Sample records for model predicted values

  1. Incorporating geographical factors with artificial neural networks to predict reference values of erythrocyte sedimentation rate

    PubMed Central

    2013-01-01

    Background The measurement of the Erythrocyte Sedimentation Rate (ESR) value is a standard procedure performed during a typical blood test. In order to formulate a unified standard of establishing reference ESR values, this paper presents a novel prediction model in which local normal ESR values and corresponding geographical factors are used to predict reference ESR values using multi-layer feed-forward artificial neural networks (ANN). Methods and findings Local normal ESR values were obtained from hospital data, while geographical factors that include altitude, sunshine hours, relative humidity, temperature and precipitation were obtained from the National Geographical Data Information Centre in China. The results show that predicted values are statistically in agreement with measured values. Model results exhibit significant agreement between training data and test data. Consequently, the model is used to predict the unseen local reference ESR values. Conclusions Reference ESR values can be established with geographical factors by using artificial intelligence techniques. ANN is an effective method for simulating and predicting reference ESR values because of its ability to model nonlinear and complex relationships. PMID:23497145

  2. Incorporating geographical factors with artificial neural networks to predict reference values of erythrocyte sedimentation rate.

    PubMed

    Yang, Qingsheng; Mwenda, Kevin M; Ge, Miao

    2013-03-12

    The measurement of the Erythrocyte Sedimentation Rate (ESR) value is a standard procedure performed during a typical blood test. In order to formulate a unified standard of establishing reference ESR values, this paper presents a novel prediction model in which local normal ESR values and corresponding geographical factors are used to predict reference ESR values using multi-layer feed-forward artificial neural networks (ANN). Local normal ESR values were obtained from hospital data, while geographical factors that include altitude, sunshine hours, relative humidity, temperature and precipitation were obtained from the National Geographical Data Information Centre in China.The results show that predicted values are statistically in agreement with measured values. Model results exhibit significant agreement between training data and test data. Consequently, the model is used to predict the unseen local reference ESR values. Reference ESR values can be established with geographical factors by using artificial intelligence techniques. ANN is an effective method for simulating and predicting reference ESR values because of its ability to model nonlinear and complex relationships.

  3. Model-free and model-based reward prediction errors in EEG.

    PubMed

    Sambrook, Thomas D; Hardwick, Ben; Wills, Andy J; Goslin, Jeremy

    2018-05-24

    Learning theorists posit two reinforcement learning systems: model-free and model-based. Model-based learning incorporates knowledge about structure and contingencies in the world to assign candidate actions with an expected value. Model-free learning is ignorant of the world's structure; instead, actions hold a value based on prior reinforcement, with this value updated by expectancy violation in the form of a reward prediction error. Because they use such different learning mechanisms, it has been previously assumed that model-based and model-free learning are computationally dissociated in the brain. However, recent fMRI evidence suggests that the brain may compute reward prediction errors to both model-free and model-based estimates of value, signalling the possibility that these systems interact. Because of its poor temporal resolution, fMRI risks confounding reward prediction errors with other feedback-related neural activity. In the present study, EEG was used to show the presence of both model-based and model-free reward prediction errors and their place in a temporal sequence of events including state prediction errors and action value updates. This demonstration of model-based prediction errors questions a long-held assumption that model-free and model-based learning are dissociated in the brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Predicting Jakarta composite index using hybrid of fuzzy time series and support vector regression models

    NASA Astrophysics Data System (ADS)

    Febrian Umbara, Rian; Tarwidi, Dede; Budi Setiawan, Erwin

    2018-03-01

    The paper discusses the prediction of Jakarta Composite Index (JCI) in Indonesia Stock Exchange. The study is based on JCI historical data for 1286 days to predict the value of JCI one day ahead. This paper proposes predictions done in two stages., The first stage using Fuzzy Time Series (FTS) to predict values of ten technical indicators, and the second stage using Support Vector Regression (SVR) to predict the value of JCI one day ahead, resulting in a hybrid prediction model FTS-SVR. The performance of this combined prediction model is compared with the performance of the single stage prediction model using SVR only. Ten technical indicators are used as input for each model.

  5. The predictive ability of six pharmacokinetic models of rocuronium developed using a single bolus: evaluation with bolus and continuous infusion regimen.

    PubMed

    Sasakawa, Tomoki; Masui, Kenichi; Kazama, Tomiei; Iwasaki, Hiroshi

    2016-08-01

    Rocuronium concentration prediction using pharmacokinetic (PK) models would be useful for controlling rocuronium effects because neuromuscular monitoring throughout anesthesia can be difficult. This study assessed whether six different compartmental PK models developed from data obtained after bolus administration only could predict the measured plasma concentration (Cp) values of rocuronium delivered by bolus followed by continuous infusion. Rocuronium Cp values from 19 healthy subjects who received a bolus dose followed by continuous infusion in a phase III multicenter trial in Japan were used retrospectively as evaluation datasets. Six different compartmental PK models of rocuronium were used to simulate rocuronium Cp time course values, which were compared with measured Cp values. Prediction error (PE) derivatives of median absolute PE (MDAPE), median PE (MDPE), wobble, divergence absolute PE, and divergence PE were used to assess inaccuracy, bias, intra-individual variability, and time-related trends in APE and PE values. MDAPE and MDPE values were acceptable only for the Magorian and Kleijn models. The divergence PE value for the Kleijn model was lower than -10 %/h, indicating unstable prediction over time. The Szenohradszky model had the lowest divergence PE (-2.7 %/h) and wobble (5.4 %) values with negative bias (MDPE = -25.9 %). These three models were developed using the mixed-effects modeling approach. The Magorian model showed the best PE derivatives among the models assessed. A PK model developed from data obtained after single-bolus dosing can predict Cp values during bolus and continuous infusion. Thus, a mixed-effects modeling approach may be preferable in extrapolating such data.

  6. Building and verifying a severity prediction model of acute pancreatitis (AP) based on BISAP, MEWS and routine test indexes.

    PubMed

    Ye, Jiang-Feng; Zhao, Yu-Xin; Ju, Jian; Wang, Wei

    2017-10-01

    To discuss the value of the Bedside Index for Severity in Acute Pancreatitis (BISAP), Modified Early Warning Score (MEWS), serum Ca2+, similarly hereinafter, and red cell distribution width (RDW) for predicting the severity grade of acute pancreatitis and to develop and verify a more accurate scoring system to predict the severity of AP. In 302 patients with AP, we calculated BISAP and MEWS scores and conducted regression analyses on the relationships of BISAP scoring, RDW, MEWS, and serum Ca2+ with the severity of AP using single-factor logistics. The variables with statistical significance in the single-factor logistic regression were used in a multi-factor logistic regression model; forward stepwise regression was used to screen variables and build a multi-factor prediction model. A receiver operating characteristic curve (ROC curve) was constructed, and the significance of multi- and single-factor prediction models in predicting the severity of AP using the area under the ROC curve (AUC) was evaluated. The internal validity of the model was verified through bootstrapping. Among 302 patients with AP, 209 had mild acute pancreatitis (MAP) and 93 had severe acute pancreatitis (SAP). According to single-factor logistic regression analysis, we found that BISAP, MEWS and serum Ca2+ are prediction indexes of the severity of AP (P-value<0.001), whereas RDW is not a prediction index of AP severity (P-value>0.05). The multi-factor logistic regression analysis showed that BISAP and serum Ca2+ are independent prediction indexes of AP severity (P-value<0.001), and MEWS is not an independent prediction index of AP severity (P-value>0.05); BISAP is negatively related to serum Ca2+ (r=-0.330, P-value<0.001). The constructed model is as follows: ln()=7.306+1.151*BISAP-4.516*serum Ca2+. The predictive ability of each model for SAP follows the order of the combined BISAP and serum Ca2+ prediction model>Ca2+>BISAP. There is no statistical significance for the predictive ability of BISAP and serum Ca2+ (P-value>0.05); however, there is remarkable statistical significance for the predictive ability using the newly built prediction model as well as BISAP and serum Ca2+ individually (P-value<0.01). Verification of the internal validity of the models by bootstrapping is favorable. BISAP and serum Ca2+ have high predictive value for the severity of AP. However, the model built by combining BISAP and serum Ca2+ is remarkably superior to those of BISAP and serum Ca2+ individually. Furthermore, this model is simple, practical and appropriate for clinical use. Copyright © 2016. Published by Elsevier Masson SAS.

  7. Validating proposed migration equation and parameters' values as a tool to reproduce and predict 137Cs vertical migration activity in Spanish soils.

    PubMed

    Olondo, C; Legarda, F; Herranz, M; Idoeta, R

    2017-04-01

    This paper shows the procedure performed to validate the migration equation and the migration parameters' values presented in a previous paper (Legarda et al., 2011) regarding the migration of 137 Cs in Spanish mainland soils. In this paper, this model validation has been carried out checking experimentally obtained activity concentration values against those predicted by the model. This experimental data come from the measured vertical activity profiles of 8 new sampling points which are located in northern Spain. Before testing predicted values of the model, the uncertainty of those values has been assessed with the appropriate uncertainty analysis. Once establishing the uncertainty of the model, both activity concentration values, experimental versus model predicted ones, have been compared. Model validation has been performed analyzing its accuracy, studying it as a whole and also at different depth intervals. As a result, this model has been validated as a tool to predict 137 Cs behaviour in a Mediterranean environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Development of Interpretable Predictive Models for BPH and Prostate Cancer.

    PubMed

    Bermejo, Pablo; Vivo, Alicia; Tárraga, Pedro J; Rodríguez-Montes, J A

    2015-01-01

    Traditional methods for deciding whether to recommend a patient for a prostate biopsy are based on cut-off levels of stand-alone markers such as prostate-specific antigen (PSA) or any of its derivatives. However, in the last decade we have seen the increasing use of predictive models that combine, in a non-linear manner, several predictives that are better able to predict prostate cancer (PC), but these fail to help the clinician to distinguish between PC and benign prostate hyperplasia (BPH) patients. We construct two new models that are capable of predicting both PC and BPH. An observational study was performed on 150 patients with PSA ≥3 ng/mL and age >50 years. We built a decision tree and a logistic regression model, validated with the leave-one-out methodology, in order to predict PC or BPH, or reject both. Statistical dependence with PC and BPH was found for prostate volume (P-value < 0.001), PSA (P-value < 0.001), international prostate symptom score (IPSS; P-value < 0.001), digital rectal examination (DRE; P-value < 0.001), age (P-value < 0.002), antecedents (P-value < 0.006), and meat consumption (P-value < 0.08). The two predictive models that were constructed selected a subset of these, namely, volume, PSA, DRE, and IPSS, obtaining an area under the ROC curve (AUC) between 72% and 80% for both PC and BPH prediction. PSA and volume together help to build predictive models that accurately distinguish among PC, BPH, and patients without any of these pathologies. Our decision tree and logistic regression models outperform the AUC obtained in the compared studies. Using these models as decision support, the number of unnecessary biopsies might be significantly reduced.

  9. Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Reid, Terry; Schifer, Nicholas; Briggs, Maxwell

    2011-01-01

    Past methods of predicting net heat input needed to be validated. Validation effort pursued with several paths including improving model inputs, using test hardware to provide validation data, and validating high fidelity models. Validation test hardware provided direct measurement of net heat input for comparison to predicted values. Predicted value of net heat input was 1.7 percent less than measured value and initial calculations of measurement uncertainty were 2.1 percent (under review). Lessons learned during validation effort were incorporated into convertor modeling approach which improved predictions of convertor efficiency.

  10. Characterizing Decision-Analysis Performances of Risk Prediction Models Using ADAPT Curves.

    PubMed

    Lee, Wen-Chung; Wu, Yun-Chun

    2016-01-01

    The area under the receiver operating characteristic curve is a widely used index to characterize the performance of diagnostic tests and prediction models. However, the index does not explicitly acknowledge the utilities of risk predictions. Moreover, for most clinical settings, what counts is whether a prediction model can guide therapeutic decisions in a way that improves patient outcomes, rather than to simply update probabilities.Based on decision theory, the authors propose an alternative index, the "average deviation about the probability threshold" (ADAPT).An ADAPT curve (a plot of ADAPT value against the probability threshold) neatly characterizes the decision-analysis performances of a risk prediction model.Several prediction models can be compared for their ADAPT values at a chosen probability threshold, for a range of plausible threshold values, or for the whole ADAPT curves. This should greatly facilitate the selection of diagnostic tests and prediction models.

  11. Markovian prediction of future values for food grains in the economic survey

    NASA Astrophysics Data System (ADS)

    Sathish, S.; Khadar Babu, S. K.

    2017-11-01

    Now-a-days prediction and forecasting are plays a vital role in research. For prediction, regression is useful to predict the future value and current value on production process. In this paper, we assume food grain production exhibit Markov chain dependency and time homogeneity. The economic generative performance evaluation the balance time artificial fertilization different level in Estrusdetection using a daily Markov chain model. Finally, Markov process prediction gives better performance compare with Regression model.

  12. Comparison of predictability for human pharmacokinetics parameters among monkeys, rats, and chimeric mice with humanised liver.

    PubMed

    Miyamoto, Maki; Iwasaki, Shinji; Chisaki, Ikumi; Nakagawa, Sayaka; Amano, Nobuyuki; Hirabayashi, Hideki

    2017-12-01

    1. The aim of the present study was to evaluate the usefulness of chimeric mice with humanised liver (PXB mice) for the prediction of clearance (CL t ) and volume of distribution at steady state (Vd ss ), in comparison with monkeys, which have been reported as a reliable model for human pharmacokinetics (PK) prediction, and with rats, as a conventional PK model. 2. CL t and Vd ss values in PXB mice, monkeys and rats were determined following intravenous administration of 30 compounds known to be mainly eliminated in humans via the hepatic metabolism by various drug-metabolising enzymes. Using single-species allometric scaling, human CL t and Vd ss values were predicted from the three animal models. 3. Predicted CL t values from PXB mice exhibited the highest predictability: 25 for PXB mice, 21 for monkeys and 14 for rats were predicted within a three-fold range of actual values among 30 compounds. For predicted human Vd ss values, the number of compounds falling within a three-fold range was 23 for PXB mice, 24 for monkeys, and 16 for rats among 29 compounds. PXB mice indicated a higher predictability for CL t and Vd ss values than the other animal models. 4. These results demonstrate the utility of PXB mice in predicting human PK parameters.

  13. Numerical weather prediction model tuning via ensemble prediction system

    NASA Astrophysics Data System (ADS)

    Jarvinen, H.; Laine, M.; Ollinaho, P.; Solonen, A.; Haario, H.

    2011-12-01

    This paper discusses a novel approach to tune predictive skill of numerical weather prediction (NWP) models. NWP models contain tunable parameters which appear in parameterizations schemes of sub-grid scale physical processes. Currently, numerical values of these parameters are specified manually. In a recent dual manuscript (QJRMS, revised) we developed a new concept and method for on-line estimation of the NWP model parameters. The EPPES ("Ensemble prediction and parameter estimation system") method requires only minimal changes to the existing operational ensemble prediction infra-structure and it seems very cost-effective because practically no new computations are introduced. The approach provides an algorithmic decision making tool for model parameter optimization in operational NWP. In EPPES, statistical inference about the NWP model tunable parameters is made by (i) generating each member of the ensemble of predictions using different model parameter values, drawn from a proposal distribution, and (ii) feeding-back the relative merits of the parameter values to the proposal distribution, based on evaluation of a suitable likelihood function against verifying observations. In the presentation, the method is first illustrated in low-order numerical tests using a stochastic version of the Lorenz-95 model which effectively emulates the principal features of ensemble prediction systems. The EPPES method correctly detects the unknown and wrongly specified parameters values, and leads to an improved forecast skill. Second, results with an atmospheric general circulation model based ensemble prediction system show that the NWP model tuning capacity of EPPES scales up to realistic models and ensemble prediction systems. Finally, a global top-end NWP model tuning exercise with preliminary results is published.

  14. Incorporating Psychological Predictors of Treatment Response into Health Economic Simulation Models: A Case Study in Type 1 Diabetes.

    PubMed

    Kruger, Jen; Pollard, Daniel; Basarir, Hasan; Thokala, Praveen; Cooke, Debbie; Clark, Marie; Bond, Rod; Heller, Simon; Brennan, Alan

    2015-10-01

    . Health economic modeling has paid limited attention to the effects that patients' psychological characteristics have on the effectiveness of treatments. This case study tests 1) the feasibility of incorporating psychological prediction models of treatment response within an economic model of type 1 diabetes, 2) the potential value of providing treatment to a subgroup of patients, and 3) the cost-effectiveness of providing treatment to a subgroup of responders defined using 5 different algorithms. . Multiple linear regressions were used to investigate relationships between patients' psychological characteristics and treatment effectiveness. Two psychological prediction models were integrated with a patient-level simulation model of type 1 diabetes. Expected value of individualized care analysis was undertaken. Five different algorithms were used to provide treatment to a subgroup of predicted responders. A cost-effectiveness analysis compared using the algorithms to providing treatment to all patients. . The psychological prediction models had low predictive power for treatment effectiveness. Expected value of individualized care results suggested that targeting education at responders could be of value. The cost-effectiveness analysis suggested, for all 5 algorithms, that providing structured education to a subgroup of predicted responders would not be cost-effective. . The psychological prediction models tested did not have sufficient predictive power to make targeting treatment cost-effective. The psychological prediction models are simple linear models of psychological behavior. Collection of data on additional covariates could potentially increase statistical power. . By collecting data on psychological variables before an intervention, we can construct predictive models of treatment response to interventions. These predictive models can be incorporated into health economic models to investigate more complex service delivery and reimbursement strategies. © The Author(s) 2015.

  15. Towards a chromatographic similarity index to establish localised quantitative structure-retention relationships for retention prediction. II Use of Tanimoto similarity index in ion chromatography.

    PubMed

    Park, Soo Hyun; Talebi, Mohammad; Amos, Ruth I J; Tyteca, Eva; Haddad, Paul R; Szucs, Roman; Pohl, Christopher A; Dolan, John W

    2017-11-10

    Quantitative Structure-Retention Relationships (QSRR) are used to predict retention times of compounds based only on their chemical structures encoded by molecular descriptors. The main concern in QSRR modelling is to build models with high predictive power, allowing reliable retention prediction for the unknown compounds across the chromatographic space. With the aim of enhancing the prediction power of the models, in this work, our previously proposed QSRR modelling approach called "federation of local models" is extended in ion chromatography to predict retention times of unknown ions, where a local model for each target ion (unknown) is created using only structurally similar ions from the dataset. A Tanimoto similarity (TS) score was utilised as a measure of structural similarity and training sets were developed by including ions that were similar to the target ion, as defined by a threshold value. The prediction of retention parameters (a- and b-values) in the linear solvent strength (LSS) model in ion chromatography, log k=a - blog[eluent], allows the prediction of retention times under all eluent concentrations. The QSRR models for a- and b-values were developed by a genetic algorithm-partial least squares method using the retention data of inorganic and small organic anions and larger organic cations (molecular mass up to 507) on four Thermo Fisher Scientific columns (AS20, AS19, AS11HC and CS17). The corresponding predicted retention times were calculated by fitting the predicted a- and b-values of the models into the LSS model equation. The predicted retention times were also plotted against the experimental values to evaluate the goodness of fit and the predictive power of the models. The application of a TS threshold of 0.6 was found to successfully produce predictive and reliable QSRR models (Q ext(F2) 2 >0.8 and Mean Absolute Error<0.1), and hence accurate retention time predictions with an average Mean Absolute Error of 0.2min. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  16. Adaptation of clinical prediction models for application in local settings.

    PubMed

    Kappen, Teus H; Vergouwe, Yvonne; van Klei, Wilton A; van Wolfswinkel, Leo; Kalkman, Cor J; Moons, Karel G M

    2012-01-01

    When planning to use a validated prediction model in new patients, adequate performance is not guaranteed. For example, changes in clinical practice over time or a different case mix than the original validation population may result in inaccurate risk predictions. To demonstrate how clinical information can direct updating a prediction model and development of a strategy for handling missing predictor values in clinical practice. A previously derived and validated prediction model for postoperative nausea and vomiting was updated using a data set of 1847 patients. The update consisted of 1) changing the definition of an existing predictor, 2) reestimating the regression coefficient of a predictor, and 3) adding a new predictor to the model. The updated model was then validated in a new series of 3822 patients. Furthermore, several imputation models were considered to handle real-time missing values, so that possible missing predictor values could be anticipated during actual model use. Differences in clinical practice between our local population and the original derivation population guided the update strategy of the prediction model. The predictive accuracy of the updated model was better (c statistic, 0.68; calibration slope, 1.0) than the original model (c statistic, 0.62; calibration slope, 0.57). Inclusion of logistical variables in the imputation models, besides observed patient characteristics, contributed to a strategy to deal with missing predictor values at the time of risk calculation. Extensive knowledge of local, clinical processes provides crucial information to guide the process of adapting a prediction model to new clinical practices.

  17. Chain pooling to minimize prediction error in subset regression. [Monte Carlo studies using population models

    NASA Technical Reports Server (NTRS)

    Holms, A. G.

    1974-01-01

    Monte Carlo studies using population models intended to represent response surface applications are reported. Simulated experiments were generated by adding pseudo random normally distributed errors to population values to generate observations. Model equations were fitted to the observations and the decision procedure was used to delete terms. Comparison of values predicted by the reduced models with the true population values enabled the identification of deletion strategies that are approximately optimal for minimizing prediction errors.

  18. Thermodynamic characterization of tandem mismatches found in naturally occurring RNA

    PubMed Central

    Christiansen, Martha E.; Znosko, Brent M.

    2009-01-01

    Although all sequence symmetric tandem mismatches and some sequence asymmetric tandem mismatches have been thermodynamically characterized and a model has been proposed to predict the stability of previously unmeasured sequence asymmetric tandem mismatches [Christiansen,M.E. and Znosko,B.M. (2008) Biochemistry, 47, 4329–4336], experimental thermodynamic data for frequently occurring tandem mismatches is lacking. Since experimental data is preferred over a predictive model, the thermodynamic parameters for 25 frequently occurring tandem mismatches were determined. These new experimental values, on average, are 1.0 kcal/mol different from the values predicted for these mismatches using the previous model. The data for the sequence asymmetric tandem mismatches reported here were then combined with the data for 72 sequence asymmetric tandem mismatches that were published previously, and the parameters used to predict the thermodynamics of previously unmeasured sequence asymmetric tandem mismatches were updated. The average absolute difference between the measured values and the values predicted using these updated parameters is 0.5 kcal/mol. This updated model improves the prediction for tandem mismatches that were predicted rather poorly by the previous model. This new experimental data and updated predictive model allow for more accurate calculations of the free energy of RNA duplexes containing tandem mismatches, and, furthermore, should allow for improved prediction of secondary structure from sequence. PMID:19509311

  19. Development of a predictive model for lead, cadmium and fluorine soil-water partition coefficients using sparse multiple linear regression analysis.

    PubMed

    Nakamura, Kengo; Yasutaka, Tetsuo; Kuwatani, Tatsu; Komai, Takeshi

    2017-11-01

    In this study, we applied sparse multiple linear regression (SMLR) analysis to clarify the relationships between soil properties and adsorption characteristics for a range of soils across Japan and identify easily-obtained physical and chemical soil properties that could be used to predict K and n values of cadmium, lead and fluorine. A model was first constructed that can easily predict the K and n values from nine soil parameters (pH, cation exchange capacity, specific surface area, total carbon, soil organic matter from loss on ignition and water holding capacity, the ratio of sand, silt and clay). The K and n values of cadmium, lead and fluorine of 17 soil samples were used to verify the SMLR models by the root mean square error values obtained from 512 combinations of soil parameters. The SMLR analysis indicated that fluorine adsorption to soil may be associated with organic matter, whereas cadmium or lead adsorption to soil is more likely to be influenced by soil pH, IL. We found that an accurate K value can be predicted from more than three soil parameters for most soils. Approximately 65% of the predicted values were between 33 and 300% of their measured values for the K value; 76% of the predicted values were within ±30% of their measured values for the n value. Our findings suggest that adsorption properties of lead, cadmium and fluorine to soil can be predicted from the soil physical and chemical properties using the presented models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Predicting risk for portal vein thrombosis in acute pancreatitis patients: A comparison of radical basis function artificial neural network and logistic regression models.

    PubMed

    Fei, Yang; Hu, Jian; Gao, Kun; Tu, Jianfeng; Li, Wei-Qin; Wang, Wei

    2017-06-01

    To construct a radical basis function (RBF) artificial neural networks (ANNs) model to predict the incidence of acute pancreatitis (AP)-induced portal vein thrombosis. The analysis included 353 patients with AP who had admitted between January 2011 and December 2015. RBF ANNs model and logistic regression model were constructed based on eleven factors relevant to AP respectively. Statistical indexes were used to evaluate the value of the prediction in two models. The predict sensitivity, specificity, positive predictive value, negative predictive value and accuracy by RBF ANNs model for PVT were 73.3%, 91.4%, 68.8%, 93.0% and 87.7%, respectively. There were significant differences between the RBF ANNs and logistic regression models in these parameters (P<0.05). In addition, a comparison of the area under receiver operating characteristic curves of the two models showed a statistically significant difference (P<0.05). The RBF ANNs model is more likely to predict the occurrence of PVT induced by AP than logistic regression model. D-dimer, AMY, Hct and PT were important prediction factors of approval for AP-induced PVT. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Quantifying model-structure- and parameter-driven uncertainties in spring wheat phenology prediction with Bayesian analysis

    DOE PAGES

    Alderman, Phillip D.; Stanfill, Bryan

    2016-10-06

    Recent international efforts have brought renewed emphasis on the comparison of different agricultural systems models. Thus far, analysis of model-ensemble simulated results has not clearly differentiated between ensemble prediction uncertainties due to model structural differences per se and those due to parameter value uncertainties. Additionally, despite increasing use of Bayesian parameter estimation approaches with field-scale crop models, inadequate attention has been given to the full posterior distributions for estimated parameters. The objectives of this study were to quantify the impact of parameter value uncertainty on prediction uncertainty for modeling spring wheat phenology using Bayesian analysis and to assess the relativemore » contributions of model-structure-driven and parameter-value-driven uncertainty to overall prediction uncertainty. This study used a random walk Metropolis algorithm to estimate parameters for 30 spring wheat genotypes using nine phenology models based on multi-location trial data for days to heading and days to maturity. Across all cases, parameter-driven uncertainty accounted for between 19 and 52% of predictive uncertainty, while model-structure-driven uncertainty accounted for between 12 and 64%. Here, this study demonstrated the importance of quantifying both model-structure- and parameter-value-driven uncertainty when assessing overall prediction uncertainty in modeling spring wheat phenology. More generally, Bayesian parameter estimation provided a useful framework for quantifying and analyzing sources of prediction uncertainty.« less

  2. Predictions of the pathological response to neoadjuvant chemotherapy in patients with primary breast cancer using a data mining technique.

    PubMed

    Takada, M; Sugimoto, M; Ohno, S; Kuroi, K; Sato, N; Bando, H; Masuda, N; Iwata, H; Kondo, M; Sasano, H; Chow, L W C; Inamoto, T; Naito, Y; Tomita, M; Toi, M

    2012-07-01

    Nomogram, a standard technique that utilizes multiple characteristics to predict efficacy of treatment and likelihood of a specific status of an individual patient, has been used for prediction of response to neoadjuvant chemotherapy (NAC) in breast cancer patients. The aim of this study was to develop a novel computational technique to predict the pathological complete response (pCR) to NAC in primary breast cancer patients. A mathematical model using alternating decision trees, an epigone of decision tree, was developed using 28 clinicopathological variables that were retrospectively collected from patients treated with NAC (n = 150), and validated using an independent dataset from a randomized controlled trial (n = 173). The model selected 15 variables to predict the pCR with yielding area under the receiver operating characteristics curve (AUC) values of 0.766 [95 % confidence interval (CI)], 0.671-0.861, P value < 0.0001) in cross-validation using training dataset and 0.787 (95 % CI 0.716-0.858, P value < 0.0001) in the validation dataset. Among three subtypes of breast cancer, the luminal subgroup showed the best discrimination (AUC = 0.779, 95 % CI 0.641-0.917, P value = 0.0059). The developed model (AUC = 0.805, 95 % CI 0.716-0.894, P value < 0.0001) outperformed multivariate logistic regression (AUC = 0.754, 95 % CI 0.651-0.858, P value = 0.00019) of validation datasets without missing values (n = 127). Several analyses, e.g. bootstrap analysis, revealed that the developed model was insensitive to missing values and also tolerant to distribution bias among the datasets. Our model based on clinicopathological variables showed high predictive ability for pCR. This model might improve the prediction of the response to NAC in primary breast cancer patients.

  3. Discrimination and prediction of the origin of Chinese and Korean soybeans using Fourier transform infrared spectrometry (FT-IR) with multivariate statistical analysis

    PubMed Central

    Lee, Byeong-Ju; Zhou, Yaoyao; Lee, Jae Soung; Shin, Byeung Kon; Seo, Jeong-Ah; Lee, Doyup; Kim, Young-Suk

    2018-01-01

    The ability to determine the origin of soybeans is an important issue following the inclusion of this information in the labeling of agricultural food products becoming mandatory in South Korea in 2017. This study was carried out to construct a prediction model for discriminating Chinese and Korean soybeans using Fourier-transform infrared (FT-IR) spectroscopy and multivariate statistical analysis. The optimal prediction models for discriminating soybean samples were obtained by selecting appropriate scaling methods, normalization methods, variable influence on projection (VIP) cutoff values, and wave-number regions. The factors for constructing the optimal partial-least-squares regression (PLSR) prediction model were using second derivatives, vector normalization, unit variance scaling, and the 4000–400 cm–1 region (excluding water vapor and carbon dioxide). The PLSR model for discriminating Chinese and Korean soybean samples had the best predictability when a VIP cutoff value was not applied. When Chinese soybean samples were identified, a PLSR model that has the lowest root-mean-square error of the prediction value was obtained using a VIP cutoff value of 1.5. The optimal PLSR prediction model for discriminating Korean soybean samples was also obtained using a VIP cutoff value of 1.5. This is the first study that has combined FT-IR spectroscopy with normalization methods, VIP cutoff values, and selected wave-number regions for discriminating Chinese and Korean soybeans. PMID:29689113

  4. Prediction of wastewater treatment plants performance based on artificial fish school neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Ruicheng; Li, Chong

    2011-10-01

    A reliable model for wastewater treatment plant is essential in providing a tool for predicting its performance and to form a basis for controlling the operation of the process. This would minimize the operation costs and assess the stability of environmental balance. For the multi-variable, uncertainty, non-linear characteristics of the wastewater treatment system, an artificial fish school neural network prediction model is established standing on actual operation data in the wastewater treatment system. The model overcomes several disadvantages of the conventional BP neural network. The results of model calculation show that the predicted value can better match measured value, played an effect on simulating and predicting and be able to optimize the operation status. The establishment of the predicting model provides a simple and practical way for the operation and management in wastewater treatment plant, and has good research and engineering practical value.

  5. Hierarchical time series bottom-up approach for forecast the export value in Central Java

    NASA Astrophysics Data System (ADS)

    Mahkya, D. A.; Ulama, B. S.; Suhartono

    2017-10-01

    The purpose of this study is Getting the best modeling and predicting the export value of Central Java using a Hierarchical Time Series. The export value is one variable injection in the economy of a country, meaning that if the export value of the country increases, the country’s economy will increase even more. Therefore, it is necessary appropriate modeling to predict the export value especially in Central Java. Export Value in Central Java are grouped into 21 commodities with each commodity has a different pattern. One approach that can be used time series is a hierarchical approach. Hierarchical Time Series is used Buttom-up. To Forecast the individual series at all levels using Autoregressive Integrated Moving Average (ARIMA), Radial Basis Function Neural Network (RBFNN), and Hybrid ARIMA-RBFNN. For the selection of the best models used Symmetric Mean Absolute Percentage Error (sMAPE). Results of the analysis showed that for the Export Value of Central Java, Bottom-up approach with Hybrid ARIMA-RBFNN modeling can be used for long-term predictions. As for the short and medium-term predictions, it can be used a bottom-up approach RBFNN modeling. Overall bottom-up approach with RBFNN modeling give the best result.

  6. Predictive models of alcohol use based on attitudes and individual values.

    PubMed

    García del Castillo Rodríguez, José A; López-Sánchez, Carmen; Quiles Soler, M Carmen; García del Castillo-López, Alvaro; Gázquez Pertusa, Mónica; Marzo Campos, Juan Carlos; Inglés, Candido J

    2013-01-01

    Two predictive models are developed in this article: the first is designed to predict people's attitudes to alcoholic drinks, while the second sets out to predict the use of alcohol in relation to selected individual values. University students (N = 1,500) were recruited through stratified sampling based on sex and academic discipline. The questionnaire used obtained information on participants' alcohol use, attitudes and personal values. The results show that the attitudes model correctly classifies 76.3% of cases. Likewise, the model for level of alcohol use correctly classifies 82% of cases. According to our results, we can conclude that there are a series of individual values that influence drinking and attitudes to alcohol use, which therefore provides us with a potentially powerful instrument for developing preventive intervention programs.

  7. Validation of Water Erosion Prediction Project (WEPP) model for low-volume forest roads

    Treesearch

    William Elliot; R. B. Foltz; Charlie Luce

    1995-01-01

    Erosion rates of recently graded nongravel forest roads were measured under rainfall simulation on five different soils. The erosion rates observed on 24 forest road erosion plots were compared with values predicted by the Water Erosion Prediction Project (WEPP) Model, Version 93.1. Hydraulic conductivity and soil erodibility values were predicted from methods...

  8. Bit selection using field drilling data and mathematical investigation

    NASA Astrophysics Data System (ADS)

    Momeni, M. S.; Ridha, S.; Hosseini, S. J.; Meyghani, B.; Emamian, S. S.

    2018-03-01

    A drilling process will not be complete without the usage of a drill bit. Therefore, bit selection is considered to be an important task in drilling optimization process. To select a bit is considered as an important issue in planning and designing a well. This is simply because the cost of drilling bit in total cost is quite high. Thus, to perform this task, aback propagation ANN Model is developed. This is done by training the model using several wells and it is done by the usage of drilling bit records from offset wells. In this project, two models are developed by the usage of the ANN. One is to find predicted IADC bit code and one is to find Predicted ROP. Stage 1 was to find the IADC bit code by using all the given filed data. The output is the Targeted IADC bit code. Stage 2 was to find the Predicted ROP values using the gained IADC bit code in Stage 1. Next is Stage 3 where the Predicted ROP value is used back again in the data set to gain Predicted IADC bit code value. The output is the Predicted IADC bit code. Thus, at the end, there are two models that give the Predicted ROP values and Predicted IADC bit code values.

  9. Incremental Value of Repeated Risk Factor Measurements for Cardiovascular Disease Prediction in Middle-Aged Korean Adults: Results From the NHIS-HEALS (National Health Insurance System-National Health Screening Cohort).

    PubMed

    Cho, In-Jeong; Sung, Ji Min; Chang, Hyuk-Jae; Chung, Namsik; Kim, Hyeon Chang

    2017-11-01

    Increasing evidence suggests that repeatedly measured cardiovascular disease (CVD) risk factors may have an additive predictive value compared with single measured levels. Thus, we evaluated the incremental predictive value of incorporating periodic health screening data for CVD prediction in a large nationwide cohort with periodic health screening tests. A total of 467 708 persons aged 40 to 79 years and free from CVD were randomly divided into development (70%) and validation subcohorts (30%). We developed 3 different CVD prediction models: a single measure model using single time point screening data; a longitudinal average model using average risk factor values from periodic screening data; and a longitudinal summary model using average values and the variability of risk factors. The development subcohort included 327 396 persons who had 3.2 health screenings on average and 25 765 cases of CVD over 12 years. The C statistics (95% confidence interval [CI]) for the single measure, longitudinal average, and longitudinal summary models were 0.690 (95% CI, 0.682-0.698), 0.695 (95% CI, 0.687-0.703), and 0.752 (95% CI, 0.744-0.760) in men and 0.732 (95% CI, 0.722-0.742), 0.735 (95% CI, 0.725-0.745), and 0.790 (95% CI, 0.780-0.800) in women, respectively. The net reclassification index from the single measure model to the longitudinal average model was 1.78% in men and 1.33% in women, and the index from the longitudinal average model to the longitudinal summary model was 32.71% in men and 34.98% in women. Using averages of repeatedly measured risk factor values modestly improves CVD predictability compared with single measurement values. Incorporating the average and variability information of repeated measurements can lead to great improvements in disease prediction. URL: https://www.clinicaltrials.gov. Unique identifier: NCT02931500. © 2017 American Heart Association, Inc.

  10. Optimal weighted combinatorial forecasting model of QT dispersion of ECGs in Chinese adults.

    PubMed

    Wen, Zhang; Miao, Ge; Xinlei, Liu; Minyi, Cen

    2016-07-01

    This study aims to provide a scientific basis for unifying the reference value standard of QT dispersion of ECGs in Chinese adults. Three predictive models including regression model, principal component model, and artificial neural network model are combined to establish the optimal weighted combination model. The optimal weighted combination model and single model are verified and compared. Optimal weighted combinatorial model can reduce predicting risk of single model and improve the predicting precision. The reference value of geographical distribution of Chinese adults' QT dispersion was precisely made by using kriging methods. When geographical factors of a particular area are obtained, the reference value of QT dispersion of Chinese adults in this area can be estimated by using optimal weighted combinatorial model and reference value of the QT dispersion of Chinese adults anywhere in China can be obtained by using geographical distribution figure as well.

  11. An integrated approach to evaluating alternative risk prediction strategies: a case study comparing alternative approaches for preventing invasive fungal disease.

    PubMed

    Sadique, Z; Grieve, R; Harrison, D A; Jit, M; Allen, E; Rowan, K M

    2013-12-01

    This article proposes an integrated approach to the development, validation, and evaluation of new risk prediction models illustrated with the Fungal Infection Risk Evaluation study, which developed risk models to identify non-neutropenic, critically ill adult patients at high risk of invasive fungal disease (IFD). Our decision-analytical model compared alternative strategies for preventing IFD at up to three clinical decision time points (critical care admission, after 24 hours, and end of day 3), followed with antifungal prophylaxis for those judged "high" risk versus "no formal risk assessment." We developed prognostic models to predict the risk of IFD before critical care unit discharge, with data from 35,455 admissions to 70 UK adult, critical care units, and validated the models externally. The decision model was populated with positive predictive values and negative predictive values from the best-fitting risk models. We projected lifetime cost-effectiveness and expected value of partial perfect information for groups of parameters. The risk prediction models performed well in internal and external validation. Risk assessment and prophylaxis at the end of day 3 was the most cost-effective strategy at the 2% and 1% risk threshold. Risk assessment at each time point was the most cost-effective strategy at a 0.5% risk threshold. Expected values of partial perfect information were high for positive predictive values or negative predictive values (£11 million-£13 million) and quality-adjusted life-years (£11 million). It is cost-effective to formally assess the risk of IFD for non-neutropenic, critically ill adult patients. This integrated approach to developing and evaluating risk models is useful for informing clinical practice and future research investment. © 2013 International Society for Pharmacoeconomics and Outcomes Research (ISPOR) Published by International Society for Pharmacoeconomics and Outcomes Research (ISPOR) All rights reserved.

  12. Stock price prediction using geometric Brownian motion

    NASA Astrophysics Data System (ADS)

    Farida Agustini, W.; Restu Affianti, Ika; Putri, Endah RM

    2018-03-01

    Geometric Brownian motion is a mathematical model for predicting the future price of stock. The phase that done before stock price prediction is determine stock expected price formulation and determine the confidence level of 95%. On stock price prediction using geometric Brownian Motion model, the algorithm starts from calculating the value of return, followed by estimating value of volatility and drift, obtain the stock price forecast, calculating the forecast MAPE, calculating the stock expected price and calculating the confidence level of 95%. Based on the research, the output analysis shows that geometric Brownian motion model is the prediction technique with high rate of accuracy. It is proven with forecast MAPE value ≤ 20%.

  13. Hydrogen and Oxygen Isotope Ratios in Body Water and Hair: Modeling Isotope Dynamics in Nonhuman Primates

    PubMed Central

    O’Grady, Shannon P.; Valenzuela, Luciano O.; Remien, Christopher H.; Enright, Lindsey E.; Jorgensen, Matthew J.; Kaplan, Jay R.; Wagner, Janice D.; Cerling, Thure E.; Ehleringer, James R.

    2012-01-01

    The stable isotopic composition of drinking water, diet, and atmospheric oxygen influence the isotopic composition of body water (2H/1H, 18O/16O expressed as δ2H and δ18O). In turn, body water influences the isotopic composition of organic matter in tissues, such as hair and teeth, which are often used to reconstruct historical dietary and movement patterns of animals and humans. Here, we used a nonhuman primate system (Macaca fascicularis) to test the robustness of two different mechanistic stable isotope models: a model to predict the δ2H and δ18O values of body water and a second model to predict the δ2H and δ18O values of hair. In contrast to previous human-based studies, use of nonhuman primates fed controlled diets allowed us to further constrain model parameter values and evaluate model predictions. Both models reliably predicted the δ2H and δ18O values of body water and of hair. Moreover, the isotope data allowed us to better quantify values for two critical variables in the models: the δ2H and δ18O values of gut water and the 18O isotope fractionation associated with a carbonyl oxygen-water interaction in the gut (αow). Our modeling efforts indicated that better predictions for body water and hair isotope values were achieved by making the isotopic composition of gut water approached that of body water. Additionally, the value of αow was 1.0164, in close agreement with the only other previously measured observation (microbial spore cell walls), suggesting robustness of this fractionation factor across different biological systems. PMID:22553163

  14. Hydrogen and oxygen isotope ratios in body water and hair: modeling isotope dynamics in nonhuman primates.

    PubMed

    O'Grady, Shannon P; Valenzuela, Luciano O; Remien, Christopher H; Enright, Lindsey E; Jorgensen, Matthew J; Kaplan, Jay R; Wagner, Janice D; Cerling, Thure E; Ehleringer, James R

    2012-07-01

    The stable isotopic composition of drinking water, diet, and atmospheric oxygen influence the isotopic composition of body water ((2)H/(1)H, (18)O/(16)O expressed as δ(2) H and δ(18)O). In turn, body water influences the isotopic composition of organic matter in tissues, such as hair and teeth, which are often used to reconstruct historical dietary and movement patterns of animals and humans. Here, we used a nonhuman primate system (Macaca fascicularis) to test the robustness of two different mechanistic stable isotope models: a model to predict the δ(2)H and δ(18)O values of body water and a second model to predict the δ(2)H and δ(18)O values of hair. In contrast to previous human-based studies, use of nonhuman primates fed controlled diets allowed us to further constrain model parameter values and evaluate model predictions. Both models reliably predicted the δ(2)H and δ(18)O values of body water and of hair. Moreover, the isotope data allowed us to better quantify values for two critical variables in the models: the δ(2)H and δ(18)O values of gut water and the (18)O isotope fractionation associated with a carbonyl oxygen-water interaction in the gut (α(ow)). Our modeling efforts indicated that better predictions for body water and hair isotope values were achieved by making the isotopic composition of gut water approached that of body water. Additionally, the value of α(ow) was 1.0164, in close agreement with the only other previously measured observation (microbial spore cell walls), suggesting robustness of this fractionation factor across different biological systems. © 2012 Wiley Periodicals, Inc.

  15. EVALUATING PREDICTIVE ERRORS OF A COMPLEX ENVIRONMENTAL MODEL USING A GENERAL LINEAR MODEL AND LEAST SQUARE MEANS

    EPA Science Inventory

    A General Linear Model (GLM) was used to evaluate the deviation of predicted values from expected values for a complex environmental model. For this demonstration, we used the default level interface of the Regional Mercury Cycling Model (R-MCM) to simulate epilimnetic total mer...

  16. Charting the Eccles' Expectancy-Value Model from Mothers' Beliefs in Childhood to Youths' Activities in Adolescence

    ERIC Educational Resources Information Center

    Simpkins, Sandra D.; Fredricks, Jennifer A.; Eccles, Jacquelynne S.

    2012-01-01

    The Eccles' expectancy-value model posits that a cascade of mechanisms explain associations between parents' beliefs and youths' achievement-related behaviors. Specifically, parents' beliefs predict parents' behaviors; in turn, parents' behaviors predict youths' motivational beliefs, and youths' motivational beliefs predict their behaviors. This…

  17. A model for prediction of color change after tooth bleaching based on CIELAB color space

    NASA Astrophysics Data System (ADS)

    Herrera, Luis J.; Santana, Janiley; Yebra, Ana; Rivas, María. José; Pulgar, Rosa; Pérez, María. M.

    2017-08-01

    An experimental study aiming to develop a model based on CIELAB color space for prediction of color change after a tooth bleaching procedure is presented. Multivariate linear regression models were obtained to predict the L*, a*, b* and W* post-bleaching values using the pre-bleaching L*, a*and b*values. Moreover, univariate linear regression models were obtained to predict the variation in chroma (C*), hue angle (h°) and W*. The results demonstrated that is possible to estimate color change when using a carbamide peroxide tooth-bleaching system. The models obtained can be applied in clinic to predict the colour change after bleaching.

  18. Conditional Toxicity Value (CTV) Predictor: An In Silico Approach for Generating Quantitative Risk Estimates for Chemicals.

    PubMed

    Wignall, Jessica A; Muratov, Eugene; Sedykh, Alexander; Guyton, Kathryn Z; Tropsha, Alexander; Rusyn, Ivan; Chiu, Weihsueh A

    2018-05-01

    Human health assessments synthesize human, animal, and mechanistic data to produce toxicity values that are key inputs to risk-based decision making. Traditional assessments are data-, time-, and resource-intensive, and they cannot be developed for most environmental chemicals owing to a lack of appropriate data. As recommended by the National Research Council, we propose a solution for predicting toxicity values for data-poor chemicals through development of quantitative structure-activity relationship (QSAR) models. We used a comprehensive database of chemicals with existing regulatory toxicity values from U.S. federal and state agencies to develop quantitative QSAR models. We compared QSAR-based model predictions to those based on high-throughput screening (HTS) assays. QSAR models for noncancer threshold-based values and cancer slope factors had cross-validation-based Q 2 of 0.25-0.45, mean model errors of 0.70-1.11 log 10 units, and applicability domains covering >80% of environmental chemicals. Toxicity values predicted from QSAR models developed in this study were more accurate and precise than those based on HTS assays or mean-based predictions. A publicly accessible web interface to make predictions for any chemical of interest is available at http://toxvalue.org. An in silico tool that can predict toxicity values with an uncertainty of an order of magnitude or less can be used to quickly and quantitatively assess risks of environmental chemicals when traditional toxicity data or human health assessments are unavailable. This tool can fill a critical gap in the risk assessment and management of data-poor chemicals. https://doi.org/10.1289/EHP2998.

  19. Use of visible and near-infrared spectroscopy to predict pork longissimus lean color stability.

    PubMed

    King, D A; Shackelford, S D; Wheeler, T L

    2011-12-01

    This study evaluated the use of visible and near-infrared (VISNIR) spectroscopy to predict lean color stability in pork loin chops. Spectra were collected immediately after and approximately 1 h after rib removal on 1,208 loins. Loins were aged for 14 d before a 2.54-cm chop was placed in simulated retail display. Spectra were collected on aged loins immediately after removal from the vacuum package and on chops 10 min after cutting. Instrumental color measurements [L*, a*, b*, hue angle, chroma, and E (overall color change)] were determined on d 0, 1, 7, 11, and 14 of display. Principal components analysis of display d 0 and 14 values of these traits identified a factor (first principal component; PC1) explaining 67% of the variance that was related to color change. Partial least squares regression was used to develop 3 models to predict PC1 values by using VISNIR spectra collected in the plant, on aged loins, and on chops. Loins with predicted PC1 values less than 0 were classified as having a stable color, whereas values greater than 0 were classified as having a labile lean color. Loins classified as stable by the in-plant model had smaller (P < 0.05) L* values than those classified as labile. Hue angle and ΔE values were less (P < 0.05) and a* and chroma values were greater (P < 0.05) after d 7 of display in loins predicted to have a stable color than in loins predicted to have a labile lean color. Similarly, chops from loins classified as stable using the aged loin model had smaller (P < 0.05) L* values than those from loins classified as labile. Furthermore, loins predicted to be stable had smaller (P < 0.05) hue angle and ΔE values and greater (P < 0.05) a* and chroma values after d 7 of display than did loins predicted to be labile. Results for the chop model were similar to those from the 2 loin models. Chops predicted to have a stable lean color had smaller (P < 0.05) L* values than did those predicted to have a labile lean color. Chops classified as stable had smaller (P < 0.05) hue angle and ΔE values and greater (P < 0.05) a* and chroma values after d 7 of display compared with chops classified as labile. All 3 models effectively segregated chops based on color stability, particularly with regard to redness. Regardless of the model being used, d 14 display values for a*, hue angle, and ΔE in loins classified as stable were similar to the d 7 values of loins classified as labile. Thus, these results suggest that VISNIR spectroscopy would be an effective technology for sorting pork loins with regard to lean color stability.

  20. Distinct prediction errors in mesostriatal circuits of the human brain mediate learning about the values of both states and actions: evidence from high-resolution fMRI.

    PubMed

    Colas, Jaron T; Pauli, Wolfgang M; Larsen, Tobias; Tyszka, J Michael; O'Doherty, John P

    2017-10-01

    Prediction-error signals consistent with formal models of "reinforcement learning" (RL) have repeatedly been found within dopaminergic nuclei of the midbrain and dopaminoceptive areas of the striatum. However, the precise form of the RL algorithms implemented in the human brain is not yet well determined. Here, we created a novel paradigm optimized to dissociate the subtypes of reward-prediction errors that function as the key computational signatures of two distinct classes of RL models-namely, "actor/critic" models and action-value-learning models (e.g., the Q-learning model). The state-value-prediction error (SVPE), which is independent of actions, is a hallmark of the actor/critic architecture, whereas the action-value-prediction error (AVPE) is the distinguishing feature of action-value-learning algorithms. To test for the presence of these prediction-error signals in the brain, we scanned human participants with a high-resolution functional magnetic-resonance imaging (fMRI) protocol optimized to enable measurement of neural activity in the dopaminergic midbrain as well as the striatal areas to which it projects. In keeping with the actor/critic model, the SVPE signal was detected in the substantia nigra. The SVPE was also clearly present in both the ventral striatum and the dorsal striatum. However, alongside these purely state-value-based computations we also found evidence for AVPE signals throughout the striatum. These high-resolution fMRI findings suggest that model-free aspects of reward learning in humans can be explained algorithmically with RL in terms of an actor/critic mechanism operating in parallel with a system for more direct action-value learning.

  1. Muscle Synergies May Improve Optimization Prediction of Knee Contact Forces During Walking

    PubMed Central

    Walter, Jonathan P.; Kinney, Allison L.; Banks, Scott A.; D'Lima, Darryl D.; Besier, Thor F.; Lloyd, David G.; Fregly, Benjamin J.

    2014-01-01

    The ability to predict patient-specific joint contact and muscle forces accurately could improve the treatment of walking-related disorders. Muscle synergy analysis, which decomposes a large number of muscle electromyographic (EMG) signals into a small number of synergy control signals, could reduce the dimensionality and thus redundancy of the muscle and contact force prediction process. This study investigated whether use of subject-specific synergy controls can improve optimization prediction of knee contact forces during walking. To generate the predictions, we performed mixed dynamic muscle force optimizations (i.e., inverse skeletal dynamics with forward muscle activation and contraction dynamics) using data collected from a subject implanted with a force-measuring knee replacement. Twelve optimization problems (three cases with four subcases each) that minimized the sum of squares of muscle excitations were formulated to investigate how synergy controls affect knee contact force predictions. The three cases were: (1) Calibrate+Match where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously matched, (2) Precalibrate+Predict where experimental knee contact forces were predicted using precalibrated muscle model parameters values from the first case, and (3) Calibrate+Predict where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously predicted, all while matching inverse dynamic loads at the hip, knee, and ankle. The four subcases used either 44 independent controls or five synergy controls with and without EMG shape tracking. For the Calibrate+Match case, all four subcases closely reproduced the measured medial and lateral knee contact forces (R2 ≥ 0.94, root-mean-square (RMS) error < 66 N), indicating sufficient model fidelity for contact force prediction. For the Precalibrate+Predict and Calibrate+Predict cases, synergy controls yielded better contact force predictions (0.61 < R2 < 0.90, 83 N < RMS error < 161 N) than did independent controls (-0.15 < R2 < 0.79, 124 N < RMS error < 343 N) for corresponding subcases. For independent controls, contact force predictions improved when precalibrated model parameter values or EMG shape tracking was used. For synergy controls, contact force predictions were relatively insensitive to how model parameter values were calibrated, while EMG shape tracking made lateral (but not medial) contact force predictions worse. For the subject and optimization cost function analyzed in this study, use of subject-specific synergy controls improved the accuracy of knee contact force predictions, especially for lateral contact force when EMG shape tracking was omitted, and reduced prediction sensitivity to uncertainties in muscle model parameter values. PMID:24402438

  2. Muscle synergies may improve optimization prediction of knee contact forces during walking.

    PubMed

    Walter, Jonathan P; Kinney, Allison L; Banks, Scott A; D'Lima, Darryl D; Besier, Thor F; Lloyd, David G; Fregly, Benjamin J

    2014-02-01

    The ability to predict patient-specific joint contact and muscle forces accurately could improve the treatment of walking-related disorders. Muscle synergy analysis, which decomposes a large number of muscle electromyographic (EMG) signals into a small number of synergy control signals, could reduce the dimensionality and thus redundancy of the muscle and contact force prediction process. This study investigated whether use of subject-specific synergy controls can improve optimization prediction of knee contact forces during walking. To generate the predictions, we performed mixed dynamic muscle force optimizations (i.e., inverse skeletal dynamics with forward muscle activation and contraction dynamics) using data collected from a subject implanted with a force-measuring knee replacement. Twelve optimization problems (three cases with four subcases each) that minimized the sum of squares of muscle excitations were formulated to investigate how synergy controls affect knee contact force predictions. The three cases were: (1) Calibrate+Match where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously matched, (2) Precalibrate+Predict where experimental knee contact forces were predicted using precalibrated muscle model parameters values from the first case, and (3) Calibrate+Predict where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously predicted, all while matching inverse dynamic loads at the hip, knee, and ankle. The four subcases used either 44 independent controls or five synergy controls with and without EMG shape tracking. For the Calibrate+Match case, all four subcases closely reproduced the measured medial and lateral knee contact forces (R2 ≥ 0.94, root-mean-square (RMS) error < 66 N), indicating sufficient model fidelity for contact force prediction. For the Precalibrate+Predict and Calibrate+Predict cases, synergy controls yielded better contact force predictions (0.61 < R2 < 0.90, 83 N < RMS error < 161 N) than did independent controls (-0.15 < R2 < 0.79, 124 N < RMS error < 343 N) for corresponding subcases. For independent controls, contact force predictions improved when precalibrated model parameter values or EMG shape tracking was used. For synergy controls, contact force predictions were relatively insensitive to how model parameter values were calibrated, while EMG shape tracking made lateral (but not medial) contact force predictions worse. For the subject and optimization cost function analyzed in this study, use of subject-specific synergy controls improved the accuracy of knee contact force predictions, especially for lateral contact force when EMG shape tracking was omitted, and reduced prediction sensitivity to uncertainties in muscle model parameter values.

  3. Technical note: A linear model for predicting δ13 Cprotein.

    PubMed

    Pestle, William J; Hubbe, Mark; Smith, Erin K; Stevenson, Joseph M

    2015-08-01

    Development of a model for the prediction of δ(13) Cprotein from δ(13) Ccollagen and Δ(13) Cap-co . Model-generated values could, in turn, serve as "consumer" inputs for multisource mixture modeling of paleodiet. Linear regression analysis of previously published controlled diet data facilitated the development of a mathematical model for predicting δ(13) Cprotein (and an experimentally generated error term) from isotopic data routinely generated during the analysis of osseous remains (δ(13) Cco and Δ(13) Cap-co ). Regression analysis resulted in a two-term linear model (δ(13) Cprotein (%) = (0.78 × δ(13) Cco ) - (0.58× Δ(13) Cap-co ) - 4.7), possessing a high R-value of 0.93 (r(2)  = 0.86, P < 0.01), and experimentally generated error terms of ±1.9% for any predicted individual value of δ(13) Cprotein . This model was tested using isotopic data from Formative Period individuals from northern Chile's Atacama Desert. The model presented here appears to hold significant potential for the prediction of the carbon isotope signature of dietary protein using only such data as is routinely generated in the course of stable isotope analysis of human osseous remains. These predicted values are ideal for use in multisource mixture modeling of dietary protein source contribution. © 2015 Wiley Periodicals, Inc.

  4. Evaluation of a Mysis bioenergetics model

    USGS Publications Warehouse

    Chipps, S.R.; Bennett, D.H.

    2002-01-01

    Direct approaches for estimating the feeding rate of the opossum shrimp Mysis relicta can be hampered by variable gut residence time (evacuation rate models) and non-linear functional responses (clearance rate models). Bioenergetics modeling provides an alternative method, but the reliability of this approach needs to be evaluated using independent measures of growth and food consumption. In this study, we measured growth and food consumption for M. relicta and compared experimental results with those predicted from a Mysis bioenergetics model. For Mysis reared at 10??C, model predictions were not significantly different from observed values. Moreover, decomposition of mean square error indicated that 70% of the variation between model predictions and observed values was attributable to random error. On average, model predictions were within 12% of observed values. A sensitivity analysis revealed that Mysis respiration and prey energy density were the most sensitive parameters affecting model output. By accounting for uncertainty (95% CLs) in Mysis respiration, we observed a significant improvement in the accuracy of model output (within 5% of observed values), illustrating the importance of sensitive input parameters for model performance. These findings help corroborate the Mysis bioenergetics model and demonstrate the usefulness of this approach for estimating Mysis feeding rate.

  5. Very-short-term wind power prediction by a hybrid model with single- and multi-step approaches

    NASA Astrophysics Data System (ADS)

    Mohammed, E.; Wang, S.; Yu, J.

    2017-05-01

    Very-short-term wind power prediction (VSTWPP) has played an essential role for the operation of electric power systems. This paper aims at improving and applying a hybrid method of VSTWPP based on historical data. The hybrid method is combined by multiple linear regressions and least square (MLR&LS), which is intended for reducing prediction errors. The predicted values are obtained through two sub-processes:1) transform the time-series data of actual wind power into the power ratio, and then predict the power ratio;2) use the predicted power ratio to predict the wind power. Besides, the proposed method can include two prediction approaches: single-step prediction (SSP) and multi-step prediction (MSP). WPP is tested comparatively by auto-regressive moving average (ARMA) model from the predicted values and errors. The validity of the proposed hybrid method is confirmed in terms of error analysis by using probability density function (PDF), mean absolute percent error (MAPE) and means square error (MSE). Meanwhile, comparison of the correlation coefficients between the actual values and the predicted values for different prediction times and window has confirmed that MSP approach by using the hybrid model is the most accurate while comparing to SSP approach and ARMA. The MLR&LS is accurate and promising for solving problems in WPP.

  6. [Forest lighting fire forecasting for Daxing'anling Mountains based on MAXENT model].

    PubMed

    Sun, Yu; Shi, Ming-Chang; Peng, Huan; Zhu, Pei-Lin; Liu, Si-Lin; Wu, Shi-Lei; He, Cheng; Chen, Feng

    2014-04-01

    Daxing'anling Mountains is one of the areas with the highest occurrence of forest lighting fire in Heilongjiang Province, and developing a lightning fire forecast model to accurately predict the forest fires in this area is of importance. Based on the data of forest lightning fires and environment variables, the MAXENT model was used to predict the lightning fire in Daxing' anling region. Firstly, we studied the collinear diagnostic of each environment variable, evaluated the importance of the environmental variables using training gain and the Jackknife method, and then evaluated the prediction accuracy of the MAXENT model using the max Kappa value and the AUC value. The results showed that the variance inflation factor (VIF) values of lightning energy and neutralized charge were 5.012 and 6.230, respectively. They were collinear with the other variables, so the model could not be used for training. Daily rainfall, the number of cloud-to-ground lightning, and current intensity of cloud-to-ground lightning were the three most important factors affecting the lightning fires in the forest, while the daily average wind speed and the slope was of less importance. With the increase of the proportion of test data, the max Kappa and AUC values were increased. The max Kappa values were above 0.75 and the average value was 0.772, while all of the AUC values were above 0.5 and the average value was 0. 859. With a moderate level of prediction accuracy being achieved, the MAXENT model could be used to predict forest lightning fire in Daxing'anling Mountains.

  7. Adjustment of regional regression models of urban-runoff quality using data for Chattanooga, Knoxville, and Nashville, Tennessee

    USGS Publications Warehouse

    Hoos, Anne B.; Patel, Anant R.

    1996-01-01

    Model-adjustment procedures were applied to the combined data bases of storm-runoff quality for Chattanooga, Knoxville, and Nashville, Tennessee, to improve predictive accuracy for storm-runoff quality for urban watersheds in these three cities and throughout Middle and East Tennessee. Data for 45 storms at 15 different sites (five sites in each city) constitute the data base. Comparison of observed values of storm-runoff load and event-mean concentration to the predicted values from the regional regression models for 10 constituents shows prediction errors, as large as 806,000 percent. Model-adjustment procedures, which combine the regional model predictions with local data, are applied to improve predictive accuracy. Standard error of estimate after model adjustment ranges from 67 to 322 percent. Calibration results may be biased due to sampling error in the Tennessee data base. The relatively large values of standard error of estimate for some of the constituent models, although representing significant reduction (at least 50 percent) in prediction error compared to estimation with unadjusted regional models, may be unacceptable for some applications. The user may wish to collect additional local data for these constituents and repeat the analysis, or calibrate an independent local regression model.

  8. Distinct prediction errors in mesostriatal circuits of the human brain mediate learning about the values of both states and actions: evidence from high-resolution fMRI

    PubMed Central

    Pauli, Wolfgang M.; Larsen, Tobias; Tyszka, J. Michael; O’Doherty, John P.

    2017-01-01

    Prediction-error signals consistent with formal models of “reinforcement learning” (RL) have repeatedly been found within dopaminergic nuclei of the midbrain and dopaminoceptive areas of the striatum. However, the precise form of the RL algorithms implemented in the human brain is not yet well determined. Here, we created a novel paradigm optimized to dissociate the subtypes of reward-prediction errors that function as the key computational signatures of two distinct classes of RL models—namely, “actor/critic” models and action-value-learning models (e.g., the Q-learning model). The state-value-prediction error (SVPE), which is independent of actions, is a hallmark of the actor/critic architecture, whereas the action-value-prediction error (AVPE) is the distinguishing feature of action-value-learning algorithms. To test for the presence of these prediction-error signals in the brain, we scanned human participants with a high-resolution functional magnetic-resonance imaging (fMRI) protocol optimized to enable measurement of neural activity in the dopaminergic midbrain as well as the striatal areas to which it projects. In keeping with the actor/critic model, the SVPE signal was detected in the substantia nigra. The SVPE was also clearly present in both the ventral striatum and the dorsal striatum. However, alongside these purely state-value-based computations we also found evidence for AVPE signals throughout the striatum. These high-resolution fMRI findings suggest that model-free aspects of reward learning in humans can be explained algorithmically with RL in terms of an actor/critic mechanism operating in parallel with a system for more direct action-value learning. PMID:29049406

  9. NWP model forecast skill optimization via closure parameter variations

    NASA Astrophysics Data System (ADS)

    Järvinen, H.; Ollinaho, P.; Laine, M.; Solonen, A.; Haario, H.

    2012-04-01

    We present results of a novel approach to tune predictive skill of numerical weather prediction (NWP) models. These models contain tunable parameters which appear in parameterizations schemes of sub-grid scale physical processes. The current practice is to specify manually the numerical parameter values, based on expert knowledge. We developed recently a concept and method (QJRMS 2011) for on-line estimation of the NWP model parameters via closure parameter variations. The method called EPPES ("Ensemble prediction and parameter estimation system") utilizes ensemble prediction infra-structure for parameter estimation in a very cost-effective way: practically no new computations are introduced. The approach provides an algorithmic decision making tool for model parameter optimization in operational NWP. In EPPES, statistical inference about the NWP model tunable parameters is made by (i) generating an ensemble of predictions so that each member uses different model parameter values, drawn from a proposal distribution, and (ii) feeding-back the relative merits of the parameter values to the proposal distribution, based on evaluation of a suitable likelihood function against verifying observations. In this presentation, the method is first illustrated in low-order numerical tests using a stochastic version of the Lorenz-95 model which effectively emulates the principal features of ensemble prediction systems. The EPPES method correctly detects the unknown and wrongly specified parameters values, and leads to an improved forecast skill. Second, results with an ensemble prediction system emulator, based on the ECHAM5 atmospheric GCM show that the model tuning capability of EPPES scales up to realistic models and ensemble prediction systems. Finally, preliminary results of EPPES in the context of ECMWF forecasting system are presented.

  10. A microRNA-based prediction model for lymph node metastasis in hepatocellular carcinoma.

    PubMed

    Zhang, Li; Xiang, Zuo-Lin; Zeng, Zhao-Chong; Fan, Jia; Tang, Zhao-You; Zhao, Xiao-Mei

    2016-01-19

    We developed an efficient microRNA (miRNA) model that could predict the risk of lymph node metastasis (LNM) in hepatocellular carcinoma (HCC). We first evaluated a training cohort of 192 HCC patients after hepatectomy and found five LNM associated predictive factors: vascular invasion, Barcelona Clinic Liver Cancer stage, miR-145, miR-31, and miR-92a. The five statistically independent factors were used to develop a predictive model. The predictive value of the miRNA-based model was confirmed in a validation cohort of 209 consecutive HCC patients. The prediction model was scored for LNM risk from 0 to 8. The cutoff value 4 was used to distinguish high-risk and low-risk groups. The model sensitivity and specificity was 69.6 and 80.2%, respectively, during 5 years in the validation cohort. And the area under the curve (AUC) for the miRNA-based prognostic model was 0.860. The 5-year positive and negative predictive values of the model in the validation cohort were 30.3 and 95.5%, respectively. Cox regression analysis revealed that the LNM hazard ratio of the high-risk versus low-risk groups was 11.751 (95% CI, 5.110-27.021; P < 0.001) in the validation cohort. In conclusion, the miRNA-based model is reliable and accurate for the early prediction of LNM in patients with HCC.

  11. Predictive modeling of surimi cake shelf life at different storage temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Yatong; Hou, Yanhua; Wang, Quanfu; Cui, Bingqing; Zhang, Xiangyu; Li, Xuepeng; Li, Yujin; Liu, Yuanping

    2017-04-01

    The Arrhenius model of the shelf life prediction which based on the TBARS index was established in this study. The results showed that the significant changed of AV, POV, COV and TBARS with temperature increased, and the reaction rate constants k was obtained by the first order reaction kinetics model. Then the secondary model fitting was based on the Arrhenius equation. There was the optimal fitting accuracy of TBARS in the first and the secondary model fitting (R2≥0.95). The verification test indicated that the relative error between the shelf life model prediction value and actual value was within ±10%, suggesting the model could predict the shelf life of surimi cake.

  12. Intranasal Pharmacokinetic Data for Triptans Such as Sumatriptan and Zolmitriptan Can Render Area Under the Curve (AUC) Predictions for the Oral Route: Strategy Development and Application.

    PubMed

    Srinivas, Nuggehally R; Syed, Muzeeb

    2016-01-01

    Limited pharmacokinetic sampling strategy may be useful for predicting the area under the curve (AUC) for triptans and may have clinical utility as a prospective tool for prediction. Using appropriate intranasal pharmacokinetic data, a Cmax vs. AUC relationship was established by linear regression models for sumatriptan and zolmitriptan. The predictions of the AUC values were performed using published mean/median Cmax data and appropriate regression lines. The quotient of observed and predicted values rendered fold-difference calculation. The mean absolute error (MAE), mean positive error (MPE), mean negative error (MNE), root mean square error (RMSE), correlation coefficient (r), and the goodness of the AUC fold prediction were used to evaluate the two triptans. Also, data from the mean concentration profiles at time points of 1 hour (sumatriptan) and 3 hours (zolmitriptan) were used for the AUC prediction. The Cmax vs. AUC models displayed excellent correlation for both sumatriptan (r = .9997; P < .001) and zolmitriptan (r = .9999; P < .001). Irrespective of the two triptans, the majority of the predicted AUCs (83%-85%) were within 0.76-1.25-fold difference using the regression model. The prediction of AUC values for sumatriptan or zolmitriptan using the concentration data that reflected the Tmax occurrence were in the proximity of the reported values. In summary, the Cmax vs. AUC models exhibited strong correlations for sumatriptan and zolmitriptan. The usefulness of the prediction of the AUC values was established by a rigorous statistical approach.

  13. Prediction models for transfer of arsenic from soil to corn grain (Zea mays L.).

    PubMed

    Yang, Hua; Li, Zhaojun; Long, Jian; Liang, Yongchao; Xue, Jianming; Davis, Murray; He, Wenxiang

    2016-04-01

    In this study, the transfer of arsenic (As) from soil to corn grain was investigated in 18 soils collected from throughout China. The soils were treated with three concentrations of As and the transfer characteristics were investigated in the corn grain cultivar Zhengdan 958 in a greenhouse experiment. Through stepwise multiple-linear regression analysis, prediction models were developed combining the As bioconcentration factor (BCF) of Zhengdan 958 and soil pH, organic matter (OM) content, and cation exchange capacity (CEC). The possibility of applying the Zhengdan 958 model to other cultivars was tested through a cross-cultivar extrapolation approach. The results showed that the As concentration in corn grain was positively correlated with soil pH. When the prediction model was applied to non-model cultivars, the ratio ranges between the predicted and measured BCF values were within a twofold interval between predicted and measured values. The ratios were close to a 1:1 relationship between predicted and measured values. It was also found that the prediction model (Log [BCF]=0.064 pH-2.297) could effectively reduce the measured BCF variability for all non-model corn cultivars. The novel model is firstly developed for As concentration in crop grain from soil, which will be very useful for understanding the As risk in soil environment.

  14. Model for estimating enteric methane emissions from United States dairy and feedlot cattle.

    PubMed

    Kebreab, E; Johnson, K A; Archibeque, S L; Pape, D; Wirth, T

    2008-10-01

    Methane production from enteric fermentation in cattle is one of the major sources of anthropogenic greenhouse gas emission in the United States and worldwide. National estimates of methane emissions rely on mathematical models such as the one recommended by the Intergovernmental Panel for Climate Change (IPCC). Models used for prediction of methane emissions from cattle range from empirical to mechanistic with varying input requirements. Two empirical and 2 mechanistic models (COWPOLL and MOLLY) were evaluated for their prediction ability using individual cattle measurements. Model selection was based on mean square prediction error (MSPE), concordance correlation coefficient, and residuals vs. predicted values analyses. In dairy cattle, COWPOLL had the lowest root MSPE and greatest accuracy and precision of predicting methane emissions (correlation coefficient estimate = 0.75). The model simulated differences in diet more accurately than the other models, and the residuals vs. predicted value analysis showed no mean bias (P = 0.71). In feedlot cattle, MOLLY had the lowest root MSPE with almost all errors from random sources (correlation coefficient estimate = 0.69). The IPCC model also had good agreement with observed values, and no significant mean (P = 0.74) or linear bias (P = 0.11) was detected when residuals were plotted against predicted values. A fixed methane conversion factor (Ym) might be an easier alternative to diet-dependent variable Ym. Based on the results, the 2 mechanistic models were used to simulate methane emissions from representative US diets and were compared with the IPCC model. The average Ym in dairy cows was 5.63% of GE (range 3.78 to 7.43%) compared with 6.5% +/- 1% recommended by IPCC. In feedlot cattle, the average Ym was 3.88% (range 3.36 to 4.56%) compared with 3% +/- 1% recommended by IPCC. Based on our simulations, using IPCC values can result in an overestimate of about 12.5% and underestimate of emissions by about 9.8% for dairy and feedlot cattle, respectively. In addition to providing improved estimates of emissions based on diets, mechanistic models can be used to assess mitigation options such as changing source of carbohydrate or addition of fat to decrease methane, which is not possible with empirical models. We recommend national inventories use diet-specific Ym values predicted by mechanistic models to estimate methane emissions from cattle.

  15. Quantitative structure-activity relationship (QSAR) for insecticides: development of predictive in vivo insecticide activity models.

    PubMed

    Naik, P K; Singh, T; Singh, H

    2009-07-01

    Quantitative structure-activity relationship (QSAR) analyses were performed independently on data sets belonging to two groups of insecticides, namely the organophosphates and carbamates. Several types of descriptors including topological, spatial, thermodynamic, information content, lead likeness and E-state indices were used to derive quantitative relationships between insecticide activities and structural properties of chemicals. A systematic search approach based on missing value, zero value, simple correlation and multi-collinearity tests as well as the use of a genetic algorithm allowed the optimal selection of the descriptors used to generate the models. The QSAR models developed for both organophosphate and carbamate groups revealed good predictability with r(2) values of 0.949 and 0.838 as well as [image omitted] values of 0.890 and 0.765, respectively. In addition, a linear correlation was observed between the predicted and experimental LD(50) values for the test set data with r(2) of 0.871 and 0.788 for both the organophosphate and carbamate groups, indicating that the prediction accuracy of the QSAR models was acceptable. The models were also tested successfully from external validation criteria. QSAR models developed in this study should help further design of novel potent insecticides.

