« less

  3. An integrated physiology model to study regional lung damage effects and the physiologic response

    PubMed Central

    2014-01-01

    Background This work expands upon a previously developed exercise dynamic physiology model (DPM) with the addition of an anatomic pulmonary system in order to quantify the impact of lung damage on oxygen transport and physical performance decrement. Methods A pulmonary model is derived with an anatomic structure based on morphometric measurements, accounting for heterogeneous ventilation and perfusion observed experimentally. The model is incorporated into an existing exercise physiology model; the combined system is validated using human exercise data. Pulmonary damage from blast, blunt trauma, and chemical injury is quantified in the model based on lung fluid infiltration (edema) which reduces oxygen delivery to the blood. The pulmonary damage component is derived and calibrated based on published animal experiments; scaling laws are used to predict the human response to lung injury in terms of physical performance decrement. Results The augmented dynamic physiology model (DPM) accurately predicted the human response to hypoxia, altitude, and exercise observed experimentally. The pulmonary damage parameters (shunt and diffusing capacity reduction) were fit to experimental animal data obtained in blast, blunt trauma, and chemical damage studies which link lung damage to lung weight change; the model is able to predict the reduced oxygen delivery in damage conditions. The model accurately estimates physical performance reduction with pulmonary damage. Conclusions We have developed a physiologically-based mathematical model to predict performance decrement endpoints in the presence of thoracic damage; simulations can be extended to estimate human performance and escape in extreme situations. PMID:25044032

  4. Prediction of Complex Aerodynamic Flows with Explicit Algebraic Stress Models

    NASA Technical Reports Server (NTRS)

    Abid, Ridha; Morrison, Joseph H.; Gatski, Thomas B.; Speziale, Charles G.

    1996-01-01

    An explicit algebraic stress equation, developed by Gatski and Speziale, is used in the framework of K-epsilon formulation to predict complex aerodynamic turbulent flows. The nonequilibrium effects are modeled through coefficients that depend nonlinearly on both rotational and irrotational strains. The proposed model was implemented in the ISAAC Navier-Stokes code. Comparisons with the experimental data are presented which clearly demonstrate that explicit algebraic stress models can predict the correct response to nonequilibrium flow.

  5. Stress enhanced calcium kinetics in a neuron.

    PubMed

    Kant, Aayush; Bhandakkar, Tanmay K; Medhekar, Nikhil V

    2018-02-01

    Accurate modeling of the mechanobiological response of a Traumatic Brain Injury is beneficial toward its effective clinical examination, treatment and prevention. Here, we present a stress history-dependent non-spatial kinetic model to predict the microscale phenomena of secondary insults due to accumulation of excess calcium ions (Ca[Formula: see text]) induced by the macroscale primary injuries. The model is able to capture the experimentally observed increase and subsequent partial recovery of intracellular Ca[Formula: see text] concentration in response to various types of mechanical impulses. We further establish the accuracy of the model by comparing our predictions with key experimental observations.

  6. Application of Fracture Distribution Prediction Model in Xihu Depression of East China Sea

    NASA Astrophysics Data System (ADS)

    Yan, Weifeng; Duan, Feifei; Zhang, Le; Li, Ming

    2018-02-01

    There are different responses on each of logging data with the changes of formation characteristics and outliers caused by the existence of fractures. For this reason, the development of fractures in formation can be characterized by the fine analysis of logging curves. The well logs such as resistivity, sonic transit time, density, neutron porosity and gamma ray, which are classified as conventional well logs, are more sensitive to formation fractures. In view of traditional fracture prediction model, using the simple weighted average of different logging data to calculate the comprehensive fracture index, are more susceptible to subjective factors and exist a large deviation, a statistical method is introduced accordingly. Combining with responses of conventional logging data on the development of formation fracture, a prediction model based on membership function is established, and its essence is to analyse logging data with fuzzy mathematics theory. The fracture prediction results in a well formation in NX block of Xihu depression through two models are compared with that of imaging logging, which shows that the accuracy of fracture prediction model based on membership function is better than that of traditional model. Furthermore, the prediction results are highly consistent with imaging logs and can reflect the development of cracks much better. It can provide a reference for engineering practice.

  7. Prediction of surface roughness and cutting force under MQL turning of AISI 4340 with nano fluid by using response surface methodology

    NASA Astrophysics Data System (ADS)

    Patole, Pralhad B.; Kulkarni, Vivek V.

    2018-06-01

    This paper presents an investigation into the minimum quantity lubrication mode with nano fluid during turning of alloy steel AISI 4340 work piece material with the objective of experimental model in order to predict surface roughness and cutting force and analyze effect of process parameters on machinability. Full factorial design matrix was used for experimental plan. According to design of experiment surface roughness and cutting force were measured. The relationship between the response variables and the process parameters is determined through the response surface methodology, using a quadratic regression model. Results show how much surface roughness is mainly influenced by feed rate and cutting speed. The depth of cut exhibits maximum influence on cutting force components as compared to the feed rate and cutting speed. The values predicted from the model and experimental values are very close to each other.

  8. Ratcheting in a nonlinear viscoelastic adhesive

    NASA Astrophysics Data System (ADS)

    Lemme, David; Smith, Lloyd

    2017-11-01

    Uniaxial time-dependent creep and cycled stress behavior of a standard and toughened film adhesive were studied experimentally. Both adhesives exhibited progressive accumulation of strain from an applied cycled stress. Creep tests were fit to a viscoelastic power law model at three different applied stresses which showed nonlinear response in both adhesives. A third order nonlinear power law model with a permanent strain component was used to describe the creep behavior of both adhesives and to predict creep recovery and the accumulation of strain due to cycled stress. Permanent strain was observed at high stress but only up to 3% of the maximum strain. Creep recovery was under predicted by the nonlinear model, while cycled stress showed less than 3% difference for the first cycle but then over predicted the response above 1000 cycles by 4-14% at high stress. The results demonstrate the complex response observed with structural adhesives, and the need for further analytical advancements to describe their behavior.

  9. Experimental design and response surface modelling for optimization of vat dye from water by nano zero valent iron (NZVI).

    PubMed

    Arabi, Simin; Sohrabi, Mahmoud Reza

    2013-01-01

    In this study, NZVI particles was prepared and studied for the removal of vat green 1 dye from aqueous solution. A four-factor central composite design (CCD) combined with response surface modeling (RSM) to evaluate the combined effects of variables as well as optimization was employed for maximizing the dye removal by prepared NZVI based on 30 different experimental data obtained in a batch study. Four independent variables, viz. NZVI dose (0.1-0.9 g/L), pH (1.5-9.5), contact time (20-100 s), and initial dye concentration (10-50 mg/L) were transform to coded values and quadratic model was built to predict the responses. The significant of independent variables and their interactions were tested by the analysis of variance (ANOVA). Adequacy of the model was tested by the correlation between experimental and predicted values of the response and enumeration of prediction errors. The ANOVA results indicated that the proposed model can be used to navigate the design space. Optimization of the variables for maximum adsorption of dye by NZVI particles was performed using quadratic model. The predicted maximum adsorption efficiency (96.97%) under the optimum conditions of the process variables (NZVI dose 0.5 g/L, pH 4, contact time 60 s, and initial dye concentration 30 mg/L) was very close to the experimental value (96.16%) determined in batch experiment. In the optimization, R2 and R2adj correlation coefficients for the model were evaluated as 0.95 and 0.90, respectively.

  10. Modulation of the error-related negativity by response conflict.

    PubMed

    Danielmeier, Claudia; Wessel, Jan R; Steinhauser, Marco; Ullsperger, Markus

    2009-11-01

    An arrow version of the Eriksen flanker task was employed to investigate the influence of conflict on the error-related negativity (ERN). The degree of conflict was modulated by varying the distance between flankers and the target arrow (CLOSE and FAR conditions). Error rates and reaction time data from a behavioral experiment were used to adapt a connectionist model of this task. This model was based on the conflict monitoring theory and simulated behavioral and event-related potential data. The computational model predicted an increased ERN amplitude in FAR incompatible (the low-conflict condition) compared to CLOSE incompatible errors (the high-conflict condition). A subsequent ERP experiment confirmed the model predictions. The computational model explains this finding with larger post-response conflict in far trials. In addition, data and model predictions of the N2 and the LRP support the conflict interpretation of the ERN.

  11. Using short-term evidence to predict six-month outcomes in clinical trials of signs and symptoms in rheumatoid arthritis.

    PubMed

    Nixon, Richard M; Bansback, Nick; Stevens, John W; Brennan, Alan; Madan, Jason

    2009-01-01

    A model is presented to generate a distribution for the probability of an ACR response at six months for a new treatment for rheumatoid arthritis given evidence from a one- or three-month clinical trial. The model is based on published evidence from 11 randomized controlled trials on existing treatments. A hierarchical logistic regression model is used to find the relationship between the proportion of patients achieving ACR20 and ACR50 at one and three months and the proportion at six months. The model is assessed by Bayesian predictive P-values that demonstrate that the model fits the data well. The model can be used to predict the number of patients with an ACR response for proposed six-month clinical trials given data from clinical trials of one or three months duration. Copyright 2008 John Wiley & Sons, Ltd.

  12. Using a GIS model to assess terrestrial salamander response to alternative forest management plans

    Treesearch

    Eric J. Gustafson; Nathan L. Murphy; Thomas R. Crow

    2001-01-01

    A GIS model predicting the spatial distribution of terrestrial salamander abundance based on topography and forest age was developed using parameters derived from the literature. The model was tested by sampling salamander abundance across the full range of site conditions used in the model. A regression of the predictions of our GIS model against these sample data...

  13. Posttest analysis of the 1:6-scale reinforced concrete containment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeiffer, P.A.; Kennedy, J.M.; Marchertas, A.H.

    A prediction of the response of the Sandia National Laboratories 1:6- scale reinforced concrete containment model test was made by Argonne National Laboratory. ANL along with nine other organizations performed a detailed nonlinear response analysis of the 1:6-scale model containment subjected to overpressurization in the fall of 1986. The two-dimensional code TEMP-STRESS and the three-dimensional NEPTUNE code were utilized (1) to predict the global response of the structure, (2) to identify global failure sites and the corresponding failure pressures and (3) to identify some local failure sites and pressure levels. A series of axisymmetric models was studied with the two-dimensionalmore » computer program TEMP-STRESS. The comparison of these pretest computations with test data from the containment model has provided a test for the capability of the respective finite element codes to predict global failure modes, and hence serves as a validation of these codes. Only the two-dimensional analyses will be discussed in this paper. 3 refs., 10 figs.« less

  14. Evaluation of Finite-Rate Gas/Surface Interaction Models for a Carbon Based Ablator

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Goekcen, Tahir

    2015-01-01

    Two sets of finite-rate gas-surface interaction model between air and the carbon surface are studied. The first set is an engineering model with one-way chemical reactions, and the second set is a more detailed model with two-way chemical reactions. These two proposed models intend to cover the carbon surface ablation conditions including the low temperature rate-controlled oxidation, the mid-temperature diffusion-controlled oxidation, and the high temperature sublimation. The prediction of carbon surface recession is achieved by coupling a material thermal response code and a Navier-Stokes flow code. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and Ablation Program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting full Navier-Stokes equations using Data Parallel Line Relaxation method. Recession analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities with heat fluxes ranging from 45 to 1100 wcm2 are performed and compared with data for model validation. The ablating material used in these arc-jet tests is Phenolic Impregnated Carbon Ablator. Additionally, computational predictions of surface recession and shape change are in good agreement with measurement for arc-jet conditions of Small Probe Reentry Investigation for Thermal Protection System Engineering.

  15. Local air gap thickness and contact area models for realistic simulation of human thermo-physiological response

    NASA Astrophysics Data System (ADS)

    Psikuta, Agnes; Mert, Emel; Annaheim, Simon; Rossi, René M.

    2018-02-01

    To evaluate the quality of new energy-saving and performance-supporting building and urban settings, the thermal sensation and comfort models are often used. The accuracy of these models is related to accurate prediction of the human thermo-physiological response that, in turn, is highly sensitive to the local effect of clothing. This study aimed at the development of an empirical regression model of the air gap thickness and the contact area in clothing to accurately simulate human thermal and perceptual response. The statistical model predicted reliably both parameters for 14 body regions based on the clothing ease allowances. The effect of the standard error in air gap prediction on the thermo-physiological response was lower than the differences between healthy humans. It was demonstrated that currently used assumptions and methods for determination of the air gap thickness can produce a substantial error for all global, mean, and local physiological parameters, and hence, lead to false estimation of the resultant physiological state of the human body, thermal sensation, and comfort. Thus, this model may help researchers to strive for improvement of human thermal comfort, health, productivity, safety, and overall sense of well-being with simultaneous reduction of energy consumption and costs in built environment.

  16. Food-web models predict species abundances in response to habitat change.

    PubMed

    Gotelli, Nicholas J; Ellison, Aaron M

    2006-10-01

    Plant and animal population sizes inevitably change following habitat loss, but the mechanisms underlying these changes are poorly understood. We experimentally altered habitat volume and eliminated top trophic levels of the food web of invertebrates that inhabit rain-filled leaves of the carnivorous pitcher plant Sarracenia purpurea. Path models that incorporated food-web structure better predicted population sizes of food-web constituents than did simple keystone species models, models that included only autecological responses to habitat volume, or models including both food-web structure and habitat volume. These results provide the first experimental confirmation that trophic structure can determine species abundances in the face of habitat loss.

  17. Mechanics Model of Plug Welding

    NASA Technical Reports Server (NTRS)

    Zuo, Q. K.; Nunes, A. C., Jr.

    2015-01-01

    An analytical model has been developed for the mechanics of friction plug welding. The model accounts for coupling of plastic deformation (material flow) and thermal response (plastic heating). The model predictions of the torque, energy, and pull force on the plug were compared to the data of a recent experiment, and the agreements between predictions and data are encouraging.

  18. Straightening Beta: Overdispersion of Lethal Chromosome Aberrations following Radiotherapeutic Doses Leads to Terminal Linearity in the Alpha–Beta Model

    PubMed Central

    Shuryak, Igor; Loucas, Bradford D.; Cornforth, Michael N.

    2017-01-01

    Recent technological advances allow precise radiation delivery to tumor targets. As opposed to more conventional radiotherapy—where multiple small fractions are given—in some cases, the preferred course of treatment may involve only a few (or even one) large dose(s) per fraction. Under these conditions, the choice of appropriate radiobiological model complicates the tasks of predicting radiotherapy outcomes and designing new treatment regimens. The most commonly used model for this purpose is the venerable linear-quadratic (LQ) formalism as it applies to cell survival. However, predictions based on the LQ model are frequently at odds with data following very high acute doses. In particular, although the LQ predicts a continuously bending dose–response relationship for the logarithm of cell survival, empirical evidence over the high-dose region suggests that the survival response is instead log-linear with dose. Here, we show that the distribution of lethal chromosomal lesions among individual human cells (lymphocytes and fibroblasts) exposed to gamma rays and X rays is somewhat overdispersed, compared with the Poisson distribution. Further, we show that such overdispersion affects the predicted dose response for cell survival (the fraction of cells with zero lethal lesions). This causes the dose response to approximate log-linear behavior at high doses, even when the mean number of lethal lesions per cell is well fitted by the continuously curving LQ model. Accounting for overdispersion of lethal lesions provides a novel, mechanistically based explanation for the observed shapes of cell survival dose responses that, in principle, may offer a tractable and clinically useful approach for modeling the effects of high doses per fraction. PMID:29312888

  19. Model of human dynamic orientation. Ph.D. Thesis; [associated with vestibular stimuli

    NASA Technical Reports Server (NTRS)

    Ormsby, C. C.

    1974-01-01

    The dynamics associated with the perception of orientation were modelled for near-threshold and suprathreshold vestibular stimuli. A model of the information available at the peripheral sensors which was consistent with available neurophysiologic data was developed and served as the basis for the models of the perceptual responses. The central processor was assumed to utilize the information from the peripheral sensors in an optimal (minimum mean square error) manner to produce the perceptual estimates of dynamic orientation. This assumption, coupled with the models of sensory information, determined the form of the model for the central processor. The problem of integrating information from the semi-circular canals and the otoliths to predict the perceptual response to motions which stimulated both organs was studied. A model was developed which was shown to be useful in predicting the perceptual response to multi-sensory stimuli.

  20. Experimental investigation of biodynamic human body models subjected to whole-body vibration during a vehicle ride.

    PubMed

    Taskin, Yener; Hacioglu, Yuksel; Ortes, Faruk; Karabulut, Derya; Arslan, Yunus Ziya

    2018-02-06

    In this study, responses of biodynamic human body models to whole-body vibration during a vehicle ride were investigated. Accelerations were acquired from three different body parts, such as the head, upper torso and lower torso, of 10 seated passengers during a car ride while two different road conditions were considered. The same multipurpose vehicle was used during all experiments. Additionally, by two widely used biodynamic models in the literature, a set of simulations were run to obtain theoretical accelerations of the models and were compared with those obtained experimentally. To sustain a quantified comparison between experimental and theoretical approaches, the root mean square acceleration and acceleration spectral density were calculated. Time and frequency responses of the models demonstrated that neither of the models showed the best prediction performance of the human body behaviour in all cases, indicating that further models are required for better prediction of the human body responses.

  1. Improved darunavir genotypic mutation score predicting treatment response for patients infected with HIV-1 subtype B and non-subtype B receiving a salvage regimen.

    PubMed

    De Luca, Andrea; Flandre, Philippe; Dunn, David; Zazzi, Maurizio; Wensing, Annemarie; Santoro, Maria Mercedes; Günthard, Huldrych F; Wittkop, Linda; Kordossis, Theodoros; Garcia, Federico; Castagna, Antonella; Cozzi-Lepri, Alessandro; Churchill, Duncan; De Wit, Stéphane; Brockmeyer, Norbert H; Imaz, Arkaitz; Mussini, Cristina; Obel, Niels; Perno, Carlo Federico; Roca, Bernardino; Reiss, Peter; Schülter, Eugen; Torti, Carlo; van Sighem, Ard; Zangerle, Robert; Descamps, Diane

    2016-05-01

    The objective of this study was to improve the prediction of the impact of HIV-1 protease mutations in different viral subtypes on virological response to darunavir. Darunavir-containing treatment change episodes (TCEs) in patients previously failing PIs were selected from large European databases. HIV-1 subtype B-infected patients were used as the derivation dataset and HIV-1 non-B-infected patients were used as the validation dataset. The adjusted association of each mutation with week 8 HIV RNA change from baseline was analysed by linear regression. A prediction model was derived based on best subset least squares estimation with mutational weights corresponding to regression coefficients. Virological outcome prediction accuracy was compared with that from existing genotypic resistance interpretation systems (GISs) (ANRS 2013, Rega 9.1.0 and HIVdb 7.0). TCEs were selected from 681 subtype B-infected and 199 non-B-infected adults. Accompanying drugs were NRTIs in 87%, NNRTIs in 27% and raltegravir or maraviroc or enfuvirtide in 53%. The prediction model included weighted protease mutations, HIV RNA, CD4 and activity of accompanying drugs. The model's association with week 8 HIV RNA change in the subtype B (derivation) set was R(2) = 0.47 [average squared error (ASE) = 0.67, P < 10(-6)]; in the non-B (validation) set, ASE was 0.91. Accuracy investigated by means of area under the receiver operating characteristic curves with a binary response (above the threshold value of HIV RNA reduction) showed that our final model outperformed models with existing interpretation systems in both training and validation sets. A model with a new darunavir-weighted mutation score outperformed existing GISs in both B and non-B subtypes in predicting virological response to darunavir. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Composite Cure Process Modeling and Simulations using COMPRO(Registered Trademark) and Validation of Residual Strains using Fiber Optics Sensors

    NASA Technical Reports Server (NTRS)

    Sreekantamurthy, Thammaiah; Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.

    2016-01-01

    Composite cure process induced residual strains and warping deformations in composite components present significant challenges in the manufacturing of advanced composite structure. As a part of the Manufacturing Process and Simulation initiative of the NASA Advanced Composite Project (ACP), research is being conducted on the composite cure process by developing an understanding of the fundamental mechanisms by which the process induced factors influence the residual responses. In this regard, analytical studies have been conducted on the cure process modeling of composite structural parts with varied physical, thermal, and resin flow process characteristics. The cure process simulation results were analyzed to interpret the cure response predictions based on the underlying physics incorporated into the modeling tool. In the cure-kinetic analysis, the model predictions on the degree of cure, resin viscosity and modulus were interpreted with reference to the temperature distribution in the composite panel part and tool setup during autoclave or hot-press curing cycles. In the fiber-bed compaction simulation, the pore pressure and resin flow velocity in the porous media models, and the compaction strain responses under applied pressure were studied to interpret the fiber volume fraction distribution predictions. In the structural simulation, the effect of temperature on the resin and ply modulus, and thermal coefficient changes during curing on predicted mechanical strains and chemical cure shrinkage strains were studied to understand the residual strains and stress response predictions. In addition to computational analysis, experimental studies were conducted to measure strains during the curing of laminated panels by means of optical fiber Bragg grating sensors (FBGs) embedded in the resin impregnated panels. The residual strain measurements from laboratory tests were then compared with the analytical model predictions. The paper describes the cure process procedures and residual strain predications, and discusses pertinent experimental results from the validation studies.

  3. BAYESIAN METHODS FOR REGIONAL-SCALE EUTROPHICATION MODELS. (R830887)

    EPA Science Inventory

    We demonstrate a Bayesian classification and regression tree (CART) approach to link multiple environmental stressors to biological responses and quantify uncertainty in model predictions. Such an approach can: (1) report prediction uncertainty, (2) be consistent with the amou...

  4. Advanced Computational Modeling Approaches for Shock Response Prediction

    NASA Technical Reports Server (NTRS)

    Derkevorkian, Armen; Kolaini, Ali R.; Peterson, Lee

    2015-01-01

    Motivation: (1) The activation of pyroshock devices such as explosives, separation nuts, pin-pullers, etc. produces high frequency transient structural response, typically from few tens of Hz to several hundreds of kHz. (2) Lack of reliable analytical tools makes the prediction of appropriate design and qualification test levels a challenge. (3) In the past few decades, several attempts have been made to develop methodologies that predict the structural responses to shock environments. (4) Currently, there is no validated approach that is viable to predict shock environments overt the full frequency range (i.e., 100 Hz to 10 kHz). Scope: (1) Model, analyze, and interpret space structural systems with complex interfaces and discontinuities, subjected to shock loads. (2) Assess the viability of a suite of numerical tools to simulate transient, non-linear solid mechanics and structural dynamics problems, such as shock wave propagation.

  5. Fine-scale habitat modeling of a top marine predator: do prey data improve predictive capacity?

    PubMed

    Torres, Leigh G; Read, Andrew J; Halpin, Patrick

    2008-10-01

    Predators and prey assort themselves relative to each other, the availability of resources and refuges, and the temporal and spatial scale of their interaction. Predictive models of predator distributions often rely on these relationships by incorporating data on environmental variability and prey availability to determine predator habitat selection patterns. This approach to predictive modeling holds true in marine systems where observations of predators are logistically difficult, emphasizing the need for accurate models. In this paper, we ask whether including prey distribution data in fine-scale predictive models of bottlenose dolphin (Tursiops truncatus) habitat selection in Florida Bay, Florida, U.S.A., improves predictive capacity. Environmental characteristics are often used as predictor variables in habitat models of top marine predators with the assumption that they act as proxies of prey distribution. We examine the validity of this assumption by comparing the response of dolphin distribution and fish catch rates to the same environmental variables. Next, the predictive capacities of four models, with and without prey distribution data, are tested to determine whether dolphin habitat selection can be predicted without recourse to describing the distribution of their prey. The final analysis determines the accuracy of predictive maps of dolphin distribution produced by modeling areas of high fish catch based on significant environmental characteristics. We use spatial analysis and independent data sets to train and test the models. Our results indicate that, due to high habitat heterogeneity and the spatial variability of prey patches, fine-scale models of dolphin habitat selection in coastal habitats will be more successful if environmental variables are used as predictor variables of predator distributions rather than relying on prey data as explanatory variables. However, predictive modeling of prey distribution as the response variable based on environmental variability did produce high predictive performance of dolphin habitat selection, particularly foraging habitat.

  6. Round-robin analysis of the behavior of a 1:6-scale reinforced concrete containment model pressurized to failure: Posttest evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clauss, D.B.

    A 1:6-scale model of a reinforced concrete containment building was pressurized incrementally to failure at a remote site at Sandia National Laboratories. The response of the model was recorded with more than 1000 channels of data (primarily strain and displacement measurements) at 37 discrete pressure levels. The primary objective of this test was to generate data that could be used to validate methods for predicting the performance of containment buildings subject to loads beyond their design basis. Extensive analyses were conducted before the test to predict the behavior of the model. Ten organizations in Europe and the US conducted independentmore » analyses of the model and contributed to a report on the pretest predictions. Predictions included structural response at certain predetermined locations in the model as well as capacity and failure mode. This report discusses comparisons between the pretest predictions and the experimental results. Posttest evaluations that were conducted to provide additional insight into the model behavior are also described. The significance of the analysis and testing of the 1:6-scale model to performance evaluations of actual containments subject to beyond design basis loads is also discussed. 70 refs., 428 figs., 24 tabs.« less

  7. Key Process Uncertainties in Soil Carbon Dynamics: Comparing Multiple Model Structures and Observational Meta-analysis

    NASA Astrophysics Data System (ADS)

    Sulman, B. N.; Moore, J.; Averill, C.; Abramoff, R. Z.; Bradford, M.; Classen, A. T.; Hartman, M. D.; Kivlin, S. N.; Luo, Y.; Mayes, M. A.; Morrison, E. W.; Riley, W. J.; Salazar, A.; Schimel, J.; Sridhar, B.; Tang, J.; Wang, G.; Wieder, W. R.

    2016-12-01

    Soil carbon (C) dynamics are crucial to understanding and predicting C cycle responses to global change and soil C modeling is a key tool for understanding these dynamics. While first order model structures have historically dominated this area, a recent proliferation of alternative model structures representing different assumptions about microbial activity and mineral protection is providing new opportunities to explore process uncertainties related to soil C dynamics. We conducted idealized simulations of soil C responses to warming and litter addition using models from five research groups that incorporated different sets of assumptions about processes governing soil C decomposition and stabilization. We conducted a meta-analysis of published warming and C addition experiments for comparison with simulations. Assumptions related to mineral protection and microbial dynamics drove strong differences among models. In response to C additions, some models predicted long-term C accumulation while others predicted transient increases that were counteracted by accelerating decomposition. In experimental manipulations, doubling litter addition did not change soil C stocks in studies spanning as long as two decades. This result agreed with simulations from models with strong microbial growth responses and limited mineral sorption capacity. In observations, warming initially drove soil C loss via increased CO2 production, but in some studies soil C rebounded and increased over decadal time scales. In contrast, all models predicted sustained C losses under warming. The disagreement with experimental results could be explained by physiological or community-level acclimation, or by warming-related changes in plant growth. In addition to the role of microbial activity, assumptions related to mineral sorption and protected C played a key role in driving long-term model responses. In general, simulations were similar in their initial responses to perturbations but diverged over decadal time scales. This suggests that more long-term soil experiments may be necessary to resolve important process uncertainties related to soil C storage. We also suggest future experiments examine how microbial activity responds to warming under a range of soil clay contents and in concert with changes in litter inputs.

  8. Finite Element Modeling of the Buckling Response of Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.

    2002-01-01

    A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.

  9. Towards a Rigorous Assessment of Systems Biology Models: The DREAM3 Challenges

    PubMed Central

    Prill, Robert J.; Marbach, Daniel; Saez-Rodriguez, Julio; Sorger, Peter K.; Alexopoulos, Leonidas G.; Xue, Xiaowei; Clarke, Neil D.; Altan-Bonnet, Gregoire; Stolovitzky, Gustavo

    2010-01-01

    Background Systems biology has embraced computational modeling in response to the quantitative nature and increasing scale of contemporary data sets. The onslaught of data is accelerating as molecular profiling technology evolves. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) is a community effort to catalyze discussion about the design, application, and assessment of systems biology models through annual reverse-engineering challenges. Methodology and Principal Findings We describe our assessments of the four challenges associated with the third DREAM conference which came to be known as the DREAM3 challenges: signaling cascade identification, signaling response prediction, gene expression prediction, and the DREAM3 in silico network challenge. The challenges, based on anonymized data sets, tested participants in network inference and prediction of measurements. Forty teams submitted 413 predicted networks and measurement test sets. Overall, a handful of best-performer teams were identified, while a majority of teams made predictions that were equivalent to random. Counterintuitively, combining the predictions of multiple teams (including the weaker teams) can in some cases improve predictive power beyond that of any single method. Conclusions DREAM provides valuable feedback to practitioners of systems biology modeling. Lessons learned from the predictions of the community provide much-needed context for interpreting claims of efficacy of algorithms described in the scientific literature. PMID:20186320

  10. Open source machine-learning algorithms for the prediction of optimal cancer drug therapies.

    PubMed

    Huang, Cai; Mezencev, Roman; McDonald, John F; Vannberg, Fredrik

    2017-01-01

    Precision medicine is a rapidly growing area of modern medical science and open source machine-learning codes promise to be a critical component for the successful development of standardized and automated analysis of patient data. One important goal of precision cancer medicine is the accurate prediction of optimal drug therapies from the genomic profiles of individual patient tumors. We introduce here an open source software platform that employs a highly versatile support vector machine (SVM) algorithm combined with a standard recursive feature elimination (RFE) approach to predict personalized drug responses from gene expression profiles. Drug specific models were built using gene expression and drug response data from the National Cancer Institute panel of 60 human cancer cell lines (NCI-60). The models are highly accurate in predicting the drug responsiveness of a variety of cancer cell lines including those comprising the recent NCI-DREAM Challenge. We demonstrate that predictive accuracy is optimized when the learning dataset utilizes all probe-set expression values from a diversity of cancer cell types without pre-filtering for genes generally considered to be "drivers" of cancer onset/progression. Application of our models to publically available ovarian cancer (OC) patient gene expression datasets generated predictions consistent with observed responses previously reported in the literature. By making our algorithm "open source", we hope to facilitate its testing in a variety of cancer types and contexts leading to community-driven improvements and refinements in subsequent applications.

  11. Prediction of Poor Ovarian response by Biochemical and Biophysical Markers: A Logistic Regression Model.

    PubMed

    Jaiswar, S P; Natu, S M; Sujata; Sankhwar, P L; Manjari, Gupta

    2015-12-01

    To study correlation between ovarian reserve with biophysical markers (antral follicle count and ovarian volume) and biochemical markers (S. FSH, S. Inhibin B, and S. AMH) and use these markers to predict poor ovarian response to ovarian induction. This is a prospective observational study. One hundred infertile women attending the Obst & Gynae Dept, KGMU were recruited. Blood samples were collected on day 2/day 3 for assessment of S. FSH, S. Inhibin B, and S. AMH and TVS were done for antral follicle count and ovarian volume. Clomephene citrate 100 mg 1OD was given from day 2 to 6, and patients were followed up with serial USG measurements. The numbers of dominant follicles (> or = 14 mm) at the time of hCG administration were counted. Patients with <3 follicles in the 1st cycle were subjected to the 2nd cycle of clomephene 100 mg 1OD from day 2 to day 6 with Inj HMG 150 IU given i.m. starting from day 8 and every alternate day until at least one leading follicle attained ≥18 mm. Development of <3 follicles at end of the 2nd cycle was considered as poor response. Univariate analyses showed that s. inhibin B presented the highest (ROCAUC = 0.862) discriminating potential for predicting poor ovarian response, In multivariate logistic regression model, the variables age, FSH, AMH, INHIBIN B, and AFC remained significant, and the resulting model showed a predicted accuracy of 84.4 %. A derived multimarker computation by a logistic regression model for predicting poor ovarian response was obtained through this study. Thus, potential poor responders could be identified easily, and appropriate ovarian stimulation protocol could be devised for such pts.

  12. The perfect family: decision making in biparental care.

    PubMed

    Akçay, Erol; Roughgarden, Joan

    2009-10-13

    Previous theoretical work on parental decisions in biparental care has emphasized the role of the conflict between evolutionary interests of parents in these decisions. A prominent prediction from this work is that parents should compensate for decreases in each other's effort, but only partially so. However, experimental tests that manipulate parents and measure their responses fail to confirm this prediction. At the same time, the process of parental decision making has remained unexplored theoretically. We develop a model to address the discrepancy between experiments and the theoretical prediction, and explore how assuming different decision making processes changes the prediction from the theory. We assume that parents make decisions in behavioral time. They have a fixed time budget, and allocate it between two parental tasks: provisioning the offspring and defending the nest. The proximate determinant of the allocation decisions are parents' behavioral objectives. We assume both parents aim to maximize the offspring production from the nest. Experimental manipulations change the shape of the nest production function. We consider two different scenarios for how parents make decisions: one where parents communicate with each other and act together (the perfect family), and one where they do not communicate, and act independently (the almost perfect family). The perfect family model is able to generate all the types of responses seen in experimental studies. The kind of response predicted depends on the nest production function, i.e. how parents' allocations affect offspring production, and the type of experimental manipulation. In particular, we find that complementarity of parents' allocations promotes matching responses. In contrast, the relative responses do not depend on the type of manipulation in the almost perfect family model. These results highlight the importance of the interaction between nest production function and how parents make decisions, factors that have largely been overlooked in previous models.

  13. A simplified approach to quasi-linear viscoelastic modeling

    PubMed Central

    Nekouzadeh, Ali; Pryse, Kenneth M.; Elson, Elliot L.; Genin, Guy M.

    2007-01-01

    The fitting of quasi-linear viscoelastic (QLV) constitutive models to material data often involves somewhat cumbersome numerical convolution. A new approach to treating quasi-linearity in one dimension is described and applied to characterize the behavior of reconstituted collagen. This approach is based on a new principle for including nonlinearity and requires considerably less computation than other comparable models for both model calibration and response prediction, especially for smoothly applied stretching. Additionally, the approach allows relaxation to adapt with the strain history. The modeling approach is demonstrated through tests on pure reconstituted collagen. Sequences of “ramp-and-hold” stretching tests were applied to rectangular collagen specimens. The relaxation force data from the “hold” was used to calibrate a new “adaptive QLV model” and several models from literature, and the force data from the “ramp” was used to check the accuracy of model predictions. Additionally, the ability of the models to predict the force response on a reloading of the specimen was assessed. The “adaptive QLV model” based on this new approach predicts collagen behavior comparably to or better than existing models, with much less computation. PMID:17499254

  14. The role of clinical variables, neuropsychological performance and SLC6A4 and COMT gene polymorphisms on the prediction of early response to fluoxetine in major depressive disorder.

    PubMed

    Gudayol-Ferré, Esteve; Herrera-Guzmán, Ixchel; Camarena, Beatriz; Cortés-Penagos, Carlos; Herrera-Abarca, Jorge E; Martínez-Medina, Patricia; Cruz, David; Hernández, Sandra; Genis, Alma; Carrillo-Guerrero, Mariana Y; Avilés Reyes, Rubén; Guàrdia-Olmos, Joan

    2010-12-01

    Major depressive disorder (MDD) is treated with antidepressants, but only between 50% and 70% of the patients respond to the initial treatment. Several authors suggested different factors that could predict antidepressant response, including clinical, psychophysiological, neuropsychological, neuroimaging, and genetic variables. However, these different predictors present poor prognostic sensitivity and specificity by themselves. The aim of our work is to study the possible role of clinical variables, neuropsychological performance, and the 5HTTLPR, rs25531, and val108/58Met COMT polymorphisms in the prediction of the response to fluoxetine after 4weeks of treatment in a sample of patient with MDD. 64 patients with MDD were genotyped according to the above-mentioned polymorphisms, and were clinically and neuropsychologically assessed before a 4-week fluoxetine treatment. Fluoxetine response was assessed by using the Hamilton Depression Rating Scale. We carried out a binary logistic regression model for the potential predictive variables. Out of the clinical variables studied, only the number of anxiety disorders comorbid with MDD have predicted a poor response to the treatment. A combination of a good performance in variables of attention and low performance in planning could predict a good response to fluoxetine in patients with MDD. None of the genetic variables studied had predictive value in our model. The possible placebo effect has not been controlled. Our study is focused on response prediction but not in remission prediction. Our work suggests that the combination of the number of comorbid anxiety disorders, an attentional variable, and two planning variables makes it possible to correctly classify 82% of the depressed patients who responded to the treatment with fluoxetine, and 74% of the patients who did not respond to that treatment. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Characterizing and modeling the free recovery and constrained recovery behavior of a polyurethane shape memory polymer

    NASA Astrophysics Data System (ADS)

    Volk, Brent L.; Lagoudas, Dimitris C.; Maitland, Duncan J.

    2011-09-01

    In this work, tensile tests and one-dimensional constitutive modeling were performed on a high recovery force polyurethane shape memory polymer that is being considered for biomedical applications. The tensile tests investigated the free recovery (zero load) response as well as the constrained displacement recovery (stress recovery) response at extension values up to 25%, and two consecutive cycles were performed during each test. The material was observed to recover 100% of the applied deformation when heated at zero load in the second thermomechanical cycle, and a stress recovery of 1.5-4.2 MPa was observed for the constrained displacement recovery experiments. After the experiments were performed, the Chen and Lagoudas model was used to simulate and predict the experimental results. The material properties used in the constitutive model—namely the coefficients of thermal expansion, shear moduli, and frozen volume fraction—were calibrated from a single 10% extension free recovery experiment. The model was then used to predict the material response for the remaining free recovery and constrained displacement recovery experiments. The model predictions match well with the experimental data.

  16. Pseudomonas aeruginosa dose response and bathing water infection.

    PubMed

    Roser, D J; van den Akker, B; Boase, S; Haas, C N; Ashbolt, N J; Rice, S A

    2014-03-01

    Pseudomonas aeruginosa is the opportunistic pathogen mostly implicated in folliculitis and acute otitis externa in pools and hot tubs. Nevertheless, infection risks remain poorly quantified. This paper reviews disease aetiologies and bacterial skin colonization science to advance dose-response theory development. Three model forms are identified for predicting disease likelihood from pathogen density. Two are based on Furumoto & Mickey's exponential 'single-hit' model and predict infection likelihood and severity (lesions/m2), respectively. 'Third-generation', mechanistic, dose-response algorithm development is additionally scoped. The proposed formulation integrates dispersion, epidermal interaction, and follicle invasion. The review also details uncertainties needing consideration which pertain to water quality, outbreaks, exposure time, infection sites, biofilms, cerumen, environmental factors (e.g. skin saturation, hydrodynamics), and whether P. aeruginosa is endogenous or exogenous. The review's findings are used to propose a conceptual infection model and identify research priorities including pool dose-response modelling, epidermis ecology and infection likelihood-based hygiene management.

  17. Predictability of the 1997 and 1998 South Asian Summer Monsoons

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfred D.; Wu, Man Li

    2000-01-01

    The predictability of the 1997 and 1998 south Asian summer monsoon winds is examined from an ensemble of 10 Atmospheric General Circulation Model (AGCM) simulations with prescribed sea surface temperatures (SSTs) and soil moisture, The simulations are started in September 1996 so that they have lost all memory of the atmospheric initial conditions for the periods of interest. The model simulations show that the 1998 monsoon is considerably more predictable than the 1997 monsoon. During May and June of 1998 the predictability of the low-level wind anomalies is largely associated with a local response to anomalously warm Indian Ocean SSTs. Predictability increases late in the season (July and August) as a result of the strengthening of the anomalous Walker circulation and the associated development of easterly low level wind anomalies that extend westward across India and the Arabian Sea. During these months the model is also the most skillful with the observations showing a similar late-season westward extension of the easterly CD wind anomalies. The model shows little predictability or skill in the low level winds over southeast Asia during, 1997. Predictable wind anomalies do occur over the western Indian Ocean and Indonesia, however, over the Indian Ocean they are a response to SST anomalies that were wind driven and they show no skill. The reduced predictability in the low level winds during 1997 appears to be the result of a weaker (compared with 1998) simulated anomalous Walker circulation, while the reduced skill is associated with pronounced intraseasonal activity that is not well captured by the model. Remarkably, the model does produce an ensemble mean Madden-Julian Oscillation (MJO) response that is approximately in phase with (though weaker than) the observed MJ0 anomalies. This is consistent with the idea that SST coupling may play an important role in the MJO.

  18. Prospective validation of pathologic complete response models in rectal cancer: Transferability and reproducibility.

    PubMed

    van Soest, Johan; Meldolesi, Elisa; van Stiphout, Ruud; Gatta, Roberto; Damiani, Andrea; Valentini, Vincenzo; Lambin, Philippe; Dekker, Andre

    2017-09-01

    Multiple models have been developed to predict pathologic complete response (pCR) in locally advanced rectal cancer patients. Unfortunately, validation of these models normally omit the implications of cohort differences on prediction model performance. In this work, we will perform a prospective validation of three pCR models, including information whether this validation will target transferability or reproducibility (cohort differences) of the given models. We applied a novel methodology, the cohort differences model, to predict whether a patient belongs to the training or to the validation cohort. If the cohort differences model performs well, it would suggest a large difference in cohort characteristics meaning we would validate the transferability of the model rather than reproducibility. We tested our method in a prospective validation of three existing models for pCR prediction in 154 patients. Our results showed a large difference between training and validation cohort for one of the three tested models [Area under the Receiver Operating Curve (AUC) cohort differences model: 0.85], signaling the validation leans towards transferability. Two out of three models had a lower AUC for validation (0.66 and 0.58), one model showed a higher AUC in the validation cohort (0.70). We have successfully applied a new methodology in the validation of three prediction models, which allows us to indicate if a validation targeted transferability (large differences between training/validation cohort) or reproducibility (small cohort differences). © 2017 American Association of Physicists in Medicine.

  19. Chain pooling to minimize prediction error in subset regression. [Monte Carlo studies using population models

    NASA Technical Reports Server (NTRS)

    Holms, A. G.

    1974-01-01

    Monte Carlo studies using population models intended to represent response surface applications are reported. Simulated experiments were generated by adding pseudo random normally distributed errors to population values to generate observations. Model equations were fitted to the observations and the decision procedure was used to delete terms. Comparison of values predicted by the reduced models with the true population values enabled the identification of deletion strategies that are approximately optimal for minimizing prediction errors.

  20. Predicting landscape vegetation dynamics using state-and-transition simulation models

    Treesearch

    Colin J. Daniel; Leonardo Frid

    2012-01-01

    This paper outlines how state-and-transition simulation models (STSMs) can be used to project changes in vegetation over time across a landscape. STSMs are stochastic, empirical simulation models that use an adapted Markov chain approach to predict how vegetation will transition between states over time, typically in response to interactions between succession,...

  1. Katz model prediction of Caenorhabditis elegans mutagenesis on STS-42

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Katz, Robert; Badhwar, Gautam D.

    1992-01-01

    Response parameters that describe the production of recessive lethal mutations in C. elegans from ionizing radiation are obtained with the Katz track structure model. The authors used models of the space radiation environment and radiation transport to predict and discuss mutation rates for C. elegans on the IML-1 experiment aboard STS-42.

  2. Neural correlates of sensory prediction errors in monkeys: evidence for internal models of voluntary self-motion in the cerebellum.

    PubMed

    Cullen, Kathleen E; Brooks, Jessica X

    2015-02-01

    During self-motion, the vestibular system makes essential contributions to postural stability and self-motion perception. To ensure accurate perception and motor control, it is critical to distinguish between vestibular sensory inputs that are the result of externally applied motion (exafference) and that are the result of our own actions (reafference). Indeed, although the vestibular sensors encode vestibular afference and reafference with equal fidelity, neurons at the first central stage of sensory processing selectively encode vestibular exafference. The mechanism underlying this reafferent suppression compares the brain's motor-based expectation of sensory feedback with the actual sensory consequences of voluntary self-motion, effectively computing the sensory prediction error (i.e., exafference). It is generally thought that sensory prediction errors are computed in the cerebellum, yet it has been challenging to explicitly demonstrate this. We have recently addressed this question and found that deep cerebellar nuclei neurons explicitly encode sensory prediction errors during self-motion. Importantly, in everyday life, sensory prediction errors occur in response to changes in the effector or world (muscle strength, load, etc.), as well as in response to externally applied sensory stimulation. Accordingly, we hypothesize that altering the relationship between motor commands and the actual movement parameters will result in the updating in the cerebellum-based computation of exafference. If our hypothesis is correct, under these conditions, neuronal responses should initially be increased--consistent with a sudden increase in the sensory prediction error. Then, over time, as the internal model is updated, response modulation should decrease in parallel with a reduction in sensory prediction error, until vestibular reafference is again suppressed. The finding that the internal model predicting the sensory consequences of motor commands adapts for new relationships would have important implications for understanding how responses to passive stimulation endure despite the cerebellum's ability to learn new relationships between motor commands and sensory feedback.

  3. A global resource allocation strategy governs growth transition kinetics of Escherichia coli

    PubMed Central

    Erickson, David W; Schink, Severin J.; Patsalo, Vadim; Williamson, James R.; Gerland, Ulrich; Hwa, Terence

    2018-01-01

    A grand challenge of systems biology is to predict the kinetic responses of living systems to perturbations starting from the underlying molecular interactions. Changes in the nutrient environment have long been used to study regulation and adaptation phenomena in microorganisms1–3 and they remain a topic of active investigation4–11. Although much is known about the molecular interactions that govern the regulation of key metabolic processes in response to applied perturbations12–17, they are insufficiently quantified for predictive bottom-up modelling. Here we develop a top-down approach, expanding the recently established coarse-grained proteome allocation models15,18–20 from steady-state growth into the kinetic regime. Using only qualitative knowledge of the underlying regulatory processes and imposing the condition of flux balance, we derive a quantitative model of bacterial growth transitions that is independent of inaccessible kinetic parameters. The resulting flux-controlled regulation model accurately predicts the time course of gene expression and biomass accumulation in response to carbon upshifts and downshifts (for example, diauxic shifts) without adjustable parameters. As predicted by the model and validated by quantitative proteomics, cells exhibit suboptimal recovery kinetics in response to nutrient shifts owing to a rigid strategy of protein synthesis allocation, which is not directed towards alleviating specific metabolic bottlenecks. Our approach does not rely on kinetic parameters, and therefore points to a theoretical framework for describing a broad range of such kinetic processes without detailed knowledge of the underlying biochemical reactions. PMID:29072300

  4. Thermographic evaluation of early melanoma within the vascularized skin using combined non-Newtonian blood flow and bioheat models.

    PubMed

    Bhowmik, Arka; Repaka, Ramjee; Mishra, Subhash C

    2014-10-01

    A theoretical study on vascularized skin model to predict the thermal evaluation criteria of early melanoma using the dynamic thermal imaging technique is presented in this article. Thermographic evaluation of melanoma has been carried out during the thermal recovery of skin from undercooled condition. During thermal recovery, the skin has been exposed to natural convection, radiation, and evaporation. The thermal responses of melanoma have been evaluated by integrating the bioheat model for multi-layered skin with the momentum as well as energy conservation equations for blood flow. Differential changes in the surface thermal response of various melanoma stages except that of the early stage have been determined. It has been predicted that the thermal response due to subsurface blood flow overpowers the response of early melanoma. Hence, the study suggests that the quantification of early melanoma diagnosis using thermography has not reached a matured stage yet. Therefore, the study presents a systematic analysis of various intermediate melanoma stages to determine the thermal evaluation criteria of early melanoma. The comprehensive modeling effort made in this work supports the prediction of the disease outcome and relates the thermal response with the variation in patho-physiological, thermal and geometrical parameters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Adjustment and Validation of the Mathematical Prediction Model for Sweat Rate, Heart Rate and Body Temperature under Outdoor Conditions

    DTIC Science & Technology

    1986-11-01

    Predicting rectal temperature response to work environment and clothing. J. Pppl . PhysioL. 32: 812-822, 1972. 3. Givoni B., Goldman RF: Predicting...heart rote response to work, environment and clothing. J. PppL . PhysioL. 34: 201-204, 1973. 4. Givoni B., Goldman RF: Predicting effects of heat...expenditure with loads while standing or walking very slowly. J. Pppl . Physlol. 43: 477-581, 1877. G. Shapiro Y., Pandolf KB., Breckenridge JR., Goldman RF

  6. Modeling forest ecosystem responses to elevated carbon dioxide and ozone using artificial neural networks.

    PubMed

    Larsen, Peter E; Cseke, Leland J; Miller, R Michael; Collart, Frank R

    2014-10-21

    Rising atmospheric levels of carbon dioxide and ozone will impact productivity and carbon sequestration in forest ecosystems. The scale of this process and the potential economic consequences provide an incentive for the development of models to predict the types and rates of ecosystem responses and feedbacks that result from and influence of climate change. In this paper, we use phenotypic and molecular data derived from the Aspen Free Air CO2 Enrichment site (Aspen-FACE) to evaluate modeling approaches for ecosystem responses to changing conditions. At FACE, it was observed that different aspen clones exhibit clone-specific responses to elevated atmospheric levels of carbon dioxide and ozone. To identify the molecular basis for these observations, we used artificial neural networks (ANN) to examine above and below-ground community phenotype responses to elevated carbon dioxide, elevated ozone and gene expression profiles. The aspen community models generated using this approach identified specific genes and subnetworks of genes associated with variable sensitivities for aspen clones. The ANN model also predicts specific co-regulated gene clusters associated with differential sensitivity to elevated carbon dioxide and ozone in aspen species. The results suggest ANN is an effective approach to predict relevant gene expression changes resulting from environmental perturbation and provides useful information for the rational design of future biological experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Novel model coupling approach for resilience analysis of coastal plant communities.

    PubMed

    Schibalski, Anett; Körner, Katrin; Maier, Martin; Jeltsch, Florian; Schröder, Boris

    2018-06-04

    Resilience is a major research focus covering a wide range of topics from biodiversity conservation to ecosystem (service) management. Model simulations can assess the resilience of, e.g., plant species, measured as the return time to conditions prior to a disturbance. This requires process-based models (PBM) that implement relevant processes like regeneration and reproduction and thus successfully reproduce transient dynamics after disturbances. Such models are often complex and thus limited to either short-term or small-scale applications, whereas many research questions require species predictions across larger spatial and temporal scales. We suggest a framework to couple a PBM and a statistical species distribution model (SDM), which transfers the results of a resilience analysis by the PBM to SDM predictions. The resulting hybrid model combines the advantages of both approaches: the convenient applicability of SDMs and the relevant process detail of PBMs in abrupt environmental change situations. First, we simulate dynamic responses of species communities to a disturbance event with a PBM. We aggregate the response behavior in two resilience metrics: return time and amplitude of the response peak. These metrics are then used to complement long-term SDM projections with dynamic short-term responses to disturbance. To illustrate our framework, we investigate the effect of abrupt short-term groundwater level and salinity changes on coastal vegetation at the German Baltic Sea. We found two example species to be largely resilient, and, consequently, modifications of SDM predictions consisted mostly of smoothing out peaks in the occurrence probability that were not confirmed by the PBM. Discrepancies between SDM- and PBM-predicted species responses were caused by community dynamics simulated in the PBM and absent from the SDM. Although demonstrated with boosted regression trees (SDM) and an existing individual-based model, IBC-grass (PBM), our flexible framework can easily be applied to other PBM and SDM types, as well as other definitions of short-term disturbances or long-term trends of environmental change. Thus, our framework allows accounting for biological feedbacks in the response to short- and long-term environmental changes as a major advancement in predictive vegetation modeling. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Do causal concentration-response functions exist? A critical review of associational and causal relations between fine particulate matter and mortality.

    PubMed

    Cox, Louis Anthony Tony

    2017-08-01

    Concentration-response (C-R) functions relating concentrations of pollutants in ambient air to mortality risks or other adverse health effects provide the basis for many public health risk assessments, benefits estimates for clean air regulations, and recommendations for revisions to existing air quality standards. The assumption that C-R functions relating levels of exposure and levels of response estimated from historical data usefully predict how future changes in concentrations would change risks has seldom been carefully tested. This paper critically reviews literature on C-R functions for fine particulate matter (PM2.5) and mortality risks. We find that most of them describe historical associations rather than valid causal models for predicting effects of interventions that change concentrations. The few papers that explicitly attempt to model causality rely on unverified modeling assumptions, casting doubt on their predictions about effects of interventions. A large literature on modern causal inference algorithms for observational data has been little used in C-R modeling. Applying these methods to publicly available data from Boston and the South Coast Air Quality Management District around Los Angeles shows that C-R functions estimated for one do not hold for the other. Changes in month-specific PM2.5 concentrations from one year to the next do not help to predict corresponding changes in average elderly mortality rates in either location. Thus, the assumption that estimated C-R relations predict effects of pollution-reducing interventions may not be true. Better causal modeling methods are needed to better predict how reducing air pollution would affect public health.

  9. High Cycle Fatigue Prediction for Mistuned Bladed Disks with Fully Coupled Fluid-Structural Interaction

    DTIC Science & Technology

    2006-06-01

    response (time domain) structural vibration model for mistuned rotor bladed disk based on the efficient SNM model has been developed. The vi- bration...airfoil and 3D wing, unsteady vortex shedding of a stationary cylinder, induced vibration of a cylinder, forced vibration of a pitching airfoil, induced... vibration and flutter boundary of 2D NACA 64A010 transonic airfoil, 3D plate wing structural response. The predicted results agree well with benchmark

  10. Modelling Predictors of Molecular Response to Frontline Imatinib for Patients with Chronic Myeloid Leukaemia

    PubMed Central

    Brown, Fred; Adelson, David; White, Deborah; Hughes, Timothy; Chaudhri, Naeem

    2017-01-01

    Background Treatment of patients with chronic myeloid leukaemia (CML) has become increasingly difficult in recent years due to the variety of treatment options available and challenge deciding on the most appropriate treatment strategy for an individual patient. To facilitate the treatment strategy decision, disease assessment should involve molecular response to initial treatment for an individual patient. Patients predicted not to achieve major molecular response (MMR) at 24 months to frontline imatinib may be better treated with alternative frontline therapies, such as nilotinib or dasatinib. The aims of this study were to i) understand the clinical prediction ‘rules’ for predicting MMR at 24 months for CML patients treated with imatinib using clinical, molecular, and cell count observations (predictive factors collected at diagnosis and categorised based on available knowledge) and ii) develop a predictive model for CML treatment management. This predictive model was developed, based on CML patients undergoing imatinib therapy enrolled in the TIDEL II clinical trial with an experimentally identified achieving MMR group and non-achieving MMR group, by addressing the challenge as a machine learning problem. The recommended model was validated externally using an independent data set from King Faisal Specialist Hospital and Research Centre, Saudi Arabia. Principle Findings The common prognostic scores yielded similar sensitivity performance in testing and validation datasets and are therefore good predictors of the positive group. The G-mean and F-score values in our models outperformed the common prognostic scores in testing and validation datasets and are therefore good predictors for both the positive and negative groups. Furthermore, a high PPV above 65% indicated that our models are appropriate for making decisions at diagnosis and pre-therapy. Study limitations include that prior knowledge may change based on varying expert opinions; hence, representing the category boundaries of each predictive factor could dramatically change performance of the models. PMID:28045960

  11. Modelling the propagation of social response during a disease outbreak.

    PubMed

    Fast, Shannon M; González, Marta C; Wilson, James M; Markuzon, Natasha

    2015-03-06

    Epidemic trajectories and associated social responses vary widely between populations, with severe reactions sometimes observed. When confronted with fatal or novel pathogens, people exhibit a variety of behaviours from anxiety to hoarding of medical supplies, overwhelming medical infrastructure and rioting. We developed a coupled network approach to understanding and predicting social response. We couple the disease spread and panic spread processes and model them through local interactions between agents. The social contagion process depends on the prevalence of the disease, its perceived risk and a global media signal. We verify the model by analysing the spread of disease and social response during the 2009 H1N1 outbreak in Mexico City and 2003 severe acute respiratory syndrome and 2009 H1N1 outbreaks in Hong Kong, accurately predicting population-level behaviour. This kind of empirically validated model is critical to exploring strategies for public health intervention, increasing our ability to anticipate the response to infectious disease outbreaks. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Modelling the propagation of social response during a disease outbreak

    PubMed Central

    Fast, Shannon M.; González, Marta C.; Wilson, James M.; Markuzon, Natasha

    2015-01-01

    Epidemic trajectories and associated social responses vary widely between populations, with severe reactions sometimes observed. When confronted with fatal or novel pathogens, people exhibit a variety of behaviours from anxiety to hoarding of medical supplies, overwhelming medical infrastructure and rioting. We developed a coupled network approach to understanding and predicting social response. We couple the disease spread and panic spread processes and model them through local interactions between agents. The social contagion process depends on the prevalence of the disease, its perceived risk and a global media signal. We verify the model by analysing the spread of disease and social response during the 2009 H1N1 outbreak in Mexico City and 2003 severe acute respiratory syndrome and 2009 H1N1 outbreaks in Hong Kong, accurately predicting population-level behaviour. This kind of empirically validated model is critical to exploring strategies for public health intervention, increasing our ability to anticipate the response to infectious disease outbreaks. PMID:25589575

  13. Constitutive modelling of lubricants in concentrated contacts at high slide to roll ratios

    NASA Technical Reports Server (NTRS)

    Tevaarwerk, J. L.

    1985-01-01

    A constitutive lubricant friction model for rolling/sliding concentrated contacts such as gears and cams was developed, based upon the Johnson and Tevaarwerk fluid rheology model developed earlier. The friction model reported herein differs from the earlier rheological models in that very large slide to roll ratios can now be accommodated by modifying the thermal response of the model. Also the elastic response of the fluid has been omitted from the model, thereby making it much simpler for use in the high slide to roll contacts. The effects of this simplification are very minimal on the outcome of the predicted friction losses (less than 1%). In essence then the lubricant friction model developed for the high slide to roll ratios treats the fluid in the concentrated contact as consisting of a nonlinear viscous element that is pressure, temperature, and strain rate dependent in its shear response. The fluid rheological constants required for the prediction of the friction losses at different contact conditions are obtained by traction measurements on several of the currently used gear lubricants. An example calculation, using this model and the fluid parameters obtained from the experiments, shows that it correctly predicts trends and magnitude of gear mesh losses measured elsewhere for the same fluids tested here.

  14. Predicting the sensitivity to ion therapy based on the response to photon irradiation--experimental evidence and mathematical modelling.

    PubMed

    Mohanty, Chitralekha; Zielinska-Chomej, Katarzyna; Edgren, Margareta; Hirayama, Ryoichi; Murakami, Takeshi; Lind, Bengt; Toma-Dasu, Iuliana

    2014-06-01

    The use of ion radiation therapy is growing due to the continuously increasing positive clinical experience obtained. Therefore, there is a high interest in radio-biological experiments comparing the relative efficiency in cell killing of ions and photons as photons are currently the main radiation modality used for cancer treatment. This comparison is particularly important since the treatment planning systems (TPSs) used at the main ion therapy Centers make use of parameters describing the cellular response to photons, respectively ions, determined in vitro. It was, therefore, the aim of this article to compare the effects of high linear energy transfer (LET) ion radiation with low LET photons and determine whether the cellular response to low LET could predict the response to high LET irradiation. Clonogenic cell survival data of five tumor cell lines irradiated with different ion beams of similar, clinically-relevant, LET were studied in relation to response to low LET photons. Two mathematical models were used to fit the data, the repairable-conditionally repairable damage (RCR) model and the linear quadratic (LQ) model. The results indicate that the relative biological efficiency of the high LET radiation assessed with the RCR model could be predicted based only on the response to the low LET irradiation. The particular features of the RCR model indicate that tumor cells showing a large capacity for repairing the damage will have the larger benefit from radiation therapy with ion beams. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. Radiomic biomarkers from PET/CT multi-modality fusion images for the prediction of immunotherapy response in advanced non-small cell lung cancer patients

    NASA Astrophysics Data System (ADS)

    Mu, Wei; Qi, Jin; Lu, Hong; Schabath, Matthew; Balagurunathan, Yoganand; Tunali, Ilke; Gillies, Robert James

    2018-02-01

    Purpose: Investigate the ability of using complementary information provided by the fusion of PET/CT images to predict immunotherapy response in non-small cell lung cancer (NSCLC) patients. Materials and methods: We collected 64 patients diagnosed with primary NSCLC treated with anti PD-1 checkpoint blockade. Using PET/CT images, fused images were created following multiple methodologies, resulting in up to 7 different images for the tumor region. Quantitative image features were extracted from the primary image (PET/CT) and the fused images, which included 195 from primary images and 1235 features from the fusion images. Three clinical characteristics were also analyzed. We then used support vector machine (SVM) classification models to identify discriminant features that predict immunotherapy response at baseline. Results: A SVM built with 87 fusion features and 13 primary PET/CT features on validation dataset had an accuracy and area under the ROC curve (AUROC) of 87.5% and 0.82, respectively, compared to a model built with 113 original PET/CT features on validation dataset 78.12% and 0.68. Conclusion: The fusion features shows better ability to predict immunotherapy response prediction compared to individual image features.

  16. Model-Based Analysis of Cell Cycle Responses to Dynamically Changing Environments

    PubMed Central

    Seaton, Daniel D; Krishnan, J

    2016-01-01

    Cell cycle progression is carefully coordinated with a cell’s intra- and extracellular environment. While some pathways have been identified that communicate information from the environment to the cell cycle, a systematic understanding of how this information is dynamically processed is lacking. We address this by performing dynamic sensitivity analysis of three mathematical models of the cell cycle in Saccharomyces cerevisiae. We demonstrate that these models make broadly consistent qualitative predictions about cell cycle progression under dynamically changing conditions. For example, it is shown that the models predict anticorrelated changes in cell size and cell cycle duration under different environments independently of the growth rate. This prediction is validated by comparison to available literature data. Other consistent patterns emerge, such as widespread nonmonotonic changes in cell size down generations in response to parameter changes. We extend our analysis by investigating glucose signalling to the cell cycle, showing that known regulation of Cln3 translation and Cln1,2 transcription by glucose is sufficient to explain the experimentally observed changes in cell cycle dynamics at different glucose concentrations. Together, these results provide a framework for understanding the complex responses the cell cycle is capable of producing in response to dynamic environments. PMID:26741131

  17. Development of Design Analysis Methods for C/SiC Composite Structures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Mital, Subodh K.; Murthy, Pappu L. N.; Palko, Joseph L.; Cueno, Jacques C.; Koenig, John R.

    2006-01-01

    The stress-strain behavior at room temperature and at 1100 C (2000 F) was measured for two carbon-fiber-reinforced silicon carbide (C/SiC) composite materials: a two-dimensional plain-weave quasi-isotropic laminate and a three-dimensional angle-interlock woven composite. Micromechanics-based material models were developed for predicting the response properties of these two materials. The micromechanics based material models were calibrated by correlating the predicted material property values with the measured values. Four-point beam bending sub-element specimens were fabricated with these two fiber architectures and four-point bending tests were performed at room temperature and at 1100 C. Displacements and strains were measured at various locations along the beam and recorded as a function of load magnitude. The calibrated material models were used in concert with a nonlinear finite element solution to simulate the structural response of these two materials in the four-point beam bending tests. The structural response predicted by the nonlinear analysis method compares favorably with the measured response for both materials and for both test temperatures. Results show that the material models scale up fairly well from coupon to subcomponent level.

  18. Mathematical modeling improves EC50 estimations from classical dose-response curves.

    PubMed

    Nyman, Elin; Lindgren, Isa; Lövfors, William; Lundengård, Karin; Cervin, Ida; Sjöström, Theresia Arbring; Altimiras, Jordi; Cedersund, Gunnar

    2015-03-01

    The β-adrenergic response is impaired in failing hearts. When studying β-adrenergic function in vitro, the half-maximal effective concentration (EC50 ) is an important measure of ligand response. We previously measured the in vitro contraction force response of chicken heart tissue to increasing concentrations of adrenaline, and observed a decreasing response at high concentrations. The classical interpretation of such data is to assume a maximal response before the decrease, and to fit a sigmoid curve to the remaining data to determine EC50 . Instead, we have applied a mathematical modeling approach to interpret the full dose-response curve in a new way. The developed model predicts a non-steady-state caused by a short resting time between increased concentrations of agonist, which affect the dose-response characterization. Therefore, an improved estimate of EC50 may be calculated using steady-state simulations of the model. The model-based estimation of EC50 is further refined using additional time-resolved data to decrease the uncertainty of the prediction. The resulting model-based EC50 (180-525 nm) is higher than the classically interpreted EC50 (46-191 nm). Mathematical modeling thus makes it possible to re-interpret previously obtained datasets, and to make accurate estimates of EC50 even when steady-state measurements are not experimentally feasible. The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database, and may be accessed at http://jjj.bio.vu.nl/database/nyman. © 2015 FEBS.

  19. An Extended Damage Plasticity Model for Shotcrete: Formulation and Comparison with Other Shotcrete Models

    PubMed Central

    Neuner, Matthias; Gamnitzer, Peter; Hofstetter, Günter

    2017-01-01

    The aims of the present paper are (i) to briefly review single-field and multi-field shotcrete models proposed in the literature; (ii) to propose the extension of a damage-plasticity model for concrete to shotcrete; and (iii) to evaluate the capabilities of the proposed extended damage-plasticity model for shotcrete by comparing the predicted response with experimental data for shotcrete and with the response predicted by shotcrete models, available in the literature. The results of the evaluation will be used for recommendations concerning the application and further improvements of the investigated shotcrete models and they will serve as a basis for the design of a new lab test program, complementing the existing ones. PMID:28772445

  20. Uncertainty quantification and propagation in dynamic models using ambient vibration measurements, application to a 10-story building

    NASA Astrophysics Data System (ADS)

    Behmanesh, Iman; Yousefianmoghadam, Seyedsina; Nozari, Amin; Moaveni, Babak; Stavridis, Andreas

    2018-07-01

    This paper investigates the application of Hierarchical Bayesian model updating for uncertainty quantification and response prediction of civil structures. In this updating framework, structural parameters of an initial finite element (FE) model (e.g., stiffness or mass) are calibrated by minimizing error functions between the identified modal parameters and the corresponding parameters of the model. These error functions are assumed to have Gaussian probability distributions with unknown parameters to be determined. The estimated parameters of error functions represent the uncertainty of the calibrated model in predicting building's response (modal parameters here). The focus of this paper is to answer whether the quantified model uncertainties using dynamic measurement at building's reference/calibration state can be used to improve the model prediction accuracies at a different structural state, e.g., damaged structure. Also, the effects of prediction error bias on the uncertainty of the predicted values is studied. The test structure considered here is a ten-story concrete building located in Utica, NY. The modal parameters of the building at its reference state are identified from ambient vibration data and used to calibrate parameters of the initial FE model as well as the error functions. Before demolishing the building, six of its exterior walls were removed and ambient vibration measurements were also collected from the structure after the wall removal. These data are not used to calibrate the model; they are only used to assess the predicted results. The model updating framework proposed in this paper is applied to estimate the modal parameters of the building at its reference state as well as two damaged states: moderate damage (removal of four walls) and severe damage (removal of six walls). Good agreement is observed between the model-predicted modal parameters and those identified from vibration tests. Moreover, it is shown that including prediction error bias in the updating process instead of commonly-used zero-mean error function can significantly reduce the prediction uncertainties.