  16. Predicting the outbreak of hand, foot, and mouth disease in Nanjing, China: a time-series model based on weather variability

    NASA Astrophysics Data System (ADS)

    Liu, Sijun; Chen, Jiaping; Wang, Jianming; Wu, Zhuchao; Wu, Weihua; Xu, Zhiwei; Hu, Wenbiao; Xu, Fei; Tong, Shilu; Shen, Hongbing

    2017-10-01

    Hand, foot, and mouth disease (HFMD) is a significant public health issue in China and an accurate prediction of epidemic can improve the effectiveness of HFMD control. This study aims to develop a weather-based forecasting model for HFMD using the information on climatic variables and HFMD surveillance in Nanjing, China. Daily data on HFMD cases and meteorological variables between 2010 and 2015 were acquired from the Nanjing Center for Disease Control and Prevention, and China Meteorological Data Sharing Service System, respectively. A multivariate seasonal autoregressive integrated moving average (SARIMA) model was developed and validated by dividing HFMD infection data into two datasets: the data from 2010 to 2013 were used to construct a model and those from 2014 to 2015 were used to validate it. Moreover, we used weekly prediction for the data between 1 January 2014 and 31 December 2015 and leave-1-week-out prediction was used to validate the performance of model prediction. SARIMA (2,0,0)52 associated with the average temperature at lag of 1 week appeared to be the best model (R 2 = 0.936, BIC = 8.465), which also showed non-significant autocorrelations in the residuals of the model. In the validation of the constructed model, the predicted values matched the observed values reasonably well between 2014 and 2015. There was a high agreement rate between the predicted values and the observed values (sensitivity 80%, specificity 96.63%). This study suggests that the SARIMA model with average temperature could be used as an important tool for early detection and prediction of HFMD outbreaks in Nanjing, China.

  17. A novel model to predict gas-phase hydroxyl radical oxidation kinetics of polychlorinated compounds.

    PubMed

    Luo, Shuang; Wei, Zongsu; Spinney, Richard; Yang, Zhihui; Chai, Liyuan; Xiao, Ruiyang

    2017-04-01

    In this study, a novel model based on aromatic meta-substituent grouping was presented to predict the second-order rate constants (k) for OH oxidation of PCBs in gas-phase. Since the oxidation kinetics are dependent on the chlorination degree and position, we hypothesized that it may be more accurate for k value prediction if we group PCB congeners based on substitution positions (i.e., ortho (o), meta (m), and para (p)). To test this hypothesis, we examined the correlation of polarizability (α), a quantum chemical based descriptor for k values, with an empirical Hammett constant (σ + ) on each substitution position. Our result shows that α is highly linearly correlated to ∑σ o,m,p + based on aromatic meta-substituents leading to the grouping based predictive model. With the new model, the calculated k values exhibited an excellent agreement with experimental measurements, and greater predictive power than the quantum chemical based quantitative structure activity relationship (QSAR) model. Further, the relationship of α and ∑σ o,m,p + for PCDDs congeners, together with highest occupied molecular orbital (HOMO) distribution, were used to validate the aromatic meta-substituent grouping method. This newly developed model features a combination of good predictability of quantum chemical based QSAR model and simplicity of Hammett relationship, showing a great potential for fast and computational tractable prediction of k values for gas-phase OH oxidation of polychlorinated compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters

    PubMed Central

    2014-01-01

    This paper examined the efficiency of multivariate linear regression (MLR) and artificial neural network (ANN) models in prediction of two major water quality parameters in a wastewater treatment plant. Biochemical oxygen demand (BOD) and chemical oxygen demand (COD) as well as indirect indicators of organic matters are representative parameters for sewer water quality. Performance of the ANN models was evaluated using coefficient of correlation (r), root mean square error (RMSE) and bias values. The computed values of BOD and COD by model, ANN method and regression analysis were in close agreement with their respective measured values. Results showed that the ANN performance model was better than the MLR model. Comparative indices of the optimized ANN with input values of temperature (T), pH, total suspended solid (TSS) and total suspended (TS) for prediction of BOD was RMSE = 25.1 mg/L, r = 0.83 and for prediction of COD was RMSE = 49.4 mg/L, r = 0.81. It was found that the ANN model could be employed successfully in estimating the BOD and COD in the inlet of wastewater biochemical treatment plants. Moreover, sensitive examination results showed that pH parameter have more effect on BOD and COD predicting to another parameters. Also, both implemented models have predicted BOD better than COD. PMID:24456676

  19. Neuromusculoskeletal Model Calibration Significantly Affects Predicted Knee Contact Forces for Walking

    PubMed Central

    Serrancolí, Gil; Kinney, Allison L.; Fregly, Benjamin J.; Font-Llagunes, Josep M.

    2016-01-01

    Though walking impairments are prevalent in society, clinical treatments are often ineffective at restoring lost function. For this reason, researchers have begun to explore the use of patient-specific computational walking models to develop more effective treatments. However, the accuracy with which models can predict internal body forces in muscles and across joints depends on how well relevant model parameter values can be calibrated for the patient. This study investigated how knowledge of internal knee contact forces affects calibration of neuromusculoskeletal model parameter values and subsequent prediction of internal knee contact and leg muscle forces during walking. Model calibration was performed using a novel two-level optimization procedure applied to six normal walking trials from the Fourth Grand Challenge Competition to Predict In Vivo Knee Loads. The outer-level optimization adjusted time-invariant model parameter values to minimize passive muscle forces, reserve actuator moments, and model parameter value changes with (Approach A) and without (Approach B) tracking of experimental knee contact forces. Using the current guess for model parameter values but no knee contact force information, the inner-level optimization predicted time-varying muscle activations that were close to experimental muscle synergy patterns and consistent with the experimental inverse dynamic loads (both approaches). For all the six gait trials, Approach A predicted knee contact forces with high accuracy for both compartments (average correlation coefficient r = 0.99 and root mean square error (RMSE) = 52.6 N medial; average r = 0.95 and RMSE = 56.6 N lateral). In contrast, Approach B overpredicted contact force magnitude for both compartments (average RMSE = 323 N medial and 348 N lateral) and poorly matched contact force shape for the lateral compartment (average r = 0.90 medial and −0.10 lateral). Approach B had statistically higher lateral muscle forces and lateral optimal muscle fiber lengths but lower medial, central, and lateral normalized muscle fiber lengths compared to Approach A. These findings suggest that poorly calibrated model parameter values may be a major factor limiting the ability of neuromusculoskeletal models to predict knee contact and leg muscle forces accurately for walking. PMID:27210105

  20. An Intercomparison of Lidar Ozone and Temperature Measurements From the SOLVE Mission With Predicted Model Values

    NASA Technical Reports Server (NTRS)

    Burris, John; McGee, Thomas J.; Hoegy, Walt; Lait, Leslie; Sumnicht, Grant; Twigg, Larry; Heaps, William

    2000-01-01

    Temperature profiles acquired by Goddard Space Flight Center's AROTEL lidar during the SOLVE mission onboard NASA's DC-8 are compared with predicted values from several atmospheric models (DAO, NCEP and UKMO). The variability in the differences between measured and calculated temperature fields was approximately 5 K. Retrieved temperatures within the polar vortex showed large regions that were significantly colder than predicted by the atmospheric models.

  1. Accounting for energy and protein reserve changes in predicting diet-allowable milk production in cattle.

    PubMed

    Tedeschi, L O; Seo, S; Fox, D G; Ruiz, R

    2006-12-01

    Current ration formulation systems used to formulate diets on farms and to evaluate experimental data estimate metabolizable energy (ME)-allowable and metabolizable protein (MP)-allowable milk production from the intake above animal requirements for maintenance, pregnancy, and growth. The changes in body reserves, measured via the body condition score (BCS), are not accounted for in predicting ME and MP balances. This paper presents 2 empirical models developed to adjust predicted diet-allowable milk production based on changes in BCS. Empirical reserves model 1 was based on the reserves model described by the 2001 National Research Council (NRC) Nutrient Requirements of Dairy Cattle, whereas empirical reserves model 2 was developed based on published data of body weight and composition changes in lactating dairy cows. A database containing 134 individually fed lactating dairy cows from 3 trials was used to evaluate these adjustments in milk prediction based on predicted first-limiting ME or MP by the 2001 Dairy NRC and Cornell Net Carbohydrate and Protein System models. The analysis of first-limiting ME or MP milk production without adjustments for BCS changes indicated that the predictions of both models were consistent (r(2) of the regression between observed and model-predicted values of 0.90 and 0.85), had mean biases different from zero (12.3 and 5.34%), and had moderate but different roots of mean square errors of prediction (5.42 and 4.77 kg/d) for the 2001 NRC model and the Cornell Net Carbohydrate and Protein System model, respectively. The adjustment of first-limiting ME- or MP-allowable milk to BCS changes improved the precision and accuracy of both models. We further investigated 2 methods of adjustment; the first method used only the first and last BCS values, whereas the second method used the mean of weekly BCS values to adjust ME- and MP-allowable milk production. The adjustment to BCS changes based on first and last BCS values was more accurate than the adjustment to BCS based on the mean of all BCS values, suggesting that adjusting milk production for mean weekly variations in BCS added more variability to model-predicted milk production. We concluded that both models adequately predicted the first-limiting ME- or MP-allowable milk after adjusting for changes in BCS.

  2. Experimental evaluation of a recursive model identification technique for type 1 diabetes.

    PubMed

    Finan, Daniel A; Doyle, Francis J; Palerm, Cesar C; Bevier, Wendy C; Zisser, Howard C; Jovanovic, Lois; Seborg, Dale E

    2009-09-01

    A model-based controller for an artificial beta cell requires an accurate model of the glucose-insulin dynamics in type 1 diabetes subjects. To ensure the robustness of the controller for changing conditions (e.g., changes in insulin sensitivity due to illnesses, changes in exercise habits, or changes in stress levels), the model should be able to adapt to the new conditions by means of a recursive parameter estimation technique. Such an adaptive strategy will ensure that the most accurate model is used for the current conditions, and thus the most accurate model predictions are used in model-based control calculations. In a retrospective analysis, empirical dynamic autoregressive exogenous input (ARX) models were identified from glucose-insulin data for nine type 1 diabetes subjects in ambulatory conditions. Data sets consisted of continuous (5-minute) glucose concentration measurements obtained from a continuous glucose monitor, basal insulin infusion rates and times and amounts of insulin boluses obtained from the subjects' insulin pumps, and subject-reported estimates of the times and carbohydrate content of meals. Two identification techniques were investigated: nonrecursive, or batch methods, and recursive methods. Batch models were identified from a set of training data, whereas recursively identified models were updated at each sampling instant. Both types of models were used to make predictions of new test data. For the purpose of comparison, model predictions were compared to zero-order hold (ZOH) predictions, which were made by simply holding the current glucose value constant for p steps into the future, where p is the prediction horizon. Thus, the ZOH predictions are model free and provide a base case for the prediction metrics used to quantify the accuracy of the model predictions. In theory, recursive identification techniques are needed only when there are changing conditions in the subject that require model adaptation. Thus, the identification and validation techniques were performed with both "normal" data and data collected during conditions of reduced insulin sensitivity. The latter were achieved by having the subjects self-administer a medication, prednisone, for 3 consecutive days. The recursive models were allowed to adapt to this condition of reduced insulin sensitivity, while the batch models were only identified from normal data. Data from nine type 1 diabetes subjects in ambulatory conditions were analyzed; six of these subjects also participated in the prednisone portion of the study. For normal test data, the batch ARX models produced 30-, 45-, and 60-minute-ahead predictions that had average root mean square error (RMSE) values of 26, 34, and 40 mg/dl, respectively. For test data characterized by reduced insulin sensitivity, the batch ARX models produced 30-, 60-, and 90-minute-ahead predictions with average RMSE values of 27, 46, and 59 mg/dl, respectively; the recursive ARX models demonstrated similar performance with corresponding values of 27, 45, and 61 mg/dl, respectively. The identified ARX models (batch and recursive) produced more accurate predictions than the model-free ZOH predictions, but only marginally. For test data characterized by reduced insulin sensitivity, RMSE values for the predictions of the batch ARX models were 9, 5, and 5% more accurate than the ZOH predictions for prediction horizons of 30, 60, and 90 minutes, respectively. In terms of RMSE values, the 30-, 60-, and 90-minute predictions of the recursive models were more accurate than the ZOH predictions, by 10, 5, and 2%, respectively. In this experimental study, the recursively identified ARX models resulted in predictions of test data that were similar, but not superior, to the batch models. Even for the test data characteristic of reduced insulin sensitivity, the batch and recursive models demonstrated similar prediction accuracy. The predictions of the identified ARX models were only marginally more accurate than the model-free ZOH predictions. Given the simplicity of the ARX models and the computational ease with which they are identified, however, even modest improvements may justify the use of these models in a model-based controller for an artificial beta cell. 2009 Diabetes Technology Society.

  3. A method for testing whether model predictions fall within a prescribed factor of true values, with an application to pesticide leaching

    USGS Publications Warehouse

    Parrish, Rudolph S.; Smith, Charles N.

    1990-01-01

    A quantitative method is described for testing whether model predictions fall within a specified factor of true values. The technique is based on classical theory for confidence regions on unknown population parameters and can be related to hypothesis testing in both univariate and multivariate situations. A capability index is defined that can be used as a measure of predictive capability of a model, and its properties are discussed. The testing approach and the capability index should facilitate model validation efforts and permit comparisons among competing models. An example is given for a pesticide leaching model that predicts chemical concentrations in the soil profile.

  4. Multi-allelic haplotype model based on genetic partition for genomic prediction and variance component estimation using SNP markers.

    PubMed

    Da, Yang

    2015-12-18

    The amount of functional genomic information has been growing rapidly but remains largely unused in genomic selection. Genomic prediction and estimation using haplotypes in genome regions with functional elements such as all genes of the genome can be an approach to integrate functional and structural genomic information for genomic selection. Towards this goal, this article develops a new haplotype approach for genomic prediction and estimation. A multi-allelic haplotype model treating each haplotype as an 'allele' was developed for genomic prediction and estimation based on the partition of a multi-allelic genotypic value into additive and dominance values. Each additive value is expressed as a function of h - 1 additive effects, where h = number of alleles or haplotypes, and each dominance value is expressed as a function of h(h - 1)/2 dominance effects. For a sample of q individuals, the limit number of effects is 2q - 1 for additive effects and is the number of heterozygous genotypes for dominance effects. Additive values are factorized as a product between the additive model matrix and the h - 1 additive effects, and dominance values are factorized as a product between the dominance model matrix and the h(h - 1)/2 dominance effects. Genomic additive relationship matrix is defined as a function of the haplotype model matrix for additive effects, and genomic dominance relationship matrix is defined as a function of the haplotype model matrix for dominance effects. Based on these results, a mixed model implementation for genomic prediction and variance component estimation that jointly use haplotypes and single markers is established, including two computing strategies for genomic prediction and variance component estimation with identical results. The multi-allelic genetic partition fills a theoretical gap in genetic partition by providing general formulations for partitioning multi-allelic genotypic values and provides a haplotype method based on the quantitative genetics model towards the utilization of functional and structural genomic information for genomic prediction and estimation.

  5. Model-Based and Model-Free Pavlovian Reward Learning: Revaluation, Revision and Revelation

    PubMed Central

    Dayan, Peter; Berridge, Kent C.

    2014-01-01

    Evidence supports at least two methods for learning about reward and punishment and making predictions for guiding actions. One method, called model-free, progressively acquires cached estimates of the long-run values of circumstances and actions from retrospective experience. The other method, called model-based, uses representations of the environment, expectations and prospective calculations to make cognitive predictions of future value. Extensive attention has been paid to both methods in computational analyses of instrumental learning. By contrast, although a full computational analysis has been lacking, Pavlovian learning and prediction has typically been presumed to be solely model-free. Here, we revise that presumption and review compelling evidence from Pavlovian revaluation experiments showing that Pavlovian predictions can involve their own form of model-based evaluation. In model-based Pavlovian evaluation, prevailing states of the body and brain influence value computations, and thereby produce powerful incentive motivations that can sometimes be quite new. We consider the consequences of this revised Pavlovian view for the computational landscape of prediction, response and choice. We also revisit differences between Pavlovian and instrumental learning in the control of incentive motivation. PMID:24647659

  6. Model-based and model-free Pavlovian reward learning: revaluation, revision, and revelation.

    PubMed

    Dayan, Peter; Berridge, Kent C

    2014-06-01

    Evidence supports at least two methods for learning about reward and punishment and making predictions for guiding actions. One method, called model-free, progressively acquires cached estimates of the long-run values of circumstances and actions from retrospective experience. The other method, called model-based, uses representations of the environment, expectations, and prospective calculations to make cognitive predictions of future value. Extensive attention has been paid to both methods in computational analyses of instrumental learning. By contrast, although a full computational analysis has been lacking, Pavlovian learning and prediction has typically been presumed to be solely model-free. Here, we revise that presumption and review compelling evidence from Pavlovian revaluation experiments showing that Pavlovian predictions can involve their own form of model-based evaluation. In model-based Pavlovian evaluation, prevailing states of the body and brain influence value computations, and thereby produce powerful incentive motivations that can sometimes be quite new. We consider the consequences of this revised Pavlovian view for the computational landscape of prediction, response, and choice. We also revisit differences between Pavlovian and instrumental learning in the control of incentive motivation.

  7. Reconsidering the use of rankings in the valuation of health states: a model for estimating cardinal values from ordinal data

    PubMed Central

    Salomon, Joshua A

    2003-01-01

    Background In survey studies on health-state valuations, ordinal ranking exercises often are used as precursors to other elicitation methods such as the time trade-off (TTO) or standard gamble, but the ranking data have not been used in deriving cardinal valuations. This study reconsiders the role of ordinal ranks in valuing health and introduces a new approach to estimate interval-scaled valuations based on aggregate ranking data. Methods Analyses were undertaken on data from a previously published general population survey study in the United Kingdom that included rankings and TTO values for hypothetical states described using the EQ-5D classification system. The EQ-5D includes five domains (mobility, self-care, usual activities, pain/discomfort and anxiety/depression) with three possible levels on each. Rank data were analysed using a random utility model, operationalized through conditional logit regression. In the statistical model, probabilities of observed rankings were related to the latent utilities of different health states, modeled as a linear function of EQ-5D domain scores, as in previously reported EQ-5D valuation functions. Predicted valuations based on the conditional logit model were compared to observed TTO values for the 42 states in the study and to predictions based on a model estimated directly from the TTO values. Models were evaluated using the intraclass correlation coefficient (ICC) between predictions and mean observations, and the root mean squared error of predictions at the individual level. Results Agreement between predicted valuations from the rank model and observed TTO values was very high, with an ICC of 0.97, only marginally lower than for predictions based on the model estimated directly from TTO values (ICC = 0.99). Individual-level errors were also comparable in the two models, with root mean squared errors of 0.503 and 0.496 for the rank-based and TTO-based predictions, respectively. Conclusions Modeling health-state valuations based on ordinal ranks can provide results that are similar to those obtained from more widely analyzed valuation techniques such as the TTO. The information content in aggregate ranking data is not currently exploited to full advantage. The possibility of estimating cardinal valuations from ordinal ranks could also simplify future data collection dramatically and facilitate wider empirical study of health-state valuations in diverse settings and population groups. PMID:14687419

  8. SIM_ADJUST -- A computer code that adjusts simulated equivalents for observations or predictions

    USGS Publications Warehouse

    Poeter, Eileen P.; Hill, Mary C.

    2008-01-01

    This report documents the SIM_ADJUST computer code. SIM_ADJUST surmounts an obstacle that is sometimes encountered when using universal model analysis computer codes such as UCODE_2005 (Poeter and others, 2005), PEST (Doherty, 2004), and OSTRICH (Matott, 2005; Fredrick and others (2007). These codes often read simulated equivalents from a list in a file produced by a process model such as MODFLOW that represents a system of interest. At times values needed by the universal code are missing or assigned default values because the process model could not produce a useful solution. SIM_ADJUST can be used to (1) read a file that lists expected observation or prediction names and possible alternatives for the simulated values; (2) read a file produced by a process model that contains space or tab delimited columns, including a column of simulated values and a column of related observation or prediction names; (3) identify observations or predictions that have been omitted or assigned a default value by the process model; and (4) produce an adjusted file that contains a column of simulated values and a column of associated observation or prediction names. The user may provide alternatives that are constant values or that are alternative simulated values. The user may also provide a sequence of alternatives. For example, the heads from a series of cells may be specified to ensure that a meaningful value is available to compare with an observation located in a cell that may become dry. SIM_ADJUST is constructed using modules from the JUPITER API, and is intended for use on any computer operating system. SIM_ADJUST consists of algorithms programmed in Fortran90, which efficiently performs numerical calculations.

  9. Improved Model for Predicting the Free Energy Contribution of Dinucleotide Bulges to RNA Duplex Stability.

    PubMed

    Tomcho, Jeremy C; Tillman, Magdalena R; Znosko, Brent M

    2015-09-01

    Predicting the secondary structure of RNA is an intermediate in predicting RNA three-dimensional structure. Commonly, determining RNA secondary structure from sequence uses free energy minimization and nearest neighbor parameters. Current algorithms utilize a sequence-independent model to predict free energy contributions of dinucleotide bulges. To determine if a sequence-dependent model would be more accurate, short RNA duplexes containing dinucleotide bulges with different sequences and nearest neighbor combinations were optically melted to derive thermodynamic parameters. These data suggested energy contributions of dinucleotide bulges were sequence-dependent, and a sequence-dependent model was derived. This model assigns free energy penalties based on the identity of nucleotides in the bulge (3.06 kcal/mol for two purines, 2.93 kcal/mol for two pyrimidines, 2.71 kcal/mol for 5'-purine-pyrimidine-3', and 2.41 kcal/mol for 5'-pyrimidine-purine-3'). The predictive model also includes a 0.45 kcal/mol penalty for an A-U pair adjacent to the bulge and a -0.28 kcal/mol bonus for a G-U pair adjacent to the bulge. The new sequence-dependent model results in predicted values within, on average, 0.17 kcal/mol of experimental values, a significant improvement over the sequence-independent model. This model and new experimental values can be incorporated into algorithms that predict RNA stability and secondary structure from sequence.

  10. Artificial neural network models for prediction of cardiovascular autonomic dysfunction in general Chinese population

    PubMed Central

    2013-01-01

    Background The present study aimed to develop an artificial neural network (ANN) based prediction model for cardiovascular autonomic (CA) dysfunction in the general population. Methods We analyzed a previous dataset based on a population sample consisted of 2,092 individuals aged 30–80 years. The prediction models were derived from an exploratory set using ANN analysis. Performances of these prediction models were evaluated in the validation set. Results Univariate analysis indicated that 14 risk factors showed statistically significant association with CA dysfunction (P < 0.05). The mean area under the receiver-operating curve was 0.762 (95% CI 0.732–0.793) for prediction model developed using ANN analysis. The mean sensitivity, specificity, positive and negative predictive values were similar in the prediction models was 0.751, 0.665, 0.330 and 0.924, respectively. All HL statistics were less than 15.0. Conclusion ANN is an effective tool for developing prediction models with high value for predicting CA dysfunction among the general population. PMID:23902963

  11. NUCLEAR AND HEAVY ION PHYSICS: α-decay half-lives of superheavy nuclei and general predictions

    NASA Astrophysics Data System (ADS)

    Dong, Jian-Min; Zhang, Hong-Fei; Wang, Yan-Zhao; Zuo, Wei; Su, Xin-Ning; Li, Jun-Qing

    2009-08-01

    The generalized liquid drop model (GLDM) and the cluster model have been employed to calculate the α-decay half-lives of superheavy nuclei (SHN) using the experimental α-decay Q values. The results of the cluster model are slightly poorer than those from the GLDM if experimental Q values are used. The prediction powers of these two models with theoretical Q values from Audi et al. (QAudi) and Muntian et al. (QM) have been tested to find that the cluster model with QAudi and QM could provide reliable results for Z > 112 but the GLDM with QAudi for Z <= 112. The half-lives of some still unknown nuclei are predicted by these two models and these results may be useful for future experimental assignment and identification.

  12. Bayesian model checking: A comparison of tests

    NASA Astrophysics Data System (ADS)

    Lucy, L. B.

    2018-06-01

    Two procedures for checking Bayesian models are compared using a simple test problem based on the local Hubble expansion. Over four orders of magnitude, p-values derived from a global goodness-of-fit criterion for posterior probability density functions agree closely with posterior predictive p-values. The former can therefore serve as an effective proxy for the difficult-to-calculate posterior predictive p-values.

  13. Application of Artificial Neural Network and Support Vector Machines in Predicting Metabolizable Energy in Compound Feeds for Pigs.

    PubMed

    Ahmadi, Hamed; Rodehutscord, Markus

    2017-01-01

    In the nutrition literature, there are several reports on the use of artificial neural network (ANN) and multiple linear regression (MLR) approaches for predicting feed composition and nutritive value, while the use of support vector machines (SVM) method as a new alternative approach to MLR and ANN models is still not fully investigated. The MLR, ANN, and SVM models were developed to predict metabolizable energy (ME) content of compound feeds for pigs based on the German energy evaluation system from analyzed contents of crude protein (CP), ether extract (EE), crude fiber (CF), and starch. A total of 290 datasets from standardized digestibility studies with compound feeds was provided from several institutions and published papers, and ME was calculated thereon. Accuracy and precision of developed models were evaluated, given their produced prediction values. The results revealed that the developed ANN [ R 2  = 0.95; root mean square error (RMSE) = 0.19 MJ/kg of dry matter] and SVM ( R 2  = 0.95; RMSE = 0.21 MJ/kg of dry matter) models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR ( R 2  = 0.89; RMSE = 0.27 MJ/kg of dry matter). The developed ANN and SVM models produced better prediction values in estimating ME in compound feed than those produced by conventional MLR; however, there were not obvious differences between performance of ANN and SVM models. Thus, SVM model may also be considered as a promising tool for modeling the relationship between chemical composition and ME of compound feeds for pigs. To provide the readers and nutritionist with the easy and rapid tool, an Excel ® calculator, namely, SVM_ME_pig, was created to predict the metabolizable energy values in compound feeds for pigs using developed support vector machine model.

  14. Validating models of target acquisition performance in the dismounted soldier context

    NASA Astrophysics Data System (ADS)

    Glaholt, Mackenzie G.; Wong, Rachel K.; Hollands, Justin G.

    2018-04-01

    The problem of predicting real-world operator performance with digital imaging devices is of great interest within the military and commercial domains. There are several approaches to this problem, including: field trials with imaging devices, laboratory experiments using imagery captured from these devices, and models that predict human performance based on imaging device parameters. The modeling approach is desirable, as both field trials and laboratory experiments are costly and time-consuming. However, the data from these experiments is required for model validation. Here we considered this problem in the context of dismounted soldiering, for which detection and identification of human targets are essential tasks. Human performance data were obtained for two-alternative detection and identification decisions in a laboratory experiment in which photographs of human targets were presented on a computer monitor and the images were digitally magnified to simulate range-to-target. We then compared the predictions of different performance models within the NV-IPM software package: Targeting Task Performance (TTP) metric model and the Johnson model. We also introduced a modification to the TTP metric computation that incorporates an additional correction for target angular size. We examined model predictions using NV-IPM default values for a critical model constant, V50, and we also considered predictions when this value was optimized to fit the behavioral data. When using default values, certain model versions produced a reasonably close fit to the human performance data in the detection task, while for the identification task all models substantially overestimated performance. When using fitted V50 values the models produced improved predictions, though the slopes of the performance functions were still shallow compared to the behavioral data. These findings are discussed in relation to the models' designs and parameters, and the characteristics of the behavioral paradigm.

  15. Best of both worlds: combining pharma data and state of the art modeling technology to improve in Silico pKa prediction.

    PubMed

    Fraczkiewicz, Robert; Lobell, Mario; Göller, Andreas H; Krenz, Ursula; Schoenneis, Rolf; Clark, Robert D; Hillisch, Alexander

    2015-02-23

    In a unique collaboration between a software company and a pharmaceutical company, we were able to develop a new in silico pKa prediction tool with outstanding prediction quality. An existing pKa prediction method from Simulations Plus based on artificial neural network ensembles (ANNE), microstates analysis, and literature data was retrained with a large homogeneous data set of drug-like molecules from Bayer. The new model was thus built with curated sets of ∼14,000 literature pKa values (∼11,000 compounds, representing literature chemical space) and ∼19,500 pKa values experimentally determined at Bayer Pharma (∼16,000 compounds, representing industry chemical space). Model validation was performed with several test sets consisting of a total of ∼31,000 new pKa values measured at Bayer. For the largest and most difficult test set with >16,000 pKa values that were not used for training, the original model achieved a mean absolute error (MAE) of 0.72, root-mean-square error (RMSE) of 0.94, and squared correlation coefficient (R(2)) of 0.87. The new model achieves significantly improved prediction statistics, with MAE = 0.50, RMSE = 0.67, and R(2) = 0.93. It is commercially available as part of the Simulations Plus ADMET Predictor release 7.0. Good predictions are only of value when delivered effectively to those who can use them. The new pKa prediction model has been integrated into Pipeline Pilot and the PharmacophorInformatics (PIx) platform used by scientists at Bayer Pharma. Different output formats allow customized application by medicinal chemists, physical chemists, and computational chemists.

  16. [Prediction of schistosomiasis infection rates of population based on ARIMA-NARNN model].

    PubMed

    Ke-Wei, Wang; Yu, Wu; Jin-Ping, Li; Yu-Yu, Jiang

    2016-07-12

    To explore the effect of the autoregressive integrated moving average model-nonlinear auto-regressive neural network (ARIMA-NARNN) model on predicting schistosomiasis infection rates of population. The ARIMA model, NARNN model and ARIMA-NARNN model were established based on monthly schistosomiasis infection rates from January 2005 to February 2015 in Jiangsu Province, China. The fitting and prediction performances of the three models were compared. Compared to the ARIMA model and NARNN model, the mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) of the ARIMA-NARNN model were the least with the values of 0.011 1, 0.090 0 and 0.282 4, respectively. The ARIMA-NARNN model could effectively fit and predict schistosomiasis infection rates of population, which might have a great application value for the prevention and control of schistosomiasis.

  17. Model for forecasting Olea europaea L. airborne pollen in South-West Andalusia, Spain

    NASA Astrophysics Data System (ADS)

    Galán, C.; Cariñanos, Paloma; García-Mozo, Herminia; Alcázar, Purificación; Domínguez-Vilches, Eugenio

    Data on predicted average and maximum airborne pollen concentrations and the dates on which these maximum values are expected are of undoubted value to allergists and allergy sufferers, as well as to agronomists. This paper reports on the development of predictive models for calculating total annual pollen output, on the basis of pollen and weather data compiled over the last 19 years (1982-2000) for Córdoba (Spain). Models were tested in order to predict the 2000 pollen season; in addition, and in view of the heavy rainfall recorded in spring 2000, the 1982-1998 data set was used to test the model for 1999. The results of the multiple regression analysis show that the variables exerting the greatest influence on the pollen index were rainfall in March and temperatures over the months prior to the flowering period. For prediction of maximum values and dates on which these values might be expected, the start of the pollen season was used as an additional independent variable. Temperature proved the best variable for this prediction. Results improved when the 5-day moving average was taken into account. Testing of the predictive model for 1999 and 2000 yielded fairly similar results. In both cases, the difference between expected and observed pollen data was no greater than 10%. However, significant differences were recorded between forecast and expected maximum and minimum values, owing to the influence of rainfall during the flowering period.

  18. Development of Single-Seed Near-Infrared Spectroscopic Predictions of Corn and Soybeans Constituents Using Bulk Teference Values and Mean Spectra

    USDA-ARS?s Scientific Manuscript database

    Near-Infrared reflectance spectroscopic prediction models were developed for common constituents of corn and soybeans using bulk reference values and mean spectra from single-seeds. The bulk reference model and a true single-seed model for soybean protein were compared to determine how well the bul...

  19. QSAR studies on triazole derivatives as sglt inhibitors via CoMFA and CoMSIA

    NASA Astrophysics Data System (ADS)

    Zhi, Hui; Zheng, Junxia; Chang, Yiqun; Li, Qingguo; Liao, Guochao; Wang, Qi; Sun, Pinghua

    2015-10-01

    Forty-six sodium-dependent glucose cotransporters-2 (SGLT-2) inhibitors with hypoglycemic activity were selected to develop three-dimensional quantitative structure-activity relationship (3D-QSAR) using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models. A training set of 39 compounds were used to build up the models, which were then evaluated by a series of internal and external cross-validation techniques. A test set of 7 compounds was used for the external validation. The CoMFA model predicted a q2 value of 0.792 and an r2 value of 0.985. The best CoMSIA model predicted a q2 value of 0.633 and an r2 value of 0.895 based on a combination of steric, electrostatic, hydrophobic and hydrogen-bond acceptor effects. The predictive correlation coefficients (rpred2) of CoMFA and CoMSIA models were 0.872 and 0.839, respectively. The analysis of the contour maps from each model provided insight into the structural requirements for the development of more active sglt inhibitors, and on the basis of the models 8 new sglt inhibitors were designed and predicted.

  20. Statistical procedures for evaluating daily and monthly hydrologic model predictions

    USGS Publications Warehouse

    Coffey, M.E.; Workman, S.R.; Taraba, J.L.; Fogle, A.W.

    2004-01-01

    The overall study objective was to evaluate the applicability of different qualitative and quantitative methods for comparing daily and monthly SWAT computer model hydrologic streamflow predictions to observed data, and to recommend statistical methods for use in future model evaluations. Statistical methods were tested using daily streamflows and monthly equivalent runoff depths. The statistical techniques included linear regression, Nash-Sutcliffe efficiency, nonparametric tests, t-test, objective functions, autocorrelation, and cross-correlation. None of the methods specifically applied to the non-normal distribution and dependence between data points for the daily predicted and observed data. Of the tested methods, median objective functions, sign test, autocorrelation, and cross-correlation were most applicable for the daily data. The robust coefficient of determination (CD*) and robust modeling efficiency (EF*) objective functions were the preferred methods for daily model results due to the ease of comparing these values with a fixed ideal reference value of one. Predicted and observed monthly totals were more normally distributed, and there was less dependence between individual monthly totals than was observed for the corresponding predicted and observed daily values. More statistical methods were available for comparing SWAT model-predicted and observed monthly totals. The 1995 monthly SWAT model predictions and observed data had a regression Rr2 of 0.70, a Nash-Sutcliffe efficiency of 0.41, and the t-test failed to reject the equal data means hypothesis. The Nash-Sutcliffe coefficient and the R r2 coefficient were the preferred methods for monthly results due to the ability to compare these coefficients to a set ideal value of one.

  1. Acute toxicity prediction to threatened and endangered ...

    EPA Pesticide Factsheets

    Evaluating contaminant sensitivity of threatened and endangered (listed) species and protectiveness of chemical regulations often depends on toxicity data for commonly tested surrogate species. The U.S. EPA’s Internet application Web-ICE is a suite of Interspecies Correlation Estimation (ICE) models that can extrapolate species sensitivity to listed taxa using least-squares regressions of the sensitivity of a surrogate species and a predicted taxon (species, genus, or family). Web-ICE was expanded with new models that can predict toxicity to over 250 listed species. A case study was used to assess protectiveness of genus and family model estimates derived from either geometric mean or minimum taxa toxicity values for listed species. Models developed from the most sensitive value for each chemical were generally protective of the most sensitive species within predicted taxa, including listed species, and were more protective than geometric means models. ICE model estimates were compared to HC5 values derived from Species Sensitivity Distributions for the case study chemicals to assess protectiveness of the two approaches. ICE models provide robust toxicity predictions and can generate protective toxicity estimates for assessing contaminant risk to listed species. Reporting on the development and optimization of ICE models for listed species toxicity estimation

  2. Acute Toxicity Prediction to Threatened and Endangered Species Using Interspecies Correlation Estimation (ICE) Models.

    PubMed

    Willming, Morgan M; Lilavois, Crystal R; Barron, Mace G; Raimondo, Sandy

    2016-10-04

    Evaluating contaminant sensitivity of threatened and endangered (listed) species and protectiveness of chemical regulations often depends on toxicity data for commonly tested surrogate species. The U.S. EPA's Internet application Web-ICE is a suite of Interspecies Correlation Estimation (ICE) models that can extrapolate species sensitivity to listed taxa using least-squares regressions of the sensitivity of a surrogate species and a predicted taxon (species, genus, or family). Web-ICE was expanded with new models that can predict toxicity to over 250 listed species. A case study was used to assess protectiveness of genus and family model estimates derived from either geometric mean or minimum taxa toxicity values for listed species. Models developed from the most sensitive value for each chemical were generally protective of the most sensitive species within predicted taxa, including listed species, and were more protective than geometric means models. ICE model estimates were compared to HC5 values derived from Species Sensitivity Distributions for the case study chemicals to assess protectiveness of the two approaches. ICE models provide robust toxicity predictions and can generate protective toxicity estimates for assessing contaminant risk to listed species.

  3. Prediction and visualization of redox conditions in the groundwater of Central Valley, California

    NASA Astrophysics Data System (ADS)

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, JoAnn M.

    2017-03-01

    Regional-scale, three-dimensional continuous probability models, were constructed for aspects of redox conditions in the groundwater system of the Central Valley, California. These models yield grids depicting the probability that groundwater in a particular location will have dissolved oxygen (DO) concentrations less than selected threshold values representing anoxic groundwater conditions, or will have dissolved manganese (Mn) concentrations greater than selected threshold values representing secondary drinking water-quality contaminant levels (SMCL) and health-based screening levels (HBSL). The probability models were constrained by the alluvial boundary of the Central Valley to a depth of approximately 300 m. Probability distribution grids can be extracted from the 3-D models at any desired depth, and are of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to anoxic conditions. Models were constructed using a Boosted Regression Trees (BRT) machine learning technique that produces many trees as part of an additive model and has the ability to handle many variables, automatically incorporate interactions, and is resistant to collinearity. Machine learning methods for statistical prediction are becoming increasing popular in that they do not require assumptions associated with traditional hypothesis testing. Models were constructed using measured dissolved oxygen and manganese concentrations sampled from 2767 wells within the alluvial boundary of the Central Valley, and over 60 explanatory variables representing regional-scale soil properties, soil chemistry, land use, aquifer textures, and aquifer hydrologic properties. Models were trained on a USGS dataset of 932 wells, and evaluated on an independent hold-out dataset of 1835 wells from the California Division of Drinking Water. We used cross-validation to assess the predictive performance of models of varying complexity, as a basis for selecting final models. Trained models were applied to cross-validation testing data and a separate hold-out dataset to evaluate model predictive performance by emphasizing three model metrics of fit: Kappa; accuracy; and the area under the receiver operator characteristic curve (ROC). The final trained models were used for mapping predictions at discrete depths to a depth of 304.8 m. Trained DO and Mn models had accuracies of 86-100%, Kappa values of 0.69-0.99, and ROC values of 0.92-1.0. Model accuracies for cross-validation testing datasets were 82-95% and ROC values were 0.87-0.91, indicating good predictive performance. Kappas for the cross-validation testing dataset were 0.30-0.69, indicating fair to substantial agreement between testing observations and model predictions. Hold-out data were available for the manganese model only and indicated accuracies of 89-97%, ROC values of 0.73-0.75, and Kappa values of 0.06-0.30. The predictive performance of both the DO and Mn models was reasonable, considering all three of these fit metrics and the low percentages of low-DO and high-Mn events in the data.

  4. External Evaluation of Two Fluconazole Infant Population Pharmacokinetic Models

    PubMed Central

    Hwang, Michael F.; Beechinor, Ryan J.; Wade, Kelly C.; Benjamin, Daniel K.; Smith, P. Brian; Hornik, Christoph P.; Capparelli, Edmund V.; Duara, Shahnaz; Kennedy, Kathleen A.; Cohen-Wolkowiez, Michael

    2017-01-01

    ABSTRACT Fluconazole is an antifungal agent used for the treatment of invasive candidiasis, a leading cause of morbidity and mortality in premature infants. Population pharmacokinetic (PK) models of fluconazole in infants have been previously published by Wade et al. (Antimicrob Agents Chemother 52:4043–4049, 2008, https://doi.org/10.1128/AAC.00569-08) and Momper et al. (Antimicrob Agents Chemother 60:5539–5545, 2016, https://doi.org/10.1128/AAC.00963-16). Here we report the results of the first external evaluation of the predictive performance of both models. We used patient-level data from both studies to externally evaluate both PK models. The predictive performance of each model was evaluated using the model prediction error (PE), mean prediction error (MPE), mean absolute prediction error (MAPE), prediction-corrected visual predictive check (pcVPC), and normalized prediction distribution errors (NPDE). The values of the parameters of each model were reestimated using both the external and merged data sets. When evaluated with the external data set, the model proposed by Wade et al. showed lower median PE, MPE, and MAPE (0.429 μg/ml, 41.9%, and 57.6%, respectively) than the model proposed by Momper et al. (2.45 μg/ml, 188%, and 195%, respectively). The values of the majority of reestimated parameters were within 20% of their respective original parameter values for all model evaluations. Our analysis determined that though both models are robust, the model proposed by Wade et al. had greater accuracy and precision than the model proposed by Momper et al., likely because it was derived from a patient population with a wider age range. This study highlights the importance of the external evaluation of infant population PK models. PMID:28893774

  5. Choosing a model to predict hospital admission: an observational study of new variants of predictive models for case finding

    PubMed Central

    Billings, John; Georghiou, Theo; Blunt, Ian; Bardsley, Martin

    2013-01-01

    Objectives To test the performance of new variants of models to identify people at risk of an emergency hospital admission. We compared (1) the impact of using alternative data sources (hospital inpatient, A&E, outpatient and general practitioner (GP) electronic medical records) (2) the effects of local calibration on the performance of the models and (3) the choice of population denominators. Design Multivariate logistic regressions using person-level data adding each data set sequentially to test value of additional variables and denominators. Setting 5 Primary Care Trusts within England. Participants 1 836 099 people aged 18–95 registered with GPs on 31 July 2009. Main outcome measures Models to predict hospital admission and readmission were compared in terms of the positive predictive value and sensitivity for various risk strata and with the receiver operating curve C statistic. Results The addition of each data set showed moderate improvement in the number of patients identified with little or no loss of positive predictive value. However, even with inclusion of GP electronic medical record information, the algorithms identified only a small number of patients with no emergency hospital admissions in the previous 2 years. The model pooled across all sites performed almost as well as the models calibrated to local data from just one site. Using population denominators from GP registers led to better case finding. Conclusions These models provide a basis for wider application in the National Health Service. Each of the models examined produces reasonably robust performance and offers some predictive value. The addition of more complex data adds some value, but we were unable to conclude that pooled models performed less well than those in individual sites. Choices about model should be linked to the intervention design. Characteristics of patients identified by the algorithms provide useful information in the design/costing of intervention strategies to improve care coordination/outcomes for these patients. PMID:23980068

  6. Predictive model for the growth kinetics of Staphylococcus aureus in raw pork developed using Integrated Pathogen Modeling Program (IPMP) 2013.

    PubMed

    Lee, Yong Ju; Jung, Byeong Su; Kim, Kee-Tae; Paik, Hyun-Dong

    2015-09-01

    A predictive model was performed to describe the growth of Staphylococcus aureus in raw pork by using Integrated Pathogen Modeling Program 2013 and a polynomial model as a secondary predictive model. S. aureus requires approximately 180 h to reach 5-6 log CFU/g at 10 °C. At 15 °C and 25 °C, approximately 48 and 20 h, respectively, are required to cause food poisoning. Predicted data using the Gompertz model was the most accurate in this study. For lag time (LT) model, bias factor (Bf) and accuracy factor (Af) values were both 1.014, showing that the predictions were within a reliable range. For specific growth rate (SGR) model, Bf and Af were 1.188 and 1.190, respectively. Additionally, both Bf and Af values of the LT and SGR models were close to 1, indicating that IPMP Gompertz model is more adequate for predicting the growth of S. aureus on raw pork than other models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Target and Tissue Selectivity Prediction by Integrated Mechanistic Pharmacokinetic-Target Binding and Quantitative Structure Activity Modeling.

    PubMed

    Vlot, Anna H C; de Witte, Wilhelmus E A; Danhof, Meindert; van der Graaf, Piet H; van Westen, Gerard J P; de Lange, Elizabeth C M

    2017-12-04

    Selectivity is an important attribute of effective and safe drugs, and prediction of in vivo target and tissue selectivity would likely improve drug development success rates. However, a lack of understanding of the underlying (pharmacological) mechanisms and availability of directly applicable predictive methods complicates the prediction of selectivity. We explore the value of combining physiologically based pharmacokinetic (PBPK) modeling with quantitative structure-activity relationship (QSAR) modeling to predict the influence of the target dissociation constant (K D ) and the target dissociation rate constant on target and tissue selectivity. The K D values of CB1 ligands in the ChEMBL database are predicted by QSAR random forest (RF) modeling for the CB1 receptor and known off-targets (TRPV1, mGlu5, 5-HT1a). Of these CB1 ligands, rimonabant, CP-55940, and Δ 8 -tetrahydrocanabinol, one of the active ingredients of cannabis, were selected for simulations of target occupancy for CB1, TRPV1, mGlu5, and 5-HT1a in three brain regions, to illustrate the principles of the combined PBPK-QSAR modeling. Our combined PBPK and target binding modeling demonstrated that the optimal values of the K D and k off for target and tissue selectivity were dependent on target concentration and tissue distribution kinetics. Interestingly, if the target concentration is high and the perfusion of the target site is low, the optimal K D value is often not the lowest K D value, suggesting that optimization towards high drug-target affinity can decrease the benefit-risk ratio. The presented integrative structure-pharmacokinetic-pharmacodynamic modeling provides an improved understanding of tissue and target selectivity.

  8. Modeling of exposure to carbon monoxide in fires

    NASA Technical Reports Server (NTRS)

    Cagliostro, D. E.

    1980-01-01

    A mathematical model is developed to predict carboxyhemoglobin concentrations in regions of the body for short exposures to carbon monoxide levels expected during escape from aircraft fires. The model includes the respiratory and circulatory dynamics of absorption and distribution of carbon monoxide and carboxyhemoglobin. Predictions of carboxyhemoglobin concentrations are compared to experimental values obtained for human exposures to constant high carbon monoxide levels. Predictions are within 20% of experimental values. For short exposure times, transient concentration effects are predicted. The effect of stress is studied and found to increase carboxyhemoglobin levels substantially compared to a rest state.

  9. A two-component rain model for the prediction of attenuation and diversity improvement

    NASA Technical Reports Server (NTRS)

    Crane, R. K.

    1982-01-01

    A new model was developed to predict attenuation statistics for a single Earth-satellite or terrestrial propagation path. The model was extended to provide predictions of the joint occurrences of specified or higher attenuation values on two closely spaced Earth-satellite paths. The joint statistics provide the information required to obtain diversity gain or diversity advantage estimates. The new model is meteorologically based. It was tested against available Earth-satellite beacon observations and terrestrial path measurements. The model employs the rain climate region descriptions of the Global rain model. The rms deviation between the predicted and observed attenuation values for the terrestrial path data was 35 percent, a result consistent with the expectations of the Global model when the rain rate distribution for the path is not used in the calculation. Within the United States the rms deviation between measurement and prediction was 36 percent but worldwide it was 79 percent.

  10. Accuracy test for link prediction in terms of similarity index: The case of WS and BA models

    NASA Astrophysics Data System (ADS)

    Ahn, Min-Woo; Jung, Woo-Sung

    2015-07-01

    Link prediction is a technique that uses the topological information in a given network to infer the missing links in it. Since past research on link prediction has primarily focused on enhancing performance for given empirical systems, negligible attention has been devoted to link prediction with regard to network models. In this paper, we thus apply link prediction to two network models: The Watts-Strogatz (WS) model and Barabási-Albert (BA) model. We attempt to gain a better understanding of the relation between accuracy and each network parameter (mean degree, the number of nodes and the rewiring probability in the WS model) through network models. Six similarity indices are used, with precision and area under the ROC curve (AUC) value as the accuracy metrics. We observe a positive correlation between mean degree and accuracy, and size independence of the AUC value.

  11. The galaxy-dark matter halo connection: which galaxy properties are correlated with the host halo mass?

    NASA Astrophysics Data System (ADS)

    Contreras, S.; Baugh, C. M.; Norberg, P.; Padilla, N.

    2015-09-01

    We demonstrate how the properties of a galaxy depend on the mass of its host dark matter subhalo, using two independent models of galaxy formation. For the cases of stellar mass and black hole mass, the median property value displays a monotonic dependence on subhalo mass. The slope of the relation changes for subhalo masses for which heating by active galactic nuclei becomes important. The median property values are predicted to be remarkably similar for central and satellite galaxies. The two models predict considerable scatter around the median property value, though the size of the scatter is model dependent. There is only modest evolution with redshift in the median galaxy property at a fixed subhalo mass. Properties such as cold gas mass and star formation rate, however, are predicted to have a complex dependence on subhalo mass. In these cases, subhalo mass is not a good indicator of the value of the galaxy property. We illustrate how the predictions in the galaxy property-subhalo mass plane differ from the assumptions made in some empirical models of galaxy clustering by reconstructing the model output using a basic subhalo abundance matching scheme. In its simplest form, abundance matching generally does not reproduce the clustering predicted by the models, typically resulting in an overprediction of the clustering signal. Using the predictions of the galaxy formation model for the correlations between pairs of galaxy properties, the basic abundance matching scheme can be extended to reproduce the model predictions more faithfully for a wider range of galaxy properties. Our results have implications for the analysis of galaxy clustering, particularly for low abundance samples.

  12. Artificial neural network analysis based on genetic algorithm to predict the performance characteristics of a cross flow cooling tower

    NASA Astrophysics Data System (ADS)

    Wu, Jiasheng; Cao, Lin; Zhang, Guoqiang

    2018-02-01

    Cooling tower of air conditioning has been widely used as cooling equipment, and there will be broad application prospect if it can be reversibly used as heat source under heat pump heating operation condition. In view of the complex non-linear relationship of each parameter in the process of heat and mass transfer inside tower, In this paper, the BP neural network model based on genetic algorithm optimization (GABP neural network model) is established for the reverse use of cross flow cooling tower. The model adopts the structure of 6 inputs, 13 hidden nodes and 8 outputs. With this model, the outlet air dry bulb temperature, wet bulb temperature, water temperature, heat, sensible heat ratio and heat absorbing efficiency, Lewis number, a total of 8 the proportion of main performance parameters were predicted. Furthermore, the established network model is used to predict the water temperature and heat absorption of the tower at different inlet temperatures. The mean relative error MRE between BP predicted value and experimental value are 4.47%, 3.63%, 2.38%, 3.71%, 6.35%,3.14%, 13.95% and 6.80% respectively; the mean relative error MRE between GABP predicted value and experimental value are 2.66%, 3.04%, 2.27%, 3.02%, 6.89%, 3.17%, 11.50% and 6.57% respectively. The results show that the prediction results of GABP network model are better than that of BP network model; the simulation results are basically consistent with the actual situation. The GABP network model can well predict the heat and mass transfer performance of the cross flow cooling tower.

  13. Time prediction of failure a type of lamps by using general composite hazard rate model

    NASA Astrophysics Data System (ADS)

    Riaman; Lesmana, E.; Subartini, B.; Supian, S.

    2018-03-01

    This paper discusses the basic survival model estimates to obtain the average predictive value of lamp failure time. This estimate is for the parametric model, General Composite Hazard Level Model. The random time variable model used is the exponential distribution model, as the basis, which has a constant hazard function. In this case, we discuss an example of survival model estimation for a composite hazard function, using an exponential model as its basis. To estimate this model is done by estimating model parameters, through the construction of survival function and empirical cumulative function. The model obtained, will then be used to predict the average failure time of the model, for the type of lamp. By grouping the data into several intervals and the average value of failure at each interval, then calculate the average failure time of a model based on each interval, the p value obtained from the tes result is 0.3296.

  14. SWMF Global Magnetosphere Simulations of January 2005: Geomagnetic Indices and Cross-Polar Cap Potential

    DOE PAGES

    Haiducek, John D.; Welling, Daniel T.; Ganushkina, Natalia Y.; ...

    2017-10-30

    We simulated the entire month of January, 2005 using the Space Weather Modeling Framework (SWMF) with observed solar wind data as input. We conducted this simulation with and without an inner magnetosphere model, and tested two different grid resolutions. We evaluated the model's accuracy in predicting Kp, Sym-H, AL, and cross polar cap potential (CPCP). We find that the model does an excellent job of predicting the Sym-H index, with an RMSE of 17-18 nT. Kp is predicted well during storm-time conditions, but over-predicted during quiet times by a margin of 1 to 1.7 Kp units. AL is predicted reasonablymore » well on average, with an RMSE of 230-270 nT. However, the model reaches the largest negative AL values significantly less often than the observations. The model tended to over-predict CPCP, with RMSE values on the order of 46-48 kV. We found the results to be insensitive to grid resoution, with the exception of the rate of occurrence for strongly negative AL values. As a result, the use of the inner magnetosphere component, however, affected results significantly, with all quantities except CPCP improved notably when the inner magnetosphere model was on.« less

  15. SWMF Global Magnetosphere Simulations of January 2005: Geomagnetic Indices and Cross-Polar Cap Potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haiducek, John D.; Welling, Daniel T.; Ganushkina, Natalia Y.

    We simulated the entire month of January, 2005 using the Space Weather Modeling Framework (SWMF) with observed solar wind data as input. We conducted this simulation with and without an inner magnetosphere model, and tested two different grid resolutions. We evaluated the model's accuracy in predicting Kp, Sym-H, AL, and cross polar cap potential (CPCP). We find that the model does an excellent job of predicting the Sym-H index, with an RMSE of 17-18 nT. Kp is predicted well during storm-time conditions, but over-predicted during quiet times by a margin of 1 to 1.7 Kp units. AL is predicted reasonablymore » well on average, with an RMSE of 230-270 nT. However, the model reaches the largest negative AL values significantly less often than the observations. The model tended to over-predict CPCP, with RMSE values on the order of 46-48 kV. We found the results to be insensitive to grid resoution, with the exception of the rate of occurrence for strongly negative AL values. As a result, the use of the inner magnetosphere component, however, affected results significantly, with all quantities except CPCP improved notably when the inner magnetosphere model was on.« less

  16. Predictive genetic testing for the identification of high-risk groups: a simulation study on the impact of predictive ability

    PubMed Central

    2011-01-01

    Background Genetic risk models could potentially be useful in identifying high-risk groups for the prevention of complex diseases. We investigated the performance of this risk stratification strategy by examining epidemiological parameters that impact the predictive ability of risk models. Methods We assessed sensitivity, specificity, and positive and negative predictive value for all possible risk thresholds that can define high-risk groups and investigated how these measures depend on the frequency of disease in the population, the frequency of the high-risk group, and the discriminative accuracy of the risk model, as assessed by the area under the receiver-operating characteristic curve (AUC). In a simulation study, we modeled genetic risk scores of 50 genes with equal odds ratios and genotype frequencies, and varied the odds ratios and the disease frequency across scenarios. We also performed a simulation of age-related macular degeneration risk prediction based on published odds ratios and frequencies for six genetic risk variants. Results We show that when the frequency of the high-risk group was lower than the disease frequency, positive predictive value increased with the AUC but sensitivity remained low. When the frequency of the high-risk group was higher than the disease frequency, sensitivity was high but positive predictive value remained low. When both frequencies were equal, both positive predictive value and sensitivity increased with increasing AUC, but higher AUC was needed to maximize both measures. Conclusions The performance of risk stratification is strongly determined by the frequency of the high-risk group relative to the frequency of disease in the population. The identification of high-risk groups with appreciable combinations of sensitivity and positive predictive value requires higher AUC. PMID:21797996

  17. Model-based learning and the contribution of the orbitofrontal cortex to the model-free world

    PubMed Central

    McDannald, Michael A.; Takahashi, Yuji K.; Lopatina, Nina; Pietras, Brad W.; Jones, Josh L.; Schoenbaum, Geoffrey

    2012-01-01

    Learning is proposed to occur when there is a discrepancy between reward prediction and reward receipt. At least two separate systems are thought to exist: one in which predictions are proposed to be based on model-free or cached values; and another in which predictions are model-based. A basic neural circuit for model-free reinforcement learning has already been described. In the model-free circuit the ventral striatum (VS) is thought to supply a common-currency reward prediction to midbrain dopamine neurons that compute prediction errors and drive learning. In a model-based system, predictions can include more information about an expected reward, such as its sensory attributes or current, unique value. This detailed prediction allows for both behavioral flexibility and learning driven by changes in sensory features of rewards alone. Recent evidence from animal learning and human imaging suggests that, in addition to model-free information, the VS also signals model-based information. Further, there is evidence that the orbitofrontal cortex (OFC) signals model-based information. Here we review these data and suggest that the OFC provides model-based information to this traditional model-free circuitry and offer possibilities as to how this interaction might occur. PMID:22487030

  18. An empirical model for prediction of household solid waste generation rate - A case study of Dhanbad, India.

    PubMed

    Kumar, Atul; Samadder, S R

    2017-10-01

    Accurate prediction of the quantity of household solid waste generation is very much essential for effective management of municipal solid waste (MSW). In actual practice, modelling methods are often found useful for precise prediction of MSW generation rate. In this study, two models have been proposed that established the relationships between the household solid waste generation rate and the socioeconomic parameters, such as household size, total family income, education, occupation and fuel used in the kitchen. Multiple linear regression technique was applied to develop the two models, one for the prediction of biodegradable MSW generation rate and the other for non-biodegradable MSW generation rate for individual households of the city Dhanbad, India. The results of the two models showed that the coefficient of determinations (R 2 ) were 0.782 for biodegradable waste generation rate and 0.676 for non-biodegradable waste generation rate using the selected independent variables. The accuracy tests of the developed models showed convincing results, as the predicted values were very close to the observed values. Validation of the developed models with a new set of data indicated a good fit for actual prediction purpose with predicted R 2 values of 0.76 and 0.64 for biodegradable and non-biodegradable MSW generation rate respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Genomic selection for slaughter age in pigs using the Cox frailty model.

    PubMed

    Santos, V S; Martins Filho, S; Resende, M D V; Azevedo, C F; Lopes, P S; Guimarães, S E F; Glória, L S; Silva, F F

    2015-10-19

    The aim of this study was to compare genomic selection methodologies using a linear mixed model and the Cox survival model. We used data from an F2 population of pigs, in which the response variable was the time in days from birth to the culling of the animal and the covariates were 238 markers [237 single nucleotide polymorphism (SNP) plus the halothane gene]. The data were corrected for fixed effects, and the accuracy of the method was determined based on the correlation of the ranks of predicted genomic breeding values (GBVs) in both models with the corrected phenotypic values. The analysis was repeated with a subset of SNP markers with largest absolute effects. The results were in agreement with the GBV prediction and the estimation of marker effects for both models for uncensored data and for normality. However, when considering censored data, the Cox model with a normal random effect (S1) was more appropriate. Since there was no agreement between the linear mixed model and the imputed data (L2) for the prediction of genomic values and the estimation of marker effects, the model S1 was considered superior as it took into account the latent variable and the censored data. Marker selection increased correlations between the ranks of predicted GBVs by the linear and Cox frailty models and the corrected phenotypic values, and 120 markers were required to increase the predictive ability for the characteristic analyzed.

  20. Development of Algal Interspecies Correlation Estimation Models for Chemical Hazard Assessment

    EPA Science Inventory

    Web-based Interspecies Correlation Estimation (ICE) is an application developed to predict the acute toxicity of a chemical from 1 species to another taxon. Web-ICE models use the acute toxicity value for a surrogate species to predict effect values for other species, thus potent...

  1. Prediction of mechanical properties of composites of HDPE/HA/EAA.

    PubMed

    Albano, C; Perera, R; Cataño, L; Karam, A; González, G

    2011-04-01

    In this investigation, the behavior of the mechanical properties of composites of high-density polyethylene/hydroxyapatite (HDPE/HA) with and without ethylene-acrylic acid copolymer (EAA) as possible compatibilizer, was studied. Different mathematical models were used to predict their Young's modulus, tensile strength and elongation at break. A comparison with the experimental results shows that the theoretical models of Guth and Kerner modified can be used to predict the Young's modulus. On the other hand, the values obtained by the Verbeek model do not show a good agreement with the experimental data, since different factors that influence the mechanical properties are considered in this model such as: aspect ratio of the reinforcement, interfacial adhesion, porosity and binder content. TEM analysis confirms the discrepancies obtained between the experimental Young's modulus values and those predicted by the Verbeek model. The values of "P", "a" and "σ(A)" suggest that an interaction among the carboxylic groups of the copolymer and the hydroxyl groups of hydroxyapatite might be present. In composites with 20 and 30 wt% of filler, this interaction does not improve the Young's modulus values, since the deviations of the Verbeek model are significant. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. A reexamination of age-related variation in body weight and morphometry of Maryland nutria

    USGS Publications Warehouse

    Sherfy, M.H.; Mollett, T.A.; McGowan, K.R.; Daugherty, S.L.

    2006-01-01

    Age-related variation in morphometry has been documented for many species. Knowledge of growth patterns can be useful for modeling energetics, detecting physiological influences on populations, and predicting age. These benefits have shown value in understanding population dynamics of invasive species, particularly in developing efficient control and eradication programs. However, development and evaluation of descriptive and predictive models is a critical initial step in this process. Accordingly, we used data from necropsies of 1,544 nutria (Myocastor coypus) collected in Maryland, USA, to evaluate the accuracy of previously published models for prediction of nutria age from body weight. Published models underestimated body weights of our animals, especially for ages <3. We used cross-validation procedures to develop and evaluate models for describing nutria growth patterns and for predicting nutria age. We derived models from a randomly selected model-building data set (n = 192-193 M, 217-222 F) and evaluated them with the remaining animals (n = 487-488 M, 642-647 F). We used nonlinear regression to develop Gompertz growth-curve models relating morphometric variables to age. Predicted values of morphometric variables fell within the 95% confidence limits of their true values for most age classes. We also developed predictive models for estimating nutria age from morphometry, using linear regression of log-transformed age on morphometric variables. The evaluation data set corresponded with 95% prediction intervals from the new models. Predictive models for body weight and length provided greater accuracy and less bias than models for foot length and axillary girth. Our growth models accurately described age-related variation in nutria morphometry, and our predictive models provided accurate estimates of ages from morphometry that will be useful for live-captured individuals. Our models offer better accuracy and precision than previously published models, providing a capacity for modeling energetics and growth patterns of Maryland nutria as well as an empirical basis for determining population age structure from live-captured animals.

  3. Survival Regression Modeling Strategies in CVD Prediction.

    PubMed

    Barkhordari, Mahnaz; Padyab, Mojgan; Sardarinia, Mahsa; Hadaegh, Farzad; Azizi, Fereidoun; Bozorgmanesh, Mohammadreza

    2016-04-01

    A fundamental part of prevention is prediction. Potential predictors are the sine qua non of prediction models. However, whether incorporating novel predictors to prediction models could be directly translated to added predictive value remains an area of dispute. The difference between the predictive power of a predictive model with (enhanced model) and without (baseline model) a certain predictor is generally regarded as an indicator of the predictive value added by that predictor. Indices such as discrimination and calibration have long been used in this regard. Recently, the use of added predictive value has been suggested while comparing the predictive performances of the predictive models with and without novel biomarkers. User-friendly statistical software capable of implementing novel statistical procedures is conspicuously lacking. This shortcoming has restricted implementation of such novel model assessment methods. We aimed to construct Stata commands to help researchers obtain the aforementioned statistical indices. We have written Stata commands that are intended to help researchers obtain the following. 1, Nam-D'Agostino X 2 goodness of fit test; 2, Cut point-free and cut point-based net reclassification improvement index (NRI), relative absolute integrated discriminatory improvement index (IDI), and survival-based regression analyses. We applied the commands to real data on women participating in the Tehran lipid and glucose study (TLGS) to examine if information relating to a family history of premature cardiovascular disease (CVD), waist circumference, and fasting plasma glucose can improve predictive performance of Framingham's general CVD risk algorithm. The command is adpredsurv for survival models. Herein we have described the Stata package "adpredsurv" for calculation of the Nam-D'Agostino X 2 goodness of fit test as well as cut point-free and cut point-based NRI, relative and absolute IDI, and survival-based regression analyses. We hope this work encourages the use of novel methods in examining predictive capacity of the emerging plethora of novel biomarkers.

  4. Relationships among values, achievement orientations, and attitudes in youth sport.

    PubMed

    Lee, Martin J; Whitehead, Jean; Ntoumanis, Nikos; Hatzigeorgiadis, Antonis

    2008-10-01

    This research examines the value-expressive function of attitudes and achievement goal theory in predicting moral attitudes. In Study 1, the Youth Sport Values Questionnaire (YSVQ; Lee, Whitehead, & Balchin, 2000) was modified to measure moral, competence, and status values. In Study 2, structural equation modeling on data from 549 competitors (317 males, 232 females) aged 12-15 years showed that moral and competence values predicted prosocial attitudes, whereas moral (negatively) and status values (positively) predicted antisocial attitudes. Competence and status values predicted task and ego orientation, respectively, and task and ego orientation partially mediated the effect of competence values on prosocial attitudes and of status values on antisocial attitudes, respectively. The role of sport values is discussed, and new research directions are proposed.

  5. A Value Model for Depressive Symptoms and Hopelessness among University Students in Turkey

    ERIC Educational Resources Information Center

    Bilican, F. Isil; Yapici, Asim; Kutlu, M. Oguz

    2016-01-01

    This study aimed to examine which values predicted depressive symptoms and hopelessness in Turkey. While it was hypothesized that values emphasizing universalism, benevolence, conformity, security, tradition, spirituality, self-direction, and achievement would predict lower levels of depressive symptoms and hopelessness, those values emphasizing…

  6. Modern modeling techniques had limited external validity in predicting mortality from traumatic brain injury.

    PubMed

    van der Ploeg, Tjeerd; Nieboer, Daan; Steyerberg, Ewout W

    2016-10-01

    Prediction of medical outcomes may potentially benefit from using modern statistical modeling techniques. We aimed to externally validate modeling strategies for prediction of 6-month mortality of patients suffering from traumatic brain injury (TBI) with predictor sets of increasing complexity. We analyzed individual patient data from 15 different studies including 11,026 TBI patients. We consecutively considered a core set of predictors (age, motor score, and pupillary reactivity), an extended set with computed tomography scan characteristics, and a further extension with two laboratory measurements (glucose and hemoglobin). With each of these sets, we predicted 6-month mortality using default settings with five statistical modeling techniques: logistic regression (LR), classification and regression trees, random forests (RFs), support vector machines (SVM) and neural nets. For external validation, a model developed on one of the 15 data sets was applied to each of the 14 remaining sets. This process was repeated 15 times for a total of 630 validations. The area under the receiver operating characteristic curve (AUC) was used to assess the discriminative ability of the models. For the most complex predictor set, the LR models performed best (median validated AUC value, 0.757), followed by RF and support vector machine models (median validated AUC value, 0.735 and 0.732, respectively). With each predictor set, the classification and regression trees models showed poor performance (median validated AUC value, <0.7). The variability in performance across the studies was smallest for the RF- and LR-based models (inter quartile range for validated AUC values from 0.07 to 0.10). In the area of predicting mortality from TBI, nonlinear and nonadditive effects are not pronounced enough to make modern prediction methods beneficial. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Predicting nonstationary flood frequencies: Evidence supports an updated stationarity thesis in the United States

    NASA Astrophysics Data System (ADS)

    Luke, Adam; Vrugt, Jasper A.; AghaKouchak, Amir; Matthew, Richard; Sanders, Brett F.

    2017-07-01

    Nonstationary extreme value analysis (NEVA) can improve the statistical representation of observed flood peak distributions compared to stationary (ST) analysis, but management of flood risk relies on predictions of out-of-sample distributions for which NEVA has not been comprehensively evaluated. In this study, we apply split-sample testing to 1250 annual maximum discharge records in the United States and compare the predictive capabilities of NEVA relative to ST extreme value analysis using a log-Pearson Type III (LPIII) distribution. The parameters of the LPIII distribution in the ST and nonstationary (NS) models are estimated from the first half of each record using Bayesian inference. The second half of each record is reserved to evaluate the predictions under the ST and NS models. The NS model is applied for prediction by (1) extrapolating the trend of the NS model parameters throughout the evaluation period and (2) using the NS model parameter values at the end of the fitting period to predict with an updated ST model (uST). Our analysis shows that the ST predictions are preferred, overall. NS model parameter extrapolation is rarely preferred. However, if fitting period discharges are influenced by physical changes in the watershed, for example from anthropogenic activity, the uST model is strongly preferred relative to ST and NS predictions. The uST model is therefore recommended for evaluation of current flood risk in watersheds that have undergone physical changes. Supporting information includes a MATLAB® program that estimates the (ST/NS/uST) LPIII parameters from annual peak discharge data through Bayesian inference.

  8. A fluctuating plume dispersion model for the prediction of odour-impact frequencies from continuous stationary sources

    NASA Astrophysics Data System (ADS)

    Mussio, P.; Gnyp, A. W.; Henshaw, P. F.

    A fluctuating plume dispersion model has been developed to facilitate the prediction of odour-impact frequencies in the communities surrounding elevated point sources. The model was used to predict the frequencies of occurrence of odours of various magnitudes for 1 h periods. In addition, the model predicted the maximum odour level. The model was tested with an extensive set of data collected in the residential areas surrounding the paint shop of an automotive assembly plant. Most of the perceived odours in the vicinity of the 64, 46 m high stacks ranged between 2 and 7 odour units and generally persisted for less than 30 s. Ninety-eight different field determinations of odour impact frequencies within 1 km of the plant were conducted during the course of the study. To simplify evaluation, the frequencies of occurrence of different odour levels were summed to give the total frequency of occurrence of all readily detectable (>2 OU) odours. The model provided excellent simulation of the total frequencies of occurrence where the odour was frequent (i.e . readily detectable more than 30% of the time). At lower frequencies of occurrence the model prediction was poor. The stability class did not seem to affect the model's ability to predict field frequency values. However, the model provided excellent predictions of the maximum odour levels without being sensitive to either stability class or distance from the source. Ninety-five percent of the predicted maximum values were within a factor of two of the measured field maximum values.

  9. Use of Fuzzy rainfall-runoff predictions for claypan watersheds with conservation buffers in Northeast Missouri

    NASA Astrophysics Data System (ADS)

    Anomaa Senaviratne, G. M. M. M.; Udawatta, Ranjith P.; Anderson, Stephen H.; Baffaut, Claire; Thompson, Allen

    2014-09-01

    Fuzzy rainfall-runoff models are often used to forecast flood or water supply in large catchments and applications at small/field scale agricultural watersheds are limited. The study objectives were to develop, calibrate, and validate a fuzzy rainfall-runoff model using long-term data of three adjacent field scale row crop watersheds (1.65-4.44 ha) with intermittent discharge in the claypan soils of Northeast Missouri. The watersheds were monitored for a six-year calibration period starting 1991 (pre-buffer period). Thereafter, two of them were treated with upland contour grass and agroforestry (tree + grass) buffers (4.5 m wide, 36.5 m apart) to study water quality benefits. The fuzzy system was based on Mamdani method using MATLAB 7.10.0. The model predicted event-based runoff with model performance coefficients of r2 and Nash-Sutcliffe Coefficient (NSC) values greater than 0.65 for calibration and validation. The pre-buffer fuzzy system predicted event-based runoff for 30-50 times larger corn/soybean watersheds with r2 values of 0.82 and 0.68 and NSC values of 0.77 and 0.53, respectively. The runoff predicted by the fuzzy system closely agreed with values predicted by physically-based Agricultural Policy Environmental eXtender model (APEX) for the pre-buffer watersheds. The fuzzy rainfall-runoff model has the potential for runoff predictions at field-scale watersheds with minimum input. It also could up-scale the predictions for large-scale watersheds to evaluate the benefits of conservation practices.

  10. Prediction of wastewater quality indicators at the inflow to the wastewater treatment plant using data mining methods

    NASA Astrophysics Data System (ADS)

    Szeląg, Bartosz; Barbusiński, Krzysztof; Studziński, Jan; Bartkiewicz, Lidia

    2017-11-01

    In the study, models developed using data mining methods are proposed for predicting wastewater quality indicators: biochemical and chemical oxygen demand, total suspended solids, total nitrogen and total phosphorus at the inflow to wastewater treatment plant (WWTP). The models are based on values measured in previous time steps and daily wastewater inflows. Also, independent prediction systems that can be used in case of monitoring devices malfunction are provided. Models of wastewater quality indicators were developed using MARS (multivariate adaptive regression spline) method, artificial neural networks (ANN) of the multilayer perceptron type combined with the classification model (SOM) and cascade neural networks (CNN). The lowest values of absolute and relative errors were obtained using ANN+SOM, whereas the MARS method produced the highest error values. It was shown that for the analysed WWTP it is possible to obtain continuous prediction of selected wastewater quality indicators using the two developed independent prediction systems. Such models can ensure reliable WWTP work when wastewater quality monitoring systems become inoperable, or are under maintenance.