  1. Modeling to Predict Escherichia coli at Presque Isle Beach 2, City of Erie, Erie County, Pennsylvania

    USGS Publications Warehouse

    Zimmerman, Tammy M.

    2008-01-01

    The Lake Erie beaches in Pennsylvania are a valuable recreational resource for Erie County. Concentrations of Escherichia coli (E. coli) at monitored beaches in Presque Isle State Park in Erie, Pa., occasionally exceed the single-sample bathing-water standard of 235 colonies per 100 milliliters resulting in potentially unsafe swimming conditions and prompting beach managers to post public advisories or to close beaches to recreation. To supplement the current method for assessing recreational water quality (E. coli concentrations from the previous day), a predictive regression model for E. coli concentrations at Presque Isle Beach 2 was developed from data collected during the 2004 and 2005 recreational seasons. Model output included predicted E. coli concentrations and exceedance probabilities--the probability that E. coli concentrations would exceed the standard. For this study, E. coli concentrations and other water-quality and environmental data were collected during the 2006 recreational season at Presque Isle Beach 2. The data from 2006, an independent year, were used to test (validate) the 2004-2005 predictive regression model and compare the model performance to the current method. Using 2006 data, the 2004-2005 model yielded more correct responses and better predicted exceedances of the standard than the use of E. coli concentrations from the previous day. The differences were not pronounced, however, and more data are needed. For example, the model correctly predicted exceedances of the standard 11 percent of the time (1 out of 9 exceedances that occurred in 2006) whereas using the E. coli concentrations from the previous day did not result in any correctly predicted exceedances. After validation, new models were developed by adding the 2006 data to the 2004-2005 dataset and by analyzing the data in 2- and 3-year combinations. Results showed that excluding the 2004 data (using 2005 and 2006 data only) yielded the best model. Explanatory variables in the 2005-2006 model were log10 turbidity, bird count, and wave height. The 2005-2006 model correctly predicted when the standard would not be exceeded (specificity) with a response of 95.2 percent (178 out of 187 nonexceedances) and correctly predicted when the standard would be exceeded (sensitivity) with a response of 64.3 percent (9 out of 14 exceedances). In all cases, the results from predictive modeling produced higher percentages of correct predictions than using E. coli concentrations from the previous day. Additional data collected each year can be used to test and possibly improve the model. The results of this study will aid beach managers in more rapidly determining when waters are not safe for recreational use and, subsequently, when to close a beach or post an advisory.

  2. Modeling the vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt

    NASA Technical Reports Server (NTRS)

    Merfeld, D. M.; Paloski, W. H. (Principal Investigator)

    1995-01-01

    Model simulations of the squirrel monkey vestibulo-ocular reflex (VOR) are presented for two motion paradigms: constant velocity eccentric rotation and roll tilt about a naso-occipital axis. The model represents the implementation of three hypotheses: the "internal model" hypothesis, the "gravito-inertial force (GIF) resolution" hypothesis, and the "compensatory VOR" hypothesis. The internal model hypothesis is based on the idea that the nervous system knows the dynamics of the sensory systems and implements this knowledge as an internal dynamic model. The GIF resolution hypothesis is based on the idea that the nervous system knows that gravity minus linear acceleration equals GIF and implements this knowledge by resolving the otolith measurement of GIF into central estimates of gravity and linear acceleration, such that the central estimate of gravity minus the central estimate of acceleration equals the otolith measurement of GIF. The compensatory VOR hypothesis is based on the idea that the VOR compensates for the central estimates of angular velocity and linear velocity, which sum in a near-linear manner. During constant velocity eccentric rotation, the model correctly predicts that: (1) the peak horizontal response is greater while "facing-motion" than with "back-to-motion"; (2) the axis of eye rotation shifts toward alignment with GIF; and (3) a continuous vertical response, slow phase downward, exists prior to deceleration. The model also correctly predicts that a torsional response during the roll rotation is the only velocity response observed during roll rotations about a naso-occipital axis. The success of this model in predicting the observed experimental responses suggests that the model captures the essence of the complex sensory interactions engendered by eccentric rotation and roll tilt.

  3. WE-AB-202-11: Radiobiological Modeling of Tumor Response During Radiotherapy Based On Pre-Treatment Dynamic PET Imaging Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crispin-Ortuzar, M; Grkovski, M; Beattie, B

    Purpose: To evaluate the ability of a multiscale radiobiological model of tumor response to predict mid-treatment hypoxia images, based on pretreatment imaging of perfusion and hypoxia with [18-F]FMISO dynamic PET and glucose metabolism with [18-F]FDG PET. Methods: A mechanistic tumor control probability (TCP) radiobiological model describing the interplay between tumor cell proliferation and hypoxia (Jeong et al., PMB 2013) was extended to account for intra-tumor nutrient heterogeneity, dynamic cell migration due to nutrient gradients, and stromal cells. This extended model was tested on 10 head and neck cancer patients treated with chemoradiotherapy, randomly drawn from a larger MSKCC protocol involvingmore » baseline and mid-therapy dynamic PET scans. For each voxel, initial fractions of proliferative and hypoxic tumor cells were obtained by finding an approximate solution to a system of linear equations relating cell fractions to voxel-level FDG uptake, perfusion (FMISO K{sub 1}) and hypoxia (FMISO k{sub 3}). The TCP model then predicted their evolution over time up until the mid treatment scan. Finally, the linear model was reapplied to predict each lesion’s median hypoxia level (k{sub 3}[med,sim]) which in turn was compared to the FMISO k{sub 3}[med] measured at mid-therapy. Results: The average k3[med] of the tumors in pre-treatment scans was 0.0035 min{sup −1}, with an inter-tumor standard deviation of σ[pre]=0.0034 min{sup −1}. The initial simulated k{sub 3}[med,sim] of each tumor agreed with the corresponding measurements within 0.1σ[pre]. In 7 out of 10 lesions, the mid-treatment k{sub 3}[med,sim] prediction agreed with the data within 0.3σ[pre]. The remaining cases corresponded to the most extreme relative changes in k{sub 3}[med]. Conclusion: This work presents a method to personalize the prediction of a TCP model using pre-treatment kinetic imaging data, and validates the modeling of radiotherapy response by predicting changes in median hypoxia values during treatment. Variations from predicted response may be a useful biomarker, which should be further explored. Partially supported by NIH grant #1 R01 CA157770-01A1 and a grant from Varian Corporation.« less

  4. Integrating predictive information into an agro-economic model to guide agricultural management

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Block, P.

    2016-12-01

    Skillful season-ahead climate predictions linked with responsive agricultural planning and management have the potential to reduce losses, if adopted by farmers, particularly for rainfed-dominated agriculture such as in Ethiopia. Precipitation predictions during the growing season in major agricultural regions of Ethiopia are used to generate predicted climate yield factors, which reflect the influence of precipitation amounts on crop yields and serve as inputs into an agro-economic model. The adapted model, originally developed by the International Food Policy Research Institute, produces outputs of economic indices (GDP, poverty rates, etc.) at zonal and national levels. Forecast-based approaches, in which farmers' actions are in response to forecasted conditions, are compared with no-forecast approaches in which farmers follow business as usual practices, expecting "average" climate conditions. The effects of farmer adoption rates, including the potential for reduced uptake due to poor predictions, and increasing forecast lead-time on economic outputs are also explored. Preliminary results indicate superior gains under forecast-based approaches.

  5. Pharmacokinetic optimization of class-selective histone deacetylase inhibitors and identification of associated candidate predictive biomarkers of hepatocellular carcinoma tumor response.

    PubMed

    Wong, Jason C; Tang, Guozhi; Wu, Xihan; Liang, Chungen; Zhang, Zhenshan; Guo, Lei; Peng, Zhenghong; Zhang, Weixing; Lin, Xianfeng; Wang, Zhanguo; Mei, Jianghua; Chen, Junli; Pan, Song; Zhang, Nan; Liu, Yongfu; Zhou, Mingwei; Feng, Lichun; Zhao, Weili; Li, Shijie; Zhang, Chao; Zhang, Meifang; Rong, Yiping; Jin, Tai-Guang; Zhang, Xiongwen; Ren, Shuang; Ji, Ying; Zhao, Rong; She, Jin; Ren, Yi; Xu, Chunping; Chen, Dawei; Cai, Jie; Shan, Song; Pan, Desi; Ning, Zhiqiang; Lu, Xianping; Chen, Taiping; He, Yun; Chen, Li

    2012-10-25

    Herein, we describe the pharmacokinetic optimization of a series of class-selective histone deacetylase (HDAC) inhibitors and the subsequent identification of candidate predictive biomarkers of hepatocellular carcinoma (HCC) tumor response for our clinical lead using patient-derived HCC tumor xenograft models. Through a combination of conformational constraint and scaffold hopping, we lowered the in vivo clearance (CL) and significantly improved the bioavailability (F) and exposure (AUC) of our HDAC inhibitors while maintaining selectivity toward the class I HDAC family with particular potency against HDAC1, resulting in clinical lead 5 (HDAC1 IC₅₀ = 60 nM, mouse CL = 39 mL/min/kg, mouse F = 100%, mouse AUC after single oral dose at 10 mg/kg = 6316 h·ng/mL). We then evaluated 5 in a biomarker discovery pilot study using patient-derived tumor xenograft models, wherein two out of the three models responded to treatment. By comparing tumor response status to compound tumor exposure, induction of acetylated histone H3, candidate gene expression changes, and promoter DNA methylation status from all three models at various time points, we identified preliminary candidate response prediction biomarkers that warrant further validation in a larger cohort of patient-derived tumor models and through confirmatory functional studies.

  6. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost.

    PubMed

    Sperry, John S; Venturas, Martin D; Anderegg, William R L; Mencuccini, Maurizio; Mackay, D Scott; Wang, Yujie; Love, David M

    2017-06-01

    Stomatal regulation presumably evolved to optimize CO 2 for H 2 O exchange in response to changing conditions. If the optimization criterion can be readily measured or calculated, then stomatal responses can be efficiently modelled without recourse to empirical models or underlying mechanism. Previous efforts have been challenged by the lack of a transparent index for the cost of losing water. Yet it is accepted that stomata control water loss to avoid excessive loss of hydraulic conductance from cavitation and soil drying. Proximity to hydraulic failure and desiccation can represent the cost of water loss. If at any given instant, the stomatal aperture adjusts to maximize the instantaneous difference between photosynthetic gain and hydraulic cost, then a model can predict the trajectory of stomatal responses to changes in environment across time. Results of this optimization model are consistent with the widely used Ball-Berry-Leuning empirical model (r 2  > 0.99) across a wide range of vapour pressure deficits and ambient CO 2 concentrations for wet soil. The advantage of the optimization approach is the absence of empirical coefficients, applicability to dry as well as wet soil and prediction of plant hydraulic status along with gas exchange. © 2016 John Wiley & Sons Ltd.

  7. Evaluating models of climate and forest vegetation

    NASA Technical Reports Server (NTRS)

    Clark, James S.

    1992-01-01

    Understanding how the biosphere may respond to increasing trace gas concentrations in the atmosphere requires models that contain vegetation responses to regional climate. Most of the processes ecologists study in forests, including trophic interactions, nutrient cycling, and disturbance regimes, and vital components of the world economy, such as forest products and agriculture, will be influenced in potentially unexpected ways by changing climate. These vegetation changes affect climate in the following ways: changing C, N, and S pools; trace gases; albedo; and water balance. The complexity of the indirect interactions among variables that depend on climate, together with the range of different space/time scales that best describe these processes, make the problems of modeling and prediction enormously difficult. These problems of predicting vegetation response to climate warming and potential ways of testing model predictions are the subjects of this chapter.

  8. Finite magnetic relaxation in x-space magnetic particle imaging: Comparison of measurements and ferrohydrodynamic models.

    PubMed

    Dhavalikar, R; Hensley, D; Maldonado-Camargo, L; Croft, L R; Ceron, S; Goodwill, P W; Conolly, S M; Rinaldi, C

    2016-08-03

    Magnetic Particle Imaging (MPI) is an emerging tomographic imaging technology that detects magnetic nanoparticle tracers by exploiting their non-linear magnetization properties. In order to predict the behavior of nanoparticles in an imager, it is possible to use a non-imaging MPI relaxometer or spectrometer to characterize the behavior of nanoparticles in a controlled setting. In this paper we explore the use of ferrohydrodynamic magnetization equations for predicting the response of particles in an MPI relaxometer. These include a magnetization equation developed by Shliomis (Sh) which has a constant relaxation time and a magnetization equation which uses a field-dependent relaxation time developed by Martsenyuk, Raikher and Shliomis (MRSh). We compare the predictions from these models with measurements and with the predictions based on the Langevin function that assumes instantaneous magnetization response of the nanoparticles. The results show good qualitative and quantitative agreement between the ferrohydrodynamic models and the measurements without the use of fitting parameters and provide further evidence of the potential of ferrohydrodynamic modeling in MPI.

  9. Response-Time Tests of Logical-Rule Models of Categorization

    ERIC Educational Resources Information Center

    Little, Daniel R.; Nosofsky, Robert M.; Denton, Stephen E.

    2011-01-01

    A recent resurgence in logical-rule theories of categorization has motivated the development of a class of models that predict not only choice probabilities but also categorization response times (RTs; Fific, Little, & Nosofsky, 2010). The new models combine mental-architecture and random-walk approaches within an integrated framework and…

  10. Air Quality Response Modeling for Decision Support | Science ...

    EPA Pesticide Factsheets

    Air quality management relies on photochemical models to predict the responses of pollutant concentrations to changes in emissions. Such modeling is especially important for secondary pollutants such as ozone and fine particulate matter which vary nonlinearly with changes in emissions. Numerous techniques for probing pollutant-emission relationships within photochemical models have been developed and deployed for a variety of decision support applications. However, atmospheric response modeling remains complicated by the challenge of validating sensitivity results against observable data. This manuscript reviews the state of the science of atmospheric response modeling as well as efforts to characterize the accuracy and uncertainty of sensitivity results. The National Exposure Research Laboratory′s (NERL′s) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA′s mission to protect human health and the environment. AMAD′s research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the Nation′s air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being use

  11. Strain Rate Dependent Deformation and Strength Modeling of a Polymer Matrix Composite Utilizing a Micromechanics Approach. Degree awarded by Cincinnati Univ.

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    1999-01-01

    Potential gas turbine applications will expose polymer matrix composites to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under extreme conditions. Specifically, analytical methods designed for these applications must have the capability of properly capturing the strain rate sensitivities and nonlinearities that are present in the material response. The Ramaswamy-Stouffer constitutive equations, originally developed to analyze the viscoplastic deformation of metals, have been modified to simulate the nonlinear deformation response of ductile, crystalline polymers. The constitutive model is characterized and correlated for two representative ductile polymers. Fiberite 977-2 and PEEK, and the computed results correlate well with experimental values. The polymer constitutive equations are implemented in a mechanics of materials based composite micromechanics model to predict the nonlinear, rate dependent deformation response of a composite ply. Uniform stress and uniform strain assumptions are applied to compute the effective stresses of a composite unit cell from the applied strains. The micromechanics equations are successfully verified for two polymer matrix composites. IM7/977-2 and AS4/PEEK. The ultimate strength of a composite ply is predicted with the Hashin failure criteria that were implemented in the composite micromechanics model. The failure stresses of the two composite material systems are accurately predicted for a variety of fiber orientations and strain rates. The composite deformation model is implemented in LS-DYNA, a commercially available transient dynamic explicit finite element code. The matrix constitutive equations are converted into an incremental form, and the model is implemented into LS-DYNA through the use of a user defined material subroutine. The deformation response of a bulk polymer and a polymer matrix composite are predicted by finite element analyses. The results compare reasonably well to experimental values, with some discrepancies. The discrepancies are at least partially caused by the method used to integrate the rate equations in the polymer constitutive model.

  12. Using genetic algorithms to optimise current and future health planning--the example of ambulance locations.

    PubMed

    Sasaki, Satoshi; Comber, Alexis J; Suzuki, Hiroshi; Brunsdon, Chris

    2010-01-28

    Ambulance response time is a crucial factor in patient survival. The number of emergency cases (EMS cases) requiring an ambulance is increasing due to changes in population demographics. This is decreasing ambulance response times to the emergency scene. This paper predicts EMS cases for 5-year intervals from 2020, to 2050 by correlating current EMS cases with demographic factors at the level of the census area and predicted population changes. It then applies a modified grouping genetic algorithm to compare current and future optimal locations and numbers of ambulances. Sets of potential locations were evaluated in terms of the (current and predicted) EMS case distances to those locations. Future EMS demands were predicted to increase by 2030 using the model (R2 = 0.71). The optimal locations of ambulances based on future EMS cases were compared with current locations and with optimal locations modelled on current EMS case data. Optimising the location of ambulance stations locations reduced the average response times by 57 seconds. Current and predicted future EMS demand at modelled locations were calculated and compared. The reallocation of ambulances to optimal locations improved response times and could contribute to higher survival rates from life-threatening medical events. Modelling EMS case 'demand' over census areas allows the data to be correlated to population characteristics and optimal 'supply' locations to be identified. Comparing current and future optimal scenarios allows more nuanced planning decisions to be made. This is a generic methodology that could be used to provide evidence in support of public health planning and decision making.

  13. Long-term prediction test procedure for most ICs, based on linear response theory

    NASA Technical Reports Server (NTRS)

    Litovchenko, V.; Ivakhnenko, I.

    1991-01-01

    Experimentally, thermal annealing is known to be a factor which enables a number of different integrated circuits (IC's) to recover their operating characteristics after suffering radiation damage in the space radiation environment; thus, decreasing and limiting long term cumulative total-dose effects. This annealing is also known to be accelerated at elevated temperatures both during and after irradiation. Linear response theory (LRT) was applied, and a linear response function (LRF) to predict the radiation/annealing response of sensitive parameters of IC's for long term (several months or years) exposure to the space radiation environment were constructed. Compressing the annealing process from several years in orbit to just a few hours or days in the laboratory is achieved by subjecting the IC to elevated temperatures or by increasing the typical spaceflight dose rate by several orders of magnitude for simultaneous radiation/annealing only. The accomplishments are as follows: (1) the test procedure to make predictions of the radiation response was developed; (2) the calculation of the shift in the threshold potential due to the charge distribution in the oxide was written; (3) electron tunneling processes from the bulk Si to the oxide region in an MOS IC were estimated; (4) in order to connect the experimental annealing data to the theoretical model, constants of the model of the basic annealing process were established; (5) experimental data obtained at elevated temperatures were analyzed; (6) time compression and reliability of predictions for the long term region were shown; (7) a method to compress test time and to make predictions of response for the nonlinear region was proposed; and (8) nonlinearity of the LRF with respect to log(t) was calculated theoretically from a model.

  14. Discriminating between adaptive and carcinogenic liver hypertrophy in rat studies using logistic ridge regression analysis of toxicogenomic data: The mode of action and predictive models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shujie; Kawamoto, Taisuke; Morita, Osamu

    Chemical exposure often results in liver hypertrophy in animal tests, characterized by increased liver weight, hepatocellular hypertrophy, and/or cell proliferation. While most of these changes are considered adaptive responses, there is concern that they may be associated with carcinogenesis. In this study, we have employed a toxicogenomic approach using a logistic ridge regression model to identify genes responsible for liver hypertrophy and hypertrophic hepatocarcinogenesis and to develop a predictive model for assessing hypertrophy-inducing compounds. Logistic regression models have previously been used in the quantification of epidemiological risk factors. DNA microarray data from the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System weremore » used to identify hypertrophy-related genes that are expressed differently in hypertrophy induced by carcinogens and non-carcinogens. Data were collected for 134 chemicals (72 non-hypertrophy-inducing chemicals, 27 hypertrophy-inducing non-carcinogenic chemicals, and 15 hypertrophy-inducing carcinogenic compounds). After applying logistic ridge regression analysis, 35 genes for liver hypertrophy (e.g., Acot1 and Abcc3) and 13 genes for hypertrophic hepatocarcinogenesis (e.g., Asns and Gpx2) were selected. The predictive models built using these genes were 94.8% and 82.7% accurate, respectively. Pathway analysis of the genes indicates that, aside from a xenobiotic metabolism-related pathway as an adaptive response for liver hypertrophy, amino acid biosynthesis and oxidative responses appear to be involved in hypertrophic hepatocarcinogenesis. Early detection and toxicogenomic characterization of liver hypertrophy using our models may be useful for predicting carcinogenesis. In addition, the identified genes provide novel insight into discrimination between adverse hypertrophy associated with carcinogenesis and adaptive hypertrophy in risk assessment. - Highlights: • Hypertrophy (H) and hypertrophic carcinogenesis (C) were studied by toxicogenomics. • Important genes for H and C were selected by logistic ridge regression analysis. • Amino acid biosynthesis and oxidative responses may be involved in C. • Predictive models for H and C provided 94.8% and 82.7% accuracy, respectively. • The identified genes could be useful for assessment of liver hypertrophy.« less

  15. Characterizing and modeling the free recovery and constrained recovery behavior of a polyurethane shape memory polymer

    PubMed Central

    Volk, Brent L; Lagoudas, Dimitris C; Maitland, Duncan J

    2011-01-01

    In this work, tensile tests and one-dimensional constitutive modeling are performed on a high recovery force polyurethane shape memory polymer that is being considered for biomedical applications. The tensile tests investigate the free recovery (zero load) response as well as the constrained displacement recovery (stress recovery) response at extension values up to 25%, and two consecutive cycles are performed during each test. The material is observed to recover 100% of the applied deformation when heated at zero load in the second thermomechanical cycle, and a stress recovery of 1.5 MPa to 4.2 MPa is observed for the constrained displacement recovery experiments. After performing the experiments, the Chen and Lagoudas model is used to simulate and predict the experimental results. The material properties used in the constitutive model – namely the coefficients of thermal expansion, shear moduli, and frozen volume fraction – are calibrated from a single 10% extension free recovery experiment. The model is then used to predict the material response for the remaining free recovery and constrained displacement recovery experiments. The model predictions match well with the experimental data. PMID:22003272

  16. On the Gause predator-prey model with a refuge: a fresh look at the history.

    PubMed

    Křivan, Vlastimil

    2011-04-07

    This article re-analyses a prey-predator model with a refuge introduced by one of the founders of population ecology Gause and his co-workers to explain discrepancies between their observations and predictions of the Lotka-Volterra prey-predator model. They replaced the linear functional response used by Lotka and Volterra by a saturating functional response with a discontinuity at a critical prey density. At concentrations below this critical density prey were effectively in a refuge while at a higher densities they were available to predators. Thus, their functional response was of the Holling type III. They analyzed this model and predicted existence of a limit cycle in predator-prey dynamics. In this article I show that their model is ill posed, because trajectories are not well defined. Using the Filippov method, I define and analyze solutions of the Gause model. I show that depending on parameter values, there are three possibilities: (1) trajectories converge to a limit cycle, as predicted by Gause, (2) trajectories converge to an equilibrium, or (3) the prey population escapes predator control and grows to infinity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Validation of PICA Ablation and Thermal-Response Model at Low Heat Flux

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih-Kanq

    2009-01-01

    Phenolic Impregnated Carbon Ablator (PICA) was the forebody heatshield material on the Stardust sample-return capsule and is also a primary candidate material for the Mars Science Lander (MSL), the Orion Crew Module, and the SpaceX Dragon vehicle. As part of the heatshield qualification for Orion, physical and thermal properties of virgin and charred PICA were measured, and an ablation and thermal response model was developed. We validated the model by comparing it with recession and temperature data from stagnation arcjet tests conducted over a wide range of stagnation heat flux of 107 to 1102 W/sq cm. The effect of orthotropic thermal conductivity was evident in the thermal response of the arcjet models. In general, model predictions compared well with the data; however, the uncertainty of the recession prediction was greatest for heat fluxes below 200 W/sq cm. More recent MSL testing focused on the low heat flux regime of 45 to 250 W/sq cm. The new results confirm the recession uncertainty, especially for pressures below 6 kPa. In this work we focus on improving the model predictions for MSL and Orion tests below 250 W/sq cm.

  18. Multiple network-constrained regressions expand insights into influenza vaccination responses.

    PubMed

    Avey, Stefan; Mohanty, Subhasis; Wilson, Jean; Zapata, Heidi; Joshi, Samit R; Siconolfi, Barbara; Tsang, Sui; Shaw, Albert C; Kleinstein, Steven H

    2017-07-15

    Systems immunology leverages recent technological advancements that enable broad profiling of the immune system to better understand the response to infection and vaccination, as well as the dysregulation that occurs in disease. An increasingly common approach to gain insights from these large-scale profiling experiments involves the application of statistical learning methods to predict disease states or the immune response to perturbations. However, the goal of many systems studies is not to maximize accuracy, but rather to gain biological insights. The predictors identified using current approaches can be biologically uninterpretable or present only one of many equally predictive models, leading to a narrow understanding of the underlying biology. Here we show that incorporating prior biological knowledge within a logistic modeling framework by using network-level constraints on transcriptional profiling data significantly improves interpretability. Moreover, incorporating different types of biological knowledge produces models that highlight distinct aspects of the underlying biology, while maintaining predictive accuracy. We propose a new framework, Logistic Multiple Network-constrained Regression (LogMiNeR), and apply it to understand the mechanisms underlying differential responses to influenza vaccination. Although standard logistic regression approaches were predictive, they were minimally interpretable. Incorporating prior knowledge using LogMiNeR led to models that were equally predictive yet highly interpretable. In this context, B cell-specific genes and mTOR signaling were associated with an effective vaccination response in young adults. Overall, our results demonstrate a new paradigm for analyzing high-dimensional immune profiling data in which multiple networks encoding prior knowledge are incorporated to improve model interpretability. The R source code described in this article is publicly available at https://bitbucket.org/kleinstein/logminer . steven.kleinstein@yale.edu or stefan.avey@yale.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  19. Predicting variation in subject thermal response during transcranial magnetic resonance guided focused ultrasound surgery: Comparison in seventeen subject datasets.

    PubMed

    Vyas, Urvi; Ghanouni, Pejman; Halpern, Casey H; Elias, Jeff; Pauly, Kim Butts

    2016-09-01

    In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen human subjects. Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. The simulated skull efficiency using individual-specific heterogeneous models predicts well (R(2) = 0.84) the experimental energy efficiency. This paper presents a simulation model to predict the variation in thermal responses measured in clinical ctMRGFYS treatments while being computationally feasible.

  20. Predicting variation in subject thermal response during transcranial magnetic resonance guided focused ultrasound surgery: Comparison in seventeen subject datasets

    PubMed Central

    Vyas, Urvi; Ghanouni, Pejman; Halpern, Casey H.; Elias, Jeff; Pauly, Kim Butts

    2016-01-01

    Purpose: In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen human subjects. Methods: Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. Results: The simulated skull efficiency using individual-specific heterogeneous models predicts well (R2 = 0.84) the experimental energy efficiency. Conclusions: This paper presents a simulation model to predict the variation in thermal responses measured in clinical ctMRGFYS treatments while being computationally feasible. PMID:27587047

  1. Predicting variation in subject thermal response during transcranial magnetic resonance guided focused ultrasound surgery: Comparison in seventeen subject datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, Urvi, E-mail: urvi.vyas@gmail.com; Ghanouni,

    Purpose: In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen humanmore » subjects. Methods: Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. Results: The simulated skull efficiency using individual-specific heterogeneous models predicts well (R{sup 2} = 0.84) the experimental energy efficiency. Conclusions: This paper presents a simulation model to predict the variation in thermal responses measured in clinical ctMRGFYS treatments while being computationally feasible.« less

  2. Vibroacoustic Response of the NASA ACTS Spacecraft Antenna to Launch Acoustic Excitation

    NASA Technical Reports Server (NTRS)

    Larko, Jeffrey M.; Cotoni, Vincent

    2008-01-01

    The Advanced Communications Technology Satellite was an experimental NASA satellite launched from the Space Shuttle Discovery. As part of the ground test program, the satellite s large, parabolic reflector antennas were exposed to a reverberant acoustic loading to simulate the launch acoustics in the Shuttle payload bay. This paper describes the modelling and analysis of the dynamic response of these large, composite spacecraft antenna structure subjected to a diffuse acoustic field excitation. Due to the broad frequency range of the excitation, different models were created to make predictions in the various frequency regimes of interest: a statistical energy analysis (SEA) model to capture the high frequency response and a hybrid finite element-statistical energy (hybrid FE-SEA) model for the low to mid-frequency responses. The strengths and limitations of each of the analytical techniques are discussed. The predictions are then compared to the measured acoustic test data and to a boundary element (BEM) model to evaluate the performance of the hybrid techniques.

  3. Validation of Vehicle Panel/Equipment Response from Diffuse Acoustic Field Excitation Using Spatially Correlated Transfer Function Approach

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Fulcher, Clay; Hunt, Ron

    2012-01-01

    An approach for predicting the vibration, strain, and force responses of a flight-like vehicle panel assembly to acoustic pressures is presented. Important validation for the approach is provided by comparison to ground test measurements in a reverberant chamber. The test article and the corresponding analytical model were assembled in several configurations to demonstrate the suitability of the approach for response predictions when the vehicle panel is integrated with equipment. Critical choices in the analysis necessary for convergence of the predicted and measured responses are illustrated through sensitivity studies. The methodology includes representation of spatial correlation of the pressure field over the panel surface. Therefore, it is possible to demonstrate the effects of hydrodynamic coincidence in the response. The sensitivity to pressure patch density clearly illustrates the onset of coincidence effects on the panel response predictions.

  4. Transactional Associations Between Youths’ Responses to Peer Stress and Depression: The Moderating Roles of Sex and Stress Exposure

    PubMed Central

    Agoston, Anna Monica; Rudolph, Karen D.

    2011-01-01

    This study examined transactional associations between responses to peer stress and depression in youth. Specifically, it tested the hypotheses that (a) depression would predict fewer effortful responses and more involuntary, dysregulated responses to peer stress over time; and (b) fewer adaptive and more maladaptive responses would predict subsequent depression. Youth (M age = 12.41; SD = 1.19; 86 girls, 81 boys) and their maternal caregivers completed semi-structured interviews and questionnaires at three annual waves. Multi-group comparison path analyses were conducted to examine sex and stress-level differences in the proposed reciprocal-influence model. In girls and in youth exposed to high levels of peer stress, maladaptive stress responses predicted more depressive symptoms and adaptive stress responses predicted fewer depressive symptoms at each wave. These findings suggest the utility of preventive interventions for depression designed to enhance the quality of girls’ stress responses. In boys, depression predicted less adaptive and more maladaptive stress responses, but only at the second wave. These findings suggest that interventions designed to reduce boys’ depressive symptoms may help them develop more adaptive stress responses. PMID:20852929

  5. Genetic and clinical predictors of ovarian response in assisted reproductive technology

    NASA Astrophysics Data System (ADS)

    Wiweko, B.; Damayanti, I.; Suryandari, D.; Natadisastra, M.; Pratama, G.; Sumapraja, K.; Meutia, K.; Iffanolia, P.; Harzief, A. K.; Hestiantoro, A.

    2017-08-01

    Several factors are known to influence ovarian response to rFSH stimulation such as age, antral follicle count (AFC), and basal FSH level, Mutation of allele Ser680Asn in FSHR gene was responsible to ovarian resistance toward exogenous FSH. The aim of this study is to develop a prediction model of ovarian response to COS in IVF. This study was a prospective cohort study. One hundred and thirteen women undergoing their first cycle of IVF in Yasmin IVF Clinic Jakarta were recruited to this study. Clinical datas included were age, BMI, and AFC. Basal FSH and E2 as well as serum AMH was measured from peripheral blood taken at second day of cycle. Bsr-1 enzyme is used to identify the polymorphism in exon 10 position 680 with RFLP technique. Three genotype polymorphism, Asn/Asn (255 bp ribbon), Asn/Ser (97 bp and 158 bp), and Ser/Ser (97 bp, 158 bp, and 255 bp). AFC has the highest predictor for ovarian response with AUC 0.922 (CI 95% 0.833-1.000). AMH also showed high predicting value (AUC 0.843 CI 95% 0.663-1.000). The multivariate analysis revealed combination of AFC, AMH, age, and basal FSH is a good model for ovarian response prediction (AUC=0.97). No significant relation between Asn/Asn, Asn/Ser, or Ser/Ser genotype FSHR polymorphism with ovarian response (p = 0.866) and total dose of rRSH (p = 0.08). This study showed that model combination of AFC, AMH, patient’s age and basal FSH are very good to predict number of mature oocytes.

  6. A System Computational Model of Implicit Emotional Learning

    PubMed Central

    Puviani, Luca; Rama, Sidita

    2016-01-01

    Nowadays, the experimental study of emotional learning is commonly based on classical conditioning paradigms and models, which have been thoroughly investigated in the last century. Unluckily, models based on classical conditioning are unable to explain or predict important psychophysiological phenomena, such as the failure of the extinction of emotional responses in certain circumstances (for instance, those observed in evaluative conditioning, in post-traumatic stress disorders and in panic attacks). In this manuscript, starting from the experimental results available from the literature, a computational model of implicit emotional learning based both on prediction errors computation and on statistical inference is developed. The model quantitatively predicts (a) the occurrence of evaluative conditioning, (b) the dynamics and the resistance-to-extinction of the traumatic emotional responses, (c) the mathematical relation between classical conditioning and unconditioned stimulus revaluation. Moreover, we discuss how the derived computational model can lead to the development of new animal models for resistant-to-extinction emotional reactions and novel methodologies of emotions modulation. PMID:27378898

  7. A System Computational Model of Implicit Emotional Learning.

    PubMed

    Puviani, Luca; Rama, Sidita

    2016-01-01

    Nowadays, the experimental study of emotional learning is commonly based on classical conditioning paradigms and models, which have been thoroughly investigated in the last century. Unluckily, models based on classical conditioning are unable to explain or predict important psychophysiological phenomena, such as the failure of the extinction of emotional responses in certain circumstances (for instance, those observed in evaluative conditioning, in post-traumatic stress disorders and in panic attacks). In this manuscript, starting from the experimental results available from the literature, a computational model of implicit emotional learning based both on prediction errors computation and on statistical inference is developed. The model quantitatively predicts (a) the occurrence of evaluative conditioning, (b) the dynamics and the resistance-to-extinction of the traumatic emotional responses, (c) the mathematical relation between classical conditioning and unconditioned stimulus revaluation. Moreover, we discuss how the derived computational model can lead to the development of new animal models for resistant-to-extinction emotional reactions and novel methodologies of emotions modulation.

  8. In Situ Strength Model for Continuous Fibers and Multi-Scale Modeling the Fracture of C/SiC Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Gao, Xiguang; Song, Yingdong

    2018-04-01

    A new in situ strength model of carbon fibers was developed based on the distribution of defects to predict the stress-strain response and the strength of C/SiC composites. Different levels of defects in the fibers were considered in this model. The defects in the fibers were classified by their effects on the strength of the fiber. The strength of each defect and the probability that the defect appears were obtained from the tensile test of single fibers. The strength model of carbon fibers was combined with the shear-lag model to predict the stress-strain responses and the strengths of fiber bundles and C/SiC minicomposites. To verify the strength model, tensile tests were performed on fiber bundles and C/SiC minicomposites. The predicted and experimental results were in good agreement. Effects of the fiber length, the fiber number and the heat treatment on the final strengths of fiber bundles and C/SiC minicomposites were also discussed.

  9. Determination of the interfacial rheological properties of a PLA encapsulated contrast agent using in vitro attenuation and scattering

    PubMed Central

    Paul, Shirshendu; Russakow, Daniel; Rodgers, Tyler; Sarkar, Kausik; Cochran, Michael; Wheatley, Margaret

    2013-01-01

    The stabilizing encapsulation of a microbubble based ultrasound contrast agent (UCA) critically affects its acoustic properties. Polymers, which behave differently from commonly used materials—e.g. lipids or proteins—for the monolayer encapsulation, hold potential for better stability and control over encapsulation properties. Air-filled microbubbles coated with Poly (D, L-lactide) (PLA) are characterized here using in vitro acoustic experiments and several models of encapsulation. The interfacial rheological properties of the encapsulation are determined according to each of these models using attenuation of ultrasound through a suspension of these microbubbles. Then the model predictions are compared with scattered nonlinear—sub- and second harmonic—responses. For this microbubble population (average diameter 1.9 μm), the peak in attenuation measurement indicates a weighted average resonance frequency of 2.5–3 MHz, which, in contrast to other encapsulated microbubbles, is lower than the resonance frequency of a free bubble of similar size (diameter 1.9 μm). This apparently contradictory result stems from the extremely low surface dilatational elasticity (around 0.01–0.07 N/m) and the reduced surface tension of the PLA encapsulation as well as the polydispersity of the bubble population. All models considered here are shown to behave similarly even in the nonlinear regime because of the low value of the surface dilatational elasticity. Pressure dependent scattering measurements at two different excitation frequencies (2.25 and 3 MHz) show strongly non-linear behavior with 25–30 dB and 5–20 dB enhancements in fundamental and second-harmonic responses respectively for a concentration of 1.33 μg/mL of suspension. Subharmonic responses are registered above a relatively low generation threshold of 100–150 kPa with up to 20 dB enhancement beyond that pressure. Numerical predictions from all models show good agreement with the experimentally measured fundamental response, but not with the second harmonic response. The characteristic features of subharmonic response and the steady response beyond the threshold are matched well by model predictions. However, prediction of the threshold value depends on property values and the size distribution. The variation in size distribution from sample to sample leads to variation in estimated encapsulation property values—the lowest estimated value of surface dilatational viscosity better predicts the subharmonic threshold. PMID:23643050

  10. Predicting ecological responses in a changing ocean: the effects of future climate uncertainty.

    PubMed

    Freer, Jennifer J; Partridge, Julian C; Tarling, Geraint A; Collins, Martin A; Genner, Martin J

    2018-01-01

    Predicting how species will respond to climate change is a growing field in marine ecology, yet knowledge of how to incorporate the uncertainty from future climate data into these predictions remains a significant challenge. To help overcome it, this review separates climate uncertainty into its three components (scenario uncertainty, model uncertainty, and internal model variability) and identifies four criteria that constitute a thorough interpretation of an ecological response to climate change in relation to these parts (awareness, access, incorporation, communication). Through a literature review, the extent to which the marine ecology community has addressed these criteria in their predictions was assessed. Despite a high awareness of climate uncertainty, articles favoured the most severe emission scenario, and only a subset of climate models were used as input into ecological analyses. In the case of sea surface temperature, these models can have projections unrepresentative against a larger ensemble mean. Moreover, 91% of studies failed to incorporate the internal variability of a climate model into results. We explored the influence that the choice of emission scenario, climate model, and model realisation can have when predicting the future distribution of the pelagic fish, Electrona antarctica . Future distributions were highly influenced by the choice of climate model, and in some cases, internal variability was important in determining the direction and severity of the distribution change. Increased clarity and availability of processed climate data would facilitate more comprehensive explorations of climate uncertainty, and increase in the quality and standard of marine prediction studies.

  11. Food-Web Models Predict Species Abundances in Response to Habitat Change

    PubMed Central

    Gotelli, Nicholas J; Ellison, Aaron M

    2006-01-01

    Plant and animal population sizes inevitably change following habitat loss, but the mechanisms underlying these changes are poorly understood. We experimentally altered habitat volume and eliminated top trophic levels of the food web of invertebrates that inhabit rain-filled leaves of the carnivorous pitcher plant Sarracenia purpurea. Path models that incorporated food-web structure better predicted population sizes of food-web constituents than did simple keystone species models, models that included only autecological responses to habitat volume, or models including both food-web structure and habitat volume. These results provide the first experimental confirmation that trophic structure can determine species abundances in the face of habitat loss. PMID:17002518

  12. Modeling and control of flexible space structures

    NASA Technical Reports Server (NTRS)

    Wie, B.; Bryson, A. E., Jr.

    1981-01-01

    The effects of actuator and sensor locations on transfer function zeros are investigated, using uniform bars and beams as generic models of flexible space structures. It is shown how finite element codes may be used directly to calculate transfer function zeros. The impulse response predicted by finite-dimensional models is compared with the exact impulse response predicted by the infinite dimensional models. It is shown that some flexible structures behave as if there were a direct transmission between actuator and sensor (equal numbers of zeros and poles in the transfer function). Finally, natural damping models for a vibrating beam are investigated since natural damping has a strong influence on the appropriate active control logic for a flexible structure.

  13. Model-Based Collaborative Filtering Analysis of Student Response Data: Machine-Learning Item Response Theory

    ERIC Educational Resources Information Center

    Bergner, Yoav; Droschler, Stefan; Kortemeyer, Gerd; Rayyan, Saif; Seaton, Daniel; Pritchard, David E.

    2012-01-01

    We apply collaborative filtering (CF) to dichotomously scored student response data (right, wrong, or no interaction), finding optimal parameters for each student and item based on cross-validated prediction accuracy. The approach is naturally suited to comparing different models, both unidimensional and multidimensional in ability, including a…

  14. Developing predictive approaches to characterize adaptive responses of the reproductive endocrine axis to aromatase inhibition: I. Data generation in a small fish model

    EPA Science Inventory

    Adaptive or compensatory responses to chemical exposure can significantly influence in vivo concentration-duration-response relationships. The aim of this study was to provide data to support development of a computational dynamic model of the hypothalamic-pituitary-gonadal axis ...

  15. Evaluating coastal landscape response to sea-level rise in the northeastern United States: approach and methods

    USGS Publications Warehouse

    Lentz, Erika E.; Stippa, Sawyer R.; Thieler, E. Robert; Plant, Nathaniel G.; Gesch, Dean B.; Horton, Radley M.

    2014-02-13

    The U.S. Geological Survey is examining effects of future sea-level rise on the coastal landscape from Maine to Virginia by producing spatially explicit, probabilistic predictions using sea-level projections, vertical land movement rates (due to isostacy), elevation data, and land-cover data. Sea-level-rise scenarios used as model inputs are generated by using multiple sources of information, including Coupled Model Intercomparison Project Phase 5 models following representative concentration pathways 4.5 and 8.5 in the Intergovernmental Panel on Climate Change Fifth Assessment Report. A Bayesian network is used to develop a predictive coastal response model that integrates the sea-level, elevation, and land-cover data with assigned probabilities that account for interactions with coastal geomorphology as well as the corresponding ecological and societal systems it supports. The effects of sea-level rise are presented as (1) level of landscape submergence and (2) coastal response type characterized as either static (that is, inundation) or dynamic (that is, landform or landscape change). Results are produced at a spatial scale of 30 meters for four decades (the 2020s, 2030s, 2050s, and 2080s). The probabilistic predictions can be applied to landscape management decisions based on sea-level-rise effects as well as on assessments of the prediction uncertainty and need for improved data or fundamental understanding. This report describes the methods used to produce predictions, including information on input datasets; the modeling approach; model outputs; data-quality-control procedures; and information on how to access the data and metadata online.

  16. Evaluating Coastal Landscape Response to Sea-Level Rise in the Northeastern United States - Approach and Methods

    NASA Technical Reports Server (NTRS)

    Lentz, Erika E.; Stippa, Sawyer R.; Thieler, E. Robert; Plant, Nathaniel G.; Gesch, Dean B.; Horton, Radley M.

    2015-01-01

    The U.S. Geological Survey is examining effects of future sea-level rise on the coastal landscape from Maine to Virginia by producing spatially explicit, probabilistic predictions using sea-level projections, vertical land movement rates (due to isostacy), elevation data, and land-cover data. Sea-level-rise scenarios used as model inputs are generated by using multiple sources of information, including Coupled Model Intercomparison Project Phase 5 models following representative concentration pathways 4.5 and 8.5 in the Intergovernmental Panel on Climate Change Fifth Assessment Report. A Bayesian network is used to develop a predictive coastal response model that integrates the sea-level, elevation, and land-cover data with assigned probabilities that account for interactions with coastal geomorphology as well as the corresponding ecological and societal systems it supports. The effects of sea-level rise are presented as (1) level of landscape submergence and (2) coastal response type characterized as either static (that is, inundation) or dynamic (that is, landform or landscape change). Results are produced at a spatial scale of 30 meters for four decades (the 2020s, 2030s, 2050s, and 2080s). The probabilistic predictions can be applied to landscape management decisions based on sea-level-rise effects as well as on assessments of the prediction uncertainty and need for improved data or fundamental understanding. This report describes the methods used to produce predictions, including information on input datasets; the modeling approach; model outputs; data-quality-control procedures; and information on how to access the data and metadata online.

  17. The Implementation and Evaluation of the Emergency Response Dose Assessment System (ERDAS) at Cape Canaveral Air Station/Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Evans, Randolph J.; Tremback, Craig J.; Lyons, Walter A.

    1996-01-01

    The Emergency Response Dose Assessment System (ERDAS) is a system which combines the mesoscale meteorological prediction model RAMS with the diffusion models REEDM and HYPACT. Operators use a graphical user interface to run the models for emergency response and toxic hazard planning at CCAS/KCS. The Applied Meteorology Unit has been evaluating the ERDAS meteorological and diffusion models and obtained the following results: (1) RAMS adequately predicts the occurrence of the daily sea breeze during non-cloudy conditions for several cases. (2) RAMS shows a tendency to predict the sea breeze to occur slightly earlier and to move it further inland than observed. The sea breeze predictions could most likely be improved by better parameterizing the soil moisture and/or sea surface temperatures. (3) The HYPACT/REEDM/RAMS models accurately predict launch plume locations when RAMS winds are accurate and when the correct plume layer is modeled. (4) HYPACT does not adequately handle plume buoyancy for heated plumes since all plumes are presently treated as passive tracers. Enhancements should be incorporated into the ERDAS as it moves toward being a fully operational system and as computer workstations continue to increase in power and decrease in cost. These enhancements include the following: activate RAMS moisture physics; use finer RAMS grid resolution; add RAMS input parameters (e.g. soil moisture, radar, and/or satellite data); automate data quality control; implement four-dimensional data assimilation; modify HYPACT plume rise and deposition physics; and add cumulative dosage calculations in HYPACT.

  18. Predicting multi-wall structural response to hypervelocity impact using the hull code

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1993-01-01

    Previously, multi-wall structures have been analyzed extensively, primarily through experiment, as a means of increasing the meteoroid/space debris impact protection of spacecraft. As structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative to experimental testing, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under different impact loading conditions. The results of comparing experimental tests to Hull Hydrodynamic Computer Code predictions are reported. Also, the results of a numerical parametric study of multi-wall structural response to hypervelocity cylindrical projectile impact are presented.

  19. Predicting sun protection behaviors using protection motivation variables.

    PubMed

    Ch'ng, Joanne W M; Glendon, A Ian

    2014-04-01

    Protection motivation theory components were used to predict sun protection behaviors (SPBs) using four outcome measures: typical reported behaviors, previous reported behaviors, current sunscreen use as determined by interview, and current observed behaviors (clothing worn) to control for common method bias. Sampled from two SE Queensland public beaches during summer, 199 participants aged 18-29 years completed a questionnaire measuring perceived severity, perceived vulnerability, response efficacy, response costs, and protection motivation (PM). Personal perceived risk (similar to threat appraisal) and response likelihood (similar to coping appraisal) were derived from their respective PM components. Protection motivation predicted all four SPB criterion variables. Personal perceived risk and response likelihood predicted protection motivation. Protection motivation completely mediated the effect of response likelihood on all four criterion variables. Alternative models are considered. Strengths and limitations of the study are outlined and suggestions made for future research.

  20. Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance

    NASA Astrophysics Data System (ADS)

    Lombardozzi, D.; Levis, S.; Bonan, G.; Sparks, J. P.

    2012-08-01

    Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O3) concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O3 damage to tulip poplar (Liriodendron tulipifera) in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM) to determine the impacts on gross primary productivity (GPP) and transpiration at a constant O3 concentration of 100 parts per billion (ppb). Modifying the Vcmax parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O3 over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O3 on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.

  1. Human Thermal Model Evaluation Using the JSC Human Thermal Database

    NASA Technical Reports Server (NTRS)

    Cognata, T.; Bue, G.; Makinen, J.

    2011-01-01

    The human thermal database developed at the Johnson Space Center (JSC) is used to evaluate a set of widely used human thermal models. This database will facilitate a more accurate evaluation of human thermoregulatory response using in a variety of situations, including those situations that might otherwise prove too dangerous for actual testing--such as extreme hot or cold splashdown conditions. This set includes the Wissler human thermal model, a model that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. These models are statistically compared to the current database, which contains experiments of human subjects primarily in air from a literature survey ranging between 1953 and 2004 and from a suited experiment recently performed by the authors, for a quantitative study of relative strength and predictive quality of the models. Human thermal modeling has considerable long term utility to human space flight. Such models provide a tool to predict crew survivability in support of vehicle design and to evaluate crew response in untested environments. It is to the benefit of any such model not only to collect relevant experimental data to correlate it against, but also to maintain an experimental standard or benchmark for future development in a readily and rapidly searchable and software accessible format. The Human thermal database project is intended to do just so; to collect relevant data from literature and experimentation and to store the data in a database structure for immediate and future use as a benchmark to judge human thermal models against, in identifying model strengths and weakness, to support model development and improve correlation, and to statistically quantify a model s predictive quality.

  2. Inhibition by ultraviolet and photosynthetically available radiation lowers model estimates of depth-integrated picophytoplankton photosynthesis: global predictions for Prochlorococcus and Synechococcus.

    PubMed

    Neale, Patrick J; Thomas, Brian C

    2017-01-01

    Phytoplankton photosynthesis is often inhibited by ultraviolet (UV) and intense photosynthetically available radiation (PAR), but the effects on ocean productivity have received little consideration aside from polar areas subject to periodic enhanced UV-B due to depletion of stratospheric ozone. A more comprehensive assessment is important for understanding the contribution of phytoplankton production to the global carbon budget, present and future. Here, we consider responses in the temperate and tropical mid-ocean regions typically dominated by picophytoplankton including the prokaryotic lineages, Prochlorococcus and Synechococcus. Spectral models of photosynthetic response for each lineage were constructed using model strains cultured at different growth irradiances and temperatures. In the model, inhibition becomes more severe once exposure exceeds a threshold (E max ) related to repair capacity. Model parameters are presented for Prochlorococcus adding to those previously presented for Synechococcus. The models were applied to estimate midday, water column photosynthesis based on an atmospheric model of spectral radiation, satellite-derived spectral water transparency and temperature. Based on a global survey of inhibitory exposure severity, a full-latitude section of the mid-Pacific and near-equatorial region of the east Pacific were identified as representative regions for prediction of responses over the entire water column. Comparing predictions integrated over the water column including versus excluding inhibition, production was 7-28% lower due to inhibition depending on strain and site conditions. Inhibition was consistently greater for Prochlorococcus compared to two strains of Synechococcus. Considering only the surface mixed layer, production was inhibited 7-73%. On average, including inhibition lowered estimates of midday productivity around 20% for the modeled region of the Pacific with UV accounting for two-thirds of the reduction. In contrast, most other productivity models either ignore inhibition or only include PAR inhibition. Incorporation of E max model responses into an existing spectral model of depth-integrated, daily production will enable efficient global predictions of picophytoplankton productivity including inhibition. © 2016 John Wiley & Sons Ltd.

  3. Numerical convergence and validation of the DIMP inverse particle transport model

    DOE PAGES

    Nelson, Noel; Azmy, Yousry

    2017-09-01

    The data integration with modeled predictions (DIMP) model is a promising inverse radiation transport method for solving the special nuclear material (SNM) holdup problem. Unlike previous methods, DIMP is a completely passive nondestructive assay technique that requires no initial assumptions regarding the source distribution or active measurement time. DIMP predicts the most probable source location and distribution through Bayesian inference and quasi-Newtonian optimization of predicted detector re-sponses (using the adjoint transport solution) with measured responses. DIMP performs well with for-ward hemispherical collimation and unshielded measurements, but several considerations are required when using narrow-view collimated detectors. DIMP converged well to themore » correct source distribution as the number of synthetic responses increased. DIMP also performed well for the first experimental validation exercise after applying a collimation factor, and sufficiently reducing the source search vol-ume's extent to prevent the optimizer from getting stuck in local minima. DIMP's simple point detector response function (DRF) is being improved to address coplanar false positive/negative responses, and an angular DRF is being considered for integration with the next version of DIMP to account for highly collimated responses. Overall, DIMP shows promise for solving the SNM holdup inverse problem, especially once an improved optimization algorithm is implemented.« less

  4. Examining the Predictive Validity of a Dynamic Assessment of Decoding to Forecast Response Tier 2 to Intervention

    PubMed Central

    Cho, Eunsoo; Compton, Donald L.; Fuchs, Doug; Fuchs, Lynn S.; Bouton, Bobette

    2013-01-01

    The purpose of this study was to examine the role of a dynamic assessment (DA) of decoding in predicting responsiveness to Tier 2 small group tutoring in a response-to-intervention model. First-grade students (n=134) who did not show adequate progress in Tier 1 based on 6 weeks of progress monitoring received Tier 2 small-group tutoring in reading for 14 weeks. Student responsiveness to Tier 2 was assessed weekly with word identification fluency (WIF). A series of conditional individual growth curve analyses were completed that modeled the correlates of WIF growth (final level of performance and growth). Its purpose was to examine the predictive validity of DA in the presence of 3 sets of variables: static decoding measures, Tier 1 responsiveness indicators, and pre-reading variables (phonemic awareness, rapid letter naming, oral vocabulary, and IQ). DA was a significant predictor of final level and growth, uniquely explaining 3% – 13% of the variance in Tier 2 responsiveness depending on the competing predictors in the model and WIF outcome (final level of performance or growth). Although the additional variances explained uniquely by DA were relatively small, results indicate the potential of DA in identifying Tier 2 nonresponders. PMID:23213050

  5. Examining the predictive validity of a dynamic assessment of decoding to forecast response to tier 2 intervention.

    PubMed

    Cho, Eunsoo; Compton, Donald L; Fuchs, Douglas; Fuchs, Lynn S; Bouton, Bobette

    2014-01-01

    The purpose of this study was to examine the role of a dynamic assessment (DA) of decoding in predicting responsiveness to Tier 2 small-group tutoring in a response-to-intervention model. First grade students (n = 134) who did not show adequate progress in Tier 1 based on 6 weeks of progress monitoring received Tier 2 small-group tutoring in reading for 14 weeks. Student responsiveness to Tier 2 was assessed weekly with word identification fluency (WIF). A series of conditional individual growth curve analyses were completed that modeled the correlates of WIF growth (final level of performance and growth). Its purpose was to examine the predictive validity of DA in the presence of three sets of variables: static decoding measures, Tier 1 responsiveness indicators, and prereading variables (phonemic awareness, rapid letter naming, oral vocabulary, and IQ). DA was a significant predictor of final level and growth, uniquely explaining 3% to 13% of the variance in Tier 2 responsiveness depending on the competing predictors in the model and WIF outcome (final level of performance or growth). Although the additional variances explained uniquely by DA were relatively small, results indicate the potential of DA in identifying Tier 2 nonresponders. © Hammill Institute on Disabilities 2012.

  6. Dynamic-landscape metapopulation models predict complex response of wildlife populations to climate and landscape change

    Treesearch

    Thomas W. Bonnot; Frank R. Thompson; Joshua J. Millspaugh

    2017-01-01

    The increasing need to predict how climate change will impact wildlife species has exposed limitations in how well current approaches model important biological processes at scales at which those processes interact with climate. We used a comprehensive approach that combined recent advances in landscape and population modeling into dynamic-landscape metapopulation...

  7. Growth response of conifers in Adirondack plantations to changing environment: Model approaches based on stem-analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Y.

    1993-01-01

    Based on model approaches, three conifer species, red pine, Norway spruce and Scots pine grown in plantations at Pack Demonstration Forest, in the southeastern Adirondack mountains of New York, were chosen to study growth response to different environmental changes, including silvicultural treatments and changes in climate and chemical environment. Detailed stem analysis data provided a basis for constructing tree growth models. These models were organized into three groups: morphological, dynamic and predictive. The morphological model was designed to evaluate relationship between tree attributes and interactive influences of intrinsic and extrinsic factors on the annual increments. Three types of morphological patternsmore » have been characterized: space-time patterns of whole-stem rings, intrinsic wood deposition pattern along the tree-stem, and bolewood allocation ratio patterns along the tree-stem. The dynamic model reflects the growth process as a system which responds to extrinsic signal inputs, including fertilization pulses, spacing effects and climatic disturbance, as well as intrinsic feedback. Growth signals indicative of climatic effects were used to construct growth-climate models using both multivariate analysis and Kalman filter methods. The predictive model utilized GCMs and growth-climate relationships to forecast tree growth responses in relation to future scenarios of CO[sub 2]-induced climate change. Prediction results indicate that different conifer species have individualistic growth response to future climatic change and suggest possible changes in future growth and distribution of naturally occurring conifers in this region.« less

  8. Optical metabolic imaging measures early drug response in an allograft murine breast cancer model (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sharick, Joe T.; Cook, Rebecca S.; Skala, Melissa C.

    2017-02-01

    Previous work has shown that cellular-level Optical Metabolic Imaging (OMI) of organoids derived from human breast cancer cell-line xenografts accurately and rapidly predicts in vivo response to therapy. To validate OMI as a predictive measure of treatment response in an immune-competent model, we used the polyomavirus middle-T (PyVmT) transgenic mouse breast cancer model. The PyVmT model includes intra-tumoral heterogeneity and a complex tumor microenvironment that can influence treatment responses. Three-dimensional organoids generated from primary PyVmT tumor tissue were treated with a chemotherapy (paclitaxel) and a PI3K inhibitor (XL147), each alone or in combination. Cellular subpopulations of response were measured using the OMI Index, a composite endpoint of metabolic response comprised of the optical redox ratio (ratio of the fluorescence intensities of metabolic co-enzymes NAD(P)H to FAD) as well as the fluorescence lifetimes of NAD(P)H and FAD. Combination treatment significantly decreased the OMI Index of PyVmT tumor organoids (p<0.0001) and in vivo tumors (p<0.0001) versus controls. Subpopulation analyses revealed a homogeneous response to combined therapy in both cultured organoids and in vivo tumors, while single agent treatment with XL147 alone or paclitaxel alone elicited heterogeneous responses in organoids. Tumor volume decreased with combination treatment through treatment day 30. These results indicate that OMI of organoids generated from PyVmT tumors can accurately reflect drug response in heterogeneous allografts with both innate and adaptive immunity. Thus, this method is promising for use in humans to predict long-term treatment responses accurately and rapidly, and could aid in clinical treatment planning.

  9. ASXL1 and BIM germ line variants predict response and identify CML patients with the greatest risk of imatinib failure

    PubMed Central

    Marum, Justine E.; Yeung, David T.; Purins, Leanne; Reynolds, John; Parker, Wendy T.; Stangl, Doris; Wang, Paul P. S.; Price, David J.; Tuke, Jonathan; Schreiber, Andreas W.; Scott, Hamish S.; Hughes, Timothy P.

    2017-01-01

    Scoring systems used at diagnosis of chronic myeloid leukemia (CML), such as Sokal risk, provide important response prediction for patients treated with imatinib. However, the sensitivity and specificity of scoring systems could be enhanced for improved identification of patients with the highest risk. We aimed to identify genomic predictive biomarkers of imatinib response at diagnosis to aid selection of first-line therapy. Targeted amplicon sequencing was performed to determine the germ line variant profile in 517 and 79 patients treated with first-line imatinib and nilotinib, respectively. The Sokal score and ASXL1 rs4911231 and BIM rs686952 variants were independent predictors of early molecular response (MR), major MR, deep MRs (MR4 and MR4.5), and failure-free survival (FFS) with imatinib treatment. In contrast, the ASXL1 and BIM variants did not consistently predict MR or FFS with nilotinib treatment. In the imatinib-treated cohort, neither Sokal or the ASXL1 and BIM variants predicted overall survival (OS) or progression to accelerated phase or blast crisis (AP/BC). The Sokal risk score was combined with the ASXL1 and BIM variants in a classification tree model to predict imatinib response. The model distinguished an ultra-high-risk group, representing 10% of patients, that predicted inferior OS (88% vs 97%; P = .041), progression to AP/BC (12% vs 1%; P = .034), FFS (P < .001), and MRs (P < .001). The ultra-high-risk patients may be candidates for more potent or combination first-line therapy. These data suggest that germ line genetic variation contributes to the heterogeneity of response to imatinib and may contribute to a prognostic risk score that allows early optimization of therapy. PMID:29296778

  10. Accounting for inter-annual and seasonal variability in regionalization of hydrologic response in the Great Lakes basin

    NASA Astrophysics Data System (ADS)

    Kult, J. M.; Fry, L. M.; Gronewold, A. D.

    2012-12-01

    Methods for predicting streamflow in areas with limited or nonexistent measures of hydrologic response typically invoke the concept of regionalization, whereby knowledge pertaining to gauged catchments is transferred to ungauged catchments. In this study, we identify watershed physical characteristics acting as primary drivers of hydrologic response throughout the US portion of the Great Lakes basin. Relationships between watershed physical characteristics and hydrologic response are generated from 166 catchments spanning a variety of climate, soil, land cover, and land form regimes through regression tree analysis, leading to a grouping of watersheds exhibiting similar hydrologic response characteristics. These groupings are then used to predict response in ungauged watersheds in an uncertainty framework. Results from this method are assessed alongside one historical regionalization approach which, while simple, has served as a cornerstone of Great Lakes regional hydrologic research for several decades. Our approach expands upon previous research by considering multiple temporal characterizations of hydrologic response. Due to the substantial inter-annual and seasonal variability in hydrologic response observed over the Great Lakes basin, results from the regression tree analysis differ considerably depending on the level of temporal aggregation used to define the response. Specifically, higher levels of temporal aggregation for the response metric (for example, indices derived from long-term means of climate and streamflow observations) lead to improved watershed groupings with lower within-group variance. However, this perceived improvement in model skill occurs at the cost of understated uncertainty when applying the regression to time series simulations or as a basis for model calibration. In such cases, our results indicate that predictions based on long-term characterizations of hydrologic response can produce misleading conclusions when applied at shorter time steps. This study suggests that measures of hydrologic response quantified at these shorter time steps may provide a more robust basis for making predictions in applications of water resource management, model calibration and simulations, and human health and safety.

  11. Evaluation of the Emergency Response Dose Assessment System(ERDAS)

    NASA Technical Reports Server (NTRS)

    Evans, Randolph J.; Lambert, Winifred C.; Manobianco, John T.; Taylor, Gregory E.; Wheeler, Mark M.; Yersavich, Ann M.

    1996-01-01

    The emergency response dose assessment system (ERDAS) is a protype software and hardware system configured to produce routine mesoscale meteorological forecasts and enhanced dispersion estimates on an operational basis for the Kennedy Space Center (KSC)/Cape Canaveral Air Station (CCAS) region. ERDAS provides emergency response guidance to operations at KSC/CCAS in the case of an accidental hazardous material release or an aborted vehicle launch. This report describes the evaluation of ERDAS including: evaluation of sea breeze predictions, comparison of launch plume location and concentration predictions, case study of a toxic release, evaluation of model sensitivity to varying input parameters, evaluation of the user interface, assessment of ERDA's operational capabilities, and a comparison of ERDAS models to the ocean breeze dry gultch diffusion model.

  12. Improved system identification using artificial neural networks and analysis of individual differences in responses of an identified neuron.

    PubMed

    Costalago Meruelo, Alicia; Simpson, David M; Veres, Sandor M; Newland, Philip L

    2016-03-01

    Mathematical modelling is used routinely to understand the coding properties and dynamics of responses of neurons and neural networks. Here we analyse the effectiveness of Artificial Neural Networks (ANNs) as a modelling tool for motor neuron responses. We used ANNs to model the synaptic responses of an identified motor neuron, the fast extensor motor neuron, of the desert locust in response to displacement of a sensory organ, the femoral chordotonal organ, which monitors movements of the tibia relative to the femur of the leg. The aim of the study was threefold: first to determine the potential value of ANNs as tools to model and investigate neural networks, second to understand the generalisation properties of ANNs across individuals and to different input signals and third, to understand individual differences in responses of an identified neuron. A metaheuristic algorithm was developed to design the ANN architectures. The performance of the models generated by the ANNs was compared with those generated through previous mathematical models of the same neuron. The results suggest that ANNs are significantly better than LNL and Wiener models in predicting specific neural responses to Gaussian White Noise, but not significantly different when tested with sinusoidal inputs. They are also able to predict responses of the same neuron in different individuals irrespective of which animal was used to develop the model, although notable differences between some individuals were evident. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Computational methods to predict railcar response to track cross-level variations

    DOT National Transportation Integrated Search

    1976-09-01

    The rocking response of railroad freight cars to track cross-level variations is studied using: (1) a reduced complexity digital simulation model, and (2) a quasi-linear describing function analysis. The reduced complexity digital simulation model em...

  14. Examining the Predictive Validity of a Dynamic Assessment of Decoding to Forecast Response to Tier 2 Intervention

    ERIC Educational Resources Information Center

    Cho, Eunsoo; Compton, Donald L.; Fuchs, Douglas; Fuchs, Lynn S.; Bouton, Bobette

    2014-01-01

    The purpose of this study was to examine the role of a dynamic assessment (DA) of decoding in predicting responsiveness to Tier 2 small-group tutoring in a response-to-intervention model. First grade students (n = 134) who did not show adequate progress in Tier 1 based on 6 weeks of progress monitoring received Tier 2 small-group tutoring in…

  15. Logical-Rule Models of Classification Response Times: A Synthesis of Mental-Architecture, Random-Walk, and Decision-Bound Approaches

    ERIC Educational Resources Information Center

    Fific, Mario; Little, Daniel R.; Nosofsky, Robert M.