  11. A neighborhood statistics model for predicting stream pathogen indicator levels.

    PubMed

    Pandey, Pramod K; Pasternack, Gregory B; Majumder, Mahbubul; Soupir, Michelle L; Kaiser, Mark S

    2015-03-01

    Because elevated levels of water-borne Escherichia coli in streams are a leading cause of water quality impairments in the U.S., water-quality managers need tools for predicting aqueous E. coli levels. Presently, E. coli levels may be predicted using complex mechanistic models that have a high degree of unchecked uncertainty or simpler statistical models. To assess spatio-temporal patterns of instream E. coli levels, herein we measured E. coli, a pathogen indicator, at 16 sites (at four different times) within the Squaw Creek watershed, Iowa, and subsequently, the Markov Random Field model was exploited to develop a neighborhood statistics model for predicting instream E. coli levels. Two observed covariates, local water temperature (degrees Celsius) and mean cross-sectional depth (meters), were used as inputs to the model. Predictions of E. coli levels in the water column were compared with independent observational data collected from 16 in-stream locations. The results revealed that spatio-temporal averages of predicted and observed E. coli levels were extremely close. Approximately 66 % of individual predicted E. coli concentrations were within a factor of 2 of the observed values. In only one event, the difference between prediction and observation was beyond one order of magnitude. The mean of all predicted values at 16 locations was approximately 1 % higher than the mean of the observed values. The approach presented here will be useful while assessing instream contaminations such as pathogen/pathogen indicator levels at the watershed scale.

  12. Elongated Tetrakaidecahedron Micromechanics Model for Space Shuttle External Tank Foams

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Ghosn, Louis J.; Lerch, Bradley A.; Baker, Eric H.

    2009-01-01

    The results of microstructural characterization studies and physical and mechanical testing of BX-265 and NCFI24-124 foams are reported. A micromechanics model developed previously by the authors is reviewed, and the resulting equations for the elastic constants, the relative density, and the strength of the foam in the principal material directions are presented. The micromechanics model is also used to derive equations to predict the effect of vacuum on the tensile strength and the strains induced by exposure to vacuum. Using a combination of microstructural dimensions and physical and mechanical measurements as input, the equations for the elastic constants and the relative density are applied and the remaining microstructural dimensions are predicted. The predicted microstructural dimensions are in close agreement with the average measured values for both BX-265 and NCFI24-124. With the microstructural dimensions, the model predicts the ratio of the strengths in the principal material directions for both foams. The model is also used to predict the Poisson s ratios, the vacuum-induced strains, and the effect of vacuum on the tensile strengths. However, the comparison of these predicted values with the measured values is not as favorable.

  13. Simulation of nutrient and sediment concentrations and loads in the Delaware inland bays watershed: Extension of the hydrologic and water-quality model to ungaged segments

    USGS Publications Warehouse

    Gutierrez-Magness, Angelica L.

    2006-01-01

    Rapid population increases, agriculture, and industrial practices have been identified as important sources of excessive nutrients and sediments in the Delaware Inland Bays watershed. The amount and effect of excessive nutrients and sediments in the Inland Bays watershed have been well documented by the Delaware Geological Survey, the Delaware Department of Natural Resources and Environmental Control, the U.S. Environmental Protection Agency's National Estuary Program, the Delaware Center for Inland Bays, the University of Delaware, and other agencies. This documentation and data previously were used to develop a hydrologic and water-quality model of the Delaware Inland Bays watershed to simulate nutrients and sediment concentrations and loads, and to calibrate the model by comparing concentrations and streamflow data at six stations in the watershed over a limited period of time (October 1998 through April 2000). Although the model predictions of nutrient and sediment concentrations for the calibrated segments were fairly accurate, the predictions for the 28 ungaged segments located near tidal areas, where stream data were not available, were above the range of values measured in the area. The cooperative study established in 2000 by the Delaware Department of Natural Resources and Environmental Control, the Delaware Geological Survey, and the U.S. Geological Survey was extended to evaluate the model predictions in ungaged segments and to ensure that the model, developed as a planning and management tool, could accurately predict nutrient and sediment concentrations within the measured range of values in the area. The evaluation of the predictions was limited to the period of calibration (1999) of the 2003 model. To develop estimates on ungaged watersheds, parameter values from calibrated segments are transferred to the ungaged segments; however, accurate predictions are unlikely where parameter transference is subject to error. The unexpected nutrient and sediment concentrations simulated with the 2003 model were likely the result of inappropriate criteria for the transference of parameter values. From a model-simulation perspective, it is a common practice to transfer parameter values based on the similarity of soils or the similarity of land-use proportions between segments. For the Inland Bays model, the similarity of soils between segments was used as the basis to transfer parameter values. An alternative approach, which is documented in this report, is based on the similarity of the spatial distribution of the land use between segments and the similarity of land-use proportions, as these can be important factors for the transference of parameter values in lumped models. Previous work determined that the difference in the variation of runoff due to various spatial distributions of land use within a watershed can cause substantialloss of accuracy in the model predictions. The incorporation of the spatial distribution of land use to transfer parameter values from calibrated to uncalibrated segments provided more consistent and rational predictions of flow, especially during the summer, and consequently, predictions of lower nutrient concentrations during the same period. For the segments where the similarity of spatial distribution of land use was not clearly established with a calibrated segment, the similarity of the location of the most impervious areas was also used as a criterion for the transference of parameter values. The model predictions from the 28 ungaged segments were verified through comparison with measured in-stream concentrations from local and nearby streams provided by the Delaware Department of Natural Resources and Environmental Control. Model results indicated that the predicted edge-of-stream total suspended solids loads in the Inland Bays watershed were low in comparison to loads reported for the Eastern Shore of Maryland from the Chesapeake Bay watershed model. The flatness of the ter

  14. [Formulation of combined predictive indicators using logistic regression model in predicting sepsis and prognosis].

    PubMed

    Duan, Liwei; Zhang, Sheng; Lin, Zhaofen

    2017-02-01

    To explore the method and performance of using multiple indices to diagnose sepsis and to predict the prognosis of severe ill patients. Critically ill patients at first admission to intensive care unit (ICU) of Changzheng Hospital, Second Military Medical University, from January 2014 to September 2015 were enrolled if the following conditions were satisfied: (1) patients were 18-75 years old; (2) the length of ICU stay was more than 24 hours; (3) All records of the patients were available. Data of the patients was collected by searching the electronic medical record system. Logistic regression model was formulated to create the new combined predictive indicator and the receiver operating characteristic (ROC) curve for the new predictive indicator was built. The area under the ROC curve (AUC) for both the new indicator and original ones were compared. The optimal cut-off point was obtained where the Youden index reached the maximum value. Diagnostic parameters such as sensitivity, specificity and predictive accuracy were also calculated for comparison. Finally, individual values were substituted into the equation to test the performance in predicting clinical outcomes. A total of 362 patients (218 males and 144 females) were enrolled in our study and 66 patients died. The average age was (48.3±19.3) years old. (1) For the predictive model only containing categorical covariants [including procalcitonin (PCT), lipopolysaccharide (LPS), infection, white blood cells count (WBC) and fever], increased PCT, increased WBC and fever were demonstrated to be independent risk factors for sepsis in the logistic equation. The AUC for the new combined predictive indicator was higher than that of any other indictor, including PCT, LPS, infection, WBC and fever (0.930 vs. 0.661, 0.503, 0.570, 0.837, 0.800). The optimal cut-off value for the new combined predictive indicator was 0.518. Using the new indicator to diagnose sepsis, the sensitivity, specificity and diagnostic accuracy rate were 78.00%, 93.36% and 87.47%, respectively. One patient was randomly selected, and the clinical data was substituted into the probability equation for prediction. The calculated value was 0.015, which was less than the cut-off value (0.518), indicating that the prognosis was non-sepsis at an accuracy of 87.47%. (2) For the predictive model only containing continuous covariants, the logistic model which combined acute physiology and chronic health evaluation II (APACHE II) score and sequential organ failure assessment (SOFA) score to predict in-hospital death events, both APACHE II score and SOFA score were independent risk factors for death. The AUC for the new predictive indicator was higher than that of APACHE II score and SOFA score (0.834 vs. 0.812, 0.813). The optimal cut-off value for the new combined predictive indicator in predicting in-hospital death events was 0.236, and the corresponding sensitivity, specificity and diagnostic accuracy for the combined predictive indicator were 73.12%, 76.51% and 75.70%, respectively. One patient was randomly selected, and the APACHE II score and SOFA score was substituted into the probability equation for prediction. The calculated value was 0.570, which was higher than the cut-off value (0.236), indicating that the death prognosis at an accuracy of 75.70%. The combined predictive indicator, which is formulated by logistic regression models, is superior to any single indicator in predicting sepsis or in-hospital death events.

  15. GEMAS: prediction of solid-solution phase partitioning coefficients (Kd) for oxoanions and boric acid in soils using mid-infrared diffuse reflectance spectroscopy.

    PubMed

    Janik, Leslie J; Forrester, Sean T; Soriano-Disla, José M; Kirby, Jason K; McLaughlin, Michael J; Reimann, Clemens

    2015-02-01

    The authors' aim was to develop rapid and inexpensive regression models for the prediction of partitioning coefficients (Kd), defined as the ratio of the total or surface-bound metal/metalloid concentration of the solid phase to the total concentration in the solution phase. Values of Kd were measured for boric acid (B[OH]3(0)) and selected added soluble oxoanions: molybdate (MoO4(2-)), antimonate (Sb[OH](6-)), selenate (SeO4(2-)), tellurate (TeO4(2-)) and vanadate (VO4(3-)). Models were developed using approximately 500 spectrally representative soils of the Geochemical Mapping of Agricultural Soils of Europe (GEMAS) program. These calibration soils represented the major properties of the entire 4813 soils of the GEMAS project. Multiple linear regression (MLR) from soil properties, partial least-squares regression (PLSR) using mid-infrared diffuse reflectance Fourier-transformed (DRIFT) spectra, and models using DRIFT spectra plus analytical pH values (DRIFT + pH), were compared with predicted log K(d + 1) values. Apart from selenate (R(2)  = 0.43), the DRIFT + pH calibrations resulted in marginally better models to predict log K(d + 1) values (R(2)  = 0.62-0.79), compared with those from PSLR-DRIFT (R(2)  = 0.61-0.72) and MLR (R(2)  = 0.54-0.79). The DRIFT + pH calibrations were applied to the prediction of log K(d + 1) values in the remaining 4313 soils. An example map of predicted log K(d + 1) values for added soluble MoO4(2-) in soils across Europe is presented. The DRIFT + pH PLSR models provided a rapid and inexpensive tool to assess the risk of mobility and potential availability of boric acid and selected oxoanions in European soils. For these models to be used in the prediction of log K(d + 1) values in soils globally, additional research will be needed to determine if soil variability is accounted on the calibration. © 2014 SETAC.

  16. Predicting coronary artery disease using different artificial neural network models.

    PubMed

    Colak, M Cengiz; Colak, Cemil; Kocatürk, Hasan; Sağiroğlu, Seref; Barutçu, Irfan

    2008-08-01

    Eight different learning algorithms used for creating artificial neural network (ANN) models and the different ANN models in the prediction of coronary artery disease (CAD) are introduced. This work was carried out as a retrospective case-control study. Overall, 124 consecutive patients who had been diagnosed with CAD by coronary angiography (at least 1 coronary stenosis > 50% in major epicardial arteries) were enrolled in the work. Angiographically, the 113 people (group 2) with normal coronary arteries were taken as control subjects. Multi-layered perceptrons ANN architecture were applied. The ANN models trained with different learning algorithms were performed in 237 records, divided into training (n=171) and testing (n=66) data sets. The performance of prediction was evaluated by sensitivity, specificity and accuracy values based on standard definitions. The results have demonstrated that ANN models trained with eight different learning algorithms are promising because of high (greater than 71%) sensitivity, specificity and accuracy values in the prediction of CAD. Accuracy, sensitivity and specificity values varied between 83.63%-100%, 86.46%-100% and 74.67%-100% for training, respectively. For testing, the values were more than 71% for sensitivity, 76% for specificity and 81% for accuracy. It may be proposed that the use of different learning algorithms other than backpropagation and larger sample sizes can improve the performance of prediction. The proposed ANN models trained with these learning algorithms could be used a promising approach for predicting CAD without the need for invasive diagnostic methods and could help in the prognostic clinical decision.

  17. Models of Affective Decision Making: How Do Feelings Predict Choice?

    PubMed

    Charpentier, Caroline J; De Neve, Jan-Emmanuel; Li, Xinyi; Roiser, Jonathan P; Sharot, Tali

    2016-06-01

    Intuitively, how you feel about potential outcomes will determine your decisions. Indeed, an implicit assumption in one of the most influential theories in psychology, prospect theory, is that feelings govern choice. Surprisingly, however, very little is known about the rules by which feelings are transformed into decisions. Here, we specified a computational model that used feelings to predict choices. We found that this model predicted choice better than existing value-based models, showing a unique contribution of feelings to decisions, over and above value. Similar to the value function in prospect theory, our feeling function showed diminished sensitivity to outcomes as value increased. However, loss aversion in choice was explained by an asymmetry in how feelings about losses and gains were weighted when making a decision, not by an asymmetry in the feelings themselves. The results provide new insights into how feelings are utilized to reach a decision. © The Author(s) 2016.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delmau, L.H.; Haverlock, T.J.; Sloop, F.V., Jr.

    This report presents the work that followed the CSSX model development completed in FY2002. The developed cesium and potassium extraction model was based on extraction data obtained from simple aqueous media. It was tested to ensure the validity of the prediction for the cesium extraction from actual waste. Compositions of the actual tank waste were obtained from the Savannah River Site personnel and were used to prepare defined simulants and to predict cesium distribution ratios using the model. It was therefore possible to compare the cesium distribution ratios obtained from the actual waste, the simulant, and the predicted values. Itmore » was determined that the predicted values agree with the measured values for the simulants. Predicted values also agreed, with three exceptions, with measured values for the tank wastes. Discrepancies were attributed in part to the uncertainty in the cation/anion balance in the actual waste composition, but likely more so to the uncertainty in the potassium concentration in the waste, given the demonstrated large competing effect of this metal on cesium extraction. It was demonstrated that the upper limit for the potassium concentration in the feed ought to not exceed 0.05 M in order to maintain suitable cesium distribution ratios.« less

  19. Estimation of Filling and Afterload Conditions by Pump Intrinsic Parameters in a Pulsatile Total Artificial Heart.

    PubMed

    Cuenca-Navalon, Elena; Laumen, Marco; Finocchiaro, Thomas; Steinseifer, Ulrich

    2016-07-01

    A physiological control algorithm is being developed to ensure an optimal physiological interaction between the ReinHeart total artificial heart (TAH) and the circulatory system. A key factor for that is the long-term, accurate determination of the hemodynamic state of the cardiovascular system. This study presents a method to determine estimation models for predicting hemodynamic parameters (pump chamber filling and afterload) from both left and right cardiovascular circulations. The estimation models are based on linear regression models that correlate filling and afterload values with pump intrinsic parameters derived from measured values of motor current and piston position. Predictions for filling lie in average within 5% from actual values, predictions for systemic afterload (AoPmean , AoPsys ) and mean pulmonary afterload (PAPmean ) lie in average within 9% from actual values. Predictions for systolic pulmonary afterload (PAPsys ) present an average deviation of 14%. The estimation models show satisfactory prediction and confidence intervals and are thus suitable to estimate hemodynamic parameters. This method and derived estimation models are a valuable alternative to implanted sensors and are an essential step for the development of a physiological control algorithm for a fully implantable TAH. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  20. EVALUATING RISK-PREDICTION MODELS USING DATA FROM ELECTRONIC HEALTH RECORDS.

    PubMed

    Wang, L E; Shaw, Pamela A; Mathelier, Hansie M; Kimmel, Stephen E; French, Benjamin

    2016-03-01

    The availability of data from electronic health records facilitates the development and evaluation of risk-prediction models, but estimation of prediction accuracy could be limited by outcome misclassification, which can arise if events are not captured. We evaluate the robustness of prediction accuracy summaries, obtained from receiver operating characteristic curves and risk-reclassification methods, if events are not captured (i.e., "false negatives"). We derive estimators for sensitivity and specificity if misclassification is independent of marker values. In simulation studies, we quantify the potential for bias in prediction accuracy summaries if misclassification depends on marker values. We compare the accuracy of alternative prognostic models for 30-day all-cause hospital readmission among 4548 patients discharged from the University of Pennsylvania Health System with a primary diagnosis of heart failure. Simulation studies indicate that if misclassification depends on marker values, then the estimated accuracy improvement is also biased, but the direction of the bias depends on the direction of the association between markers and the probability of misclassification. In our application, 29% of the 1143 readmitted patients were readmitted to a hospital elsewhere in Pennsylvania, which reduced prediction accuracy. Outcome misclassification can result in erroneous conclusions regarding the accuracy of risk-prediction models.

  1. Model Update of a Micro Air Vehicle (MAV) Flexible Wing Frame with Uncertainty Quantification

    NASA Technical Reports Server (NTRS)

    Reaves, Mercedes C.; Horta, Lucas G.; Waszak, Martin R.; Morgan, Benjamin G.

    2004-01-01

    This paper describes a procedure to update parameters in the finite element model of a Micro Air Vehicle (MAV) to improve displacement predictions under aerodynamics loads. Because of fabrication, materials, and geometric uncertainties, a statistical approach combined with Multidisciplinary Design Optimization (MDO) is used to modify key model parameters. Static test data collected using photogrammetry are used to correlate with model predictions. Results show significant improvements in model predictions after parameters are updated; however, computed probabilities values indicate low confidence in updated values and/or model structure errors. Lessons learned in the areas of wing design, test procedures, modeling approaches with geometric nonlinearities, and uncertainties quantification are all documented.

  2. Predicting Renal Failure Progression in Chronic Kidney Disease Using Integrated Intelligent Fuzzy Expert System.

    PubMed

    Norouzi, Jamshid; Yadollahpour, Ali; Mirbagheri, Seyed Ahmad; Mazdeh, Mitra Mahdavi; Hosseini, Seyed Ahmad

    2016-01-01

    Chronic kidney disease (CKD) is a covert disease. Accurate prediction of CKD progression over time is necessary for reducing its costs and mortality rates. The present study proposes an adaptive neurofuzzy inference system (ANFIS) for predicting the renal failure timeframe of CKD based on real clinical data. This study used 10-year clinical records of newly diagnosed CKD patients. The threshold value of 15 cc/kg/min/1.73 m(2) of glomerular filtration rate (GFR) was used as the marker of renal failure. A Takagi-Sugeno type ANFIS model was used to predict GFR values. Variables of age, sex, weight, underlying diseases, diastolic blood pressure, creatinine, calcium, phosphorus, uric acid, and GFR were initially selected for the predicting model. Weight, diastolic blood pressure, diabetes mellitus as underlying disease, and current GFR(t) showed significant correlation with GFRs and were selected as the inputs of model. The comparisons of the predicted values with the real data showed that the ANFIS model could accurately estimate GFR variations in all sequential periods (Normalized Mean Absolute Error lower than 5%). Despite the high uncertainties of human body and dynamic nature of CKD progression, our model can accurately predict the GFR variations at long future periods.

  3. University of North Carolina Caries Risk Assessment Study: comparisons of high risk prediction, any risk prediction, and any risk etiologic models.

    PubMed

    Beck, J D; Weintraub, J A; Disney, J A; Graves, R C; Stamm, J W; Kaste, L M; Bohannan, H M

    1992-12-01

    The purpose of this analysis is to compare three different statistical models for predicting children likely to be at risk of developing dental caries over a 3-yr period. Data are based on 4117 children who participated in the University of North Carolina Caries Risk Assessment Study, a longitudinal study conducted in the Aiken, South Carolina, and Portland, Maine areas. The three models differed with respect to either the types of variables included or the definition of disease outcome. The two "Prediction" models included both risk factor variables thought to cause dental caries and indicator variables that are associated with dental caries, but are not thought to be causal for the disease. The "Etiologic" model included only etiologic factors as variables. A dichotomous outcome measure--none or any 3-yr increment, was used in the "Any Risk Etiologic model" and the "Any Risk Prediction Model". Another outcome, based on a gradient measure of disease, was used in the "High Risk Prediction Model". The variables that are significant in these models vary across grades and sites, but are more consistent among the Etiologic model than the Predictor models. However, among the three sets of models, the Any Risk Prediction Models have the highest sensitivity and positive predictive values, whereas the High Risk Prediction Models have the highest specificity and negative predictive values. Considerations in determining model preference are discussed.

  4. Prediction on sunspot activity based on fuzzy information granulation and support vector machine

    NASA Astrophysics Data System (ADS)

    Peng, Lingling; Yan, Haisheng; Yang, Zhigang

    2018-04-01

    In order to analyze the range of sunspots, a combined prediction method of forecasting the fluctuation range of sunspots based on fuzzy information granulation (FIG) and support vector machine (SVM) was put forward. Firstly, employing the FIG to granulate sample data and extract va)alid information of each window, namely the minimum value, the general average value and the maximum value of each window. Secondly, forecasting model is built respectively with SVM and then cross method is used to optimize these parameters. Finally, the fluctuation range of sunspots is forecasted with the optimized SVM model. Case study demonstrates that the model have high accuracy and can effectively predict the fluctuation of sunspots.

  5. Mixed model approaches for diallel analysis based on a bio-model.

    PubMed

    Zhu, J; Weir, B S

    1996-12-01

    A MINQUE(1) procedure, which is minimum norm quadratic unbiased estimation (MINQUE) method with 1 for all the prior values, is suggested for estimating variance and covariance components in a bio-model for diallel crosses. Unbiasedness and efficiency of estimation were compared for MINQUE(1), restricted maximum likelihood (REML) and MINQUE theta which has parameter values for the prior values. MINQUE(1) is almost as efficient as MINQUE theta for unbiased estimation of genetic variance and covariance components. The bio-model is efficient and robust for estimating variance and covariance components for maternal and paternal effects as well as for nuclear effects. A procedure of adjusted unbiased prediction (AUP) is proposed for predicting random genetic effects in the bio-model. The jack-knife procedure is suggested for estimation of sampling variances of estimated variance and covariance components and of predicted genetic effects. Worked examples are given for estimation of variance and covariance components and for prediction of genetic merits.

  6. Water quality characterization and mathematical modeling of dissolved oxygen in the East and West Ponds, Jamaica Bay Wildlife Refuge.

    PubMed

    Maillacheruvu, Krishnanand; Roy, D; Tanacredi, J

    2003-09-01

    The current study was undertaken to characterize the East and West Ponds and develop a mathematical model of the effects of nutrient and BOD loading on dissolved oxygen (DO) concentrations in these ponds. The model predicted that both ponds will recover adequately given the average expected range of nutrient and BOD loading due to waste from surface runoff and migratory birds. The predicted dissolved oxygen levels in both ponds were greater than 5.0 mg/L, and were supported by DO levels in the field which were typically above 5.0 mg/L during the period of this study. The model predicted a steady-state NBOD concentration of 12.0-14.0 mg/L in the East Pond, compared to an average measured value of 3.73 mg/L in 1994 and an average measured value of 12.51 mg/L in a 1996-97 study. The model predicted that the NBOD concentration in the West Pond would be under 3.0 mg/L compared to the average measured values of 7.50 mg/L in 1997, and 8.51 mg/L in 1994. The model predicted that phosphorus (as PO4(3-)) concentration in the East Pond will approach 4.2 mg/L in 4 months, compared to measured average value of 2.01 mg/L in a 1994 study. The model predicted that phosphorus concentration in the West Pond will approach 1.00 mg/L, compared to a measured average phosphorus (as PO4(3-)) concentration of 1.57 mg/L in a 1994 study.

  7. Modelling biological invasions: species traits, species interactions, and habitat heterogeneity.

    PubMed

    Cannas, Sergio A; Marco, Diana E; Páez, Sergio A

    2003-05-01

    In this paper we explore the integration of different factors to understand, predict and control ecological invasions, through a general cellular automaton model especially developed. The model includes life history traits of several species in a modular structure interacting multiple cellular automata. We performed simulations using field values corresponding to the exotic Gleditsia triacanthos and native co-dominant trees in a montane area. Presence of G. triacanthos juvenile bank was a determinant condition for invasion success. Main parameters influencing invasion velocity were mean seed dispersal distance and minimum reproductive age. Seed production had a small influence on the invasion velocity. Velocities predicted by the model agreed well with estimations from field data. Values of population density predicted matched field values closely. The modular structure of the model, the explicit interaction between the invader and the native species, and the simplicity of parameters and transition rules are novel features of the model.

  8. Estimation of soil hydraulic properties with microwave techniques

    NASA Technical Reports Server (NTRS)

    Oneill, P. E.; Gurney, R. J.; Camillo, P. J.

    1985-01-01

    Useful quantitative information about soil properties may be obtained by calibrating energy and moisture balance models with remotely sensed data. A soil physics model solves heat and moisture flux equations in the soil profile and is driven by the surface energy balance. Model generated surface temperature and soil moisture and temperature profiles are then used in a microwave emission model to predict the soil brightness temperature. The model hydraulic parameters are varied until the predicted temperatures agree with the remotely sensed values. This method is used to estimate values for saturated hydraulic conductivity, saturated matrix potential, and a soil texture parameter. The conductivity agreed well with a value measured with an infiltration ring and the other parameters agreed with values in the literature.

  9. Prediction and visualization of redox conditions in the groundwater of Central Valley, California

    USGS Publications Warehouse

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, JoAnn M.

    2017-01-01

    Regional-scale, three-dimensional continuous probability models, were constructed for aspects of redox conditions in the groundwater system of the Central Valley, California. These models yield grids depicting the probability that groundwater in a particular location will have dissolved oxygen (DO) concentrations less than selected threshold values representing anoxic groundwater conditions, or will have dissolved manganese (Mn) concentrations greater than selected threshold values representing secondary drinking water-quality contaminant levels (SMCL) and health-based screening levels (HBSL). The probability models were constrained by the alluvial boundary of the Central Valley to a depth of approximately 300 m. Probability distribution grids can be extracted from the 3-D models at any desired depth, and are of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to anoxic conditions.Models were constructed using a Boosted Regression Trees (BRT) machine learning technique that produces many trees as part of an additive model and has the ability to handle many variables, automatically incorporate interactions, and is resistant to collinearity. Machine learning methods for statistical prediction are becoming increasing popular in that they do not require assumptions associated with traditional hypothesis testing. Models were constructed using measured dissolved oxygen and manganese concentrations sampled from 2767 wells within the alluvial boundary of the Central Valley, and over 60 explanatory variables representing regional-scale soil properties, soil chemistry, land use, aquifer textures, and aquifer hydrologic properties. Models were trained on a USGS dataset of 932 wells, and evaluated on an independent hold-out dataset of 1835 wells from the California Division of Drinking Water. We used cross-validation to assess the predictive performance of models of varying complexity, as a basis for selecting final models. Trained models were applied to cross-validation testing data and a separate hold-out dataset to evaluate model predictive performance by emphasizing three model metrics of fit: Kappa; accuracy; and the area under the receiver operator characteristic curve (ROC). The final trained models were used for mapping predictions at discrete depths to a depth of 304.8 m. Trained DO and Mn models had accuracies of 86–100%, Kappa values of 0.69–0.99, and ROC values of 0.92–1.0. Model accuracies for cross-validation testing datasets were 82–95% and ROC values were 0.87–0.91, indicating good predictive performance. Kappas for the cross-validation testing dataset were 0.30–0.69, indicating fair to substantial agreement between testing observations and model predictions. Hold-out data were available for the manganese model only and indicated accuracies of 89–97%, ROC values of 0.73–0.75, and Kappa values of 0.06–0.30. The predictive performance of both the DO and Mn models was reasonable, considering all three of these fit metrics and the low percentages of low-DO and high-Mn events in the data.

  10. Is the Factor-of-2 Rule Broadly Applicable for Evaluating the Prediction Accuracy of Metal-Toxicity Models?

    PubMed

    Meyer, Joseph S; Traudt, Elizabeth M; Ranville, James F

    2018-01-01

    In aquatic toxicology, a toxicity-prediction model is generally deemed acceptable if its predicted median lethal concentrations (LC50 values) or median effect concentrations (EC50 values) are within a factor of 2 of their paired, observed LC50 or EC50 values. However, that rule of thumb is based on results from only two studies: multiple LC50 values for the fathead minnow (Pimephales promelas) exposed to Cu in one type of exposure water, and multiple EC50 values for Daphnia magna exposed to Zn in another type of exposure water. We tested whether the factor-of-2 rule of thumb also is supported in a different dataset in which D. magna were exposed separately to Cd, Cu, Ni, or Zn. Overall, the factor-of-2 rule of thumb appeared to be a good guide to evaluating the acceptability of a toxicity model's underprediction or overprediction of observed LC50 or EC50 values in these acute toxicity tests.

  11. Computational substrates of social value in interpersonal collaboration.

    PubMed

    Fareri, Dominic S; Chang, Luke J; Delgado, Mauricio R

    2015-05-27

    Decisions to engage in collaborative interactions require enduring considerable risk, yet provide the foundation for building and maintaining relationships. Here, we investigate the mechanisms underlying this process and test a computational model of social value to predict collaborative decision making. Twenty-six participants played an iterated trust game and chose to invest more frequently with their friends compared with a confederate or computer despite equal reinforcement rates. This behavior was predicted by our model, which posits that people receive a social value reward signal from reciprocation of collaborative decisions conditional on the closeness of the relationship. This social value signal was associated with increased activity in the ventral striatum and medial prefrontal cortex, which significantly predicted the reward parameters from the social value model. Therefore, we demonstrate that the computation of social value drives collaborative behavior in repeated interactions and provide a mechanistic account of reward circuit function instantiating this process. Copyright © 2015 the authors 0270-6474/15/358170-11$15.00/0.

  12. The importance of molecular structures, endpoints' values, and predictivity parameters in QSAR research: QSAR analysis of a series of estrogen receptor binders.

    PubMed

    Li, Jiazhong; Gramatica, Paola

    2010-11-01

    Quantitative structure-activity relationship (QSAR) methodology aims to explore the relationship between molecular structures and experimental endpoints, producing a model for the prediction of new data; the predictive performance of the model must be checked by external validation. Clearly, the qualities of chemical structure information and experimental endpoints, as well as the statistical parameters used to verify the external predictivity have a strong influence on QSAR model reliability. Here, we emphasize the importance of these three aspects by analyzing our models on estrogen receptor binders (Endocrine disruptor knowledge base (EDKB) database). Endocrine disrupting chemicals, which mimic or antagonize the endogenous hormones such as estrogens, are a hot topic in environmental and toxicological sciences. QSAR shows great values in predicting the estrogenic activity and exploring the interactions between the estrogen receptor and ligands. We have verified our previously published model for additional external validation on new EDKB chemicals. Having found some errors in the used 3D molecular conformations, we redevelop a new model using the same data set with corrected structures, the same method (ordinary least-square regression, OLS) and DRAGON descriptors. The new model, based on some different descriptors, is more predictive on external prediction sets. Three different formulas to calculate correlation coefficient for the external prediction set (Q2 EXT) were compared, and the results indicated that the new proposal of Consonni et al. had more reasonable results, consistent with the conclusions from regression line, Williams plot and root mean square error (RMSE) values. Finally, the importance of reliable endpoints values has been highlighted by comparing the classification assignments of EDKB with those of another estrogen receptor binders database (METI): we found that 16.1% assignments of the common compounds were opposite (20 among 124 common compounds). In order to verify the real assignments for these inconsistent compounds, we predicted these samples, as a blind external set, by our regression models and compared the results with the two databases. The results indicated that most of the predictions were consistent with METI. Furthermore, we built a kNN classification model using the 104 consistent compounds to predict those inconsistent ones, and most of the predictions were also in agreement with METI database.

  13. Developing Risk Prediction Models for Kidney Injury and Assessing Incremental Value for Novel Biomarkers

    PubMed Central

    Kerr, Kathleen F.; Meisner, Allison; Thiessen-Philbrook, Heather; Coca, Steven G.

    2014-01-01

    The field of nephrology is actively involved in developing biomarkers and improving models for predicting patients’ risks of AKI and CKD and their outcomes. However, some important aspects of evaluating biomarkers and risk models are not widely appreciated, and statistical methods are still evolving. This review describes some of the most important statistical concepts for this area of research and identifies common pitfalls. Particular attention is paid to metrics proposed within the last 5 years for quantifying the incremental predictive value of a new biomarker. PMID:24855282

  14. Quantitative computed tomography for the prediction of pulmonary function after lung cancer surgery: a simple method using simulation software.

    PubMed

    Ueda, Kazuhiro; Tanaka, Toshiki; Li, Tao-Sheng; Tanaka, Nobuyuki; Hamano, Kimikazu

    2009-03-01

    The prediction of pulmonary functional reserve is mandatory in therapeutic decision-making for patients with resectable lung cancer, especially those with underlying lung disease. Volumetric analysis in combination with densitometric analysis of the affected lung lobe or segment with quantitative computed tomography (CT) helps to identify residual pulmonary function, although the utility of this modality needs investigation. The subjects of this prospective study were 30 patients with resectable lung cancer. A three-dimensional CT lung model was created with voxels representing normal lung attenuation (-600 to -910 Hounsfield units). Residual pulmonary function was predicted by drawing a boundary line between the lung to be preserved and that to be resected, directly on the lung model. The predicted values were correlated with the postoperative measured values. The predicted and measured values corresponded well (r=0.89, p<0.001). Although the predicted values corresponded with values predicted by simple calculation using a segment-counting method (r=0.98), there were two outliers whose pulmonary functional reserves were predicted more accurately by CT than by segment counting. The measured pulmonary functional reserves were significantly higher than the predicted values in patients with extensive emphysematous areas (<-910 Hounsfield units), but not in patients with chronic obstructive pulmonary disease. Quantitative CT yielded accurate prediction of functional reserve after lung cancer surgery and helped to identify patients whose functional reserves are likely to be underestimated. Hence, this modality should be utilized for patients with marginal pulmonary function.

  15. Assessing the capacity of social determinants of health data to augment predictive models identifying patients in need of wraparound social services.

    PubMed

    Kasthurirathne, Suranga N; Vest, Joshua R; Menachemi, Nir; Halverson, Paul K; Grannis, Shaun J

    2018-01-01

    A growing variety of diverse data sources is emerging to better inform health care delivery and health outcomes. We sought to evaluate the capacity for clinical, socioeconomic, and public health data sources to predict the need for various social service referrals among patients at a safety-net hospital. We integrated patient clinical data and community-level data representing patients' social determinants of health (SDH) obtained from multiple sources to build random forest decision models to predict the need for any, mental health, dietitian, social work, or other SDH service referrals. To assess the impact of SDH on improving performance, we built separate decision models using clinical and SDH determinants and clinical data only. Decision models predicting the need for any, mental health, and dietitian referrals yielded sensitivity, specificity, and accuracy measures ranging between 60% and 75%. Specificity and accuracy scores for social work and other SDH services ranged between 67% and 77%, while sensitivity scores were between 50% and 63%. Area under the receiver operating characteristic curve values for the decision models ranged between 70% and 78%. Models for predicting the need for any services reported positive predictive values between 65% and 73%. Positive predictive values for predicting individual outcomes were below 40%. The need for various social service referrals can be predicted with considerable accuracy using a wide range of readily available clinical and community data that measure socioeconomic and public health conditions. While the use of SDH did not result in significant performance improvements, our approach represents a novel and important application of risk predictive modeling. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. Predicting the effect of cytochrome P450 inhibitors on substrate drugs: analysis of physiologically based pharmacokinetic modeling submissions to the US Food and Drug Administration.

    PubMed

    Wagner, Christian; Pan, Yuzhuo; Hsu, Vicky; Grillo, Joseph A; Zhang, Lei; Reynolds, Kellie S; Sinha, Vikram; Zhao, Ping

    2015-01-01

    The US Food and Drug Administration (FDA) has seen a recent increase in the application of physiologically based pharmacokinetic (PBPK) modeling towards assessing the potential of drug-drug interactions (DDI) in clinically relevant scenarios. To continue our assessment of such approaches, we evaluated the predictive performance of PBPK modeling in predicting cytochrome P450 (CYP)-mediated DDI. This evaluation was based on 15 substrate PBPK models submitted by nine sponsors between 2009 and 2013. For these 15 models, a total of 26 DDI studies (cases) with various CYP inhibitors were available. Sponsors developed the PBPK models, reportedly without considering clinical DDI data. Inhibitor models were either developed by sponsors or provided by PBPK software developers and applied with minimal or no modification. The metric for assessing predictive performance of the sponsors' PBPK approach was the R predicted/observed value (R predicted/observed = [predicted mean exposure ratio]/[observed mean exposure ratio], with the exposure ratio defined as [C max (maximum plasma concentration) or AUC (area under the plasma concentration-time curve) in the presence of CYP inhibition]/[C max or AUC in the absence of CYP inhibition]). In 81 % (21/26) and 77 % (20/26) of cases, respectively, the R predicted/observed values for AUC and C max ratios were within a pre-defined threshold of 1.25-fold of the observed data. For all cases, the R predicted/observed values for AUC and C max were within a 2-fold range. These results suggest that, based on the submissions to the FDA to date, there is a high degree of concordance between PBPK-predicted and observed effects of CYP inhibition, especially CYP3A-based, on the exposure of drug substrates.

  17. Assessment of PDF Micromixing Models Using DNS Data for a Two-Step Reaction

    NASA Astrophysics Data System (ADS)

    Tsai, Kuochen; Chakrabarti, Mitali; Fox, Rodney O.; Hill, James C.

    1996-11-01

    Although the probability density function (PDF) method is known to treat the chemical reaction terms exactly, its application to turbulent reacting flows have been overshadowed by the ability to model the molecular mixing terms satisfactorily. In this study, two PDF molecular mixing models, the linear-mean-square-estimation (LMSE or IEM) model and the generalized interaction-by-exchange-with-the-mean (GIEM) model, are compared with the DNS data in decaying turbulence with a two-step parallel-consecutive reaction and two segregated initial conditions: ``slabs" and ``blobs". Since the molecular mixing model is expected to have a strong effect on the mean values of chemical species under such initial conditions, the model evaluation is intended to answer the following questions: Can the PDF models predict the mean values of chemical species correctly with completely segregated initial conditions? (2) Is a single molecular mixing timescale sufficient for the PDF models to predict the mean values with different initial conditions? (3) Will the chemical reactions change the molecular mixing timescales of the reacting species enough to affect the accuracy of the model's prediction for the mean values of chemical species?

  18. [Rapid determination of fatty acids in soybean oils by transmission reflection-near infrared spectroscopy].

    PubMed

    Song, Tao; Zhang, Feng-ping; Liu, Yao-min; Wu, Zong-wen; Suo, You-rui

    2012-08-01

    In the present research, a novel method was established for determination of five fatty acids in soybean oil by transmission reflection-near infrared spectroscopy. The optimum conditions of mathematics model of five components (C16:0, C18:0, C18:1, C18:2 and C18:3) were studied, including the sample set selection, chemical value analysis, the detection methods and condition. Chemical value was analyzed by gas chromatography. One hundred fifty eight samples were selected, 138 for modeling set, 10 for testing set and 10 for unknown sample set. All samples were placed in sample pools and scanned by transmission reflection-near infrared spectrum after sonicleaning for 10 minute. The 1100-2500 nm spectral region was analyzed. The acquisition interval was 2 nm. Modified partial least square method was chosen for calibration mode creating. Result demonstrated that the 1-VR of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.8839, 0.5830, 0.9001, 0.9776 and 0.9596, respectively. And the SECV of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.42, 0.29, 0.83, 0.46 and 0.21, respectively. The standard error of the calibration (SECV) of five fatty acids between the reference value of testing sample set and the near infrared spectrum predictive value were 0.891, 0.790, 0.900, 0.976 and 0.942, respectively. It was proved that the near infrared spectrum predictive value was linear with chemical value and the mathematical model established for fatty acids of soybean oil was feasible. For validation, 10 unknown samples were selected for analysis by near infrared spectrum. The result demonstrated that the relative standard deviation between predict value and chemical value was less than 5.50%. That was to say that transmission reflection-near infrared spectroscopy had a good veracity in analysis of fatty acids of soybean oil.

  19. Cross-national validation of prognostic models predicting sickness absence and the added value of work environment variables.

    PubMed

    Roelen, Corné A M; Stapelfeldt, Christina M; Heymans, Martijn W; van Rhenen, Willem; Labriola, Merete; Nielsen, Claus V; Bültmann, Ute; Jensen, Chris

    2015-06-01

    To validate Dutch prognostic models including age, self-rated health and prior sickness absence (SA) for ability to predict high SA in Danish eldercare. The added value of work environment variables to the models' risk discrimination was also investigated. 2,562 municipal eldercare workers (95% women) participated in the Working in Eldercare Survey. Predictor variables were measured by questionnaire at baseline in 2005. Prognostic models were validated for predictions of high (≥30) SA days and high (≥3) SA episodes retrieved from employer records during 1-year follow-up. The accuracy of predictions was assessed by calibration graphs and the ability of the models to discriminate between high- and low-risk workers was investigated by ROC-analysis. The added value of work environment variables was measured with Integrated Discrimination Improvement (IDI). 1,930 workers had complete data for analysis. The models underestimated the risk of high SA in eldercare workers and the SA episodes model had to be re-calibrated to the Danish data. Discrimination was practically useful for the re-calibrated SA episodes model, but not the SA days model. Physical workload improved the SA days model (IDI = 0.40; 95% CI 0.19-0.60) and psychosocial work factors, particularly the quality of leadership (IDI = 0.70; 95% CI 053-0.86) improved the SA episodes model. The prognostic model predicting high SA days showed poor performance even after physical workload was added. The prognostic model predicting high SA episodes could be used to identify high-risk workers, especially when psychosocial work factors are added as predictor variables.

  20. Forecasting the Value of Training

    ERIC Educational Resources Information Center

    Basarab, Dave

    2011-01-01

    The Predictive Evaluation (PE) model is a training and evaluation approach with the element of prediction. PE allows trainers and business leaders to predict the results, value, intention, adoption, and impact of training, allowing them to make smarter, more strategic training and evaluation investments. PE is invaluable for companies that…

  1. Predicting drug-induced liver injury in human with Naïve Bayes classifier approach.

    PubMed

    Zhang, Hui; Ding, Lan; Zou, Yi; Hu, Shui-Qing; Huang, Hai-Guo; Kong, Wei-Bao; Zhang, Ji

    2016-10-01

    Drug-induced liver injury (DILI) is one of the major safety concerns in drug development. Although various toxicological studies assessing DILI risk have been developed, these methods were not sufficient in predicting DILI in humans. Thus, developing new tools and approaches to better predict DILI risk in humans has become an important and urgent task. In this study, we aimed to develop a computational model for assessment of the DILI risk with using a larger scale human dataset and Naïve Bayes classifier. The established Naïve Bayes prediction model was evaluated by 5-fold cross validation and an external test set. For the training set, the overall prediction accuracy of the 5-fold cross validation was 94.0 %. The sensitivity, specificity, positive predictive value and negative predictive value were 97.1, 89.2, 93.5 and 95.1 %, respectively. The test set with the concordance of 72.6 %, sensitivity of 72.5 %, specificity of 72.7 %, positive predictive value of 80.4 %, negative predictive value of 63.2 %. Furthermore, some important molecular descriptors related to DILI risk and some toxic/non-toxic fragments were identified. Thus, we hope the prediction model established here would be employed for the assessment of human DILI risk, and the obtained molecular descriptors and substructures should be taken into consideration in the design of new candidate compounds to help medicinal chemists rationally select the chemicals with the best prospects to be effective and safe.

  2. Cognitive models of risky choice: parameter stability and predictive accuracy of prospect theory.

    PubMed

    Glöckner, Andreas; Pachur, Thorsten

    2012-04-01

    In the behavioral sciences, a popular approach to describe and predict behavior is cognitive modeling with adjustable parameters (i.e., which can be fitted to data). Modeling with adjustable parameters allows, among other things, measuring differences between people. At the same time, parameter estimation also bears the risk of overfitting. Are individual differences as measured by model parameters stable enough to improve the ability to predict behavior as compared to modeling without adjustable parameters? We examined this issue in cumulative prospect theory (CPT), arguably the most widely used framework to model decisions under risk. Specifically, we examined (a) the temporal stability of CPT's parameters; and (b) how well different implementations of CPT, varying in the number of adjustable parameters, predict individual choice relative to models with no adjustable parameters (such as CPT with fixed parameters, expected value theory, and various heuristics). We presented participants with risky choice problems and fitted CPT to each individual's choices in two separate sessions (which were 1 week apart). All parameters were correlated across time, in particular when using a simple implementation of CPT. CPT allowing for individual variability in parameter values predicted individual choice better than CPT with fixed parameters, expected value theory, and the heuristics. CPT's parameters thus seem to pick up stable individual differences that need to be considered when predicting risky choice. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. FPGA implementation of predictive degradation model for engine oil lifetime

    NASA Astrophysics Data System (ADS)

    Idros, M. F. M.; Razak, A. H. A.; Junid, S. A. M. Al; Suliman, S. I.; Halim, A. K.

    2018-03-01

    This paper presents the implementation of linear regression model for degradation prediction on Register Transfer Logic (RTL) using QuartusII. A stationary model had been identified in the degradation trend for the engine oil in a vehicle in time series method. As for RTL implementation, the degradation model is written in Verilog HDL and the data input are taken at a certain time. Clock divider had been designed to support the timing sequence of input data. At every five data, a regression analysis is adapted for slope variation determination and prediction calculation. Here, only the negative value are taken as the consideration for the prediction purposes for less number of logic gate. Least Square Method is adapted to get the best linear model based on the mean values of time series data. The coded algorithm has been implemented on FPGA for validation purposes. The result shows the prediction time to change the engine oil.

  4. MLBCD: a machine learning tool for big clinical data.

    PubMed

    Luo, Gang

    2015-01-01

    Predictive modeling is fundamental for extracting value from large clinical data sets, or "big clinical data," advancing clinical research, and improving healthcare. Machine learning is a powerful approach to predictive modeling. Two factors make machine learning challenging for healthcare researchers. First, before training a machine learning model, the values of one or more model parameters called hyper-parameters must typically be specified. Due to their inexperience with machine learning, it is hard for healthcare researchers to choose an appropriate algorithm and hyper-parameter values. Second, many clinical data are stored in a special format. These data must be iteratively transformed into the relational table format before conducting predictive modeling. This transformation is time-consuming and requires computing expertise. This paper presents our vision for and design of MLBCD (Machine Learning for Big Clinical Data), a new software system aiming to address these challenges and facilitate building machine learning predictive models using big clinical data. The paper describes MLBCD's design in detail. By making machine learning accessible to healthcare researchers, MLBCD will open the use of big clinical data and increase the ability to foster biomedical discovery and improve care.

  5. [Application of multiple seasonal autoregressive integrated moving average model in predicting the mumps incidence].

    PubMed

    Hui, Shisheng; Chen, Lizhang; Liu, Fuqiang; Ouyang, Yanhao

    2015-12-01

    To establish multiple seasonal autoregressive integrated moving average model(ARIMA) according to mumps disease incidence in Hunan province, and to predict the mumps incidence from May 2015 to April 2016 in Hunan province by the model. The data were downloaded from "Disease Surveillance Information Reporting Management System" in China Information System for Disease Control and Prevention. The monthly incidence of mumps in Hunan province was collected from January 2004 to April 2015 according to the onset date, including clinical diagnosis and laboratory confirmed cases. The predictive analysis method was the ARIMA model in SPSS 18.0 software, the ARIMA model was established on the monthly incidence of mumps from January 2004 to April 2014, and the date from May 2014 to April 2015 was used as the testing sample, Box-Ljung Q test was used to test the residual of the selected model. Finally, the monthly incidence of mumps from May 2015 to April 2016 was predicted by the model. The peak months of the mumps incidence were May to July every year, and the secondary peak months were November to January of the following year, during January 2004 to April 2014 in Hunan province. After the data sequence was handled by smooth sequence, model identification, establishment and diagnosis, the ARIMA(2,1,1) × (0,1,1)(12) was established, Box-Ljung Q test found, Q=8.40, P=0.868, the residual sequence was white noise, the established model to the data information extraction was complete, the model was reasonable. The R(2) value of the model fitting degree was 0.871, and the value of BIC was -1.646, while the average absolute error of the predicted value and the actual value was 0.025/100 000, the average relative error was 13.004%. The relative error of the model for the prediction of the mumps incidence in Hunan province was small, and the predicting results were reliable. Using the ARIMA(2,1,1) ×(0,1,1)(12) model to predict the mumps incidence from April 2016 to May 2015 in Hunan province, the peak months of the mumps incidence were May to July, and the secondary peak months were November to January of the following year, the incidence of the peak month was close to the same period. The ARIMA(2,1,1)×(0,1,1)(12) model is well fitted the trend of the mumps disease incidence in Hunan province, it has some practical value for the prevention and control of the disease.

  6. Domestic estimated breeding values and genomic enhanced breeding values of bulls in comparison with their foreign genomic enhanced breeding values.

    PubMed

    Přibyl, J; Bauer, J; Čermák, V; Pešek, P; Přibylová, J; Šplíchal, J; Vostrá-Vydrová, H; Vostrý, L; Zavadilová, L

    2015-10-01

    Estimated breeding values (EBVs) and genomic enhanced breeding values (GEBVs) for milk production of young genotyped Holstein bulls were predicted using a conventional BLUP - Animal Model, a method fitting regression coefficients for loci (RRBLUP), a method utilizing the realized genomic relationship matrix (GBLUP), by a single-step procedure (ssGBLUP) and by a one-step blending procedure. Information sources for prediction were the nation-wide database of domestic Czech production records in the first lactation combined with deregressed proofs (DRP) from Interbull files (August 2013) and domestic test-day (TD) records for the first three lactations. Data from 2627 genotyped bulls were used, of which 2189 were already proven under domestic conditions. Analyses were run that used Interbull values for genotyped bulls only or that used Interbull values for all available sires. Resultant predictions were compared with GEBV of 96 young foreign bulls evaluated abroad and whose proofs were from Interbull method GMACE (August 2013) on the Czech scale. Correlations of predictions with GMACE values of foreign bulls ranged from 0.33 to 0.75. Combining domestic data with Interbull EBVs improved prediction of both EBV and GEBV. Predictions by Animal Model (traditional EBV) using only domestic first lactation records and GMACE values were correlated by only 0.33. Combining the nation-wide domestic database with all available DRP for genotyped and un-genotyped sires from Interbull resulted in an EBV correlation of 0.60, compared with 0.47 when only Interbull data were used. In all cases, GEBVs had higher correlations than traditional EBVs, and the highest correlations were for predictions from the ssGBLUP procedure using combined data (0.75), or with all available DRP from Interbull records only (one-step blending approach, 0.69). The ssGBLUP predictions using the first three domestic lactation records in the TD model were correlated with GMACE predictions by 0.69, 0.64 and 0.61 for milk yield, protein yield and fat yield, respectively.

  7. Diagnostic accuracy of APRI and FIB-4 for predicting hepatitis B virus-related liver fibrosis accompanied with hepatocellular carcinoma.

    PubMed

    Xiao, Guangqin; Zhu, Feng; Wang, Min; Zhang, Hang; Ye, Dawei; Yang, Jiayin; Jiang, Li; Liu, Chang; Yan, Lunan; Qin, Renyi

    2016-10-01

    Aspartate aminotransferase to platelet ratio index (APRI) and the fibrosis index based on four factors (FIB-4) are the two most focused non-invasive models to assess liver fibrosis. We aimed to examine the validity of these two models for predicting hepatitis B virus (HBV)-related liver fibrosis accompanied with hepatocellular carcinoma (HCC). We enrolled HBV-infected patients with liver cancer who had received hepatectomy. The accuracy of APRI and FIB-4 for diagnosing liver fibrosis was assessed based on their sensitivity, specificity, diagnostic efficiency, positive predictive value (PPV), negative predictive value (NPV), kappa (κ) value and area under the receiver-operating characteristic curve (AUC). Finally 2176 patients were included, with 1682 retrospective subjects and 494 prospective subjects. APRI (rs=0.310) and FIB-4 (rs=0.278) were positively correlated with liver fibrosis. And χ(2) analysis demonstrated that APRI and FIB-4 values correlated with different levels of liver fibrosis with all P values less than 0.01. The AUC values for APRI and FIB-4 were 0.685 and 0.626 (P=0.73) for predicting significant fibrosis, 0.681 and 0.648 (P=0.81) for differentiation of advanced fibrosis and 0.676 and 0.652 (P=0.77) for diagnosing cirrhosis. APRI and FIB-4 correlate with liver fibrosis. However these two models have low accuracy for predicting HBV-related liver fibrosis in HCC patients. Copyright © 2016. Published by Elsevier Ltd.

  8. Comparison of midlatitude ionospheric F region peak parameters and topside Ne profiles from IRI2012 model prediction with ground-based ionosonde and Alouette II observations

    NASA Astrophysics Data System (ADS)

    Gordiyenko, G. I.; Yakovets, A. F.

    2017-07-01

    The ionospheric F2 peak parameters recorded by a ground-based ionosonde at the midlatitude station Alma-Ata [43.25N, 76.92E] were compared with those obtained using the latest version of the IRI model (http://omniweb.gsfc.nasa.gov/vitmo/iri2012_vitmo.html). It was found that for the Alma-Ata (Kazakhstan) location, the IRI2012 model describes well the morphology of seasonal and diurnal variations of the ionospheric critical frequency (foF2) and peak density height (hmF2) monthly medians. The model errors in the median foF2 prediction (percentage deviations between the median foF2 values and their model predictions) were found to vary approximately in the range from about -20% to 34% and showed a stable overestimation in the median foF2 values for daytime in January and July and underestimation for day- and nighttime hours in the equinoctial months. The comparison between the ionosonde hmF2 and IRI results clearly showed that the IRI overestimates the nighttime hmF2 values for March and September months, and the difference is up to 30 km. The daytime Alma-Ata hmF2 data were found to be close to the IRI predictions (deviations are approximately ±10-15 km) in winter and equinoctial months, except in July when the observed hmF2 values were much more (from approximately 50-200 km). The comparison between the Alouette foF2 data and IRI predictions showed mixed results. In particular, the Alouette foF2 data showed a tendency to be overestimated for daytime in winter months similar to the ionosonde data; however, the overestimated foF2 values for nighttime in the autumn equinox were in disagreement with the ionosonde observations. There were large deviations between the observed hmF2 values and their model predictions. The largest deviations were found during winter and summer (up to -90 km). The comparison of the Alouette II electron density profiles with those predicted by the adapted IRI2012 model in the altitude range hmF2 of the satellite position showed a great difference in the shape of the Alouette-, NeQuick-, IRI02-coorr, and IRI2001-derived Ne profiles, with overestimated Ne values at some altitudes and underestimated Ne values at others. The results obtained in the study showed that the observation-model differences were significant especially for the real observed (not median) data. For practical application, it is clearly important for the IRI2012 model to be adapted to the observed F2-layer peak parameters. However, the model does not offer a simple solution to predict the shape of the vertical electron density profile in the topside ionosphere, because of the problem with the topside shape parameters.

  9. Improving the Accuracy of a Heliocentric Potential (HCP) Prediction Model for the Aviation Radiation Dose

    NASA Astrophysics Data System (ADS)

    Hwang, Junga; Yoon, Kyoung-Won; Jo, Gyeongbok; Noh, Sung-Jun

    2016-12-01

    The space radiation dose over air routes including polar routes should be carefully considered, especially when space weather shows sudden disturbances such as coronal mass ejections (CMEs), flares, and accompanying solar energetic particle events. We recently established a heliocentric potential (HCP) prediction model for real-time operation of the CARI-6 and CARI-6M programs. Specifically, the HCP value is used as a critical input value in the CARI-6/6M programs, which estimate the aviation route dose based on the effective dose rate. The CARI-6/6M approach is the most widely used technique, and the programs can be obtained from the U.S. Federal Aviation Administration (FAA). However, HCP values are given at a one month delay on the FAA official webpage, which makes it difficult to obtain real-time information on the aviation route dose. In order to overcome this critical limitation regarding the time delay for space weather customers, we developed a HCP prediction model based on sunspot number variations (Hwang et al. 2015). In this paper, we focus on improvements to our HCP prediction model and update it with neutron monitoring data. We found that the most accurate method to derive the HCP value involves (1) real-time daily sunspot assessments, (2) predictions of the daily HCP by our prediction algorithm, and (3) calculations of the resultant daily effective dose rate. Additionally, we also derived the HCP prediction algorithm in this paper by using ground neutron counts. With the compensation stemming from the use of ground neutron count data, the newly developed HCP prediction model was improved.

  10. Time-dependent oral absorption models

    NASA Technical Reports Server (NTRS)

    Higaki, K.; Yamashita, S.; Amidon, G. L.

    2001-01-01

    The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.

  11. Potential uncertainty reduction in model-averaged benchmark dose estimates informed by an additional dose study.

    PubMed

    Shao, Kan; Small, Mitchell J

    2011-10-01

    A methodology is presented for assessing the information value of an additional dosage experiment in existing bioassay studies. The analysis demonstrates the potential reduction in the uncertainty of toxicity metrics derived from expanded studies, providing insights for future studies. Bayesian methods are used to fit alternative dose-response models using Markov chain Monte Carlo (MCMC) simulation for parameter estimation and Bayesian model averaging (BMA) is used to compare and combine the alternative models. BMA predictions for benchmark dose (BMD) are developed, with uncertainty in these predictions used to derive the lower bound BMDL. The MCMC and BMA results provide a basis for a subsequent Monte Carlo analysis that backcasts the dosage where an additional test group would have been most beneficial in reducing the uncertainty in the BMD prediction, along with the magnitude of the expected uncertainty reduction. Uncertainty reductions are measured in terms of reduced interval widths of predicted BMD values and increases in BMDL values that occur as a result of this reduced uncertainty. The methodology is illustrated using two existing data sets for TCDD carcinogenicity, fitted with two alternative dose-response models (logistic and quantal-linear). The example shows that an additional dose at a relatively high value would have been most effective for reducing the uncertainty in BMA BMD estimates, with predicted reductions in the widths of uncertainty intervals of approximately 30%, and expected increases in BMDL values of 5-10%. The results demonstrate that dose selection for studies that subsequently inform dose-response models can benefit from consideration of how these models will be fit, combined, and interpreted. © 2011 Society for Risk Analysis.

  12. Comparison of Two Predictive Models for Short-Term Mortality in Patients after Severe Traumatic Brain Injury.

    PubMed

    Kesmarky, Klara; Delhumeau, Cecile; Zenobi, Marie; Walder, Bernhard

    2017-07-15

    The Glasgow Coma Scale (GCS) and the Abbreviated Injury Score of the head region (HAIS) are validated prognostic factors in traumatic brain injury (TBI). The aim of this study was to compare the prognostic performance of an alternative predictive model including motor GCS, pupillary reactivity, age, HAIS, and presence of multi-trauma for short-term mortality with a reference predictive model including motor GCS, pupil reaction, and age (IMPACT core model). A secondary analysis of a prospective epidemiological cohort study in Switzerland including patients after severe TBI (HAIS >3) with the outcome death at 14 days was performed. Performance of prediction, accuracy of discrimination (area under the receiver operating characteristic curve [AUROC]), calibration, and validity of the two predictive models were investigated. The cohort included 808 patients (median age, 56; interquartile range, 33-71), median GCS at hospital admission 3 (3-14), abnormal pupil reaction 29%, with a death rate of 29.7% at 14 days. The alternative predictive model had a higher accuracy of discrimination to predict death at 14 days than the reference predictive model (AUROC 0.852, 95% confidence interval [CI] 0.824-0.880 vs. AUROC 0.826, 95% CI 0.795-0.857; p < 0.0001). The alternative predictive model had an equivalent calibration, compared with the reference predictive model Hosmer-Lemeshow p values (Chi2 8.52, Hosmer-Lemeshow p = 0.345 vs. Chi2 8.66, Hosmer-Lemeshow p = 0.372). The optimism-corrected value of AUROC for the alternative predictive model was 0.845. After severe TBI, a higher performance of prediction for short-term mortality was observed with the alternative predictive model, compared with the reference predictive model.

  13. Suitability of parametric models to describe the hydraulic properties of an unsaturated coarse sand and gravel

    USGS Publications Warehouse

    Mace, Andy; Rudolph, David L.; Kachanoski , R. Gary

    1998-01-01

    The performance of parametric models used to describe soil water retention (SWR) properties and predict unsaturated hydraulic conductivity (K) as a function of volumetric water content (θ) is examined using SWR and K(θ) data for coarse sand and gravel sediments. Six 70 cm long, 10 cm diameter cores of glacial outwash were instrumented at eight depths with porous cup ten-siometers and time domain reflectometry probes to measure soil water pressure head (h) and θ, respectively, for seven unsaturated and one saturated steady-state flow conditions. Forty-two θ(h) and K(θ) relationships were measured from the infiltration tests on the cores. Of the four SWR models compared in the analysis, the van Genuchten (1980) equation with parameters m and n restricted according to the Mualem (m = 1 - 1/n) criterion is best suited to describe the θ(h) relationships. The accuracy of two models that predict K(θ) using parameter values derived from the SWR models was also evaluated. The model developed by van Genuchten (1980) based on the theoretical expression of Mualem (1976) predicted K(θ) more accurately than the van Genuchten (1980) model based on the theory of Burdine (1953). A sensitivity analysis shows that more accurate predictions of K(θ) are achieved using SWR model parameters derived with residual water content (θr) specified according to independent measurements of θ at values of h where θ/h ∼ 0 rather than model-fit θr values. The accuracy of the model K(θ) function improves markedly when at least one value of unsaturated K is used to scale the K(θ) function predicted using the saturated K. The results of this investigation indicate that the hydraulic properties of coarse-grained sediments can be accurately described using the parametric models. In addition, data collection efforts should focus on measuring at least one value of unsaturated hydraulic conductivity and as complete a set of SWR data as possible, particularly in the dry range.

  14. Fixed recurrence and slip models better predict earthquake behavior than the time- and slip-predictable models 1: repeating earthquakes

    USGS Publications Warehouse

    Rubinstein, Justin L.; Ellsworth, William L.; Chen, Kate Huihsuan; Uchida, Naoki

    2012-01-01

    The behavior of individual events in repeating earthquake sequences in California, Taiwan and Japan is better predicted by a model with fixed inter-event time or fixed slip than it is by the time- and slip-predictable models for earthquake occurrence. Given that repeating earthquakes are highly regular in both inter-event time and seismic moment, the time- and slip-predictable models seem ideally suited to explain their behavior. Taken together with evidence from the companion manuscript that shows similar results for laboratory experiments we conclude that the short-term predictions of the time- and slip-predictable models should be rejected in favor of earthquake models that assume either fixed slip or fixed recurrence interval. This implies that the elastic rebound model underlying the time- and slip-predictable models offers no additional value in describing earthquake behavior in an event-to-event sense, but its value in a long-term sense cannot be determined. These models likely fail because they rely on assumptions that oversimplify the earthquake cycle. We note that the time and slip of these events is predicted quite well by fixed slip and fixed recurrence models, so in some sense they are time- and slip-predictable. While fixed recurrence and slip models better predict repeating earthquake behavior than the time- and slip-predictable models, we observe a correlation between slip and the preceding recurrence time for many repeating earthquake sequences in Parkfield, California. This correlation is not found in other regions, and the sequences with the correlative slip-predictable behavior are not distinguishable from nearby earthquake sequences that do not exhibit this behavior.

  15. A physiologically based pharmacokinetic model to predict disposition of CYP2D6 and CYP1A2 metabolized drugs in pregnant women.

    PubMed

    Ke, Alice Ban; Nallani, Srikanth C; Zhao, Ping; Rostami-Hodjegan, Amin; Isoherranen, Nina; Unadkat, Jashvant D

    2013-04-01

    Conducting pharmacokinetic (PK) studies in pregnant women is challenging. Therefore, we asked if a physiologically based pharmacokinetic (PBPK) model could be used to evaluate different dosing regimens for pregnant women. We refined and verified our previously published pregnancy PBPK model by incorporating cytochrome P450 CYP1A2 suppression (based on caffeine PK) and CYP2D6 induction (based on metoprolol PK) into the model. This model accounts for gestational age-dependent changes in maternal physiology and hepatic CYP3A activity. For verification, the disposition of CYP1A2-metabolized drug theophylline (THEO) and CYP2D6-metabolized drugs paroxetine (PAR), dextromethorphan (DEX), and clonidine (CLO) during pregnancy was predicted. Our PBPK model successfully predicted THEO disposition during the third trimester (T3). Predicted mean postpartum to third trimester (PP:T3) ratios of THEO area under the curve (AUC), maximum plasma concentration, and minimum plasma concentration were 0.76, 0.95, and 0.66 versus observed values 0.75, 0.89, and 0.72, respectively. The predicted mean PAR steady-state plasma concentration (Css) ratio (PP:T3) was 7.1 versus the observed value 3.7. Predicted mean DEX urinary ratio (UR) (PP:T3) was 2.9 versus the observed value 1.9. Predicted mean CLO AUC ratio (PP:T3) was 2.2 versus the observed value 1.7. Sensitivity analysis suggested that a 100% induction of CYP2D6 during T3 was required to recover the observed PP:T3 ratios of PAR Css, DEX UR, and CLO AUC. Based on these data, it is prudent to conclude that the magnitude of hepatic CYP2D6 induction during T3 ranges from 100 to 200%. Our PBPK model can predict the disposition of CYP1A2, 2D6, and 3A drugs during pregnancy.

  16. A Physiologically Based Pharmacokinetic Model to Predict Disposition of CYP2D6 and CYP1A2 Metabolized Drugs in Pregnant Women

    PubMed Central

    Ke, Alice Ban; Nallani, Srikanth C.; Zhao, Ping; Rostami-Hodjegan, Amin; Isoherranen, Nina

    2013-01-01

    Conducting pharmacokinetic (PK) studies in pregnant women is challenging. Therefore, we asked if a physiologically based pharmacokinetic (PBPK) model could be used to evaluate different dosing regimens for pregnant women. We refined and verified our previously published pregnancy PBPK model by incorporating cytochrome P450 CYP1A2 suppression (based on caffeine PK) and CYP2D6 induction (based on metoprolol PK) into the model. This model accounts for gestational age–dependent changes in maternal physiology and hepatic CYP3A activity. For verification, the disposition of CYP1A2–metabolized drug theophylline (THEO) and CYP2D6–metabolized drugs paroxetine (PAR), dextromethorphan (DEX), and clonidine (CLO) during pregnancy was predicted. Our PBPK model successfully predicted THEO disposition during the third trimester (T3). Predicted mean postpartum to third trimester (PP:T3) ratios of THEO area under the curve (AUC), maximum plasma concentration, and minimum plasma concentration were 0.76, 0.95, and 0.66 versus observed values 0.75, 0.89, and 0.72, respectively. The predicted mean PAR steady-state plasma concentration (Css) ratio (PP:T3) was 7.1 versus the observed value 3.7. Predicted mean DEX urinary ratio (UR) (PP:T3) was 2.9 versus the observed value 1.9. Predicted mean CLO AUC ratio (PP:T3) was 2.2 versus the observed value 1.7. Sensitivity analysis suggested that a 100% induction of CYP2D6 during T3 was required to recover the observed PP:T3 ratios of PAR Css, DEX UR, and CLO AUC. Based on these data, it is prudent to conclude that the magnitude of hepatic CYP2D6 induction during T3 ranges from 100 to 200%. Our PBPK model can predict the disposition of CYP1A2, 2D6, and 3A drugs during pregnancy. PMID:23355638

  17. Statistical Approaches for Spatiotemporal Prediction of Low Flows

    NASA Astrophysics Data System (ADS)

    Fangmann, A.; Haberlandt, U.

    2017-12-01

    An adequate assessment of regional climate change impacts on streamflow requires the integration of various sources of information and modeling approaches. This study proposes simple statistical tools for inclusion into model ensembles, which are fast and straightforward in their application, yet able to yield accurate streamflow predictions in time and space. Target variables for all approaches are annual low flow indices derived from a data set of 51 records of average daily discharge for northwestern Germany. The models require input of climatic data in the form of meteorological drought indices, derived from observed daily climatic variables, averaged over the streamflow gauges' catchments areas. Four different modeling approaches are analyzed. Basis for all pose multiple linear regression models that estimate low flows as a function of a set of meteorological indices and/or physiographic and climatic catchment descriptors. For the first method, individual regression models are fitted at each station, predicting annual low flow values from a set of annual meteorological indices, which are subsequently regionalized using a set of catchment characteristics. The second method combines temporal and spatial prediction within a single panel data regression model, allowing estimation of annual low flow values from input of both annual meteorological indices and catchment descriptors. The third and fourth methods represent non-stationary low flow frequency analyses and require fitting of regional distribution functions. Method three is subject to a spatiotemporal prediction of an index value, method four to estimation of L-moments that adapt the regional frequency distribution to the at-site conditions. The results show that method two outperforms successive prediction in time and space. Method three also shows a high performance in the near future period, but since it relies on a stationary distribution, its application for prediction of far future changes may be problematic. Spatiotemporal prediction of L-moments appeared highly uncertain for higher-order moments resulting in unrealistic future low flow values. All in all, the results promote an inclusion of simple statistical methods in climate change impact assessment.

  18. Predicting medical complications after spine surgery: a validated model using a prospective surgical registry.

    PubMed

    Lee, Michael J; Cizik, Amy M; Hamilton, Deven; Chapman, Jens R

    2014-02-01

    The possibility and likelihood of a postoperative medical complication after spine surgery undoubtedly play a major role in the decision making of the surgeon and patient alike. Although prior study has determined relative risk and odds ratio values to quantify risk factors, these values may be difficult to translate to the patient during counseling of surgical options. Ideally, a model that predicts absolute risk of medical complication, rather than relative risk or odds ratio values, would greatly enhance the discussion of safety of spine surgery. To date, there is no risk stratification model that specifically predicts the risk of medical complication. The purpose of this study was to create and validate a predictive model for the risk of medical complication during and after spine surgery. Statistical analysis using a prospective surgical spine registry that recorded extensive demographic, surgical, and complication data. Outcomes examined are medical complications that were specifically defined a priori. This analysis is a continuation of statistical analysis of our previously published report. Using a prospectively collected surgical registry of more than 1,476 patients with extensive demographic, comorbidity, surgical, and complication detail recorded for 2 years after surgery, we previously identified several risk factor for medical complications. Using the beta coefficients from those log binomial regression analyses, we created a model to predict the occurrence of medical complication after spine surgery. We split our data into two subsets for internal and cross-validation of our model. We created two predictive models: one predicting the occurrence of any medical complication and the other predicting the occurrence of a major medical complication. The final predictive model for any medical complications had a receiver operator curve characteristic of 0.76, considered to be a fair measure. The final predictive model for any major medical complications had receiver operator curve characteristic of 0.81, considered to be a good measure. The final model has been uploaded for use on SpineSage.com. We present a validated model for predicting medical complications after spine surgery. The value in this model is that it gives the user an absolute percent likelihood of complication after spine surgery based on the patient's comorbidity profile and invasiveness of surgery. Patients are far more likely to understand an absolute percentage, rather than relative risk and confidence interval values. A model such as this is of paramount importance in counseling patients and enhancing the safety of spine surgery. In addition, a tool such as this can be of great use particularly as health care trends toward pay-for-performance, quality metrics, and risk adjustment. To facilitate the use of this model, we have created a website (SpineSage.com) where users can enter in patient data to determine likelihood of medical complications after spine surgery. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. [Diagnostic value of a predictive model for complete ruptures of the rotator cuff associated to subacromial impingement].

    PubMed

    Águila-Ledesma, I R; Córdova-Fonseca, J L; Medina-Pontaza, O; Núñez-Gómez, D A; Calvache-García, C; Pérez-Atanasio, J M; Torres-González, R

    2017-01-01

    Pathology related to the rotator cuff remains among the most prevalent musculoskeletal diseases. There is an increasing need for imaging studies (MRI, US, arthroscopy) to test the diagnostic performance of the medical history and physical examination. To prove the diagnostic value of a clinical-radiographic predictive model to find complete ruptures of the rotator cuff. Descriptive, observational, prospective, transversal and analytical study. Fifty-five patients with preoperative shoulder pain were evaluated with 13 predictive variables: age > 50 years, nocturnal pain, muscle weakness, clinical signs of Neer, Hawkins, Jobe, external rotation lag (ERLS), belly-press, bear hug, and lift-off, radiographic measurement of subacromial space, acromial index and critical shoulder angle. Sensitivity, specificity, and positive and negative predictive values were measured in each variable, comparing the results of each one against the postoperative findings. Of the 55 patients evaluated, 42 had a complete rupture of the rotator cuff in the postoperative period. The eight variables with a higher diagnostic value were selected and a ROC curve was performed, providing an area under the curve of 0.88. This predictive model uses eight variables (age > 50 years, nocturnal pain, muscle weakness, Jobe, Hawkins, ERLS, subacromial space ≤ 6 mm, and critical shoulder angle > 35°), which together add the predictive value of 0.88 (AUC) to diagnose complete ruptures of the supraspinatus tendon.

  20. Mortality risk prediction in burn injury: Comparison of logistic regression with machine learning approaches.

    PubMed

    Stylianou, Neophytos; Akbarov, Artur; Kontopantelis, Evangelos; Buchan, Iain; Dunn, Ken W

    2015-08-01

    Predicting mortality from burn injury has traditionally employed logistic regression models. Alternative machine learning methods have been introduced in some areas of clinical prediction as the necessary software and computational facilities have become accessible. Here we compare logistic regression and machine learning predictions of mortality from burn. An established logistic mortality model was compared to machine learning methods (artificial neural network, support vector machine, random forests and naïve Bayes) using a population-based (England & Wales) case-cohort registry. Predictive evaluation used: area under the receiver operating characteristic curve; sensitivity; specificity; positive predictive value and Youden's index. All methods had comparable discriminatory abilities, similar sensitivities, specificities and positive predictive values. Although some machine learning methods performed marginally better than logistic regression the differences were seldom statistically significant and clinically insubstantial. Random forests were marginally better for high positive predictive value and reasonable sensitivity. Neural networks yielded slightly better prediction overall. Logistic regression gives an optimal mix of performance and interpretability. The established logistic regression model of burn mortality performs well against more complex alternatives. Clinical prediction with a small set of strong, stable, independent predictors is unlikely to gain much from machine learning outside specialist research contexts. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  1. Developing a predictive tropospheric ozone model for Tabriz

    NASA Astrophysics Data System (ADS)

    Khatibi, Rahman; Naghipour, Leila; Ghorbani, Mohammad A.; Smith, Michael S.; Karimi, Vahid; Farhoudi, Reza; Delafrouz, Hadi; Arvanaghi, Hadi

    2013-04-01

    Predictive ozone models are becoming indispensable tools by providing a capability for pollution alerts to serve people who are vulnerable to the risks. We have developed a tropospheric ozone prediction capability for Tabriz, Iran, by using the following five modeling strategies: three regression-type methods: Multiple Linear Regression (MLR), Artificial Neural Networks (ANNs), and Gene Expression Programming (GEP); and two auto-regression-type models: Nonlinear Local Prediction (NLP) to implement chaos theory and Auto-Regressive Integrated Moving Average (ARIMA) models. The regression-type modeling strategies explain the data in terms of: temperature, solar radiation, dew point temperature, and wind speed, by regressing present ozone values to their past values. The ozone time series are available at various time intervals, including hourly intervals, from August 2010 to March 2011. The results for MLR, ANN and GEP models are not overly good but those produced by NLP and ARIMA are promising for the establishing a forecasting capability.

  2. Valuing river characteristics using combined site choice and participation travel cost models.

    PubMed

    Johnstone, C; Markandya, A

    2006-08-01

    This paper presents new welfare measures for marginal changes in river quality in selected English rivers. The river quality indicators used include chemical, biological and habitat-level attributes. Economic values for recreational use of three types of river-upland, lowland and chalk-are presented. A survey of anglers was carried out and using these data, two travel cost models were estimated, one to predict the numbers of trips and the other to predict angling site choice. These models were then linked to estimate the welfare associated with marginal changes in river quality using the participation levels as estimated in the trip prediction model. The model results showed that higher flow rates, biological quality and nutrient pollution levels affect site choice and influence the likelihood of a fishing trip. Consumer surplus values per trip for a 10% change in river attributes range from pound 0.04 to pound 3.93 ( pound 2001) depending on the attribute.

  3. Prediction of air temperature for thermal comfort of people using sleeping bags: a review

    NASA Astrophysics Data System (ADS)

    Huang, Jianhua

    2008-11-01

    Six models for determining air temperatures for thermal comfort of people using sleeping bags were reviewed. These models were based on distinctive metabolic rates and mean skin temperatures. All model predictions of air temperatures are low when the insulation values of the sleeping bag are high. Nevertheless, prediction variations are greatest for the sleeping bags with high insulation values, and there is a high risk of hypothermia if an inappropriate sleeping bag is chosen for the intended conditions of use. There is, therefore, a pressing need to validate the models by wear trial and determine which one best reflects ordinary consumer needs.

  4. Prediction of air temperature for thermal comfort of people using sleeping bags: a review.

    PubMed

    Huang, Jianhua

    2008-11-01

    Six models for determining air temperatures for thermal comfort of people using sleeping bags were reviewed. These models were based on distinctive metabolic rates and mean skin temperatures. All model predictions of air temperatures are low when the insulation values of the sleeping bag are high. Nevertheless, prediction variations are greatest for the sleeping bags with high insulation values, and there is a high risk of hypothermia if an inappropriate sleeping bag is chosen for the intended conditions of use. There is, therefore, a pressing need to validate the models by wear trial and determine which one best reflects ordinary consumer needs.

  5. Predicting available water of soil from particle-size distribution and bulk density in an oasis-desert transect in northwestern China

    NASA Astrophysics Data System (ADS)

    Li, Danfeng; Gao, Guangyao; Shao, Ming'an; Fu, Bojie

    2016-07-01

    A detailed understanding of soil hydraulic properties, particularly the available water content of soil, (AW, cm3 cm-3), is required for optimal water management. Direct measurement of soil hydraulic properties is impractical for large scale application, but routinely available soil particle-size distribution (PSD) and bulk density can be used as proxies to develop various prediction functions. In this study, we compared the performance of the Arya and Paris (AP) model, Mohammadi and Vanclooster (MV) model, Arya and Heitman (AH) model, and Rosetta program in predicting the soil water characteristic curve (SWCC) at 34 points with experimental SWCC data in an oasis-desert transect (20 × 5 km) in the middle reaches of the Heihe River basin, northwestern China. The idea of the three models emerges from the similarity of the shapes of the PSD and SWCC. The AP model, MV model, and Rosetta program performed better in predicting the SWCC than the AH model. The AW determined from the SWCCs predicted by the MV model agreed better with the experimental values than those derived from the AP model and Rosetta program. The fine-textured soils were characterized by higher AW values, while the sandy soils had lower AW values. The MV model has the advantages of having robust physical basis, being independent of database-related parameters, and involving subclasses of texture data. These features make it promising in predicting soil water retention at regional scales, serving for the application of hydrological models and the optimization of soil water management.

  6. Grey-Markov prediction model based on background value optimization and central-point triangular whitenization weight function

    NASA Astrophysics Data System (ADS)

    Ye, Jing; Dang, Yaoguo; Li, Bingjun

    2018-01-01

    Grey-Markov forecasting model is a combination of grey prediction model and Markov chain which show obvious optimization effects for data sequences with characteristics of non-stationary and volatility. However, the state division process in traditional Grey-Markov forecasting model is mostly based on subjective real numbers that immediately affects the accuracy of forecasting values. To seek the solution, this paper introduces the central-point triangular whitenization weight function in state division to calculate possibilities of research values in each state which reflect preference degrees in different states in an objective way. On the other hand, background value optimization is applied in the traditional grey model to generate better fitting data. By this means, the improved Grey-Markov forecasting model is built. Finally, taking the grain production in Henan Province as an example, it verifies this model's validity by comparing with GM(1,1) based on background value optimization and the traditional Grey-Markov forecasting model.

  7. Predicting the Types of Ion Channel-Targeted Conotoxins Based on AVC-SVM Model.

    PubMed

    Xianfang, Wang; Junmei, Wang; Xiaolei, Wang; Yue, Zhang

    2017-01-01

    The conotoxin proteins are disulfide-rich small peptides. Predicting the types of ion channel-targeted conotoxins has great value in the treatment of chronic diseases, epilepsy, and cardiovascular diseases. To solve the problem of information redundancy existing when using current methods, a new model is presented to predict the types of ion channel-targeted conotoxins based on AVC (Analysis of Variance and Correlation) and SVM (Support Vector Machine). First, the F value is used to measure the significance level of the feature for the result, and the attribute with smaller F value is filtered by rough selection. Secondly, redundancy degree is calculated by Pearson Correlation Coefficient. And the threshold is set to filter attributes with weak independence to get the result of the refinement. Finally, SVM is used to predict the types of ion channel-targeted conotoxins. The experimental results show the proposed AVC-SVM model reaches an overall accuracy of 91.98%, an average accuracy of 92.17%, and the total number of parameters of 68. The proposed model provides highly useful information for further experimental research. The prediction model will be accessed free of charge at our web server.

  8. Predicting the Types of Ion Channel-Targeted Conotoxins Based on AVC-SVM Model

    PubMed Central

    Xiaolei, Wang

    2017-01-01

    The conotoxin proteins are disulfide-rich small peptides. Predicting the types of ion channel-targeted conotoxins has great value in the treatment of chronic diseases, epilepsy, and cardiovascular diseases. To solve the problem of information redundancy existing when using current methods, a new model is presented to predict the types of ion channel-targeted conotoxins based on AVC (Analysis of Variance and Correlation) and SVM (Support Vector Machine). First, the F value is used to measure the significance level of the feature for the result, and the attribute with smaller F value is filtered by rough selection. Secondly, redundancy degree is calculated by Pearson Correlation Coefficient. And the threshold is set to filter attributes with weak independence to get the result of the refinement. Finally, SVM is used to predict the types of ion channel-targeted conotoxins. The experimental results show the proposed AVC-SVM model reaches an overall accuracy of 91.98%, an average accuracy of 92.17%, and the total number of parameters of 68. The proposed model provides highly useful information for further experimental research. The prediction model will be accessed free of charge at our web server. PMID:28497044

  9. Neural evidence of motivational conflict between social values.

    PubMed

    Leszkowicz, Emilia; Linden, David E J; Maio, Gregory R; Ihssen, Niklas

    2017-10-01

    Motivational interdependence is an organizing principle in Schwartz's circumplex model of social values, which has received abundant cross-cultural support. We used fMRI to test whether motivational relations between social values predict different brain responses in a situation of choice between values. We hypothesized that differences in brain responses would become evident when the more important value had to be selected in pairs of congruent (e.g., wealth and success) as opposed to incongruent (e.g., curiosity and stability) values as they are described in Schwartz's model, because the former serve mutually facilitating motives, whereas the latter serve mutually inhibiting motives. Consistent with the model, choosing between congruent values led to longer response times and more activation in conflict-related brain regions (e.g., the supplementary motor area, dorsolateral prefrontal cortex) than selecting between incongruent values. These results provide novel neural evidence supporting the circumplex model's predictions about motivational interdependence between social values. In particular, our results show that the neural networks underlying social values are organized in a way that allows activation patterns related to motivational similarity between congruent values to be dissociated from those related to incongruent values.

  10. Trending in Probability of Collision Measurements

    NASA Technical Reports Server (NTRS)

    Vallejo, J. J.; Hejduk, M. D.; Stamey, J. D.

    2015-01-01

    A simple model is proposed to predict the behavior of Probabilities of Collision (P(sub c)) for conjunction events. The model attempts to predict the location and magnitude of the peak P(sub c) value for an event by assuming the progression of P(sub c) values can be modeled to first order by a downward-opening parabola. To incorporate prior information from a large database of past conjunctions, the Bayes paradigm is utilized; and the operating characteristics of the model are established through a large simulation study. Though the model is simple, it performs well in predicting the temporal location of the peak (P(sub c)) and thus shows promise as a decision aid in operational conjunction assessment risk analysis.

  11. A real-time prediction model for post-irradiation malignant cervical lymph nodes.

    PubMed

    Lo, W-C; Cheng, P-W; Shueng, P-W; Hsieh, C-H; Chang, Y-L; Liao, L-J

    2018-04-01

    To establish a real-time predictive scoring model based on sonographic characteristics for identifying malignant cervical lymph nodes (LNs) in cancer patients after neck irradiation. One-hundred forty-four irradiation-treated patients underwent ultrasonography and ultrasound-guided fine-needle aspirations (USgFNAs), and the resultant data were used to construct a real-time and computerised predictive scoring model. This scoring system was further compared with our previously proposed prediction model. A predictive scoring model, 1.35 × (L axis) + 2.03 × (S axis) + 2.27 × (margin) + 1.48 × (echogenic hilum) + 3.7, was generated by stepwise multivariate logistic regression analysis. Neck LNs were considered to be malignant when the score was ≥ 7, corresponding to a sensitivity of 85.5%, specificity of 79.4%, positive predictive value (PPV) of 82.3%, negative predictive value (NPV) of 83.1%, and overall accuracy of 82.6%. When this new model and the original model were compared, the areas under the receiver operating characteristic curve (c-statistic) were 0.89 and 0.81, respectively (P < .05). A real-time sonographic predictive scoring model was constructed to provide prompt and reliable guidance for USgFNA biopsies to manage cervical LNs after neck irradiation. © 2017 John Wiley & Sons Ltd.

  12. Predicting surgical site infection after spine surgery: a validated model using a prospective surgical registry.

    PubMed

    Lee, Michael J; Cizik, Amy M; Hamilton, Deven; Chapman, Jens R

    2014-09-01

    The impact of surgical site infection (SSI) is substantial. Although previous study has determined relative risk and odds ratio (OR) values to quantify risk factors, these values may be difficult to translate to the patient during counseling of surgical options. Ideally, a model that predicts absolute risk of SSI, rather than relative risk or OR values, would greatly enhance the discussion of safety of spine surgery. To date, there is no risk stratification model that specifically predicts the risk of medical complication. The purpose of this study was to create and validate a predictive model for the risk of SSI after spine surgery. This study performs a multivariate analysis of SSI after spine surgery using a large prospective surgical registry. Using the results of this analysis, this study will then create and validate a predictive model for SSI after spine surgery. The patient sample is from a high-quality surgical registry from our two institutions with prospectively collected, detailed demographic, comorbidity, and complication data. An SSI that required return to the operating room for surgical debridement. Using a prospectively collected surgical registry of more than 1,532 patients with extensive demographic, comorbidity, surgical, and complication details recorded for 2 years after the surgery, we identified several risk factors for SSI after multivariate analysis. Using the beta coefficients from those regression analyses, we created a model to predict the occurrence of SSI after spine surgery. We split our data into two subsets for internal and cross-validation of our model. We created a predictive model based on our beta coefficients from our multivariate analysis. The final predictive model for SSI had a receiver-operator curve characteristic of 0.72, considered to be a fair measure. The final model has been uploaded for use on SpineSage.com. We present a validated model for predicting SSI after spine surgery. The value in this model is that it gives the user an absolute percent likelihood of SSI after spine surgery based on the patient's comorbidity profile and invasiveness of surgery. Patients are far more likely to understand an absolute percentage, rather than relative risk and confidence interval values. A model such as this is of paramount importance in counseling patients and enhancing the safety of spine surgery. In addition, a tool such as this can be of great use particularly as health care trends toward pay for performance, quality metrics (such as SSI), and risk adjustment. To facilitate the use of this model, we have created a Web site (SpineSage.com) where users can enter patient data to determine likelihood for SSI. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Mixed Model Methods for Genomic Prediction and Variance Component Estimation of Additive and Dominance Effects Using SNP Markers

    PubMed Central

    Da, Yang; Wang, Chunkao; Wang, Shengwen; Hu, Guo

    2014-01-01

    We established a genomic model of quantitative trait with genomic additive and dominance relationships that parallels the traditional quantitative genetics model, which partitions a genotypic value as breeding value plus dominance deviation and calculates additive and dominance relationships using pedigree information. Based on this genomic model, two sets of computationally complementary but mathematically identical mixed model methods were developed for genomic best linear unbiased prediction (GBLUP) and genomic restricted maximum likelihood estimation (GREML) of additive and dominance effects using SNP markers. These two sets are referred to as the CE and QM sets, where the CE set was designed for large numbers of markers and the QM set was designed for large numbers of individuals. GBLUP and associated accuracy formulations for individuals in training and validation data sets were derived for breeding values, dominance deviations and genotypic values. Simulation study showed that GREML and GBLUP generally were able to capture small additive and dominance effects that each accounted for 0.00005–0.0003 of the phenotypic variance and GREML was able to differentiate true additive and dominance heritability levels. GBLUP of the total genetic value as the summation of additive and dominance effects had higher prediction accuracy than either additive or dominance GBLUP, causal variants had the highest accuracy of GREML and GBLUP, and predicted accuracies were in agreement with observed accuracies. Genomic additive and dominance relationship matrices using SNP markers were consistent with theoretical expectations. The GREML and GBLUP methods can be an effective tool for assessing the type and magnitude of genetic effects affecting a phenotype and for predicting the total genetic value at the whole genome level. PMID:24498162

  14. Mixed model methods for genomic prediction and variance component estimation of additive and dominance effects using SNP markers.

    PubMed

    Da, Yang; Wang, Chunkao; Wang, Shengwen; Hu, Guo

    2014-01-01

    We established a genomic model of quantitative trait with genomic additive and dominance relationships that parallels the traditional quantitative genetics model, which partitions a genotypic value as breeding value plus dominance deviation and calculates additive and dominance relationships using pedigree information. Based on this genomic model, two sets of computationally complementary but mathematically identical mixed model methods were developed for genomic best linear unbiased prediction (GBLUP) and genomic restricted maximum likelihood estimation (GREML) of additive and dominance effects using SNP markers. These two sets are referred to as the CE and QM sets, where the CE set was designed for large numbers of markers and the QM set was designed for large numbers of individuals. GBLUP and associated accuracy formulations for individuals in training and validation data sets were derived for breeding values, dominance deviations and genotypic values. Simulation study showed that GREML and GBLUP generally were able to capture small additive and dominance effects that each accounted for 0.00005-0.0003 of the phenotypic variance and GREML was able to differentiate true additive and dominance heritability levels. GBLUP of the total genetic value as the summation of additive and dominance effects had higher prediction accuracy than either additive or dominance GBLUP, causal variants had the highest accuracy of GREML and GBLUP, and predicted accuracies were in agreement with observed accuracies. Genomic additive and dominance relationship matrices using SNP markers were consistent with theoretical expectations. The GREML and GBLUP methods can be an effective tool for assessing the type and magnitude of genetic effects affecting a phenotype and for predicting the total genetic value at the whole genome level.

  15. Lipid correction model of carbon stable isotopes for a cosmopolitan predator, spiny dogfish Squalus acanthias.

    PubMed

    Reum, J C P

    2011-12-01

    Three lipid correction models were evaluated for liver and white dorsal muscle from Squalus acanthias. For muscle, all three models performed well, based on the Akaike Information Criterion value corrected for small sample sizes (AIC(c) ), and predicted similar lipid corrections to δ(13) C that were up to 2.8 ‰ higher than those predicted using previously published models based on multispecies data. For liver, which possessed higher bulk C:N values compared to that of white muscle, all three models performed poorly and lipid-corrected δ(13) C values were best approximated by simply adding 5.74 ‰ to bulk δ(13) C values. © 2011 The Author. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  16. The Dopamine Prediction Error: Contributions to Associative Models of Reward Learning

    PubMed Central

    Nasser, Helen M.; Calu, Donna J.; Schoenbaum, Geoffrey; Sharpe, Melissa J.

    2017-01-01

    Phasic activity of midbrain dopamine neurons is currently thought to encapsulate the prediction-error signal described in Sutton and Barto’s (1981) model-free reinforcement learning algorithm. This phasic signal is thought to contain information about the quantitative value of reward, which transfers to the reward-predictive cue after learning. This is argued to endow the reward-predictive cue with the value inherent in the reward, motivating behavior toward cues signaling the presence of reward. Yet theoretical and empirical research has implicated prediction-error signaling in learning that extends far beyond a transfer of quantitative value to a reward-predictive cue. Here, we review the research which demonstrates the complexity of how dopaminergic prediction errors facilitate learning. After briefly discussing the literature demonstrating that phasic dopaminergic signals can act in the manner described by Sutton and Barto (1981), we consider how these signals may also influence attentional processing across multiple attentional systems in distinct brain circuits. Then, we discuss how prediction errors encode and promote the development of context-specific associations between cues and rewards. Finally, we consider recent evidence that shows dopaminergic activity contains information about causal relationships between cues and rewards that reflect information garnered from rich associative models of the world that can be adapted in the absence of direct experience. In discussing this research we hope to support the expansion of how dopaminergic prediction errors are thought to contribute to the learning process beyond the traditional concept of transferring quantitative value. PMID:28275359

  17. Foundations for computer simulation of a low pressure oil flooded single screw air compressor

    NASA Astrophysics Data System (ADS)

    Bein, T. W.

    1981-12-01

    The necessary logic to construct a computer model to predict the performance of an oil flooded, single screw air compressor is developed. The geometric variables and relationships used to describe the general single screw mechanism are developed. The governing equations to describe the processes are developed from their primary relationships. The assumptions used in the development are also defined and justified. The computer model predicts the internal pressure, temperature, and flowrates through the leakage paths throughout the compression cycle of the single screw compressor. The model uses empirical external values as the basis for the internal predictions. The computer values are compared to the empirical values, and conclusions are drawn based on the results. Recommendations are made for future efforts to improve the computer model and to verify some of the conclusions that are drawn.

  18. Thermomechanical Modeling of Sintered Silver - A Fracture Mechanics-based Approach: Extended Abstract: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paret, Paul P; DeVoto, Douglas J; Narumanchi, Sreekant V

    Sintered silver has proven to be a promising candidate for use as a die-attach and substrate-attach material in automotive power electronics components. It holds promise of greater reliability than lead-based and lead-free solders, especially at higher temperatures (less than 200 degrees Celcius). Accurate predictive lifetime models of sintered silver need to be developed and its failure mechanisms thoroughly characterized before it can be deployed as a die-attach or substrate-attach material in wide-bandgap device-based packages. We present a finite element method (FEM) modeling methodology that can offer greater accuracy in predicting the failure of sintered silver under accelerated thermal cycling. Amore » fracture mechanics-based approach is adopted in the FEM model, and J-integral/thermal cycle values are computed. In this paper, we outline the procedures for obtaining the J-integral/thermal cycle values in a computational model and report on the possible advantage of using these values as modeling parameters in a predictive lifetime model.« less

  19. [The trial of business data analysis at the Department of Radiology by constructing the auto-regressive integrated moving-average (ARIMA) model].

    PubMed

    Tani, Yuji; Ogasawara, Katsuhiko

    2012-01-01

    This study aimed to contribute to the management of a healthcare organization by providing management information using time-series analysis of business data accumulated in the hospital information system, which has not been utilized thus far. In this study, we examined the performance of the prediction method using the auto-regressive integrated moving-average (ARIMA) model, using the business data obtained at the Radiology Department. We made the model using the data used for analysis, which was the number of radiological examinations in the past 9 years, and we predicted the number of radiological examinations in the last 1 year. Then, we compared the actual value with the forecast value. We were able to establish that the performance prediction method was simple and cost-effective by using free software. In addition, we were able to build the simple model by pre-processing the removal of trend components using the data. The difference between predicted values and actual values was 10%; however, it was more important to understand the chronological change rather than the individual time-series values. Furthermore, our method was highly versatile and adaptable compared to the general time-series data. Therefore, different healthcare organizations can use our method for the analysis and forecasting of their business data.

  20. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash

    PubMed Central

    Safiuddin, Md.; Raman, Sudharshan N.; Abdus Salam, Md.; Jumaat, Mohd. Zamin

    2016-01-01

    Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination (R2) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN. PMID:28773520

  1. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash.

    PubMed

    Safiuddin, Md; Raman, Sudharshan N; Abdus Salam, Md; Jumaat, Mohd Zamin

    2016-05-20

    Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination ( R ²) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN.

  2. Predictive value of serum sST2 in preschool wheezers for development of asthma with high FeNO.

    PubMed

    Ketelaar, M E; van de Kant, K D; Dijk, F N; Klaassen, E M; Grotenboer, N S; Nawijn, M C; Dompeling, E; Koppelman, G H

    2017-11-01

    Wheezing is common in childhood. However, current prediction models of pediatric asthma have only modest accuracy. Novel biomarkers and definition of subphenotypes may improve asthma prediction. Interleukin-1-receptor-like-1 (IL1RL1 or ST2) is a well-replicated asthma gene and associates with eosinophilia. We investigated whether serum sST2 predicts asthma and asthma with elevated exhaled NO (FeNO), compared to the commonly used Asthma Prediction Index (API). Using logistic regression modeling, we found that serum sST2 levels in 2-3 years-old wheezers do not predict doctors' diagnosed asthma at age 6 years. Instead, sST2 predicts a subphenotype of asthma characterized by increased levels of FeNO, a marker for eosinophilic airway inflammation. Herein, sST2 improved the predictive value of the API (AUC=0.70, 95% CI 0.56-0.84), but had also significant predictive value on its own (AUC=0.65, 95% CI 0.52-0.79). Our study indicates that sST2 in preschool wheezers has predictive value for the development of eosinophilic airway inflammation in asthmatic children at school age. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  3. Ability of commercially available dairy ration programs to predict duodenal flows of protein and essential amino acids in dairy cows.

    PubMed

    Pacheco, D; Patton, R A; Parys, C; Lapierre, H

    2012-02-01

    The objective of this analysis was to compare the rumen submodel predictions of 4 commonly used dairy ration programs to observed values of duodenal flows of crude protein (CP), protein fractions, and essential AA (EAA). The literature was searched and 40 studies, including 154 diets, were used to compare observed values with those predicted by AminoCow (AC), Agricultural Modeling and Training Systems (AMTS), Cornell-Penn-Miner (CPM), and National Research Council 2001 (NRC) models. The models were evaluated based on their ability to predict the mean, their root mean square prediction error (RMSPE), error bias, and adequacy of regression equations for each protein fraction. The models predicted the mean duodenal CP flow within 5%, with more than 90% of the variation due to random disturbance. The models also predicted within 5% the mean microbial CP flow except CPM, which overestimated it by 27%. Only NRC, however, predicted mean rumen-undegraded protein (RUP) flows within 5%, whereas AC and AMTS underpredicted it by 8 to 9% and CPM by 24%. Regarding duodenal flows of individual AA, across all diets, CPM predicted substantially greater (>10%) mean flows of Arg, His, Ile, Met, and Lys; AMTS predicted greater flow for Arg and Met, whereas AC and NRC estimations were, on average, within 10% of observed values. Overpredictions by the CPM model were mainly related to mean bias, whereas the NRC model had the highest proportion of bias in random disturbance for flows of EAA. Models tended to predict mean flows of EAA more accurately on corn silage and alfalfa diets than on grass-based diets, more accurately on corn grain-based diets than on non-corn-based diets, and finally more accurately in the mid range of diet types. The 4 models were accurate at predicting mean dry matter intake. The AC, AMTS, and NRC models were all sufficiently accurate to be used for balancing EAA in dairy rations under field conditions. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Labor estimation by informational objective assessment (LEIOA) for preterm delivery prediction.

    PubMed

    Malaina, Iker; Aranburu, Larraitz; Martínez, Luis; Fernández-Llebrez, Luis; Bringas, Carlos; De la Fuente, Ildefonso M; Pérez, Martín Blás; González, Leire; Arana, Itziar; Matorras, Roberto

    2018-05-01

    To introduce LEIOA, a new screening method to forecast which patients admitted to the hospital because of suspected threatened premature delivery will give birth in < 7 days, so that it can be used to assist in the prognosis and treatment jointly with other clinical tools. From 2010 to 2013, 286 tocographies from women with gestational ages comprehended between 24 and 37 weeks were collected and studied. Then, we developed a new predictive model based on uterine contractions which combine the Generalized Hurst Exponent and the Approximate Entropy by logistic regression (LEIOA model). We compared it with a model using exclusively obstetric variables, and afterwards, we joined both to evaluate the gain. Finally, a cross validation was performed. The combination of LEIOA with the medical model resulted in an increase (in average) of predictive values of 12% with respect to the medical model alone, giving a sensitivity of 0.937, a specificity of 0.747, a positive predictive value of 0.907 and a negative predictive value of 0.819. Besides, adding LEIOA reduced the percentage of incorrectly classified cases by the medical model by almost 50%. Due to the significant increase in predictive parameters and the reduction of incorrectly classified cases when LEIOA was combined with the medical variables, we conclude that it could be a very useful tool to improve the estimation of the immediacy of preterm delivery.

  5. Model-based prediction of myelosuppression and recovery based on frequent neutrophil monitoring.

    PubMed

    Netterberg, Ida; Nielsen, Elisabet I; Friberg, Lena E; Karlsson, Mats O

    2017-08-01

    To investigate whether a more frequent monitoring of the absolute neutrophil counts (ANC) during myelosuppressive chemotherapy, together with model-based predictions, can improve therapy management, compared to the limited clinical monitoring typically applied today. Daily ANC in chemotherapy-treated cancer patients were simulated from a previously published population model describing docetaxel-induced myelosuppression. The simulated values were used to generate predictions of the individual ANC time-courses, given the myelosuppression model. The accuracy of the predicted ANC was evaluated under a range of conditions with reduced amount of ANC measurements. The predictions were most accurate when more data were available for generating the predictions and when making short forecasts. The inaccuracy of ANC predictions was highest around nadir, although a high sensitivity (≥90%) was demonstrated to forecast Grade 4 neutropenia before it occurred. The time for a patient to recover to baseline could be well forecasted 6 days (±1 day) before the typical value occurred on day 17. Daily monitoring of the ANC, together with model-based predictions, could improve anticancer drug treatment by identifying patients at risk for severe neutropenia and predicting when the next cycle could be initiated.

  6. Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean.

    PubMed

    Alizadeh, Mohamad Javad; Kavianpour, Mohamad Reza

    2015-09-15

    The main objective of this study is to apply artificial neural network (ANN) and wavelet-neural network (WNN) models for predicting a variety of ocean water quality parameters. In this regard, several water quality parameters in Hilo Bay, Pacific Ocean, are taken under consideration. Different combinations of water quality parameters are applied as input variables to predict daily values of salinity, temperature and DO as well as hourly values of DO. The results demonstrate that the WNN models are superior to the ANN models. Also, the hourly models developed for DO prediction outperform the daily models of DO. For the daily models, the most accurate model has R equal to 0.96, while for the hourly model it reaches up to 0.98. Overall, the results show the ability of the model to monitor the ocean parameters, in condition with missing data, or when regular measurement and monitoring are impossible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Quantitative structure-toxicity relationship of the aquatic toxicity for various narcotic pollutants using the norm indexes.

    PubMed

    Wang, Qiang; Jia, Qingzhu; Yan, Lihong; Xia, Shuqian; Ma, Peisheng

    2014-08-01

    The aquatic toxicity value of hazardous contaminants plays an important role in the risk assessments of aquatic ecosystems. The following study presents a stable and accurate structure-toxicity relationship model based on the norm indexes for the prediction of toxicity value (log(LC50)) for 190 diverse narcotic pollutants (96 h LC50 data for Poecilia reticulata). Research indicates that this new model is very efficient and provides satisfactory results. The suggested prediction model is evidenced by R(2) (square correlation coefficient) and ARD (average relative difference) values of 0.9376 and 10.45%, respectively, for the training set, and 0.9264 and 13.90% for the testing set. Comparison results with reference models demonstrate that this new method, based on the norm indexes proposed in this work, results in significant improvements, both in accuracy and stability for predicting aquatic toxicity values of narcotic pollutants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Proposal for a New Predictive Model of Short-Term Mortality After Living Donor Liver Transplantation due to Acute Liver Failure.

    PubMed

    Chung, Hyun Sik; Lee, Yu Jung; Jo, Yun Sung

    2017-02-21

    BACKGROUND Acute liver failure (ALF) is known to be a rapidly progressive and fatal disease. Various models which could help to estimate the post-transplant outcome for ALF have been developed; however, none of them have been proved to be the definitive predictive model of accuracy. We suggest a new predictive model, and investigated which model has the highest predictive accuracy for the short-term outcome in patients who underwent living donor liver transplantation (LDLT) due to ALF. MATERIAL AND METHODS Data from a total 88 patients were collected retrospectively. King's College Hospital criteria (KCH), Child-Turcotte-Pugh (CTP) classification, and model for end-stage liver disease (MELD) score were calculated. Univariate analysis was performed, and then multivariate statistical adjustment for preoperative variables of ALF prognosis was performed. A new predictive model was developed, called the MELD conjugated serum phosphorus model (MELD-p). The individual diagnostic accuracy and cut-off value of models in predicting 3-month post-transplant mortality were evaluated using the area under the receiver operating characteristic curve (AUC). The difference in AUC between MELD-p and the other models was analyzed. The diagnostic improvement in MELD-p was assessed using the net reclassification improvement (NRI) and integrated discrimination improvement (IDI). RESULTS The MELD-p and MELD scores had high predictive accuracy (AUC >0.9). KCH and serum phosphorus had an acceptable predictive ability (AUC >0.7). The CTP classification failed to show discriminative accuracy in predicting 3-month post-transplant mortality. The difference in AUC between MELD-p and the other models had statistically significant associations with CTP and KCH. The cut-off value of MELD-p was 3.98 for predicting 3-month post-transplant mortality. The NRI was 9.9% and the IDI was 2.9%. CONCLUSIONS MELD-p score can predict 3-month post-transplant mortality better than other scoring systems after LDLT due to ALF. The recommended cut-off value of MELD-p is 3.98.

  9. Relationships Between the External and Internal Training Load in Professional Soccer: What Can We Learn From Machine Learning?

    PubMed

    Jaspers, Arne; De Beéck, Tim Op; Brink, Michel S; Frencken, Wouter G P; Staes, Filip; Davis, Jesse J; Helsen, Werner F

    2018-05-01

    Machine learning may contribute to understanding the relationship between the external load and internal load in professional soccer. Therefore, the relationship between external load indicators (ELIs) and the rating of perceived exertion (RPE) was examined using machine learning techniques on a group and individual level. Training data were collected from 38 professional soccer players over 2 seasons. The external load was measured using global positioning system technology and accelerometry. The internal load was obtained using the RPE. Predictive models were constructed using 2 machine learning techniques, artificial neural networks and least absolute shrinkage and selection operator (LASSO) models, and 1 naive baseline method. The predictions were based on a large set of ELIs. Using each technique, 1 group model involving all players and 1 individual model for each player were constructed. These models' performance on predicting the reported RPE values for future training sessions was compared with the naive baseline's performance. Both the artificial neural network and LASSO models outperformed the baseline. In addition, the LASSO model made more accurate predictions for the RPE than did the artificial neural network model. Furthermore, decelerations were identified as important ELIs. Regardless of the applied machine learning technique, the group models resulted in equivalent or better predictions for the reported RPE values than the individual models. Machine learning techniques may have added value in predicting RPE for future sessions to optimize training design and evaluation. These techniques may also be used in conjunction with expert knowledge to select key ELIs for load monitoring.

  10. Developing risk prediction models for kidney injury and assessing incremental value for novel biomarkers.

    PubMed

    Kerr, Kathleen F; Meisner, Allison; Thiessen-Philbrook, Heather; Coca, Steven G; Parikh, Chirag R

    2014-08-07

    The field of nephrology is actively involved in developing biomarkers and improving models for predicting patients' risks of AKI and CKD and their outcomes. However, some important aspects of evaluating biomarkers and risk models are not widely appreciated, and statistical methods are still evolving. This review describes some of the most important statistical concepts for this area of research and identifies common pitfalls. Particular attention is paid to metrics proposed within the last 5 years for quantifying the incremental predictive value of a new biomarker. Copyright © 2014 by the American Society of Nephrology.

  11. SWMF Global Magnetosphere Simulations of January 2005: Geomagnetic Indices and Cross-Polar Cap Potential

    NASA Astrophysics Data System (ADS)

    Haiducek, John D.; Welling, Daniel T.; Ganushkina, Natalia Y.; Morley, Steven K.; Ozturk, Dogacan Su

    2017-12-01

    We simulated the entire month of January 2005 using the Space Weather Modeling Framework (SWMF) with observed solar wind data as input. We conducted this simulation with and without an inner magnetosphere model and tested two different grid resolutions. We evaluated the model's accuracy in predicting Kp, SYM-H, AL, and cross-polar cap potential (CPCP). We find that the model does an excellent job of predicting the SYM-H index, with a root-mean-square error (RMSE) of 17-18 nT. Kp is predicted well during storm time conditions but overpredicted during quiet times by a margin of 1 to 1.7 Kp units. AL is predicted reasonably well on average, with an RMSE of 230-270 nT. However, the model reaches the largest negative AL values significantly less often than the observations. The model tended to overpredict CPCP, with RMSE values on the order of 46-48 kV. We found the results to be insensitive to grid resolution, with the exception of the rate of occurrence for strongly negative AL values. The use of the inner magnetosphere component, however, affected results significantly, with all quantities except CPCP improved notably when the inner magnetosphere model was on.

  12. Modelling and simulation of the intervertebral movements of the lumbar spine using an inverse kinematic algorithm.

    PubMed

    Sun, L W; Lee, R Y W; Lu, W; Luk, K D K

    2004-11-01

    An inverse kinematic model is presented that was employed to determine the optimum intervertebral joint configuration for a given forward-bending posture of the human trunk. The lumbar spine was modelled as an open-end, kinematic chain of five links that represented the five vertebrae (L 1-L5). An optimisation equation with physiological constraints was employed to determine the intervertebral joint configuration. Intervertebral movements were measured from sagittal X-ray films of 22 subjects. The mean difference between the X-ray measurements of intervertebral rotations in the sagittal plane and the values predicted by the kinematic model was less than 1.6 degrees. Pearson product-moment correlation R was used to measure the relationship between the measured and predicted values. The R-values were found to be high, ranging from 0.83 to 0.97, for prediction of intervertebral rotation, but poor for intervertebral translation (R= 0.08-0.67). It is concluded that the inverse kinematic model will be clinically useful for predicting intervertebral rotation when X-ray or invasive measurements are undesirable. It will also be useful to biomechanical modelling, which requires accurate kinematic information as model input data.

  13. Dynamic Divisive Normalization Predicts Time-Varying Value Coding in Decision-Related Circuits

    PubMed Central

    LoFaro, Thomas; Webb, Ryan; Glimcher, Paul W.

    2014-01-01

    Normalization is a widespread neural computation, mediating divisive gain control in sensory processing and implementing a context-dependent value code in decision-related frontal and parietal cortices. Although decision-making is a dynamic process with complex temporal characteristics, most models of normalization are time-independent and little is known about the dynamic interaction of normalization and choice. Here, we show that a simple differential equation model of normalization explains the characteristic phasic-sustained pattern of cortical decision activity and predicts specific normalization dynamics: value coding during initial transients, time-varying value modulation, and delayed onset of contextual information. Empirically, we observe these predicted dynamics in saccade-related neurons in monkey lateral intraparietal cortex. Furthermore, such models naturally incorporate a time-weighted average of past activity, implementing an intrinsic reference-dependence in value coding. These results suggest that a single network mechanism can explain both transient and sustained decision activity, emphasizing the importance of a dynamic view of normalization in neural coding. PMID:25429145

  14. Improved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysis.

    PubMed

    Uzun, Harun; Yıldız, Zeynep; Goldfarb, Jillian L; Ceylan, Selim

    2017-06-01

    As biomass becomes more integrated into our energy feedstocks, the ability to predict its combustion enthalpies from routine data such as carbon, ash, and moisture content enables rapid decisions about utilization. The present work constructs a novel artificial neural network model with a 3-3-1 tangent sigmoid architecture to predict biomasses' higher heating values from only their proximate analyses, requiring minimal specificity as compared to models based on elemental composition. The model presented has a considerably higher correlation coefficient (0.963) and lower root mean square (0.375), mean absolute (0.328), and mean bias errors (0.010) than other models presented in the literature which, at least when applied to the present data set, tend to under-predict the combustion enthalpy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Modelling oxygen transfer using dynamic alpha factors.

    PubMed

    Jiang, Lu-Man; Garrido-Baserba, Manel; Nolasco, Daniel; Al-Omari, Ahmed; DeClippeleir, Haydee; Murthy, Sudhir; Rosso, Diego

    2017-11-01

    Due to the importance of wastewater aeration in meeting treatment requirements and due to its elevated energy intensity, it is important to describe the real nature of an aeration system to improve design and specification, performance prediction, energy consumption, and process sustainability. Because organic loadings drive aeration efficiency to its lowest value when the oxygen demand (energy) is the highest, the implications of considering their dynamic nature on energy costs are of utmost importance. A dynamic model aimed at identifying conservation opportunities is presented. The model developed describes the correlation between the COD concentration and the α factor in activated sludge. Using the proposed model, the aeration efficiency is calculated as a function of the organic loading (i.e. COD). This results in predictions of oxygen transfer values that are more realistic than the traditional method of assuming constant α values. The model was applied to two water resource recovery facilities, and was calibrated and validated with time-sensitive databases. Our improved aeration model structure increases the quality of prediction of field data through the recognition of the dynamic nature of the alpha factor (α) as a function of the applied oxygen demand. For the cases presented herein, the model prediction of airflow improved by 20-35% when dynamic α is used. The proposed model offers a quantitative tool for the prediction of energy demand and for minimizing aeration design uncertainty. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A QSAR study of integrase strand transfer inhibitors based on a large set of pyrimidine, pyrimidone, and pyridopyrazine carboxamide derivatives

    NASA Astrophysics Data System (ADS)

    de Campos, Luana Janaína; de Melo, Eduardo Borges

    2017-08-01

    In the present study, 199 compounds derived from pyrimidine, pyrimidone and pyridopyrazine carboxamides with inhibitory activity against HIV-1 integrase were modeled. Subsequently, a multivariate QSAR study was conducted with 54 molecules employed by Ordered Predictors Selection (OPS) and Partial Least Squares (PLS) for the selection of variables and model construction, respectively. Topological, electrotopological, geometric, and molecular descriptors were used. The selected real model was robust and free from chance correlation; in addition, it demonstrated favorable internal and external statistical quality. Once statistically validated, the training model was used to predict the activity of a second data set (n = 145). The root mean square deviation (RMSD) between observed and predicted values was 0.698. Although it is a value outside of the standards, only 15 (10.34%) of the samples exhibited higher residual values than 1 log unit, a result considered acceptable. Results of Williams and Euclidean applicability domains relative to the prediction showed that the predictions did not occur by extrapolation and that the model is representative of the chemical space of test compounds.

  17. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers.

    PubMed

    Crossa, José; Campos, Gustavo de Los; Pérez, Paulino; Gianola, Daniel; Burgueño, Juan; Araus, José Luis; Makumbi, Dan; Singh, Ravi P; Dreisigacker, Susanne; Yan, Jianbing; Arief, Vivi; Banziger, Marianne; Braun, Hans-Joachim

    2010-10-01

    The availability of dense molecular markers has made possible the use of genomic selection (GS) for plant breeding. However, the evaluation of models for GS in real plant populations is very limited. This article evaluates the performance of parametric and semiparametric models for GS using wheat (Triticum aestivum L.) and maize (Zea mays) data in which different traits were measured in several environmental conditions. The findings, based on extensive cross-validations, indicate that models including marker information had higher predictive ability than pedigree-based models. In the wheat data set, and relative to a pedigree model, gains in predictive ability due to inclusion of markers ranged from 7.7 to 35.7%. Correlation between observed and predictive values in the maize data set achieved values up to 0.79. Estimates of marker effects were different across environmental conditions, indicating that genotype × environment interaction is an important component of genetic variability. These results indicate that GS in plant breeding can be an effective strategy for selecting among lines whose phenotypes have yet to be observed.

  18. Driver's mental workload prediction model based on physiological indices.

    PubMed

    Yan, Shengyuan; Tran, Cong Chi; Wei, Yingying; Habiyaremye, Jean Luc

    2017-09-15

    Developing an early warning model to predict the driver's mental workload (MWL) is critical and helpful, especially for new or less experienced drivers. The present study aims to investigate the correlation between new drivers' MWL and their work performance, regarding the number of errors. Additionally, the group method of data handling is used to establish the driver's MWL predictive model based on subjective rating (NASA task load index [NASA-TLX]) and six physiological indices. The results indicate that the NASA-TLX and the number of errors are positively correlated, and the predictive model shows the validity of the proposed model with an R 2 value of 0.745. The proposed model is expected to provide a reference value for the new drivers of their MWL by providing the physiological indices, and the driving lesson plans can be proposed to sustain an appropriate MWL as well as improve the driver's work performance.

  19. Comparison of different risk stratification systems in predicting short-term serious outcome of syncope patients.

    PubMed

    Safari, Saeed; Baratloo, Alireza; Hashemi, Behrooz; Rahmati, Farhad; Forouzanfar, Mohammad Mehdi; Motamedi, Maryam; Mirmohseni, Ladan

    2016-01-01

    Determining etiologic causes and prognosis can significantly improve management of syncope patients. The present study aimed to compare the values of San Francisco, Osservatorio Epidemiologico sulla Sincope nel Lazio (OESIL), Boston, and Risk Stratification of Syncope in the Emergency Department (ROSE) score clinical decision rules in predicting the short-term serious outcome of syncope patients. The present diagnostic accuracy study with 1-week follow-up was designed to evaluate the predictive values of the four mentioned clinical decision rules. Screening performance characteristics of each model in predicting mortality, myocardial infarction (MI), and cerebrovascular accidents (CVAs) were calculated and compared. To evaluate the value of each aforementioned model in predicting the outcome, sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio were calculated and receiver-operating curve (ROC) curve analysis was done. A total of 187 patients (mean age: 64.2 ± 17.2 years) were enrolled in the study. Mortality, MI, and CVA were seen in 19 (10.2%), 12 (6.4%), and 36 (19.2%) patients, respectively. Area under the ROC curve for OESIL, San Francisco, Boston, and ROSE models in prediction the risk of 1-week mortality, MI, and CVA was in the 30-70% range, with no significant difference among models ( P > 0.05). The pooled model did not show higher accuracy in prediction of mortality, MI, and CVA compared to others ( P > 0.05). This study revealed the weakness of all four evaluated models in predicting short-term serious outcome of syncope patients referred to the emergency department without any significant advantage for one among others.

  20. Predictive value of the transtheoretical model to smoking cessation in hospitalized patients with cardiovascular disease.

    PubMed

    Chouinard, Maud-Christine; Robichaud-Ekstrand, Sylvie

    2007-02-01

    Several authors have questioned the transtheoretical model. Determining the predictive value of each cognitive-behavioural element within this model could explain the multiple successes reported in smoking cessation programmes. The purpose of this study was to predict point-prevalent smoking abstinence at 2 and 6 months, using the constructs of the transtheoretical model, when applied to a pooled sample of individuals who were hospitalized for a cardiovascular event. The study follows a predictive correlation design. Recently hospitalized patients (n=168) with cardiovascular disease were pooled from a randomized, controlled trial. Independent variables of the predictive transtheoretical model comprise stages and processes of change, pros and cons to quit smoking (decisional balance), self-efficacy, and social support. These were evaluated at baseline, 2 and 6 months. Compared to smokers, individuals who abstained from smoking at 2 and 6 months were more confident at baseline to remain non-smokers, perceived less pros and cons to continue smoking, utilized less consciousness raising and self-re-evaluation experiential processes of change, and received more positive reinforcement from their social network with regard to their smoke-free behaviour. Self-efficacy and stages of change at baseline were predictive of smoking abstinence after 6 months. Other variables found to be predictive of smoking abstinence at 6 months were an increase in self-efficacy; an increase in positive social support behaviour and a decrease of the pros within the decisional balance. The results partially support the predictive value of the transtheoretical model constructs in smoking cessation for cardiovascular disease patients.

  1. Measurement Error and Bias in Value-Added Models. Research Report. ETS RR-17-25

    ERIC Educational Resources Information Center

    Kane, Michael T.

    2017-01-01

    By aggregating residual gain scores (the differences between each student's current score and a predicted score based on prior performance) for a school or a teacher, value-added models (VAMs) can be used to generate estimates of school or teacher effects. It is known that random errors in the prior scores will introduce bias into predictions of…

  2. Novel Applications of Multi-task Learning and Multiple Output Regression to Multiple Genetic Trait Prediction

    USDA-ARS?s Scientific Manuscript database

    Given a set of biallelic molecular markers, such as SNPs, with genotype values encoded numerically on a collection of plant, animal or human samples, the goal of genetic trait prediction is to predict the quantitative trait values by simultaneously modeling all marker effects. Genetic trait predicti...

  3. Modeling polyvinyl chloride Plasma Modification by Neural Networks

    NASA Astrophysics Data System (ADS)

    Wang, Changquan

    2018-03-01

    Neural networks model were constructed to analyze the connection between dielectric barrier discharge parameters and surface properties of material. The experiment data were generated from polyvinyl chloride plasma modification by using uniform design. Discharge voltage, discharge gas gap and treatment time were as neural network input layer parameters. The measured values of contact angle were as the output layer parameters. A nonlinear mathematical model of the surface modification for polyvinyl chloride was developed based upon the neural networks. The optimum model parameters were obtained by the simulation evaluation and error analysis. The results of the optimal model show that the predicted value is very close to the actual test value. The prediction model obtained here are useful for discharge plasma surface modification analysis.

  4. VARTM Process Modeling of Aerospace Composite Structures

    NASA Technical Reports Server (NTRS)

    Song, Xiao-Lan; Grimsley, Brian W.; Hubert, Pascal; Cano, Roberto J.; Loos, Alfred C.

    2003-01-01

    A three-dimensional model was developed to simulate the VARTM composite manufacturing process. The model considers the two important mechanisms that occur during the process: resin flow, and compaction and relaxation of the preform. The model was used to simulate infiltration of a carbon preform with an epoxy resin by the VARTM process. The model predicted flow patterns and preform thickness changes agreed qualitatively with the measured values. However, the predicted total infiltration times were much longer than measured most likely due to the inaccurate preform permeability values used in the simulation.

  5. Model-based learning and the contribution of the orbitofrontal cortex to the model-free world.

    PubMed

    McDannald, Michael A; Takahashi, Yuji K; Lopatina, Nina; Pietras, Brad W; Jones, Josh L; Schoenbaum, Geoffrey

    2012-04-01

    Learning is proposed to occur when there is a discrepancy between reward prediction and reward receipt. At least two separate systems are thought to exist: one in which predictions are proposed to be based on model-free or cached values; and another in which predictions are model-based. A basic neural circuit for model-free reinforcement learning has already been described. In the model-free circuit the ventral striatum (VS) is thought to supply a common-currency reward prediction to midbrain dopamine neurons that compute prediction errors and drive learning. In a model-based system, predictions can include more information about an expected reward, such as its sensory attributes or current, unique value. This detailed prediction allows for both behavioral flexibility and learning driven by changes in sensory features of rewards alone. Recent evidence from animal learning and human imaging suggests that, in addition to model-free information, the VS also signals model-based information. Further, there is evidence that the orbitofrontal cortex (OFC) signals model-based information. Here we review these data and suggest that the OFC provides model-based information to this traditional model-free circuitry and offer possibilities as to how this interaction might occur. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  6. CoMFA and CoMSIA 3D-QSAR studies on S(6)-(4-nitrobenzyl)mercaptopurine riboside (NBMPR) analogs as inhibitors of human equilibrative nucleoside transporter 1 (hENT1).

    PubMed

    Gupte, Amol; Buolamwini, John K

    2009-01-15

    3D-QSAR (CoMFA and CoMSIA) studies were performed on human equlibrative nucleoside transporter (hENT1) inhibitors displaying K(i) values ranging from 10,000 to 0.7nM. Both CoMFA and CoMSIA analysis gave reliable models with q2 values >0.50 and r2 values >0.92. The models have been validated for their stability and robustness using group validation and bootstrapping techniques and for their predictive abilities using an external test set of nine compounds. The high predictive r2 values of the test set (0.72 for CoMFA model and 0.74 for CoMSIA model) reveals that the models can prove to be a useful tool for activity prediction of newly designed nucleoside transporter inhibitors. The CoMFA and CoMSIA contour maps identify features important for exhibiting good binding affinities at the transporter, and can thus serve as a useful guide for the design of potential equilibrative nucleoside transporter inhibitors.

  7. Structure-Activity Relationship Models for Rat Carcinogenesis and Assessing the Role Mutagens Play in Model Predictivity

    PubMed Central

    Carrasquer, C. Alex; Batey, Kaylind; Qamar, Shahid; Cunningham, Albert R.; Cunningham, Suzanne L.

    2016-01-01

    We previously demonstrated that fragment based cat-SAR carcinogenesis models consisting solely of mutagenic or non-mutagenic carcinogens varied greatly in terms of their predictive accuracy. This led us to investigate how well the rat cancer cat-SAR model predicted mutagens and non-mutagens in their learning set. Four rat cancer cat-SAR models were developed: Complete Rat, Transgender Rat, Male Rat, and Female Rat, with leave-one-out (LOO) validation concordance values of 69%, 74%, 67%, and 73%, respectively. The mutagenic carcinogens produced concordance values in the range of 69–76% as compared to only 47–53% for non-mutagenic carcinogens. As a surrogate for mutagenicity comparisons between single site and multiple site carcinogen SAR models was analyzed. The LOO concordance values for models consisting of 1-site, 2-site, and 4+-site carcinogens were 66%, 71%, and 79%, respectively. As expected, the proportion of mutagens to non-mutagens also increased, rising from 54% for 1-site to 80% for 4+-site carcinogens. This study demonstrates that mutagenic chemicals, in both SAR learning sets and test sets, are influential in assessing model accuracy. This suggests that SAR models for carcinogens may require a two-step process in which mutagenicity is first determined before carcinogenicity can be accurately predicted. PMID:24697549

  8. Class-Related Emotions in Secondary Physical Education: A Control-Value Theory Approach

    ERIC Educational Resources Information Center

    Simonton, Kelly L.; Garn, Alex C.; Solmon, Melinda Ann

    2017-01-01

    Purpose: Grounded in control-value theory, a model of students' achievement emotions in physical education (PE) was investigated. Methods: A path analysis tested hypotheses that students' (N = 529) perceptions of teacher responsiveness, assertiveness, and clarity predict control and value beliefs which, in turn, predict enjoyment and boredom.…

  9. Reflexion on linear regression trip production modelling method for ensuring good model quality

    NASA Astrophysics Data System (ADS)

    Suprayitno, Hitapriya; Ratnasari, Vita

    2017-11-01

    Transport Modelling is important. For certain cases, the conventional model still has to be used, in which having a good trip production model is capital. A good model can only be obtained from a good sample. Two of the basic principles of a good sampling is having a sample capable to represent the population characteristics and capable to produce an acceptable error at a certain confidence level. It seems that this principle is not yet quite understood and used in trip production modeling. Therefore, investigating the Trip Production Modelling practice in Indonesia and try to formulate a better modeling method for ensuring the Model Quality is necessary. This research result is presented as follows. Statistics knows a method to calculate span of prediction value at a certain confidence level for linear regression, which is called Confidence Interval of Predicted Value. The common modeling practice uses R2 as the principal quality measure, the sampling practice varies and not always conform to the sampling principles. An experiment indicates that small sample is already capable to give excellent R2 value and sample composition can significantly change the model. Hence, good R2 value, in fact, does not always mean good model quality. These lead to three basic ideas for ensuring good model quality, i.e. reformulating quality measure, calculation procedure, and sampling method. A quality measure is defined as having a good R2 value and a good Confidence Interval of Predicted Value. Calculation procedure must incorporate statistical calculation method and appropriate statistical tests needed. A good sampling method must incorporate random well distributed stratified sampling with a certain minimum number of samples. These three ideas need to be more developed and tested.

  10. Evaluating the Predictive Value of Growth Prediction Models

    ERIC Educational Resources Information Center

    Murphy, Daniel L.; Gaertner, Matthew N.

    2014-01-01

    This study evaluates four growth prediction models--projection, student growth percentile, trajectory, and transition table--commonly used to forecast (and give schools credit for) middle school students' future proficiency. Analyses focused on vertically scaled summative mathematics assessments, and two performance standards conditions (high…

  11. A simple model to predict the biodiesel blend density as simultaneous function of blend percent and temperature.

    PubMed

    Gaonkar, Narayan; Vaidya, R G

    2016-05-01

    A simple method to estimate the density of biodiesel blend as simultaneous function of temperature and volume percent of biodiesel is proposed. Employing the Kay's mixing rule, we developed a model and investigated theoretically the density of different vegetable oil biodiesel blends as a simultaneous function of temperature and volume percent of biodiesel. Key advantage of the proposed model is that it requires only a single set of density values of components of biodiesel blends at any two different temperatures. We notice that the density of blend linearly decreases with increase in temperature and increases with increase in volume percent of the biodiesel. The lower values of standard estimate of error (SEE = 0.0003-0.0022) and absolute average deviation (AAD = 0.03-0.15 %) obtained using the proposed model indicate the predictive capability. The predicted values found good agreement with the recent available experimental data.

  12. Estimating the Accuracy of the Chedoke-McMaster Stroke Assessment Predictive Equations for Stroke Rehabilitation.

    PubMed

    Dang, Mia; Ramsaran, Kalinda D; Street, Melissa E; Syed, S Noreen; Barclay-Goddard, Ruth; Stratford, Paul W; Miller, Patricia A

    2011-01-01

    To estimate the predictive accuracy and clinical usefulness of the Chedoke-McMaster Stroke Assessment (CMSA) predictive equations. A longitudinal prognostic study using historical data obtained from 104 patients admitted post cerebrovascular accident was undertaken. Data were abstracted for all patients undergoing rehabilitation post stroke who also had documented admission and discharge CMSA scores. Published predictive equations were used to determine predicted outcomes. To determine the accuracy and clinical usefulness of the predictive model, shrinkage coefficients and predictions with 95% confidence bands were calculated. Complete data were available for 74 patients with a mean age of 65.3±12.4 years. The shrinkage values for the six Impairment Inventory (II) dimensions varied from -0.05 to 0.09; the shrinkage value for the Activity Inventory (AI) was 0.21. The error associated with predictive values was greater than ±1.5 stages for the II dimensions and greater than ±24 points for the AI. This study shows that the large error associated with the predictions (as defined by the confidence band) for the CMSA II and AI limits their clinical usefulness as a predictive measure. Further research to establish predictive models using alternative statistical procedures is warranted.

  13. 2018 update to the HIV-TRePS system: the development of new computational models to predict HIV treatment outcomes, with or without a genotype, with enhanced usability for low-income settings.

    PubMed

    Revell, Andrew D; Wang, Dechao; Perez-Elias, Maria-Jesus; Wood, Robin; Cogill, Dolphina; Tempelman, Hugo; Hamers, Raph L; Reiss, Peter; van Sighem, Ard I; Rehm, Catherine A; Pozniak, Anton; Montaner, Julio S G; Lane, H Clifford; Larder, Brendan A

    2018-06-08

    Optimizing antiretroviral drug combination on an individual basis can be challenging, particularly in settings with limited access to drugs and genotypic resistance testing. Here we describe our latest computational models to predict treatment responses, with or without a genotype, and compare their predictive accuracy with that of genotyping. Random forest models were trained to predict the probability of virological response to a new therapy introduced following virological failure using up to 50 000 treatment change episodes (TCEs) without a genotype and 18 000 TCEs including genotypes. Independent data sets were used to evaluate the models. This study tested the effects on model accuracy of relaxing the baseline data timing windows, the use of a new filter to exclude probable non-adherent cases and the addition of maraviroc, tipranavir and elvitegravir to the system. The no-genotype models achieved area under the receiver operator characteristic curve (AUC) values of 0.82 and 0.81 using the standard and relaxed baseline data windows, respectively. The genotype models achieved AUC values of 0.86 with the new non-adherence filter and 0.84 without. Both sets of models were significantly more accurate than genotyping with rules-based interpretation, which achieved AUC values of only 0.55-0.63, and were marginally more accurate than previous models. The models were able to identify alternative regimens that were predicted to be effective for the vast majority of cases in which the new regimen prescribed in the clinic failed. These latest global models predict treatment responses accurately even without a genotype and have the potential to help optimize therapy, particularly in resource-limited settings.

  14. [Geographical distribution of the Serum creatinine reference values of healthy adults].

    PubMed

    Wei, De-Zhi; Ge, Miao; Wang, Cong-Xia; Lin, Qian-Yi; Li, Meng-Jiao; Li, Peng

    2016-11-20

    To explore the relationship between serum creatinine (Scr) reference values in healthy adults and geographic factors and provide evidence for establishing Scr reference values in different regions. We collected 29 697 Scr reference values from healthy adults measured by 347 medical facilities from 23 provinces, 4 municipalities and 5 autonomous regions. We chose 23 geographical factors and analyzed their correlation with Scr reference values to identify the factors correlated significantly with Scr reference values. According to the Principal component analysis and Ridge regression analysis, two predictive models were constructed and the optimal model was chosen after comparison of the two model's fitting degree of predicted results and measured results. The distribution map of Scr reference values was drawn using the Kriging interpolation method. Seven geographic factors, including latitude, annual sunshine duration, annual average temperature, annual average relative humidity, annual precipitation, annual temperature range and topsoil (silt) cation exchange capacity were found to correlate significantly with Scr reference values. The overall distribution of Scr reference values featured a pattern that the values were high in the south and low in the north, varying consistently with the latitude change. The data of the geographic factors in a given region allows the prediction of the Scr values in healthy adults. Analysis of these geographical factors can facilitate the determination of the reference values specific to a region to improve the accuracy for clinical diagnoses.

  15. Hypoglycemia early alarm systems based on recursive autoregressive partial least squares models.

    PubMed

    Bayrak, Elif Seyma; Turksoy, Kamuran; Cinar, Ali; Quinn, Lauretta; Littlejohn, Elizabeth; Rollins, Derrick

    2013-01-01

    Hypoglycemia caused by intensive insulin therapy is a major challenge for artificial pancreas systems. Early detection and prevention of potential hypoglycemia are essential for the acceptance of fully automated artificial pancreas systems. Many of the proposed alarm systems are based on interpretation of recent values or trends in glucose values. In the present study, subject-specific linear models are introduced to capture glucose variations and predict future blood glucose concentrations. These models can be used in early alarm systems of potential hypoglycemia. A recursive autoregressive partial least squares (RARPLS) algorithm is used to model the continuous glucose monitoring sensor data and predict future glucose concentrations for use in hypoglycemia alarm systems. The partial least squares models constructed are updated recursively at each sampling step with a moving window. An early hypoglycemia alarm algorithm using these models is proposed and evaluated. Glucose prediction models based on real-time filtered data has a root mean squared error of 7.79 and a sum of squares of glucose prediction error of 7.35% for six-step-ahead (30 min) glucose predictions. The early alarm systems based on RARPLS shows good performance. A sensitivity of 86% and a false alarm rate of 0.42 false positive/day are obtained for the early alarm system based on six-step-ahead predicted glucose values with an average early detection time of 25.25 min. The RARPLS models developed provide satisfactory glucose prediction with relatively smaller error than other proposed algorithms and are good candidates to forecast and warn about potential hypoglycemia unless preventive action is taken far in advance. © 2012 Diabetes Technology Society.

  16. Hypoglycemia Early Alarm Systems Based on Recursive Autoregressive Partial Least Squares Models

    PubMed Central

    Bayrak, Elif Seyma; Turksoy, Kamuran; Cinar, Ali; Quinn, Lauretta; Littlejohn, Elizabeth; Rollins, Derrick

    2013-01-01

    Background Hypoglycemia caused by intensive insulin therapy is a major challenge for artificial pancreas systems. Early detection and prevention of potential hypoglycemia are essential for the acceptance of fully automated artificial pancreas systems. Many of the proposed alarm systems are based on interpretation of recent values or trends in glucose values. In the present study, subject-specific linear models are introduced to capture glucose variations and predict future blood glucose concentrations. These models can be used in early alarm systems of potential hypoglycemia. Methods A recursive autoregressive partial least squares (RARPLS) algorithm is used to model the continuous glucose monitoring sensor data and predict future glucose concentrations for use in hypoglycemia alarm systems. The partial least squares models constructed are updated recursively at each sampling step with a moving window. An early hypoglycemia alarm algorithm using these models is proposed and evaluated. Results Glucose prediction models based on real-time filtered data has a root mean squared error of 7.79 and a sum of squares of glucose prediction error of 7.35% for six-step-ahead (30 min) glucose predictions. The early alarm systems based on RARPLS shows good performance. A sensitivity of 86% and a false alarm rate of 0.42 false positive/day are obtained for the early alarm system based on six-step-ahead predicted glucose values with an average early detection time of 25.25 min. Conclusions The RARPLS models developed provide satisfactory glucose prediction with relatively smaller error than other proposed algorithms and are good candidates to forecast and warn about potential hypoglycemia unless preventive action is taken far in advance. PMID:23439179

  17. Prediction of breakdown strength of cellulosic insulating materials using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Singh, Sakshi; Mohsin, M. M.; Masood, Aejaz

    In this research work, a few sets of experiments have been performed in high voltage laboratory on various cellulosic insulating materials like diamond-dotted paper, paper phenolic sheets, cotton phenolic sheets, leatheroid, and presspaper, to measure different electrical parameters like breakdown strength, relative permittivity, loss tangent, etc. Considering the dependency of breakdown strength on other physical parameters, different Artificial Neural Network (ANN) models are proposed for the prediction of breakdown strength. The ANN model results are compared with those obtained experimentally and also with the values already predicted from an empirical relation suggested by Swanson and Dall. The reported results indicated that the breakdown strength predicted from the ANN model is in good agreement with the experimental values.

  18. Testing and analysis of internal hardwood log defect prediction models

    Treesearch

    R. Edward Thomas

    2011-01-01

    The severity and location of internal defects determine the quality and value of lumber sawn from hardwood logs. Models have been developed to predict the size and position of internal defects based on external defect indicator measurements. These models were shown to predict approximately 80% of all internal knots based on external knot indicators. However, the size...

  19. Prediction of Chl-a concentrations in an eutrophic lake using ANN models with hybrid inputs

    NASA Astrophysics Data System (ADS)

    Aksoy, A.; Yuzugullu, O.

    2017-12-01

    Chlorophyll-a (Chl-a) concentrations in water bodies exhibit both spatial and temporal variations. As a result, frequent sampling is required with higher number of samples. This motivates the use of remote sensing as a monitoring tool. Yet, prediction performances of models that convert radiance values into Chl-a concentrations can be poor in shallow lakes. In this study, Chl-a concentrations in Lake Eymir, a shallow eutrophic lake in Ankara (Turkey), are determined using artificial neural network (ANN) models that use hybrid inputs composed of water quality and meteorological data as well as remotely sensed radiance values to improve prediction performance. Following a screening based on multi-collinearity and principal component analysis (PCA), dissolved-oxygen concentration (DO), pH, turbidity, and humidity were selected among several parameters as the constituents of the hybrid input dataset. Radiance values were obtained from QuickBird-2 satellite. Conversion of the hybrid input into Chl-a concentrations were studied for two different periods in the lake. ANN models were successful in predicting Chl-a concentrations. Yet, prediction performance declined for low Chl-a concentrations in the lake. In general, models with hybrid inputs were superior over the ones that solely used remotely sensed data.

  20. Artificial neural networks as alternative tool for minimizing error predictions in manufacturing ultradeformable nanoliposome formulations.

    PubMed

    León Blanco, José M; González-R, Pedro L; Arroyo García, Carmen Martina; Cózar-Bernal, María José; Calle Suárez, Marcos; Canca Ortiz, David; Rabasco Álvarez, Antonio María; González Rodríguez, María Luisa

    2018-01-01

    This work was aimed at determining the feasibility of artificial neural networks (ANN) by implementing backpropagation algorithms with default settings to generate better predictive models than multiple linear regression (MLR) analysis. The study was hypothesized on timolol-loaded liposomes. As tutorial data for ANN, causal factors were used, which were fed into the computer program. The number of training cycles has been identified in order to optimize the performance of the ANN. The optimization was performed by minimizing the error between the predicted and real response values in the training step. The results showed that training was stopped at 10 000 training cycles with 80% of the pattern values, because at this point the ANN generalizes better. Minimum validation error was achieved at 12 hidden neurons in a single layer. MLR has great prediction ability, with errors between predicted and real values lower than 1% in some of the parameters evaluated. Thus, the performance of this model was compared to that of the MLR using a factorial design. Optimal formulations were identified by minimizing the distance among measured and theoretical parameters, by estimating the prediction errors. Results indicate that the ANN shows much better predictive ability than the MLR model. These findings demonstrate the increased efficiency of the combination of ANN and design of experiments, compared to the conventional MLR modeling techniques.

  1. The diagnostic value of specific IgE to Ara h 2 to predict peanut allergy in children is comparable to a validated and updated diagnostic prediction model.

    PubMed

    Klemans, Rob J B; Otte, Dianne; Knol, Mirjam; Knol, Edward F; Meijer, Yolanda; Gmelig-Meyling, Frits H J; Bruijnzeel-Koomen, Carla A F M; Knulst, André C; Pasmans, Suzanne G M A

    2013-01-01

    A diagnostic prediction model for peanut allergy in children was recently published, using 6 predictors: sex, age, history, skin prick test, peanut specific immunoglobulin E (sIgE), and total IgE minus peanut sIgE. To validate this model and update it by adding allergic rhinitis, atopic dermatitis, and sIgE to peanut components Ara h 1, 2, 3, and 8 as candidate predictors. To develop a new model based only on sIgE to peanut components. Validation was performed by testing discrimination (diagnostic value) with an area under the receiver operating characteristic curve and calibration (agreement between predicted and observed frequencies of peanut allergy) with the Hosmer-Lemeshow test and a calibration plot. The performance of the (updated) models was similarly analyzed. Validation of the model in 100 patients showed good discrimination (88%) but poor calibration (P < .001). In the updating process, age, history, and additional candidate predictors did not significantly increase discrimination, being 94%, and leaving only 4 predictors of the original model: sex, skin prick test, peanut sIgE, and total IgE minus sIgE. When building a model with sIgE to peanut components, Ara h 2 was the only predictor, with a discriminative ability of 90%. Cutoff values with 100% positive and negative predictive values could be calculated for both the updated model and sIgE to Ara h 2. In this way, the outcome of the food challenge could be predicted with 100% accuracy in 59% (updated model) and 50% (Ara h 2) of the patients. Discrimination of the validated model was good; however, calibration was poor. The discriminative ability of Ara h 2 was almost comparable to that of the updated model, containing 4 predictors. With both models, the need for peanut challenges could be reduced by at least 50%. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  2. Development of model for prediction of Leachate Pollution Index (LPI) in absence of leachate parameters.

    PubMed

    Lothe, Anjali G; Sinha, Alok

    2017-05-01

    Leachate pollution index (LPI) is an environmental index which quantifies the pollution potential of leachate generated in landfill site. Calculation of Leachate pollution index (LPI) is based on concentration of 18 parameters present in leachate. However, in case of non-availability of all 18 parameters evaluation of actual values of LPI becomes difficult. In this study, a model has been developed to predict the actual values of LPI in case of partial availability of parameters. This model generates eleven equations that helps in determination of upper and lower limit of LPI. The geometric mean of these two values results in LPI value. Application of this model to three landfill site results in LPI value with an error of ±20% for ∑ i n w i ⩾0.6. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Quantum-gravity predictions for the fine-structure constant

    NASA Astrophysics Data System (ADS)

    Eichhorn, Astrid; Held, Aaron; Wetterich, Christof

    2018-07-01

    Asymptotically safe quantum fluctuations of gravity can uniquely determine the value of the gauge coupling for a large class of grand unified models. In turn, this makes the electromagnetic fine-structure constant calculable. The balance of gravity and matter fluctuations results in a fixed point for the running of the gauge coupling. It is approached as the momentum scale is lowered in the transplanckian regime, leading to a uniquely predicted value of the gauge coupling at the Planck scale. The precise value of the predicted fine-structure constant depends on the matter content of the grand unified model. It is proportional to the gravitational fluctuation effects for which computational uncertainties remain to be settled.

  4. Accelerated Discovery of High-Refractive-Index Polymers Using First-Principles Modeling, Virtual High-Throughput Screening, and Data Mining

    NASA Astrophysics Data System (ADS)

    Afzal, Mohammad Atif Faiz; Cheng, Chong; Hachmann, Johannes

    Organic materials with refractive index (RI) values higher than 1.7 have attracted considerable interest in recent years due to the tremendous potential for their application in optical, optometric, and optoelectronic devices, and thus for shaping technological innovation in numerous related areas. Our work is concerned with creating predictive models for the optical properties of organic polymers, which will guide our experimentalist partners and allow them to target the most promising candidates. The RI model is developed based on a synergistic combination of first-principles electronic structure theory and machine learning techniques. The RI values predicted for common polymers using this model are in very good agreement with the experimental values. We also benchmark different DFT approximations along with various basis sets for their predictive performance in this model. We demonstrate that this combination of first-principles and data modeling is both successful and highly economical in determining the RI values of a wide range of organic polymers. To accelerate the development process, we cast this modeling approach into the high-throughput screening, materials informatics, and rational design framework that is developed in the group. This framework is a powerful tool and has shown to be highly promising for rapidly identifying polymer candidates with exceptional RI values as well as discovering design rules for advanced materials.

  5. Impact damage of composite plates

    NASA Technical Reports Server (NTRS)

    Lal, K. M.; Goglia, G. L.

    1983-01-01

    A simple model to study low velocity transverse impact of thin plates made of fiber-reinforced composite material, in particular T300/5208 graphite-epoxy was discussed. This model predicts the coefficient of restitution, which is a measure of the energy absorbed by the target during an impact event. The model is constructed on the assumption that the plate is inextensible in the fiber direction and that the material is incompressible in the z-direction. Such a plate essentially deforms by shear, hence this model neglects bending deformations of the plate. The coefficient of restitution is predicted to increase with large interlaminar shear strength and low transverse shear modulus of the laminate. Predictions are compared with the test results of impacted circular and rectangular clamped plates. Experimentally measured values of the coefficient of restitution are found to agree with the predicted values within a reasonable error.

  6. External prognostic validations and comparisons of age- and gender-adjusted exercise capacity predictions.

    PubMed

    Kim, Esther S H; Ishwaran, Hemant; Blackstone, Eugene; Lauer, Michael S

    2007-11-06

    The purpose of this study was to externally validate the prognostic value of age- and gender-based nomograms and categorical definitions of impaired exercise capacity (EC). Exercise capacity predicts death, but its use in routine clinical practice is hampered by its close correlation with age and gender. For a median of 5 years, we followed 22,275 patients without known heart disease who underwent symptom-limited stress testing. Models for predicted or impaired EC were identified by literature search. Gender-specific multivariable proportional hazards models were constructed. Four methods were used to assess validity: Akaike Information Criterion (AIC), right-censored c-index in 100 out-of-bootstrap samples, the Nagelkerke Index R2, and calculation of calibration error in 100 bootstrap samples. There were 646 and 430 deaths in 13,098 men and 9,177 women, respectively. Of the 7 models tested in men, a model based on a Veterans Affairs cohort (predicted metabolic equivalents [METs] = 18 - [0.15 x age]) had the highest AIC and R2. In women, a model based on the St. James Take Heart Project (predicted METs = 14.7 - [0.13 x age]) performed best. Categorical definitions of fitness performed less well. Even after accounting for age and gender, there was still an important interaction with age, whereby predicted EC was a weaker predictor in older subjects (p for interaction <0.001 in men and 0.003 in women). Several methods describe EC accounting for age and gender-related differences, but their ability to predict mortality differ. Simple cutoff values fail to fully describe EC's strong predictive value.