    2010-01-01

    We formalize and provide tests of a set of logical-rule models for predicting perceptual classification response times (RTs) and choice probabilities. The models are developed by synthesizing mental-architecture, random-walk, and decision-bound approaches. According to the models, people make independent decisions about the locations of stimuli…

  16. Mathematics as a conduit for translational research in post-traumatic osteoarthritis.

    PubMed

    Ayati, Bruce P; Kapitanov, Georgi I; Coleman, Mitchell C; Anderson, Donald D; Martin, James A

    2017-03-01

    Biomathematical models offer a powerful method of clarifying complex temporal interactions and the relationships among multiple variables in a system. We present a coupled in silico biomathematical model of articular cartilage degeneration in response to impact and/or aberrant loading such as would be associated with injury to an articular joint. The model incorporates fundamental biological and mechanical information obtained from explant and small animal studies to predict post-traumatic osteoarthritis (PTOA) progression, with an eye toward eventual application in human patients. In this sense, we refer to the mathematics as a "conduit of translation." The new in silico framework presented in this paper involves a biomathematical model for the cellular and biochemical response to strains computed using finite element analysis. The model predicts qualitative responses presently, utilizing system parameter values largely taken from the literature. To contribute to accurate predictions, models need to be accurately parameterized with values that are based on solid science. We discuss a parameter identification protocol that will enable us to make increasingly accurate predictions of PTOA progression using additional data from smaller scale explant and small animal assays as they become available. By distilling the data from the explant and animal assays into parameters for biomathematical models, mathematics can translate experimental data to clinically relevant knowledge. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:566-572, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. The BUMP model of response planning: intermittent predictive control accounts for 10 Hz physiological tremor.

    PubMed

    Bye, Robin T; Neilson, Peter D

    2010-10-01

    Physiological tremor during movement is characterized by ∼10 Hz oscillation observed both in the electromyogram activity and in the velocity profile. We propose that this particular rhythm occurs as the direct consequence of a movement response planning system that acts as an intermittent predictive controller operating at discrete intervals of ∼100 ms. The BUMP model of response planning describes such a system. It forms the kernel of Adaptive Model Theory which defines, in computational terms, a basic unit of motor production or BUMP. Each BUMP consists of three processes: (1) analyzing sensory information, (2) planning a desired optimal response, and (3) execution of that response. These processes operate in parallel across successive sequential BUMPs. The response planning process requires a discrete-time interval in which to generate a minimum acceleration trajectory to connect the actual response with the predicted future state of the target and compensate for executional error. We have shown previously that a response planning time of 100 ms accounts for the intermittency observed experimentally in visual tracking studies and for the psychological refractory period observed in double stimulation reaction time studies. We have also shown that simulations of aimed movement, using this same planning interval, reproduce experimentally observed speed-accuracy tradeoffs and movement velocity profiles. Here we show, by means of a simulation study of constant velocity tracking movements, that employing a 100 ms planning interval closely reproduces the measurement discontinuities and power spectra of electromyograms, joint-angles, and angular velocities of physiological tremor reported experimentally. We conclude that intermittent predictive control through sequential operation of BUMPs is a fundamental mechanism of 10 Hz physiological tremor in movement. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Predicting Adaptive Response to Fadrozole Exposure:Computational Model of the Fathead MinnowsHypothalamic-Pituitary-Gonadal Axis

    EPA Science Inventory

    Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We are developing a mechanistic mathematical model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict doseresponse and time-course (...

  19. Using patient self-reports to study heterogeneity of treatment effects in major depressive disorder

    PubMed Central

    Kessler, R.C.; van Loo, H.M.; Wardenaar, K.J.; Bossarte, R.M.; Brenner, L.A.; Ebert, D.D; de Jonge, P.; Nierenberg, A.A.; Rosellini, A.J.; Sampson, N.A.; Schoevers, R.A.; Wilcox, M.A.; Zaslavsky, A.M.

    2016-01-01

    Aims Clinicians need guidance to address the heterogeneity of treatment responses of patients with major depressive disorder (MDD). While prediction schemes based on symptom clustering and biomarkers have so far not yielded results of sufficient strength to inform clinical decision-making, prediction schemes based on big data predictive analytic models might be more practically useful. Methods We review evidence suggesting that prediction equations based on symptoms and other easily-assessed clinical features found in previous research to predict MDD treatment outcomes might provide a foundation for developing predictive analytic clinical decision support models that could help clinicians select optimal (personalized) MDD treatments. These methods could also be useful in targeting patient subsamples for more expensive biomarker assessments. Results Approximately two dozen baseline variables obtained from medical records or patient reports have been found repeatedly in MDD treatment trials to predict overall treatment outcomes (i.e., intervention versus control) or differential treatment outcomes (i.e., intervention A versus intervention B). Similar evidence has been found in observational studies of MDD persistence-severity. However, no treatment studies have yet attempted to develop treatment outcome equations using the full set of these predictors. Promising preliminary empirical results coupled with recent developments in statistical methodology suggest that models could be developed to provide useful clinical decision support in personalized treatment selection. These tools could also provide a strong foundation to increase statistical power in focused studies of biomarkers and MDD heterogeneity of treatment response in subsequent controlled trials. Conclusions Coordinated efforts are needed to develop a protocol for systematically collecting information about established predictors of heterogeneity of MDD treatment response in large observational treatment studies, applying and refining these models in subsequent pragmatic trials, carrying out pooled secondary analyses to extract the maximum amount of information from these coordinated studies, and using this information to focus future discovery efforts in the segment of the patient population in which continued uncertainty about treatment response exists. PMID:26810628

  20. Using patient self-reports to study heterogeneity of treatment effects in major depressive disorder.

    PubMed

    Kessler, R C; van Loo, H M; Wardenaar, K J; Bossarte, R M; Brenner, L A; Ebert, D D; de Jonge, P; Nierenberg, A A; Rosellini, A J; Sampson, N A; Schoevers, R A; Wilcox, M A; Zaslavsky, A M

    2017-02-01

    Clinicians need guidance to address the heterogeneity of treatment responses of patients with major depressive disorder (MDD). While prediction schemes based on symptom clustering and biomarkers have so far not yielded results of sufficient strength to inform clinical decision-making, prediction schemes based on big data predictive analytic models might be more practically useful. We review evidence suggesting that prediction equations based on symptoms and other easily-assessed clinical features found in previous research to predict MDD treatment outcomes might provide a foundation for developing predictive analytic clinical decision support models that could help clinicians select optimal (personalised) MDD treatments. These methods could also be useful in targeting patient subsamples for more expensive biomarker assessments. Approximately two dozen baseline variables obtained from medical records or patient reports have been found repeatedly in MDD treatment trials to predict overall treatment outcomes (i.e., intervention v. control) or differential treatment outcomes (i.e., intervention A v. intervention B). Similar evidence has been found in observational studies of MDD persistence-severity. However, no treatment studies have yet attempted to develop treatment outcome equations using the full set of these predictors. Promising preliminary empirical results coupled with recent developments in statistical methodology suggest that models could be developed to provide useful clinical decision support in personalised treatment selection. These tools could also provide a strong foundation to increase statistical power in focused studies of biomarkers and MDD heterogeneity of treatment response in subsequent controlled trials. Coordinated efforts are needed to develop a protocol for systematically collecting information about established predictors of heterogeneity of MDD treatment response in large observational treatment studies, applying and refining these models in subsequent pragmatic trials, carrying out pooled secondary analyses to extract the maximum amount of information from these coordinated studies, and using this information to focus future discovery efforts in the segment of the patient population in which continued uncertainty about treatment response exists.

  1. Predictable quantum efficient detector based on n-type silicon photodiodes

    NASA Astrophysics Data System (ADS)

    Dönsberg, Timo; Manoocheri, Farshid; Sildoja, Meelis; Juntunen, Mikko; Savin, Hele; Tuovinen, Esa; Ronkainen, Hannu; Prunnila, Mika; Merimaa, Mikko; Tang, Chi Kwong; Gran, Jarle; Müller, Ingmar; Werner, Lutz; Rougié, Bernard; Pons, Alicia; Smîd, Marek; Gál, Péter; Lolli, Lapo; Brida, Giorgio; Rastello, Maria Luisa; Ikonen, Erkki

    2017-12-01

    The predictable quantum efficient detector (PQED) consists of two custom-made induced junction photodiodes that are mounted in a wedged trap configuration for the reduction of reflectance losses. Until now, all manufactured PQED photodiodes have been based on a structure where a SiO2 layer is thermally grown on top of p-type silicon substrate. In this paper, we present the design, manufacturing, modelling and characterization of a new type of PQED, where the photodiodes have an Al2O3 layer on top of n-type silicon substrate. Atomic layer deposition is used to deposit the layer to the desired thickness. Two sets of photodiodes with varying oxide thicknesses and substrate doping concentrations were fabricated. In order to predict recombination losses of charge carriers, a 3D model of the photodiode was built into Cogenda Genius semiconductor simulation software. It is important to note that a novel experimental method was developed to obtain values for the 3D model parameters. This makes the prediction of the PQED responsivity a completely autonomous process. Detectors were characterized for temperature dependence of dark current, spatial uniformity of responsivity, reflectance, linearity and absolute responsivity at the wavelengths of 488 nm and 532 nm. For both sets of photodiodes, the modelled and measured responsivities were generally in agreement within the measurement and modelling uncertainties of around 100 parts per million (ppm). There is, however, an indication that the modelled internal quantum deficiency may be underestimated by a similar amount. Moreover, the responsivities of the detectors were spatially uniform within 30 ppm peak-to-peak variation. The results obtained in this research indicate that the n-type induced junction photodiode is a very promising alternative to the existing p-type detectors, and thus give additional credibility to the concept of modelled quantum detector serving as a primary standard. Furthermore, the manufacturing of PQEDs is no longer dependent on the availability of a certain type of very lightly doped p-type silicon wafers.

  2. Gut Microbiota Signatures Predict Host and Microbiota Responses to Dietary Interventions in Obese Individuals

    PubMed Central

    Korpela, Katri; Flint, Harry J.; Johnstone, Alexandra M.; Lappi, Jenni; Poutanen, Kaisa; Dewulf, Evelyne; Delzenne, Nathalie; de Vos, Willem M.; Salonen, Anne

    2014-01-01

    Background Interactions between the diet and intestinal microbiota play a role in health and disease, including obesity and related metabolic complications. There is great interest to use dietary means to manipulate the microbiota to promote health. Currently, the impact of dietary change on the microbiota and the host metabolism is poorly predictable and highly individual. We propose that the responsiveness of the gut microbiota may depend on its composition, and associate with metabolic changes in the host. Methodology Our study involved three independent cohorts of obese adults (n = 78) from Belgium, Finland, and Britain, participating in different dietary interventions aiming to improve metabolic health. We used a phylogenetic microarray for comprehensive fecal microbiota analysis at baseline and after the intervention. Blood cholesterol, insulin and inflammation markers were analyzed as indicators of host response. The data were divided into four training set – test set pairs; each intervention acted both as a part of a training set and as an independent test set. We used linear models to predict the responsiveness of the microbiota and the host, and logistic regression to predict responder vs. non-responder status, or increase vs. decrease of the health parameters. Principal Findings Our models, based on the abundance of several, mainly Firmicute species at baseline, predicted the responsiveness of the microbiota (AUC  =  0.77–1; predicted vs. observed correlation  =  0.67–0.88). Many of the predictive taxa showed a non-linear relationship with the responsiveness. The microbiota response associated with the change in serum cholesterol levels with an AUC of 0.96, highlighting the involvement of the intestinal microbiota in metabolic health. Conclusion This proof-of-principle study introduces the first potential microbial biomarkers for dietary responsiveness in obese individuals with impaired metabolic health, and reveals the potential of microbiota signatures for personalized nutrition. PMID:24603757

  3. Integrating data from randomized controlled trials and observational studies to predict the response to pregabalin in patients with painful diabetic peripheral neuropathy.

    PubMed

    Alexander, Joe; Edwards, Roger A; Savoldelli, Alberto; Manca, Luigi; Grugni, Roberto; Emir, Birol; Whalen, Ed; Watt, Stephen; Brodsky, Marina; Parsons, Bruce

    2017-07-20

    More patient-specific medical care is expected as more is learned about variations in patient responses to medical treatments. Analytical tools enable insights by linking treatment responses from different types of studies, such as randomized controlled trials (RCTs) and observational studies. Given the importance of evidence from both types of studies, our goal was to integrate these types of data into a single predictive platform to help predict response to pregabalin in individual patients with painful diabetic peripheral neuropathy (pDPN). We utilized three pivotal RCTs of pregabalin (398 North American patients) and the largest observational study of pregabalin (3159 German patients). We implemented a hierarchical cluster analysis to identify patient clusters in the Observational Study to which RCT patients could be matched using the coarsened exact matching (CEM) technique, thereby creating a matched dataset. We then developed autoregressive moving average models (ARMAXs) to estimate weekly pain scores for pregabalin-treated patients in each cluster in the matched dataset using the maximum likelihood method. Finally, we validated ARMAX models using Observational Study patients who had not matched with RCT patients, using t tests between observed and predicted pain scores. Cluster analysis yielded six clusters (287-777 patients each) with the following clustering variables: gender, age, pDPN duration, body mass index, depression history, pregabalin monotherapy, prior gabapentin use, baseline pain score, and baseline sleep interference. CEM yielded 1528 unique patients in the matched dataset. The reduction in global imbalance scores for the clusters after adding the RCT patients (ranging from 6 to 63% depending on the cluster) demonstrated that the process reduced the bias of covariates in five of the six clusters. ARMAX models of pain score performed well (R 2 : 0.85-0.91; root mean square errors: 0.53-0.57). t tests did not show differences between observed and predicted pain scores in the 1955 patients who had not matched with RCT patients. The combination of cluster analyses, CEM, and ARMAX modeling enabled strong predictive capabilities with respect to pain scores. Integrating RCT and Observational Study data using CEM enabled effective use of Observational Study data to predict patient responses.

  4. Machine learning and linear regression models to predict catchment-level base cation weathering rates across the southern Appalachian Mountain region, USA

    Treesearch

    Nicholas A. Povak; Paul F. Hessburg; Todd C. McDonnell; Keith M. Reynolds; Timothy J. Sullivan; R. Brion Salter; Bernard J. Crosby

    2014-01-01

    Accurate estimates of soil mineral weathering are required for regional critical load (CL) modeling to identify ecosystems at risk of the deleterious effects from acidification. Within a correlative modeling framework, we used modeled catchment-level base cation weathering (BCw) as the response variable to identify key environmental correlates and predict a continuous...

  5. Assessing model sensitivity and uncertainty across multiple Free-Air CO2 Enrichment experiments.

    NASA Astrophysics Data System (ADS)

    Cowdery, E.; Dietze, M.

    2015-12-01

    As atmospheric levels of carbon dioxide levels continue to increase, it is critical that terrestrial ecosystem models can accurately predict ecological responses to the changing environment. Current predictions of net primary productivity (NPP) in response to elevated atmospheric CO2 concentrations are highly variable and contain a considerable amount of uncertainty. It is necessary that we understand which factors are driving this uncertainty. The Free-Air CO2 Enrichment (FACE) experiments have equipped us with a rich data source that can be used to calibrate and validate these model predictions. To identify and evaluate the assumptions causing inter-model differences we performed model sensitivity and uncertainty analysis across ambient and elevated CO2 treatments using the Data Assimilation Linked Ecosystem Carbon (DALEC) model and the Ecosystem Demography Model (ED2), two process-based models ranging from low to high complexity respectively. These modeled process responses were compared to experimental data from the Kennedy Space Center Open Top Chamber Experiment, the Nevada Desert Free Air CO2 Enrichment Facility, the Rhinelander FACE experiment, the Wyoming Prairie Heating and CO2 Enrichment Experiment, the Duke Forest Face experiment and the Oak Ridge Experiment on CO2 Enrichment. By leveraging data access proxy and data tilling services provided by the BrownDog data curation project alongside analysis modules available in the Predictive Ecosystem Analyzer (PEcAn), we produced automated, repeatable benchmarking workflows that are generalized to incorporate different sites and ecological models. Combining the observed patterns of uncertainty between the two models with results of the recent FACE-model data synthesis project (FACE-MDS) can help identify which processes need further study and additional data constraints. These findings can be used to inform future experimental design and in turn can provide informative starting point for data assimilation.

  6. Modeling low-dose mortality and disease incubation period of inhalational anthrax in the rabbit.

    PubMed

    Gutting, Bradford W; Marchette, David; Sherwood, Robert; Andrews, George A; Director-Myska, Alison; Channel, Stephen R; Wolfe, Daniel; Berger, Alan E; Mackie, Ryan S; Watson, Brent J; Rukhin, Andrey

    2013-07-21

    There is a need to advance our ability to conduct credible human risk assessments for inhalational anthrax associated with exposure to a low number of bacteria. Combining animal data with computational models of disease will be central in the low-dose and cross-species extrapolations required in achieving this goal. The objective of the current work was to apply and advance the competing risks (CR) computational model of inhalational anthrax where data was collected from NZW rabbits exposed to aerosols of Ames strain Bacillus anthracis. An initial aim was to parameterize the CR model using high-dose rabbit data and then conduct a low-dose extrapolation. The CR low-dose attack rate was then compared against known low-dose rabbit data as well as the low-dose curve obtained when the entire rabbit dose-response data set was fitted to an exponential dose-response (EDR) model. The CR model predictions demonstrated excellent agreement with actual low-dose rabbit data. We next used a modified CR model (MCR) to examine disease incubation period (the time to reach a fever >40 °C). The MCR model predicted a germination period of 14.5h following exposure to a low spore dose, which was confirmed by monitoring spore germination in the rabbit lung using PCR, and predicted a low-dose disease incubation period in the rabbit between 14.7 and 16.8 days. Overall, the CR and MCR model appeared to describe rabbit inhalational anthrax well. These results are discussed in the context of conducting laboratory studies in other relevant animal models, combining the CR/MCR model with other computation models of inhalational anthrax, and using the resulting information towards extrapolating a low-dose response prediction for man. Published by Elsevier Ltd.

  7. An automated construction of error models for uncertainty quantification and model calibration

    NASA Astrophysics Data System (ADS)

    Josset, L.; Lunati, I.

    2015-12-01

    To reduce the computational cost of stochastic predictions, it is common practice to rely on approximate flow solvers (or «proxy»), which provide an inexact, but computationally inexpensive response [1,2]. Error models can be constructed to correct the proxy response: based on a learning set of realizations for which both exact and proxy simulations are performed, a transformation is sought to map proxy into exact responses. Once the error model is constructed a prediction of the exact response is obtained at the cost of a proxy simulation for any new realization. Despite its effectiveness [2,3], the methodology relies on several user-defined parameters, which impact the accuracy of the predictions. To achieve a fully automated construction, we propose a novel methodology based on an iterative scheme: we first initialize the error model with a small training set of realizations; then, at each iteration, we add a new realization both to improve the model and to evaluate its performance. More specifically, at each iteration we use the responses predicted by the updated model to identify the realizations that need to be considered to compute the quantity of interest. Another user-defined parameter is the number of dimensions of the response spaces between which the mapping is sought. To identify the space dimensions that optimally balance mapping accuracy and risk of overfitting, we follow a Leave-One-Out Cross Validation. Also, the definition of a stopping criterion is central to an automated construction. We use a stability measure based on bootstrap techniques to stop the iterative procedure when the iterative model has converged. The methodology is illustrated with two test cases in which an inverse problem has to be solved and assess the performance of the method. We show that an iterative scheme is crucial to increase the applicability of the approach. [1] Josset, L., and I. Lunati, Local and global error models for improving uncertainty quantification, Math.ematical Geosciences, 2013 [2] Josset, L., D. Ginsbourger, and I. Lunati, Functional Error Modeling for uncertainty quantification in hydrogeology, Water Resources Research, 2015 [3] Josset, L., V. Demyanov, A.H. Elsheikhb, and I. Lunati, Accelerating Monte Carlo Markov chains with proxy and error models, Computer & Geosciences, 2015 (In press)

  8. Potential uncertainty reduction in model-averaged benchmark dose estimates informed by an additional dose study.

    PubMed

    Shao, Kan; Small, Mitchell J

    2011-10-01

    A methodology is presented for assessing the information value of an additional dosage experiment in existing bioassay studies. The analysis demonstrates the potential reduction in the uncertainty of toxicity metrics derived from expanded studies, providing insights for future studies. Bayesian methods are used to fit alternative dose-response models using Markov chain Monte Carlo (MCMC) simulation for parameter estimation and Bayesian model averaging (BMA) is used to compare and combine the alternative models. BMA predictions for benchmark dose (BMD) are developed, with uncertainty in these predictions used to derive the lower bound BMDL. The MCMC and BMA results provide a basis for a subsequent Monte Carlo analysis that backcasts the dosage where an additional test group would have been most beneficial in reducing the uncertainty in the BMD prediction, along with the magnitude of the expected uncertainty reduction. Uncertainty reductions are measured in terms of reduced interval widths of predicted BMD values and increases in BMDL values that occur as a result of this reduced uncertainty. The methodology is illustrated using two existing data sets for TCDD carcinogenicity, fitted with two alternative dose-response models (logistic and quantal-linear). The example shows that an additional dose at a relatively high value would have been most effective for reducing the uncertainty in BMA BMD estimates, with predicted reductions in the widths of uncertainty intervals of approximately 30%, and expected increases in BMDL values of 5-10%. The results demonstrate that dose selection for studies that subsequently inform dose-response models can benefit from consideration of how these models will be fit, combined, and interpreted. © 2011 Society for Risk Analysis.

  9. Vegetation turnover and nitrogen feedback drive temperate forest carbon sequestration in response to elevated CO[2]. A multi-model structural analysis

    NASA Astrophysics Data System (ADS)

    Walker, A. P.; Zaehle, S.; Medlyn, B. E.; De Kauwe, M. G.; Asao, S.; Hickler, T.; Lomas, M. R.; Pak, B. C.; Parton, W. J.; Quegan, S.; Ricciuto, D. M.; Wang, Y.; Warlind, D.; Norby, R. J.

    2013-12-01

    Predicting forest carbon (C) sequestration requires understanding the processes leading to rates of biomass C accrual (net primary productivity; NPP) and loss (turnover). In temperate forest ecosystems, experiments and models have shown that feedback via progressive nitrogen limitation (PNL) is a key driver of NPP responses to elevated CO[2]. In this analysis we show that while still important, PNL may not be as severe a constraint on NPP as indicated by some studies and that the response of turnover to elevated CO[2] could be as important, especially in the near to medium term. Seven terrestrial ecosystem and biosphere models that couple C and N cycles with varying assumptions and complexity were used to simulate responses over 300 years to a step change in CO[2] to 550 ppmv. Simulations were run for the evergreen needleleaf Duke forest and the deciduous broadleaf Oak Ridge forest FACE experiments. Whether or not a model simulated PNL under elevated CO[2] depended on model structure and the timescale of observation. Avoiding PNL depended on mechanisms that reduced ecosystem N losses. The two key assumptions that reduced N losses were whether plant N uptake was based on plant N demand and whether ecosystem N losses (volatisation and leaching) were dependent on the concentration of N in the soil solution. Assumptions on allocation and turnover resulted in very different responses of turnover to elevated CO[2], which had profound implications for C sequestration. For example, at equilibrium CABLE2.0 predicted an increase in vegetation C sequestration despite decreased NPP, while O-CN predicted much less vegetation C sequestration than would be expected from predicted NPP increases alone. Generally elevated CO[2] favoured a shift in C partitioning towards longer lived wood biomass, which increased vegetation turnover and enhanced C sequestration. Enhanced wood partitioning was overlaid by increases or decreases in self-thinning depended on whether self-thinning was simply a function of forest structure, or structure and NPP. Self-thinning assumptions altered equilibrium C sequestration and were extremely important for the immediate transient response and near-term prediction of C sequestration.

  10. Predicting Treatment Response to Intra-arterial Therapies for Hepatocellular Carcinoma with the Use of Supervised Machine Learning-An Artificial Intelligence Concept.

    PubMed

    Abajian, Aaron; Murali, Nikitha; Savic, Lynn Jeanette; Laage-Gaupp, Fabian Max; Nezami, Nariman; Duncan, James S; Schlachter, Todd; Lin, MingDe; Geschwind, Jean-François; Chapiro, Julius

    2018-06-01

    To use magnetic resonance (MR) imaging and clinical patient data to create an artificial intelligence (AI) framework for the prediction of therapeutic outcomes of transarterial chemoembolization by applying machine learning (ML) techniques. This study included 36 patients with hepatocellular carcinoma (HCC) treated with transarterial chemoembolization. The cohort (age 62 ± 8.9 years; 31 men; 13 white; 24 Eastern Cooperative Oncology Group performance status 0, 10 status 1, 2 status 2; 31 Child-Pugh stage A, 4 stage B, 1 stage C; 1 Barcelona Clinic Liver Cancer stage 0, 12 stage A, 10 stage B, 13 stage C; tumor size 5.2 ± 3.0 cm; number of tumors 2.6 ± 1.1; and 30 conventional transarterial chemoembolization, 6 with drug-eluting embolic agents). MR imaging was obtained before and 1 month after transarterial chemoembolization. Image-based tumor response to transarterial chemoembolization was assessed with the use of the 3D quantitative European Association for the Study of the Liver (qEASL) criterion. Clinical information, baseline imaging, and therapeutic features were used to train logistic regression (LR) and random forest (RF) models to predict patients as treatment responders or nonresponders under the qEASL response criterion. The performance of each model was validated using leave-one-out cross-validation. Both LR and RF models predicted transarterial chemoembolization treatment response with an overall accuracy of 78% (sensitivity 62.5%, specificity 82.1%, positive predictive value 50.0%, negative predictive value 88.5%). The strongest predictors of treatment response included a clinical variable (presence of cirrhosis) and an imaging variable (relative tumor signal intensity >27.0). Transarterial chemoembolization outcomes in patients with HCC may be predicted before procedures by combining clinical patient data and baseline MR imaging with the use of AI and ML techniques. Copyright © 2018 SIR. Published by Elsevier Inc. All rights reserved.

  11. From Vivaldi to Beatles and back: predicting lateralized brain responses to music.

    PubMed

    Alluri, Vinoo; Toiviainen, Petri; Lund, Torben E; Wallentin, Mikkel; Vuust, Peter; Nandi, Asoke K; Ristaniemi, Tapani; Brattico, Elvira

    2013-12-01

    We aimed at predicting the temporal evolution of brain activity in naturalistic music listening conditions using a combination of neuroimaging and acoustic feature extraction. Participants were scanned using functional Magnetic Resonance Imaging (fMRI) while listening to two musical medleys, including pieces from various genres with and without lyrics. Regression models were built to predict voxel-wise brain activations which were then tested in a cross-validation setting in order to evaluate the robustness of the hence created models across stimuli. To further assess the generalizability of the models we extended the cross-validation procedure by including another dataset, which comprised continuous fMRI responses of musically trained participants to an Argentinean tango. Individual models for the two musical medleys revealed that activations in several areas in the brain belonging to the auditory, limbic, and motor regions could be predicted. Notably, activations in the medial orbitofrontal region and the anterior cingulate cortex, relevant for self-referential appraisal and aesthetic judgments, could be predicted successfully. Cross-validation across musical stimuli and participant pools helped identify a region of the right superior temporal gyrus, encompassing the planum polare and the Heschl's gyrus, as the core structure that processed complex acoustic features of musical pieces from various genres, with or without lyrics. Models based on purely instrumental music were able to predict activation in the bilateral auditory cortices, parietal, somatosensory, and left hemispheric primary and supplementary motor areas. The presence of lyrics on the other hand weakened the prediction of activations in the left superior temporal gyrus. Our results suggest spontaneous emotion-related processing during naturalistic listening to music and provide supportive evidence for the hemispheric specialization for categorical sounds with realistic stimuli. We herewith introduce a powerful means to predict brain responses to music, speech, or soundscapes across a large variety of contexts. © 2013.

  12. Prediction of skin sensitization potency using machine learning approaches.

    PubMed

    Zang, Qingda; Paris, Michael; Lehmann, David M; Bell, Shannon; Kleinstreuer, Nicole; Allen, David; Matheson, Joanna; Jacobs, Abigail; Casey, Warren; Strickland, Judy

    2017-07-01

    The replacement of animal use in testing for regulatory classification of skin sensitizers is a priority for US federal agencies that use data from such testing. Machine learning models that classify substances as sensitizers or non-sensitizers without using animal data have been developed and evaluated. Because some regulatory agencies require that sensitizers be further classified into potency categories, we developed statistical models to predict skin sensitization potency for murine local lymph node assay (LLNA) and human outcomes. Input variables for our models included six physicochemical properties and data from three non-animal test methods: direct peptide reactivity assay; human cell line activation test; and KeratinoSens™ assay. Models were built to predict three potency categories using four machine learning approaches and were validated using external test sets and leave-one-out cross-validation. A one-tiered strategy modeled all three categories of response together while a two-tiered strategy modeled sensitizer/non-sensitizer responses and then classified the sensitizers as strong or weak sensitizers. The two-tiered model using the support vector machine with all assay and physicochemical data inputs provided the best performance, yielding accuracy of 88% for prediction of LLNA outcomes (120 substances) and 81% for prediction of human test outcomes (87 substances). The best one-tiered model predicted LLNA outcomes with 78% accuracy and human outcomes with 75% accuracy. By comparison, the LLNA predicts human potency categories with 69% accuracy (60 of 87 substances correctly categorized). These results suggest that computational models using non-animal methods may provide valuable information for assessing skin sensitization potency. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Reconstruction of late Holocene climate based on tree growth and mechanistic hierarchical models

    USGS Publications Warehouse

    Tipton, John; Hooten, Mevin B.; Pederson, Neil; Tingley, Martin; Bishop, Daniel

    2016-01-01

    Reconstruction of pre-instrumental, late Holocene climate is important for understanding how climate has changed in the past and how climate might change in the future. Statistical prediction of paleoclimate from tree ring widths is challenging because tree ring widths are a one-dimensional summary of annual growth that represents a multi-dimensional set of climatic and biotic influences. We develop a Bayesian hierarchical framework using a nonlinear, biologically motivated tree ring growth model to jointly reconstruct temperature and precipitation in the Hudson Valley, New York. Using a common growth function to describe the response of a tree to climate, we allow for species-specific parameterizations of the growth response. To enable predictive backcasts, we model the climate variables with a vector autoregressive process on an annual timescale coupled with a multivariate conditional autoregressive process that accounts for temporal correlation and cross-correlation between temperature and precipitation on a monthly scale. Our multi-scale temporal model allows for flexibility in the climate response through time at different temporal scales and predicts reasonable climate scenarios given tree ring width data.

  14. Fourier power, subjective distance, and object categories all provide plausible models of BOLD responses in scene-selective visual areas

    PubMed Central

    Lescroart, Mark D.; Stansbury, Dustin E.; Gallant, Jack L.

    2015-01-01

    Perception of natural visual scenes activates several functional areas in the human brain, including the Parahippocampal Place Area (PPA), Retrosplenial Complex (RSC), and the Occipital Place Area (OPA). It is currently unclear what specific scene-related features are represented in these areas. Previous studies have suggested that PPA, RSC, and/or OPA might represent at least three qualitatively different classes of features: (1) 2D features related to Fourier power; (2) 3D spatial features such as the distance to objects in a scene; or (3) abstract features such as the categories of objects in a scene. To determine which of these hypotheses best describes the visual representation in scene-selective areas, we applied voxel-wise modeling (VM) to BOLD fMRI responses elicited by a set of 1386 images of natural scenes. VM provides an efficient method for testing competing hypotheses by comparing predictions of brain activity based on encoding models that instantiate each hypothesis. Here we evaluated three different encoding models that instantiate each of the three hypotheses listed above. We used linear regression to fit each encoding model to the fMRI data recorded from each voxel, and we evaluated each fit model by estimating the amount of variance it predicted in a withheld portion of the data set. We found that voxel-wise models based on Fourier power or the subjective distance to objects in each scene predicted much of the variance predicted by a model based on object categories. Furthermore, the response variance explained by these three models is largely shared, and the individual models explain little unique variance in responses. Based on an evaluation of previous studies and the data we present here, we conclude that there is currently no good basis to favor any one of the three alternative hypotheses about visual representation in scene-selective areas. We offer suggestions for further studies that may help resolve this issue. PMID:26594164

  15. Modeling Pathologic Response of Esophageal Cancer to Chemoradiation Therapy Using Spatial-Temporal {sup 18}F-FDG PET Features, Clinical Parameters, and Demographics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hao; Tan, Shan; Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan

    2014-01-01

    Purpose: To construct predictive models using comprehensive tumor features for the evaluation of tumor response to neoadjuvant chemoradiation therapy (CRT) in patients with esophageal cancer. Methods and Materials: This study included 20 patients who underwent trimodality therapy (CRT + surgery) and underwent {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) both before and after CRT. Four groups of tumor features were examined: (1) conventional PET/CT response measures (eg, standardized uptake value [SUV]{sub max}, tumor diameter); (2) clinical parameters (eg, TNM stage, histology) and demographics; (3) spatial-temporal PET features, which characterize tumor SUV intensity distribution, spatial patterns, geometry, and associated changesmore » resulting from CRT; and (4) all features combined. An optimal feature set was identified with recursive feature selection and cross-validations. Support vector machine (SVM) and logistic regression (LR) models were constructed for prediction of pathologic tumor response to CRT, cross-validations being used to avoid model overfitting. Prediction accuracy was assessed by area under the receiver operating characteristic curve (AUC), and precision was evaluated by confidence intervals (CIs) of AUC. Results: When applied to the 4 groups of tumor features, the LR model achieved AUCs (95% CI) of 0.57 (0.10), 0.73 (0.07), 0.90 (0.06), and 0.90 (0.06). The SVM model achieved AUCs (95% CI) of 0.56 (0.07), 0.60 (0.06), 0.94 (0.02), and 1.00 (no misclassifications). With the use of spatial-temporal PET features combined with conventional PET/CT measures and clinical parameters, the SVM model achieved very high accuracy (AUC 1.00) and precision (no misclassifications)—results that were significantly better than when conventional PET/CT measures or clinical parameters and demographics alone were used. For groups with many tumor features (groups 3 and 4), the SVM model achieved significantly higher accuracy than did the LR model. Conclusions: The SVM model that used all features including spatial-temporal PET features accurately and precisely predicted pathologic tumor response to CRT in esophageal cancer.« less

  16. Theory, methods and tools for determining environmental flows for riparian vegetation: Riparian vegetation-flow response guilds

    USGS Publications Warehouse

    Merritt, D.M.; Scott, M.L.; Leroy, Poff N.; Auble, G.T.; Lytle, D.A.