  7. Climate predictability and prediction skill on seasonal time scales over South America from CHFP models

    NASA Astrophysics Data System (ADS)

    Osman, Marisol; Vera, C. S.

    2017-10-01

    This work presents an assessment of the predictability and skill of climate anomalies over South America. The study was made considering a multi-model ensemble of seasonal forecasts for surface air temperature, precipitation and regional circulation, from coupled global circulation models included in the Climate Historical Forecast Project. Predictability was evaluated through the estimation of the signal-to-total variance ratio while prediction skill was assessed computing anomaly correlation coefficients. Both indicators present over the continent higher values at the tropics than at the extratropics for both, surface air temperature and precipitation. Moreover, predictability and prediction skill for temperature are slightly higher in DJF than in JJA while for precipitation they exhibit similar levels in both seasons. The largest values of predictability and skill for both variables and seasons are found over northwestern South America while modest but still significant values for extratropical precipitation at southeastern South America and the extratropical Andes. The predictability levels in ENSO years of both variables are slightly higher, although with the same spatial distribution, than that obtained considering all years. Nevertheless, predictability at the tropics for both variables and seasons diminishes in both warm and cold ENSO years respect to that in all years. The latter can be attributed to changes in signal rather than in the noise. Predictability and prediction skill for low-level winds and upper-level zonal winds over South America was also assessed. Maximum levels of predictability for low-level winds were found were maximum mean values are observed, i.e. the regions associated with the equatorial trade winds, the midlatitudes westerlies and the South American Low-Level Jet. Predictability maxima for upper-level zonal winds locate where the subtropical jet peaks. Seasonal changes in wind predictability are observed that seem to be related to those associated with the signal, especially at the extratropics.

  8. A nonparametric multiple imputation approach for missing categorical data.

    PubMed

    Zhou, Muhan; He, Yulei; Yu, Mandi; Hsu, Chiu-Hsieh

    2017-06-06

    Incomplete categorical variables with more than two categories are common in public health data. However, most of the existing missing-data methods do not use the information from nonresponse (missingness) probabilities. We propose a nearest-neighbour multiple imputation approach to impute a missing at random categorical outcome and to estimate the proportion of each category. The donor set for imputation is formed by measuring distances between each missing value with other non-missing values. The distance function is calculated based on a predictive score, which is derived from two working models: one fits a multinomial logistic regression for predicting the missing categorical outcome (the outcome model) and the other fits a logistic regression for predicting missingness probabilities (the missingness model). A weighting scheme is used to accommodate contributions from two working models when generating the predictive score. A missing value is imputed by randomly selecting one of the non-missing values with the smallest distances. We conduct a simulation to evaluate the performance of the proposed method and compare it with several alternative methods. A real-data application is also presented. The simulation study suggests that the proposed method performs well when missingness probabilities are not extreme under some misspecifications of the working models. However, the calibration estimator, which is also based on two working models, can be highly unstable when missingness probabilities for some observations are extremely high. In this scenario, the proposed method produces more stable and better estimates. In addition, proper weights need to be chosen to balance the contributions from the two working models and achieve optimal results for the proposed method. We conclude that the proposed multiple imputation method is a reasonable approach to dealing with missing categorical outcome data with more than two levels for assessing the distribution of the outcome. In terms of the choices for the working models, we suggest a multinomial logistic regression for predicting the missing outcome and a binary logistic regression for predicting the missingness probability.

  9. Use of Landsat data to predict the trophic state of Minnesota lakes

    NASA Technical Reports Server (NTRS)

    Lillesand, T. M.; Johnson, W. L.; Deuell, R. L.; Lindstrom, O. M.; Meisner, D. E.

    1983-01-01

    Near-concurrent Landsat Multispectral Scanner (MSS) and ground data were obtained for 60 lakes distributed in two Landsat scene areas. The ground data included measurement of secchi disk depth, chlorophyll-a, total phosphorous, turbidity, color, and total nitrogen, as well as Carlson Trophic State Index (TSI) values derived from the first three parameters. The Landsat data best correlated with the TSI values. Prediction models were developed to classify some 100 'test' lakes appearing in the two analysis scenes on the basis of TSI estimates. Clouds, wind, poor image data, small lake size, and shallow lake depth caused some problems in lake TSI prediction. Overall, however, the Landsat-predicted TSI estimates were judged to be very reliable for the secchi-derived TSI estimation, moderately reliable for prediction of the chlorophyll-a TSI, and unreliable for the phosphorous value. Numerous Landsat data extraction procedures were compared, and the success of the Landsat TSI prediction models was a strong function of the procedure employed.

  10. Application and evaluation of two air quality models for particulate matter for a southeastern U.S. episode.

    PubMed

    Zhang, Yang; Pun, Betty; Wu, Shiang-Yuh; Vijayaraghavan, Krish; Seigneur, Christian

    2004-12-01

    The Models-3 Community Multiscale Air Quality (CMAQ) Modeling System and the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAMx) were applied to simulate the period June 29-July 10, 1999, of the Southern Oxidants Study episode with two nested horizontal grid sizes: a coarse resolution of 32 km and a fine resolution of 8 km. The predicted spatial variations of ozone (O3), particulate matter with an aerodynamic diameter less than or equal to 2.5 microm (PM2.5), and particulate matter with an aerodynamic diameter less than or equal to 10 microm (PM10) by both models are similar in rural areas but differ from one another significantly over some urban/suburban areas in the eastern and southern United States, where PMCAMx tends to predict higher values of O3 and PM than CMAQ. Both models tend to predict O3 values that are higher than those observed. For observed O3 values above 60 ppb, O3 performance meets the U.S. Environmental Protection Agency's criteria for CMAQ with both grids and for PMCAMx with the fine grid only. It becomes unsatisfactory for PMCAMx and marginally satisfactory for CMAQ for observed O3 values above 40 ppb. Both models predict similar amounts of sulfate (SO4(2-)) and organic matter, and both predict SO4(2-) to be the largest contributor to PM2.5. PMCAMx generally predicts higher amounts of ammonium (NH4+), nitrate (NO3-), and black carbon (BC) than does CMAQ. PM performance for CMAQ is generally consistent with that of other PM models, whereas PMCAMx predicts higher concentrations of NO3-, NH4+, and BC than observed, which degrades its performance. For PM10 and PM2.5 predictions over the southeastern U.S. domain, the ranges of mean normalized gross errors (MNGEs) and mean normalized bias are 37-43% and -33-4% for CMAQ and 50-59% and 7-30% for PMCAMx. Both models predict the largest MNGEs for NO3- (98-104% for CMAQ 138-338% for PMCAMx). The inaccurate NO3- predictions by both models may be caused by the inaccuracies in the ammonia emission inventory and the uncertainties in the gas/particle partitioning under some conditions. In addition to these uncertainties, the significant PM overpredictions by PMCAMx may be attributed to the lack of wet removal for PM and a likely underprediction in the vertical mixing during the daytime.

  11. Estimating cross-validatory predictive p-values with integrated importance sampling for disease mapping models.

    PubMed

    Li, Longhai; Feng, Cindy X; Qiu, Shi

    2017-06-30

    An important statistical task in disease mapping problems is to identify divergent regions with unusually high or low risk of disease. Leave-one-out cross-validatory (LOOCV) model assessment is the gold standard for estimating predictive p-values that can flag such divergent regions. However, actual LOOCV is time-consuming because one needs to rerun a Markov chain Monte Carlo analysis for each posterior distribution in which an observation is held out as a test case. This paper introduces a new method, called integrated importance sampling (iIS), for estimating LOOCV predictive p-values with only Markov chain samples drawn from the posterior based on a full data set. The key step in iIS is that we integrate away the latent variables associated the test observation with respect to their conditional distribution without reference to the actual observation. By following the general theory for importance sampling, the formula used by iIS can be proved to be equivalent to the LOOCV predictive p-value. We compare iIS and other three existing methods in the literature with two disease mapping datasets. Our empirical results show that the predictive p-values estimated with iIS are almost identical to the predictive p-values estimated with actual LOOCV and outperform those given by the existing three methods, namely, the posterior predictive checking, the ordinary importance sampling, and the ghosting method by Marshall and Spiegelhalter (2003). Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Comparison of different risk stratification systems in predicting short-term serious outcome of syncope patients

    PubMed Central

    Safari, Saeed; Baratloo, Alireza; Hashemi, Behrooz; Rahmati, Farhad; Forouzanfar, Mohammad Mehdi; Motamedi, Maryam; Mirmohseni, Ladan

    2016-01-01

    Background: Determining etiologic causes and prognosis can significantly improve management of syncope patients. The present study aimed to compare the values of San Francisco, Osservatorio Epidemiologico sulla Sincope nel Lazio (OESIL), Boston, and Risk Stratification of Syncope in the Emergency Department (ROSE) score clinical decision rules in predicting the short-term serious outcome of syncope patients. Materials and Methods: The present diagnostic accuracy study with 1-week follow-up was designed to evaluate the predictive values of the four mentioned clinical decision rules. Screening performance characteristics of each model in predicting mortality, myocardial infarction (MI), and cerebrovascular accidents (CVAs) were calculated and compared. To evaluate the value of each aforementioned model in predicting the outcome, sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio were calculated and receiver-operating curve (ROC) curve analysis was done. Results: A total of 187 patients (mean age: 64.2 ± 17.2 years) were enrolled in the study. Mortality, MI, and CVA were seen in 19 (10.2%), 12 (6.4%), and 36 (19.2%) patients, respectively. Area under the ROC curve for OESIL, San Francisco, Boston, and ROSE models in prediction the risk of 1-week mortality, MI, and CVA was in the 30–70% range, with no significant difference among models (P > 0.05). The pooled model did not show higher accuracy in prediction of mortality, MI, and CVA compared to others (P > 0.05). Conclusion: This study revealed the weakness of all four evaluated models in predicting short-term serious outcome of syncope patients referred to the emergency department without any significant advantage for one among others. PMID:27904602

  13. Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, China

    NASA Astrophysics Data System (ADS)

    Xu, Shiluo; Niu, Ruiqing

    2018-02-01

    Every year, landslides pose huge threats to thousands of people in China, especially those in the Three Gorges area. It is thus necessary to establish an early warning system to help prevent property damage and save peoples' lives. Most of the landslide displacement prediction models that have been proposed are static models. However, landslides are dynamic systems. In this paper, the total accumulative displacement of the Baijiabao landslide is divided into trend and periodic components using empirical mode decomposition. The trend component is predicted using an S-curve estimation, and the total periodic component is predicted using a long short-term memory neural network (LSTM). LSTM is a dynamic model that can remember historical information and apply it to the current output. Six triggering factors are chosen to predict the periodic term using the Pearson cross-correlation coefficient and mutual information. These factors include the cumulative precipitation during the previous month, the cumulative precipitation during a two-month period, the reservoir level during the current month, the change in the reservoir level during the previous month, the cumulative increment of the reservoir level during the current month, and the cumulative displacement during the previous month. When using one-step-ahead prediction, LSTM yields a root mean squared error (RMSE) value of 6.112 mm, while the support vector machine for regression (SVR) and the back-propagation neural network (BP) yield values of 10.686 mm and 8.237 mm, respectively. Meanwhile, the Elman network (Elman) yields an RMSE value of 6.579 mm. In addition, when using multi-step-ahead prediction, LSTM obtains an RMSE value of 8.648 mm, while SVR, BP and the Elman network obtains RSME values of 13.418 mm, 13.014 mm, and 13.370 mm. The predicted results indicate that, to some extent, the dynamic model (LSTM) achieves results that are more accurate than those of the static models (i.e., SVR and BP). LSTM even displays better performance than the Elman network, which is also a dynamic method.

  14. Predicting Success in an Online Course Using Expectancies, Values, and Typical Mode of Instruction

    ERIC Educational Resources Information Center

    Zimmerman, Whitney Alicia

    2017-01-01

    Expectancies of success and values were used to predict success in an online undergraduate-level introductory statistics course. Students who identified as primarily face-to-face learners were compared to students who identified as primarily online learners. Expectancy value theory served as a model. Expectancies of success were operationalized as…

  15. Unchained Melody: Revisiting the Estimation of SF-6D Values

    PubMed Central

    Craig, Benjamin M.

    2015-01-01

    Purpose In the original SF-6D valuation study, the analytical design inherited conventions that detrimentally affected its ability to predict values on a quality-adjusted life year (QALY) scale. Our objective is to estimate UK values for SF-6D states using the original data and multi-attribute utility (MAU) regression after addressing its limitations and to compare the revised SF-6D and EQ-5D value predictions. Methods Using the unaltered data (611 respondents, 3503 SG responses), the parameters of the original MAU model were re-estimated under 3 alternative error specifications, known as the instant, episodic, and angular random utility models. Value predictions on a QALY scale were compared to EQ-5D3L predictions using the 1996 Health Survey for England. Results Contrary to the original results, the revised SF-6D value predictions range below 0 QALYs (i.e., worse than death) and agree largely with EQ-5D predictions after adjusting for scale. Although a QALY is defined as a year in optimal health, the SF-6D sets a higher standard for optimal health than the EQ-5D-3L; therefore, it has larger units on a QALY scale by construction (20.9% more). Conclusions Much of the debate in health valuation has focused on differences between preference elicitation tasks, sampling, and instruments. After correcting errant econometric practices and adjusting for differences in QALY scale between the EQ-5D and SF-6D values, the revised predictions demonstrate convergent validity, making them more suitable for UK economic evaluations compared to original estimates. PMID:26359242

  16. Comparison of Dst Forecast Models for Intense Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Ji, Eun-Young; Moon, Y.-J.; Gopalswamy, N.; Lee, D.-H.

    2012-01-01

    We have compared six disturbance storm time (Dst) forecast models using 63 intense geomagnetic storms (Dst <=100 nT) that occurred from 1998 to 2006. For comparison, we estimated linear correlation coefficients and RMS errors between the observed Dst data and the predicted Dst during the geomagnetic storm period as well as the difference of the value of minimum Dst (Delta Dst(sub min)) and the difference in the absolute value of Dst minimum time (Delta t(sub Dst)) between the observed and the predicted. As a result, we found that the model by Temerin and Li gives the best prediction for all parameters when all 63 events are considered. The model gives the average values: the linear correlation coefficient of 0.94, the RMS error of 14.8 nT, the Delta Dst(sub min) of 7.7 nT, and the absolute value of Delta t(sub Dst) of 1.5 hour. For further comparison, we classified the storm events into two groups according to the magnitude of Dst. We found that the model of Temerin and Lee is better than the other models for the events having 100 <= Dst < 200 nT, and three recent models (the model of Wang et al., the model of Temerin and Li, and the model of Boynton et al.) are better than the other three models for the events having Dst <= 200 nT.

  17. Evaluation of relative response factor methodology for demonstrating attainment of ozone in Houston, Texas.

    PubMed

    Vizuete, William; Biton, Leiran; Jeffries, Harvey E; Couzo, Evan

    2010-07-01

    In 2007, the U.S. Environmental Protection Agency (EPA) released guidance on demonstrating attainment of the federal ozone (O3) standard. This guidance recommended a change in the use of air quality model (AQM) predictions from an absolute to a relative way. This was accomplished by using a ratio, and not the absolute difference of AQM O3 predictions from a historical year to an attainment year. This ratio of O3 concentrations, labeled the relative response factor (RRF), is multiplied by an average of observed concentrations at every monitor. In this analysis, whether the methodology used to calculate RRFs is severing the source-receptor relationship for a given monitor was investigated. Model predictions were generated with a regulatory AQM system used to support the 2004 Houston-Galveston-Brazoria State Implementation Plan. Following the procedures in the EPA guidance, an attainment demonstration was completed using regulatory AQM predictions and measurements from the Houston ground-monitoring network. Results show that the model predictions used for the RRF calculation were often based on model conditions that were geographically remote from observations and counter to wind flow. Many of the monitors used the same model predictions for an RRF, even if that O3 plume did not impact it. The RRF methodology resulted in severing the true source-receptor relationship for a monitor. This analysis also showed that model performance could influence RRF values, and values at monitoring sites appear to be sensitive to model bias. Results indicate an inverse linear correlation of RRFs with model bias at each monitor (R2 = 0.47), resulting in a change in future O3 design values up to 5 parts per billion (ppb). These results suggest that the application of RRF methodology in Houston, TX, should be changed from using all model predictions above 85 ppb to a method that removes any predictions that are not relevant to the observed source-receptor relationship.

  18. Classification and regression tree (CART) model to predict pulmonary tuberculosis in hospitalized patients.

    PubMed

    Aguiar, Fabio S; Almeida, Luciana L; Ruffino-Netto, Antonio; Kritski, Afranio Lineu; Mello, Fernanda Cq; Werneck, Guilherme L

    2012-08-07

    Tuberculosis (TB) remains a public health issue worldwide. The lack of specific clinical symptoms to diagnose TB makes the correct decision to admit patients to respiratory isolation a difficult task for the clinician. Isolation of patients without the disease is common and increases health costs. Decision models for the diagnosis of TB in patients attending hospitals can increase the quality of care and decrease costs, without the risk of hospital transmission. We present a predictive model for predicting pulmonary TB in hospitalized patients in a high prevalence area in order to contribute to a more rational use of isolation rooms without increasing the risk of transmission. Cross sectional study of patients admitted to CFFH from March 2003 to December 2004. A classification and regression tree (CART) model was generated and validated. The area under the ROC curve (AUC), sensitivity, specificity, positive and negative predictive values were used to evaluate the performance of model. Validation of the model was performed with a different sample of patients admitted to the same hospital from January to December 2005. We studied 290 patients admitted with clinical suspicion of TB. Diagnosis was confirmed in 26.5% of them. Pulmonary TB was present in 83.7% of the patients with TB (62.3% with positive sputum smear) and HIV/AIDS was present in 56.9% of patients. The validated CART model showed sensitivity, specificity, positive predictive value and negative predictive value of 60.00%, 76.16%, 33.33%, and 90.55%, respectively. The AUC was 79.70%. The CART model developed for these hospitalized patients with clinical suspicion of TB had fair to good predictive performance for pulmonary TB. The most important variable for prediction of TB diagnosis was chest radiograph results. Prospective validation is still necessary, but our model offer an alternative for decision making in whether to isolate patients with clinical suspicion of TB in tertiary health facilities in countries with limited resources.

  19. Job Preferences in the Anticipatory Socialization Phase: A Comparison of Two Matching Models.

    ERIC Educational Resources Information Center

    Moss, Mira K.; Frieze, Irene Hanson

    1993-01-01

    Responses from 86 business administration graduate students tested (1) a model matching self-concept to development of job preferences and (2) an expectancy-value model. Both models significantly predicted job preferences; a higher proportion of variance was explained by the expectancy-value model. (SK)

  20. Evaluating the predictive accuracy and the clinical benefit of a nomogram aimed to predict survival in node-positive prostate cancer patients: External validation on a multi-institutional database.

    PubMed

    Bianchi, Lorenzo; Schiavina, Riccardo; Borghesi, Marco; Bianchi, Federico Mineo; Briganti, Alberto; Carini, Marco; Terrone, Carlo; Mottrie, Alex; Gacci, Mauro; Gontero, Paolo; Imbimbo, Ciro; Marchioro, Giansilvio; Milanese, Giulio; Mirone, Vincenzo; Montorsi, Francesco; Morgia, Giuseppe; Novara, Giacomo; Porreca, Angelo; Volpe, Alessandro; Brunocilla, Eugenio

    2018-04-06

    To assess the predictive accuracy and the clinical value of a recent nomogram predicting cancer-specific mortality-free survival after surgery in pN1 prostate cancer patients through an external validation. We evaluated 518 prostate cancer patients treated with radical prostatectomy and pelvic lymph node dissection with evidence of nodal metastases at final pathology, at 10 tertiary centers. External validation was carried out using regression coefficients of the previously published nomogram. The performance characteristics of the model were assessed by quantifying predictive accuracy, according to the area under the curve in the receiver operating characteristic curve and model calibration. Furthermore, we systematically analyzed the specificity, sensitivity, positive predictive value and negative predictive value for each nomogram-derived probability cut-off. Finally, we implemented decision curve analysis, in order to quantify the nomogram's clinical value in routine practice. External validation showed inferior predictive accuracy as referred to in the internal validation (65.8% vs 83.3%, respectively). The discrimination (area under the curve) of the multivariable model was 66.7% (95% CI 60.1-73.0%) by testing with receiver operating characteristic curve analysis. The calibration plot showed an overestimation throughout the range of predicted cancer-specific mortality-free survival rates probabilities. However, in decision curve analysis, the nomogram's use showed a net benefit when compared with the scenarios of treating all patients or none. In an external setting, the nomogram showed inferior predictive accuracy and suboptimal calibration characteristics as compared to that reported in the original population. However, decision curve analysis showed a clinical net benefit, suggesting a clinical implication to correctly manage pN1 prostate cancer patients after surgery. © 2018 The Japanese Urological Association.

  1. Estimating Time-Varying PCB Exposures Using Person-Specific Predictions to Supplement Measured Values: A Comparison of Observed and Predicted Values in Two Cohorts of Norwegian Women

    PubMed Central

    Nøst, Therese Haugdahl; Breivik, Knut; Wania, Frank; Rylander, Charlotta; Odland, Jon Øyvind; Sandanger, Torkjel Manning

    2015-01-01

    Background Studies on the health effects of polychlorinated biphenyls (PCBs) call for an understanding of past and present human exposure. Time-resolved mechanistic models may supplement information on concentrations in individuals obtained from measurements and/or statistical approaches if they can be shown to reproduce empirical data. Objectives Here, we evaluated the capability of one such mechanistic model to reproduce measured PCB concentrations in individual Norwegian women. We also assessed individual life-course concentrations. Methods Concentrations of four PCB congeners in pregnant (n = 310, sampled in 2007–2009) and postmenopausal (n = 244, 2005) women were compared with person-specific predictions obtained using CoZMoMAN, an emission-based environmental fate and human food-chain bioaccumulation model. Person-specific predictions were also made using statistical regression models including dietary and lifestyle variables and concentrations. Results CoZMoMAN accurately reproduced medians and ranges of measured concentrations in the two study groups. Furthermore, rank correlations between measurements and predictions from both CoZMoMAN and regression analyses were strong (Spearman’s r > 0.67). Precision in quartile assignments from predictions was strong overall as evaluated by weighted Cohen’s kappa (> 0.6). Simulations indicated large inter-individual differences in concentrations experienced in the past. Conclusions The mechanistic model reproduced all measurements of PCB concentrations within a factor of 10, and subject ranking and quartile assignments were overall largely consistent, although they were weak within each study group. Contamination histories for individuals predicted by CoZMoMAN revealed variation between study subjects, particularly in the timing of peak concentrations. Mechanistic models can provide individual PCB exposure metrics that could serve as valuable supplements to measurements. Citation Nøst TH, Breivik K, Wania F, Rylander C, Odland JØ, Sandanger TM. 2016. Estimating time-varying PCB exposures using person-specific predictions to supplement measured values: a comparison of observed and predicted values in two cohorts of Norwegian women. Environ Health Perspect 124:299–305; http://dx.doi.org/10.1289/ehp.1409191 PMID:26186800

  2. Statistical optimization of the phytoremediation of arsenic by Ludwigia octovalvis- in a pilot reed bed using response surface methodology (RSM) versus an artificial neural network (ANN).

    PubMed

    Titah, Harmin Sulistiyaning; Halmi, Mohd Izuan Effendi Bin; Abdullah, Siti Rozaimah Sheikh; Hasan, Hassimi Abu; Idris, Mushrifah; Anuar, Nurina

    2018-06-07

    In this study, the removal of arsenic (As) by plant, Ludwigia octovalvis, in a pilot reed bed was optimized. A Box-Behnken design was employed including a comparative analysis of both Response Surface Methodology (RSM) and an Artificial Neural Network (ANN) for the prediction of maximum arsenic removal. The predicted optimum condition using the desirability function of both models was 39 mg kg -1 for the arsenic concentration in soil, an elapsed time of 42 days (the sampling day) and an aeration rate of 0.22 L/min, with the predicted values of arsenic removal by RSM and ANN being 72.6% and 71.4%, respectively. The validation of the predicted optimum point showed an actual arsenic removal of 70.6%. This was achieved with the deviation between the validation value and the predicted values being within 3.49% (RSM) and 1.87% (ANN). The performance evaluation of the RSM and ANN models showed that ANN performs better than RSM with a higher R 2 (0.97) close to 1.0 and very small Average Absolute Deviation (AAD) (0.02) and Root Mean Square Error (RMSE) (0.004) values close to zero. Both models were appropriate for the optimization of arsenic removal with ANN demonstrating significantly higher predictive and fitting ability than RSM.

  3. Choice Defines Value: A Predictive Modeling Competition in Health Preference Research.

    PubMed

    Jakubczyk, Michał; Craig, Benjamin M; Barra, Mathias; Groothuis-Oudshoorn, Catharina G M; Hartman, John D; Huynh, Elisabeth; Ramos-Goñi, Juan M; Stolk, Elly A; Rand, Kim

    2018-02-01

    To identify which specifications and approaches to model selection better predict health preferences, the International Academy of Health Preference Research (IAHPR) hosted a predictive modeling competition including 18 teams from around the world. In April 2016, an exploratory survey was fielded: 4074 US respondents completed 20 out of 1560 paired comparisons by choosing between two health descriptions (e.g., longer life span vs. better health). The exploratory data were distributed to all teams. By July, eight teams had submitted their predictions for 1600 additional pairs and described their analytical approach. After these predictions had been posted online, a confirmatory survey was fielded (4148 additional respondents). The victorious team, "Discreetly Charming Econometricians," led by Michał Jakubczyk, achieved the smallest χ 2 , 4391.54 (a predefined criterion). Its primary scientific findings were that different models performed better with different pairs, that the value of life span is not constant proportional, and that logit models have poor predictive validity in health valuation. The results demonstrated the diversity and potential of new analytical approaches in health preference research and highlighted the importance of predictive validity in health valuation. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  4. Numerical study of single and two interacting turbulent plumes in atmospheric cross flow

    NASA Astrophysics Data System (ADS)

    Mokhtarzadeh-Dehghan, M. R.; König, C. S.; Robins, A. G.

    The paper presents a numerical study of two interacting full-scale dry plumes issued into neutral boundary layer cross flow. The study simulates plumes from a mechanical draught cooling tower. The plumes are placed in tandem or side-by-side. Results are first presented for plumes with a density ratio of 0.74 and plume-to-crosswind speed ratio of 2.33, for which data from a small-scale wind tunnel experiment were available and were used to assess the accuracy of the numerical results. Further results are then presented for the more physically realistic density ratio of 0.95, maintaining the same speed ratio. The sensitivity of the results with respect to three turbulence models, namely, the standard k- ɛ model, the RNG k- ɛ model and the Differential Flux Model (DFM) is presented. Comparisons are also made between the predicted rise height and the values obtained from existing integral models. The formation of two counter-rotating vortices is well predicted. The results show good agreement for the rise height predicted by different turbulence models, but the DFM predicts temperature profiles more accurately. The values of predicted rise height are also in general agreement. However, discrepancies between the present results for the rise height for single and multiple plumes and the values obtained from known analytical relations are apparent and possible reasons for these are discussed.

  5. Simulating boundary layer transition with low-Reynolds-number k-epsilon turbulence models. I - An evaluation of prediction characteristics. II - An approach to improving the predictions

    NASA Technical Reports Server (NTRS)

    Schmidt, R. C.; Patankar, S. V.

    1991-01-01

    The capability of two k-epsilon low-Reynolds number (LRN) turbulence models, those of Jones and Launder (1972) and Lam and Bremhorst (1981), to predict transition in external boundary-layer flows subject to free-stream turbulence is analyzed. Both models correctly predict the basic qualitative aspects of boundary-layer transition with free stream turbulence, but for calculations started at low values of certain defined Reynolds numbers, the transition is generally predicted at unrealistically early locations. Also, the methods predict transition lengths significantly shorter than those found experimentally. An approach to overcoming these deficiencies without abandoning the basic LRN k-epsilon framework is developed. This approach limits the production term in the turbulent kinetic energy equation and is based on a simple stability criterion. It is correlated to the free-stream turbulence value. The modification is shown to improve the qualitative and quantitative characteristics of the transition predictions.

  6. Designing Predictive Models for Beta-Lactam Allergy Using the Drug Allergy and Hypersensitivity Database.

    PubMed

    Chiriac, Anca Mirela; Wang, Youna; Schrijvers, Rik; Bousquet, Philippe Jean; Mura, Thibault; Molinari, Nicolas; Demoly, Pascal

    Beta-lactam antibiotics represent the main cause of allergic reactions to drugs, inducing both immediate and nonimmediate allergies. The diagnosis is well established, usually based on skin tests and drug provocation tests, but cumbersome. To design predictive models for the diagnosis of beta-lactam allergy, based on the clinical history of patients with suspicions of allergic reactions to beta-lactams. The study included a retrospective phase, in which records of patients explored for a suspicion of beta-lactam allergy (in the Allergy Unit of the University Hospital of Montpellier between September 1996 and September 2012) were used to construct predictive models based on a logistic regression and decision tree method; a prospective phase, in which we performed an external validation of the chosen models in patients with suspicion of beta-lactam allergy recruited from 3 allergy centers (Montpellier, Nîmes, Narbonne) between March and November 2013. Data related to clinical history and allergy evaluation results were retrieved and analyzed. The retrospective and prospective phases included 1991 and 200 patients, respectively, with a different prevalence of confirmed beta-lactam allergy (23.6% vs 31%, P = .02). For the logistic regression method, performances of the models were similar in both samples: sensitivity was 51% (vs 60%), specificity 75% (vs 80%), positive predictive value 40% (vs 57%), and negative predictive value 83% (vs 82%). The decision tree method reached a sensitivity of 29.5% (vs 43.5%), specificity of 96.4% (vs 94.9%), positive predictive value of 71.6% (vs 79.4%), and negative predictive value of 81.6% (vs 81.3%). Two different independent methods using clinical history predictors were unable to accurately predict beta-lactam allergy and replace a conventional allergy evaluation for suspected beta-lactam allergy. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  7. Increased prediction accuracy in wheat breeding trials using a marker x environment interaction genomic selection model

    USDA-ARS?s Scientific Manuscript database

    Genomic selection (GS) models use genome-wide genetic information to predict genetic values of candidates for selection. Originally these models were developed without considering genotype ' environment interaction (GE). Several authors have proposed extensions of the cannonical GS model that accomm...

  8. Highly ionized atoms in cooling gas. [in model for cooling of hot Galactic corona

    NASA Technical Reports Server (NTRS)

    Edgar, Richard J.; Chevalier, Roger A.

    1986-01-01

    The ionization of low density gas cooling from a high temperature was calculated. The evolution during the cooling is assumed to be isochoric, isobaric, or a combination of these cases. The calculations are used to predict the column densities and ultraviolet line luminosities of highly ionized atoms in cooling gas. In a model for cooling of a hot galactic corona, it is shown that the observed value of N(N V) can be produced in the cooling gas, while the predicted value of N(Si IV) falls short of the observed value by a factor of about 5. The same model predicts fluxes of ultraviolet emission lines that are a factor of 10 lower than the claimed detections of Feldman, Bruna, and Henry. Predictions are made for ultraviolet lines in cooling flows in early-type galaxies and clusters of galaxies. It is shown that the column densities of interest vary over a fairly narrow range, while the emission line luminosities are simply proportional to the mass inflow rate.

  9. The predictive value of selected serum microRNAs for acute GVHD by TaqMan MicroRNA arrays.

    PubMed

    Zhang, Chunyan; Bai, Nan; Huang, Wenrong; Zhang, Pengjun; Luo, Yuan; Men, Shasha; Wen, Ting; Tong, Hongli; Wang, Shuhong; Tian, Ya-Ping

    2016-10-01

    Currently, the diagnosis of acute graft-versus-host disease (aGVHD) is mainly based on clinical symptoms and biopsy results. This study was designed to further explore new no noninvasive biomarkers for aGVHD prediction/diagnosis. We profiled miRNAs in serum pools from patients with aGVHD (grades II-IV) (n = 9) and non-aGVHD controls (n = 9) by real-time qPCR-based TaqMan MicroRNA arrays. Then, predictive models were established using related miRNAs (n = 38) and verified by a double-blind trial (n = 54). We found that miR-411 was significantly down regulated when aGVHD developed and recovered when aGVHD was controlled, which demonstrated that miR-411 has potential as an indicator for aGVHD monitoring. We developed and validated a predictive model and a diagnostic model for aGVHD. The predictive model included two miRNAs (miR-26b and miR-374a), which could predict an increased risk for aGVHD 1 or 2 weeks in advance, with an AUC, Positive Predictive Value (PPV), and Negative Predictive Value (NPV) of 0.722, 76.19 %, and 69.70 %, respectively. The diagnostic model included three miRNAs (miR-28-5p, miR-489, and miR-671-3p) with an AUC, PPV, and NPV of 0.841, 85.71 % and 83.33 %, respectively. Our results show that circulating miRNAs (miR-26b and miR-374a, miR-28-5p, miR-489 and miR-671-3p) may serve as biomarkers for the prediction and diagnosis of grades II-IV aGVHD.

  10. Improved prediction of biochemical recurrence after radical prostatectomy by genetic polymorphisms.

    PubMed

    Morote, Juan; Del Amo, Jokin; Borque, Angel; Ars, Elisabet; Hernández, Carlos; Herranz, Felipe; Arruza, Antonio; Llarena, Roberto; Planas, Jacques; Viso, María J; Palou, Joan; Raventós, Carles X; Tejedor, Diego; Artieda, Marta; Simón, Laureano; Martínez, Antonio; Rioja, Luis A

    2010-08-01

    Single nucleotide polymorphisms are inherited genetic variations that can predispose or protect individuals against clinical events. We hypothesized that single nucleotide polymorphism profiling may improve the prediction of biochemical recurrence after radical prostatectomy. We performed a retrospective, multi-institutional study of 703 patients treated with radical prostatectomy for clinically localized prostate cancer who had at least 5 years of followup after surgery. All patients were genotyped for 83 prostate cancer related single nucleotide polymorphisms using a low density oligonucleotide microarray. Baseline clinicopathological variables and single nucleotide polymorphisms were analyzed to predict biochemical recurrence within 5 years using stepwise logistic regression. Discrimination was measured by ROC curve AUC, specificity, sensitivity, predictive values, net reclassification improvement and integrated discrimination index. The overall biochemical recurrence rate was 35%. The model with the best fit combined 8 covariates, including the 5 clinicopathological variables prostate specific antigen, Gleason score, pathological stage, lymph node involvement and margin status, and 3 single nucleotide polymorphisms at the KLK2, SULT1A1 and TLR4 genes. Model predictive power was defined by 80% positive predictive value, 74% negative predictive value and an AUC of 0.78. The model based on clinicopathological variables plus single nucleotide polymorphisms showed significant improvement over the model without single nucleotide polymorphisms, as indicated by 23.3% net reclassification improvement (p = 0.003), integrated discrimination index (p <0.001) and likelihood ratio test (p <0.001). Internal validation proved model robustness (bootstrap corrected AUC 0.78, range 0.74 to 0.82). The calibration plot showed close agreement between biochemical recurrence observed and predicted probabilities. Predicting biochemical recurrence after radical prostatectomy based on clinicopathological data can be significantly improved by including patient genetic information. Copyright (c) 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Probing for the Multiplicative Term in Modern Expectancy-Value Theory: A Latent Interaction Modeling Study

    ERIC Educational Resources Information Center

    Trautwein, Ulrich; Marsh, Herbert W.; Nagengast, Benjamin; Ludtke, Oliver; Nagy, Gabriel; Jonkmann, Kathrin

    2012-01-01

    In modern expectancy-value theory (EVT) in educational psychology, expectancy and value beliefs additively predict performance, persistence, and task choice. In contrast to earlier formulations of EVT, the multiplicative term Expectancy x Value in regression-type models typically plays no major role in educational psychology. The present study…

  12. Model-based predictions for dopamine.

    PubMed

    Langdon, Angela J; Sharpe, Melissa J; Schoenbaum, Geoffrey; Niv, Yael

    2018-04-01

    Phasic dopamine responses are thought to encode a prediction-error signal consistent with model-free reinforcement learning theories. However, a number of recent findings highlight the influence of model-based computations on dopamine responses, and suggest that dopamine prediction errors reflect more dimensions of an expected outcome than scalar reward value. Here, we review a selection of these recent results and discuss the implications and complications of model-based predictions for computational theories of dopamine and learning. Copyright © 2017. Published by Elsevier Ltd.

  13. Machine Learning Techniques for Prediction of Early Childhood Obesity.

    PubMed

    Dugan, T M; Mukhopadhyay, S; Carroll, A; Downs, S

    2015-01-01

    This paper aims to predict childhood obesity after age two, using only data collected prior to the second birthday by a clinical decision support system called CHICA. Analyses of six different machine learning methods: RandomTree, RandomForest, J48, ID3, Naïve Bayes, and Bayes trained on CHICA data show that an accurate, sensitive model can be created. Of the methods analyzed, the ID3 model trained on the CHICA dataset proved the best overall performance with accuracy of 85% and sensitivity of 89%. Additionally, the ID3 model had a positive predictive value of 84% and a negative predictive value of 88%. The structure of the tree also gives insight into the strongest predictors of future obesity in children. Many of the strongest predictors seen in the ID3 modeling of the CHICA dataset have been independently validated in the literature as correlated with obesity, thereby supporting the validity of the model. This study demonstrated that data from a production clinical decision support system can be used to build an accurate machine learning model to predict obesity in children after age two.

  14. Values and uncertainties in climate prediction, revisited.

    PubMed

    Parker, Wendy

    2014-06-01

    Philosophers continue to debate both the actual and the ideal roles of values in science. Recently, Eric Winsberg has offered a novel, model-based challenge to those who argue that the internal workings of science can and should be kept free from the influence of social values. He contends that model-based assignments of probability to hypotheses about future climate change are unavoidably influenced by social values. I raise two objections to Winsberg's argument, neither of which can wholly undermine its conclusion but each of which suggests that his argument exaggerates the influence of social values on estimates of uncertainty in climate prediction. I then show how a more traditional challenge to the value-free ideal seems tailor-made for the climate context.

  15. A stepwise model to predict monthly streamflow

    NASA Astrophysics Data System (ADS)

    Mahmood Al-Juboori, Anas; Guven, Aytac

    2016-12-01

    In this study, a stepwise model empowered with genetic programming is developed to predict the monthly flows of Hurman River in Turkey and Diyalah and Lesser Zab Rivers in Iraq. The model divides the monthly flow data to twelve intervals representing the number of months in a year. The flow of a month, t is considered as a function of the antecedent month's flow (t - 1) and it is predicted by multiplying the antecedent monthly flow by a constant value called K. The optimum value of K is obtained by a stepwise procedure which employs Gene Expression Programming (GEP) and Nonlinear Generalized Reduced Gradient Optimization (NGRGO) as alternative to traditional nonlinear regression technique. The degree of determination and root mean squared error are used to evaluate the performance of the proposed models. The results of the proposed model are compared with the conventional Markovian and Auto Regressive Integrated Moving Average (ARIMA) models based on observed monthly flow data. The comparison results based on five different statistic measures show that the proposed stepwise model performed better than Markovian model and ARIMA model. The R2 values of the proposed model range between 0.81 and 0.92 for the three rivers in this study.

  16. Gaussian covariance graph models accounting for correlated marker effects in genome-wide prediction.

    PubMed

    Martínez, C A; Khare, K; Rahman, S; Elzo, M A

    2017-10-01

    Several statistical models used in genome-wide prediction assume uncorrelated marker allele substitution effects, but it is known that these effects may be correlated. In statistics, graphical models have been identified as a useful tool for covariance estimation in high-dimensional problems and it is an area that has recently experienced a great expansion. In Gaussian covariance graph models (GCovGM), the joint distribution of a set of random variables is assumed to be Gaussian and the pattern of zeros of the covariance matrix is encoded in terms of an undirected graph G. In this study, methods adapting the theory of GCovGM to genome-wide prediction were developed (Bayes GCov, Bayes GCov-KR and Bayes GCov-H). In simulated data sets, improvements in correlation between phenotypes and predicted breeding values and accuracies of predicted breeding values were found. Our models account for correlation of marker effects and permit to accommodate general structures as opposed to models proposed in previous studies, which consider spatial correlation only. In addition, they allow incorporation of biological information in the prediction process through its use when constructing graph G, and their extension to the multi-allelic loci case is straightforward. © 2017 Blackwell Verlag GmbH.

  17. Questions regarding the predictive value of one evolved complex adaptive system for a second: exemplified by the SOD1 mouse.

    PubMed

    Greek, Ray; Hansen, Lawrence A

    2013-11-01

    We surveyed the scientific literature regarding amyotrophic lateral sclerosis, the SOD1 mouse model, complex adaptive systems, evolution, drug development, animal models, and philosophy of science in an attempt to analyze the SOD1 mouse model of amyotrophic lateral sclerosis in the context of evolved complex adaptive systems. Humans and animals are examples of evolved complex adaptive systems. It is difficult to predict the outcome from perturbations to such systems because of the characteristics of complex systems. Modeling even one complex adaptive system in order to predict outcomes from perturbations is difficult. Predicting outcomes to one evolved complex adaptive system based on outcomes from a second, especially when the perturbation occurs at higher levels of organization, is even more problematic. Using animal models to predict human outcomes to perturbations such as disease and drugs should have a very low predictive value. We present empirical evidence confirming this and suggest a theory to explain this phenomenon. We analyze the SOD1 mouse model of amyotrophic lateral sclerosis in order to illustrate this position. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Comparison of measurement- and proxy-based Vs30 values in California

    USGS Publications Warehouse

    Yong, Alan K.

    2016-01-01

    This study was prompted by the recent availability of a significant amount of openly accessible measured VS30 values and the desire to investigate the trend of using proxy-based models to predict VS30 in the absence of measurements. Comparisons between measured and model-based values were performed. The measured data included 503 VS30 values collected from various projects for 482 seismographic station sites in California. Six proxy-based models—employing geologic mapping, topographic slope, and terrain classification—were also considered. Included was a new terrain class model based on the Yong et al. (2012) approach but recalibrated with updated measured VS30 values. Using the measured VS30 data as the metric for performance, the predictive capabilities of the six models were determined to be statistically indistinguishable. This study also found three models that tend to underpredict VS30 at lower velocities (NEHRP Site Classes D–E) and overpredict at higher velocities (Site Classes B–C).

  19. Inflationary predictions of double-well, Coleman-Weinberg, and hilltop potentials with non-minimal coupling

    NASA Astrophysics Data System (ADS)

    Bostan, Nilay; Güleryüz, Ömer; Nefer Şenoğuz, Vedat

    2018-05-01

    We discuss how the non-minimal coupling ξphi2R between the inflaton and the Ricci scalar affects the predictions of single field inflation models where the inflaton has a non-zero vacuum expectation value (VEV) v after inflation. We show that, for inflaton values both above the VEV and below the VEV during inflation, under certain conditions the inflationary predictions become approximately the same as the predictions of the Starobinsky model. We then analyze inflation with double-well and Coleman-Weinberg potentials in detail, displaying the regions in the v-ξ plane for which the spectral index ns and the tensor-to-scalar ratio r values are compatible with the current observations. r is always larger than 0.002 in these regions. Finally, we consider the effect of ξ on small field inflation (hilltop) potentials.

  20. Dynamic divisive normalization predicts time-varying value coding in decision-related circuits.

    PubMed

    Louie, Kenway; LoFaro, Thomas; Webb, Ryan; Glimcher, Paul W

    2014-11-26

    Normalization is a widespread neural computation, mediating divisive gain control in sensory processing and implementing a context-dependent value code in decision-related frontal and parietal cortices. Although decision-making is a dynamic process with complex temporal characteristics, most models of normalization are time-independent and little is known about the dynamic interaction of normalization and choice. Here, we show that a simple differential equation model of normalization explains the characteristic phasic-sustained pattern of cortical decision activity and predicts specific normalization dynamics: value coding during initial transients, time-varying value modulation, and delayed onset of contextual information. Empirically, we observe these predicted dynamics in saccade-related neurons in monkey lateral intraparietal cortex. Furthermore, such models naturally incorporate a time-weighted average of past activity, implementing an intrinsic reference-dependence in value coding. These results suggest that a single network mechanism can explain both transient and sustained decision activity, emphasizing the importance of a dynamic view of normalization in neural coding. Copyright © 2014 the authors 0270-6474/14/3416046-12$15.00/0.

  1. Influence of Temperature, Relative Humidity, and Soil Properties on the Soil-Air Partitioning of Semivolatile Pesticides: Laboratory Measurements and Predictive Models.

    PubMed

    Davie-Martin, Cleo L; Hageman, Kimberly J; Chin, Yu-Ping; Rougé, Valentin; Fujita, Yuki

    2015-09-01

    Soil-air partition coefficient (Ksoil-air) values are often employed to investigate the fate of organic contaminants in soils; however, these values have not been measured for many compounds of interest, including semivolatile current-use pesticides. Moreover, predictive equations for estimating Ksoil-air values for pesticides (other than the organochlorine pesticides) have not been robustly developed, due to a lack of measured data. In this work, a solid-phase fugacity meter was used to measure the Ksoil-air values of 22 semivolatile current- and historic-use pesticides and their degradation products. Ksoil-air values were determined for two soils (semiarid and volcanic) under a range of environmentally relevant temperature (10-30 °C) and relative humidity (30-100%) conditions, such that 943 Ksoil-air measurements were made. Measured values were used to derive a predictive equation for pesticide Ksoil-air values based on temperature, relative humidity, soil organic carbon content, and pesticide-specific octanol-air partition coefficients. Pesticide volatilization losses from soil, calculated with the newly derived Ksoil-air predictive equation and a previously described pesticide volatilization model, were compared to previous results and showed that the choice of Ksoil-air predictive equation mainly affected the more-volatile pesticides and that the way in which relative humidity was accounted for was the most critical difference.

  2. Prediction of beta-turns from amino acid sequences using the residue-coupled model.

    PubMed

    Guruprasad, K; Shukla, S

    2003-04-01

    We evaluated the prediction of beta-turns from amino acid sequences using the residue-coupled model with an enlarged representative protein data set selected from the Protein Data Bank. Our results show that the probability values derived from a data set comprising 425 protein chains yielded an overall beta-turn prediction accuracy 68.74%, compared with 94.7% reported earlier on a data set of 30 proteins using the same method. However, we noted that the overall beta-turn prediction accuracy using probability values derived from the 30-protein data set reduces to 40.74% when tested on the data set comprising 425 protein chains. In contrast, using probability values derived from the 425 data set used in this analysis, the overall beta-turn prediction accuracy yielded consistent results when tested on either the 30-protein data set (64.62%) used earlier or a more recent representative data set comprising 619 protein chains (64.66%) or on a jackknife data set comprising 476 representative protein chains (63.38%). We therefore recommend the use of probability values derived from the 425 representative protein chains data set reported here, which gives more realistic and consistent predictions of beta-turns from amino acid sequences.

  3. Is the Ratio of Observed X-ray Luminosity to Bolometric Luminosity in Early-type Stars Really a Constant?

    NASA Technical Reports Server (NTRS)

    Waldron, W. L.

    1985-01-01

    The observed X-ray emission from early-type stars can be explained by the recombination stellar wind model (or base coronal model). The model predicts that the true X-ray luminosity from the base coronal zone can be 10 to 1000 times greater than the observed X-ray luminosity. From the models, scaling laws were found for the true and observed X-ray luminosities. These scaling laws predict that the ratio of the observed X-ray luminosity to the bolometric luminosity is functionally dependent on several stellar parameters. When applied to several other O and B stars, it is found that the values of the predicted ratio agree very well with the observed values.

  4. Method and system for monitoring and displaying engine performance parameters

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S. (Inventor); Person, Jr., Lee H. (Inventor)

    1991-01-01

    The invention is a method and system for monitoring and directly displaying the actual thrust produced by a jet aircraft engine under determined operating conditions and the available thrust and predicted (commanded) thrust of a functional model of an ideal engine under the same determined operating conditions. A first set of actual value output signals representative of a plurality of actual performance parameters of the engine under the determined operating conditions is generated and compared with a second set of predicted value output signals representative of the predicted value of corresponding performance parameters of a functional model of the engine under the determined operating conditions to produce a third set of difference value output signals within a range of normal, caution, or warning limit values. A thrust indicator displays when any one of the actual value output signals is in the warning range while shaping function means shape each of the respective difference output signals as each approaches the limit of the respective normal, caution, and warning range limits.

  5. A framework for streamflow prediction in the world's most severely data-limited regions: Test of applicability and performance in a poorly-gauged region of China

    NASA Astrophysics Data System (ADS)

    Alipour, M. H.; Kibler, Kelly M.

    2018-02-01

    A framework methodology is proposed for streamflow prediction in poorly-gauged rivers located within large-scale regions of sparse hydrometeorologic observation. A multi-criteria model evaluation is developed to select models that balance runoff efficiency with selection of accurate parameter values. Sparse observed data are supplemented by uncertain or low-resolution information, incorporated as 'soft' data, to estimate parameter values a priori. Model performance is tested in two catchments within a data-poor region of southwestern China, and results are compared to models selected using alternative calibration methods. While all models perform consistently with respect to runoff efficiency (NSE range of 0.67-0.78), models selected using the proposed multi-objective method may incorporate more representative parameter values than those selected by traditional calibration. Notably, parameter values estimated by the proposed method resonate with direct estimates of catchment subsurface storage capacity (parameter residuals of 20 and 61 mm for maximum soil moisture capacity (Cmax), and 0.91 and 0.48 for soil moisture distribution shape factor (B); where a parameter residual is equal to the centroid of a soft parameter value minus the calibrated parameter value). A model more traditionally calibrated to observed data only (single-objective model) estimates a much lower soil moisture capacity (residuals of Cmax = 475 and 518 mm and B = 1.24 and 0.7). A constrained single-objective model also underestimates maximum soil moisture capacity relative to a priori estimates (residuals of Cmax = 246 and 289 mm). The proposed method may allow managers to more confidently transfer calibrated models to ungauged catchments for streamflow predictions, even in the world's most data-limited regions.

  6. An automated technique to identify potential inappropriate traditional Chinese medicine (TCM) prescriptions.

    PubMed

    Yang, Hsuan-Chia; Iqbal, Usman; Nguyen, Phung Anh; Lin, Shen-Hsien; Huang, Chih-Wei; Jian, Wen-Shan; Li, Yu-Chuan

    2016-04-01

    Medication errors such as potential inappropriate prescriptions would induce serious adverse drug events to patients. Information technology has the ability to prevent medication errors; however, the pharmacology of traditional Chinese medicine (TCM) is not as clear as in western medicine. The aim of this study was to apply the appropriateness of prescription (AOP) model to identify potential inappropriate TCM prescriptions. We used the association rule of mining techniques to analyze 14.5 million prescriptions from the Taiwan National Health Insurance Research Database. The disease and TCM (DTCM) and traditional Chinese medicine-traditional Chinese medicine (TCMM) associations are computed by their co-occurrence, and the associations' strength was measured as Q-values, which often referred to as interestingness or life values. By considering the number of Q-values, the AOP model was applied to identify the inappropriate prescriptions. Afterwards, three traditional Chinese physicians evaluated 1920 prescriptions and validated the detected outcomes from the AOP model. Out of 1920 prescriptions, 97.1% of positive predictive value and 19.5% of negative predictive value were shown by the system as compared with those by experts. The sensitivity analysis indicated that the negative predictive value could improve up to 27.5% when the model's threshold changed to 0.4. We successfully applied the AOP model to automatically identify potential inappropriate TCM prescriptions. This model could be a potential TCM clinical decision support system in order to improve drug safety and quality of care. Copyright © 2016 John Wiley & Sons, Ltd.

  7. QSAR modeling for predicting mutagenic toxicity of diverse chemicals for regulatory purposes.

    PubMed

    Basant, Nikita; Gupta, Shikha

    2017-06-01

    The safety assessment process of chemicals requires information on their mutagenic potential. The experimental determination of mutagenicity of a large number of chemicals is tedious and time and cost intensive, thus compelling for alternative methods. We have established local and global QSAR models for discriminating low and high mutagenic compounds and predicting their mutagenic activity in a quantitative manner in Salmonella typhimurium (TA) bacterial strains (TA98 and TA100). The decision treeboost (DTB)-based classification QSAR models discriminated among two categories with accuracies of >96% and the regression QSAR models precisely predicted the mutagenic activity of diverse chemicals yielding high correlations (R 2 ) between the experimental and model-predicted values in the respective training (>0.96) and test (>0.94) sets. The test set root mean squared error (RMSE) and mean absolute error (MAE) values emphasized the usefulness of the developed models for predicting new compounds. Relevant structural features of diverse chemicals that were responsible and influence the mutagenic activity were identified. The applicability domains of the developed models were defined. The developed models can be used as tools for screening new chemicals for their mutagenicity assessment for regulatory purpose.

  8. Identification of cognitive and non-cognitive predictive variables related to attrition in baccalaureate nursing education programs in Mississippi

    NASA Astrophysics Data System (ADS)

    Hayes, Catherine

    2005-07-01

    This study sought to identify a variable or variables predictive of attrition among baccalaureate nursing students. The study was quantitative in design and multivariate correlational statistics and discriminant statistical analysis were used to identify a model for prediction of attrition. The analysis then weighted variables according to their predictive value to determine the most parsimonious model with the greatest predictive value. Three public university nursing education programs in Mississippi offering a Bachelors Degree in Nursing were selected for the study. The population consisted of students accepted and enrolled in these three programs for the years 2001 and 2002 and graduating in the years 2003 and 2004 (N = 195). The categorical dependent variable was attrition (includes academic failure or withdrawal) from the program of nursing education. The ten independent variables selected for the study and considered to have possible predictive value were: Grade Point Average for Pre-requisite Course Work; ACT Composite Score, ACT Reading Subscore, and ACT Mathematics Subscore; Letter Grades in the Courses: Anatomy & Physiology and Lab I, Algebra I, English I (101), Chemistry & Lab I, and Microbiology & Lab I; and Number of Institutions Attended (Universities, Colleges, Junior Colleges or Community Colleges). Descriptive analysis was performed and the means of each of the ten independent variables was compared for students who attrited and those who were retained in the population. The discriminant statistical analysis performed created a matrix using the ten variable model that was able to correctly predicted attrition in the study's population in 77.6% of the cases. Variables were then combined and recombined to produce the most efficient and parsimonious model for prediction. A six variable model resulted which weighted each variable according to predictive value: GPA for Prerequisite Coursework, ACT Composite, English I, Chemistry & Lab I, Microbiology & Lab I, and Number of Institutions Attended. Results of the study indicate that it is possible to predict attrition among students enrolled in baccalaureate nursing education programs and that additional investigation on the subject is warranted.

  9. Methods for using groundwater model predictions to guide hydrogeologic data collection, with application to the Death Valley regional groundwater flow system

    USGS Publications Warehouse

    Tiedeman, C.R.; Hill, M.C.; D'Agnese, F. A.; Faunt, C.C.

    2003-01-01

    Calibrated models of groundwater systems can provide substantial information for guiding data collection. This work considers using such models to guide hydrogeologic data collection for improving model predictions by identifying model parameters that are most important to the predictions. Identification of these important parameters can help guide collection of field data about parameter values and associated flow system features and can lead to improved predictions. Methods for identifying parameters important to predictions include prediction scaled sensitivities (PSS), which account for uncertainty on individual parameters as well as prediction sensitivity to parameters, and a new "value of improved information" (VOII) method presented here, which includes the effects of parameter correlation in addition to individual parameter uncertainty and prediction sensitivity. In this work, the PSS and VOII methods are demonstrated and evaluated using a model of the Death Valley regional groundwater flow system. The predictions of interest are advective transport paths originating at sites of past underground nuclear testing. Results show that for two paths evaluated the most important parameters include a subset of five or six of the 23 defined model parameters. Some of the parameters identified as most important are associated with flow system attributes that do not lie in the immediate vicinity of the paths. Results also indicate that the PSS and VOII methods can identify different important parameters. Because the methods emphasize somewhat different criteria for parameter importance, it is suggested that parameters identified by both methods be carefully considered in subsequent data collection efforts aimed at improving model predictions.

  10. Predicting gaseous emissions from small-scale combustion of agricultural biomass fuels.

    PubMed

    Fournel, S; Marcos, B; Godbout, S; Heitz, M

    2015-03-01

    A prediction model of gaseous emissions (CO, CO2, NOx, SO2 and HCl) from small-scale combustion of agricultural biomass fuels was developed in order to rapidly assess their potential to be burned in accordance to current environmental threshold values. The model was established based on calculation of thermodynamic equilibrium of reactive multicomponent systems using Gibbs free energy minimization. Since this method has been widely used to estimate the composition of the syngas from wood gasification, the model was first validated by comparing its prediction results with those of similar models from the literature. The model was then used to evaluate the main gas emissions from the combustion of four dedicated energy crops (short-rotation willow, reed canary grass, switchgrass and miscanthus) previously burned in a 29-kW boiler. The prediction values revealed good agreement with the experimental results. The model was particularly effective in estimating the influence of harvest season on SO2 emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. QSAR models for predicting octanol/water and organic carbon/water partition coefficients of polychlorinated biphenyls.

    PubMed

    Yu, S; Gao, S; Gan, Y; Zhang, Y; Ruan, X; Wang, Y; Yang, L; Shi, J

    2016-04-01

    Quantitative structure-property relationship modelling can be a valuable alternative method to replace or reduce experimental testing. In particular, some endpoints such as octanol-water (KOW) and organic carbon-water (KOC) partition coefficients of polychlorinated biphenyls (PCBs) are easier to predict and various models have been already developed. In this paper, two different methods, which are multiple linear regression based on the descriptors generated using Dragon software and hologram quantitative structure-activity relationships, were employed to predict suspended particulate matter (SPM) derived log KOC and generator column, shake flask and slow stirring method derived log KOW values of 209 PCBs. The predictive ability of the derived models was validated using a test set. The performances of all these models were compared with EPI Suite™ software. The results indicated that the proposed models were robust and satisfactory, and could provide feasible and promising tools for the rapid assessment of the SPM derived log KOC and generator column, shake flask and slow stirring method derived log KOW values of PCBs.

  12. Quantitative Structure – Property Relationship Modeling of Remote Liposome Loading Of Drugs

    PubMed Central

    Cern, Ahuva; Golbraikh, Alexander; Sedykh, Aleck; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram

    2012-01-01

    Remote loading of liposomes by trans-membrane gradients is used to achieve therapeutically efficacious intra-liposome concentrations of drugs. We have developed Quantitative Structure Property Relationship (QSPR) models of remote liposome loading for a dataset including 60 drugs studied in 366 loading experiments internally or elsewhere. Both experimental conditions and computed chemical descriptors were employed as independent variables to predict the initial drug/lipid ratio (D/L) required to achieve high loading efficiency. Both binary (to distinguish high vs. low initial D/L) and continuous (to predict real D/L values) models were generated using advanced machine learning approaches and five-fold external validation. The external prediction accuracy for binary models was as high as 91–96%; for continuous models the mean coefficient R2 for regression between predicted versus observed values was 0.76–0.79. We conclude that QSPR models can be used to identify candidate drugs expected to have high remote loading capacity while simultaneously optimizing the design of formulation experiments. PMID:22154932

  13. Predicting Soil Organic Carbon and Total Nitrogen in the Russian Chernozem from Depth and Wireless Color Sensor Measurements

    NASA Astrophysics Data System (ADS)

    Mikhailova, E. A.; Stiglitz, R. Y.; Post, C. J.; Schlautman, M. A.; Sharp, J. L.; Gerard, P. D.

    2017-12-01

    Color sensor technologies offer opportunities for affordable and rapid assessment of soil organic carbon (SOC) and total nitrogen (TN) in the field, but the applicability of these technologies may vary by soil type. The objective of this study was to use an inexpensive color sensor to develop SOC and TN prediction models for the Russian Chernozem (Haplic Chernozem) in the Kursk region of Russia. Twenty-one dried soil samples were analyzed using a Nix Pro™ color sensor that is controlled through a mobile application and Bluetooth to collect CIEL*a*b* (darkness to lightness, green to red, and blue to yellow) color data. Eleven samples were randomly selected to be used to construct prediction models and the remaining ten samples were set aside for cross validation. The root mean squared error (RMSE) was calculated to determine each model's prediction error. The data from the eleven soil samples were used to develop the natural log of SOC (lnSOC) and TN (lnTN) prediction models using depth, L*, a*, and b* for each sample as predictor variables in regression analyses. Resulting residual plots, root mean square errors (RMSE), mean squared prediction error (MSPE) and coefficients of determination ( R 2, adjusted R 2) were used to assess model fit for each of the SOC and total N prediction models. Final models were fit using all soil samples, which included depth and color variables, for lnSOC ( R 2 = 0.987, Adj. R 2 = 0.981, RMSE = 0.003, p-value < 0.001, MSPE = 0.182) and lnTN ( R 2 = 0.980 Adj. R 2 = 0.972, RMSE = 0.004, p-value < 0.001, MSPE = 0.001). Additionally, final models were fit for all soil samples, which included only color variables, for lnSOC ( R 2 = 0.959 Adj. R 2 = 0.949, RMSE = 0.007, p-value < 0.001, MSPE = 0.536) and lnTN ( R 2 = 0.912 Adj. R 2 = 0.890, RMSE = 0.015, p-value < 0.001, MSPE = 0.001). The results suggest that soil color may be used for rapid assessment of SOC and TN in these agriculturally important soils.

  14. Predicting Forearm Physical Exposures During Computer Work Using Self-Reports, Software-Recorded Computer Usage Patterns, and Anthropometric and Workstation Measurements.

    PubMed

    Huysmans, Maaike A; Eijckelhof, Belinda H W; Garza, Jennifer L Bruno; Coenen, Pieter; Blatter, Birgitte M; Johnson, Peter W; van Dieën, Jaap H; van der Beek, Allard J; Dennerlein, Jack T

    2017-12-15

    Alternative techniques to assess physical exposures, such as prediction models, could facilitate more efficient epidemiological assessments in future large cohort studies examining physical exposures in relation to work-related musculoskeletal symptoms. The aim of this study was to evaluate two types of models that predict arm-wrist-hand physical exposures (i.e. muscle activity, wrist postures and kinematics, and keyboard and mouse forces) during computer use, which only differed with respect to the candidate predicting variables; (i) a full set of predicting variables, including self-reported factors, software-recorded computer usage patterns, and worksite measurements of anthropometrics and workstation set-up (full models); and (ii) a practical set of predicting variables, only including the self-reported factors and software-recorded computer usage patterns, that are relatively easy to assess (practical models). Prediction models were build using data from a field study among 117 office workers who were symptom-free at the time of measurement. Arm-wrist-hand physical exposures were measured for approximately two hours while workers performed their own computer work. Each worker's anthropometry and workstation set-up were measured by an experimenter, computer usage patterns were recorded using software and self-reported factors (including individual factors, job characteristics, computer work behaviours, psychosocial factors, workstation set-up characteristics, and leisure-time activities) were collected by an online questionnaire. We determined the predictive quality of the models in terms of R2 and root mean squared (RMS) values and exposure classification agreement to low-, medium-, and high-exposure categories (in the practical model only). The full models had R2 values that ranged from 0.16 to 0.80, whereas for the practical models values ranged from 0.05 to 0.43. Interquartile ranges were not that different for the two models, indicating that only for some physical exposures the full models performed better. Relative RMS errors ranged between 5% and 19% for the full models, and between 10% and 19% for the practical model. When the predicted physical exposures were classified into low, medium, and high, classification agreement ranged from 26% to 71%. The full prediction models, based on self-reported factors, software-recorded computer usage patterns, and additional measurements of anthropometrics and workstation set-up, show a better predictive quality as compared to the practical models based on self-reported factors and recorded computer usage patterns only. However, predictive quality varied largely across different arm-wrist-hand exposure parameters. Future exploration of the relation between predicted physical exposure and symptoms is therefore only recommended for physical exposures that can be reasonably well predicted. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  15. Prediction of main factors’ values of air transportation system safety based on system dynamics

    NASA Astrophysics Data System (ADS)

    Spiridonov, A. Yu; Rezchikov, A. F.; Kushnikov, V. A.; Ivashchenko, V. A.; Bogomolov, A. S.; Filimonyuk, L. Yu; Dolinina, O. N.; Kushnikova, E. V.; Shulga, T. E.; Tverdokhlebov, V. A.; Kushnikov, O. V.; Fominykh, D. S.

    2018-05-01

    On the basis of the system-dynamic approach [1-8], a set of models has been developed that makes it possible to analyse and predict the values of the main safety indicators for the operation of aviation transport systems.

  16. File Usage Analysis and Resource Usage Prediction: a Measurement-Based Study. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Devarakonda, Murthy V.-S.

    1987-01-01

    A probabilistic scheme was developed to predict process resource usage in UNIX. Given the identity of the program being run, the scheme predicts CPU time, file I/O, and memory requirements of a process at the beginning of its life. The scheme uses a state-transition model of the program's resource usage in its past executions for prediction. The states of the model are the resource regions obtained from an off-line cluster analysis of processes run on the system. The proposed method is shown to work on data collected from a VAX 11/780 running 4.3 BSD UNIX. The results show that the predicted values correlate well with the actual. The coefficient of correlation between the predicted and actual values of CPU time is 0.84. Errors in prediction are mostly small. Some 82% of errors in CPU time prediction are less than 0.5 standard deviations of process CPU time.

  17. Predictability of process resource usage - A measurement-based study on UNIX

    NASA Technical Reports Server (NTRS)

    Devarakonda, Murthy V.; Iyer, Ravishankar K.

    1989-01-01

    A probabilistic scheme is developed to predict process resource usage in UNIX. Given the identity of the program being run, the scheme predicts CPU time, file I/O, and memory requirements of a process at the beginning of its life. The scheme uses a state-transition model of the program's resource usage in its past executions for prediction. The states of the model are the resource regions obtained from an off-line cluster analysis of processes run on the system. The proposed method is shown to work on data collected from a VAX 11/780 running 4.3 BSD UNIX. The results show that the predicted values correlate well with the actual. The correlation coefficient betweeen the predicted and actual values of CPU time is 0.84. Errors in prediction are mostly small. Some 82 percent of errors in CPU time prediction are less than 0.5 standard deviations of process CPU time.

  18. Predictability of process resource usage: A measurement-based study of UNIX

    NASA Technical Reports Server (NTRS)

    Devarakonda, Murthy V.; Iyer, Ravishankar K.

    1987-01-01

    A probabilistic scheme is developed to predict process resource usage in UNIX. Given the identity of the program being run, the scheme predicts CPU time, file I/O, and memory requirements of a process at the beginning of its life. The scheme uses a state-transition model of the program's resource usage in its past executions for prediction. The states of the model are the resource regions obtained from an off-line cluster analysis of processes run on the system. The proposed method is shown to work on data collected from a VAX 11/780 running 4.3 BSD UNIX. The results show that the predicted values correlate well with the actual. The correlation coefficient between the predicted and actual values of CPU time is 0.84. Errors in prediction are mostly small. Some 82% of errors in CPU time prediction are less than 0.5 standard deviations of process CPU time.

  19. [Real-time irrigation forecast of cotton mulched with plastic film under drip irrigation based on meteorological date].

    PubMed

    Shen, Xiao-jun; Sun, Jing-sheng; Li, Ming-si; Zhang, Ji-yang; Wang, Jing-lei; Li, Dong-wei

    2015-02-01

    It is important to improve the real-time irrigation forecasting precision by predicting real-time water consumption of cotton mulched with plastic film under drip irrigation based on meteorological data and cotton growth status. The model parameters for calculating ET0 based on Hargreaves formula were determined using historical meteorological data from 1953 to 2008 in Shihezi reclamation area. According to the field experimental data of growing season in 2009-2010, the model of computing crop coefficient Kc was established based on accumulated temperature. On the basis of crop water requirement (ET0) and Kc, a real-time irrigation forecast model was finally constructed, and it was verified by the field experimental data in 2011. The results showed that the forecast model had high forecasting precision, and the average absolute values of relative error between the predicted value and measured value were about 3.7%, 2.4% and 1.6% during seedling, squaring and blossom-boll forming stages, respectively. The forecast model could be used to modify the predicted values in time according to the real-time meteorological data and to guide the water management in local film-mulched cotton field under drip irrigation.

  20. A new approach for modeling patient overall radiosensitivity and predicting multiple toxicity endpoints for breast cancer patients.

    PubMed

    Mbah, Chamberlain; De Ruyck, Kim; De Schrijver, Silke; De Sutter, Charlotte; Schiettecatte, Kimberly; Monten, Chris; Paelinck, Leen; De Neve, Wilfried; Thierens, Hubert; West, Catharine; Amorim, Gustavo; Thas, Olivier; Veldeman, Liv

    2018-05-01

    Evaluation of patient characteristics inducing toxicity in breast radiotherapy, using simultaneous modeling of multiple endpoints. In 269 early-stage breast cancer patients treated with whole-breast irradiation (WBI) after breast-conserving surgery, toxicity was scored, based on five dichotomized endpoints. Five logistic regression models were fitted, one for each endpoint and the effect sizes of all variables were estimated using maximum likelihood (MLE). The MLEs are improved with James-Stein estimates (JSEs). The method combines all the MLEs, obtained for the same variable but from different endpoints. Misclassification errors were computed using MLE- and JSE-based prediction models. For associations, p-values from the sum of squares of MLEs were compared with p-values from the Standardized Total Average Toxicity (STAT) Score. With JSEs, 19 highest ranked variables were predictive of the five different endpoints. Important variables increasing radiation-induced toxicity were chemotherapy, age, SATB2 rs2881208 SNP and nodal irradiation. Treatment position (prone position) was most protective and ranked eighth. Overall, the misclassification errors were 45% and 34% for the MLE- and JSE-based models, respectively. p-Values from the sum of squares of MLEs and p-values from STAT score led to very similar conclusions, except for the variables nodal irradiation and treatment position, for which STAT p-values suggested an association with radiosensitivity, whereas p-values from the sum of squares indicated no association. Breast volume was ranked as the most significant variable in both strategies. The James-Stein estimator was used for selecting variables that are predictive for multiple toxicity endpoints. With this estimator, 19 variables were predictive for all toxicities of which four were significantly associated with overall radiosensitivity. JSEs led to almost 25% reduction in the misclassification error rate compared to conventional MLEs. Finally, patient characteristics that are associated with radiosensitivity were identified without explicitly quantifying radiosensitivity.

  1. The predicted influence of climate change on lesser prairie-chicken reproductive parameters

    USGS Publications Warehouse

    Grisham, Blake A.; Boal, Clint W.; Haukos, David A.; Davis, D.; Boydston, Kathy K.; Dixon, Charles; Heck, Willard R.

    2013-01-01

    The Southern High Plains is anticipated to experience significant changes in temperature and precipitation due to climate change. These changes may influence the lesser prairie-chicken (Tympanuchus pallidicinctus) in positive or negative ways. We assessed the potential changes in clutch size, incubation start date, and nest survival for lesser prairie-chickens for the years 2050 and 2080 based on modeled predictions of climate change and reproductive data for lesser prairie-chickens from 2001-2011 on the Southern High Plains of Texas and New Mexico. We developed 9 a priori models to assess the relationship between reproductive parameters and biologically relevant weather conditions. We selected weather variable(s) with the most model support and then obtained future predicted values from climatewizard.org. We conducted 1,000 simulations using each reproductive parameter's linear equation obtained from regression calculations, and the future predicted value for each weather variable to predict future reproductive parameter values for lesser prairie-chickens. There was a high degree of model uncertainty for each reproductive value. Winter temperature had the greatest effect size for all three parameters, suggesting a negative relationship between above-average winter temperature and reproductive output. The above-average winter temperatures are correlated to La Nina events, which negatively affect lesser prairie-chickens through resulting drought conditions. By 2050 and 2080, nest survival was predicted to be below levels considered viable for population persistence; however, our assessment did not consider annual survival of adults, chick survival, or the positive benefit of habitat management and conservation, which may ultimately offset the potentially negative effect of drought on nest survival.

  2. The predicted influence of climate change on lesser prairie-chicken reproductive parameters.

    PubMed

    Grisham, Blake A; Boal, Clint W; Haukos, David A; Davis, Dawn M; Boydston, Kathy K; Dixon, Charles; Heck, Willard R

    2013-01-01

    The Southern High Plains is anticipated to experience significant changes in temperature and precipitation due to climate change. These changes may influence the lesser prairie-chicken (Tympanuchus pallidicinctus) in positive or negative ways. We assessed the potential changes in clutch size, incubation start date, and nest survival for lesser prairie-chickens for the years 2050 and 2080 based on modeled predictions of climate change and reproductive data for lesser prairie-chickens from 2001-2011 on the Southern High Plains of Texas and New Mexico. We developed 9 a priori models to assess the relationship between reproductive parameters and biologically relevant weather conditions. We selected weather variable(s) with the most model support and then obtained future predicted values from climatewizard.org. We conducted 1,000 simulations using each reproductive parameter's linear equation obtained from regression calculations, and the future predicted value for each weather variable to predict future reproductive parameter values for lesser prairie-chickens. There was a high degree of model uncertainty for each reproductive value. Winter temperature had the greatest effect size for all three parameters, suggesting a negative relationship between above-average winter temperature and reproductive output. The above-average winter temperatures are correlated to La Niña events, which negatively affect lesser prairie-chickens through resulting drought conditions. By 2050 and 2080, nest survival was predicted to be below levels considered viable for population persistence; however, our assessment did not consider annual survival of adults, chick survival, or the positive benefit of habitat management and conservation, which may ultimately offset the potentially negative effect of drought on nest survival.

  3. A TCP model for external beam treatment of intermediate-risk prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Sean; Putten, Wil van der

    2013-03-15

    Purpose: Biological models offer the ability to predict clinical outcomes. The authors describe a model to predict the clinical response of intermediate-risk prostate cancer to external beam radiotherapy for a variety of fractionation regimes. Methods: A fully heterogeneous population averaged tumor control probability model was fit to clinical outcome data for hyper, standard, and hypofractionated treatments. The tumor control probability model was then employed to predict the clinical outcome of extreme hypofractionation regimes, as utilized in stereotactic body radiotherapy. Results: The tumor control probability model achieves an excellent level of fit, R{sup 2} value of 0.93 and a root meanmore » squared error of 1.31%, to the clinical outcome data for hyper, standard, and hypofractionated treatments using realistic values for biological input parameters. Residuals Less-Than-Or-Slanted-Equal-To 1.0% are produced by the tumor control probability model when compared to clinical outcome data for stereotactic body radiotherapy. Conclusions: The authors conclude that this tumor control probability model, used with the optimized radiosensitivity values obtained from the fit, is an appropriate mechanistic model for the analysis and evaluation of external beam RT plans with regard to tumor control for these clinical conditions.« less

  4. A new method to estimate average hourly global solar radiation on the horizontal surface

    NASA Astrophysics Data System (ADS)

    Pandey, Pramod K.; Soupir, Michelle L.

    2012-10-01

    A new model, Global Solar Radiation on Horizontal Surface (GSRHS), was developed to estimate the average hourly global solar radiation on the horizontal surfaces (Gh). The GSRHS model uses the transmission function (Tf,ij), which was developed to control hourly global solar radiation, for predicting solar radiation. The inputs of the model were: hour of day, day (Julian) of year, optimized parameter values, solar constant (H0), latitude, and longitude of the location of interest. The parameter values used in the model were optimized at a location (Albuquerque, NM), and these values were applied into the model for predicting average hourly global solar radiations at four different locations (Austin, TX; El Paso, TX; Desert Rock, NV; Seattle, WA) of the United States. The model performance was assessed using correlation coefficient (r), Mean Absolute Bias Error (MABE), Root Mean Square Error (RMSE), and coefficient of determinations (R2). The sensitivities of parameter to prediction were estimated. Results show that the model performed very well. The correlation coefficients (r) range from 0.96 to 0.99, while coefficients of determination (R2) range from 0.92 to 0.98. For daily and monthly prediction, error percentages (i.e. MABE and RMSE) were less than 20%. The approach we proposed here can be potentially useful for predicting average hourly global solar radiation on the horizontal surface for different locations, with the use of readily available data (i.e. latitude and longitude of the location) as inputs.

  5. Predicting the Best Fit: A Comparison of Response Surface Models for Midazolam and Alfentanil Sedation in Procedures With Varying Stimulation.

    PubMed

    Liou, Jing-Yang; Ting, Chien-Kun; Mandell, M Susan; Chang, Kuang-Yi; Teng, Wei-Nung; Huang, Yu-Yin; Tsou, Mei-Yung

    2016-08-01

    Selecting an effective dose of sedative drugs in combined upper and lower gastrointestinal endoscopy is complicated by varying degrees of pain stimulation. We tested the ability of 5 response surface models to predict depth of sedation after administration of midazolam and alfentanil in this complex model. The procedure was divided into 3 phases: esophagogastroduodenoscopy (EGD), colonoscopy, and the time interval between the 2 (intersession). The depth of sedation in 33 adult patients was monitored by Observer Assessment of Alertness/Scores. A total of 218 combinations of midazolam and alfentanil effect-site concentrations derived from pharmacokinetic models were used to test 5 response surface models in each of the 3 phases of endoscopy. Model fit was evaluated with objective function value, corrected Akaike Information Criterion (AICc), and Spearman ranked correlation. A model was arbitrarily defined as accurate if the predicted probability is <0.5 from the observed response. The effect-site concentrations tested ranged from 1 to 76 ng/mL and from 5 to 80 ng/mL for midazolam and alfentanil, respectively. Midazolam and alfentanil had synergistic effects in colonoscopy and EGD, but additivity was observed in the intersession group. Adequate prediction rates were 84% to 85% in the intersession group, 84% to 88% during colonoscopy, and 82% to 87% during EGD. The reduced Greco and Fixed alfentanil concentration required for 50% of the patients to achieve targeted response Hierarchy models performed better with comparable predictive strength. The reduced Greco model had the lowest AICc with strong correlation in all 3 phases of endoscopy. Dynamic, rather than fixed, γ and γalf in the Hierarchy model improved model fit. The reduced Greco model had the lowest objective function value and AICc and thus the best fit. This model was reliable with acceptable predictive ability based on adequate clinical correlation. We suggest that this model has practical clinical value for patients undergoing procedures with varying degrees of stimulation.

  6. Drug response in a genetically engineered mouse model of multiple myeloma is predictive of clinical efficacy

    PubMed Central

    Chesi, Marta; Matthews, Geoffrey M.; Garbitt, Victoria M.; Palmer, Stephen E.; Shortt, Jake; Lefebure, Marcus; Stewart, A. Keith; Johnstone, Ricky W.

    2012-01-01

    The attrition rate for anticancer drugs entering clinical trials is unacceptably high. For multiple myeloma (MM), we postulate that this is because of preclinical models that overemphasize the antiproliferative activity of drugs, and clinical trials performed in refractory end-stage patients. We validate the Vk*MYC transgenic mouse as a faithful model to predict single-agent drug activity in MM with a positive predictive value of 67% (4 of 6) for clinical activity, and a negative predictive value of 86% (6 of 7) for clinical inactivity. We identify 4 novel agents that should be prioritized for evaluation in clinical trials. Transplantation of Vk*MYC tumor cells into congenic mice selected for a more aggressive disease that models end-stage drug-resistant MM and responds only to combinations of drugs with single-agent activity in untreated Vk*MYC MM. We predict that combinations of standard agents, histone deacetylase inhibitors, bromodomain inhibitors, and hypoxia-activated prodrugs will demonstrate efficacy in the treatment of relapsed MM. PMID:22451422

  7. An international model validation exercise on radionuclide transfer and doses to freshwater biota.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yankovich, T. L.; Vives i Batlle, J.; Vives-Lynch, S.

    2010-06-09

    Under the International Atomic Energy Agency (IAEA)'s EMRAS (Environmental Modelling for Radiation Safety) program, activity concentrations of {sup 60}Co, {sup 90}Sr, {sup 137}Cs and {sup 3}H in Perch Lake at Atomic Energy of Canada Limited's Chalk River Laboratories site were predicted, in freshwater primary producers, invertebrates, fishes, herpetofauna and mammals using eleven modelling approaches. Comparison of predicted radionuclide concentrations in the different species types with measured values highlighted a number of areas where additional work and understanding is required to improve the predictions of radionuclide transfer. For some species, the differences could be explained by ecological factors such as trophicmore » level or the influence of stable analogues. Model predictions were relatively poor for mammalian species and herpetofauna compared with measured values, partly due to a lack of relevant data. In addition, concentration ratios are sometimes under-predicted when derived from experiments performed under controlled laboratory conditions representative of conditions in other water bodies.« less

  8. Initial comparison of single cylinder Stirling engine computer model predictions with test results

    NASA Technical Reports Server (NTRS)

    Tew, R. C., Jr.; Thieme, L. G.; Miao, D.

    1979-01-01

    A NASA developed digital computer code for a Stirling engine, modelling the performance of a single cylinder rhombic drive ground performance unit (GPU), is presented and its predictions are compared to test results. The GPU engine incorporates eight regenerator/cooler units and the engine working space is modelled by thirteen control volumes. The model calculates indicated power and efficiency for a given engine speed, mean pressure, heater and expansion space metal temperatures and cooler water inlet temperature and flow rate. Comparison of predicted and observed powers implies that the reference pressure drop calculations underestimate actual pressure drop, possibly due to oil contamination in the regenerator/cooler units, methane contamination in the working gas or the underestimation of mechanical loss. For a working gas of hydrogen, the predicted values of brake power are from 0 to 6% higher than experimental values, and brake efficiency is 6 to 16% higher, while for helium the predicted brake power and efficiency are 2 to 15% higher than the experimental.

  9. Comparison of hadron production models for π±, k±, protons and antiprotons production in proton-carbon interactions at 60 GeV/c

    NASA Astrophysics Data System (ADS)

    Ajaz, M.; Ullah, S.; Ali, Y.; Younis, H.

    2018-02-01

    In this research paper, the comprehensive results on the double differential yield of π± and k± mesons, protons and antiprotons as a function of laboratory momentum are reported. These hadrons are produced in proton-carbon interaction at 60 GeV/c. EPOS 1.99, EPOS-LHC and QGSJETII-04 models are used to perform simulations. Comparing the predictions of these models show that QGSJETII-04 model predicts higher yields of all the hadrons in most of the cases at the peak of the distribution. In this interval, the EPOS 1.99 and EPOS-LHC produce similar results. In most of the cases at higher momentum of the hadrons, all the three models are in good agreement. For protons, all models are in good agreement. EPOS-LHC gives high yield of antiprotons at high momentum values as compared to the other two models. EPOS-LHC gives higher prediction at the peak value for π+ mesons and protons at higher polar angle intervals of 100 < 𝜃 < 420 and 100 < 𝜃 < 360, respectively, and EPOS 1.99 gives higher prediction at the peak value for π- mesons for 140 < 𝜃 < 420. The model predictions, except for antiprotons, are compared with the data obtained by the NA61/SHINE experiment at 31 GeV/c proton-carbon collision, which clearly shows that the behavior of the distributions in models are similar to the ones from the data but the yield in data is low because of lower beam energy.

  10. The incorrect usage of singular spectral analysis and discrete wavelet transform in hybrid models to predict hydrological time series

    NASA Astrophysics Data System (ADS)

    Du, Kongchang; Zhao, Ying; Lei, Jiaqiang

    2017-09-01

    In hydrological time series prediction, singular spectrum analysis (SSA) and discrete wavelet transform (DWT) are widely used as preprocessing techniques for artificial neural network (ANN) and support vector machine (SVM) predictors. These hybrid or ensemble models seem to largely reduce the prediction error. In current literature researchers apply these techniques to the whole observed time series and then obtain a set of reconstructed or decomposed time series as inputs to ANN or SVM. However, through two comparative experiments and mathematical deduction we found the usage of SSA and DWT in building hybrid models is incorrect. Since SSA and DWT adopt 'future' values to perform the calculation, the series generated by SSA reconstruction or DWT decomposition contain information of 'future' values. These hybrid models caused incorrect 'high' prediction performance and may cause large errors in practice.

  11. Development and validation of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis

    PubMed Central

    Mootanah, R.; Imhauser, C.W.; Reisse, F.; Carpanen, D.; Walker, R.W.; Koff, M.F.; Lenhoff, M.W.; Rozbruch, S.R.; Fragomen, A.T.; Dewan, Z.; Kirane, Y.M.; Cheah, Pamela A.; Dowell, J.K.; Hillstrom, H.J.

    2014-01-01

    A three-dimensional (3D) knee joint computational model was developed and validated to predict knee joint contact forces and pressures for different degrees of malalignment. A 3D computational knee model was created from high-resolution radiological images to emulate passive sagittal rotation (full-extension to 65°-flexion) and weight acceptance. A cadaveric knee mounted on a six-degree-of-freedom robot was subjected to matching boundary and loading conditions. A ligament-tuning process minimised kinematic differences between the robotically loaded cadaver specimen and the finite element (FE) model. The model was validated by measured intra-articular force and pressure measurements. Percent full scale error between EE-predicted and in vitro-measured values in the medial and lateral compartments were 6.67% and 5.94%, respectively, for normalised peak pressure values, and 7.56% and 4.48%, respectively, for normalised force values. The knee model can accurately predict normalised intra-articular pressure and forces for different loading conditions and could be further developed for subject-specific surgical planning. PMID:24786914

  12. Development and validation of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis.

    PubMed

    Mootanah, R; Imhauser, C W; Reisse, F; Carpanen, D; Walker, R W; Koff, M F; Lenhoff, M W; Rozbruch, S R; Fragomen, A T; Dewan, Z; Kirane, Y M; Cheah, K; Dowell, J K; Hillstrom, H J

    2014-01-01

    A three-dimensional (3D) knee joint computational model was developed and validated to predict knee joint contact forces and pressures for different degrees of malalignment. A 3D computational knee model was created from high-resolution radiological images to emulate passive sagittal rotation (full-extension to 65°-flexion) and weight acceptance. A cadaveric knee mounted on a six-degree-of-freedom robot was subjected to matching boundary and loading conditions. A ligament-tuning process minimised kinematic differences between the robotically loaded cadaver specimen and the finite element (FE) model. The model was validated by measured intra-articular force and pressure measurements. Percent full scale error between FE-predicted and in vitro-measured values in the medial and lateral compartments were 6.67% and 5.94%, respectively, for normalised peak pressure values, and 7.56% and 4.48%, respectively, for normalised force values. The knee model can accurately predict normalised intra-articular pressure and forces for different loading conditions and could be further developed for subject-specific surgical planning.

  13. Ability of preoperative 3.0-Tesla magnetic resonance imaging to predict the absence of side-specific extracapsular extension of prostate cancer.

    PubMed

    Hara, Tomohiko; Nakanishi, Hiroyuki; Nakagawa, Tohru; Komiyama, Motokiyo; Kawahara, Takashi; Manabe, Tomoko; Miyake, Mototaka; Arai, Eri; Kanai, Yae; Fujimoto, Hiroyuki

    2013-10-01

    Recent studies have shown an improvement in prostate cancer diagnosis with the use of 3.0-Tesla magnetic resonance imaging. We retrospectively assessed the ability of this imaging technique to predict side-specific extracapsular extension of prostate cancer. From October 2007 to August 2011, prostatectomy was carried out in 396 patients after preoperative 3.0-Tesla magnetic resonance imaging. Among these, 132 (primary sample) and 134 patients (validation sample) underwent 12-core prostate biopsy at the National Cancer Center Hospital of Tokyo, Japan, and at other institutions, respectively. In the primary dataset, univariate and multivariate analyses were carried out to predict side-specific extracapsular extension using variables determined preoperatively, including 3.0-Tesla magnetic resonance imaging findings (T2-weighted and diffusion-weighted imaging). A prediction model was then constructed and applied to the validation study sample. Multivariate analysis identified four significant independent predictors (P < 0.05), including a biopsy Gleason score of ≥8, positive 3.0-Tesla diffusion-weighted magnetic resonance imaging findings, ≥2 positive biopsy cores on each side and a maximum percentage of positive cores ≥31% on each side. The negative predictive value was 93.9% in the combination model with these four predictors, meanwhile the positive predictive value was 33.8%. Good reproducibility of these four significant predictors and the combination model was observed in the validation study sample. The side-specific extracapsular extension prediction by the biopsy Gleason score and factors associated with tumor location, including a positive 3.0-Tesla diffusion-weighted magnetic resonance imaging finding, have a high negative predictive value, but a low positive predictive value. © 2013 The Japanese Urological Association.

  14. Estimating the Accuracy of the Chedoke–McMaster Stroke Assessment Predictive Equations for Stroke Rehabilitation

    PubMed Central

    Dang, Mia; Ramsaran, Kalinda D.; Street, Melissa E.; Syed, S. Noreen; Barclay-Goddard, Ruth; Miller, Patricia A.

    2011-01-01

    ABSTRACT Purpose: To estimate the predictive accuracy and clinical usefulness of the Chedoke–McMaster Stroke Assessment (CMSA) predictive equations. Method: A longitudinal prognostic study using historical data obtained from 104 patients admitted post cerebrovascular accident was undertaken. Data were abstracted for all patients undergoing rehabilitation post stroke who also had documented admission and discharge CMSA scores. Published predictive equations were used to determine predicted outcomes. To determine the accuracy and clinical usefulness of the predictive model, shrinkage coefficients and predictions with 95% confidence bands were calculated. Results: Complete data were available for 74 patients with a mean age of 65.3±12.4 years. The shrinkage values for the six Impairment Inventory (II) dimensions varied from −0.05 to 0.09; the shrinkage value for the Activity Inventory (AI) was 0.21. The error associated with predictive values was greater than ±1.5 stages for the II dimensions and greater than ±24 points for the AI. Conclusions: This study shows that the large error associated with the predictions (as defined by the confidence band) for the CMSA II and AI limits their clinical usefulness as a predictive measure. Further research to establish predictive models using alternative statistical procedures is warranted. PMID:22654239

  15. A Quantitative Description of Suicide Inhibition of Dichloroacetic Acid in Rats and Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keys, Deborah A.; Schultz, Irv R.; Mahle, Deirdre A.

    Dichloroacetic acid (DCA), a minor metabolite of trichloroethylene (TCE) and water disinfection byproduct, remains an important risk assessment issue because of its carcinogenic potency. DCA has been shown to inhibit its own metabolism by irreversibly inactivating glutathione transferase zeta (GSTzeta). To better predict internal dosimetry of DCA, a physiologically based pharmacokinetic (PBPK) model of DCA was developed. Suicide inhibition was described dynamically by varying the rate of maximal GSTzeta mediated metabolism of DCA (Vmax) over time. Resynthesis (zero-order) and degradation (first-order) of metabolic activity were described. Published iv pharmacokinetic studies in native rats were used to estimate an initial Vmaxmore » value, with Km set to an in vitro determined value. Degradation and resynthesis rates were set to estimated values from a published immunoreactive GSTzeta protein time course. The first-order inhibition rate, kd, was estimated to this same time course. A secondary, linear non-GSTzeta-mediated metabolic pathway is proposed to fit DCA time courses following treatment with DCA in drinking water. The PBPK model predictions were validated by comparing predicted DCA concentrations to measured concentrations in published studies of rats pretreated with DCA following iv exposure to 0.05 to 20 mg/kg DCA. The same model structure was parameterized to simulate DCA time courses following iv exposure in native and pretreated mice. Blood and liver concentrations during and postexposure to DCA in drinking water were predicted. Comparisons of PBPK model predicted to measured values were favorable, lending support for the further development of this model for application to DCA or TCE human health risk assessment.« less

  16. Random Predictor Models for Rigorous Uncertainty Quantification: Part 1

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2015-01-01

    This and a companion paper propose techniques for constructing parametric mathematical models describing key features of the distribution of an output variable given input-output data. By contrast to standard models, which yield a single output value at each value of the input, Random Predictors Models (RPMs) yield a random variable at each value of the input. Optimization-based strategies for calculating RPMs having a polynomial dependency on the input and a linear dependency on the parameters are proposed. These formulations yield RPMs having various levels of fidelity in which the mean and the variance of the model's parameters, thus of the predicted output, are prescribed. As such they encompass all RPMs conforming to these prescriptions. The RPMs are optimal in the sense that they yield the tightest predictions for which all (or, depending on the formulation, most) of the observations are less than a fixed number of standard deviations from the mean prediction. When the data satisfies mild stochastic assumptions, and the optimization problem(s) used to calculate the RPM is convex (or, when its solution coincides with the solution to an auxiliary convex problem), the model's reliability, which is the probability that a future observation would be within the predicted ranges, can be bounded tightly and rigorously.

  17. A Novel Two-Step Hierarchical Quantitative Structure–Activity Relationship Modeling Work Flow for Predicting Acute Toxicity of Chemicals in Rodents

    PubMed Central

    Zhu, Hao; Ye, Lin; Richard, Ann; Golbraikh, Alexander; Wright, Fred A.; Rusyn, Ivan; Tropsha, Alexander

    2009-01-01

    Background Accurate prediction of in vivo toxicity from in vitro testing is a challenging problem. Large public–private consortia have been formed with the goal of improving chemical safety assessment by the means of high-throughput screening. Objective A wealth of available biological data requires new computational approaches to link chemical structure, in vitro data, and potential adverse health effects. Methods and results A database containing experimental cytotoxicity values for in vitro half-maximal inhibitory concentration (IC50) and in vivo rodent median lethal dose (LD50) for more than 300 chemicals was compiled by Zentralstelle zur Erfassung und Bewertung von Ersatz- und Ergaenzungsmethoden zum Tierversuch (ZEBET; National Center for Documentation and Evaluation of Alternative Methods to Animal Experiments). The application of conventional quantitative structure–activity relationship (QSAR) modeling approaches to predict mouse or rat acute LD50 values from chemical descriptors of ZEBET compounds yielded no statistically significant models. The analysis of these data showed no significant correlation between IC50 and LD50. However, a linear IC50 versus LD50 correlation could be established for a fraction of compounds. To capitalize on this observation, we developed a novel two-step modeling approach as follows. First, all chemicals are partitioned into two groups based on the relationship between IC50 and LD50 values: One group comprises compounds with linear IC50 versus LD50 relationships, and another group comprises the remaining compounds. Second, we built conventional binary classification QSAR models to predict the group affiliation based on chemical descriptors only. Third, we developed k-nearest neighbor continuous QSAR models for each subclass to predict LD50 values from chemical descriptors. All models were extensively validated using special protocols. Conclusions The novelty of this modeling approach is that it uses the relationships between in vivo and in vitro data only to inform the initial construction of the hierarchical two-step QSAR models. Models resulting from this approach employ chemical descriptors only for external prediction of acute rodent toxicity. PMID:19672406

  18. A novel two-step hierarchical quantitative structure-activity relationship modeling work flow for predicting acute toxicity of chemicals in rodents.

    PubMed

    Zhu, Hao; Ye, Lin; Richard, Ann; Golbraikh, Alexander; Wright, Fred A; Rusyn, Ivan; Tropsha, Alexander

    2009-08-01

    Accurate prediction of in vivo toxicity from in vitro testing is a challenging problem. Large public-private consortia have been formed with the goal of improving chemical safety assessment by the means of high-throughput screening. A wealth of available biological data requires new computational approaches to link chemical structure, in vitro data, and potential adverse health effects. A database containing experimental cytotoxicity values for in vitro half-maximal inhibitory concentration (IC(50)) and in vivo rodent median lethal dose (LD(50)) for more than 300 chemicals was compiled by Zentralstelle zur Erfassung und Bewertung von Ersatz- und Ergaenzungsmethoden zum Tierversuch (ZEBET; National Center for Documentation and Evaluation of Alternative Methods to Animal Experiments). The application of conventional quantitative structure-activity relationship (QSAR) modeling approaches to predict mouse or rat acute LD(50) values from chemical descriptors of ZEBET compounds yielded no statistically significant models. The analysis of these data showed no significant correlation between IC(50) and LD(50). However, a linear IC(50) versus LD(50) correlation could be established for a fraction of compounds. To capitalize on this observation, we developed a novel two-step modeling approach as follows. First, all chemicals are partitioned into two groups based on the relationship between IC(50) and LD(50) values: One group comprises compounds with linear IC(50) versus LD(50) relationships, and another group comprises the remaining compounds. Second, we built conventional binary classification QSAR models to predict the group affiliation based on chemical descriptors only. Third, we developed k-nearest neighbor continuous QSAR models for each subclass to predict LD(50) values from chemical descriptors. All models were extensively validated using special protocols. The novelty of this modeling approach is that it uses the relationships between in vivo and in vitro data only to inform the initial construction of the hierarchical two-step QSAR models. Models resulting from this approach employ chemical descriptors only for external prediction of acute rodent toxicity.

  19. Survival curves of Listeria monocytogenes in chorizos modeled with artificial neural networks.

    PubMed

    Hajmeer, M; Basheer, I; Cliver, D O

    2006-09-01

    Using artificial neural networks (ANNs), a highly accurate model was developed to simulate survival curves of Listeria monocytogenes in chorizos as affected by the initial water activity (a(w0)) of the sausage formulation, temperature (T), and air inflow velocity (F) where the sausages are stored. The ANN-based survival model (R(2)=0.970) outperformed the regression-based cubic model (R(2)=0.851), and as such was used to derive other models (using regression) that allow prediction of the times needed to drop count by 1, 2, 3, and 4 logs (i.e., nD-values, n=1, 2, 3, 4). The nD-value regression models almost perfectly predicted the various times derived from a number of simulated survival curves exhibiting a wide variety of the operating conditions (R(2)=0.990-0.995). The nD-values were found to decrease with decreasing a(w0), and increasing T and F. The influence of a(w0) on nD-values seems to become more significant at some critical value of a(w0), below which the variation is negligible (0.93 for 1D-value, 0.90 for 2D-value, and <0.85 for 3D- and 4D-values). There is greater influence of storage T and F on 3D- and 4D-values than on 1D- and 2D-values.

  20. Multi-model comparison highlights consistency in predicted effect of warming on a semi-arid shrub

    USGS Publications Warehouse

    Renwick, Katherine M.; Curtis, Caroline; Kleinhesselink, Andrew R.; Schlaepfer, Daniel R.; Bradley, Bethany A.; Aldridge, Cameron L.; Poulter, Benjamin; Adler, Peter B.

    2018-01-01

    A number of modeling approaches have been developed to predict the impacts of climate change on species distributions, performance, and abundance. The stronger the agreement from models that represent different processes and are based on distinct and independent sources of information, the greater the confidence we can have in their predictions. Evaluating the level of confidence is particularly important when predictions are used to guide conservation or restoration decisions. We used a multi-model approach to predict climate change impacts on big sagebrush (Artemisia tridentata), the dominant plant species on roughly 43 million hectares in the western United States and a key resource for many endemic wildlife species. To evaluate the climate sensitivity of A. tridentata, we developed four predictive models, two based on empirically derived spatial and temporal relationships, and two that applied mechanistic approaches to simulate sagebrush recruitment and growth. This approach enabled us to produce an aggregate index of climate change vulnerability and uncertainty based on the level of agreement between models. Despite large differences in model structure, predictions of sagebrush response to climate change were largely consistent. Performance, as measured by change in cover, growth, or recruitment, was predicted to decrease at the warmest sites, but increase throughout the cooler portions of sagebrush's range. A sensitivity analysis indicated that sagebrush performance responds more strongly to changes in temperature than precipitation. Most of the uncertainty in model predictions reflected variation among the ecological models, raising questions about the reliability of forecasts based on a single modeling approach. Our results highlight the value of a multi-model approach in forecasting climate change impacts and uncertainties and should help land managers to maximize the value of conservation investments.

  1. Predicting the digestible energy of corn determined with growing swine from nutrient composition and cross-species measurements.

    PubMed

    Smith, B; Hassen, A; Hinds, M; Rice, D; Jones, D; Sauber, T; Iiams, C; Sevenich, D; Allen, R; Owens, F; McNaughton, J; Parsons, C

    2015-03-01

    The DE values of corn grain for pigs will differ among corn sources. More accurate prediction of DE may improve diet formulation and reduce diet cost. Corn grain sources ( = 83) were assayed with growing swine (20 kg) in DE experiments with total collection of feces, with 3-wk-old broiler chick in nitrogen-corrected apparent ME (AME) trials and with cecectomized adult roosters in nitrogen-corrected true ME (TME) studies. Additional AME data for the corn grain source set was generated based on an existing near-infrared transmittance prediction model (near-infrared transmittance-predicted AME [NIT-AME]). Corn source nutrient composition was determined by wet chemistry methods. These data were then used to 1) test the accuracy of predicting swine DE of individual corn sources based on available literature equations and nutrient composition and 2) develop models for predicting DE of sources from nutrient composition and the cross-species information gathered above (AME, NIT-AME, and TME). The overall measured DE, AME, NIT-AME, and TME values were 4,105 ± 11, 4,006 ± 10, 4,004 ± 10, and 4,086 ± 12 kcal/kg DM, respectively. Prediction models were developed using 80% of the corn grain sources; the remaining 20% was reserved for validation of the developed prediction equation. Literature equations based on nutrient composition proved imprecise for predicting corn DE; the root mean square error of prediction ranged from 105 to 331 kcal/kg, an equivalent of 2.6 to 8.8% error. Yet among the corn composition traits, 4-variable models developed in the current study provided adequate prediction of DE (model ranging from 0.76 to 0.79 and root mean square error [RMSE] of 50 kcal/kg). When prediction equations were tested using the validation set, these models had a 1 to 1.2% error of prediction. Simple linear equations from AME, NIT-AME, or TME provided an accurate prediction of DE for individual sources ( ranged from 0.65 to 0.73 and RMSE ranged from 50 to 61 kcal/kg). Percentage error of prediction based on the validation data set was greater (1.4%) for the TME model than for the NIT-AME or AME models (1 and 1.2%, respectively), indicating that swine DE values could be accurately predicted by using AME or NIT-AME. In conclusion, regression equations developed from broiler measurements or from analyzed nutrient composition proved adequate to reliably predict the DE of commercially available corn hybrids for growing pigs.

  2. Assessing the predictive value of the American Board of Family Practice In-training Examination.

    PubMed

    Replogle, William H; Johnson, William D

    2004-03-01

    The American Board of Family Practice In-training Examination (ABFP ITE) is a cognitive examination similar in content to the ABFP Certification Examination (CE). The ABFP ITE is widely used in family medicine residency programs. It was originally developed and intended to be used for assessment of groups of residents. Despite lack of empirical support, however, some residency programs are using ABFP ITE scores as individual resident performance indicators. This study's objective was to estimate the positive predictive value of the ABFP ITE for identifying residents at risk for poor performance on the ABFP CE or a subsequent ABFP ITE. We used a normal distribution model for correlated test scores and Monte Carlo simulation to investigate the effect of test reliability (measurement errors) on the positive predictive value of the ABFP ITE. The positive predictive value of the composite score was .72. The positive predictive value of the eight specialty subscales ranged from .26 to .57. Only the composite score of the ABFP ITE has acceptable positive predictive value to be used as part of a comprehension resident evaluation system. The ABFP ITE specialty subscales do not have sufficient positive predictive value or reliability to warrant use as performance indicators.

  3. A comparison of methods for converting DCE values onto the full health-dead QALY scale.

    PubMed

    Rowen, Donna; Brazier, John; Van Hout, Ben

    2015-04-01

    Preference elicitation techniques such as time trade-off (TTO) and standard gamble (SG) receive criticism for their complexity and difficulties of use. Ordinal techniques such as discrete choice experiment (DCE) are arguably easier to understand but generate values that are not anchored onto the full health-dead 1-0 quality-adjusted life-year (QALY) scale required for use in economic evaluation. This article compares existing methods for converting modeled DCE latent values onto the full health-dead QALY scale: 1) anchoring DCE values using dead as valued in the DCE and 2) anchoring DCE values using TTO value for worst state to 2 new methods: 3) mapping DCE values onto TTO and 4) combining DCE and TTO data in a hybrid model. Models are compared using their ability to predict mean TTO health state values. We use postal DCE data (n = 263) and TTO data (n = 307) collected by interview in a general population valuation study of an asthma condition-specific measure (AQL-5D). New methods 3 and 4 using mapping and hybrid models are better able to predict mean TTO health state values (mean absolute difference [MAD], 0.052-0.084) than the anchor-based methods (MAD, 0.075-0.093) and were better able to predict mean TTO health state values even when using in their estimation a subsample of the available TTO data. These new mapping and hybrid methods have a potentially useful role for producing values on the QALY scale from data elicited using ordinal techniques such as DCE for use in economic evaluation that makes best use of the desirable properties of each elicitation technique and elicited data. Further research is encouraged. © The Author(s) 2014.

  4. From Prototypes to Caricatures: Geometrical Models for Concept Typicality

    ERIC Educational Resources Information Center

    Ameel, Eef; Storms, Gert

    2006-01-01

    In three studies, we investigated to what extent a geometrical representation in a psychological space succeeds in predicting typicality in animal, natural food and artifact concepts and whether contrast categories contribute to the prediction. In Study 1, we compared the predictive value of a family resemblance-based prototype model with a…

  5. Acid deposition in east Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phadnis, M.J.; Carmichael, G.R.; Ichikawa, Y.

    1996-12-31

    A comparison between transport models was done to study the acid deposition in east Asia. The two models in question were different in the way the treated the pollutant species and the way simulation was carried out. A single-layer, trajectory model with simple (developed by the Central Research Institute of Electric Power Industry (CRIEPI), Japan) was compared with a multi-layered, eulerian type model (Sulfur Transport Eulerian Model - II [STEM-II]) treating the chemical processes in detail. The acidic species used in the simulation were sulfur dioxide and sulfate. The comparison was done for two episodes: each a month long inmore » winter (February) and summer (August) of 1989. The predicted results from STEM-II were compared with the predicted results from the CRIEPI model as well as the observed data at twenty-one stations in Japan. The predicted values from STEM-II were similar to the ones from the CRIEPI results and the observed values in regards to the transport features. The average monthly values of SO{sub 2} in air, sulfate in air and sulfate in precipitation were in good agreement. Sensitivity studies were carried out under different scenarios of emissions, dry depositions velocities and mixing heights. The predicted values in these sensitivity studies showed a strong dependence on the mixing heights. The predicted wet deposition of sulfur for the two months is 0.7 gS/m2.mon, while the observed deposition is around 1.1 gS/m2.mon. It was also observed that the wet deposition on the Japan sea side of the islands is more than those on the Pacific side and the Okhotsk sea, mainly because of the continental outflow of pollutant air masses from mainland China and Korea. The effects of emissions from Russia and volcanoes were also evaluated.« less

  6. Uniting Cheminformatics and Chemical Theory To Predict the Intrinsic Aqueous Solubility of Crystalline Druglike Molecules

    PubMed Central

    2014-01-01

    We present four models of solution free-energy prediction for druglike molecules utilizing cheminformatics descriptors and theoretically calculated thermodynamic values. We make predictions of solution free energy using physics-based theory alone and using machine learning/quantitative structure–property relationship (QSPR) models. We also develop machine learning models where the theoretical energies and cheminformatics descriptors are used as combined input. These models are used to predict solvation free energy. While direct theoretical calculation does not give accurate results in this approach, machine learning is able to give predictions with a root mean squared error (RMSE) of ∼1.1 log S units in a 10-fold cross-validation for our Drug-Like-Solubility-100 (DLS-100) dataset of 100 druglike molecules. We find that a model built using energy terms from our theoretical methodology as descriptors is marginally less predictive than one built on Chemistry Development Kit (CDK) descriptors. Combining both sets of descriptors allows a further but very modest improvement in the predictions. However, in some cases, this is a statistically significant enhancement. These results suggest that there is little complementarity between the chemical information provided by these two sets of descriptors, despite their different sources and methods of calculation. Our machine learning models are also able to predict the well-known Solubility Challenge dataset with an RMSE value of 0.9–1.0 log S units. PMID:24564264

  7. Predictive model for survival in patients with gastric cancer.

    PubMed

    Goshayeshi, Ladan; Hoseini, Benyamin; Yousefli, Zahra; Khooie, Alireza; Etminani, Kobra; Esmaeilzadeh, Abbas; Golabpour, Amin

    2017-12-01

    Gastric cancer is one of the most prevalent cancers in the world. Characterized by poor prognosis, it is a frequent cause of cancer in Iran. The aim of the study was to design a predictive model of survival time for patients suffering from gastric cancer. This was a historical cohort conducted between 2011 and 2016. Study population were 277 patients suffering from gastric cancer. Data were gathered from the Iranian Cancer Registry and the laboratory of Emam Reza Hospital in Mashhad, Iran. Patients or their relatives underwent interviews where it was needed. Missing values were imputed by data mining techniques. Fifteen factors were analyzed. Survival was addressed as a dependent variable. Then, the predictive model was designed by combining both genetic algorithm and logistic regression. Matlab 2014 software was used to combine them. Of the 277 patients, only survival of 80 patients was available whose data were used for designing the predictive model. Mean ?SD of missing values for each patient was 4.43?.41 combined predictive model achieved 72.57% accuracy. Sex, birth year, age at diagnosis time, age at diagnosis time of patients' family, family history of gastric cancer, and family history of other gastrointestinal cancers were six parameters associated with patient survival. The study revealed that imputing missing values by data mining techniques have a good accuracy. And it also revealed six parameters extracted by genetic algorithm effect on the survival of patients with gastric cancer. Our combined predictive model, with a good accuracy, is appropriate to forecast the survival of patients suffering from Gastric cancer. So, we suggest policy makers and specialists to apply it for prediction of patients' survival.

  8. Reason and reaction: the utility of a dual-focus, dual-processing perspective on promotion and prevention of adolescent health risk behaviour.

    PubMed

    Gibbons, Frederick X; Houlihan, Amy E; Gerrard, Meg

    2009-05-01

    A brief overview of theories of health behaviour that are based on the expectancy-value perspective is presented. This approach maintains that health behaviours are the result of a deliberative decision-making process that involves consideration of behavioural options along with anticipated outcomes associated with those options. It is argued that this perspective is effective at explaining and predicting many types of health behaviour, including health-promoting actions (e.g. UV protection, condom use, smoking cessation), but less effective at predicting risky health behaviours, such as unprotected, casual sex, drunk driving or binge drinking. These are behaviours that are less reasoned or premeditated - especially among adolescents. An argument is made for incorporating elements of dual-processing theories in an effort to improve the 'utility' of these models. Specifically, it is suggested that adolescent health behaviour involves both analytic and heuristic processing. Both types of processing are incorporated in the prototype-willingness (prototype) model, which is described in some detail. Studies of health behaviour based on the expectancy-value perspective (e.g. theory of reasoned action) are reviewed, along with studies based on the prototype model. These two sets of studies together suggest that the dual-processing perspective, in general, and the prototype model, in particular, add to the predictive validity of expectancy-value models for predicting adolescent health behaviour. Research and interventions that incorporate elements of dual-processing and elements of expectancy-value are more effective at explaining and changing adolescent health behaviour than are those based on expectancy-value theories alone.

  9. Applying horizontal diffusion on pressure surface to mesoscale models on terrain-following coordinates

    Treesearch

    Hann-Ming Henry Juang; Ching-Teng Lee; Yongxin Zhang; Yucheng Song; Ming-Chin Wu; Yi-Leng Chen; Kevin Kodama; Shyh-Chin Chen

    2005-01-01

    The National Centers for Environmental Prediction regional spectral model and mesoscale spectral model (NCEP RSM/MSM) use a spectral computation on perturbation. The perturbation is defined as a deviation between RSM/MSM forecast value and their outer model or analysis value on model sigma-coordinate surfaces. The horizontal diffusion used in the models applies...

  10. The Mixed Instrumental Controller: Using Value of Information to Combine Habitual Choice and Mental Simulation

    PubMed Central

    Pezzulo, Giovanni; Rigoli, Francesco; Chersi, Fabian

    2013-01-01

    Instrumental behavior depends on both goal-directed and habitual mechanisms of choice. Normative views cast these mechanisms in terms of model-free and model-based methods of reinforcement learning, respectively. An influential proposal hypothesizes that model-free and model-based mechanisms coexist and compete in the brain according to their relative uncertainty. In this paper we propose a novel view in which a single Mixed Instrumental Controller produces both goal-directed and habitual behavior by flexibly balancing and combining model-based and model-free computations. The Mixed Instrumental Controller performs a cost-benefits analysis to decide whether to chose an action immediately based on the available “cached” value of actions (linked to model-free mechanisms) or to improve value estimation by mentally simulating the expected outcome values (linked to model-based mechanisms). Since mental simulation entails cognitive effort and increases the reward delay, it is activated only when the associated “Value of Information” exceeds its costs. The model proposes a method to compute the Value of Information, based on the uncertainty of action values and on the distance of alternative cached action values. Overall, the model by default chooses on the basis of lighter model-free estimates, and integrates them with costly model-based predictions only when useful. Mental simulation uses a sampling method to produce reward expectancies, which are used to update the cached value of one or more actions; in turn, this updated value is used for the choice. The key predictions of the model are tested in different settings of a double T-maze scenario. Results are discussed in relation with neurobiological evidence on the hippocampus – ventral striatum circuit in rodents, which has been linked to goal-directed spatial navigation. PMID:23459512

  11. The mixed instrumental controller: using value of information to combine habitual choice and mental simulation.

    PubMed

    Pezzulo, Giovanni; Rigoli, Francesco; Chersi, Fabian

    2013-01-01

    Instrumental behavior depends on both goal-directed and habitual mechanisms of choice. Normative views cast these mechanisms in terms of model-free and model-based methods of reinforcement learning, respectively. An influential proposal hypothesizes that model-free and model-based mechanisms coexist and compete in the brain according to their relative uncertainty. In this paper we propose a novel view in which a single Mixed Instrumental Controller produces both goal-directed and habitual behavior by flexibly balancing and combining model-based and model-free computations. The Mixed Instrumental Controller performs a cost-benefits analysis to decide whether to chose an action immediately based on the available "cached" value of actions (linked to model-free mechanisms) or to improve value estimation by mentally simulating the expected outcome values (linked to model-based mechanisms). Since mental simulation entails cognitive effort and increases the reward delay, it is activated only when the associated "Value of Information" exceeds its costs. The model proposes a method to compute the Value of Information, based on the uncertainty of action values and on the distance of alternative cached action values. Overall, the model by default chooses on the basis of lighter model-free estimates, and integrates them with costly model-based predictions only when useful. Mental simulation uses a sampling method to produce reward expectancies, which are used to update the cached value of one or more actions; in turn, this updated value is used for the choice. The key predictions of the model are tested in different settings of a double T-maze scenario. Results are discussed in relation with neurobiological evidence on the hippocampus - ventral striatum circuit in rodents, which has been linked to goal-directed spatial navigation.

  12. Prediction of drug transport processes using simple parameters and PLS statistics. The use of ACD/logP and ACD/ChemSketch descriptors.

    PubMed

    Osterberg, T; Norinder, U

    2001-01-01

    A method of modelling and predicting biopharmaceutical properties using simple theoretically computed molecular descriptors and multivariate statistics has been investigated for several data sets related to solubility, IAM chromatography, permeability across Caco-2 cell monolayers, human intestinal perfusion, brain-blood partitioning, and P-glycoprotein ATPase activity. The molecular descriptors (e.g. molar refractivity, molar volume, index of refraction, surface tension and density) and logP were computed with ACD/ChemSketch and ACD/logP, respectively. Good statistical models were derived that permit simple computational prediction of biopharmaceutical properties. All final models derived had R(2) values ranging from 0.73 to 0.95 and Q(2) values ranging from 0.69 to 0.86. The RMSEP values for the external test sets ranged from 0.24 to 0.85 (log scale).

  13. Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy

    PubMed Central

    Pottier, Julien; Malenovský, Zbyněk; Psomas, Achilleas; Homolová, Lucie; Schaepman, Michael E.; Choler, Philippe; Thuiller, Wilfried; Guisan, Antoine; Zimmermann, Niklaus E.

    2014-01-01

    Remote sensing using airborne imaging spectroscopy (AIS) is known to retrieve fundamental optical properties of ecosystems. However, the value of these properties for predicting plant species distribution remains unclear. Here, we assess whether such data can add value to topographic variables for predicting plant distributions in French and Swiss alpine grasslands. We fitted statistical models with high spectral and spatial resolution reflectance data and tested four optical indices sensitive to leaf chlorophyll content, leaf water content and leaf area index. We found moderate added-value of AIS data for predicting alpine plant species distribution. Contrary to expectations, differences between species distribution models (SDMs) were not linked to their local abundance or phylogenetic/functional similarity. Moreover, spectral signatures of species were found to be partly site-specific. We discuss current limits of AIS-based SDMs, highlighting issues of scale and informational content of AIS data. PMID:25079495

  14. Machine Learning Model Analysis and Data Visualization with Small Molecules Tested in a Mouse Model of Mycobacterium tuberculosis Infection (2014–2015)

    PubMed Central

    2016-01-01

    The renewed urgency to develop new treatments for Mycobacterium tuberculosis (Mtb) infection has resulted in large-scale phenotypic screening and thousands of new active compounds in vitro. The next challenge is to identify candidates to pursue in a mouse in vivo efficacy model as a step to predicting clinical efficacy. We previously analyzed over 70 years of this mouse in vivo efficacy data, which we used to generate and validate machine learning models. Curation of 60 additional small molecules with in vivo data published in 2014 and 2015 was undertaken to further test these models. This represents a much larger test set than for the previous models. Several computational approaches have now been applied to analyze these molecules and compare their molecular properties beyond those attempted previously. Our previous machine learning models have been updated, and a novel aspect has been added in the form of mouse liver microsomal half-life (MLM t1/2) and in vitro-based Mtb models incorporating cytotoxicity data that were used to predict in vivo activity for comparison. Our best Mtbin vivo models possess fivefold ROC values > 0.7, sensitivity > 80%, and concordance > 60%, while the best specificity value is >40%. Use of an MLM t1/2 Bayesian model affords comparable results for scoring the 60 compounds tested. Combining MLM stability and in vitroMtb models in a novel consensus workflow in the best cases has a positive predicted value (hit rate) > 77%. Our results indicate that Bayesian models constructed with literature in vivoMtb data generated by different laboratories in various mouse models can have predictive value and may be used alongside MLM t1/2 and in vitro-based Mtb models to assist in selecting antitubercular compounds with desirable in vivo efficacy. We demonstrate for the first time that consensus models of any kind can be used to predict in vivo activity for Mtb. In addition, we describe a new clustering method for data visualization and apply this to the in vivo training and test data, ultimately making the method accessible in a mobile app. PMID:27335215

  15. Accuracy of topographic index models at identifying ephemeral gully trajectories on agricultural fields

    NASA Astrophysics Data System (ADS)

    Sheshukov, Aleksey Y.; Sekaluvu, Lawrence; Hutchinson, Stacy L.

    2018-04-01

    Topographic index (TI) models have been widely used to predict trajectories and initiation points of ephemeral gullies (EGs) in agricultural landscapes. Prediction of EGs strongly relies on the selected value of critical TI threshold, and the accuracy depends on topographic features, agricultural management, and datasets of observed EGs. This study statistically evaluated the predictions by TI models in two paired watersheds in Central Kansas that had different levels of structural disturbances due to implemented conservation practices. Four TI models with sole dependency on topographic factors of slope, contributing area, and planform curvature were used in this study. The observed EGs were obtained by field reconnaissance and through the process of hydrological reconditioning of digital elevation models (DEMs). The Kernel Density Estimation analysis was used to evaluate TI distribution within a 10-m buffer of the observed EG trajectories. The EG occurrence within catchments was analyzed using kappa statistics of the error matrix approach, while the lengths of predicted EGs were compared with the observed dataset using the Nash-Sutcliffe Efficiency (NSE) statistics. The TI frequency analysis produced bi-modal distribution of topographic indexes with the pixels within the EG trajectory having a higher peak. The graphs of kappa and NSE versus critical TI threshold showed similar profile for all four TI models and both watersheds with the maximum value representing the best comparison with the observed data. The Compound Topographic Index (CTI) model presented the overall best accuracy with NSE of 0.55 and kappa of 0.32. The statistics for the disturbed watershed showed higher best critical TI threshold values than for the undisturbed watershed. Structural conservation practices implemented in the disturbed watershed reduced ephemeral channels in headwater catchments, thus producing less variability in catchments with EGs. The variation in critical thresholds for all TI models suggested that TI models tend to predict EG occurrence and length over a range of thresholds rather than find a single best value.

  16. Cross-validation analysis for genetic evaluation models for ranking in endurance horses.

    PubMed

    García-Ballesteros, S; Varona, L; Valera, M; Gutiérrez, J P; Cervantes, I

    2018-01-01

    Ranking trait was used as a selection criterion for competition horses to estimate racing performance. In the literature the most common approaches to estimate breeding values are the linear or threshold statistical models. However, recent studies have shown that a Thurstonian approach was able to fix the race effect (competitive level of the horses that participate in the same race), thus suggesting a better prediction accuracy of breeding values for ranking trait. The aim of this study was to compare the predictability of linear, threshold and Thurstonian approaches for genetic evaluation of ranking in endurance horses. For this purpose, eight genetic models were used for each approach with different combinations of random effects: rider, rider-horse interaction and environmental permanent effect. All genetic models included gender, age and race as systematic effects. The database that was used contained 4065 ranking records from 966 horses and that for the pedigree contained 8733 animals (47% Arabian horses), with an estimated heritability around 0.10 for the ranking trait. The prediction ability of the models for racing performance was evaluated using a cross-validation approach. The average correlation between real and predicted performances across genetic models was around 0.25 for threshold, 0.58 for linear and 0.60 for Thurstonian approaches. Although no significant differences were found between models within approaches, the best genetic model included: the rider and rider-horse random effects for threshold, only rider and environmental permanent effects for linear approach and all random effects for Thurstonian approach. The absolute correlations of predicted breeding values among models were higher between threshold and Thurstonian: 0.90, 0.91 and 0.88 for all animals, top 20% and top 5% best animals. For rank correlations these figures were 0.85, 0.84 and 0.86. The lower values were those between linear and threshold approaches (0.65, 0.62 and 0.51). In conclusion, the Thurstonian approach is recommended for the routine genetic evaluations for ranking in endurance horses.

  17. Water quality management using statistical analysis and time-series prediction model

    NASA Astrophysics Data System (ADS)

    Parmar, Kulwinder Singh; Bhardwaj, Rashmi

    2014-12-01

    This paper deals with water quality management using statistical analysis and time-series prediction model. The monthly variation of water quality standards has been used to compare statistical mean, median, mode, standard deviation, kurtosis, skewness, coefficient of variation at Yamuna River. Model validated using R-squared, root mean square error, mean absolute percentage error, maximum absolute percentage error, mean absolute error, maximum absolute error, normalized Bayesian information criterion, Ljung-Box analysis, predicted value and confidence limits. Using auto regressive integrated moving average model, future water quality parameters values have been estimated. It is observed that predictive model is useful at 95 % confidence limits and curve is platykurtic for potential of hydrogen (pH), free ammonia, total Kjeldahl nitrogen, dissolved oxygen, water temperature (WT); leptokurtic for chemical oxygen demand, biochemical oxygen demand. Also, it is observed that predicted series is close to the original series which provides a perfect fit. All parameters except pH and WT cross the prescribed limits of the World Health Organization /United States Environmental Protection Agency, and thus water is not fit for drinking, agriculture and industrial use.

  18. Predictive model of outcome of targeted nodal assessment in colorectal cancer.

    PubMed

    Nissan, Aviram; Protic, Mladjan; Bilchik, Anton; Eberhardt, John; Peoples, George E; Stojadinovic, Alexander

    2010-02-01

    Improvement in staging accuracy is the principal aim of targeted nodal assessment in colorectal carcinoma. Technical factors independently predictive of false negative (FN) sentinel lymph node (SLN) mapping should be identified to facilitate operative decision making. To define independent predictors of FN SLN mapping and to develop a predictive model that could support surgical decisions. Data was analyzed from 2 completed prospective clinical trials involving 278 patients with colorectal carcinoma undergoing SLN mapping. Clinical outcome of interest was FN SLN(s), defined as one(s) with no apparent tumor cells in the presence of non-SLN metastases. To assess the independent predictive effect of a covariate for a nominal response (FN SLN), a logistic regression model was constructed and parameters estimated using maximum likelihood. A probabilistic Bayesian model was also trained and cross validated using 10-fold train-and-test sets to predict FN SLN mapping. Area under the curve (AUC) from receiver operating characteristics curves of these predictions was calculated to determine the predictive value of the model. Number of SLNs (<3; P = 0.03) and tumor-replaced nodes (P < 0.01) independently predicted FN SLN. Cross validation of the model created with Bayesian Network Analysis effectively predicted FN SLN (area under the curve = 0.84-0.86). The positive and negative predictive values of the model are 83% and 97%, respectively. This study supports a minimum threshold of 3 nodes for targeted nodal assessment in colorectal cancer, and establishes sufficient basis to conclude that SLN mapping and biopsy cannot be justified in the presence of clinically apparent tumor-replaced nodes.

  19. A comparison of in-cloud HCl concentrations from the NASA/MSFC MDM to measurements for the space shuttle launch

    NASA Technical Reports Server (NTRS)

    Glasser, M. E.

    1981-01-01

    The Multilevel Diffusion Model (MDM) Version 5 was modified to include features of more recent versions. The MDM was used to predict in-cloud HCl concentrations for the April 12 launch of the space Shuttle (STS-1). The maximum centerline predictions were compared with measurements of maximum gaseous HCl obtained from aircraft passes through two segments of the fragmented shuttle ground cloud. The model over-predicted the maximum values for gaseous HCl in the lower cloud segment and portrayed the same rate of decay with time as the observed values. However, the decay with time of HCl maximum predicted by the MDM was more rapid than the observed decay for the higher cloud segment, causing the model to under-predict concentrations which were measured late in the life of the cloud. The causes of the tendency for the MDM to be conservative in over-estimating the HCl concentrations in the one case while tending to under-predict concentrations in the other case are discussed.

  20. Can history and exam alone reliably predict pneumonia?

    PubMed

    Graffelman, A W; le Cessie, S; Knuistingh Neven, A; Wilemssen, F E J A; Zonderland, H M; van den Broek, P J

    2007-06-01

    Prediction rules based on clinical information have been developed to support the diagnosis of pneumonia and help limit the use of expensive diagnostic tests. However, these prediction rules need to be validated in the primary care setting. Adults who met our definition of lower respiratory tract infection (LRTI) were recruited for a prospective study on the causes of LRTI, between November 15, 1998 and June 1, 2001 in the Leiden region of The Netherlands. Clinical information was collected and chest radiography was performed. A literature search was also done to find prediction rules for pneumonia. 129 patients--26 with pneumonia and 103 without--were included, and 6 prediction rules were applied. Only the model with the addition of a test for C-reactive protein had a significant area under the curve of 0.69 (95% confidence interval [CI], 0.58-0.80), with a positive predictive value of 47% (95% CI, 23-71) and a negative predictive value of 84% (95% CI, 77-91). The pretest probabilities for the presence and absence of pneumonia were 20% and 80%, respectively. Models based only on clinical information do not reliably predict the presence of pneumonia. The addition of an elevated C-reactive protein level seems of little value.

  1. Sound transmission loss of composite sandwich panels

    NASA Astrophysics Data System (ADS)

    Zhou, Ran

    Light composite sandwich panels are increasingly used in automobiles, ships and aircraft, because of the advantages they offer of high strength-to-weight ratios. However, the acoustical properties of these light and stiff structures can be less desirable than those of equivalent metal panels. These undesirable properties can lead to high interior noise levels. A number of researchers have studied the acoustical properties of honeycomb and foam sandwich panels. Not much work, however, has been carried out on foam-filled honeycomb sandwich panels. In this dissertation, governing equations for the forced vibration of asymmetric sandwich panels are developed. An analytical expression for modal densities of symmetric sandwich panels is derived from a sixth-order governing equation. A boundary element analysis model for the sound transmission loss of symmetric sandwich panels is proposed. Measurements of the modal density, total loss factor, radiation loss factor, and sound transmission loss of foam-filled honeycomb sandwich panels with different configurations and thicknesses are presented. Comparisons between the predicted sound transmission loss values obtained from wave impedance analysis, statistical energy analysis, boundary element analysis, and experimental values are presented. The wave impedance analysis model provides accurate predictions of sound transmission loss for the thin foam-filled honeycomb sandwich panels at frequencies above their first resonance frequencies. The predictions from the statistical energy analysis model are in better agreement with the experimental transmission loss values of the sandwich panels when the measured radiation loss factor values near coincidence are used instead of the theoretical values for single-layer panels. The proposed boundary element analysis model provides more accurate predictions of sound transmission loss for the thick foam-filled honeycomb sandwich panels than either the wave impedance analysis model or the statistical energy analysis model.

  2. A biological assessment of streams in the eastern United States using a predictive model for macroinvertebrate assemblages

    USGS Publications Warehouse

    Carlisle, D.M.; Meador, M.R.

    2007-01-01

    A predictive model (RIVPACS-type) for benthic macroinvertebrates was constructed to assess the biological condition of 1,087 streams sampled throughout the eastern United States from 1993-2003 as part of the U.S. Geological Survey's National Water-Quality Assessment Program. A subset of 338 sites was designated as reference quality, 28 of which were withheld from model calibration and used to independently evaluate model precision and accuracy. The ratio of observed (O) to expected (E) taxa richness was used as a continuous measure of biological condition, and sites with O/E values <0.8 were classified as biologically degraded. Spatiotemporal variability of O/E values was evaluated with repeated annual and within-site samples at reference sites. Values of O/E were regressed on a measure of urbanization in three regions and compared among streams in different land-use settings. The model accurately predicted the expected taxa at validation sites with high precision (SD = 0.11). Within-site spatial variability in O/E values was much larger than annual and among-site variation at reference sites and was likely caused by environmental differences among sampled reaches. Values of O/E were significantly correlated with basin road density in the Boston, Massachusetts (p < 0.001), Birmingham, Alabama (p = 0.002), and Green Bay, Wisconsin (p = 0.034) metropolitan areas, but the strength of the relations varied among regions. Urban streams were more depleted of taxa than streams in other land-use settings, but larger networks of riparian forest appeared to mediate biological degradation. Taxa that occurred less frequently than predicted by the model were those known to be generally intolerant of a variety of anthropogenic stressors. ?? 2007 American Water Resources Association.

  3. QSAR Modeling of Rat Acute Toxicity by Oral Exposure

    PubMed Central

    Zhu, Hao; Martin, Todd M.; Ye, Lin; Sedykh, Alexander; Young, Douglas M.; Tropsha, Alexander

    2009-01-01

    Few Quantitative Structure-Activity Relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity endpoints. In this study, a comprehensive dataset of 7,385 compounds with their most conservative lethal dose (LD50) values has been compiled. A combinatorial QSAR approach has been employed to develop robust and predictive models of acute toxicity in rats caused by oral exposure to chemicals. To enable fair comparison between the predictive power of models generated in this study versus a commercial toxicity predictor, TOPKAT (Toxicity Prediction by Komputer Assisted Technology), a modeling subset of the entire dataset was selected that included all 3,472 compounds used in the TOPKAT’s training set. The remaining 3,913 compounds, which were not present in the TOPKAT training set, were used as the external validation set. QSAR models of five different types were developed for the modeling set. The prediction accuracy for the external validation set was estimated by determination coefficient R2 of linear regression between actual and predicted LD50 values. The use of the applicability domain threshold implemented in most models generally improved the external prediction accuracy but expectedly led to the decrease in chemical space coverage; depending on the applicability domain threshold, R2 ranged from 0.24 to 0.70. Ultimately, several consensus models were developed by averaging the predicted LD50 for every compound using all 5 models. The consensus models afforded higher prediction accuracy for the external validation dataset with the higher coverage as compared to individual constituent models. The validated consensus LD50 models developed in this study can be used as reliable computational predictors of in vivo acute toxicity. PMID:19845371

  4. Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure.

    PubMed

    Zhu, Hao; Martin, Todd M; Ye, Lin; Sedykh, Alexander; Young, Douglas M; Tropsha, Alexander

    2009-12-01

    Few quantitative structure-activity relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity end points. In this study, a comprehensive data set of 7385 compounds with their most conservative lethal dose (LD(50)) values has been compiled. A combinatorial QSAR approach has been employed to develop robust and predictive models of acute toxicity in rats caused by oral exposure to chemicals. To enable fair comparison between the predictive power of models generated in this study versus a commercial toxicity predictor, TOPKAT (Toxicity Prediction by Komputer Assisted Technology), a modeling subset of the entire data set was selected that included all 3472 compounds used in TOPKAT's training set. The remaining 3913 compounds, which were not present in the TOPKAT training set, were used as the external validation set. QSAR models of five different types were developed for the modeling set. The prediction accuracy for the external validation set was estimated by determination coefficient R(2) of linear regression between actual and predicted LD(50) values. The use of the applicability domain threshold implemented in most models generally improved the external prediction accuracy but expectedly led to the decrease in chemical space coverage; depending on the applicability domain threshold, R(2) ranged from 0.24 to 0.70. Ultimately, several consensus models were developed by averaging the predicted LD(50) for every compound using all five models. The consensus models afforded higher prediction accuracy for the external validation data set with the higher coverage as compared to individual constituent models. The validated consensus LD(50) models developed in this study can be used as reliable computational predictors of in vivo acute toxicity.

  5. An Integrated Finite Element-based Simulation Framework: From Hole Piercing to Hole Expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Xiaohua; Sun, Xin; Golovashchenko, Segey F.

    An integrated finite element-based modeling framework is developed to predict the hole expansion ratio (HER) of AA6111-T4 sheet by considering the piercing-induced damages around the hole edge. Using damage models and parameters calibrated from previously reported tensile stretchability studies, the predicted HER correlates well with experimentally measured HER values for different hole piercing clearances. The hole piercing model shows burrs are not generated on the sheared surface for clearances less than 20%, which corresponds well with the experimental data on pierced holes cross-sections. Finite-element-calculated HER also is not especially sensitive to piercing clearances less than this value. However, as clearancesmore » increase to 30% and further to 40%, the HER values are predicted to be considerably smaller, also consistent with experimental measurements. Upon validation, the integrated modeling framework is used to examine the effects of different hole piercing and hole expansion conditions on the critical HERs for AA6111-T4.« less

  6. Using Toxicological Evidence from QSAR Models in Practice

    EPA Science Inventory

    The new generation of QSAR models provides supporting documentation in addition to the predicted toxicological value. Such information enables the toxicologist to explore the properties of chemical substances and to review and increase the reliability of toxicity predictions. Thi...

  7. The closure problem for turbulence in meteorology and oceanography

    NASA Technical Reports Server (NTRS)

    Pierson, W. J., Jr.

    1985-01-01

    The dependent variables used for computer based meteorological predictions and in plans for oceanographic predictions are wave number and frequency filtered values that retain only scales resolvable by the model. Scales unresolvable by the grid in use become 'turbulence'. Whether or not properly processed data are used for initial values is important, especially for sparce data. Fickian diffusion with a constant eddy diffusion is used as a closure for many of the present models. A physically realistic closure based on more modern turbulence concepts, especially one with a reverse cascade at the right times and places, could help improve predictions.

  8. Persistent hemifacial spasm after microvascular decompression: a risk assessment model.

    PubMed

    Shah, Aalap; Horowitz, Michael

    2017-06-01

    Microvascular decompression (MVD) for hemifacial spasm (HFS) provides resolution of disabling symptoms such as eyelid twitching and muscle contractions of the entire hemiface. The primary aim of this study was to evaluate the predictive value of patient demographics and spasm characteristics on long-term outcomes, with or without intraoperative lateral spread response (LSR) as an additional variable in a risk assessment model. A retrospective study was undertaken to evaluate the associations of pre-operative patient characteristics, as well as intraoperative LSR and need for a staged procedure on the presence of persistent or recurrent HFS at the time of hospital discharge and at follow-up. A risk assessment model was constructed with the inclusion of six clinically or statistically significant variables from the univariate analyses. A receiving operator characteristic curve was generated, and area under the curve was calculated to determine the strength of the predictive model. A risk assessment model was first created consisting of significant pre-operative variables (Model 1) (age >50, female gender, history of botulinum toxin use, platysma muscle involvement). This model demonstrated borderline predictive value for persistent spasm at discharge (AUC .60; p=.045) and fair predictive value at follow-up (AUC .75; p=.001). Intraoperative variables (e.g. LSR persistence) demonstrated little additive value (Model 2) (AUC .67). Patients with a higher risk score (three or greater) demonstrated greater odds of persistent HFS at the time of discharge (OR 1.5 [95%CI 1.16-1.97]; p=.035), as well as greater odds of persistent or recurrent spasm at the time of follow-up (OR 3.0 [95%CI 1.52-5.95]; p=.002) Conclusions: A risk assessment model consisting of pre-operative clinical characteristics is useful in prognosticating HFS persistence at follow-up.

  9. Screening Magnetic Resonance Imaging-Based Prediction Model for Assessing Immediate Therapeutic Response to Magnetic Resonance Imaging-Guided High-Intensity Focused Ultrasound Ablation of Uterine Fibroids.

    PubMed

    Kim, Young-sun; Lim, Hyo Keun; Park, Min Jung; Rhim, Hyunchul; Jung, Sin-Ho; Sohn, Insuk; Kim, Tae-Joong; Keserci, Bilgin

    2016-01-01

    The aim of this study was to fit and validate screening magnetic resonance imaging (MRI)-based prediction models for assessing immediate therapeutic responses of uterine fibroids to MRI-guided high-intensity focused ultrasound (MR-HIFU) ablation. Informed consent from all subjects was obtained for our institutional review board-approved study. A total of 240 symptomatic uterine fibroids (mean diameter, 6.9 cm) in 152 women (mean age, 43.3 years) treated with MR-HIFU ablation were retrospectively analyzed (160 fibroids for training, 80 fibroids for validation). Screening MRI parameters (subcutaneous fat thickness [mm], x1; relative peak enhancement [%] in semiquantitative perfusion MRI, x2; T2 signal intensity ratio of fibroid to skeletal muscle, x3) were used to fit prediction models with regard to ablation efficiency (nonperfused volume/treatment cell volume, y1) and ablation quality (grade 1-5, poor to excellent, y2), respectively, using the generalized estimating equation method. Cutoff values for achievement of treatment intent (efficiency >1.0; quality grade 4/5) were determined based on receiver operating characteristic curve analysis. Prediction performances were validated by calculating positive and negative predictive values. Generalized estimating equation analyses yielded models of y1 = 2.2637 - 0.0415x1 - 0.0011x2 - 0.0772x3 and y2 = 6.8148 - 0.1070x1 - 0.0050x2 - 0.2163x3. Cutoff values were 1.312 for ablation efficiency (area under the curve, 0.7236; sensitivity, 0.6882; specificity, 0.6866) and 4.019 for ablation quality (0.8794; 0.7156; 0.9020). Positive and negative predictive values were 0.917 and 0.500 for ablation efficiency and 0.978 and 0.600 for ablation quality, respectively. Screening MRI-based prediction models for assessing immediate therapeutic responses of uterine fibroids to MR-HIFU ablation were fitted and validated, which may reduce the risk of unsuccessful treatment.

  10. Prediction of winter vitamin D status and requirements in the UK population based on 25(OH) vitamin D half-life and dietary intake data.

    PubMed

    Schoenmakers, Inez; Gousias, Petros; Jones, Kerry S; Prentice, Ann

    2016-11-01

    On a population basis, there is a gradual decline in vitamin D status (plasma 25(OH)D) throughout winter. We developed a mathematical model to predict the population winter plasma 25(OH)D concentration longitudinally, using age-specific values for 25(OH)D expenditure (25(OH)D 3 t 1/2 ), cross-sectional plasma 25(OH)D concentration and vitamin D intake (VDI) data from older (70+ years; n=492) and younger adults (18-69 years; n=448) participating in the UK National Diet and Nutrition Survey. From this model, the population VDI required to maintain the mean plasma 25(OH)D at a set concentration can be derived. As expected, both predicted and measured population 25(OH)D (mean (95%CI)) progressively declined from September to March (from 51 (40-61) to 38 (36-41)nmol/L (predicted) vs 38 (27-48)nmol/L (measured) in older people and from 59 (54-65) to 34 (31-37)nmol/L (predicted) vs 37 (31-44)nmol/L (measured) in younger people). The predicted and measured mean values closely matched. The predicted VDIs required to maintain mean winter plasma 25(OH)D at 50nmol/L at the population level were 10 (0-20) to 11 (9-14) and 11 (6-16) to 13(11-16)μg/d for older and younger adults, respectively dependent on the month. In conclusion, a prediction model accounting for 25(OH)D 3 t 1/2 , VDI and scaling factor for the 25(OH)D response to VDI, closely predicts measured population winter values. Refinements of this model may include specific scaling factors accounting for the 25(OH)D response at different VDIs and as influenced by body composition and specific values for 25(OH)D 3 t 1/2 dependent on host factors such as kidney function. This model may help to reduce the need for longitudinal measurements. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Dark matter and MOND dynamical models of the massive spiral galaxy NGC 2841

    NASA Astrophysics Data System (ADS)

    Samurović, S.; Vudragović, A.; Jovanović, M.

    2015-08-01

    We study dynamical models of the massive spiral galaxy NGC 2841 using both the Newtonian models with Navarro-Frenk-White (NFW) and isothermal dark haloes, as well as various MOND (MOdified Newtonian Dynamics) models. We use the observations coming from several publicly available data bases: we use radio data, near-infrared photometry as well as spectroscopic observations. In our models, we find that both tested Newtonian dark matter approaches can successfully fit the observed rotational curve of NGC 2841. The three tested MOND models (standard, simple and, for the first time applied to another spiral galaxy than the Milky Way, Bekenstein's toy model) provide fits of the observed rotational curve with various degrees of success: the best result was obtained with the standard MOND model. For both approaches, Newtonian and MOND, the values of the mass-to-light ratios of the bulge are consistent with the predictions from the stellar population synthesis (SPS) based on the Salpeter initial mass function (IMF). Also, for Newtonian and simple and standard MOND models, the estimated stellar mass-to-light ratios of the disc agree with the predictions from the SPS models based on the Kroupa IMF, whereas the toy MOND model provides too low a value of the stellar mass-to-light ratio, incompatible with the predictions of the tested SPS models. In all our MOND models, we vary the distance to NGC 2841, and our best-fitting standard and toy models use the values higher than the Cepheid-based distance to the galaxy NGC 2841, and the best-fitting simple MOND model is based on the lower value of the distance. The best-fitting NFW model is inconsistent with the predictions of the Λ cold dark matter cosmology, because the inferred concentration index is too high for the established virial mass.

  12. Predicting Document Retrieval System Performance: An Expected Precision Measure.

    ERIC Educational Resources Information Center

    Losee, Robert M., Jr.

    1987-01-01

    Describes an expected precision (EP) measure designed to predict document retrieval performance. Highlights include decision theoretic models; precision and recall as measures of system performance; EP graphs; relevance feedback; and computing the retrieval status value of a document for two models, the Binary Independent Model and the Two Poisson…

  13. Thermal therapy in urologic systems: a comparison of arrhenius and thermal isoeffective dose models in predicting hyperthermic injury.

    PubMed

    He, Xiaoming; Bhowmick, Sankha; Bischof, John C

    2009-07-01

    The Arrhenius and thermal isoeffective dose (TID) models are the two most commonly used models for predicting hyperthermic injury. The TID model is essentially derived from the Arrhenius model, but due to a variety of assumptions and simplifications now leads to different predictions, particularly at temperatures higher than 50 degrees C. In the present study, the two models are compared and their appropriateness tested for predicting hyperthermic injury in both the traditional hyperthermia (usually, 43-50 degrees C) and thermal surgery (or thermal therapy/thermal ablation, usually, >50 degrees C) regime. The kinetic parameters of thermal injury in both models were obtained from the literature (or literature data), tabulated, and analyzed for various prostate and kidney systems. It was found that the kinetic parameters vary widely, and were particularly dependent on the cell or tissue type, injury assay used, and the time when the injury assessment was performed. In order to compare the capability of the two models for thermal injury prediction, thermal thresholds for complete killing (i.e., 99% cell or tissue injury) were predicted using the models in two important urologic systems, viz., the benign prostatic hyperplasia tissue and the normal porcine kidney tissue. The predictions of the two models matched well at temperatures below 50 degrees C. At higher temperatures, however, the thermal thresholds predicted using the TID model with a constant R value of 0.5, the value commonly used in the traditional hyperthermia literature, are much lower than those predicted using the Arrhenius model. This suggests that traditional use of the TID model (i.e., R=0.5) is inappropriate for predicting hyperthermic injury in the thermal surgery regime (>50 degrees C). Finally, the time-temperature relationships for complete killing (i.e., 99% injury) were calculated and analyzed using the Arrhenius model for the various prostate and kidney systems.

  14. Developing and validating a predictive model for stroke progression.

    PubMed

    Craig, L E; Wu, O; Gilmour, H; Barber, M; Langhorne, P

    2011-01-01

    Progression is believed to be a common and important complication in acute stroke, and has been associated with increased mortality and morbidity. Reliable identification of predictors of early neurological deterioration could potentially benefit routine clinical care. The aim of this study was to identify predictors of early stroke progression using two independent patient cohorts. Two patient cohorts were used for this study - the first cohort formed the training data set, which included consecutive patients admitted to an urban teaching hospital between 2000 and 2002, and the second cohort formed the test data set, which included patients admitted to the same hospital between 2003 and 2004. A standard definition of stroke progression was used. The first cohort (n = 863) was used to develop the model. Variables that were statistically significant (p < 0.1) on univariate analysis were included in the multivariate model. Logistic regression was the technique employed using backward stepwise regression to drop the least significant variables (p > 0.1) in turn. The second cohort (n = 216) was used to test the performance of the model. The performance of the predictive model was assessed in terms of both calibration and discrimination. Multiple imputation methods were used for dealing with the missing values. Variables shown to be significant predictors of stroke progression were conscious level, history of coronary heart disease, presence of hyperosmolarity, CT lesion, living alone on admission, Oxfordshire Community Stroke Project classification, presence of pyrexia and smoking status. The model appears to have reasonable discriminative properties [the median receiver-operating characteristic curve value was 0.72 (range 0.72-0.73)] and to fit well with the observed data, which is indicated by the high goodness-of-fit p value [the median p value from the Hosmer-Lemeshow test was 0.90 (range 0.50-0.92)]. The predictive model developed in this study contains variables that can be easily collected in practice therefore increasing its usability in clinical practice. Using this analysis approach, the discrimination and calibration of the predictive model appear sufficiently high to provide accurate predictions. This study also offers some discussion around the validation of predictive models for wider use in clinical practice.