    2010-01-01

    Riparian vegetation composition, structure and abundance are governed to a large degree by river flow regime and flow-mediated fluvial processes. Streamflow regime exerts selective pressures on riparian vegetation, resulting in adaptations (trait syndromes) to specific flow attributes. Widespread modification of flow regimes by humans has resulted in extensive alteration of riparian vegetation communities. Some of the negative effects of altered flow regimes on vegetation may be reversed by restoring components of the natural flow regime. 2. Models have been developed that quantitatively relate components of the flow regime to attributes of riparian vegetation at the individual, population and community levels. Predictive models range from simple statistical relationships, to more complex stochastic matrix population models and dynamic simulation models. Of the dozens of predictive models reviewed here, most treat one or a few species, have many simplifying assumptions such as stable channel form, and do not specify the time-scale of response. In many cases, these models are very effective in developing alternative streamflow management plans for specific river reaches or segments but are not directly transferable to other rivers or other regions. 3. A primary goal in riparian ecology is to develop general frameworks for prediction of vegetation response to changing environmental conditions. The development of riparian vegetation-flow response guilds offers a framework for transferring information from rivers where flow standards have been developed to maintain desirable vegetation attributes, to rivers with little or no existing information. 4. We propose to organise riparian plants into non-phylogenetic groupings of species with shared traits that are related to components of hydrologic regime: life history, reproductive strategy, morphology, adaptations to fluvial disturbance and adaptations to water availability. Plants from any river or region may be grouped into these guilds and related to hydrologic attributes of a specific class of river using probabilistic response curves. 5. Probabilistic models based on riparian response guilds enable prediction of the likelihood of change in each of the response guilds given projected changes in flow, and facilitate examination of trade-offs and risks associated with various flow management strategies. Riparian response guilds can be decomposed to the species level for individual projects or used to develop flow management guidelines for regional water management plans. ?? 2009 Published.

  17. Competition-interaction landscapes for the joint response of forests to climate change.

    PubMed

    Clark, James S; Bell, David M; Kwit, Matthew C; Zhu, Kai

    2014-06-01

    The recent global increase in forest mortality episodes could not have been predicted from current vegetation models that are calibrated to regional climate data. Physiological studies show that mortality results from interactions between climate and competition at the individual scale. Models of forest response to climate do not include interactions because they are hard to estimate and require long-term observations on individual trees obtained at frequent (annual) intervals. Interactions involve multiple tree responses that can only be quantified if these responses are estimated as a joint distribution. A new approach provides estimates of climate–competition interactions in two critical ways, (i) among individuals, as a joint distribution of responses to combinations of inputs, such as resources and climate, and (ii) within individuals, due to allocation requirements that control outputs, such as demographic rates. Application to 20 years of data from climate and competition gradients shows that interactions control forest responses, and their omission from models leads to inaccurate predictions. Species most vulnerable to increasing aridity are not those that show the largest growth response to precipitation, but rather depend on interactions with the local resource environment. This first assessment of regional species vulnerability that is based on the scale at which climate operates, individual trees competing for carbon and water, supports predictions of potential savannification in the southeastern US.

  18. Optimization of microwave-assisted extraction of total extract, stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modelling.

    PubMed

    Ameer, Kashif; Bae, Seong-Woo; Jo, Yunhee; Lee, Hyun-Gyu; Ameer, Asif; Kwon, Joong-Ho

    2017-08-15

    Stevia rebaudiana (Bertoni) consists of stevioside and rebaudioside-A (Reb-A). We compared response surface methodology (RSM) and artificial neural network (ANN) modelling for their estimation and predictive capabilities in building effective models with maximum responses. A 5-level 3-factor central composite design was used to optimize microwave-assisted extraction (MAE) to obtain maximum yield of target responses as a function of extraction time (X 1 : 1-5min), ethanol concentration, (X 2 : 0-100%) and microwave power (X 3 : 40-200W). Maximum values of the three output parameters: 7.67% total extract yield, 19.58mg/g stevioside yield, and 15.3mg/g Reb-A yield, were obtained under optimum extraction conditions of 4min X 1 , 75% X 2 , and 160W X 3 . The ANN model demonstrated higher efficiency than did the RSM model. Hence, RSM can demonstrate interaction effects of inherent MAE parameters on target responses, whereas ANN can reliably model the MAE process with better predictive and estimation capabilities. Copyright © 2017. Published by Elsevier Ltd.

  19. Challenging terrestrial biosphere models with data from the long-term multifactor Prairie Heating and CO2 Enrichment experiment

    NASA Astrophysics Data System (ADS)

    De Kauwe, M. G.; Medlyn, B.; Walker, A.; Zaehle, S.; Pendall, E.; Norby, R. J.

    2017-12-01

    Multifactor experiments are often advocated as important for advancing models, yet to date, such models have only been tested against single-factor experiments. We applied 10 models to the multifactor Prairie Heating and CO2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multifactor experiments can be used to constrain models and to identify a road map for model improvement. We found models performed poorly in ambient conditions: comparison with data highlighted model failures particularly with respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against the observations from single-factors treatments was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the nitrogen cycle models, nitrogen availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they overestimated the effect of warming on leaf onset and did not allow CO2-induced water savings to extend the growing season length. Observed interactive (CO2 × warming) treatment effects were subtle and contingent on water stress, phenology, and species composition. As the models did not correctly represent these processes under ambient and single-factor conditions, little extra information was gained by comparing model predictions against interactive responses. We outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change.

  20. Model Predictive Flight Control System with Full State Observer using H∞ Method

    NASA Astrophysics Data System (ADS)

    Sanwale, Jitu; Singh, Dhan Jeet

    2018-03-01

    This paper presents the application of the model predictive approach to design a flight control system (FCS) for longitudinal dynamics of a fixed wing aircraft. Longitudinal dynamics is derived for a conventional aircraft. Open loop aircraft response analysis is carried out. Simulation studies are illustrated to prove the efficacy of the proposed model predictive controller using H ∞ state observer. The estimation criterion used in the {H}_{∞} observer design is to minimize the worst possible effects of the modelling errors and additive noise on the parameter estimation.

  1. A unified internal model theory to resolve the paradox of active versus passive self-motion sensation

    PubMed Central

    Angelaki, Dora E

    2017-01-01

    Brainstem and cerebellar neurons implement an internal model to accurately estimate self-motion during externally generated (‘passive’) movements. However, these neurons show reduced responses during self-generated (‘active’) movements, indicating that predicted sensory consequences of motor commands cancel sensory signals. Remarkably, the computational processes underlying sensory prediction during active motion and their relationship to internal model computations during passive movements remain unknown. We construct a Kalman filter that incorporates motor commands into a previously established model of optimal passive self-motion estimation. The simulated sensory error and feedback signals match experimentally measured neuronal responses during active and passive head and trunk rotations and translations. We conclude that a single sensory internal model can combine motor commands with vestibular and proprioceptive signals optimally. Thus, although neurons carrying sensory prediction error or feedback signals show attenuated modulation, the sensory cues and internal model are both engaged and critically important for accurate self-motion estimation during active head movements. PMID:29043978

  2. Comparison of UWCC MOX fuel measurements to MCNP-REN calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abhold, M.; Baker, M.; Jie, R.

    1998-12-31

    The development of neutron coincidence counting has greatly improved the accuracy and versatility of neutron-based techniques to assay fissile materials. Today, the shift register analyzer connected to either a passive or active neutron detector is widely used by both domestic and international safeguards organizations. The continued development of these techniques and detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model, as it is currently used, fails to accurately predict detector response in highly multiplying mediums such as mixed-oxide (MOX) lightmore » water reactor fuel assemblies. For this reason, efforts have been made to modify the currently used Monte Carlo codes and to develop new analytical methods so that this model is not required to predict detector response. The authors describe their efforts to modify a widely used Monte Carlo code for this purpose and also compare calculational results with experimental measurements.« less

  3. Application of Artificial Neural Network and Response Surface Methodology in Modeling of Surface Roughness in WS2 Solid Lubricant Assisted MQL Turning of Inconel 718

    NASA Astrophysics Data System (ADS)

    Maheshwera Reddy Paturi, Uma; Devarasetti, Harish; Abimbola Fadare, David; Reddy Narala, Suresh Kumar

    2018-04-01

    In the present paper, the artificial neural network (ANN) and response surface methodology (RSM) are used in modeling of surface roughness in WS2 (tungsten disulphide) solid lubricant assisted minimal quantity lubrication (MQL) machining. The real time MQL turning of Inconel 718 experimental data considered in this paper was available in the literature [1]. In ANN modeling, performance parameters such as mean square error (MSE), mean absolute percentage error (MAPE) and average error in prediction (AEP) for the experimental data were determined based on Levenberg–Marquardt (LM) feed forward back propagation training algorithm with tansig as transfer function. The MATLAB tool box has been utilized in training and testing of neural network model. Neural network model with three input neurons, one hidden layer with five neurons and one output neuron (3-5-1 architecture) is found to be most confidence and optimal. The coefficient of determination (R2) for both the ANN and RSM model were seen to be 0.998 and 0.982 respectively. The surface roughness predictions from ANN and RSM model were related with experimentally measured values and found to be in good agreement with each other. However, the prediction efficacy of ANN model is relatively high when compared with RSM model predictions.

  4. Unit-Sphere Multiaxial Stochastic-Strength Model Applied to Anisotropic and Composite Materials

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel, N.

    2013-01-01

    Models that predict the failure probability of brittle materials under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This methodology has been extended to predict the multiaxial strength response of transversely isotropic brittle materials, including polymer matrix composites (PMCs), by considering (1) flaw-orientation anisotropy, whereby a preexisting microcrack has a higher likelihood of being oriented in one direction over another direction, and (2) critical strength, or K (sub Ic) orientation anisotropy, whereby the level of critical strength or fracture toughness for mode I crack propagation, K (sub Ic), changes with regard to the orientation of the microstructure. In this report, results from finite element analysis of a fiber-reinforced-matrix unit cell were used with the unit-sphere model to predict the biaxial strength response of a unidirectional PMC previously reported from the World-Wide Failure Exercise. Results for nuclear-grade graphite materials under biaxial loading are also shown for comparison. This effort was successful in predicting the multiaxial strength response for the chosen problems. Findings regarding stress-state interactions and failure modes also are provided.

  5. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 1. Small catchment water balance model

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu; Ruprecht, John K.; Viney, Neil R.

    1996-03-01

    A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers.The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.

  6. A comparison of analysis tools for predicting the inelastic cyclic response of cross-ply titanium matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroupa, J.L.; Coker, D.; Neu, R.W.

    1996-12-31

    Several micromechanical models that are currently being used for predicting the thermal and mechanical behavior of a cross-ply, [0/90], titanium matrix composite are evaluated. Six computer programs or methods are compared: (1) VISCOPLY; (2) METCAN; (3) FIDEP, an enhanced concentric cylinder model; (4) LISOL, a modified method of cells approach; (5) an elementary approach where the [90] ply is assumed to have the same properties as the matrix; and (6) a finite element method. Comparisons are made for the thermal residual stresses at room temperature resulting from processing, as well as for stresses and strains in two isothermal and twomore » thermomechanical fatigue test cases. For each case, the laminate response of the models is compared to experimental behavior, while the responses of the constituents are compared among the models. The capability of each model to predict frequency effects, inelastic cyclic strain (hysteresis) behavior, and strain ratchetting with cycling is shown. The basis of formulation for the micromechanical models, the constitutive relationships used for the matrix and fiber, and the modeling technique of the [90] ply are all found to be important factors for determining the accurate behavior of the [0/90] composite.« less

  7. Adaptive Response in Female Modeling of the Hypothalamic-pituitary-gonadal Axis

    EPA Science Inventory

    Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We are developing a mechanistic computational model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict dose-response and time-course ...

  8. Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity.

    PubMed

    Majumder, Biswanath; Baraneedharan, Ulaganathan; Thiyagarajan, Saravanan; Radhakrishnan, Padhma; Narasimhan, Harikrishna; Dhandapani, Muthu; Brijwani, Nilesh; Pinto, Dency D; Prasath, Arun; Shanthappa, Basavaraja U; Thayakumar, Allen; Surendran, Rajagopalan; Babu, Govind K; Shenoy, Ashok M; Kuriakose, Moni A; Bergthold, Guillaume; Horowitz, Peleg; Loda, Massimo; Beroukhim, Rameen; Agarwal, Shivani; Sengupta, Shiladitya; Sundaram, Mallikarjun; Majumder, Pradip K

    2015-02-27

    Predicting clinical response to anticancer drugs remains a major challenge in cancer treatment. Emerging reports indicate that the tumour microenvironment and heterogeneity can limit the predictive power of current biomarker-guided strategies for chemotherapy. Here we report the engineering of personalized tumour ecosystems that contextually conserve the tumour heterogeneity, and phenocopy the tumour microenvironment using tumour explants maintained in defined tumour grade-matched matrix support and autologous patient serum. The functional response of tumour ecosystems, engineered from 109 patients, to anticancer drugs, together with the corresponding clinical outcomes, is used to train a machine learning algorithm; the learned model is then applied to predict the clinical response in an independent validation group of 55 patients, where we achieve 100% sensitivity in predictions while keeping specificity in a desired high range. The tumour ecosystem and algorithm, together termed the CANScript technology, can emerge as a powerful platform for enabling personalized medicine.

  9. Predicting the Responses of Soil Nitrite-Oxidizers to Multi-Factorial Global Change: A Trait-Based Approach

    DOE PAGES

    Le Roux, Xavier; Bouskill, Nicholas J.; Niboyet, Audrey; ...

    2016-05-17

    Soil microbial diversity is huge and a few grams of soil contain more bacterial taxa than there are bird species on Earth. This high diversity often makes predicting the responses of soil bacteria to environmental change intractable and restricts our capacity to predict the responses of soil functions to global change. Here, using a long-term field experiment in a California grassland, we studied the main and interactive effects of three global change factors (increased atmospheric CO 2 concentration, precipitation and nitrogen addition, and all their factorial combinations, based on global change scenarios for central California) on the potential activity, abundancemore » and dominant taxa of soil nitrite-oxidizing bacteria (NOB). Using a trait-based model, we then tested whether categorizing NOB into a few functional groups unified by physiological traits enables understanding and predicting how soil NOB respond to global environmental change. Contrasted responses to global change treatments were observed between three main NOB functional types. In particular, putatively mixotrophic Nitrobacter, rare under most treatments, became dominant under the 'High CO 2 +Nitrogen+Precipitation' treatment. The mechanistic trait-based model, which simulated ecological niches of NOB types consistent with previous ecophysiological reports, helped predicting the observed effects of global change on NOB and elucidating the underlying biotic and abiotic controls. Our results are a starting point for representing the overwhelming diversity of soil bacteria by a few functional types that can be incorporated into models of terrestrial ecosystems and biogeochemical processes.« less

  10. Predicting the Responses of Soil Nitrite-Oxidizers to Multi-Factorial Global Change: A Trait-Based Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Roux, Xavier; Bouskill, Nicholas J.; Niboyet, Audrey

    Soil microbial diversity is huge and a few grams of soil contain more bacterial taxa than there are bird species on Earth. This high diversity often makes predicting the responses of soil bacteria to environmental change intractable and restricts our capacity to predict the responses of soil functions to global change. Here, using a long-term field experiment in a California grassland, we studied the main and interactive effects of three global change factors (increased atmospheric CO 2 concentration, precipitation and nitrogen addition, and all their factorial combinations, based on global change scenarios for central California) on the potential activity, abundancemore » and dominant taxa of soil nitrite-oxidizing bacteria (NOB). Using a trait-based model, we then tested whether categorizing NOB into a few functional groups unified by physiological traits enables understanding and predicting how soil NOB respond to global environmental change. Contrasted responses to global change treatments were observed between three main NOB functional types. In particular, putatively mixotrophic Nitrobacter, rare under most treatments, became dominant under the 'High CO 2 +Nitrogen+Precipitation' treatment. The mechanistic trait-based model, which simulated ecological niches of NOB types consistent with previous ecophysiological reports, helped predicting the observed effects of global change on NOB and elucidating the underlying biotic and abiotic controls. Our results are a starting point for representing the overwhelming diversity of soil bacteria by a few functional types that can be incorporated into models of terrestrial ecosystems and biogeochemical processes.« less

  11. A three-dimensional spatiotemporal receptive field model explains responses of area MT neurons to naturalistic movies

    PubMed Central

    Nishimoto, Shinji; Gallant, Jack L.

    2012-01-01

    Area MT has been an important target for studies of motion processing. However, previous neurophysiological studies of MT have used simple stimuli that do not contain many of the motion signals that occur during natural vision. In this study we sought to determine whether views of area MT neurons developed using simple stimuli can account for MT responses under more naturalistic conditions. We recorded responses from macaque area MT neurons during stimulation with naturalistic movies. We then used a quantitative modeling framework to discover which specific mechanisms best predict neuronal responses under these challenging conditions. We find that the simplest model that accurately predicts responses of MT neurons consists of a bank of V1-like filters, each followed by a compressive nonlinearity, a divisive nonlinearity and linear pooling. Inspection of the fit models shows that the excitatory receptive fields of MT neurons tend to lie on a single plane within the three-dimensional spatiotemporal frequency domain, and suppressive receptive fields lie off this plane. However, most excitatory receptive fields form a partial ring in the plane and avoid low temporal frequencies. This receptive field organization ensures that most MT neurons are tuned for velocity but do not tend to respond to ambiguous static textures that are aligned with the direction of motion. In sum, MT responses to naturalistic movies are largely consistent with predictions based on simple stimuli. However, models fit using naturalistic stimuli reveal several novel properties of MT receptive fields that had not been shown in prior experiments. PMID:21994372

  12. Operational atmospheric modeling system CARIS for effective emergency response associated with hazardous chemical releases in Korea.

    PubMed

    Kim, Cheol-Hee; Park, Jin-Ho; Park, Cheol-Jin; Na, Jin-Gyun

    2004-03-01

    The Chemical Accidents Response Information System (CARIS) was developed at the Center for Chemical Safety Management in South Korea in order to track and predict the dispersion of hazardous chemicals in the case of an accident or terrorist attack involving chemical companies. The main objective of CARIS is to facilitate an efficient emergency response to hazardous chemical accidents by rapidly providing key information in the decision-making process. In particular, the atmospheric modeling system implemented in CARIS, which is composed of a real-time numerical weather forecasting model and an air pollution dispersion model, can be used as a tool to forecast concentrations and to provide a wide range of assessments associated with various hazardous chemicals in real time. This article introduces the components of CARIS and describes its operational modeling system. Some examples of the operational modeling system and its use for emergency preparedness are presented and discussed. Finally, this article evaluates the current numerical weather prediction model for Korea.

  13. An improved null model for assessing the net effects of multiple stressors on communities.

    PubMed

    Thompson, Patrick L; MacLennan, Megan M; Vinebrooke, Rolf D

    2018-01-01

    Ecological stressors (i.e., environmental factors outside their normal range of variation) can mediate each other through their interactions, leading to unexpected combined effects on communities. Determining whether the net effect of stressors is ecologically surprising requires comparing their cumulative impact to a null model that represents the linear combination of their individual effects (i.e., an additive expectation). However, we show that standard additive and multiplicative null models that base their predictions on the effects of single stressors on community properties (e.g., species richness or biomass) do not provide this linear expectation, leading to incorrect interpretations of antagonistic and synergistic responses by communities. We present an alternative, the compositional null model, which instead bases its predictions on the effects of stressors on individual species, and then aggregates them to the community level. Simulations demonstrate the improved ability of the compositional null model to accurately provide a linear expectation of the net effect of stressors. We simulate the response of communities to paired stressors that affect species in a purely additive fashion and compare the relative abilities of the compositional null model and two standard community property null models (additive and multiplicative) to predict these linear changes in species richness and community biomass across different combinations (both positive, negative, or opposite) and intensities of stressors. The compositional model predicts the linear effects of multiple stressors under almost all scenarios, allowing for proper classification of net effects, whereas the standard null models do not. Our findings suggest that current estimates of the prevalence of ecological surprises on communities based on community property null models are unreliable, and should be improved by integrating the responses of individual species to the community level as does our compositional null model. © 2017 John Wiley & Sons Ltd.

  14. Discriminate the response of Acute Myeloid Leukemia patients to treatment by using proteomics data and Answer Set Programming.

    PubMed

    Chebouba, Lokmane; Miannay, Bertrand; Boughaci, Dalila; Guziolowski, Carito

    2018-03-08

    During the last years, several approaches were applied on biomedical data to detect disease specific proteins and genes in order to better target drugs. It was shown that statistical and machine learning based methods use mainly clinical data and improve later their results by adding omics data. This work proposes a new method to discriminate the response of Acute Myeloid Leukemia (AML) patients to treatment. The proposed approach uses proteomics data and prior regulatory knowledge in the form of networks to predict cancer treatment outcomes by finding out the different Boolean networks specific to each type of response to drugs. To show its effectiveness we evaluate our method on a dataset from the DREAM 9 challenge. The results are encouraging and demonstrate the benefit of our approach to distinguish patient groups with different response to treatment. In particular each treatment response group is characterized by a predictive model in the form of a signaling Boolean network. This model describes regulatory mechanisms which are specific to each response group. The proteins in this model were selected from the complete dataset by imposing optimization constraints that maximize the difference in the logical response of the Boolean network associated to each group of patients given the omic dataset. This mechanistic and predictive model also allow us to classify new patients data into the two different patient response groups. We propose a new method to detect the most relevant proteins for understanding different patient responses upon treatments in order to better target drugs using a Prior Knowledge Network and proteomics data. The results are interesting and show the effectiveness of our method.

  15. XplOit: An Ontology-Based Data Integration Platform Supporting the Development of Predictive Models for Personalized Medicine.

    PubMed

    Weiler, Gabriele; Schwarz, Ulf; Rauch, Jochen; Rohm, Kerstin; Lehr, Thorsten; Theobald, Stefan; Kiefer, Stephan; Götz, Katharina; Och, Katharina; Pfeifer, Nico; Handl, Lisa; Smola, Sigrun; Ihle, Matthias; Turki, Amin T; Beelen, Dietrich W; Rissland, Jürgen; Bittenbring, Jörg; Graf, Norbert

    2018-01-01

    Predictive models can support physicians to tailor interventions and treatments to their individual patients based on their predicted response and risk of disease and help in this way to put personalized medicine into practice. In allogeneic stem cell transplantation risk assessment is to be enhanced in order to respond to emerging viral infections and transplantation reactions. However, to develop predictive models it is necessary to harmonize and integrate high amounts of heterogeneous medical data that is stored in different health information systems. Driven by the demand for predictive instruments in allogeneic stem cell transplantation we present in this paper an ontology-based platform that supports data owners and model developers to share and harmonize their data for model development respecting data privacy.

  16. Investigation of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams

    NASA Technical Reports Server (NTRS)

    Davis, Brian A.

    2005-01-01

    Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical model. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. Excellent agreement is achieved between the predicted and measured results, thereby quantitatively validating the numerical tool.

  17. Thermo-mechanical response predictions for metal matrix composite laminates

    NASA Technical Reports Server (NTRS)

    Aboudi, J.; Hidde, J. S.; Herakovich, C. T.

    1991-01-01

    An analytical micromechanical model is employed for prediction of the stress-strain response of metal matrix composite laminates subjected to thermomechanical loading. The predicted behavior of laminates is based upon knowledge of the thermomechanical response of the transversely isotropic, elastic fibers and the elastic-viscoplastic, work-hardening matrix. The method is applied to study the behavior of silicon carbide/titanium metal matrix composite laminates. The response of laminates is compared with that of unidirectional lamina. The results demonstrate the effect of cooling from a stress-free temperature and the mismatch of thermal and mechanical properties of the constituent phases on the laminate's subsequent mechanical response. Typical results are presented for a variety of laminates subjected to monotonic tension, monotonic shear and cyclic tensile/compressive loadings.

  18. Dose- and time-dependence of the host-mediated response to paclitaxel therapy: a mathematical modeling approach.

    PubMed

    Benguigui, Madeleine; Alishekevitz, Dror; Timaner, Michael; Shechter, Dvir; Raviv, Ziv; Benzekry, Sebastien; Shaked, Yuval

    2018-01-05

    It has recently been suggested that pro-tumorigenic host-mediated processes induced in response to chemotherapy counteract the anti-tumor activity of therapy, and thereby decrease net therapeutic outcome. Here we use experimental data to formulate a mathematical model describing the host response to different doses of paclitaxel (PTX) chemotherapy as well as the duration of the response. Three previously described host-mediated effects are used as readouts for the host response to therapy. These include the levels of circulating endothelial progenitor cells in peripheral blood and the effect of plasma derived from PTX-treated mice on migratory and invasive properties of tumor cells in vitro . A first set of mathematical models, based on basic principles of pharmacokinetics/pharmacodynamics, did not appropriately describe the dose-dependence and duration of the host response regarding the effects on invasion. We therefore provide an alternative mathematical model with a dose-dependent threshold, instead of a concentration-dependent one, that describes better the data. This model is integrated into a global model defining all three host-mediated effects. It not only precisely describes the data, but also correctly predicts host-mediated effects at different doses as well as the duration of the host response. This mathematical model may serve as a tool to predict the host response to chemotherapy in cancer patients, and therefore may be used to design chemotherapy regimens with improved therapeutic outcome by minimizing host mediated effects.

  19. SiSeRHMap v1.0: a simulator for mapped seismic response using a hybrid model

    NASA Astrophysics Data System (ADS)

    Grelle, Gerardo; Bonito, Laura; Lampasi, Alessandro; Revellino, Paola; Guerriero, Luigi; Sappa, Giuseppe; Guadagno, Francesco Maria

    2016-04-01

    The SiSeRHMap (simulator for mapped seismic response using a hybrid model) is a computerized methodology capable of elaborating prediction maps of seismic response in terms of acceleration spectra. It was realized on the basis of a hybrid model which combines different approaches and models in a new and non-conventional way. These approaches and models are organized in a code architecture composed of five interdependent modules. A GIS (geographic information system) cubic model (GCM), which is a layered computational structure based on the concept of lithodynamic units and zones, aims at reproducing a parameterized layered subsoil model. A meta-modelling process confers a hybrid nature to the methodology. In this process, the one-dimensional (1-D) linear equivalent analysis produces acceleration response spectra for a specified number of site profiles using one or more input motions. The shear wave velocity-thickness profiles, defined as trainers, are randomly selected in each zone. Subsequently, a numerical adaptive simulation model (Emul-spectra) is optimized on the above trainer acceleration response spectra by means of a dedicated evolutionary algorithm (EA) and the Levenberg-Marquardt algorithm (LMA) as the final optimizer. In the final step, the GCM maps executor module produces a serial map set of a stratigraphic seismic response at different periods, grid solving the calibrated Emul-spectra model. In addition, the spectra topographic amplification is also computed by means of a 3-D validated numerical prediction model. This model is built to match the results of the numerical simulations related to isolate reliefs using GIS morphometric data. In this way, different sets of seismic response maps are developed on which maps of design acceleration response spectra are also defined by means of an enveloping technique.

  20. Vestibulospinal adaptation to microgravity

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.

    1998-01-01

    Human balance control is known to be transiently disrupted after spaceflight; however, the mechanisms responsible for postflight postural ataxia are still under investigation. In this report, we propose a conceptual model of vestibulospinal adaptation based on theoretical adaptive control concepts and supported by the results from a comprehensive study of balance control recovery after spaceflight. The conceptual model predicts that immediately after spaceflight the balance control system of a returning astronaut does not expect to receive gravity-induced afferent inputs and that descending vestibulospinal control of balance is disrupted until the central nervous system is able to cope with the newly available vestibular otolith information. Predictions of the model are tested using data from a study of the neurosensory control of balance in astronauts immediately after landing. In that study, the mechanisms of sensorimotor balance control were assessed under normal, reduced, and/or altered (sway-referenced) visual and somatosensory input conditions. We conclude that the adaptive control model accurately describes the neurobehavioral responses to spaceflight and that similar models of altered sensory, motor, or environmental constraints are needed clinically to predict responses that patients with sensorimotor pathologies may have to various visual-vestibular or changing stimulus environments.

  1. Evaluation of Material Models within LS-DYNA(Registered TradeMark) for a Kevlar/Epoxy Composite Honeycomb

    NASA Technical Reports Server (NTRS)

    Polanco, Michael A.; Kellas, Sotiris; Jackson, Karen

    2009-01-01

    The performance of material models to simulate a novel composite honeycomb Deployable Energy Absorber (DEA) was evaluated using the nonlinear explicit dynamic finite element code LS-DYNA(Registered TradeMark). Prototypes of the DEA concept were manufactured using a Kevlar/Epoxy composite material in which the fibers are oriented at +/-45 degrees with respect to the loading axis. The development of the DEA has included laboratory tests at subcomponent and component levels such as three-point bend testing of single hexagonal cells, dynamic crush testing of single multi-cell components, and impact testing of a full-scale fuselage section fitted with a system of DEA components onto multi-terrain environments. Due to the thin nature of the cell walls, the DEA was modeled using shell elements. In an attempt to simulate the dynamic response of the DEA, it was first represented using *MAT_LAMINATED_COMPOSITE_FABRIC, or *MAT_58, in LS-DYNA. Values for each parameter within the material model were generated such that an in-plane isotropic configuration for the DEA material was assumed. Analytical predictions showed that the load-deflection behavior of a single-cell during three-point bending was within the range of test data, but predicted the DEA crush response to be very stiff. In addition, a *MAT_PIECEWISE_LINEAR_PLASTICITY, or *MAT_24, material model in LS-DYNA was developed, which represented the Kevlar/Epoxy composite as an isotropic elastic-plastic material with input from +/-45 degrees tensile coupon data. The predicted crush response matched that of the test and localized folding patterns of the DEA were captured under compression, but the model failed to predict the single-cell three-point bending response.

  2. Discriminating between adaptive and carcinogenic liver hypertrophy in rat studies using logistic ridge regression analysis of toxicogenomic data: The mode of action and predictive models.

    PubMed

    Liu, Shujie; Kawamoto, Taisuke; Morita, Osamu; Yoshinari, Kouichi; Honda, Hiroshi

    2017-03-01

    Chemical exposure often results in liver hypertrophy in animal tests, characterized by increased liver weight, hepatocellular hypertrophy, and/or cell proliferation. While most of these changes are considered adaptive responses, there is concern that they may be associated with carcinogenesis. In this study, we have employed a toxicogenomic approach using a logistic ridge regression model to identify genes responsible for liver hypertrophy and hypertrophic hepatocarcinogenesis and to develop a predictive model for assessing hypertrophy-inducing compounds. Logistic regression models have previously been used in the quantification of epidemiological risk factors. DNA microarray data from the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System were used to identify hypertrophy-related genes that are expressed differently in hypertrophy induced by carcinogens and non-carcinogens. Data were collected for 134 chemicals (72 non-hypertrophy-inducing chemicals, 27 hypertrophy-inducing non-carcinogenic chemicals, and 15 hypertrophy-inducing carcinogenic compounds). After applying logistic ridge regression analysis, 35 genes for liver hypertrophy (e.g., Acot1 and Abcc3) and 13 genes for hypertrophic hepatocarcinogenesis (e.g., Asns and Gpx2) were selected. The predictive models built using these genes were 94.8% and 82.7% accurate, respectively. Pathway analysis of the genes indicates that, aside from a xenobiotic metabolism-related pathway as an adaptive response for liver hypertrophy, amino acid biosynthesis and oxidative responses appear to be involved in hypertrophic hepatocarcinogenesis. Early detection and toxicogenomic characterization of liver hypertrophy using our models may be useful for predicting carcinogenesis. In addition, the identified genes provide novel insight into discrimination between adverse hypertrophy associated with carcinogenesis and adaptive hypertrophy in risk assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Targeted Proteomics Predicts a Sustained Complete-Response after Transarterial Chemoembolization and Clinical Outcomes in Patients with Hepatocellular Carcinoma: A Prospective Cohort Study.