  15. Facultative Stabilization Pond: Measuring Biological Oxygen Demand using Mathematical Approaches

    NASA Astrophysics Data System (ADS)

    Wira S, Ihsan; Sunarsih, Sunarsih

    2018-02-01

    Pollution is a man-made phenomenon. Some pollutants which discharged directly to the environment could create serious pollution problems. Untreated wastewater will cause contamination and even pollution on the water body. Biological Oxygen Demand (BOD) is the amount of oxygen required for the oxidation by bacteria. The higher the BOD concentration, the greater the organic matter would be. The purpose of this study was to predict the value of BOD contained in wastewater. Mathematical modeling methods were chosen in this study to depict and predict the BOD values contained in facultative wastewater stabilization ponds. Measurements of sampling data were carried out to validate the model. The results of this study indicated that a mathematical approach can be applied to predict the BOD contained in the facultative wastewater stabilization ponds. The model was validated using Absolute Means Error with 10% tolerance limit, and AME for model was 7.38% (< 10%), so the model is valid. Furthermore, a mathematical approach can also be applied to illustrate and predict the contents of wastewater.

  16. The use of atmospheric measurements to constrain model predictions of ozone change from chlorine perturbations

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Stolarski, Richard S.

    1987-01-01

    Atmospheric photochemistry models have been used to predict the sensitivity of the ozone layer to various perturbations. These same models also predict concentrations of chemical species in the present day atmosphere which can be compared to observations. Model results for both present day values and sensitivity to perturbation depend upon input data for reaction rates, photodissociation rates, and boundary conditions. A method of combining the results of a Monte Carlo uncertainty analysis with the existing set of present atmospheric species measurements is developed. The method is used to examine the range of values for the sensitivity of ozone to chlorine perturbations that is possible within the currently accepted ranges for input data. It is found that model runs which predict ozone column losses much greater than 10 percent as a result of present fluorocarbon fluxes produce concentrations and column amounts in the present atmosphere which are inconsistent with the measurements for ClO, HCl, NO, NO2, and HNO3.

  17. Models of Affective Decision Making

    PubMed Central

    Charpentier, Caroline J.; De Neve, Jan-Emmanuel; Li, Xinyi; Roiser, Jonathan P.; Sharot, Tali

    2016-01-01

    Intuitively, how you feel about potential outcomes will determine your decisions. Indeed, an implicit assumption in one of the most influential theories in psychology, prospect theory, is that feelings govern choice. Surprisingly, however, very little is known about the rules by which feelings are transformed into decisions. Here, we specified a computational model that used feelings to predict choices. We found that this model predicted choice better than existing value-based models, showing a unique contribution of feelings to decisions, over and above value. Similar to the value function in prospect theory, our feeling function showed diminished sensitivity to outcomes as value increased. However, loss aversion in choice was explained by an asymmetry in how feelings about losses and gains were weighted when making a decision, not by an asymmetry in the feelings themselves. The results provide new insights into how feelings are utilized to reach a decision. PMID:27071751

  18. Systematized water content calculation in cartilage using T1-mapping MR estimations: design and validation of a mathematical model.

    PubMed

    Shiguetomi-Medina, J M; Ramirez-Gl, J L; Stødkilde-Jørgensen, H; Møller-Madsen, B

    2017-09-01

    Up to 80 % of cartilage is water; the rest is collagen fibers and proteoglycans. Magnetic resonance (MR) T1-weighted measurements can be employed to calculate the water content of a tissue using T1 mapping. In this study, a method that translates T1 values into water content data was tested statistically. To develop a predictive equation, T1 values were obtained for tissue-mimicking gelatin samples. 1.5 T MRI was performed using inverse angle phase and an inverse sequence at 37 (±0.5) °C. Regions of interest were manually delineated and the mean T1 value was estimated in arbitrary units. Data were collected and modeled using linear regression. To validate the method, articular cartilage from six healthy pigs was used. The experiment was conducted in accordance with the Danish Animal Experiment Committee. Double measurements were performed for each animal. Ex vivo, all water in the tissue was extracted by lyophilization, thus allowing the volume of water to be measured. This was then compared with the predicted water content via Lin's concordance correlation coefficient at the 95 % confidence level. The mathematical model was highly significant when compared to a null model (p < 0.0001). 97.3 % of the variation in water content can be explained by absolute T1 values. Percentage water content could be predicted as 0.476 + (T1 value) × 0.000193 × 100 %. We found that there was 98 % concordance between the actual and predicted water contents. The results of this study demonstrate that MR data can be used to predict percentage water contents of cartilage samples. 3 (case-control study).

  19. Prediction of N-Methyl-D-Aspartate Receptor GluN1-Ligand Binding Affinity by a Novel SVM-Pose/SVM-Score Combinatorial Ensemble Docking Scheme

    PubMed Central

    Leong, Max K.; Syu, Ren-Guei; Ding, Yi-Lung; Weng, Ching-Feng

    2017-01-01

    The glycine-binding site of the N-methyl-D-aspartate receptor (NMDAR) subunit GluN1 is a potential pharmacological target for neurodegenerative disorders. A novel combinatorial ensemble docking scheme using ligand and protein conformation ensembles and customized support vector machine (SVM)-based models to select the docked pose and to predict the docking score was generated for predicting the NMDAR GluN1-ligand binding affinity. The predicted root mean square deviation (RMSD) values in pose by SVM-Pose models were found to be in good agreement with the observed values (n = 30, r2 = 0.928–0.988,  = 0.894–0.954, RMSE = 0.002–0.412, s = 0.001–0.214), and the predicted pKi values by SVM-Score were found to be in good agreement with the observed values for the training samples (n = 24, r2 = 0.967,  = 0.899, RMSE = 0.295, s = 0.170) and test samples (n = 13, q2 = 0.894, RMSE = 0.437, s = 0.202). When subjected to various statistical validations, the developed SVM-Pose and SVM-Score models consistently met the most stringent criteria. A mock test asserted the predictivity of this novel docking scheme. Collectively, this accurate novel combinatorial ensemble docking scheme can be used to predict the NMDAR GluN1-ligand binding affinity for facilitating drug discovery. PMID:28059133

  20. Prediction of N-Methyl-D-Aspartate Receptor GluN1-Ligand Binding Affinity by a Novel SVM-Pose/SVM-Score Combinatorial Ensemble Docking Scheme.

    PubMed

    Leong, Max K; Syu, Ren-Guei; Ding, Yi-Lung; Weng, Ching-Feng

    2017-01-06

    The glycine-binding site of the N-methyl-D-aspartate receptor (NMDAR) subunit GluN1 is a potential pharmacological target for neurodegenerative disorders. A novel combinatorial ensemble docking scheme using ligand and protein conformation ensembles and customized support vector machine (SVM)-based models to select the docked pose and to predict the docking score was generated for predicting the NMDAR GluN1-ligand binding affinity. The predicted root mean square deviation (RMSD) values in pose by SVM-Pose models were found to be in good agreement with the observed values (n = 30, r 2  = 0.928-0.988,  = 0.894-0.954, RMSE = 0.002-0.412, s = 0.001-0.214), and the predicted pK i values by SVM-Score were found to be in good agreement with the observed values for the training samples (n = 24, r 2  = 0.967,  = 0.899, RMSE = 0.295, s = 0.170) and test samples (n = 13, q 2  = 0.894, RMSE = 0.437, s = 0.202). When subjected to various statistical validations, the developed SVM-Pose and SVM-Score models consistently met the most stringent criteria. A mock test asserted the predictivity of this novel docking scheme. Collectively, this accurate novel combinatorial ensemble docking scheme can be used to predict the NMDAR GluN1-ligand binding affinity for facilitating drug discovery.

  1. Prediction of N-Methyl-D-Aspartate Receptor GluN1-Ligand Binding Affinity by a Novel SVM-Pose/SVM-Score Combinatorial Ensemble Docking Scheme

    NASA Astrophysics Data System (ADS)

    Leong, Max K.; Syu, Ren-Guei; Ding, Yi-Lung; Weng, Ching-Feng

    2017-01-01

    The glycine-binding site of the N-methyl-D-aspartate receptor (NMDAR) subunit GluN1 is a potential pharmacological target for neurodegenerative disorders. A novel combinatorial ensemble docking scheme using ligand and protein conformation ensembles and customized support vector machine (SVM)-based models to select the docked pose and to predict the docking score was generated for predicting the NMDAR GluN1-ligand binding affinity. The predicted root mean square deviation (RMSD) values in pose by SVM-Pose models were found to be in good agreement with the observed values (n = 30, r2 = 0.928-0.988,  = 0.894-0.954, RMSE = 0.002-0.412, s = 0.001-0.214), and the predicted pKi values by SVM-Score were found to be in good agreement with the observed values for the training samples (n = 24, r2 = 0.967,  = 0.899, RMSE = 0.295, s = 0.170) and test samples (n = 13, q2 = 0.894, RMSE = 0.437, s = 0.202). When subjected to various statistical validations, the developed SVM-Pose and SVM-Score models consistently met the most stringent criteria. A mock test asserted the predictivity of this novel docking scheme. Collectively, this accurate novel combinatorial ensemble docking scheme can be used to predict the NMDAR GluN1-ligand binding affinity for facilitating drug discovery.

  2. The use of artificial neural networks and multiple linear regression to predict rate of medical waste generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahandideh, Sepideh; Jahandideh, Samad; Asadabadi, Ebrahim Barzegari

    2009-11-15

    Prediction of the amount of hospital waste production will be helpful in the storage, transportation and disposal of hospital waste management. Based on this fact, two predictor models including artificial neural networks (ANNs) and multiple linear regression (MLR) were applied to predict the rate of medical waste generation totally and in different types of sharp, infectious and general. In this study, a 5-fold cross-validation procedure on a database containing total of 50 hospitals of Fars province (Iran) were used to verify the performance of the models. Three performance measures including MAR, RMSE and R{sup 2} were used to evaluate performancemore » of models. The MLR as a conventional model obtained poor prediction performance measure values. However, MLR distinguished hospital capacity and bed occupancy as more significant parameters. On the other hand, ANNs as a more powerful model, which has not been introduced in predicting rate of medical waste generation, showed high performance measure values, especially 0.99 value of R{sup 2} confirming the good fit of the data. Such satisfactory results could be attributed to the non-linear nature of ANNs in problem solving which provides the opportunity for relating independent variables to dependent ones non-linearly. In conclusion, the obtained results showed that our ANN-based model approach is very promising and may play a useful role in developing a better cost-effective strategy for waste management in future.« less

  3. The value of daily platelet counts for predicting dengue shock syndrome: Results from a prospective observational study of 2301 Vietnamese children with dengue.

    PubMed

    Lam, Phung Khanh; Ngoc, Tran Van; Thu Thuy, Truong Thi; Hong Van, Nguyen Thi; Nhu Thuy, Tran Thi; Hoai Tam, Dong Thi; Dung, Nguyen Minh; Hanh Tien, Nguyen Thi; Thanh Kieu, Nguyen Tan; Simmons, Cameron; Wills, Bridget; Wolbers, Marcel

    2017-04-01

    Dengue is the most important mosquito-borne viral infection to affect humans. Although it usually manifests as a self-limited febrile illness, complications may occur as the fever subsides. A systemic vascular leak syndrome that sometimes progresses to life-threatening hypovolaemic shock is the most serious complication seen in children, typically accompanied by haemoconcentration and thrombocytopenia. Robust evidence on risk factors, especially features present early in the illness course, for progression to dengue shock syndrome (DSS) is lacking. Moreover, the potential value of incorporating serial haematocrit and platelet measurements in prediction models has never been assessed. We analyzed data from a prospective observational study of Vietnamese children aged 5-15 years admitted with clinically suspected dengue to the Hospital for Tropical Diseases in Ho Chi Minh City between 2001 and 2009. The analysis population comprised all children with laboratory-confirmed dengue enrolled between days 1-4 of illness. Logistic regression was the main statistical model for all univariate and multivariable analyses. The prognostic value of daily haematocrit levels and platelet counts were assessed using graphs and separate regression models fitted on each day of illness. Among the 2301 children included in the analysis, 143 (6%) progressed to DSS. Significant baseline risk factors for DSS included a history of vomiting, higher temperature, a palpable liver, and a lower platelet count. Prediction models that included serial daily platelet counts demonstrated better ability to discriminate patients who developed DSS from others, than models based on enrolment information only. However inclusion of daily haematocrit values did not improve prediction of DSS. Daily monitoring of platelet counts is important to help identify patients at high risk of DSS. Development of dynamic prediction models that incorporate signs, symptoms, and daily laboratory measurements, could improve DSS prediction and thereby reduce the burden on health services in endemic areas.

  4. Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Luis; Marchante, Ruth; Cony, Marco

    2010-10-15

    Due to strong increase of solar power generation, the predictions of incoming solar energy are acquiring more importance. Photovoltaic and solar thermal are the main sources of electricity generation from solar energy. In the case of solar thermal energy plants with storage energy system, its management and operation need reliable predictions of solar irradiance with the same temporal resolution as the temporal capacity of the back-up system. These plants can work like a conventional power plant and compete in the energy stock market avoiding intermittence in electricity production. This work presents a comparisons of statistical models based on time seriesmore » applied to predict half daily values of global solar irradiance with a temporal horizon of 3 days. Half daily values consist of accumulated hourly global solar irradiance from solar raise to solar noon and from noon until dawn for each day. The dataset of ground solar radiation used belongs to stations of Spanish National Weather Service (AEMet). The models tested are autoregressive, neural networks and fuzzy logic models. Due to the fact that half daily solar irradiance time series is non-stationary, it has been necessary to transform it to two new stationary variables (clearness index and lost component) which are used as input of the predictive models. Improvement in terms of RMSD of the models essayed is compared against the model based on persistence. The validation process shows that all models essayed improve persistence. The best approach to forecast half daily values of solar irradiance is neural network models with lost component as input, except Lerida station where models based on clearness index have less uncertainty because this magnitude has a linear behaviour and it is easier to simulate by models. (author)« less

  5. Predictor characteristics necessary for building a clinically useful risk prediction model: a simulation study.

    PubMed

    Schummers, Laura; Himes, Katherine P; Bodnar, Lisa M; Hutcheon, Jennifer A

    2016-09-21

    Compelled by the intuitive appeal of predicting each individual patient's risk of an outcome, there is a growing interest in risk prediction models. While the statistical methods used to build prediction models are increasingly well understood, the literature offers little insight to researchers seeking to gauge a priori whether a prediction model is likely to perform well for their particular research question. The objective of this study was to inform the development of new risk prediction models by evaluating model performance under a wide range of predictor characteristics. Data from all births to overweight or obese women in British Columbia, Canada from 2004 to 2012 (n = 75,225) were used to build a risk prediction model for preeclampsia. The data were then augmented with simulated predictors of the outcome with pre-set prevalence values and univariable odds ratios. We built 120 risk prediction models that included known demographic and clinical predictors, and one, three, or five of the simulated variables. Finally, we evaluated standard model performance criteria (discrimination, risk stratification capacity, calibration, and Nagelkerke's r 2 ) for each model. Findings from our models built with simulated predictors demonstrated the predictor characteristics required for a risk prediction model to adequately discriminate cases from non-cases and to adequately classify patients into clinically distinct risk groups. Several predictor characteristics can yield well performing risk prediction models; however, these characteristics are not typical of predictor-outcome relationships in many population-based or clinical data sets. Novel predictors must be both strongly associated with the outcome and prevalent in the population to be useful for clinical prediction modeling (e.g., one predictor with prevalence ≥20 % and odds ratio ≥8, or 3 predictors with prevalence ≥10 % and odds ratios ≥4). Area under the receiver operating characteristic curve values of >0.8 were necessary to achieve reasonable risk stratification capacity. Our findings provide a guide for researchers to estimate the expected performance of a prediction model before a model has been built based on the characteristics of available predictors.

  6. Characterization of Initial Parameter Information for Lifetime Prediction of Electronic Devices.

    PubMed

    Li, Zhigang; Liu, Boying; Yuan, Mengxiong; Zhang, Feifei; Guo, Jiaqiang

    2016-01-01

    Newly manufactured electronic devices are subject to different levels of potential defects existing among the initial parameter information of the devices. In this study, a characterization of electromagnetic relays that were operated at their optimal performance with appropriate and steady parameter values was performed to estimate the levels of their potential defects and to develop a lifetime prediction model. First, the initial parameter information value and stability were quantified to measure the performance of the electronics. In particular, the values of the initial parameter information were estimated using the probability-weighted average method, whereas the stability of the parameter information was determined by using the difference between the extrema and end points of the fitting curves for the initial parameter information. Second, a lifetime prediction model for small-sized samples was proposed on the basis of both measures. Finally, a model for the relationship of the initial contact resistance and stability over the lifetime of the sampled electromagnetic relays was proposed and verified. A comparison of the actual and predicted lifetimes of the relays revealed a 15.4% relative error, indicating that the lifetime of electronic devices can be predicted based on their initial parameter information.

  7. Characterization of Initial Parameter Information for Lifetime Prediction of Electronic Devices

    PubMed Central

    Li, Zhigang; Liu, Boying; Yuan, Mengxiong; Zhang, Feifei; Guo, Jiaqiang

    2016-01-01

    Newly manufactured electronic devices are subject to different levels of potential defects existing among the initial parameter information of the devices. In this study, a characterization of electromagnetic relays that were operated at their optimal performance with appropriate and steady parameter values was performed to estimate the levels of their potential defects and to develop a lifetime prediction model. First, the initial parameter information value and stability were quantified to measure the performance of the electronics. In particular, the values of the initial parameter information were estimated using the probability-weighted average method, whereas the stability of the parameter information was determined by using the difference between the extrema and end points of the fitting curves for the initial parameter information. Second, a lifetime prediction model for small-sized samples was proposed on the basis of both measures. Finally, a model for the relationship of the initial contact resistance and stability over the lifetime of the sampled electromagnetic relays was proposed and verified. A comparison of the actual and predicted lifetimes of the relays revealed a 15.4% relative error, indicating that the lifetime of electronic devices can be predicted based on their initial parameter information. PMID:27907188

  8. [Effect of stock abundance and environmental factors on the recruitment success of small yellow croaker in the East China Sea].

    PubMed

    Liu, Zun-lei; Yuan, Xing-wei; Yang, Lin-lin; Yan, Li-ping; Zhang, Hui; Cheng, Jia-hua

    2015-02-01

    Multiple hypotheses are available to explain recruitment rate. Model selection methods can be used to identify the best model that supports a particular hypothesis. However, using a single model for estimating recruitment success is often inadequate for overexploited population because of high model uncertainty. In this study, stock-recruitment data of small yellow croaker in the East China Sea collected from fishery dependent and independent surveys between 1992 and 2012 were used to examine density-dependent effects on recruitment success. Model selection methods based on frequentist (AIC, maximum adjusted R2 and P-values) and Bayesian (Bayesian model averaging, BMA) methods were applied to identify the relationship between recruitment and environment conditions. Interannual variability of the East China Sea environment was indicated by sea surface temperature ( SST) , meridional wind stress (MWS), zonal wind stress (ZWS), sea surface pressure (SPP) and runoff of Changjiang River ( RCR). Mean absolute error, mean squared predictive error and continuous ranked probability score were calculated to evaluate the predictive performance of recruitment success. The results showed that models structures were not consistent based on three kinds of model selection methods, predictive variables of models were spawning abundance and MWS by AIC, spawning abundance by P-values, spawning abundance, MWS and RCR by maximum adjusted R2. The recruitment success decreased linearly with stock abundance (P < 0.01), suggesting overcompensation effect in the recruitment success might be due to cannibalism or food competition. Meridional wind intensity showed marginally significant and positive effects on the recruitment success (P = 0.06), while runoff of Changjiang River showed a marginally negative effect (P = 0.07). Based on mean absolute error and continuous ranked probability score, predictive error associated with models obtained from BMA was the smallest amongst different approaches, while that from models selected based on the P-value of the independent variables was the highest. However, mean squared predictive error from models selected based on the maximum adjusted R2 was highest. We found that BMA method could improve the prediction of recruitment success, derive more accurate prediction interval and quantitatively evaluate model uncertainty.

  9. [Optimal extraction of effective constituents from Aralia elata by central composite design and response surface methodology].

    PubMed

    Lv, Shao-Wa; Liu, Dong; Hu, Pan-Pan; Ye, Xu-Yan; Xiao, Hong-Bin; Kuang, Hai-Xue

    2010-03-01

    To optimize the process of extracting effective constituents from Aralia elata by response surface methodology. The independent variables were ethanol concentration, reflux time and solvent fold, the dependent variable was extraction rate of total saponins in Aralia elata. Linear or no-linear mathematic models were used to estimate the relationship between independent and dependent variables. Response surface methodology was used to optimize the process of extraction. The prediction was carried out through comparing the observed and predicted values. Regression coefficient of binomial fitting complex model was as high as 0.9617, the optimum conditions of extraction process were 70% ethanol, 2.5 hours for reflux, 20-fold solvent and 3 times for extraction. The bias between observed and predicted values was -2.41%. It shows the optimum model is highly predictive.

  10. Predicting charmonium and bottomonium spectra with a quark harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Badavi, F. F.; Townsend, L. W.

    1986-01-01

    The nonrelativistic quark model is applied to heavy (nonrelativistic) meson (two-body) systems to obtain sufficiently accurate predictions of the spin-averaged mass levels of the charmonium and bottomonium spectra as an example of the three-dimensional harmonic oscillator. The present calculations do not include any spin dependence, but rather, mass values are averaged for different spins. Results for a charmed quark mass value of 1500 MeV/c-squared show that the simple harmonic oscillator model provides good agreement with experimental values for 3P states, and adequate agreement for the 3S1 states.

  11. Development and validation of a novel predictive scoring model for microvascular invasion in patients with hepatocellular carcinoma.

    PubMed

    Zhao, Hui; Hua, Ye; Dai, Tu; He, Jian; Tang, Min; Fu, Xu; Mao, Liang; Jin, Huihan; Qiu, Yudong

    2017-03-01

    Microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) cannot be accurately predicted preoperatively. This study aimed to establish a predictive scoring model of MVI in solitary HCC patients without macroscopic vascular invasion. A total of 309 consecutive HCC patients who underwent curative hepatectomy were divided into the derivation (n=206) and validation cohort (n=103). A predictive scoring model of MVI was established according to the valuable predictors in the derivation cohort based on multivariate logistic regression analysis. The performance of the predictive model was evaluated in the derivation and validation cohorts. Preoperative imaging features on CECT, such as intratumoral arteries, non-nodular type of HCC and absence of radiological tumor capsule were independent predictors for MVI. The predictive scoring model was established according to the β coefficients of the 3 predictors. Area under receiver operating characteristic (AUROC) of the predictive scoring model was 0.872 (95% CI, 0.817-0.928) and 0.856 (95% CI, 0.771-0.940) in the derivation and validation cohorts. The positive and negative predictive values were 76.5% and 88.0% in the derivation cohort and 74.4% and 88.3% in the validation cohort. The performance of the model was similar between the patients with tumor size ≤5cm and >5cm in AUROC (P=0.910). The predictive scoring model based on intratumoral arteries, non-nodular type of HCC, and absence of the radiological tumor capsule on preoperative CECT is of great value in the prediction of MVI regardless of tumor size. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Can Predictive Modeling Identify Head and Neck Oncology Patients at Risk for Readmission?

    PubMed

    Manning, Amy M; Casper, Keith A; Peter, Kay St; Wilson, Keith M; Mark, Jonathan R; Collar, Ryan M

    2018-05-01

    Objective Unplanned readmission within 30 days is a contributor to health care costs in the United States. The use of predictive modeling during hospitalization to identify patients at risk for readmission offers a novel approach to quality improvement and cost reduction. Study Design Two-phase study including retrospective analysis of prospectively collected data followed by prospective longitudinal study. Setting Tertiary academic medical center. Subjects and Methods Prospectively collected data for patients undergoing surgical treatment for head and neck cancer from January 2013 to January 2015 were used to build predictive models for readmission within 30 days of discharge using logistic regression, classification and regression tree (CART) analysis, and random forests. One model (logistic regression) was then placed prospectively into the discharge workflow from March 2016 to May 2016 to determine the model's ability to predict which patients would be readmitted within 30 days. Results In total, 174 admissions had descriptive data. Thirty-two were excluded due to incomplete data. Logistic regression, CART, and random forest predictive models were constructed using the remaining 142 admissions. When applied to 106 consecutive prospective head and neck oncology patients at the time of discharge, the logistic regression model predicted readmissions with a specificity of 94%, a sensitivity of 47%, a negative predictive value of 90%, and a positive predictive value of 62% (odds ratio, 14.9; 95% confidence interval, 4.02-55.45). Conclusion Prospectively collected head and neck cancer databases can be used to develop predictive models that can accurately predict which patients will be readmitted. This offers valuable support for quality improvement initiatives and readmission-related cost reduction in head and neck cancer care.

  13. A multivariate model for predicting segmental body composition.

    PubMed

    Tian, Simiao; Mioche, Laurence; Denis, Jean-Baptiste; Morio, Béatrice

    2013-12-01

    The aims of the present study were to propose a multivariate model for predicting simultaneously body, trunk and appendicular fat and lean masses from easily measured variables and to compare its predictive capacity with that of the available univariate models that predict body fat percentage (BF%). The dual-energy X-ray absorptiometry (DXA) dataset (52% men and 48% women) with White, Black and Hispanic ethnicities (1999-2004, National Health and Nutrition Examination Survey) was randomly divided into three sub-datasets: a training dataset (TRD), a test dataset (TED); a validation dataset (VAD), comprising 3835, 1917 and 1917 subjects. For each sex, several multivariate prediction models were fitted from the TRD using age, weight, height and possibly waist circumference. The most accurate model was selected from the TED and then applied to the VAD and a French DXA dataset (French DB) (526 men and 529 women) to assess the prediction accuracy in comparison with that of five published univariate models, for which adjusted formulas were re-estimated using the TRD. Waist circumference was found to improve the prediction accuracy, especially in men. For BF%, the standard error of prediction (SEP) values were 3.26 (3.75) % for men and 3.47 (3.95)% for women in the VAD (French DB), as good as those of the adjusted univariate models. Moreover, the SEP values for the prediction of body and appendicular lean masses ranged from 1.39 to 2.75 kg for both the sexes. The prediction accuracy was best for age < 65 years, BMI < 30 kg/m2 and the Hispanic ethnicity. The application of our multivariate model to large populations could be useful to address various public health issues.

  14. Evolution and prognosis of long intensive care unit stay patients suffering a deterioration: A multicenter study.

    PubMed

    Hernández-Tejedor, Alberto; Cabré-Pericas, Lluís; Martín-Delgado, María Cruz; Leal-Micharet, Ana María; Algora-Weber, Alejandro

    2015-06-01

    The prognosis of a patient who deteriorates during a prolonged intensive care unit (ICU) stay is difficult to predict. We analyze the prognostic value of the serialized Sequential Organ Failure Assessment (SOFA) score and other variables in the early days after a complication and to build a new predictive score. EPIPUSE (Evolución y pronóstico de los pacientes con ingreso prolongado en UCI que sufren un empeoramiento, Evolution and prognosis of long intensive care unit stay patients suffering a deterioration) study is a prospective, observational study during a 3-month recruitment period in 75 Spanish ICUs. We focused on patients admitted in the ICU for 7 days or more with complications of adverse events that involve organ dysfunction impairment. Demographics, clinical variables, and serialized SOFA after a supervening clinical deterioration were recorded. Univariate and multivariate analyses were performed, and a predictive model was created with the most discriminating variables. We included 589 patients who experienced 777 cases of severe complication or adverse event. The entire sample was randomly divided into 2 subsamples, one for development purposes (528 cases) and the other for validation (249 cases). The predictive model maximizing specificity is calculated by minimum SOFA + 2 * cardiovascular risk factors + 2 * history of any oncologic disease or immunosuppressive treatment + 3 * dependence for basic activities of daily living. The area under the receiver operating characteristic curve is 0.82. A 14-point cutoff has a positive predictive value of 100% (92.7%-100%) and negative predictive value of 51% (46.4%-55.5%) for death. EPIPUSE model can predict mortality with a specificity and positive predictive value of 99% in some groups of patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Prediction of high incidence of dengue in the Philippines.

    PubMed

    Buczak, Anna L; Baugher, Benjamin; Babin, Steven M; Ramac-Thomas, Liane C; Guven, Erhan; Elbert, Yevgeniy; Koshute, Phillip T; Velasco, John Mark S; Roque, Vito G; Tayag, Enrique A; Yoon, In-Kyu; Lewis, Sheri H

    2014-04-01

    Accurate prediction of dengue incidence levels weeks in advance of an outbreak may reduce the morbidity and mortality associated with this neglected disease. Therefore, models were developed to predict high and low dengue incidence in order to provide timely forewarnings in the Philippines. Model inputs were chosen based on studies indicating variables that may impact dengue incidence. The method first uses Fuzzy Association Rule Mining techniques to extract association rules from these historical epidemiological, environmental, and socio-economic data, as well as climate data indicating future weather patterns. Selection criteria were used to choose a subset of these rules for a classifier, thereby generating a Prediction Model. The models predicted high or low incidence of dengue in a Philippines province four weeks in advance. The threshold between high and low was determined relative to historical incidence data. Model accuracy is described by Positive Predictive Value (PPV), Negative Predictive Value (NPV), Sensitivity, and Specificity computed on test data not previously used to develop the model. Selecting a model using the F0.5 measure, which gives PPV more importance than Sensitivity, gave these results: PPV = 0.780, NPV = 0.938, Sensitivity = 0.547, Specificity = 0.978. Using the F3 measure, which gives Sensitivity more importance than PPV, the selected model had PPV = 0.778, NPV = 0.948, Sensitivity = 0.627, Specificity = 0.974. The decision as to which model has greater utility depends on how the predictions will be used in a particular situation. This method builds prediction models for future dengue incidence in the Philippines and is capable of being modified for use in different situations; for diseases other than dengue; and for regions beyond the Philippines. The Philippines dengue prediction models predicted high or low incidence of dengue four weeks in advance of an outbreak with high accuracy, as measured by PPV, NPV, Sensitivity, and Specificity.

  16. Prediction of High Incidence of Dengue in the Philippines

    PubMed Central

    Buczak, Anna L.; Baugher, Benjamin; Babin, Steven M.; Ramac-Thomas, Liane C.; Guven, Erhan; Elbert, Yevgeniy; Koshute, Phillip T.; Velasco, John Mark S.; Roque, Vito G.; Tayag, Enrique A.; Yoon, In-Kyu; Lewis, Sheri H.

    2014-01-01

    Background Accurate prediction of dengue incidence levels weeks in advance of an outbreak may reduce the morbidity and mortality associated with this neglected disease. Therefore, models were developed to predict high and low dengue incidence in order to provide timely forewarnings in the Philippines. Methods Model inputs were chosen based on studies indicating variables that may impact dengue incidence. The method first uses Fuzzy Association Rule Mining techniques to extract association rules from these historical epidemiological, environmental, and socio-economic data, as well as climate data indicating future weather patterns. Selection criteria were used to choose a subset of these rules for a classifier, thereby generating a Prediction Model. The models predicted high or low incidence of dengue in a Philippines province four weeks in advance. The threshold between high and low was determined relative to historical incidence data. Principal Findings Model accuracy is described by Positive Predictive Value (PPV), Negative Predictive Value (NPV), Sensitivity, and Specificity computed on test data not previously used to develop the model. Selecting a model using the F0.5 measure, which gives PPV more importance than Sensitivity, gave these results: PPV = 0.780, NPV = 0.938, Sensitivity = 0.547, Specificity = 0.978. Using the F3 measure, which gives Sensitivity more importance than PPV, the selected model had PPV = 0.778, NPV = 0.948, Sensitivity = 0.627, Specificity = 0.974. The decision as to which model has greater utility depends on how the predictions will be used in a particular situation. Conclusions This method builds prediction models for future dengue incidence in the Philippines and is capable of being modified for use in different situations; for diseases other than dengue; and for regions beyond the Philippines. The Philippines dengue prediction models predicted high or low incidence of dengue four weeks in advance of an outbreak with high accuracy, as measured by PPV, NPV, Sensitivity, and Specificity. PMID:24722434

  17. Hydrological model parameterization using NDVI values to account for the effects of land-cover change on the rainfall-runoff response

    USDA-ARS?s Scientific Manuscript database

    Classic rainfall-runoff models usually use historical data to estimate model parameters and mean values of parameters are considered for predictions. However, due to climate changes and human effects, the parameters of model change temporally. To overcome this problem, Normalized Difference Vegetati...

  18. Capturing anharmonicity in a lattice thermal conductivity model for high-throughput predictions

    DOE PAGES

    Miller, Samuel A.; Gorai, Prashun; Ortiz, Brenden R.; ...

    2017-01-06

    High-throughput, low-cost, and accurate predictions of thermal properties of new materials would be beneficial in fields ranging from thermal barrier coatings and thermoelectrics to integrated circuits. To date, computational efforts for predicting lattice thermal conductivity (κ L) have been hampered by the complexity associated with computing multiple phonon interactions. In this work, we develop and validate a semiempirical model for κ L by fitting density functional theory calculations to experimental data. Experimental values for κ L come from new measurements on SrIn 2O 4, Ba 2SnO 4, Cu 2ZnSiTe 4, MoTe 2, Ba 3In 2O 6, Cu 3TaTe 4, SnO,more » and InI as well as 55 compounds from across the published literature. Here, to capture the anharmonicity in phonon interactions, we incorporate a structural parameter that allows the model to predict κ L within a factor of 1.5 of the experimental value across 4 orders of magnitude in κ L values and over a diverse chemical and structural phase space, with accuracy similar to or better than that of computationally more expensive models.« less

  19. Forecasting impact injuries of unrestrained occupants in railway vehicle passenger compartments.

    PubMed

    Xie, Suchao; Zhou, Hui

    2014-01-01

    In order to predict the injury parameters of the occupants corresponding to different experimental parameters and to determine impact injury indices conveniently and efficiently, a model forecasting occupant impact injury was established in this work. The work was based on finite experimental observation values obtained by numerical simulation. First, the various factors influencing the impact injuries caused by the interaction between unrestrained occupants and the compartment's internal structures were collated and the most vulnerable regions of the occupant's body were analyzed. Then, the forecast model was set up based on a genetic algorithm-back propagation (GA-BP) hybrid algorithm, which unified the individual characteristics of the back propagation-artificial neural network (BP-ANN) model and the genetic algorithm (GA). The model was well suited to studies of occupant impact injuries and allowed multiple-parameter forecasts of the occupant impact injuries to be realized assuming values for various influencing factors. Finally, the forecast results for three types of secondary collision were analyzed using forecasting accuracy evaluation methods. All of the results showed the ideal accuracy of the forecast model. When an occupant faced a table, the relative errors between the predicted and experimental values of the respective injury parameters were kept within ± 6.0 percent and the average relative error (ARE) values did not exceed 3.0 percent. When an occupant faced a seat, the relative errors between the predicted and experimental values of the respective injury parameters were kept within ± 5.2 percent and the ARE values did not exceed 3.1 percent. When the occupant faced another occupant, the relative errors between the predicted and experimental values of the respective injury parameters were kept within ± 6.3 percent and the ARE values did not exceed 3.8 percent. The injury forecast model established in this article reduced repeat experiment times and improved the design efficiency of the internal compartment's structure parameters, and it provided a new way for assessing the safety performance of the interior structural parameters in existing, and newly designed, railway vehicle compartments.

  20. Predicting fiber refractive index from a measured preform index profile

    NASA Astrophysics Data System (ADS)

    Kiiveri, P.; Koponen, J.; Harra, J.; Novotny, S.; Husu, H.; Ihalainen, H.; Kokki, T.; Aallos, V.; Kimmelma, O.; Paul, J.

    2018-02-01

    When producing fiber lasers and amplifiers, silica glass compositions consisting of three to six different materials are needed. Due to the varying needs of different applications, substantial number of different glass compositions are used in the active fiber structures. Often it is not possible to find material parameters for theoretical models to estimate thermal and mechanical properties of those glass compositions. This makes it challenging to predict accurately fiber core refractive index values, even if the preform index profile is measured. Usually the desired fiber refractive index value is achieved experimentally, which is expensive. To overcome this problem, we analyzed statistically the changes between the measured preform and fiber index values. We searched for correlations that would help to predict the Δn-value change from preform to fiber in a situation where we don't know the values of the glass material parameters that define the change. Our index change models were built using the data collected from preforms and fibers made by the Direct Nanoparticle Deposition (DND) technology.

  1. The validation of a human force model to predict dynamic forces resulting from multi-joint motions

    NASA Technical Reports Server (NTRS)

    Pandya, Abhilash K.; Maida, James C.; Aldridge, Ann M.; Hasson, Scott M.; Woolford, Barbara J.

    1992-01-01

    The development and validation is examined of a dynamic strength model for humans. This model is based on empirical data. The shoulder, elbow, and wrist joints were characterized in terms of maximum isolated torque, or position and velocity, in all rotational planes. This data was reduced by a least squares regression technique into a table of single variable second degree polynomial equations determining torque as a function of position and velocity. The isolated joint torque equations were then used to compute forces resulting from a composite motion, in this case, a ratchet wrench push and pull operation. A comparison of the predicted results of the model with the actual measured values for the composite motion indicates that forces derived from a composite motion of joints (ratcheting) can be predicted from isolated joint measures. Calculated T values comparing model versus measured values for 14 subjects were well within the statistically acceptable limits and regression analysis revealed coefficient of variation between actual and measured to be within 0.72 and 0.80.

  2. Quantification of the impact of precipitation spatial distribution uncertainty on predictive uncertainty of a snowmelt runoff model

    NASA Astrophysics Data System (ADS)

    Jacquin, A. P.

    2012-04-01

    This study is intended to quantify the impact of uncertainty about precipitation spatial distribution on predictive uncertainty of a snowmelt runoff model. This problem is especially relevant in mountain catchments with a sparse precipitation observation network and relative short precipitation records. The model analysed is a conceptual watershed model operating at a monthly time step. The model divides the catchment into five elevation zones, where the fifth zone corresponds to the catchment's glaciers. Precipitation amounts at each elevation zone i are estimated as the product between observed precipitation at a station and a precipitation factor FPi. If other precipitation data are not available, these precipitation factors must be adjusted during the calibration process and are thus seen as parameters of the model. In the case of the fifth zone, glaciers are seen as an inexhaustible source of water that melts when the snow cover is depleted.The catchment case study is Aconcagua River at Chacabuquito, located in the Andean region of Central Chile. The model's predictive uncertainty is measured in terms of the output variance of the mean squared error of the Box-Cox transformed discharge, the relative volumetric error, and the weighted average of snow water equivalent in the elevation zones at the end of the simulation period. Sobol's variance decomposition (SVD) method is used for assessing the impact of precipitation spatial distribution, represented by the precipitation factors FPi, on the models' predictive uncertainty. In the SVD method, the first order effect of a parameter (or group of parameters) indicates the fraction of predictive uncertainty that could be reduced if the true value of this parameter (or group) was known. Similarly, the total effect of a parameter (or group) measures the fraction of predictive uncertainty that would remain if the true value of this parameter (or group) was unknown, but all the remaining model parameters could be fixed. In this study, first order and total effects of the group of precipitation factors FP1- FP4, and the precipitation factor FP5, are calculated separately. First order and total effects of the group FP1- FP4 are much higher than first order and total effects of the factor FP5, which are negligible This situation is due to the fact that the actual value taken by FP5 does not have much influence in the contribution of the glacier zone to the catchment's output discharge, mainly limited by incident solar radiation. In addition to this, first order effects indicate that, in average, nearly 25% of predictive uncertainty could be reduced if the true values of the precipitation factors FPi could be known, but no information was available on the appropriate values for the remaining model parameters. Finally, the total effects of the precipitation factors FP1- FP4 are close to 41% in average, implying that even if the appropriate values for the remaining model parameters could be fixed, predictive uncertainty would be still quite high if the spatial distribution of precipitation remains unknown. Acknowledgements: This research was funded by FONDECYT, Research Project 1110279.

  3. Assessing temporally and spatially resolved PM 2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements

    NASA Astrophysics Data System (ADS)

    Kloog, Itai; Koutrakis, Petros; Coull, Brent A.; Lee, Hyung Joo; Schwartz, Joel

    2011-11-01

    Land use regression (LUR) models provide good estimates of spatially resolved long-term exposures, but are poor at capturing short term exposures. Satellite-derived Aerosol Optical Depth (AOD) measurements have the potential to provide spatio-temporally resolved predictions of both long and short term exposures, but previous studies have generally showed relatively low predictive power. Our objective was to extend our previous work on day-specific calibrations of AOD data using ground PM 2.5 measurements by incorporating commonly used LUR variables and meteorological variables, thus benefiting from both the spatial resolution from the LUR models and the spatio-temporal resolution from the satellite models. Later we use spatial smoothing to predict PM 2.5 concentrations for day/locations with missing AOD measures. We used mixed models with random slopes for day to calibrate AOD data for 2000-2008 across New-England with monitored PM 2.5 measurements. We then used a generalized additive mixed model with spatial smoothing to estimate PM 2.5 in location-day pairs with missing AOD, using regional measured PM 2.5, AOD values in neighboring cells, and land use. Finally, local (100 m) land use terms were used to model the difference between grid cell prediction and monitored value to capture very local traffic particles. Out-of-sample ten-fold cross-validation was used to quantify the accuracy of our predictions. For days with available AOD data we found high out-of-sample R2 (mean out-of-sample R2 = 0.830, year to year variation 0.725-0.904). For days without AOD values, our model performance was also excellent (mean out-of-sample R2 = 0.810, year to year variation 0.692-0.887). Importantly, these R2 are for daily, rather than monthly or yearly, values. Our model allows one to assess short term and long-term human exposures in order to investigate both the acute and chronic effects of ambient particles, respectively.

  4. The value of urban tree cover: A hedonic property price model in Ramsey and Dakota Counties, Minnesota, USA

    Treesearch

    Heather Sander; Stephen Polasky; Robert. Haight

    2010-01-01

    Urban tree cover benefits communities. These benefits' economic values, however, are poorly recognized and often ignored by landowners and planners. We use hedonic property price modeling to estimate urban tree cover's value in Dakota and Ramsey Counties, MN, USA, predicting housing value as a function of structural, neighborhood, and environmental variables...

  5. The valuation of the EQ-5D in Portugal.

    PubMed

    Ferreira, Lara N; Ferreira, Pedro L; Pereira, Luis N; Oppe, Mark

    2014-03-01

    The EQ-5D is a preference-based measure widely used in cost-utility analysis (CUA). Several countries have conducted surveys to derive value sets, but this was not the case for Portugal. The purpose of this study was to estimate a value set for the EQ-5D for Portugal using the time trade-off (TTO). A representative sample of the Portuguese general population (n = 450) stratified by age and gender valued 24 health states. Face-to-face interviews were conducted by trained interviewers. Each respondent ranked and valued seven health states using the TTO. Several models were estimated at both the individual and aggregated levels to predict health state valuations. Alternative functional forms were considered to account for the skewed distribution of these valuations. The models were analyzed in terms of their coefficients, overall fit and the ability for predicting the TTO values. Random effects models were estimated using generalized least squares and were robust across model specification. The results are generally consistent with other value sets. This research provides the Portuguese EQ-5D value set based on the preferences of the Portuguese general population as measured by the TTO. This value set is recommended for use in CUA conducted in Portugal.

  6. The Socialization of Culturally Related Values and Prosocial Tendencies among Mexican American Adolescents

    PubMed Central

    Knight, George P.; Carlo, Gustavo; Mahrer, Nicole E.; Davis, Alexandra N.

    2016-01-01

    The socialization of cultural values, ethnic identity, and prosocial behaviors is examined in a sample of 749 Mexican American adolescents [age 9–12 at the 5th grade; M(SD) = 10.42(.55); 49% female], their mothers, and fathers at the 5th, 7th and 10th grades. Parents’ familism values positively predicted their ethnic socialization practices. Mothers’ ethnic socialization positively predicted adolescents’ ethnic identity, which positively predicted adolescents’ familism. Familism was associated with several types of prosocial tendencies. Adolescents’ material success and personal achievement values were negatively associated with altruistic helping and positively associated with public helping, but not their parents’ corresponding values. Findings support cultural socialization models, asserting that parents’ traditional cultural values influence their socialization practices, youth cultural values, and youth prosocial behaviors. PMID:28262940

  7. Need for Affect and Attitudes Toward Drugs: The Mediating Role of Values.

    PubMed

    Lins de Holanda Coelho, Gabriel; H P Hanel, Paul; Vilar, Roosevelt; P Monteiro, Renan; Gouveia, Valdiney V; R Maio, Gregory

    2018-05-04

    Human values and affective traits were found to predict attitudes toward the use of different types of drugs (e.g., alcohol, marijuana, and other illegal drugs). In this study (N = 196, M age = 23.09), we aimed to gain a more comprehensive understanding of those predictors of attitudes toward drug use in a mediated structural equation model, providing a better overview of a possible motivational path that drives to such a risky behavior. Specifically, we predicted and found that the relations between need for affect and attitudes toward drug use were mediated by excitement values. Also, results showed that excitement values and need for affect positively predicted attitudes toward the use of drugs, whereas normative values predicted it negatively. The pattern of results remained the same when we investigated attitudes toward alcohol, marijuana, or illegal drugs separately. Overall, the findings indicate that emotions operate via excitement and normative values to influence risk behavior.

  8. Dynamic properties of porous B sub 4 C. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brar, N.S.; Rosenberg, Z.; Bless, S.J.

    1990-01-25

    The sound speed in porous B4C (Boron Carbide) was measured and predicted on the basis of a spherical void model and a penny crack model. Neither model does well for porosity exceeding 10 percent. Measured values of Hugoniot elastic limit for porous B4C agree well with those predicted by the Steinberg's model. Measured transverse stress in the elastic range of B4C under 1-d strain condition agrees with the predictions.

  9. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.

    PubMed

    Ranganayaki, V; Deepa, S N

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature.

  10. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems

    PubMed Central

    Ranganayaki, V.; Deepa, S. N.

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973

  11. Fast genomic predictions via Bayesian G-BLUP and multilocus models of threshold traits including censored Gaussian data.

    PubMed

    Kärkkäinen, Hanni P; Sillanpää, Mikko J

    2013-09-04

    Because of the increased availability of genome-wide sets of molecular markers along with reduced cost of genotyping large samples of individuals, genomic estimated breeding values have become an essential resource in plant and animal breeding. Bayesian methods for breeding value estimation have proven to be accurate and efficient; however, the ever-increasing data sets are placing heavy demands on the parameter estimation algorithms. Although a commendable number of fast estimation algorithms are available for Bayesian models of continuous Gaussian traits, there is a shortage for corresponding models of discrete or censored phenotypes. In this work, we consider a threshold approach of binary, ordinal, and censored Gaussian observations for Bayesian multilocus association models and Bayesian genomic best linear unbiased prediction and present a high-speed generalized expectation maximization algorithm for parameter estimation under these models. We demonstrate our method with simulated and real data. Our example analyses suggest that the use of the extra information present in an ordered categorical or censored Gaussian data set, instead of dichotomizing the data into case-control observations, increases the accuracy of genomic breeding values predicted by Bayesian multilocus association models or by Bayesian genomic best linear unbiased prediction. Furthermore, the example analyses indicate that the correct threshold model is more accurate than the directly used Gaussian model with a censored Gaussian data, while with a binary or an ordinal data the superiority of the threshold model could not be confirmed.

  12. Fast Genomic Predictions via Bayesian G-BLUP and Multilocus Models of Threshold Traits Including Censored Gaussian Data

    PubMed Central

    Kärkkäinen, Hanni P.; Sillanpää, Mikko J.

    2013-01-01

    Because of the increased availability of genome-wide sets of molecular markers along with reduced cost of genotyping large samples of individuals, genomic estimated breeding values have become an essential resource in plant and animal breeding. Bayesian methods for breeding value estimation have proven to be accurate and efficient; however, the ever-increasing data sets are placing heavy demands on the parameter estimation algorithms. Although a commendable number of fast estimation algorithms are available for Bayesian models of continuous Gaussian traits, there is a shortage for corresponding models of discrete or censored phenotypes. In this work, we consider a threshold approach of binary, ordinal, and censored Gaussian observations for Bayesian multilocus association models and Bayesian genomic best linear unbiased prediction and present a high-speed generalized expectation maximization algorithm for parameter estimation under these models. We demonstrate our method with simulated and real data. Our example analyses suggest that the use of the extra information present in an ordered categorical or censored Gaussian data set, instead of dichotomizing the data into case-control observations, increases the accuracy of genomic breeding values predicted by Bayesian multilocus association models or by Bayesian genomic best linear unbiased prediction. Furthermore, the example analyses indicate that the correct threshold model is more accurate than the directly used Gaussian model with a censored Gaussian data, while with a binary or an ordinal data the superiority of the threshold model could not be confirmed. PMID:23821618

  13. Recalibration of the Shear Stress Transport Model to Improve Calculation of Shock Separated Flows

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Yoder, Dennis A.

    2013-01-01

    The Menter Shear Stress Transport (SST) k . turbulence model is one of the most widely used two-equation Reynolds-averaged Navier-Stokes turbulence models for aerodynamic analyses. The model extends Menter s baseline (BSL) model to include a limiter that prevents the calculated turbulent shear stress from exceeding a prescribed fraction of the turbulent kinetic energy via a proportionality constant, a1, set to 0.31. Compared to other turbulence models, the SST model yields superior predictions of mild adverse pressure gradient flows including those with small separations. In shock - boundary layer interaction regions, the SST model produces separations that are too large while the BSL model is on the other extreme, predicting separations that are too small. In this paper, changing a1 to a value near 0.355 is shown to significantly improve predictions of shock separated flows. Several cases are examined computationally and experimental data is also considered to justify raising the value of a1 used for shock separated flows.

  14. A mathematical model of a large open fire

    NASA Technical Reports Server (NTRS)

    Harsha, P. T.; Bragg, W. N.; Edelman, R. B.

    1981-01-01

    A mathematical model capable of predicting the detailed characteristics of large, liquid fuel, axisymmetric, pool fires is described. The predicted characteristics include spatial distributions of flame gas velocity, soot concentration and chemical specie concentrations including carbon monoxide, carbon dioxide, water, unreacted oxygen, unreacted fuel and nitrogen. Comparisons of the predictions with experimental values are also given.

  15. Improved prediction of residue flexibility by embedding optimized amino acid grouping into RSA-based linear models.

    PubMed

    Zhang, Hua; Kurgan, Lukasz

    2014-12-01

    Knowledge of protein flexibility is vital for deciphering the corresponding functional mechanisms. This knowledge would help, for instance, in improving computational drug design and refinement in homology-based modeling. We propose a new predictor of the residue flexibility, which is expressed by B-factors, from protein chains that use local (in the chain) predicted (or native) relative solvent accessibility (RSA) and custom-derived amino acid (AA) alphabets. Our predictor is implemented as a two-stage linear regression model that uses RSA-based space in a local sequence window in the first stage and a reduced AA pair-based space in the second stage as the inputs. This method is easy to comprehend explicit linear form in both stages. Particle swarm optimization was used to find an optimal reduced AA alphabet to simplify the input space and improve the prediction performance. The average correlation coefficients between the native and predicted B-factors measured on a large benchmark dataset are improved from 0.65 to 0.67 when using the native RSA values and from 0.55 to 0.57 when using the predicted RSA values. Blind tests that were performed on two independent datasets show consistent improvements in the average correlation coefficients by a modest value of 0.02 for both native and predicted RSA-based predictions.

  16. Charting the Eccles' expectancy-value model from mothers' beliefs in childhood to youths' activities in adolescence.

    PubMed

    Simpkins, Sandra D; Fredricks, Jennifer A; Eccles, Jacquelynne S

    2012-07-01

    The Eccles' expectancy-value model posits that a cascade of mechanisms explain associations between parents' beliefs and youths' achievement-related behaviors. Specifically, parents' beliefs predict parents' behaviors; in turn, parents' behaviors predict youths' motivational beliefs, and youths' motivational beliefs predict their behaviors. This investigation focused on testing this model with mothers in sports, music, math, and reading over a 12-year period. Data were drawn from mother, youth, and teacher questionnaires collected as part of Childhood and Beyond Study (92% European American; N = 723). Mothers' beliefs in sports, music, and math positively predicted their behaviors in these areas 1 year later, which predicted youths' self-concepts of ability and values (i.e., their motivational beliefs) in these domains 1 year later. Adolescents' motivational beliefs predicted time spent in organized sport activities, playing music, and reading after school measured 4 years later as well as the number of math courses taken in high school. Furthermore, except in reading, mothers' behaviors mediated the relations between mothers' and youths' beliefs, and youths' beliefs mediated the relations between mothers' behaviors and youths' behaviors. Although there were mean-level differences in several indicators based on child gender, in most cases the relations among these indicators did not significantly vary by child gender. This study highlights the processes by which mothers' beliefs during their children's childhood can predict children's activities in adolescence.

  17. Variation and Grey GM(1, 1) Prediction of Melting Peak Temperature of Polypropylene During Ultraviolet Radiation Aging

    NASA Astrophysics Data System (ADS)

    Chen, K.; Y Zhang, T.; Zhang, F.; Zhang, Z. R.

    2017-12-01

    Grey system theory regards uncertain system in which information is known partly and unknown partly as research object, extracts useful information from part known, and thereby revealing the potential variation rule of the system. In order to research the applicability of data-driven modelling method in melting peak temperature (T m) fitting and prediction of polypropylene (PP) during ultraviolet radiation aging, the T m of homo-polypropylene after different ultraviolet radiation exposure time investigated by differential scanning calorimeter was fitted and predicted by grey GM(1, 1) model based on grey system theory. The results show that the T m of PP declines with the prolong of aging time, and fitting and prediction equation obtained by grey GM(1, 1) model is T m = 166.567472exp(-0.00012t). Fitting effect of the above equation is excellent and the maximum relative error between prediction value and actual value of T m is 0.32%. Grey system theory needs less original data, has high prediction accuracy, and can be used to predict aging behaviour of PP.

  18. Evaporation characteristics of ETBE-blended gasoline.

    PubMed

    Okamoto, Katsuhiro; Hiramatsu, Muneyuki; Hino, Tomonori; Otake, Takuma; Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi

    2015-04-28

    To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were developed. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Predictive modelling of flow in a two-dimensional intermediate-scale, heterogeneous porous media

    USGS Publications Warehouse

    Barth, Gilbert R.; Hill, M.C.; Illangasekare, T.H.; Rajaram, H.

    2000-01-01

    To better understand the role of sedimentary structures in flow through porous media, and to determine how small-scale laboratory-measured values of hydraulic conductivity relate to in situ values this work deterministically examines flow through simple, artificial structures constructed for a series of intermediate-scale (10 m long), two-dimensional, heterogeneous, laboratory experiments. Nonlinear regression was used to determine optimal values of in situ hydraulic conductivity, which were compared to laboratory-measured values. Despite explicit numerical representation of the heterogeneity, the optimized values were generally greater than the laboratory-measured values. Discrepancies between measured and optimal values varied depending on the sand sieve size, but their contribution to error in the predicted flow was fairly consistent for all sands. Results indicate that, even under these controlled circumstances, laboratory-measured values of hydraulic conductivity need to be applied to models cautiously.To better understand the role of sedimentary structures in flow through porous media, and to determine how small-scale laboratory-measured values of hydraulic conductivity relate to in situ values this work deterministically examines flow through simple, artificial structures constructed for a series of intermediate-scale (10 m long), two-dimensional, heterogeneous, laboratory experiments. Nonlinear regression was used to determine optimal values of in situ hydraulic conductivity, which were compared to laboratory-measured values. Despite explicit numerical representation of the heterogeneity, the optimized values were generally greater than the laboratory-measured values. Discrepancies between measured and optimal values varied depending on the sand sieve size, but their contribution to error in the predicted flow was fairly consistent for all sands. Results indicate that, even under these controlled circumstances, laboratory-measured values of hydraulic conductivity need to be applied to models cautiously.

  20. Modelling postharvest quality of blueberry affected by biological variability using image and spectral data.

    PubMed

    Hu, Meng-Han; Dong, Qing-Li; Liu, Bao-Lin

    2016-08-01

    Hyperspectral reflectance and transmittance sensing as well as near-infrared (NIR) spectroscopy were investigated as non-destructive tools for estimating blueberry firmness, elastic modulus and soluble solid content (SSC). Least squares-support vector machine models were established from these three spectra based on samples from three cultivars viz. Bluecrop, Duke and M2 and two harvest years viz. 2014 and 2015 for predicting blueberry postharvest quality. One-cultivar reflectance models (establishing model using one cultivar) derived better results than the corresponding transmittance and NIR models for predicting blueberry firmness with few cultivar effects. Two-cultivar NIR models (establishing model using two cultivars) proved to be suitable for estimating blueberry SSC with correlations over 0.83. Rp (RMSEp ) values of the three-cultivar reflectance models (establishing model using 75% of three cultivars) were 0.73 (0.094) and 0.73 (0.186), respectively , for predicting blueberry firmness and elastic modulus. For SSC prediction, the three-cultivar NIR model was found to achieve an Rp (RMSEp ) value of 0.85 (0.090). Adding Bluecrop samples harvested in 2014 could enhance the three-cultivar model robustness for firmness and elastic modulus. The above results indicated the potential for using spatial and spectral techniques to develop robust models for predicting blueberry postharvest quality containing biological variability. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. Soft sensor modelling by time difference, recursive partial least squares and adaptive model updating

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Yang, W.; Xu, O.; Zhou, L.; Wang, J.

    2017-04-01

    To investigate time-variant and nonlinear characteristics in industrial processes, a soft sensor modelling method based on time difference, moving-window recursive partial least square (PLS) and adaptive model updating is proposed. In this method, time difference values of input and output variables are used as training samples to construct the model, which can reduce the effects of the nonlinear characteristic on modelling accuracy and retain the advantages of recursive PLS algorithm. To solve the high updating frequency of the model, a confidence value is introduced, which can be updated adaptively according to the results of the model performance assessment. Once the confidence value is updated, the model can be updated. The proposed method has been used to predict the 4-carboxy-benz-aldehyde (CBA) content in the purified terephthalic acid (PTA) oxidation reaction process. The results show that the proposed soft sensor modelling method can reduce computation effectively, improve prediction accuracy by making use of process information and reflect the process characteristics accurately.

  2. [Research on Kalman interpolation prediction model based on micro-region PM2.5 concentration].

    PubMed

    Wang, Wei; Zheng, Bin; Chen, Binlin; An, Yaoming; Jiang, Xiaoming; Li, Zhangyong

    2018-02-01

    In recent years, the pollution problem of particulate matter, especially PM2.5, is becoming more and more serious, which has attracted many people's attention from all over the world. In this paper, a Kalman prediction model combined with cubic spline interpolation is proposed, which is applied to predict the concentration of PM2.5 in the micro-regional environment of campus, and to realize interpolation simulation diagram of concentration of PM2.5 and simulate the spatial distribution of PM2.5. The experiment data are based on the environmental information monitoring system which has been set up by our laboratory. And the predicted and actual values of PM2.5 concentration data have been checked by the way of Wilcoxon signed-rank test. We find that the value of bilateral progressive significance probability was 0.527, which is much greater than the significant level α = 0.05. The mean absolute error (MEA) of Kalman prediction model was 1.8 μg/m 3 , the average relative error (MER) was 6%, and the correlation coefficient R was 0.87. Thus, the Kalman prediction model has a better effect on the prediction of concentration of PM2.5 than those of the back propagation (BP) prediction and support vector machine (SVM) prediction. In addition, with the combination of Kalman prediction model and the spline interpolation method, the spatial distribution and local pollution characteristics of PM2.5 can be simulated.

  3. The Predicted Influence of Climate Change on Lesser Prairie-Chicken Reproductive Parameters

    PubMed Central

    Grisham, Blake A.; Boal, Clint W.; Haukos, David A.; Davis, Dawn M.; Boydston, Kathy K.; Dixon, Charles; Heck, Willard R.

    2013-01-01

    The Southern High Plains is anticipated to experience significant changes in temperature and precipitation due to climate change. These changes may influence the lesser prairie-chicken (Tympanuchus pallidicinctus) in positive or negative ways. We assessed the potential changes in clutch size, incubation start date, and nest survival for lesser prairie-chickens for the years 2050 and 2080 based on modeled predictions of climate change and reproductive data for lesser prairie-chickens from 2001–2011 on the Southern High Plains of Texas and New Mexico. We developed 9 a priori models to assess the relationship between reproductive parameters and biologically relevant weather conditions. We selected weather variable(s) with the most model support and then obtained future predicted values from climatewizard.org. We conducted 1,000 simulations using each reproductive parameter’s linear equation obtained from regression calculations, and the future predicted value for each weather variable to predict future reproductive parameter values for lesser prairie-chickens. There was a high degree of model uncertainty for each reproductive value. Winter temperature had the greatest effect size for all three parameters, suggesting a negative relationship between above-average winter temperature and reproductive output. The above-average winter temperatures are correlated to La Niña events, which negatively affect lesser prairie-chickens through resulting drought conditions. By 2050 and 2080, nest survival was predicted to be below levels considered viable for population persistence; however, our assessment did not consider annual survival of adults, chick survival, or the positive benefit of habitat management and conservation, which may ultimately offset the potentially negative effect of drought on nest survival. PMID:23874549

  4. Alterations in choice behavior by manipulations of world model.

    PubMed

    Green, C S; Benson, C; Kersten, D; Schrater, P

    2010-09-14

    How to compute initially unknown reward values makes up one of the key problems in reinforcement learning theory, with two basic approaches being used. Model-free algorithms rely on the accumulation of substantial amounts of experience to compute the value of actions, whereas in model-based learning, the agent seeks to learn the generative process for outcomes from which the value of actions can be predicted. Here we show that (i) "probability matching"-a consistent example of suboptimal choice behavior seen in humans-occurs in an optimal Bayesian model-based learner using a max decision rule that is initialized with ecologically plausible, but incorrect beliefs about the generative process for outcomes and (ii) human behavior can be strongly and predictably altered by the presence of cues suggestive of various generative processes, despite statistically identical outcome generation. These results suggest human decision making is rational and model based and not consistent with model-free learning.

  5. Alterations in choice behavior by manipulations of world model

    PubMed Central

    Green, C. S.; Benson, C.; Kersten, D.; Schrater, P.

    2010-01-01

    How to compute initially unknown reward values makes up one of the key problems in reinforcement learning theory, with two basic approaches being used. Model-free algorithms rely on the accumulation of substantial amounts of experience to compute the value of actions, whereas in model-based learning, the agent seeks to learn the generative process for outcomes from which the value of actions can be predicted. Here we show that (i) “probability matching”—a consistent example of suboptimal choice behavior seen in humans—occurs in an optimal Bayesian model-based learner using a max decision rule that is initialized with ecologically plausible, but incorrect beliefs about the generative process for outcomes and (ii) human behavior can be strongly and predictably altered by the presence of cues suggestive of various generative processes, despite statistically identical outcome generation. These results suggest human decision making is rational and model based and not consistent with model-free learning. PMID:20805507

  6. Gene expression programming approach for the estimation of moisture ratio in herbal plants drying with vacuum heat pump dryer

    NASA Astrophysics Data System (ADS)

    Dikmen, Erkan; Ayaz, Mahir; Gül, Doğan; Şahin, Arzu Şencan

    2017-07-01

    The determination of drying behavior of herbal plants is a complex process. In this study, gene expression programming (GEP) model was used to determine drying behavior of herbal plants as fresh sweet basil, parsley and dill leaves. Time and drying temperatures are input parameters for the estimation of moisture ratio of herbal plants. The results of the GEP model are compared with experimental drying data. The statistical values as mean absolute percentage error, root-mean-squared error and R-square are used to calculate the difference between values predicted by the GEP model and the values actually observed from the experimental study. It was found that the results of the GEP model and experimental study are in moderately well agreement. The results have shown that the GEP model can be considered as an efficient modelling technique for the prediction of moisture ratio of herbal plants.

  7. Prediction of Breeding Values for Dairy Cattle Using Artificial Neural Networks and Neuro-Fuzzy Systems

    PubMed Central

    Shahinfar, Saleh; Mehrabani-Yeganeh, Hassan; Lucas, Caro; Kalhor, Ahmad; Kazemian, Majid; Weigel, Kent A.

    2012-01-01

    Developing machine learning and soft computing techniques has provided many opportunities for researchers to establish new analytical methods in different areas of science. The objective of this study is to investigate the potential of two types of intelligent learning methods, artificial neural networks and neuro-fuzzy systems, in order to estimate breeding values (EBV) of Iranian dairy cattle. Initially, the breeding values of lactating Holstein cows for milk and fat yield were estimated using conventional best linear unbiased prediction (BLUP) with an animal model. Once that was established, a multilayer perceptron was used to build ANN to predict breeding values from the performance data of selection candidates. Subsequently, fuzzy logic was used to form an NFS, a hybrid intelligent system that was implemented via a local linear model tree algorithm. For milk yield the correlations between EBV and EBV predicted by the ANN and NFS were 0.92 and 0.93, respectively. Corresponding correlations for fat yield were 0.93 and 0.93, respectively. Correlations between multitrait predictions of EBVs for milk and fat yield when predicted simultaneously by ANN were 0.93 and 0.93, respectively, whereas corresponding correlations with reference EBV for multitrait NFS were 0.94 and 0.95, respectively, for milk and fat production. PMID:22991575

  8. An interspecies correlation model to predict acute dermal toxicity of plant protection products to terrestrial life stages of amphibians using fish acute toxicity and bioconcentration data.

    PubMed

    Weltje, Lennart; Janz, Philipp; Sowig, Peter

    2017-12-01

    This paper presents a model to predict acute dermal toxicity of plant protection products (PPPs) to terrestrial amphibian life stages from (regulatory) fish data. By combining existing concepts, including interspecies correlation estimation (ICE), allometric relations, lethal body burden (LBB) and bioconcentration modelling, an equation was derived that predicts the amphibian median lethal dermal dose (LD 50 ) from standard acute toxicity values (96-h LC 50 ) for fish and bioconcentration factors (BCF) in fish. Where possible, fish BCF values were corrected to 5% lipid, and to parent compound. Then, BCF values were adjusted to an exposure duration of 96 h, in case steady state took longer to be achieved. The derived correlation equation is based on 32 LD 50 values from acute dermal toxicity experiments with 15 different species of anuran amphibians, comprising 15 different PPPs. The developed ICE model can be used in a screening approach to estimate the acute risk to amphibian terrestrial life stages from dermal exposures to PPPs with organic active substances. This has the potential to reduce unnecessary testing of vertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A study on the predictability of acute lymphoblastic leukaemia response to treatment using a hybrid oncosimulator.

    PubMed

    Ouzounoglou, Eleftherios; Kolokotroni, Eleni; Stanulla, Martin; Stamatakos, Georgios S

    2018-02-06

    Efficient use of Virtual Physiological Human (VPH)-type models for personalized treatment response prediction purposes requires a precise model parameterization. In the case where the available personalized data are not sufficient to fully determine the parameter values, an appropriate prediction task may be followed. This study, a hybrid combination of computational optimization and machine learning methods with an already developed mechanistic model called the acute lymphoblastic leukaemia (ALL) Oncosimulator which simulates ALL progression and treatment response is presented. These methods are used in order for the parameters of the model to be estimated for retrospective cases and to be predicted for prospective ones. The parameter value prediction is based on a regression model trained on retrospective cases. The proposed Hybrid ALL Oncosimulator system has been evaluated when predicting the pre-phase treatment outcome in ALL. This has been correctly achieved for a significant percentage of patient cases tested (approx. 70% of patients). Moreover, the system is capable of denying the classification of cases for which the results are not trustworthy enough. In that case, potentially misleading predictions for a number of patients are avoided, while the classification accuracy for the remaining patient cases further increases. The results obtained are particularly encouraging regarding the soundness of the proposed methodologies and their relevance to the process of achieving clinical applicability of the proposed Hybrid ALL Oncosimulator system and VPH models in general.

  10. Recurrence predictive models for patients with hepatocellular carcinoma after radiofrequency ablation using support vector machines with feature selection methods.

    PubMed

    Liang, Ja-Der; Ping, Xiao-Ou; Tseng, Yi-Ju; Huang, Guan-Tarn; Lai, Feipei; Yang, Pei-Ming

    2014-12-01

    Recurrence of hepatocellular carcinoma (HCC) is an important issue despite effective treatments with tumor eradication. Identification of patients who are at high risk for recurrence may provide more efficacious screening and detection of tumor recurrence. The aim of this study was to develop recurrence predictive models for HCC patients who received radiofrequency ablation (RFA) treatment. From January 2007 to December 2009, 83 newly diagnosed HCC patients receiving RFA as their first treatment were enrolled. Five feature selection methods including genetic algorithm (GA), simulated annealing (SA) algorithm, random forests (RF) and hybrid methods (GA+RF and SA+RF) were utilized for selecting an important subset of features from a total of 16 clinical features. These feature selection methods were combined with support vector machine (SVM) for developing predictive models with better performance. Five-fold cross-validation was used to train and test SVM models. The developed SVM-based predictive models with hybrid feature selection methods and 5-fold cross-validation had averages of the sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and area under the ROC curve as 67%, 86%, 82%, 69%, 90%, and 0.69, respectively. The SVM derived predictive model can provide suggestive high-risk recurrent patients, who should be closely followed up after complete RFA treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Solar radio proxies for improved satellite orbit prediction

    NASA Astrophysics Data System (ADS)

    Yaya, Philippe; Hecker, Louis; Dudok de Wit, Thierry; Fèvre, Clémence Le; Bruinsma, Sean

    2017-12-01

    Specification and forecasting of solar drivers to thermosphere density models is critical for satellite orbit prediction and debris avoidance. Satellite operators routinely forecast orbits up to 30 days into the future. This requires forecasts of the drivers to these orbit prediction models such as the solar Extreme-UV (EUV) flux and geomagnetic activity. Most density models use the 10.7 cm radio flux (F10.7 index) as a proxy for solar EUV. However, daily measurements at other centimetric wavelengths have also been performed by the Nobeyama Radio Observatory (Japan) since the 1950's, thereby offering prospects for improving orbit modeling. Here we present a pre-operational service at the Collecte Localisation Satellites company that collects these different observations in one single homogeneous dataset and provides a 30 days forecast on a daily basis. Interpolation and preprocessing algorithms were developed to fill in missing data and remove anomalous values. We compared various empirical time series prediction techniques and selected a multi-wavelength non-recursive analogue neural network. The prediction of the 30 cm flux, and to a lesser extent that of the 10.7 cm flux, performs better than NOAA's present prediction of the 10.7 cm flux, especially during periods of high solar activity. In addition, we find that the DTM-2013 density model (Drag Temperature Model) performs better with (past and predicted) values of the 30 cm radio flux than with the 10.7 flux.

  12. Cost Perception and the Expectancy-Value Model of Achievement Motivation.

    ERIC Educational Resources Information Center

    Anderson, Patricia N.

    The expectancy-value model of achievement motivation, first described by J. Atkinson (1957) and refined by J. Eccles and her colleagues (1983, 1992, 1994) predicts achievement motivation based on expectancy for success and perceived task value. Cost has been explored very little. To explore the possibility that cost is different from expectancy…

  13. Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Hodge, Bri-Mathias; Lu, Siyuan

    2015-08-05

    Accurate solar power forecasting allows utilities to get the most out of the solar resources on their systems. To truly measure the improvements that any new solar forecasting methods can provide, it is important to first develop (or determine) baseline and target solar forecasting at different spatial and temporal scales. This paper aims to develop baseline and target values for solar forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reductionmore » in the amount of reserves that must be held to accommodate the uncertainty of solar power output. forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output.« less

  14. Validation of a Clinical Scoring System for Outcome Prediction in Dogs with Acute Kidney Injury Managed by Hemodialysis.

    PubMed

    Segev, G; Langston, C; Takada, K; Kass, P H; Cowgill, L D

    2016-05-01

    A scoring system for outcome prediction in dogs with acute kidney injury (AKI) recently has been developed but has not been validated. The scoring system previously developed for outcome prediction will accurately predict outcome in a validation cohort of dogs with AKI managed with hemodialysis. One hundred fifteen client-owned dogs with AKI. Medical records of dogs with AKI treated by hemodialysis between 2011 and 2015 were reviewed. Dogs were included only if all variables required to calculate the final predictive score were available, and the 30-day outcome was known. A predictive score for 3 models was calculated for each dog. Logistic regression was used to evaluate the association of the final predictive score with each model's outcome. Receiver operating curve (ROC) analyses were performed to determine sensitivity and specificity for each model based on previously established cut-off values. Higher scores for each model were associated with decreased survival probability (P < .001). Based on previously established cut-off values, 3 models (models A, B, C) were associated with sensitivities/specificities of 73/75%, 71/80%, and 75/86%, respectively, and correctly classified 74-80% of the dogs. All models were simple to apply and allowed outcome prediction that closely corresponded with actual outcome in an independent cohort. As expected, accuracies were slightly lower compared with those from the previously reported cohort used initially to develop the models. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  15. Predictive ability of genomic selection models for breeding value estimation on growth traits of Pacific white shrimp Litopenaeus vannamei

    NASA Astrophysics Data System (ADS)

    Wang, Quanchao; Yu, Yang; Li, Fuhua; Zhang, Xiaojun; Xiang, Jianhai

    2017-09-01

    Genomic selection (GS) can be used to accelerate genetic improvement by shortening the selection interval. The successful application of GS depends largely on the accuracy of the prediction of genomic estimated breeding value (GEBV). This study is a first attempt to understand the practicality of GS in Litopenaeus vannamei and aims to evaluate models for GS on growth traits. The performance of GS models in L. vannamei was evaluated in a population consisting of 205 individuals, which were genotyped for 6 359 single nucleotide polymorphism (SNP) markers by specific length amplified fragment sequencing (SLAF-seq) and phenotyped for body length and body weight. Three GS models (RR-BLUP, BayesA, and Bayesian LASSO) were used to obtain the GEBV, and their predictive ability was assessed by the reliability of the GEBV and the bias of the predicted phenotypes. The mean reliability of the GEBVs for body length and body weight predicted by the different models was 0.296 and 0.411, respectively. For each trait, the performances of the three models were very similar to each other with respect to predictability. The regression coefficients estimated by the three models were close to one, suggesting near to zero bias for the predictions. Therefore, when GS was applied in a L. vannamei population for the studied scenarios, all three models appeared practicable. Further analyses suggested that improved estimation of the genomic prediction could be realized by increasing the size of the training population as well as the density of SNPs.