    PubMed

    Yu, Su Jong; Kim, Hyunsoo; Min, Hophil; Sohn, Areum; Cho, Young Youn; Yoo, Jeong-Ju; Lee, Dong Hyeon; Cho, Eun Ju; Lee, Jeong-Hoon; Gim, Jungsoo; Park, Taesung; Kim, Yoon Jun; Kim, Chung Yong; Yoon, Jung-Hwan; Kim, Youngsoo

    2017-03-03

    This study was aimed to identify blood-based biomarkers to predict a sustained complete response (CR) after transarterial chemoembolization (TACE) using targeted proteomics. Consecutive patients with HCC who had undergone TACE were prospectively enrolled (training (n = 100) and validation set (n = 80)). Serum samples were obtained before and 6 months after TACE. Treatment responses were evaluated using the modified Response Evaluation Criteria in Solid Tumors (mRECIST). In the training set, the MRM-MS assay identified five marker candidate proteins (LRG1, APCS, BCHE, C7, and FCN3). When this five-marker panel was combined with the best-performing clinical variables (tumor number, baseline PIVKA, and baseline AFP), the resulting ensemble model had the highest area under the receiver operating curve (AUROC) value in predicting a sustained CR after TACE in the training and validation sets (0.881 and 0.813, respectively). Furthermore, the ensemble model was an independent predictor of rapid progression (hazard ratio (HR), 2.889; 95% confidence interval (CI), 1.612-5.178; P value < 0.001) and overall an unfavorable survival rate (HR, 1.985; 95% CI, 1.024-3.848; P value = 0.042) in the entire population by multivariate analysis. Targeted proteomics-based ensemble model can predict clinical outcomes after TACE. Therefore, this model can aid in determining the best candidates for TACE and the need for adjuvant therapy.

  4. Using patient-derived xenograft models of colorectal liver metastases to predict chemosensitivity.

    PubMed

    Brown, Kai M; Xue, Aiqun; Julovi, Sohel M; Gill, Anthony J; Pavlakis, Nick; Samra, Jaswinder S; Smith, Ross C; Hugh, Thomas J

    2018-07-01

    Few in vivo models for colorectal cancer have been demonstrated to show external validity by accurately predicting clinical patient outcomes. Patient-derived xenograft (PDX) models of cancer have characteristics that might provide a form of translational research leading to personalized cancer care. The aim of this pilot study was to assess the feasibility of using PDXs as a platform for predicting patient colorectal liver metastases responses, in this case by correlating PDX and patient tumor responses to either folinic acid, fluorouracil plus oxaliplatin or folinic acid, fluorouracil plus irinotecan-based regimens. Sixteen patients underwent potentially curative resection of colorectal liver metastases, and tumors were grafted into NOD.CB17-Prkdc scid /Arc mice. Mice were divided into groups to determine relative tumor growth in response to treatment. Tumors were analyzed by immunohistochemistry for Ki67 and Excision repair cross-complementation group 1. An engraftment rate of 81% was achieved. Overall, there was a 67% positive match rate between eligible patient and PDX chemosensitivity profiles. There was a significant difference in relative decrease in Ki67 expression between sensitive/stable versus resistant PDXs for both treatment regimens. There was no statistically significant correlation between baseline ERCC1 expression and response to Oxaliplatin + 5-Fluorouracil in the PDXs. This pilot study supports the feasibility of using PDX models of advanced colorectal cancer in larger studies to potentially predict patient chemosensitivity profiles. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Measurement and prediction of the thermomechanical response of shape memory alloy hybrid composite beams

    NASA Astrophysics Data System (ADS)

    Davis, Brian; Turner, Travis L.; Seelecke, Stefan

    2005-05-01

    Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons within the beam structures. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical analysis/design tool. The experimental investigation is refined by a more thorough test procedure and incorporation of higher fidelity measurements such as infrared thermography and projection moire interferometry. The numerical results are produced by a recently commercialized version of the constitutive model as implemented in ABAQUS and are refined by incorporation of additional measured parameters such as geometric imperfection. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. The results demonstrate the effectiveness of SMAHC structures in controlling static and dynamic responses by adaptive stiffening. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.

  6. Measurement and Prediction of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams

    NASA Technical Reports Server (NTRS)

    Davis, Brian; Turner, Travis L.; Seelecke, Stefan

    2005-01-01

    Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons within the beam structures. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical analysis/design tool. The experimental investigation is refined by a more thorough test procedure and incorporation of higher fidelity measurements such as infrared thermography and projection moire interferometry. The numerical results are produced by a recently commercialized version of the constitutive model as implemented in ABAQUS and are refined by incorporation of additional measured parameters such as geometric imperfection. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. The results demonstrate the effectiveness of SMAHC structures in controlling static and dynamic responses by adaptive stiffening. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.

  7. Validation of an individualised model of human thermoregulation for predicting responses to cold air

    NASA Astrophysics Data System (ADS)

    van Marken Lichtenbelt, Wouter D.; Frijns, Arjan J. H.; van Ooijen, Marieke J.; Fiala, Dusan; Kester, Arnold M.; van Steenhoven, Anton A.

    2007-01-01

    Most computer models of human thermoregulation are population based. Here, we individualised the Fiala model [Fiala et al. (2001) Int J Biometeorol 45:143 159] with respect to anthropometrics, body fat, and metabolic rate. The predictions of the adapted multisegmental thermoregulatory model were compared with measured skin temperatures of individuals. Data from two experiments, in which reclining subjects were suddenly exposed to mild to moderate cold environmental conditions, were used to study the effect on dynamic skin temperature responses. Body fat was measured by the three-compartment method combining underwater weighing and deuterium dilution. Metabolic rate was determined by indirect calorimetry. In experiment 1, the bias (mean difference) between predicted and measured mean skin temperature decreased from 1.8°C to -0.15°C during cold exposure. The standard deviation of the mean difference remained of the same magnitude (from 0.7°C to 0.9°C). In experiment 2 the bias of the skin temperature changed from 2.0±1.09°C using the standard model to 1.3±0.93°C using individual characteristics in the model. The inclusion of individual characteristics thus improved the predictions for an individual and led to a significantly smaller systematic error. However, a large part of the discrepancies in individual response to cold remained unexplained. Possible further improvements to the model accomplished by inclusion of more subject characteristics (i.e. body fat distribution, body shape) and model refinements on the level of (skin) blood perfusion, and control functions, are discussed.

  8. A multiscale strength model for tantalum over an extended range of strain rates

    NASA Astrophysics Data System (ADS)

    Barton, N. R.; Rhee, M.

    2013-09-01

    A strength model for tantalum is developed and exercised across a range of conditions relevant to various types of experimental observations. The model is based on previous multiscale modeling work combined with experimental observations. As such, the model's parameterization includes a hybrid of quantities that arise directly from predictive sub-scale physics models and quantities that are adjusted to align the model with experimental observations. Given current computing and experimental limitations, the response regions for sub-scale physics simulations and detailed experimental observations have been largely disjoint. In formulating the new model and presenting results here, attention is paid to integrated experimental observations that probe strength response at the elevated strain rates where a previous version of the model has generally been successful in predicting experimental data [Barton et al., J. Appl. Phys. 109(7), 073501 (2011)].

  9. Predicting Bird Response to Alternative Management Scenarios on a Ranch in Campeche, México

    Treesearch

    Paul A. Wood; Deanna K. Dawson; John R. Sauer; Marcia H. Wilson

    2005-01-01

    We developed models to predict the potential response of wintering Neotropical migrant and resident bird species to alternative management scenarios, using data from point counts of birds along with habitat variables measured or estimated from remotely sensed data in a Geographic Information System. Expected numbers of occurrences at points were calculated for 100...

  10. Near-Resonant Thermomechanics of Energetic and Mock Energetic Composite Materials

    DTIC Science & Technology

    2016-11-01

    munition design . 15. SUBJECT TERMS Energetic Materials; Explosives; Mechanical Vibration; Thermomechanics; Damping; Plasticity 16. SECURITY...preliminary computational modeling tools, which can be used to predict material response during energetic material formulation and munition design . Key...which can be used to predict material response during energetic material formulation and munition design . More specifically, Task Order 0001

  11. Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.

    PubMed

    Limongi, Roberto; Silva, Angélica M

    2016-11-01

    The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.

  12. Response to a pure tone in a nonlinear mechanical-electrical-acoustical model of the cochlea.

    PubMed

    Meaud, Julien; Grosh, Karl

    2012-03-21

    In this article, a nonlinear mathematical model is developed based on the physiology of the cochlea of the guinea pig. The three-dimensional intracochlear fluid dynamics are coupled to a micromechanical model of the organ of Corti and to electrical potentials in the cochlear ducts and outer hair cells (OHC). OHC somatic electromotility is modeled by linearized piezoelectric relations whereas the OHC hair-bundle mechanoelectrical transduction current is modeled as a nonlinear function of the hair-bundle deflection. The steady-state response of the cochlea to a single tone is simulated in the frequency domain using an alternating frequency time scheme. Compressive nonlinearity, harmonic distortion, and DC shift on the basilar membrane (BM), tectorial membrane (TM), and OHC potentials are predicted using a single set of parameters. The predictions of the model are verified by comparing simulations to available in vivo experimental data for basal cochlear mechanics. In particular, the model predicts more amplification on the reticular lamina (RL) side of the cochlear partition than on the BM, which replicates recent measurements. Moreover, small harmonic distortion and DC shifts are predicted on the BM, whereas more significant harmonic distortion and DC shifts are predicted in the RL and TM displacements and in the OHC potentials. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Validating genetic markers of response to recombinant human growth hormone in children with growth hormone deficiency and Turner syndrome: the PREDICT validation study

    PubMed Central

    Stevens, Adam; Murray, Philip; Wojcik, Jerome; Raelson, John; Koledova, Ekaterina; Chatelain, Pierre

    2016-01-01

    Objective Single-nucleotide polymorphisms (SNPs) associated with the response to recombinant human growth hormone (r-hGH) have previously been identified in growth hormone deficiency (GHD) and Turner syndrome (TS) children in the PREDICT long-term follow-up (LTFU) study (Nbib699855). Here, we describe the PREDICT validation (VAL) study (Nbib1419249), which aimed to confirm these genetic associations. Design and methods Children with GHD (n = 293) or TS (n = 132) were recruited retrospectively from 29 sites in nine countries. All children had completed 1 year of r-hGH therapy. 48 SNPs previously identified as associated with first year growth response to r-hGH were genotyped. Regression analysis was used to assess the association between genotype and growth response using clinical/auxological variables as covariates. Further analysis was undertaken using random forest classification. Results The children were younger, and the growth response was higher in VAL study. Direct genotype analysis did not replicate what was found in the LTFU study. However, using exploratory regression models with covariates, a consistent relationship with growth response in both VAL and LTFU was shown for four genes – SOS1 and INPPL1 in GHD and ESR1 and PTPN1 in TS. The random forest analysis demonstrated that only clinical covariates were important in the prediction of growth response in mild GHD (>4 to <10 μg/L on GH stimulation test), however, in severe GHD (≤4 μg/L) several SNPs contributed (in IGF2, GRB10, FOS, IGFBP3 and GHRHR). Conclusions The PREDICT validation study supports, in an independent cohort, the association of four of 48 genetic markers with growth response to r-hGH treatment in both pre-pubertal GHD and TS children after controlling for clinical/auxological covariates. However, the contribution of these SNPs in a prediction model of first-year response is not sufficient for routine clinical use. PMID:27651465

  14. Validating genetic markers of response to recombinant human growth hormone in children with growth hormone deficiency and Turner syndrome: the PREDICT validation study.

    PubMed

    Stevens, Adam; Murray, Philip; Wojcik, Jerome; Raelson, John; Koledova, Ekaterina; Chatelain, Pierre; Clayton, Peter

    2016-12-01

    Single-nucleotide polymorphisms (SNPs) associated with the response to recombinant human growth hormone (r-hGH) have previously been identified in growth hormone deficiency (GHD) and Turner syndrome (TS) children in the PREDICT long-term follow-up (LTFU) study (Nbib699855). Here, we describe the PREDICT validation (VAL) study (Nbib1419249), which aimed to confirm these genetic associations. Children with GHD (n = 293) or TS (n = 132) were recruited retrospectively from 29 sites in nine countries. All children had completed 1 year of r-hGH therapy. 48 SNPs previously identified as associated with first year growth response to r-hGH were genotyped. Regression analysis was used to assess the association between genotype and growth response using clinical/auxological variables as covariates. Further analysis was undertaken using random forest classification. The children were younger, and the growth response was higher in VAL study. Direct genotype analysis did not replicate what was found in the LTFU study. However, using exploratory regression models with covariates, a consistent relationship with growth response in both VAL and LTFU was shown for four genes - SOS1 and INPPL1 in GHD and ESR1 and PTPN1 in TS. The random forest analysis demonstrated that only clinical covariates were important in the prediction of growth response in mild GHD (>4 to <10 μg/L on GH stimulation test), however, in severe GHD (≤4 μg/L) several SNPs contributed (in IGF2, GRB10, FOS, IGFBP3 and GHRHR). The PREDICT validation study supports, in an independent cohort, the association of four of 48 genetic markers with growth response to r-hGH treatment in both pre-pubertal GHD and TS children after controlling for clinical/auxological covariates. However, the contribution of these SNPs in a prediction model of first-year response is not sufficient for routine clinical use. © 2016 European Society of Endocrinology.

  15. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change

    USGS Publications Warehouse

    Vitousek, Sean; Barnard, Patrick; Limber, Patrick W.; Erikson, Li; Cole, Blake

    2017-01-01

    We present a shoreline change model for coastal hazard assessment and management planning. The model, CoSMoS-COAST (Coastal One-line Assimilated Simulation Tool), is a transect-based, one-line model that predicts short-term and long-term shoreline response to climate change in the 21st century. The proposed model represents a novel, modular synthesis of process-based models of coastline evolution due to longshore and cross-shore transport by waves and sea-level rise. Additionally, the model uses an extended Kalman filter for data assimilation of historical shoreline positions to improve estimates of model parameters and thereby improve confidence in long-term predictions. We apply CoSMoS-COAST to simulate sandy shoreline evolution along 500 km of coastline in Southern California, which hosts complex mixtures of beach settings variably backed by dunes, bluffs, cliffs, estuaries, river mouths, and urban infrastructure, providing applicability of the model to virtually any coastal setting. Aided by data assimilation, the model is able to reproduce the observed signal of seasonal shoreline change for the hindcast period of 1995-2010, showing excellent agreement between modeled and observed beach states. The skill of the model during the hindcast period improves confidence in the model's predictive capability when applied to the forecast period (2010-2100) driven by GCM-projected wave and sea-level conditions. Predictions of shoreline change with limited human intervention indicate that 31% to 67% of Southern California beaches may become completely eroded by 2100 under sea-level rise scenarios of 0.93 to 2.0 m.

  16. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change

    NASA Astrophysics Data System (ADS)

    Vitousek, Sean; Barnard, Patrick L.; Limber, Patrick; Erikson, Li; Cole, Blake

    2017-04-01

    We present a shoreline change model for coastal hazard assessment and management planning. The model, CoSMoS-COAST (Coastal One-line Assimilated Simulation Tool), is a transect-based, one-line model that predicts short-term and long-term shoreline response to climate change in the 21st century. The proposed model represents a novel, modular synthesis of process-based models of coastline evolution due to longshore and cross-shore transport by waves and sea level rise. Additionally, the model uses an extended Kalman filter for data assimilation of historical shoreline positions to improve estimates of model parameters and thereby improve confidence in long-term predictions. We apply CoSMoS-COAST to simulate sandy shoreline evolution along 500 km of coastline in Southern California, which hosts complex mixtures of beach settings variably backed by dunes, bluffs, cliffs, estuaries, river mouths, and urban infrastructure, providing applicability of the model to virtually any coastal setting. Aided by data assimilation, the model is able to reproduce the observed signal of seasonal shoreline change for the hindcast period of 1995-2010, showing excellent agreement between modeled and observed beach states. The skill of the model during the hindcast period improves confidence in the model's predictive capability when applied to the forecast period (2010-2100) driven by GCM-projected wave and sea level conditions. Predictions of shoreline change with limited human intervention indicate that 31% to 67% of Southern California beaches may become completely eroded by 2100 under sea level rise scenarios of 0.93 to 2.0 m.

  17. Expanding metal mixture toxicity models to natural stream and lake invertebrate communities

    USGS Publications Warehouse

    Balistrieri, Laurie S.; Mebane, Christopher A.; Schmidt, Travis S.; Keller, William (Bill)

    2015-01-01

    A modeling approach that was used to predict the toxicity of dissolved single and multiple metals to trout is extended to stream benthic macroinvertebrates, freshwater zooplankton, and Daphnia magna. The approach predicts the accumulation of toxicants (H, Al, Cd, Cu, Ni, Pb, and Zn) in organisms using 3 equilibrium accumulation models that define interactions between dissolved cations and biological receptors (biotic ligands). These models differ in the structure of the receptors and include a 2-site biotic ligand model, a bidentate biotic ligand or 2-pKa model, and a humic acid model. The predicted accumulation of toxicants is weighted using toxicant-specific coefficients and incorporated into a toxicity function called Tox, which is then related to observed mortality or invertebrate community richness using a logistic equation. All accumulation models provide reasonable fits to metal concentrations in tissue samples of stream invertebrates. Despite the good fits, distinct differences in the magnitude of toxicant accumulation and biotic ligand speciation exist among the models for a given solution composition. However, predicted biological responses are similar among the models because there are interdependencies among model parameters in the accumulation–Tox models. To illustrate potential applications of the approaches, the 3 accumulation–Tox models for natural stream invertebrates are used in Monte Carlo simulations to predict the probability of adverse impacts in catchments of differing geology in central Colorado (USA); to link geology, water chemistry, and biological response; and to demonstrate how this approach can be used to screen for potential risks associated with resource development.

  18. Investigation of models for large-scale meteorological prediction experiments

    NASA Technical Reports Server (NTRS)

    Spar, J.

    1973-01-01

    Studies are reported of the long term responses of the model atmosphere to anomalies in snow cover and sea surface temperature. An abstract of a previously issued report on the computed response to surface anomalies in a global atmospheric model is presented, and the experiments on the effects of transient sea surface temperature on the Mintz-Arakawa atmospheric model are reported.

  19. Fuels planning: science synthesis and integration; environmental consequences fact sheet 10: The Understory Response Model

    Treesearch

    Steve Sutherland; Melanie Miller

    2005-01-01

    The Understory Response Model is a species-specific computer model that qualitatively predicts change in total species biomass for grasses, forbs, and shrubs after thinning, prescribed fire, or wildfire. The model examines the effect of fuels management on plant survivorship and reproduction. This fact sheet identifies the intended users and uses, required inputs, what...

  20. Cognitive emotion regulation enhances aversive prediction error activity while reducing emotional responses.

    PubMed

    Mulej Bratec, Satja; Xie, Xiyao; Schmid, Gabriele; Doll, Anselm; Schilbach, Leonhard; Zimmer, Claus; Wohlschläger, Afra; Riedl, Valentin; Sorg, Christian

    2015-12-01

    Cognitive emotion regulation is a powerful way of modulating emotional responses. However, despite the vital role of emotions in learning, it is unknown whether the effect of cognitive emotion regulation also extends to the modulation of learning. Computational models indicate prediction error activity, typically observed in the striatum and ventral tegmental area, as a critical neural mechanism involved in associative learning. We used model-based fMRI during aversive conditioning with and without cognitive emotion regulation to test the hypothesis that emotion regulation would affect prediction error-related neural activity in the striatum and ventral tegmental area, reflecting an emotion regulation-related modulation of learning. Our results show that cognitive emotion regulation reduced emotion-related brain activity, but increased prediction error-related activity in a network involving ventral tegmental area, hippocampus, insula and ventral striatum. While the reduction of response activity was related to behavioral measures of emotion regulation success, the enhancement of prediction error-related neural activity was related to learning performance. Furthermore, functional connectivity between the ventral tegmental area and ventrolateral prefrontal cortex, an area involved in regulation, was specifically increased during emotion regulation and likewise related to learning performance. Our data, therefore, provide first-time evidence that beyond reducing emotional responses, cognitive emotion regulation affects learning by enhancing prediction error-related activity, potentially via tegmental dopaminergic pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Extension of a nonlinear systems theory to general-frequency unsteady transonic aerodynamic responses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1993-01-01

    A methodology for modeling nonlinear unsteady aerodynamic responses, for subsequent use in aeroservoelastic analysis and design, using the Volterra-Wiener theory of nonlinear systems is presented. The methodology is extended to predict nonlinear unsteady aerodynamic responses of arbitrary frequency. The Volterra-Wiener theory uses multidimensional convolution integrals to predict the response of nonlinear systems to arbitrary inputs. The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code is used to generate linear and nonlinear unit impulse responses that correspond to each of the integrals for a rectangular wing with a NACA 0012 section with pitch and plunge degrees of freedom. The computed kernels then are used to predict linear and nonlinear unsteady aerodynamic responses via convolution and compared to responses obtained using the CAP-TSD code directly. The results indicate that the approach can be used to predict linear unsteady aerodynamic responses exactly for any input amplitude or frequency at a significant cost savings. Convolution of the nonlinear terms results in nonlinear unsteady aerodynamic responses that compare reasonably well with those computed using the CAP-TSD code directly but at significant computational cost savings.

  2. Prediction of adolescents doing physical activity after completing secondary education.

    PubMed

    Moreno-Murcia, Juan Antonio; Huéscar, Elisa; Cervelló, Eduardo

    2012-03-01

    The purpose of this study, based on the self-determination theory (Ryan & Deci, 2000) was to test the prediction power of student's responsibility, psychological mediators, intrinsic motivation and the importance attached to physical education in the intention to continue to practice some form of physical activity and/or sport, and the possible relationships that exist between these variables. We used a sample of 482 adolescent students in physical education classes, with a mean age of 14.3 years, which were measured for responsibility, psychological mediators, sports motivation, the importance of physical education and intention to be physically active. We completed an analysis of structural equations modelling. The results showed that the responsibility positively predicted psychological mediators, and this predicted intrinsic motivation, which positively predicted the importance students attach to physical education, and this, finally, positively predicted the intention of the student to continue doing sport. Results are discussed in relation to the promotion of student's responsibility towards a greater commitment to the practice of physical exercise.

  3. A priori Prediction of Neoadjuvant Chemotherapy Response and Survival in Breast Cancer Patients using Quantitative Ultrasound

    PubMed Central

    Tadayyon, Hadi; Sannachi, Lakshmanan; Gangeh, Mehrdad J.; Kim, Christina; Ghandi, Sonal; Trudeau, Maureen; Pritchard, Kathleen; Tran, William T.; Slodkowska, Elzbieta; Sadeghi-Naini, Ali; Czarnota, Gregory J.

    2017-01-01

    Quantitative ultrasound (QUS) can probe tissue structure and analyze tumour characteristics. Using a 6-MHz ultrasound system, radiofrequency data were acquired from 56 locally advanced breast cancer patients prior to their neoadjuvant chemotherapy (NAC) and QUS texture features were computed from regions of interest in tumour cores and their margins as potential predictive and prognostic indicators. Breast tumour molecular features were also collected and used for analysis. A multiparametric QUS model was constructed, which demonstrated a response prediction accuracy of 88% and ability to predict patient 5-year survival rates (p = 0.01). QUS features demonstrated superior performance in comparison to molecular markers and the combination of QUS and molecular markers did not improve response prediction. This study demonstrates, for the first time, that non-invasive QUS features in the core and margin of breast tumours can indicate breast cancer response to neoadjuvant chemotherapy (NAC) and predict five-year recurrence-free survival. PMID:28401902

  4. A priori Prediction of Neoadjuvant Chemotherapy Response and Survival in Breast Cancer Patients using Quantitative Ultrasound.

    PubMed

    Tadayyon, Hadi; Sannachi, Lakshmanan; Gangeh, Mehrdad J; Kim, Christina; Ghandi, Sonal; Trudeau, Maureen; Pritchard, Kathleen; Tran, William T; Slodkowska, Elzbieta; Sadeghi-Naini, Ali; Czarnota, Gregory J

    2017-04-12

    Quantitative ultrasound (QUS) can probe tissue structure and analyze tumour characteristics. Using a 6-MHz ultrasound system, radiofrequency data were acquired from 56 locally advanced breast cancer patients prior to their neoadjuvant chemotherapy (NAC) and QUS texture features were computed from regions of interest in tumour cores and their margins as potential predictive and prognostic indicators. Breast tumour molecular features were also collected and used for analysis. A multiparametric QUS model was constructed, which demonstrated a response prediction accuracy of 88% and ability to predict patient 5-year survival rates (p = 0.01). QUS features demonstrated superior performance in comparison to molecular markers and the combination of QUS and molecular markers did not improve response prediction. This study demonstrates, for the first time, that non-invasive QUS features in the core and margin of breast tumours can indicate breast cancer response to neoadjuvant chemotherapy (NAC) and predict five-year recurrence-free survival.

  5. Simulated crop yield in response to changes in climate and agricultural practices: results from a simple process based model

    NASA Astrophysics Data System (ADS)

    Caldararu, S.; Smith, M. J.; Purves, D.; Emmott, S.

    2013-12-01

    Global agriculture will, in the future, be faced with two main challenges: climate change and an increase in global food demand driven by an increase in population and changes in consumption habits. To be able to predict both the impacts of changes in climate on crop yields and the changes in agricultural practices necessary to respond to such impacts we currently need to improve our understanding of crop responses to climate and the predictive capability of our models. Ideally, what we would have at our disposal is a modelling tool which, given certain climatic conditions and agricultural practices, can predict the growth pattern and final yield of any of the major crops across the globe. We present a simple, process-based crop growth model based on the assumption that plants allocate above- and below-ground biomass to maintain overall carbon optimality and that, to maintain this optimality, the reproductive stage begins at peak nitrogen uptake. The model includes responses to available light, water, temperature and carbon dioxide concentration as well as nitrogen fertilisation and irrigation. The model is data constrained at two sites, the Yaqui Valley, Mexico for wheat and the Southern Great Plains flux site for maize and soybean, using a robust combination of space-based vegetation data (including data from the MODIS and Landsat TM and ETM+ instruments), as well as ground-based biomass and yield measurements. We show a number of climate response scenarios, including increases in temperature and carbon dioxide concentrations as well as responses to irrigation and fertiliser application.

  6. Genomic profiling is predictive of response to cisplatin treatment but not to PI3K inhibition in bladder cancer patient-derived xenografts

    PubMed Central

    Ramakrishnan, Swathi; Elbanna, May; Wang, Jianmin; Hu, Qiang; Glenn, Sean T.; Murakami, Mitsuko; Liu, Lu; Gomez, Eduardo Cortes; Sun, Yuchen; Conroy, Jacob; Miles, Kiersten Marie; Malathi, Kullappan; Ramaiah, Sudha; Anbarasu, Anand; Woloszynska-Read, Anna; Johnson, Candace S.; Conroy, Jeffrey; Liu, Song; Morrison, Carl D.; Pili, Roberto

    2016-01-01

    Purpose Effective systemic therapeutic options are limited for bladder cancer. In this preclinical study we tested whether bladder cancer gene alterations may be predictive of treatment response. Experimental design We performed genomic profiling of two bladder cancer patient derived tumor xenografts (PDX). We optimized the exome sequence analysis method to overcome the mouse genome interference. Results We identified a number of somatic mutations, mostly shared by the primary tumors and PDX. In particular, BLCAb001, which is less responsive to cisplatin than BLCAb002, carried non-sense mutations in several genes associated with cisplatin resistance, including MLH1, BRCA2, and CASP8. Furthermore, RNA-Seq analysis revealed the overexpression of cisplatin resistance associated genes such as SLC7A11, TLE4, and IL1A in BLCAb001. Two different PIK3CA mutations, E542K and E545K, were identified in BLCAb001 and BLCAb002, respectively. Thus, we tested whether the genomic profiling was predictive of response to a dual PI3K/mTOR targeting agent, LY3023414. Despite harboring similar PIK3CA mutations, BLCAb001 and BLCAb002 exhibited differential response, both in vitro and in vivo. Sustained target modulation was observed in the sensitive model BLCAb002 but not in BLCAb001, as well as decreased autophagy. Interestingly, computational modelling of mutant structures and affinity binding to PI3K revealed that E542K mutation was associated with weaker drug binding than E545K. Conclusions Our results suggest that the presence of activating PIK3CA mutations may not necessarily predict in vivo treatment response to PI3K targeted therapies, while specific gene alterations may be predictive for cisplatin response in bladder cancer models and, potentially, in patients as well. PMID:27823983

  7. A Trajectory Forecast Model as an Event Response Tool: Tracking an Anhydrous Ammonia Spill in Tampa Bay

    NASA Astrophysics Data System (ADS)

    Havens, H.; Luther, M. E.; Meyers, S. D.

    2008-12-01

    Response time is critical following a hazardous spill in a marine environment and rapid assessment of circulation patterns can mitigate the damage. Tampa Bay Physical Oceanographic Real-Time System (TB- PORTS) data are used to drive a numerical circulation model of the bay for the purpose of hazardous material spill response, monitoring of human health risks, and environmental protection and management. The model is capable of rapidly producing forecast simulations that, in the event of a human health or ecosystem threat, can alert authorities to areas in Tampa Bay with a high probability of being affected by the material. Responders to an anhydrous ammonia spill in November 2007 in Tampa Bay utilized the numerical model of circulation in the estuary to predict where the spill was likely to be transported. The model quickly generated a week-long simulation predicting how winds and currents might move the spill around the bay. The physical mechanisms transporting ammonium alternated from being tidally driven for the initial two days following the spill to a more classical two-layered circulation for the remainder of the simulation. Velocity profiles of Tampa Bay reveal a strong outward flowing current present at the time of the simulation which acted as a significant transport mechanism for ammonium within the bay. Probability distributions, calculated from the predicted model trajectories, guided sampling in the days after the spill resulting in the detection of a toxic Pseudo-nitzschia bloom that likely was initiated as a result of the anhydrous ammonia spill. The prediction system at present is only accessible to scientists in the Ocean Monitoring and Prediction Lab (OMPL) at the University of South Florida. The forecast simulations are compiled into an animation that is provided to end users at their request. In the future, decision makers will be allowed access to an online component of the coastal prediction system that can be used to manage response and mitigation efforts in order to reduce the risk from such disasters as a hazardous material spills or ship groundings.

  8. Modelling benthic macrofauna and seagrass distribution patterns in a North Sea tidal basin in response to 2050 climatic and environmental scenarios

    NASA Astrophysics Data System (ADS)

    Singer, Anja; Millat, Gerald; Staneva, Joanna; Kröncke, Ingrid

    2017-03-01

    Small-scale spatial distribution patterns of seven macrofauna species, seagrass beds and mixed mussel/oyster reefs were modelled for the Jade Bay (North Sea, Germany) in response to climatic and environmental scenarios (representing 2050). For the species distribution models four presence-absence modelling methods were merged within the ensemble forecasting platform 'biomod2'. The present spatial distribution (representing 2009) was modelled by statistically related species presences, true species absences and six high-resolution environmental grids. The future spatial distribution was then predicted in response to expected climate change-induced ongoing (1) sea-level rise and (2) water temperature increase. Between 2009 and 2050, the present and future prediction maps revealed a significant range gain for two macrofauna species (Macoma balthica, Tubificoides benedii), whereas the species' range sizes of five macrofauna species remained relatively stable across space and time. The predicted probability of occurrence (PO) of two macrofauna species (Cerastoderma edule, Scoloplos armiger) decreased significantly under the potential future habitat conditions. In addition, a clear seagrass bed extension (Zostera noltii) on the lower intertidal flats (mixed sediments) and a decrease in the PO of mixed Mytilus edulis/Crassostrea gigas reefs was predicted for 2050. Until the mid-21st century, our future climatic and environmental scenario revealed significant changes in the range sizes (gains-losses) and/or the PO (increases-decreases) for seven of the 10 modelled species at the study site.

  9. Nonlinear Analysis and Scaling Laws for Noncircular Composite Structures Subjected to Combined Loads

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Rose, Cheryl A.; Starnes, James H., Jr.

    2001-01-01

    Results from an analytical study of the response of a built-up, multi-cell noncircular composite structure subjected to combined internal pressure and mechanical loads are presented. Nondimensional parameters and scaling laws based on a first-order shear-deformation plate theory are derived for this noncircular composite structure. The scaling laws are used to design sub-scale structural models for predicting the structural response of a full-scale structure representative of a portion of a blended-wing-body transport aircraft. Because of the complexity of the full-scale structure, some of the similitude conditions are relaxed for the sub-scale structural models. Results from a systematic parametric study are used to determine the effects of relaxing selected similitude conditions on the sensitivity of the effectiveness of using the sub-scale structural model response characteristics for predicting the full-scale structure response characteristics.

  10. Modeling the NF-κB mediated inflammatory response predicts cytokine waves in tissue

    PubMed Central

    2011-01-01

    Background Waves propagating in "excitable media" is a reliable way to transmit signals in space. A fascinating example where living cells comprise such a medium is Dictyostelium D. which propagates waves of chemoattractant to attract distant cells. While neutrophils chemotax in a similar fashion as Dictyostelium D., it is unclear if chemoattractant waves exist in mammalian tissues and what mechanisms could propagate them. Results We propose that chemoattractant cytokine waves may naturally develop as a result of NF-κB response. Using a heuristic mathematical model of NF-κB-like circuits coupled in space we show that the known characteristics of NF-κB response favor cytokine waves. Conclusions While the propagating wave of cytokines is generally beneficial for inflammation resolution, our model predicts that there exist special conditions that can cause chronic inflammation and re-occurrence of acute inflammatory response. PMID:21771307

  11. Feed-forward neural network model for hunger and satiety related VAS score prediction.

    PubMed

    Krishnan, Shaji; Hendriks, Henk F J; Hartvigsen, Merete L; de Graaf, Albert A

    2016-07-07

    An artificial neural network approach was chosen to model the outcome of the complex signaling pathways in the gastro-intestinal tract and other peripheral organs that eventually produce the satiety feeling in the brain upon feeding. A multilayer feed-forward neural network was trained with sets of experimental data relating concentration-time courses of plasma satiety hormones to Visual Analog Scales (VAS) scores. The network successfully predicted VAS responses from sets of satiety hormone data obtained in experiments using different food compositions. The correlation coefficients for the predicted VAS responses for test sets having i) a full set of three satiety hormones, ii) a set of only two satiety hormones, and iii) a set of only one satiety hormone were 0.96, 0.96, and 0.89, respectively. The predicted VAS responses discriminated the satiety effects of high satiating food types from less satiating food types both in orally fed and ileal infused forms. From this application of artificial neural networks, one may conclude that neural network models are very suitable to describe situations where behavior is complex and incompletely understood. However, training data sets that fit the experimental conditions need to be available.

  12. Knowledge-guided fuzzy logic modeling to infer cellular signaling networks from proteomic data

    PubMed Central

    Liu, Hui; Zhang, Fan; Mishra, Shital Kumar; Zhou, Shuigeng; Zheng, Jie

    2016-01-01

    Modeling of signaling pathways is crucial for understanding and predicting cellular responses to drug treatments. However, canonical signaling pathways curated from literature are seldom context-specific and thus can hardly predict cell type-specific response to external perturbations; purely data-driven methods also have drawbacks such as limited biological interpretability. Therefore, hybrid methods that can integrate prior knowledge and real data for network inference are highly desirable. In this paper, we propose a knowledge-guided fuzzy logic network model to infer signaling pathways by exploiting both prior knowledge and time-series data. In particular, the dynamic time warping algorithm is employed to measure the goodness of fit between experimental and predicted data, so that our method can model temporally-ordered experimental observations. We evaluated the proposed method on a synthetic dataset and two real phosphoproteomic datasets. The experimental results demonstrate that our model can uncover drug-induced alterations in signaling pathways in cancer cells. Compared with existing hybrid models, our method can model feedback loops so that the dynamical mechanisms of signaling networks can be uncovered from time-series data. By calibrating generic models of signaling pathways against real data, our method supports precise predictions of context-specific anticancer drug effects, which is an important step towards precision medicine. PMID:27774993

  13. Modeling of Principal Flank Wear: An Empirical Approach Combining the Effect of Tool, Environment and Workpiece Hardness

    NASA Astrophysics Data System (ADS)

    Mia, Mozammel; Al Bashir, Mahmood; Dhar, Nikhil Ranjan

    2016-10-01

    Hard turning is increasingly employed in machining, lately, to replace time-consuming conventional turning followed by grinding process. An excessive amount of tool wear in hard turning is one of the main hurdles to be overcome. Many researchers have developed tool wear model, but most of them developed it for a particular work-tool-environment combination. No aggregate model is developed that can be used to predict the amount of principal flank wear for specific machining time. An empirical model of principal flank wear (VB) has been developed for the different hardness of workpiece (HRC40, HRC48 and HRC56) while turning by coated carbide insert with different configurations (SNMM and SNMG) under both dry and high pressure coolant conditions. Unlike other developed model, this model includes the use of dummy variables along with the base empirical equation to entail the effect of any changes in the input conditions on the response. The base empirical equation for principal flank wear is formulated adopting the Exponential Associate Function using the experimental results. The coefficient of dummy variable reflects the shifting of the response from one set of machining condition to another set of machining condition which is determined by simple linear regression. The independent cutting parameters (speed, rate, depth of cut) are kept constant while formulating and analyzing this model. The developed model is validated with different sets of machining responses in turning hardened medium carbon steel by coated carbide inserts. For any particular set, the model can be used to predict the amount of principal flank wear for specific machining time. Since the predicted results exhibit good resemblance with experimental data and the average percentage error is <10 %, this model can be used to predict the principal flank wear for stated conditions.

  14. Physiologically grounded metrics of model skill: a case study estimating heat stress in intertidal populations

    PubMed Central

    Kish, Nicole E.; Helmuth, Brian; Wethey, David S.

    2016-01-01

    Models of ecological responses to climate change fundamentally assume that predictor variables, which are often measured at large scales, are to some degree diagnostic of the smaller-scale biological processes that ultimately drive patterns of abundance and distribution. Given that organisms respond physiologically to stressors, such as temperature, in highly non-linear ways, small modelling errors in predictor variables can potentially result in failures to predict mortality or severe stress, especially if an organism exists near its physiological limits. As a result, a central challenge facing ecologists, particularly those attempting to forecast future responses to environmental change, is how to develop metrics of forecast model skill (the ability of a model to predict defined events) that are biologically meaningful and reflective of underlying processes. We quantified the skill of four simple models of body temperature (a primary determinant of physiological stress) of an intertidal mussel, Mytilus californianus, using common metrics of model performance, such as root mean square error, as well as forecast verification skill scores developed by the meteorological community. We used a physiologically grounded framework to assess each model's ability to predict optimal, sub-optimal, sub-lethal and lethal physiological responses. Models diverged in their ability to predict different levels of physiological stress when evaluated using skill scores, even though common metrics, such as root mean square error, indicated similar accuracy overall. Results from this study emphasize the importance of grounding assessments of model skill in the context of an organism's physiology and, especially, of considering the implications of false-positive and false-negative errors when forecasting the ecological effects of environmental change. PMID:27729979

  15. Trait rumination and response to negative evaluative lab-induced stress: neuroendocrine, affective, and cognitive outcomes.

    PubMed

    Vrshek-Schallhorn, Suzanne; Velkoff, Elizabeth A; Zinbarg, Richard E

    2018-04-06

    Theoretical models of depression posit that, under stress, elevated trait rumination predicts more pronounced or prolonged negative affective and neuroendocrine responses, and that trait rumination hampers removing irrelevant negative information from working memory. We examined several gaps regarding these models in the context of lab-induced stress. Non-depressed undergraduates completed a rumination questionnaire and either a negative-evaluative Trier Social Stress Test (n = 55) or a non-evaluative control condition (n = 69), followed by a modified Sternberg affective working memory task assessing the extent to which irrelevant negative information can be emptied from working memory. We measured shame, negative and positive affect, and salivary cortisol four times. Multilevel growth curve models showed rumination and stress interactively predicted cortisol reactivity; however, opposite predictions, greater rumination was associated with blunted cortisol reactivity to stress. Elevated trait rumination interacted with stress to predict augmented shame reactivity. Rumination and stress did not significantly interact to predict working memory performance, but under control conditions, rumination predicted greater difficulty updating working memory. Results support a vulnerability-stress model of trait rumination with heightened shame reactivity and cortisol dysregulation rather than hyper-reactivity in non-depressed emerging adults, but we cannot provide evidence that working memory processes are critical immediately following acute stress.

  16. How ecology shapes exploitation: a framework to predict the behavioural response of human and animal foragers along exploration-exploitation trade-offs.

    PubMed

    Monk, Christopher T; Barbier, Matthieu; Romanczuk, Pawel; Watson, James R; Alós, Josep; Nakayama, Shinnosuke; Rubenstein, Daniel I; Levin, Simon A; Arlinghaus, Robert

    2018-06-01

    Understanding how humans and other animals behave in response to changes in their environments is vital for predicting population dynamics and the trajectory of coupled social-ecological systems. Here, we present a novel framework for identifying emergent social behaviours in foragers (including humans engaged in fishing or hunting) in predator-prey contexts based on the exploration difficulty and exploitation potential of a renewable natural resource. A qualitative framework is introduced that predicts when foragers should behave territorially, search collectively, act independently or switch among these states. To validate it, we derived quantitative predictions from two models of different structure: a generic mathematical model, and a lattice-based evolutionary model emphasising exploitation and exclusion costs. These models independently identified that the exploration difficulty and exploitation potential of the natural resource controls the social behaviour of resource exploiters. Our theoretical predictions were finally compared to a diverse set of empirical cases focusing on fisheries and aquatic organisms across a range of taxa, substantiating the framework's predictions. Understanding social behaviour for given social-ecological characteristics has important implications, particularly for the design of governance structures and regulations to move exploited systems, such as fisheries, towards sustainability. Our framework provides concrete steps in this direction. © 2018 John Wiley & Sons Ltd/CNRS.

  17. Shaking table test and dynamic response prediction on an earthquake-damaged RC building

    NASA Astrophysics Data System (ADS)

    Xianguo, Ye; Jiaru, Qian; Kangning, Li

    2004-12-01

    This paper presents the results from shaking table tests of a one-tenth-scale reinforced concrete (RC) building model. The test model is a protype of a building that was seriously damaged during the 1985 Mexico earthquake. The input ground excitation used during the test was from the records obtained near the site of the prototype building during the 1985 and 1995 Mexico earthquakes. The tests showed that the damage pattern of the test model agreed well with that of the prototype building. Analytical prediction of earthquake response has been conducted for the prototype building using a sophisticated 3-D frame model. The input motion used for the dynamic analysis was the shaking table test measurements with similarity transformation. The comparison of the analytical results and the shaking table test results indicates that the response of the RC building to minor and the moderate earthquakes can be predicated well. However, there is difference between the predication and the actual response to the major earthquake.

  18. Reaction times to weak test lights. [psychophysics biological model

    NASA Technical Reports Server (NTRS)

    Wandell, B. A.; Ahumada, P.; Welsh, D.

    1984-01-01

    Maloney and Wandell (1984) describe a model of the response of a single visual channel to weak test lights. The initial channel response is a linearly filtered version of the stimulus. The filter output is randomly sampled over time. Each time a sample occurs there is some probability increasing with the magnitude of the sampled response - that a discrete detection event is generated. Maloney and Wandell derive the statistics of the detection events. In this paper a test is conducted of the hypothesis that the reaction time responses to the presence of a weak test light are initiated at the first detection event. This makes it possible to extend the application of the model to lights that are slightly above threshold, but still within the linear operating range of the visual system. A parameter-free prediction of the model proposed by Maloney and Wandell for lights detected by this statistic is tested. The data are in agreement with the prediction.

  19. Effect of clothing material on thermal responses of the human body

    NASA Astrophysics Data System (ADS)

    Fengzhi, Li; Yi, Li

    2005-09-01

    The influence of clothing material on thermal responses of the human body are investigated by using an integrated model of a clothed thermoregulatory human body. A modified 25-nodes model considering the sweat accumulation on the skin surface is applied to simulate the human physiological regulatory responses. The heat and moisture coupled transfer mechanisms, including water vapour diffusion, the moisture evaporation/condensation, the moisture sorbtion/desorption by fibres, liquid sweat transfer under capillary pressure, and latent heat absorption/release due to phase change, are considered in the clothing model. On comparing prediction results with the experimental data in the literature, the proposed model seems able to predict dynamic heat and moisture transfer between the human body and the clothing system. The human body's thermal responses and clothing temperature and moisture variations are compared for different clothing materials during transient periods. We concluded that the hygroscopicity of clothing materials influences the human thermoregulation process significantly during environmental transients.

  20. Kinetic modeling of growth and lipid body induction in Chlorella pyrenoidosa under heterotrophic conditions.

    PubMed

    Sachdeva, Neha; Kumar, G Dinesh; Gupta, Ravi Prakash; Mathur, Anshu Shankar; Manikandan, B; Basu, Biswajit; Tuli, Deepak Kumar

    2016-10-01

    The aim of the present work was to develop a mathematical model to describe the biomass and (total) lipid productivity of Chlorella pyrenoidosa NCIM 2738 under heterotrophic conditions. Biomass growth rate was predicted by Droop's cell quota model, while changes observed in cell quota (utilization) under carbon excess conditions were used for the modeling and predicting the lipid accumulation rate. The model was simulated under non-limiting (excess) carbon and limiting nitrate concentration and validated with experimental data for the culture grown in batch (flask) mode under different nitrate concentrations. The present model incorporated two modes (growth and stressed) for the prediction of endogenous lipid synthesis/induction and aimed to predict the effect and response of the microalgae under nutrient starvation (stressed) conditions. MATLAB and Genetic Algorithm were employed for the prediction and validation of the model parameters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Some considerations on the use of ecological models to predict species' geographic distributions

    USGS Publications Warehouse

    Peterjohn, B.G.

    2001-01-01

    Peterson (2001) used Genetic Algorithm for Rule-set Prediction (GARP) models to predict distribution patterns from Breeding Bird Survey (BBS) data. Evaluations of these models should consider inherent limitations of BBS data: (1) BBS methods may not sample species and habitats equally; (2) using BBS data for both model development and testing may overlook poor fit of some models; and (3) BBS data may not provide the desired spatial resolution or capture temporal changes in species distributions. The predictive value of GARP models requires additional study, especially comparisons with distribution patterns from independent data sets. When employed at appropriate temporal and geographic scales, GARP models show considerable promise for conservation biology applications but provide limited inferences concerning processes responsible for the observed patterns.

  2. From documentation to prediction: Raising the bar for thermokarst research

    DOE PAGES

    Rowland, Joel C.; Coon, Ethan T.

    2015-11-12

    Here we report that to date the majority of published research on thermokarst has been directed at documenting its form, occurrence, and rates of occurrence. The fundamental processes driving thermokarst have long been largely understood. However, the detailed physical couplings between, water, air, soil, and the thermal dynamics governing freeze-thaw and soil mechanics is less understood and not captured in models aimed at predicting the response of frozen soils to warming and thaw. As computational resources increase more sophisticated mechanistic models can be applied; these show great promise as predictive tools. These models will be capable of simulating the responsemore » of soil deformation to thawing/freezing cycles and the long-term, non-recoverable response of the land surface to the loss of ice. At the same time, advances in remote sensing of permafrost environments also show promise in providing detailed and spatially extensive estimates in the rates and patterns of subsidence. These datasets provide key constraints to calibrate and evaluate the predictive power of mechanistic models. In conclusion, in the coming decade, these emerging technologies will greatly increase our ability to predict when, where, and how thermokarst will occur in a changing climate.« less

  3. Development, Testing, and Validation of a Model-Based Tool to Predict Operator Responses in Unexpected Workload Transitions

    NASA Technical Reports Server (NTRS)

    Sebok, Angelia; Wickens, Christopher; Sargent, Robert

    2015-01-01

    One human factors challenge is predicting operator performance in novel situations. Approaches such as drawing on relevant previous experience, and developing computational models to predict operator performance in complex situations, offer potential methods to address this challenge. A few concerns with modeling operator performance are that models need to realistic, and they need to be tested empirically and validated. In addition, many existing human performance modeling tools are complex and require that an analyst gain significant experience to be able to develop models for meaningful data collection. This paper describes an effort to address these challenges by developing an easy to use model-based tool, using models that were developed from a review of existing human performance literature and targeted experimental studies, and performing an empirical validation of key model predictions.

  4. Landscape prediction and mapping of game fish biomass, an ecosystem service of Michigan rivers

    USGS Publications Warehouse

    Esselman, Peter C.; Stevenson, R Jan; Lupi, Frank; Riseng, Catherine M.; Wiley, Michael J.

    2015-01-01

    The increased integration of ecosystem service concepts into natural resource management places renewed emphasis on prediction and mapping of fish biomass as a major provisioning service of rivers. The goals of this study were to predict and map patterns of fish biomass as a proxy for the availability of catchable fish for anglers in rivers and to identify the strongest landscape constraints on fish productivity. We examined hypotheses about fish responses to total phosphorus (TP), as TP is a growth-limiting nutrient known to cause increases (subsidy response) and/or decreases (stress response) in fish biomass depending on its concentration and the species being considered. Boosted regression trees were used to define nonlinear functions that predicted the standing crops of Brook Trout Salvelinus fontinalis, Brown Trout Salmo trutta, Smallmouth Bass Micropterus dolomieu, panfishes (seven centrarchid species), and Walleye Sander vitreus by using landscape and modeled local-scale predictors. Fitted models were highly significant and explained 22–56% of the variation in validation data sets. Nonlinear and threshold responses were apparent for numerous predictors, including TP concentration, which had significant effects on all except the Walleye fishery. Brook Trout and Smallmouth Bass exhibited both subsidy and stress responses, panfish biomass exhibited a subsidy response only, and Brown Trout exhibited a stress response. Maps of reach-specific standing crop predictions showed patterns of predicted fish biomass that corresponded to spatial patterns in catchment area, water temperature, land cover, and nutrient availability. Maps illustrated predictions of higher trout biomass in coldwater streams draining glacial till in northern Michigan, higher Smallmouth Bass and panfish biomasses in warmwater systems of southern Michigan, and high Walleye biomass in large main-stem rivers throughout the state. Our results allow fisheries managers to examine the biomass potential of streams, describe geographic patterns of fisheries, explore possible nutrient management targets, and identify habitats that are candidates for species management.

  5. DNA damage predicts prognosis and treatment response in colorectal liver metastases superior to immunogenic cell death and T cells

    PubMed Central

    Laengle, Johannes; Stift, Judith; Bilecz, Agnes; Wolf, Brigitte; Beer, Andrea; Hegedus, Balazs; Stremitzer, Stefan; Starlinger, Patrick; Tamandl, Dietmar; Pils, Dietmar; Bergmann, Michael

    2018-01-01

    Preclinical models indicate that DNA damage induces type I interferon (IFN), which is crucial for the induction of an anti-tumor immune response. In human cancers, however, the association between DNA damage and an immunogenic cell death (ICD), including the release and sensing of danger signals, the subsequent ER stress response and a functional IFN system, is less clear. Methods: Neoadjuvant-treated colorectal liver metastases (CLM) patients, undergoing liver resection in with a curative intent, were retrospectively enrolled in this study (n=33). DNA damage (γH2AX), RNA and DNA sensors (RIG-I, DDX41, cGAS, STING), ER stress response (p-PKR, p-eIF2α, CALR), type I and type II IFN- induced proteins (MxA, GBP1), mature dendritic cells (CD208), and cytotoxic and memory T cells (CD3, CD8, CD45RO) were investigated by an immunohistochemistry whole-slide tissue scanning approach and further correlated with recurrence-free survival (RFS), overall survival (OS), radiographic and pathologic therapy response. Results: γH2AX is a negative prognostic marker for RFS (HR 1.32, 95% CI 1.04-1.69, p=0.023) and OS (HR 1.61, 95% CI 1.23-2.11, p<0.001). A model comprising of DDX41, STING and p-PKR predicts radiographic therapy response (AUC=0.785, p=0.002). γH2AX predicts prognosis superior to the prognostic value of CD8. CALR positively correlates with GBP1, CD8 and cGAS. A model consisting of γH2AX, p-eIF2α, DDX41, cGAS, CD208 and CD45RO predicts pathological therapy response (AUC=0.944, p<0.001). Conclusion: In contrast to preclinical models, DNA damage inversely correlated with ICD and its associated T cell infiltrate and potentially serves as a therapeutic target in CLM. PMID:29930723

  6. Experimental validation of a numerical model for subway induced vibrations

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Degrande, G.; Lombaert, G.

    2009-04-01

    This paper presents the experimental validation of a coupled periodic finite element-boundary element model for the prediction of subway induced vibrations. The model fully accounts for the dynamic interaction between the train, the track, the tunnel and the soil. The periodicity or invariance of the tunnel and the soil in the longitudinal direction is exploited using the Floquet transformation, which allows for an efficient formulation in the frequency-wavenumber domain. A general analytical formulation is used to compute the response of three-dimensional invariant or periodic media that are excited by moving loads. The numerical model is validated by means of several experiments that have been performed at a site in Regent's Park on the Bakerloo line of London Underground. Vibration measurements have been performed on the axle boxes of the train, on the rail, the tunnel invert and the tunnel wall, and in the free field, both at the surface and at a depth of 15 m. Prior to these vibration measurements, the dynamic soil characteristics and the track characteristics have been determined. The Bakerloo line tunnel of London Underground has been modelled using the coupled periodic finite element-boundary element approach and free field vibrations due to the passage of a train at different speeds have been predicted and compared to the measurements. The correspondence between the predicted and measured response in the tunnel is reasonably good, although some differences are observed in the free field. The discrepancies are explained on the basis of various uncertainties involved in the problem. The variation in the response with train speed is similar for the measurements as well as the predictions. This study demonstrates the applicability of the coupled periodic finite element-boundary element model to make realistic predictions of the vibrations from underground railways.

  7. Heave motion prediction of a large barge in random seas by using artificial neural network

    NASA Astrophysics Data System (ADS)

    Lee, Hsiu Eik; Liew, Mohd Shahir; Zawawi, Noor Amila Wan Abdullah; Toloue, Iraj

    2017-11-01

    This paper describes the development of a multi-layer feed forward artificial neural network (ANN) to predict rigid heave body motions of a large catenary moored barge subjected to multi-directional irregular waves. The barge is idealized as a rigid plate of finite draft with planar dimensions 160m (length) and 100m (width) which is held on station using a six point chain catenary mooring in 50m water depth. Hydroelastic effects are neglected from the physical model as the chief intent of this study is focused on large plate rigid body hydrodynamics modelling using ANN. Even with this assumption, the computational requirements for time domain coupled hydrodynamic simulations of a moored floating body is considerably costly, particularly if a large number of simulations are required such as in the case of response based design (RBD) methods. As an alternative to time consuming numerical hydrodynamics, a regression-type ANN model has been developed for efficient prediction of the barge's heave responses to random waves from various directions. It was determined that a network comprising of 3 input features, 2 hidden layers with 5 neurons each and 1 output was sufficient to produce acceptable predictions within 0.02 mean squared error. By benchmarking results from the ANN with those generated by a fully coupled dynamic model in OrcaFlex, it is demonstrated that the ANN is capable of predicting the barge's heave responses with acceptable accuracy.

  8. Relationship between BOLD amplitude and pattern classification of orientation-selective activity in the human visual cortex.

    PubMed

    Tong, Frank; Harrison, Stephenie A; Dewey, John A; Kamitani, Yukiyasu

    2012-11-15

    Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Relationship between BOLD amplitude and pattern classification of orientation-selective activity in the human visual cortex

    PubMed Central

    Tong, Frank; Harrison, Stephenie A.; Dewey, John A.; Kamitani, Yukiyasu

    2012-01-01

    Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. PMID:22917989

  10. Scalable and responsive event processing in the cloud

    PubMed Central

    Suresh, Visalakshmi; Ezhilchelvan, Paul; Watson, Paul

    2013-01-01

    Event processing involves continuous evaluation of queries over streams of events. Response-time optimization is traditionally done over a fixed set of nodes and/or by using metrics measured at query-operator levels. Cloud computing makes it easy to acquire and release computing nodes as required. Leveraging this flexibility, we propose a novel, queueing-theory-based approach for meeting specified response-time targets against fluctuating event arrival rates by drawing only the necessary amount of computing resources from a cloud platform. In the proposed approach, the entire processing engine of a distinct query is modelled as an atomic unit for predicting response times. Several such units hosted on a single node are modelled as a multiple class M/G/1 system. These aspects eliminate intrusive, low-level performance measurements at run-time, and also offer portability and scalability. Using model-based predictions, cloud resources are efficiently used to meet response-time targets. The efficacy of the approach is demonstrated through cloud-based experiments. PMID:23230164

  11. A Data-Driven Response Virtual Sensor Technique with Partial Vibration Measurements Using Convolutional Neural Network.

    PubMed

    Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang

    2017-12-12

    Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy.

  12. The dorsal medial frontal cortex is sensitive to time on task, not response conflict or error likelihood.

    PubMed

    Grinband, Jack; Savitskaya, Judith; Wager, Tor D; Teichert, Tobias; Ferrera, Vincent P; Hirsch, Joy

    2011-07-15

    The dorsal medial frontal cortex (dMFC) is highly active during choice behavior. Though many models have been proposed to explain dMFC function, the conflict monitoring model is the most influential. It posits that dMFC is primarily involved in detecting interference between competing responses thus signaling the need for control. It accurately predicts increased neural activity and response time (RT) for incompatible (high-interference) vs. compatible (low-interference) decisions. However, it has been shown that neural activity can increase with time on task, even when no decisions are made. Thus, the greater dMFC activity on incompatible trials may stem from longer RTs rather than response conflict. This study shows that (1) the conflict monitoring model fails to predict the relationship between error likelihood and RT, and (2) the dMFC activity is not sensitive to congruency, error likelihood, or response conflict, but is monotonically related to time on task. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. A Data-Driven Response Virtual Sensor Technique with Partial Vibration Measurements Using Convolutional Neural Network

    PubMed Central

    Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang

    2017-01-01

    Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy. PMID:29231868

  14. Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions.

    PubMed

    Heslot, Nicolas; Akdemir, Deniz; Sorrells, Mark E; Jannink, Jean-Luc

    2014-02-01

    Development of models to predict genotype by environment interactions, in unobserved environments, using environmental covariates, a crop model and genomic selection. Application to a large winter wheat dataset. Genotype by environment interaction (G*E) is one of the key issues when analyzing phenotypes. The use of environment data to model G*E has long been a subject of interest but is limited by the same problems as those addressed by genomic selection methods: a large number of correlated predictors each explaining a small amount of the total variance. In addition, non-linear responses of genotypes to stresses are expected to further complicate the analysis. Using a crop model to derive stress covariates from daily weather data for predicted crop development stages, we propose an extension of the factorial regression model to genomic selection. This model is further extended to the marker level, enabling the modeling of quantitative trait loci (QTL) by environment interaction (Q*E), on a genome-wide scale. A newly developed ensemble method, soft rule fit, was used to improve this model and capture non-linear responses of QTL to stresses. The method is tested using a large winter wheat dataset, representative of the type of data available in a large-scale commercial breeding program. Accuracy in predicting genotype performance in unobserved environments for which weather data were available increased by 11.1% on average and the variability in prediction accuracy decreased by 10.8%. By leveraging agronomic knowledge and the large historical datasets generated by breeding programs, this new model provides insight into the genetic architecture of genotype by environment interactions and could predict genotype performance based on past and future weather scenarios.

  15. Data-driven Modeling of Metal-oxide Sensors with Dynamic Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Gosangi, Rakesh; Gutierrez-Osuna, Ricardo

    2011-09-01

    We present a data-driven probabilistic framework to model the transient response of MOX sensors modulated with a sequence of voltage steps. Analytical models of MOX sensors are usually built based on the physico-chemical properties of the sensing materials. Although building these models provides an insight into the sensor behavior, they also require a thorough understanding of the underlying operating principles. Here we propose a data-driven approach to characterize the dynamical relationship between sensor inputs and outputs. Namely, we use dynamic Bayesian networks (DBNs), probabilistic models that represent temporal relations between a set of random variables. We identify a set of control variables that influence the sensor responses, create a graphical representation that captures the causal relations between these variables, and finally train the model with experimental data. We validated the approach on experimental data in terms of predictive accuracy and classification performance. Our results show that DBNs can accurately predict the dynamic response of MOX sensors, as well as capture the discriminatory information present in the sensor transients.

  16. Space-for-Time Substitution Works in Everglades Ecological Forecasting Models

    PubMed Central

    Banet, Amanda I.; Trexler, Joel C.

    2013-01-01

    Space-for-time substitution is often used in predictive models because long-term time-series data are not available. Critics of this method suggest factors other than the target driver may affect ecosystem response and could vary spatially, producing misleading results. Monitoring data from the Florida Everglades were used to test whether spatial data can be substituted for temporal data in forecasting models. Spatial models that predicted bluefin killifish (Lucania goodei) population response to a drying event performed comparably and sometimes better than temporal models. Models worked best when results were not extrapolated beyond the range of variation encompassed by the original dataset. These results were compared to other studies to determine whether ecosystem features influence whether space-for-time substitution is feasible. Taken in the context of other studies, these results suggest space-for-time substitution may work best in ecosystems with low beta-diversity, high connectivity between sites, and small lag in organismal response to the driver variable. PMID:24278368

  17. Predicting mixture toxicity of seven phenolic compounds with similar and dissimilar action mechanisms to Vibrio qinghaiensis sp.nov.Q67.

    PubMed

    Huang, Wei Ying; Liu, Fei; Liu, Shu Shen; Ge, Hui Lin; Chen, Hong Han

    2011-09-01

    The predictions of mixture toxicity for chemicals are commonly based on two models: concentration addition (CA) and independent action (IA). Whether the CA and IA can predict mixture toxicity of phenolic compounds with similar and dissimilar action mechanisms was studied. The mixture toxicity was predicted on the basis of the concentration-response data of individual compounds. Test mixtures at different concentration ratios and concentration levels were designed using two methods. The results showed that the Weibull function fit well with the concentration-response data of all the components and their mixtures, with all relative coefficients (Rs) greater than 0.99 and root mean squared errors (RMSEs) less than 0.04. The predicted values from CA and IA models conformed to observed values of the mixtures. Therefore, it can be concluded that both CA and IA can predict reliable results for the mixture toxicity of the phenolic compounds with similar and dissimilar action mechanisms. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Can the PHS model (ISO7933) predict reasonable thermophysiological responses while wearing protective clothing in hot environments?

    PubMed

    Wang, Faming; Kuklane, Kalev; Gao, Chuansi; Holmér, Ingvar

    2011-02-01

    In this paper, the prediction accuracy of the PHS (predicted heat strain) model on human physiological responses while wearing protective clothing ensembles was examined. Six human subjects (aged 29 ± 3 years) underwent three experimental trials in three different protective garments (clothing thermal insulation I(cl) ranges from 0.63 to 2.01 clo) in two hot environments (40 °C, relative humidities: 30% and 45%). The observed and predicted mean skin temperature, core body temperature and sweat rate were presented and statistically compared. A significant difference was found in the metabolic rate between FIRE (firefighting clothing) and HV (high visibility clothing) or MIL (military clothing) (p < 0.001). Also, the development of heart rate demonstrated the significant effects of the exposure time and clothing ensembles. In addition, the predicted evaporation rate during HV, MIL and FIRE was much lower than the experimental values. Hence, the current PHS model is not applicable for protective clothing with intrinsic thermal insulations above 1.0 clo. The results showed that the PHS model generated unreliable predictions on body core temperature when human subjects wore thick protective clothing such as firefighting clothing (I(cl) > 1.0 clo). The predicted mean skin temperatures in three clothing ensembles HV, MIL and FIRE were also outside the expected limits. Thus, there is a need for further extension for the clothing insulation validation range of the PHS model. It is recommended that the PHS model should be amended and validated by individual algorithms, physical or physiological parameters, and further subject studies.

  19. High fidelity CFD-CSD aeroelastic analysis of slender bladed horizontal-axis wind turbine

    NASA Astrophysics Data System (ADS)

    Sayed, M.; Lutz, Th.; Krämer, E.; Shayegan, Sh.; Ghantasala, A.; Wüchner, R.; Bletzinger, K.-U.

    2016-09-01

    The aeroelastic response of large multi-megawatt slender horizontal-axis wind turbine blades is investigated by means of a time-accurate CFD-CSD coupling approach. A loose coupling approach is implemented and used to perform the simulations. The block- structured CFD solver FLOWer is utilized to obtain the aerodynamic blade loads based on the time-accurate solution of the unsteady Reynolds-averaged Navier-Stokes equations. The CSD solver Carat++ is applied to acquire the blade elastic deformations based on non-linear beam elements. In this contribution, the presented coupling approach is utilized to study the aeroelastic response of the generic DTU 10MW wind turbine. Moreover, the effect of the coupled results on the wind turbine performance is discussed. The results are compared to the aeroelastic response predicted by FLOWer coupled to the MBS tool SIMPACK as well as the response predicted by SIMPACK coupled to a Blade Element Momentum code for aerodynamic predictions. A comparative study among the different modelling approaches for this coupled problem is discussed to quantify the coupling effects of the structural models on the aeroelastic response.

  20. Prediction of Unsteady Aerodynamic Coefficients at High Angles of Attack

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Murphy, Patrick C.; Klein, Vladislav; Brandon, Jay M.

    2001-01-01

    The nonlinear indicial response method is used to model the unsteady aerodynamic coefficients in the low speed longitudinal oscillatory wind tunnel test data of the 0.1 scale model of the F-16XL aircraft. Exponential functions are used to approximate the deficiency function in the indicial response. Using one set of oscillatory wind tunnel data and parameter identification method, the unknown parameters in the exponential functions are estimated. The genetic algorithm is used as a least square minimizing algorithm. The assumed model structures and parameter estimates are validated by comparing the predictions with other sets of available oscillatory wind tunnel test data.

Top