  16. Simultaneous modeling of visual saliency and value computation improves predictions of economic choice.

    PubMed

    Towal, R Blythe; Mormann, Milica; Koch, Christof

    2013-10-01

    Many decisions we make require visually identifying and evaluating numerous alternatives quickly. These usually vary in reward, or value, and in low-level visual properties, such as saliency. Both saliency and value influence the final decision. In particular, saliency affects fixation locations and durations, which are predictive of choices. However, it is unknown how saliency propagates to the final decision. Moreover, the relative influence of saliency and value is unclear. Here we address these questions with an integrated model that combines a perceptual decision process about where and when to look with an economic decision process about what to choose. The perceptual decision process is modeled as a drift-diffusion model (DDM) process for each alternative. Using psychophysical data from a multiple-alternative, forced-choice task, in which subjects have to pick one food item from a crowded display via eye movements, we test four models where each DDM process is driven by (i) saliency or (ii) value alone or (iii) an additive or (iv) a multiplicative combination of both. We find that models including both saliency and value weighted in a one-third to two-thirds ratio (saliency-to-value) significantly outperform models based on either quantity alone. These eye fixation patterns modulate an economic decision process, also described as a DDM process driven by value. Our combined model quantitatively explains fixation patterns and choices with similar or better accuracy than previous models, suggesting that visual saliency has a smaller, but significant, influence than value and that saliency affects choices indirectly through perceptual decisions that modulate economic decisions.

  17. Simultaneous modeling of visual saliency and value computation improves predictions of economic choice

    PubMed Central

    Towal, R. Blythe; Mormann, Milica; Koch, Christof

    2013-01-01

    Many decisions we make require visually identifying and evaluating numerous alternatives quickly. These usually vary in reward, or value, and in low-level visual properties, such as saliency. Both saliency and value influence the final decision. In particular, saliency affects fixation locations and durations, which are predictive of choices. However, it is unknown how saliency propagates to the final decision. Moreover, the relative influence of saliency and value is unclear. Here we address these questions with an integrated model that combines a perceptual decision process about where and when to look with an economic decision process about what to choose. The perceptual decision process is modeled as a drift–diffusion model (DDM) process for each alternative. Using psychophysical data from a multiple-alternative, forced-choice task, in which subjects have to pick one food item from a crowded display via eye movements, we test four models where each DDM process is driven by (i) saliency or (ii) value alone or (iii) an additive or (iv) a multiplicative combination of both. We find that models including both saliency and value weighted in a one-third to two-thirds ratio (saliency-to-value) significantly outperform models based on either quantity alone. These eye fixation patterns modulate an economic decision process, also described as a DDM process driven by value. Our combined model quantitatively explains fixation patterns and choices with similar or better accuracy than previous models, suggesting that visual saliency has a smaller, but significant, influence than value and that saliency affects choices indirectly through perceptual decisions that modulate economic decisions. PMID:24019496

  18. [Phenotypic trends and breeding values for canine congenital sensorineural deafness in Dalmatian dogs].

    PubMed

    Blum, Meike; Distl, Ottmar

    2014-01-01

    In the present study, breeding values for canine congenital sensorineural deafness, the presence of blue eyes and patches have been predicted using multivariate animal models to test the reliability of the breeding values for planned matings. The dataset consisted of 6669 German Dalmatian dogs born between 1988 and 2009. Data were provided by the Dalmatian kennel clubs which are members of the German Association for Dog Breeding and Husbandry (VDH). The hearing status for all dogs was evaluated using brainstem auditory evoked potentials. The reliability using the prediction error variance of breeding values and the realized reliability of the prediction of the phenotype of future progeny born in each one year between 2006 and 2009 were used as parameters to evaluate the goodness of prediction through breeding values. All animals from the previous birth years were used for prediction of the breeding values of the progeny in each of the up-coming birth years. The breeding values based on pedigree records achieved an average reliability of 0.19 for the future 1951 progeny. The predictive accuracy (R2) for the hearing status of single future progeny was at 1.3%. Combining breeding values for littermates increased the predictive accuracy to 3.5%. Corresponding values for maternal and paternal half-sib groups were at 3.2 and 7.3%. The use of breeding values for planned matings increases the phenotypic selection response over mass selection. The breeding values of sires may be used for planned matings because reliabilities and predictive accuracies for future paternal progeny groups were highest.

  19. Topsoil organic carbon content of Europe, a new map based on a generalised additive model

    NASA Astrophysics Data System (ADS)

    de Brogniez, Delphine; Ballabio, Cristiano; Stevens, Antoine; Jones, Robert J. A.; Montanarella, Luca; van Wesemael, Bas

    2014-05-01

    There is an increasing demand for up-to-date spatially continuous organic carbon (OC) data for global environment and climatic modeling. Whilst the current map of topsoil organic carbon content for Europe (Jones et al., 2005) was produced by applying expert-knowledge based pedo-transfer rules on large soil mapping units, the aim of this study was to replace it by applying digital soil mapping techniques on the first European harmonised geo-referenced topsoil (0-20 cm) database, which arises from the LUCAS (land use/cover area frame statistical survey) survey. A generalized additive model (GAM) was calibrated on 85% of the dataset (ca. 17 000 soil samples) and a backward stepwise approach selected slope, land cover, temperature, net primary productivity, latitude and longitude as environmental covariates (500 m resolution). The validation of the model (applied on 15% of the dataset), gave an R2 of 0.27. We observed that most organic soils were under-predicted by the model and that soils of Scandinavia were also poorly predicted. The model showed an RMSE of 42 g kg-1 for mineral soils and of 287 g kg-1 for organic soils. The map of predicted OC content showed the lowest values in Mediterranean countries and in croplands across Europe, whereas highest OC content were predicted in wetlands, woodlands and in mountainous areas. The map of standard error of the OC model predictions showed high values in northern latitudes, wetlands, moors and heathlands, whereas low uncertainty was mostly found in croplands. A comparison of our results with the map of Jones et al. (2005) showed a general agreement on the prediction of mineral soils' OC content, most probably because the models use some common covariates, namely land cover and temperature. Our model however failed to predict values of OC content greater than 200 g kg-1, which we explain by the imposed unimodal distribution of our model, whose mean is tilted towards the majority of soils, which are mineral. Finally, average OC content predictions for each land cover class compared well between models, with our model always showing smaller standard deviations. We concluded that the chosen model and covariates are appropriate for the prediction of OC content in European mineral soils. We presented in this work the first map of topsoil OC content at European scale based on a harmonised soil dataset. The associated uncertainty map shall support the end-users in a careful use of the predictions.

  20. Prediction models for CO2 emission in Malaysia using best subsets regression and multi-linear regression

    NASA Astrophysics Data System (ADS)

    Tan, C. H.; Matjafri, M. Z.; Lim, H. S.

    2015-10-01

    This paper presents the prediction models which analyze and compute the CO2 emission in Malaysia. Each prediction model for CO2 emission will be analyzed based on three main groups which is transportation, electricity and heat production as well as residential buildings and commercial and public services. The prediction models were generated using data obtained from World Bank Open Data. Best subset method will be used to remove irrelevant data and followed by multi linear regression to produce the prediction models. From the results, high R-square (prediction) value was obtained and this implies that the models are reliable to predict the CO2 emission by using specific data. In addition, the CO2 emissions from these three groups are forecasted using trend analysis plots for observation purpose.

  1. [Rapid determination of componential contents and calorific value of selected agricultural biomass feedstocks using spectroscopic technology].

    PubMed

    Sheng, Kui-Chuan; Shen, Ying-Ying; Yang, Hai-Qing; Wang, Wen-Jin; Luo, Wei-Qiang

    2012-10-01

    Rapid determination of biomass feedstock properties is of value for the production of biomass densification briquetting fuel with high quality. In the present study, visible and near-infrared (Vis-NIR) spectroscopy was employed to build prediction models of componential contents, i. e. moisture, ash, volatile matter and fixed-carbon, and calorific value of three selected species of agricultural biomass feedstock, i. e. pine wood, cedar wood, and cotton stalk. The partial least squares (PLS) cross validation results showed that compared with original reflection spectra, PLS regression models developed for first derivative spectra produced higher prediction accuracy with coefficients of determination (R2) of 0.97, 0.94 and 0.90, and residual prediction deviation (RPD) of 6.57, 4.00 and 3.01 for ash, volatile matter and moisture, respectively. Good prediction accuracy was achieved with R2 of 0.85 and RPD of 2.55 for fixed carbon, and R2 of 0.87 and RPD of 2.73 for calorific value. It is concluded that the Vis-NIR spectroscopy is promising as an alternative of traditional proximate analysis for rapid determination of componential contents and calorific value of agricultural biomass feedstock

  2. Risk Prediction Models in Psychiatry: Toward a New Frontier for the Prevention of Mental Illnesses.

    PubMed

    Bernardini, Francesco; Attademo, Luigi; Cleary, Sean D; Luther, Charles; Shim, Ruth S; Quartesan, Roberto; Compton, Michael T

    2017-05-01

    We conducted a systematic, qualitative review of risk prediction models designed and tested for depression, bipolar disorder, generalized anxiety disorder, posttraumatic stress disorder, and psychotic disorders. Our aim was to understand the current state of research on risk prediction models for these 5 disorders and thus future directions as our field moves toward embracing prediction and prevention. Systematic searches of the entire MEDLINE electronic database were conducted independently by 2 of the authors (from 1960 through 2013) in July 2014 using defined search criteria. Search terms included risk prediction, predictive model, or prediction model combined with depression, bipolar, manic depressive, generalized anxiety, posttraumatic, PTSD, schizophrenia, or psychosis. We identified 268 articles based on the search terms and 3 criteria: published in English, provided empirical data (as opposed to review articles), and presented results pertaining to developing or validating a risk prediction model in which the outcome was the diagnosis of 1 of the 5 aforementioned mental illnesses. We selected 43 original research reports as a final set of articles to be qualitatively reviewed. The 2 independent reviewers abstracted 3 types of data (sample characteristics, variables included in the model, and reported model statistics) and reached consensus regarding any discrepant abstracted information. Twelve reports described models developed for prediction of major depressive disorder, 1 for bipolar disorder, 2 for generalized anxiety disorder, 4 for posttraumatic stress disorder, and 24 for psychotic disorders. Most studies reported on sensitivity, specificity, positive predictive value, negative predictive value, and area under the (receiver operating characteristic) curve. Recent studies demonstrate the feasibility of developing risk prediction models for psychiatric disorders (especially psychotic disorders). The field must now advance by (1) conducting more large-scale, longitudinal studies pertaining to depression, bipolar disorder, anxiety disorders, and other psychiatric illnesses; (2) replicating and carrying out external validations of proposed models; (3) further testing potential selective and indicated preventive interventions; and (4) evaluating effectiveness of such interventions in the context of risk stratification using risk prediction models. © Copyright 2017 Physicians Postgraduate Press, Inc.

  3. Poisson Mixture Regression Models for Heart Disease Prediction.

    PubMed

    Mufudza, Chipo; Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.

  4. Poisson Mixture Regression Models for Heart Disease Prediction

    PubMed Central

    Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611

  5. High Throughput pharmacokinetic modeling using computationally predicted parameter values: dissociation constants (TDS)

    EPA Science Inventory

    Estimates of the ionization association and dissociation constant (pKa) are vital to modeling the pharmacokinetic behavior of chemicals in vivo. Methodologies for the prediction of compound sequestration in specific tissues using partition coefficients require a parameter that ch...

  6. The prediction of speech intelligibility in classrooms using computer models

    NASA Astrophysics Data System (ADS)

    Dance, Stephen; Dentoni, Roger

    2005-04-01

    Two classrooms were measured and modeled using the industry standard CATT model and the Web model CISM. Sound levels, reverberation times and speech intelligibility were predicted in these rooms using data for 7 octave bands. It was found that overall sound levels could be predicted to within 2 dB by both models. However, overall reverberation time was found to be accurately predicted by CATT 14% prediction error, but not by CISM, 41% prediction error. This compared to a 30% prediction error using classical theory. As for STI: CATT predicted within 11%, CISM to within 3% and Sabine to within 28% of the measured value. It should be noted that CISM took approximately 15 seconds to calculate, while CATT took 15 minutes. CISM is freely available on-line at www.whyverne.co.uk/acoustics/Pages/cism/cism.html

  7. A simple rain attenuation model for earth-space radio links operating at 10-35 GHz

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Yon, K. M.

    1986-01-01

    The simple attenuation model has been improved from an earlier version and now includes the effect of wave polarization. The model is for the prediction of rain attenuation statistics on earth-space communication links operating in the 10-35 GHz band. Simple calculations produce attenuation values as a function of average rain rate. These together with rain rate statistics (either measured or predicted) can be used to predict annual rain attenuation statistics. In this paper model predictions are compared to measured data from a data base of 62 experiments performed in the U.S., Europe, and Japan. Comparisons are also made to predictions from other models.

  8. Parallel Representation of Value-Based and Finite State-Based Strategies in the Ventral and Dorsal Striatum

    PubMed Central

    Ito, Makoto; Doya, Kenji

    2015-01-01

    Previous theoretical studies of animal and human behavioral learning have focused on the dichotomy of the value-based strategy using action value functions to predict rewards and the model-based strategy using internal models to predict environmental states. However, animals and humans often take simple procedural behaviors, such as the “win-stay, lose-switch” strategy without explicit prediction of rewards or states. Here we consider another strategy, the finite state-based strategy, in which a subject selects an action depending on its discrete internal state and updates the state depending on the action chosen and the reward outcome. By analyzing choice behavior of rats in a free-choice task, we found that the finite state-based strategy fitted their behavioral choices more accurately than value-based and model-based strategies did. When fitted models were run autonomously with the same task, only the finite state-based strategy could reproduce the key feature of choice sequences. Analyses of neural activity recorded from the dorsolateral striatum (DLS), the dorsomedial striatum (DMS), and the ventral striatum (VS) identified significant fractions of neurons in all three subareas for which activities were correlated with individual states of the finite state-based strategy. The signal of internal states at the time of choice was found in DMS, and for clusters of states was found in VS. In addition, action values and state values of the value-based strategy were encoded in DMS and VS, respectively. These results suggest that both the value-based strategy and the finite state-based strategy are implemented in the striatum. PMID:26529522

  9. Design Space Toolbox V2: Automated Software Enabling a Novel Phenotype-Centric Modeling Strategy for Natural and Synthetic Biological Systems

    PubMed Central

    Lomnitz, Jason G.; Savageau, Michael A.

    2016-01-01

    Mathematical models of biochemical systems provide a means to elucidate the link between the genotype, environment, and phenotype. A subclass of mathematical models, known as mechanistic models, quantitatively describe the complex non-linear mechanisms that capture the intricate interactions between biochemical components. However, the study of mechanistic models is challenging because most are analytically intractable and involve large numbers of system parameters. Conventional methods to analyze them rely on local analyses about a nominal parameter set and they do not reveal the vast majority of potential phenotypes possible for a given system design. We have recently developed a new modeling approach that does not require estimated values for the parameters initially and inverts the typical steps of the conventional modeling strategy. Instead, this approach relies on architectural features of the model to identify the phenotypic repertoire and then predict values for the parameters that yield specific instances of the system that realize desired phenotypic characteristics. Here, we present a collection of software tools, the Design Space Toolbox V2 based on the System Design Space method, that automates (1) enumeration of the repertoire of model phenotypes, (2) prediction of values for the parameters for any model phenotype, and (3) analysis of model phenotypes through analytical and numerical methods. The result is an enabling technology that facilitates this radically new, phenotype-centric, modeling approach. We illustrate the power of these new tools by applying them to a synthetic gene circuit that can exhibit multi-stability. We then predict values for the system parameters such that the design exhibits 2, 3, and 4 stable steady states. In one example, inspection of the basins of attraction reveals that the circuit can count between three stable states by transient stimulation through one of two input channels: a positive channel that increases the count, and a negative channel that decreases the count. This example shows the power of these new automated methods to rapidly identify behaviors of interest and efficiently predict parameter values for their realization. These tools may be applied to understand complex natural circuitry and to aid in the rational design of synthetic circuits. PMID:27462346

  10. Model Adaptation in Parametric Space for POD-Galerkin Models

    NASA Astrophysics Data System (ADS)

    Gao, Haotian; Wei, Mingjun

    2017-11-01

    The development of low-order POD-Galerkin models is largely motivated by the expectation to use the model developed with a set of parameters at their native values to predict the dynamic behaviors of the same system under different parametric values, in other words, a successful model adaptation in parametric space. However, most of time, even small deviation of parameters from their original value may lead to large deviation or unstable results. It has been shown that adding more information (e.g. a steady state, mean value of a different unsteady state, or an entire different set of POD modes) may improve the prediction of flow with other parametric states. For a simple case of the flow passing a fixed cylinder, an orthogonal mean mode at a different Reynolds number may stabilize the POD-Galerkin model when Reynolds number is changed. For a more complicated case of the flow passing an oscillatory cylinder, a global POD-Galerkin model is first applied to handle the moving boundaries, then more information (e.g. more POD modes) is required to predicate the flow under different oscillatory frequencies. Supported by ARL.

  11. Quantitative structure-property relationship modeling of remote liposome loading of drugs.

    PubMed

    Cern, Ahuva; Golbraikh, Alexander; Sedykh, Aleck; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram

    2012-06-10

    Remote loading of liposomes by trans-membrane gradients is used to achieve therapeutically efficacious intra-liposome concentrations of drugs. We have developed Quantitative Structure Property Relationship (QSPR) models of remote liposome loading for a data set including 60 drugs studied in 366 loading experiments internally or elsewhere. Both experimental conditions and computed chemical descriptors were employed as independent variables to predict the initial drug/lipid ratio (D/L) required to achieve high loading efficiency. Both binary (to distinguish high vs. low initial D/L) and continuous (to predict real D/L values) models were generated using advanced machine learning approaches and 5-fold external validation. The external prediction accuracy for binary models was as high as 91-96%; for continuous models the mean coefficient R(2) for regression between predicted versus observed values was 0.76-0.79. We conclude that QSPR models can be used to identify candidate drugs expected to have high remote loading capacity while simultaneously optimizing the design of formulation experiments. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Estimating suspended sediment load with multivariate adaptive regression spline, teaching-learning based optimization, and artificial bee colony models.

    PubMed

    Yilmaz, Banu; Aras, Egemen; Nacar, Sinan; Kankal, Murat

    2018-05-23

    The functional life of a dam is often determined by the rate of sediment delivery to its reservoir. Therefore, an accurate estimate of the sediment load in rivers with dams is essential for designing and predicting a dam's useful lifespan. The most credible method is direct measurements of sediment input, but this can be very costly and it cannot always be implemented at all gauging stations. In this study, we tested various regression models to estimate suspended sediment load (SSL) at two gauging stations on the Çoruh River in Turkey, including artificial bee colony (ABC), teaching-learning-based optimization algorithm (TLBO), and multivariate adaptive regression splines (MARS). These models were also compared with one another and with classical regression analyses (CRA). Streamflow values and previously collected data of SSL were used as model inputs with predicted SSL data as output. Two different training and testing dataset configurations were used to reinforce the model accuracy. For the MARS method, the root mean square error value was found to range between 35% and 39% for the test two gauging stations, which was lower than errors for other models. Error values were even lower (7% to 15%) using another dataset. Our results indicate that simultaneous measurements of streamflow with SSL provide the most effective parameter for obtaining accurate predictive models and that MARS is the most accurate model for predicting SSL. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Application of the migration models implemented in the decision system MOIRA-PLUS to assess the long term behaviour of (137)Cs in water and fish of the Baltic Sea.

    PubMed

    Monte, Luigi

    2014-08-01

    This work presents and discusses the results of an application of the contaminant migration models implemented in the decision support system MOIRA-PLUS to simulate the time behaviour of the concentrations of (137)Cs of Chernobyl origin in water and fish of the Baltic Sea. The results of the models were compared with the extensive sets of highly reliable empirical data of radionuclide contamination available from international databases and covering a period of, approximately, twenty years. The model application involved three main phases: a) the customisation performed by using hydrological, morphometric and water circulation data obtained from the literature; b) a blind test of the model results, in the sense that the models made use of default values of the migration parameters to predict the dynamics of the contaminant in the environmental components; and c) the adjustment of the model parameter values to improve the agreement of the predictions with the empirical data. The results of the blind test showed that the models successfully predicted the empirical contamination values within the expected range of uncertainty of the predictions (confidence level at 68% of approximately a factor 2). The parameter adjustment can be helpful for the assessment of the fluxes of water circulating among the main sub-basins of the Baltic Sea, substantiating the usefulness of radionuclides to trace the movement of masses of water in seas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Determination of the Spatial Distribution in Hydraulic Conductivity Using Genetic Algorithm Optimization

    NASA Astrophysics Data System (ADS)

    Aksoy, A.; Lee, J. H.; Kitanidis, P. K.

    2016-12-01

    Heterogeneity in hydraulic conductivity (K) impacts the transport and fate of contaminants in subsurface as well as design and operation of managed aquifer recharge (MAR) systems. Recently, improvements in computational resources and availability of big data through electrical resistivity tomography (ERT) and remote sensing have provided opportunities to better characterize the subsurface. Yet, there is need to improve prediction and evaluation methods in order to obtain information from field measurements for better field characterization. In this study, genetic algorithm optimization, which has been widely used in optimal aquifer remediation designs, was used to determine the spatial distribution of K. A hypothetical 2 km by 2 km aquifer was considered. A genetic algorithm library, PGAPack, was linked with a fast Fourier transform based random field generator as well as a groundwater flow and contaminant transport simulation model (BIO2D-KE). The objective of the optimization model was to minimize the total squared error between measured and predicted field values. It was assumed measured K values were available through ERT. Performance of genetic algorithm in predicting the distribution of K was tested for different cases. In the first one, it was assumed that observed K values were evaluated using the random field generator only as the forward model. In the second case, as well as K-values obtained through ERT, measured head values were incorporated into evaluation in which BIO2D-KE and random field generator were used as the forward models. Lastly, tracer concentrations were used as additional information in the optimization model. Initial results indicated enhanced performance when random field generator and BIO2D-KE are used in combination in predicting the spatial distribution in K.

  15. Effective Acceleration Model for the Arrival Time of Interplanetary Shocks driven by Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Paouris, Evangelos; Mavromichalaki, Helen

    2017-12-01

    In a previous work (Paouris and Mavromichalaki in Solar Phys. 292, 30, 2017), we presented a total of 266 interplanetary coronal mass ejections (ICMEs) with as much information as possible. We developed a new empirical model for estimating the acceleration of these events in the interplanetary medium from this analysis. In this work, we present a new approach on the effective acceleration model (EAM) for predicting the arrival time of the shock that preceds a CME, using data of a total of 214 ICMEs. For the first time, the projection effects of the linear speed of CMEs are taken into account in this empirical model, which significantly improves the prediction of the arrival time of the shock. In particular, the mean value of the time difference between the observed time of the shock and the predicted time was equal to +3.03 hours with a mean absolute error (MAE) of 18.58 hours and a root mean squared error (RMSE) of 22.47 hours. After the improvement of this model, the mean value of the time difference is decreased to -0.28 hours with an MAE of 17.65 hours and an RMSE of 21.55 hours. This improved version was applied to a set of three recent Earth-directed CMEs reported in May, June, and July of 2017, and we compare our results with the values predicted by other related models.

  16. Distribution drivers and physiological responses in geothermal bryophyte communities.

    PubMed

    García, Estefanía Llaneza; Rosenstiel, Todd N; Graves, Camille; Shortlidge, Erin E; Eppley, Sarah M

    2016-04-01

    Our ability to explain community structure rests on our ability to define the importance of ecological niches, including realized ecological niches, in shaping communities, but few studies of plant distributions have combined predictive models with physiological measures. Using field surveys and statistical modeling, we predicted distribution drivers in geothermal bryophyte (moss) communities of Lassen Volcanic National Park (California, USA). In the laboratory, we used drying and rewetting experiments to test whether the strong species-specific effects of relative humidity on distributions predicted by the models were correlated with physiological characters. We found that the three most common bryophytes in geothermal communities were significantly affected by three distinct distribution drivers: temperature, light, and relative humidity. Aulacomnium palustre, whose distribution is significantly affected by relative humidity according to our model, and which occurs in high-humidity sites, showed extreme signs of stress after drying and never recovered optimal values of PSII efficiency after rewetting. Campylopus introflexus, whose distribution is not affected by humidity according to our model, was able to maintain optimal values of PSII efficiency for 48 hr at 50% water loss and recovered optimal values of PSII efficiency after rewetting. Our results suggest that species-specific environmental stressors tightly constrain the ecological niches of geothermal bryophytes. Tests of tolerance to drying in two bryophyte species corresponded with model predictions of the comparative importance of relative humidity as distribution drivers for these species. © 2016 Botanical Society of America.

  17. [Application of ARIMA model on prediction of malaria incidence].

    PubMed

    Jing, Xia; Hua-Xun, Zhang; Wen, Lin; Su-Jian, Pei; Ling-Cong, Sun; Xiao-Rong, Dong; Mu-Min, Cao; Dong-Ni, Wu; Shunxiang, Cai

    2016-01-29

    To predict the incidence of local malaria of Hubei Province applying the Autoregressive Integrated Moving Average model (ARIMA). SPSS 13.0 software was applied to construct the ARIMA model based on the monthly local malaria incidence in Hubei Province from 2004 to 2009. The local malaria incidence data of 2010 were used for model validation and evaluation. The model of ARIMA (1, 1, 1) (1, 1, 0) 12 was tested as relatively the best optimal with the AIC of 76.085 and SBC of 84.395. All the actual incidence data were in the range of 95% CI of predicted value of the model. The prediction effect of the model was acceptable. The ARIMA model could effectively fit and predict the incidence of local malaria of Hubei Province.

  18. Clinical Decision Support Model to Predict Occlusal Force in Bruxism Patients.

    PubMed

    Thanathornwong, Bhornsawan; Suebnukarn, Siriwan

    2017-10-01

    The aim of this study was to develop a decision support model for the prediction of occlusal force from the size and color of articulating paper markings in bruxism patients. We used the information from the datasets of 30 bruxism patients in which digital measurements of the size and color of articulating paper markings (12-µm Hanel; Coltene/Whaledent GmbH, Langenau, Germany) on canine protected hard stabilization splints were measured in pixels (P) and in red (R), green (G), and blue (B) values using Adobe Photoshop software (Adobe Systems, San Jose, CA, USA). The occlusal force (F) was measured using T-Scan III (Tekscan Inc., South Boston, MA, USA). The multiple regression equation was applied to predict F from the P and RGB. Model evaluation was performed using the datasets from 10 new patients. The patient's occlusal force measured by T-Scan III was used as a 'gold standard' to compare with the occlusal force predicted by the multiple regression model. The results demonstrate that the correlation between the occlusal force and the pixels and RGB of the articulating paper markings was positive (F = 1.62×P + 0.07×R -0.08×G + 0.08×B + 4.74; R 2 = 0.34). There was a high degree of agreement between the occlusal force of the patient measured using T-Scan III and the occlusal force predicted by the model (kappa value = 0.82). The results obtained demonstrate that the multiple regression model can predict the occlusal force using the digital values for the size and color of the articulating paper markings in bruxism patients.

  19. Clinical Decision Support Model to Predict Occlusal Force in Bruxism Patients

    PubMed Central

    Thanathornwong, Bhornsawan

    2017-01-01

    Objectives The aim of this study was to develop a decision support model for the prediction of occlusal force from the size and color of articulating paper markings in bruxism patients. Methods We used the information from the datasets of 30 bruxism patients in which digital measurements of the size and color of articulating paper markings (12-µm Hanel; Coltene/Whaledent GmbH, Langenau, Germany) on canine protected hard stabilization splints were measured in pixels (P) and in red (R), green (G), and blue (B) values using Adobe Photoshop software (Adobe Systems, San Jose, CA, USA). The occlusal force (F) was measured using T-Scan III (Tekscan Inc., South Boston, MA, USA). The multiple regression equation was applied to predict F from the P and RGB. Model evaluation was performed using the datasets from 10 new patients. The patient's occlusal force measured by T-Scan III was used as a ‘gold standard’ to compare with the occlusal force predicted by the multiple regression model. Results The results demonstrate that the correlation between the occlusal force and the pixels and RGB of the articulating paper markings was positive (F = 1.62×P + 0.07×R –0.08×G + 0.08×B + 4.74; R2 = 0.34). There was a high degree of agreement between the occlusal force of the patient measured using T-Scan III and the occlusal force predicted by the model (kappa value = 0.82). Conclusions The results obtained demonstrate that the multiple regression model can predict the occlusal force using the digital values for the size and color of the articulating paper markings in bruxism patients. PMID:29181234

  20. Predictive accuracy of a ground-water model--Lessons from a postaudit

    USGS Publications Warehouse

    Konikow, Leonard F.

    1986-01-01

    Hydrogeologic studies commonly include the development, calibration, and application of a deterministic simulation model. To help assess the value of using such models to make predictions, a postaudit was conducted on a previously studied area in the Salt River and lower Santa Cruz River basins in central Arizona. A deterministic, distributed-parameter model of the ground-water system in these alluvial basins was calibrated by Anderson (1968) using about 40 years of data (1923–64). The calibrated model was then used to predict future water-level changes during the next 10 years (1965–74). Examination of actual water-level changes in 77 wells from 1965–74 indicates a poor correlation between observed and predicted water-level changes. The differences have a mean of 73 ft that is, predicted declines consistently exceeded those observed and a standard deviation of 47 ft. The bias in the predicted water-level change can be accounted for by the large error in the assumed total pumpage during the prediction period. However, the spatial distribution of errors in predicted water-level change does not correlate with the spatial distribution of errors in pumpage. Consequently, the lack of precision probably is not related only to errors in assumed pumpage, but may indicate the presence of other sources of error in the model, such as the two-dimensional representation of a three-dimensional problem or the lack of consideration of land-subsidence processes. This type of postaudit is a valuable method of verifying a model, and an evaluation of predictive errors can provide an increased understanding of the system and aid in assessing the value of undertaking development of a revised model.

  1. Key Technology of Real-Time Road Navigation Method Based on Intelligent Data Research

    PubMed Central

    Tang, Haijing; Liang, Yu; Huang, Zhongnan; Wang, Taoyi; He, Lin; Du, Yicong; Ding, Gangyi

    2016-01-01

    The effect of traffic flow prediction plays an important role in routing selection. Traditional traffic flow forecasting methods mainly include linear, nonlinear, neural network, and Time Series Analysis method. However, all of them have some shortcomings. This paper analyzes the existing algorithms on traffic flow prediction and characteristics of city traffic flow and proposes a road traffic flow prediction method based on transfer probability. This method first analyzes the transfer probability of upstream of the target road and then makes the prediction of the traffic flow at the next time by using the traffic flow equation. Newton Interior-Point Method is used to obtain the optimal value of parameters. Finally, it uses the proposed model to predict the traffic flow at the next time. By comparing the existing prediction methods, the proposed model has proven to have good performance. It can fast get the optimal value of parameters faster and has higher prediction accuracy, which can be used to make real-time traffic flow prediction. PMID:27872637

  2. An integrated prediction and optimization model of biogas production system at a wastewater treatment facility.

    PubMed

    Akbaş, Halil; Bilgen, Bilge; Turhan, Aykut Melih

    2015-11-01

    This study proposes an integrated prediction and optimization model by using multi-layer perceptron neural network and particle swarm optimization techniques. Three different objective functions are formulated. The first one is the maximization of methane percentage with single output. The second one is the maximization of biogas production with single output. The last one is the maximization of biogas quality and biogas production with two outputs. Methane percentage, carbon dioxide percentage, and other contents' percentage are used as the biogas quality criteria. Based on the formulated models and data from a wastewater treatment facility, optimal values of input variables and their corresponding maximum output values are found out for each model. It is expected that the application of the integrated prediction and optimization models increases the biogas production and biogas quality, and contributes to the quantity of electricity production at the wastewater treatment facility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Integrating qPLM and biomechanical test data with an anisotropic fiber distribution model and predictions of TGF-β1 and IGF-1 regulation of articular cartilage fiber modulus

    PubMed Central

    Stender, Michael E.; Raub, Christopher B.; Yamauchi, Kevin A.; Shirazi, Reza; Vena, Pasquale; Sah, Robert L.; Hazelwood, Scott J.; Klisch, Stephen M.

    2013-01-01

    A continuum mixture model with distinct collagen (COL) and glycosaminoglycan (GAG) elastic constituents was developed for the solid matrix of immature bovine articular cartilage. A continuous COL fiber volume fraction distribution function and a true COL fiber elastic modulus (Ef) were used. Quantitative polarized light microscopy (qPLM) methods were developed to account for the relatively high cell density of immature articular cartilage and used with a novel algorithm that constructs a 3D distribution function from 2D qPLM data. For specimens untreated and cultured in vitro, most model parameters were specified from qPLM analysis and biochemical assay results; consequently, Ef was predicted using an optimization to measured mechanical properties in uniaxial tension and unconfined compression. Analysis of qPLM data revealed a highly anisotropic fiber distribution, with principal fiber orientation parallel to the surface layer. For untreated samples, predicted Ef values were 175 and 422 MPa for superficial (S) and middle (M) zone layers, respectively. TGF-β1 treatment was predicted to increase and decrease Ef values for the S and M layers to 281 and 309 MPa, respectively. IGF-1 treatment was predicted to decrease Ef values for the S and M layers to 22 and 26 MPa, respectively. A novel finding was that distinct native depth-dependent fiber modulus properties were modulated to nearly homogeneous values by TGF-β1 and IGF-1 treatments, with modulated values strongly dependent on treatment. PMID:23266906

  4. Predicting critical micelle concentration and micelle molecular weight of polysorbate 80 using compendial methods.

    PubMed

    Braun, Alexandra C; Ilko, David; Merget, Benjamin; Gieseler, Henning; Germershaus, Oliver; Holzgrabe, Ulrike; Meinel, Lorenz

    2015-08-01

    This manuscript addresses the capability of compendial methods in controlling polysorbate 80 (PS80) functionality. Based on the analysis of sixteen batches, functionality related characteristics (FRC) including critical micelle concentration (CMC), cloud point, hydrophilic-lipophilic balance (HLB) value and micelle molecular weight were correlated to chemical composition including fatty acids before and after hydrolysis, content of non-esterified polyethylene glycols and sorbitan polyethoxylates, sorbitan- and isosorbide polyethoxylate fatty acid mono- and diesters, polyoxyethylene diesters, and peroxide values. Batches from some suppliers had a high variability in functionality related characteristic (FRC), questioning the ability of the current monograph in controlling these. Interestingly, the combined use of the input parameters oleic acid content and peroxide value - both of which being monographed methods - resulted in a model adequately predicting CMC. Confining the batches to those complying with specifications for peroxide value proved oleic acid content alone as being predictive for CMC. Similarly, a four parameter model based on chemical analyses alone was instrumental in predicting the molecular weight of PS80 micelles. Improved models based on analytical outcome from fingerprint analyses are also presented. A road map controlling PS80 batches with respect to FRC and based on chemical analyses alone is provided for the formulator. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Evaluation of the predictive capability of coupled thermo-hydro-mechanical models for a heated bentonite/clay system (HE-E) in the Mont Terri Rock Laboratory

    DOE PAGES

    Garitte, B.; Shao, H.; Wang, X. R.; ...

    2017-01-09

    Process understanding and parameter identification using numerical methods based on experimental findings are a key aspect of the international cooperative project DECOVALEX. Comparing the predictions from numerical models against experimental results increases confidence in the site selection and site evaluation process for a radioactive waste repository in deep geological formations. In the present phase of the project, DECOVALEX-2015, eight research teams have developed and applied models for simulating an in-situ heater experiment HE-E in the Opalinus Clay in the Mont Terri Rock Laboratory in Switzerland. The modelling task was divided into two study stages, related to prediction and interpretation ofmore » the experiment. A blind prediction of the HE-E experiment was performed based on calibrated parameter values for both the Opalinus Clay, that were based on the modelling of another in-situ experiment (HE-D), and modelling of laboratory column experiments on MX80 granular bentonite and a sand/bentonite mixture .. After publication of the experimental data, additional coupling functions were analysed and considered in the different models. Moreover, parameter values were varied to interpret the measured temperature, relative humidity and pore pressure evolution. The analysis of the predictive and interpretative results reveals the current state of understanding and predictability of coupled THM behaviours associated with geologic nuclear waste disposal in clay formations.« less

  6. Evaluation of the predictive capability of coupled thermo-hydro-mechanical models for a heated bentonite/clay system (HE-E) in the Mont Terri Rock Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garitte, B.; Shao, H.; Wang, X. R.

    Process understanding and parameter identification using numerical methods based on experimental findings are a key aspect of the international cooperative project DECOVALEX. Comparing the predictions from numerical models against experimental results increases confidence in the site selection and site evaluation process for a radioactive waste repository in deep geological formations. In the present phase of the project, DECOVALEX-2015, eight research teams have developed and applied models for simulating an in-situ heater experiment HE-E in the Opalinus Clay in the Mont Terri Rock Laboratory in Switzerland. The modelling task was divided into two study stages, related to prediction and interpretation ofmore » the experiment. A blind prediction of the HE-E experiment was performed based on calibrated parameter values for both the Opalinus Clay, that were based on the modelling of another in-situ experiment (HE-D), and modelling of laboratory column experiments on MX80 granular bentonite and a sand/bentonite mixture .. After publication of the experimental data, additional coupling functions were analysed and considered in the different models. Moreover, parameter values were varied to interpret the measured temperature, relative humidity and pore pressure evolution. The analysis of the predictive and interpretative results reveals the current state of understanding and predictability of coupled THM behaviours associated with geologic nuclear waste disposal in clay formations.« less

  7. Expansion of a PBPK model to predict disposition in pregnant women of drugs cleared via multiple CYP enzymes, including CYP2B6, CYP2C9 and CYP2C19

    PubMed Central

    Ke, Alice Ban; Nallani, Srikanth C; Zhao, Ping; Rostami-Hodjegan, Amin; Unadkat, Jashvant D

    2014-01-01

    Aim Conducting PK studies in pregnant women is challenging. Therefore, we asked if a physiologically-based pharmacokinetic (PBPK) model could be used to predict the disposition in pregnant women of drugs cleared by multiple CYP enzymes. Methods We expanded and verified our previously published pregnancy PBPK model by incorporating hepatic CYP2B6 induction (based on in vitro data), CYP2C9 induction (based on phenytoin PK) and CYP2C19 suppression (based on proguanil PK), into the model. This model accounted for gestational age-dependent changes in maternal physiology and hepatic CYP3A, CYP1A2 and CYP2D6 activity. For verification, the pregnancy-related changes in the disposition of methadone (cleared by CYP2B6, 3A and 2C19) and glyburide (cleared by CYP3A, 2C9 and 2C19) were predicted. Results Predicted mean post-partum to second trimester (PP : T2) ratios of methadone AUC, Cmax and Cmin were 1.9, 1.7 and 2.0, vs. observed values 2.0, 2.0 and 2.6, respectively. Predicted mean post-partum to third trimester (PP : T3) ratios of methadone AUC, Cmax and Cmin were 2.1, 2.0 and 2.4, vs. observed values 1.7, 1.7 and 1.8, respectively. Predicted PP : T3 ratios of glyburide AUC, Cmax and Cmin were 2.6, 2.2 and 7.0 vs. observed values 2.1, 2.2 and 3.2, respectively. Conclusions Our PBPK model integrating prior physiological knowledge, in vitro and in vivo data, allowed successful prediction of methadone and glyburide disposition during pregnancy. We propose this expanded PBPK model can be used to evaluate different dosing scenarios, during pregnancy, of drugs cleared by single or multiple CYP enzymes. PMID:23834474

  8. Expansion of a PBPK model to predict disposition in pregnant women of drugs cleared via multiple CYP enzymes, including CYP2B6, CYP2C9 and CYP2C19.

    PubMed

    Ke, Alice Ban; Nallani, Srikanth C; Zhao, Ping; Rostami-Hodjegan, Amin; Unadkat, Jashvant D

    2014-03-01

    Conducting PK studies in pregnant women is challenging. Therefore, we asked if a physiologically-based pharmacokinetic (PBPK) model could be used to predict the disposition in pregnant women of drugs cleared by multiple CYP enzymes. We expanded and verified our previously published pregnancy PBPK model by incorporating hepatic CYP2B6 induction (based on in vitro data), CYP2C9 induction (based on phenytoin PK) and CYP2C19 suppression (based on proguanil PK), into the model. This model accounted for gestational age-dependent changes in maternal physiology and hepatic CYP3A, CYP1A2 and CYP2D6 activity. For verification, the pregnancy-related changes in the disposition of methadone (cleared by CYP2B6, 3A and 2C19) and glyburide (cleared by CYP3A, 2C9 and 2C19) were predicted. Predicted mean post-partum to second trimester (PP : T2 ) ratios of methadone AUC, Cmax and Cmin were 1.9, 1.7 and 2.0, vs. observed values 2.0, 2.0 and 2.6, respectively. Predicted mean post-partum to third trimester (PP : T3 ) ratios of methadone AUC, Cmax and Cmin were 2.1, 2.0 and 2.4, vs. observed values 1.7, 1.7 and 1.8, respectively. Predicted PP : T3 ratios of glyburide AUC, Cmax and Cmin were 2.6, 2.2 and 7.0 vs. observed values 2.1, 2.2 and 3.2, respectively. Our PBPK model integrating prior physiological knowledge, in vitro and in vivo data, allowed successful prediction of methadone and glyburide disposition during pregnancy. We propose this expanded PBPK model can be used to evaluate different dosing scenarios, during pregnancy, of drugs cleared by single or multiple CYP enzymes. © 2013 The British Pharmacological Society.

  9. [Establishing a noninvasive prediction model for type 2 diabetes mellitus based on a rural Chinese population].

    PubMed

    Zhang, H Y; Shi, W H; Zhang, M; Yin, L; Pang, C; Feng, T P; Zhang, L; Ren, Y C; Wang, B Y; Yang, X Y; Zhou, J M; Han, C Y; Zhao, Y; Zhao, J Z; Hu, D S

    2016-05-01

    To provide a noninvasive type 2 diabetes mellitus (T2DM) prediction model for a rural Chinese population. From July to August, 2007 and July to August, 2008, a total of 20 194 participants aged ≥18 years were selected by cluster sampling technique from a rural population in two townships of Henan province, China. Data were collected by questionnaire interview, anthropometric measurement, and fasting plasma glucose and lipid profile examination. A total 17 265 participants were followed up from July to August, 2013 and July to October, 2014. Finally, 12 285 participants were selected for analysis. Data for these participants were randomly divided into a derivation group (derivation dataset, n= 6 143) and validation group (validation dataset, n=6 142) by 1∶1, respectively. Randomization was carried out by the use of computer-generated random numbers. A Cox regression model was used to analyze risk factors of T2DM in the derivation dataset. A T2DM prediction model was established by multiplying β by 10 for each significant variable. After the total score was calculated by the model, analysis of the receiver operating characteristic (ROC) curve was performed. The area under the ROC curve (AUC) was used for evaluating model predictability. Furthermore, the model's predictability was validated in the validation dataset and compared with the Finnish Diabetes Risk Score (FINDRISC) model. A total 779 of 12 285 participants developed T2DM during the 6-year study period. The incidence rate was 6.12% in the derivation dataset (n=376) and 6.56% in the validation dataset (n=403). The difference was not statistically significant (χ(2)=1.00, P=0.316). A total of four noninvasive T2DM prediction models were established using the Cox regression model. The ROCs of the risk score calculated by the prediction models indicated that the AUCs of these models were similar (0.67-0.70). The AUC and Youden index of model 4 was the highest. The optimal cut-off value, sensitivity, specificity, and Youden index were scores of 25, 65.96%, 66.47%, and 0.32, respectively. Age, sleep time, BMI, waist circumference, and hypertension were selected as predictive variables. Using age<30 years as reference, β values were 1.07, 1.58, and 1.67 and assigned scores were 11, 16, and 17 for age groups 30-44, 45-59, and ≥60 years, respectively. Using sleep time<8.0 h/d as reference, the β value and assigned score were 0.27 and 3, respectively, for sleep time ≥10.0 h/d. Using BMI 18.5-23.9 kg/m(2) as reference, β values were 0.53 and 1.00 and assigned scores 5 and 10, respectively, for BMI 24.0-27.9 kg/m(2), and ≥28.0 kg/m(2). Using waist circumference <85 cm for males/< 80 cm for females as reference, β values were 0.44 and 0.65 and assigned scores 4 and 7, respectively, for 85 cm ≤ waist circumference <90 cm for males/80 cm≤ waist circumference <85 cm for females, and waist circumference ≥90 cm for males/≥85 cm for females. Using nonhypertension as reference, the respective β value and assigned score were 0.34 and 3 for hypertension. The AUC performance of this model and the FINDRISC model was 0.66 and 0.64 (P=0.135), respectively, in the validation dataset. Based on this cohort study, a noninvasive prediction model that included age, sleep time, BMI, waist circumference, and hypertension was established, which is equivalent to the FINDRISC model and applicable to a rural Chinese population.

  10. Predicting symptomatic cerebral vasospasm after aneurysmal subarachnoid hemorrhage with an artificial neural network in a pediatric population.

    PubMed

    Skoch, Jesse; Tahir, Rizwan; Abruzzo, Todd; Taylor, John M; Zuccarello, Mario; Vadivelu, Sudhakar

    2017-12-01

    Artificial neural networks (ANN) are increasingly applied to complex medical problem solving algorithms because their outcome prediction performance is superior to existing multiple regression models. ANN can successfully identify symptomatic cerebral vasospasm (SCV) in adults presenting after aneurysmal subarachnoid hemorrhage (aSAH). Although SCV is unusual in children with aSAH, the clinical consequences are severe. Consequently, reliable tools to predict patients at greatest risk for SCV may have significant value. We applied ANN modeling to a consecutive cohort of pediatric aSAH cases to assess its ability to predict SCV. A retrospective chart review was conducted to identify patients < 21 years of age who presented with spontaneously ruptured, non-traumatic, non-mycotic, non-flow-related intracranial arterial aneurysms to our institution between January 2002 and January 2015. Demographics, clinical, radiographic, and outcome data were analyzed using an adapted ANN model using learned value nodes from the adult aneurysmal SAH dataset previously reported. The strength of the ANN prediction was measured between - 1 and 1 with - 1 representing no likelihood of SCV and 1 representing high likelihood of SCV. Sixteen patients met study inclusion criteria. The median age for aSAH patients was 15 years. Ten underwent surgical clipping and 6 underwent endovascular coiling for definitive treatment. One patient experienced SCV and 15 did not. The ANN applied here was able to accurately predict all 16 outcomes. The mean strength of prediction for those who did not exhibit SCV was - 0.86. The strength for the one patient who did exhibit SCV was 0.93. Adult-derived aneurysmal SAH value nodes can be applied to a simple AAN model to accurately predict SCV in children presenting with aSAH. Further work is needed to determine if ANN models can prospectively predict SCV in the pediatric aSAH population in toto; adapted to include mycotic, traumatic, and flow-related origins as well.

  11. Prediction of major complications after hepatectomy using liver stiffness values determined by magnetic resonance elastography.

    PubMed

    Sato, N; Kenjo, A; Kimura, T; Okada, R; Ishigame, T; Kofunato, Y; Shimura, T; Abe, K; Ohira, H; Marubashi, S

    2018-04-23

    Liver fibrosis is a risk factor for hepatectomy but cannot be determined accurately before hepatectomy because diagnostic procedures are too invasive. Magnetic resonance elastography (MRE) can determine liver stiffness (LS), a surrogate marker for assessing liver fibrosis, non-invasively. The aim of this study was to investigate whether the LS value determined by MRE is predictive of major complications after hepatectomy. This prospective study enrolled consecutive patients who underwent hepatic resection between April 2013 and August 2016. LS values were measured by imaging shear waves by MRE in the liver before hepatectomy. The primary endpoint was major complications, defined as Clavien-Dindo grade IIIa or above. Logistic regression analysis identified independent predictive factors, from which a logistic model to estimate the probability of major complications was constructed. A total of 96 patients were included in the study. Major complications were observed in 15 patients (16 per cent). Multivariable logistic analysis confirmed that higher LS value (P = 0·021) and serum albumin level (P = 0·009) were independent predictive factors for major complications after hepatectomy. Receiver operating characteristic (ROC) analysis showed that the best LS cut-off value was 4·3 kPa for detecting major complications, comparable to liver fibrosis grade F4, with a sensitivity of 80 per cent and specificity of 82 per cent. A logistic model using the LS value and serum albumin level to estimate the probability of major complications was constructed; the area under the ROC curve for predicting major complications was 0·84. The LS value determined by MRE in patients undergoing hepatectomy was an independent predictive factor for major complications. © 2018 BJS Society Ltd Published by John Wiley & Sons Ltd.

  12. Interval Predictor Models with a Formal Characterization of Uncertainty and Reliability

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Giesy, Daniel P.; Kenny, Sean P.

    2014-01-01

    This paper develops techniques for constructing empirical predictor models based on observations. By contrast to standard models, which yield a single predicted output at each value of the model's inputs, Interval Predictors Models (IPM) yield an interval into which the unobserved output is predicted to fall. The IPMs proposed prescribe the output as an interval valued function of the model's inputs, render a formal description of both the uncertainty in the model's parameters and of the spread in the predicted output. Uncertainty is prescribed as a hyper-rectangular set in the space of model's parameters. The propagation of this set through the empirical model yields a range of outputs of minimal spread containing all (or, depending on the formulation, most) of the observations. Optimization-based strategies for calculating IPMs and eliminating the effects of outliers are proposed. Outliers are identified by evaluating the extent by which they degrade the tightness of the prediction. This evaluation can be carried out while the IPM is calculated. When the data satisfies mild stochastic assumptions, and the optimization program used for calculating the IPM is convex (or, when its solution coincides with the solution to an auxiliary convex program), the model's reliability (that is, the probability that a future observation would be within the predicted range of outputs) can be bounded rigorously by a non-asymptotic formula.

  13. Soil erosion assessment on hillslope of GCE using RUSLE model

    NASA Astrophysics Data System (ADS)

    Islam, Md. Rabiul; Jaafar, Wan Zurina Wan; Hin, Lai Sai; Osman, Normaniza; Din, Moktar Aziz Mohd; Zuki, Fathiah Mohamed; Srivastava, Prashant; Islam, Tanvir; Adham, Md. Ibrahim

    2018-06-01

    A new method for obtaining the C factor (i.e., vegetation cover and management factor) of the RUSLE model is proposed. The method focuses on the derivation of the C factor based on the vegetation density to obtain a more reliable erosion prediction. Soil erosion that occurs on the hillslope along the highway is one of the major problems in Malaysia, which is exposed to a relatively high amount of annual rainfall due to the two different monsoon seasons. As vegetation cover is one of the important factors in the RUSLE model, a new method that accounts for a vegetation density is proposed in this study. A hillslope near the Guthrie Corridor Expressway (GCE), Malaysia, is chosen as an experimental site whereby eight square plots with the size of 8× 8 and 5× 5 m are set up. A vegetation density available on these plots is measured by analyzing the taken image followed by linking the C factor with the measured vegetation density using several established formulas. Finally, erosion prediction is computed based on the RUSLE model in the Geographical Information System (GIS) platform. The C factor obtained by the proposed method is compared with that of the soil erosion guideline Malaysia, thereby predicted erosion is determined by both the C values. Result shows that the C value from the proposed method varies from 0.0162 to 0.125, which is lower compared to the C value from the soil erosion guideline, i.e., 0.8. Meanwhile predicted erosion computed from the proposed C value is between 0.410 and 3.925 t ha^{-1 } yr^{-1} compared to 9.367 to 34.496 t ha^{-1} yr^{-1 } range based on the C value of 0.8. It can be concluded that the proposed method of obtaining a reasonable C value is acceptable as the computed predicted erosion is found to be classified as a very low zone, i.e. less than 10 t ha^{-1 } yr^{-1} whereas the predicted erosion based on the guideline has classified the study area as a low zone of erosion, i.e., between 10 and 50 t ha^{-1 } yr^{-1}.

  14. Strike-Slip Fault Patterns on Europa: Obliquity or Polar Wander?

    NASA Technical Reports Server (NTRS)

    Rhoden, Alyssa Rose; Hurford, Terry A.; Manga, Michael

    2011-01-01

    Variations in diurnal tidal stress due to Europa's eccentric orbit have been considered as the driver of strike-slip motion along pre-existing faults, but obliquity and physical libration have not been taken into account. The first objective of this work is to examine the effects of obliquity on the predicted global pattern of fault slip directions based on a tidal-tectonic formation model. Our second objective is to test the hypothesis that incorporating obliquity can reconcile theory and observations without requiring polar wander, which was previously invoked to explain the mismatch found between the slip directions of 192 faults on Europa and the global pattern predicted using the eccentricity-only model. We compute predictions for individual, observed faults at their current latitude, longitude, and azimuth with four different tidal models: eccentricity only, eccentricity plus obliquity, eccentricity plus physical libration, and a combination of all three effects. We then determine whether longitude migration, presumably due to non-synchronous rotation, is indicated in observed faults by repeating the comparisons with and without obliquity, this time also allowing longitude translation. We find that a tidal model including an obliquity of 1.2?, along with longitude migration, can predict the slip directions of all observed features in the survey. However, all but four faults can be fit with only 1? of obliquity so the value we find may represent the maximum departure from a lower time-averaged obliquity value. Adding physical libration to the obliquity model improves the accuracy of predictions at the current locations of the faults, but fails to predict the slip directions of six faults and requires additional degrees of freedom. The obliquity model with longitude migration is therefore our preferred model. Although the polar wander interpretation cannot be ruled out from these results alone, the obliquity model accounts for all observations with a value consistent with theoretical expectations and cycloid modeling.

  15. Optimal control model predictions of system performance and attention allocation and their experimental validation in a display design study

    NASA Technical Reports Server (NTRS)

    Johannsen, G.; Govindaraj, T.

    1980-01-01

    The influence of different types of predictor displays in a longitudinal vertical takeoff and landing (VTOL) hover task is analyzed in a theoretical study. Several cases with differing amounts of predictive and rate information are compared. The optimal control model of the human operator is used to estimate human and system performance in terms of root-mean-square (rms) values and to compute optimized attention allocation. The only part of the model which is varied to predict these data is the observation matrix. Typical cases are selected for a subsequent experimental validation. The rms values as well as eye-movement data are recorded. The results agree favorably with those of the theoretical study in terms of relative differences. Better matching is achieved by revised model input data.

  16. Predicting High Imaging Utilization Based on Initial Radiology Reports: A Feasibility Study of Machine Learning.

    PubMed

    Hassanpour, Saeed; Langlotz, Curtis P

    2016-01-01

    Imaging utilization has significantly increased over the last two decades, and is only recently showing signs of moderating. To help healthcare providers identify patients at risk for high imaging utilization, we developed a prediction model to recognize high imaging utilizers based on their initial imaging reports. The prediction model uses a machine learning text classification framework. In this study, we used radiology reports from 18,384 patients with at least one abdomen computed tomography study in their imaging record at Stanford Health Care as the training set. We modeled the radiology reports in a vector space and trained a support vector machine classifier for this prediction task. We evaluated our model on a separate test set of 4791 patients. In addition to high prediction accuracy, in our method, we aimed at achieving high specificity to identify patients at high risk for high imaging utilization. Our results (accuracy: 94.0%, sensitivity: 74.4%, specificity: 97.9%, positive predictive value: 87.3%, negative predictive value: 95.1%) show that a prediction model can enable healthcare providers to identify in advance patients who are likely to be high utilizers of imaging services. Machine learning classifiers developed from narrative radiology reports are feasible methods to predict imaging utilization. Such systems can be used to identify high utilizers, inform future image ordering behavior, and encourage judicious use of imaging. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  17. Adaptive Anchoring Model: How Static and Dynamic Presentations of Time Series Influence Judgments and Predictions.

    PubMed

    Kusev, Petko; van Schaik, Paul; Tsaneva-Atanasova, Krasimira; Juliusson, Asgeir; Chater, Nick

    2018-01-01

    When attempting to predict future events, people commonly rely on historical data. One psychological characteristic of judgmental forecasting of time series, established by research, is that when people make forecasts from series, they tend to underestimate future values for upward trends and overestimate them for downward ones, so-called trend-damping (modeled by anchoring on, and insufficient adjustment from, the average of recent time series values). Events in a time series can be experienced sequentially (dynamic mode), or they can also be retrospectively viewed simultaneously (static mode), not experienced individually in real time. In one experiment, we studied the influence of presentation mode (dynamic and static) on two sorts of judgment: (a) predictions of the next event (forecast) and (b) estimation of the average value of all the events in the presented series (average estimation). Participants' responses in dynamic mode were anchored on more recent events than in static mode for all types of judgment but with different consequences; hence, dynamic presentation improved prediction accuracy, but not estimation. These results are not anticipated by existing theoretical accounts; we develop and present an agent-based model-the adaptive anchoring model (ADAM)-to account for the difference between processing sequences of dynamically and statically presented stimuli (visually presented data). ADAM captures how variation in presentation mode produces variation in responses (and the accuracy of these responses) in both forecasting and judgment tasks. ADAM's model predictions for the forecasting and judgment tasks fit better with the response data than a linear-regression time series model. Moreover, ADAM outperformed autoregressive-integrated-moving-average (ARIMA) and exponential-smoothing models, while neither of these models accounts for people's responses on the average estimation task. Copyright © 2017 The Authors. Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.

  18. Infiltration/cure modeling of resin transfer molded composite materials using advanced fiber architectures

    NASA Technical Reports Server (NTRS)

    Loos, Alfred C.; Weideman, Mark H.; Long, Edward R., Jr.; Kranbuehl, David E.; Kinsley, Philip J.; Hart, Sean M.

    1991-01-01

    A model was developed which can be used to simulate infiltration and cure of textile composites by resin transfer molding. Fabric preforms were resin infiltrated and cured using model generated optimized one-step infiltration/cure protocols. Frequency dependent electromagnetic sensing (FDEMS) was used to monitor in situ resin infiltration and cure during processing. FDEMS measurements of infiltration time, resin viscosity, and resin degree of cure agreed well with values predicted by the simulation model. Textile composites fabricated using a one-step infiltration/cure procedure were uniformly resin impregnated and void free. Fiber volume fraction measurements by the resin digestion method compared well with values predicted using the model.

  19. Integrating GLL-Weibull Distribution Within a Bayesian Framework for Life Prediction of Shape Memory Alloy Spring Undergoing Thermo-mechanical Fatigue

    NASA Astrophysics Data System (ADS)

    Kundu, Pradeep; Nath, Tameshwer; Palani, I. A.; Lad, Bhupesh K.

    2018-06-01

    The present paper tackles an important but unmapped problem of the reliability estimations of smart materials. First, an experimental setup is developed for accelerated life testing of the shape memory alloy (SMA) springs. Generalized log-linear Weibull (GLL-Weibull) distribution-based novel approach is then developed for SMA spring life estimation. Applied stimulus (voltage), elongation and cycles of operation are used as inputs for the life prediction model. The values of the parameter coefficients of the model provide better interpretability compared to artificial intelligence based life prediction approaches. In addition, the model also considers the effect of operating conditions, making it generic for a range of the operating conditions. Moreover, a Bayesian framework is used to continuously update the prediction with the actual degradation value of the springs, thereby reducing the uncertainty in the data and improving the prediction accuracy. In addition, the deterioration of material with number of cycles is also investigated using thermogravimetric analysis and scanning electron microscopy.

  20. Validation of statistical predictive models meant to select melanoma patients for sentinel lymph node biopsy.

    PubMed

    Sabel, Michael S; Rice, John D; Griffith, Kent A; Lowe, Lori; Wong, Sandra L; Chang, Alfred E; Johnson, Timothy M; Taylor, Jeremy M G

    2012-01-01

    To identify melanoma patients at sufficiently low risk of nodal metastases who could avoid sentinel lymph node biopsy (SLNB), several statistical models have been proposed based upon patient/tumor characteristics, including logistic regression, classification trees, random forests, and support vector machines. We sought to validate recently published models meant to predict sentinel node status. We queried our comprehensive, prospectively collected melanoma database for consecutive melanoma patients undergoing SLNB. Prediction values were estimated based upon four published models, calculating the same reported metrics: negative predictive value (NPV), rate of negative predictions (RNP), and false-negative rate (FNR). Logistic regression performed comparably with our data when considering NPV (89.4 versus 93.6%); however, the model's specificity was not high enough to significantly reduce the rate of biopsies (SLN reduction rate of 2.9%). When applied to our data, the classification tree produced NPV and reduction in biopsy rates that were lower (87.7 versus 94.1 and 29.8 versus 14.3, respectively). Two published models could not be applied to our data due to model complexity and the use of proprietary software. Published models meant to reduce the SLNB rate among patients with melanoma either underperformed when applied to our larger dataset, or could not be validated. Differences in selection criteria and histopathologic interpretation likely resulted in underperformance. Statistical predictive models must be developed in a clinically applicable manner to allow for both validation and ultimately clinical utility.

  1. Can Mathematical Models Predict the Outcomes of Prostate Cancer Patients Undergoing Intermittent Androgen Deprivation Therapy?

    NASA Astrophysics Data System (ADS)

    Everett, R. A.; Packer, A. M.; Kuang, Y.

    Androgen deprivation therapy is a common treatment for advanced or metastatic prostate cancer. Like the normal prostate, most tumors depend on androgens for proliferation and survival but often develop treatment resistance. Hormonal treatment causes many undesirable side effects which significantly decrease the quality of life for patients. Intermittently applying androgen deprivation in cycles reduces the total duration with these negative effects and may reduce selective pressure for resistance. We extend an existing model which used measurements of patient testosterone levels to accurately fit measured serum prostate specific antigen (PSA) levels. We test the model's predictive accuracy, using only a subset of the data to find parameter values. The results are compared with those of an existing piecewise linear model which does not use testosterone as an input. Since actual treatment protocol is to re-apply therapy when PSA levels recover beyond some threshold value, we develop a second method for predicting the PSA levels. Based on a small set of data from seven patients, our results showed that the piecewise linear model produced slightly more accurate results while the two predictive methods are comparable. This suggests that a simpler model may be more beneficial for a predictive use compared to a more biologically insightful model, although further research is needed in this field prior to implementing mathematical models as a predictive method in a clinical setting. Nevertheless, both models are an important step in this direction.

  2. Can Mathematical Models Predict the Outcomes of Prostate Cancer Patients Undergoing Intermittent Androgen Deprivation Therapy?

    NASA Astrophysics Data System (ADS)

    Everett, R. A.; Packer, A. M.; Kuang, Y.

    2014-04-01

    Androgen deprivation therapy is a common treatment for advanced or metastatic prostate cancer. Like the normal prostate, most tumors depend on androgens for proliferation and survival but often develop treatment resistance. Hormonal treatment causes many undesirable side effects which significantly decrease the quality of life for patients. Intermittently applying androgen deprivation in cycles reduces the total duration with these negative effects and may reduce selective pressure for resistance. We extend an existing model which used measurements of patient testosterone levels to accurately fit measured serum prostate specific antigen (PSA) levels. We test the model's predictive accuracy, using only a subset of the data to find parameter values. The results are compared with those of an existing piecewise linear model which does not use testosterone as an input. Since actual treatment protocol is to re-apply therapy when PSA levels recover beyond some threshold value, we develop a second method for predicting the PSA levels. Based on a small set of data from seven patients, our results showed that the piecewise linear model produced slightly more accurate results while the two predictive methods are comparable. This suggests that a simpler model may be more beneficial for a predictive use compared to a more biologically insightful model, although further research is needed in this field prior to implementing mathematical models as a predictive method in a clinical setting. Nevertheless, both models are an important step in this direction.

  3. The Value of 18F-FDG PET/CT Mathematical Prediction Model in Diagnosis of Solitary Pulmonary Nodules

    PubMed Central

    Chen, Yao; Tang, Kun; Lin, Jie

    2018-01-01

    Purpose To establish an 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) mathematical prediction model to improve the diagnosis of solitary pulmonary nodules (SPNs). Materials and Methods We retrospectively reviewed 177 consecutive patients who underwent 18F-FDG PET/CT for evaluation of SPNs. The mathematical model was established by logistic regression analysis. The diagnostic capabilities of the model were calculated, and the areas under the receiver operating characteristic curve (AUC) were compared with Mayo and VA model. Results The mathematical model was y = exp⁡(x)/[1 + exp⁡(x)], x = −7.363 + 0.079 × age + 1.900 × lobulation + 1.024 × vascular convergence + 1.530 × pleural retraction + 0.359 × the maximum of standardized uptake value (SUVmax). When the cut-off value was set at 0.56, the sensitivity, specificity, and accuracy of our model were 86.55%, 74.14%, and 81.4%, respectively. The area under the receiver operating characteristic curve (AUC) of our model was 0.903 (95% confidence interval (CI): 0.860 to 0.946). The AUC of our model was greater than that of the Mayo model, the VA model, and PET (P < 0.05) and has no difference with that of PET/CT (P > 0.05). Conclusion The mathematical predictive model has high accuracy in estimating the malignant probability of patients with SPNs. PMID:29789808

  4. Prediction of octanol-air partition coefficients for polychlorinated biphenyls (PCBs) using 3D-QSAR models.

    PubMed

    Chen, Ying; Cai, Xiaoyu; Jiang, Long; Li, Yu

    2016-02-01

    Based on the experimental data of octanol-air partition coefficients (KOA) for 19 polychlorinated biphenyl (PCB) congeners, two types of QSAR methods, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), are used to establish 3D-QSAR models using the structural parameters as independent variables and using logKOA values as the dependent variable with the Sybyl software to predict the KOA values of the remaining 190 PCB congeners. The whole data set (19 compounds) was divided into a training set (15 compounds) for model generation and a test set (4 compounds) for model validation. As a result, the cross-validation correlation coefficient (q(2)) obtained by the CoMFA and CoMSIA models (shuffled 12 times) was in the range of 0.825-0.969 (>0.5), the correlation coefficient (r(2)) obtained was in the range of 0.957-1.000 (>0.9), and the SEP (standard error of prediction) of test set was within the range of 0.070-0.617, indicating that the models were robust and predictive. Randomly selected from a set of models, CoMFA analysis revealed that the corresponding percentages of the variance explained by steric and electrostatic fields were 23.9% and 76.1%, respectively, while CoMSIA analysis by steric, electrostatic and hydrophobic fields were 0.6%, 92.6%, and 6.8%, respectively. The electrostatic field was determined as a primary factor governing the logKOA. The correlation analysis of the relationship between the number of Cl atoms and the average logKOA values of PCBs indicated that logKOA values gradually increased as the number of Cl atoms increased. Simultaneously, related studies on PCB detection in the Arctic and Antarctic areas revealed that higher logKOA values indicate a stronger PCB migration ability. From CoMFA and CoMSIA contour maps, logKOA decreased when substituents possessed electropositive groups at the 2-, 3-, 3'-, 5- and 6- positions, which could reduce the PCB migration ability. These results are expected to be beneficial in predicting logKOA values of PCB homologues and derivatives and in providing a theoretical foundation for further elucidation of the global migration behaviour of PCBs. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Prediction of lung cancer patient survival via supervised machine learning classification techniques.

    PubMed

    Lynch, Chip M; Abdollahi, Behnaz; Fuqua, Joshua D; de Carlo, Alexandra R; Bartholomai, James A; Balgemann, Rayeanne N; van Berkel, Victor H; Frieboes, Hermann B

    2017-12-01

    Outcomes for cancer patients have been previously estimated by applying various machine learning techniques to large datasets such as the Surveillance, Epidemiology, and End Results (SEER) program database. In particular for lung cancer, it is not well understood which types of techniques would yield more predictive information, and which data attributes should be used in order to determine this information. In this study, a number of supervised learning techniques is applied to the SEER database to classify lung cancer patients in terms of survival, including linear regression, Decision Trees, Gradient Boosting Machines (GBM), Support Vector Machines (SVM), and a custom ensemble. Key data attributes in applying these methods include tumor grade, tumor size, gender, age, stage, and number of primaries, with the goal to enable comparison of predictive power between the various methods The prediction is treated like a continuous target, rather than a classification into categories, as a first step towards improving survival prediction. The results show that the predicted values agree with actual values for low to moderate survival times, which constitute the majority of the data. The best performing technique was the custom ensemble with a Root Mean Square Error (RMSE) value of 15.05. The most influential model within the custom ensemble was GBM, while Decision Trees may be inapplicable as it had too few discrete outputs. The results further show that among the five individual models generated, the most accurate was GBM with an RMSE value of 15.32. Although SVM underperformed with an RMSE value of 15.82, statistical analysis singles the SVM as the only model that generated a distinctive output. The results of the models are consistent with a classical Cox proportional hazards model used as a reference technique. We conclude that application of these supervised learning techniques to lung cancer data in the SEER database may be of use to estimate patient survival time with the ultimate goal to inform patient care decisions, and that the performance of these techniques with this particular dataset may be on par with that of classical methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Prediction of bovine milk technological traits from mid-infrared spectroscopy analysis in dairy cows.

    PubMed

    Visentin, G; McDermott, A; McParland, S; Berry, D P; Kenny, O A; Brodkorb, A; Fenelon, M A; De Marchi, M

    2015-09-01

    Rapid, cost-effective monitoring of milk technological traits is a significant challenge for dairy industries specialized in cheese manufacturing. The objective of the present study was to investigate the ability of mid-infrared spectroscopy to predict rennet coagulation time, curd-firming time, curd firmness at 30 and 60min after rennet addition, heat coagulation time, casein micelle size, and pH in cow milk samples, and to quantify associations between these milk technological traits and conventional milk quality traits. Samples (n=713) were collected from 605 cows from multiple herds; the samples represented multiple breeds, stages of lactation, parities, and milking times. Reference analyses were undertaken in accordance with standardized methods, and mid-infrared spectra in the range of 900 to 5,000cm(-1) were available for all samples. Prediction models were developed using partial least squares regression, and prediction accuracy was based on both cross and external validation. The proportion of variance explained by the prediction models in external validation was greatest for pH (71%), followed by rennet coagulation time (55%) and milk heat coagulation time (46%). Models to predict curd firmness 60min from rennet addition and casein micelle size, however, were poor, explaining only 25 and 13%, respectively, of the total variance in each trait within external validation. On average, all prediction models tended to be unbiased. The linear regression coefficient of the reference value on the predicted value varied from 0.17 (casein micelle size regression model) to 0.83 (pH regression model) but all differed from 1. The ratio performance deviation of 1.07 (casein micelle size prediction model) to 1.79 (pH prediction model) for all prediction models in the external validation was <2, suggesting that none of the prediction models could be used for analytical purposes. With the exception of casein micelle size and curd firmness at 60min after rennet addition, the developed prediction models may be useful as a screening method, because the concordance correlation coefficient ranged from 0.63 (heat coagulation time prediction model) to 0.84 (pH prediction model) in the external validation. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Value and role of intensive care unit outcome prediction models in end-of-life decision making.

    PubMed

    Barnato, Amber E; Angus, Derek C

    2004-07-01

    In the United States, intensive care unit (ICU) admission at the end of life is commonplace. What is the value and role of ICU mortality prediction models for informing the utility of ICU care?In this article, we review the history, statistical underpinnings,and current deployment of these models in clinical care. We conclude that the use of outcome prediction models to ration care that is unlikely to provide an expected benefit is hampered by imperfect performance, the lack of real-time availability, failure to consider functional outcomes beyond survival, and physician resistance to the use of probabilistic information when death is guaranteed by the decision it informs. Among these barriers, the most important technical deficiency is the lack of automated information systems to provide outcome predictions to decision makers, and the most important research and policy agenda is to understand and address our national ambivalence toward rationing care based on any criterion.

  8. Extension and refinement of the predictive value of different classes of markers in ADNI: Four year follow-up data

    PubMed Central

    Gomar, Jesus J; Conejero-Goldberg, Concepcion; Davies, Peter; Goldberg, Terry E

    2014-01-01

    Background This study examined the predictive value of different classes of markers in the progression from Mild Cognitive Impairment (MCI) to Alzheimer’s disease (AD) over an extended 4 year follow-up in ADNI. Methods MCI patients assessed on clinical, cognitive, MRI, PET-FDG, and CSF markers at baseline, and followed on a yearly basis for four years to ascertain progression to AD. Logistic regression models were fitted in clusters including demographics, APOE genotype, cognitive markers, and biomarkers (morphometric, PET-FDG, CSF Abeta and tau). Results The predictive model at four years revealed that two cognitive measures, an episodic memory measure and a clock drawing screening test, were the best predictors of conversion (AUC= 0.78). Conclusions This model of prediction is consistent to the previous model at two years, thus highlighting the importance of cognitive measures in progression from MCI to AD. Cognitive markers were more robust predictors than biomarkers. PMID:24613706

  9. Numerical Simulation and Artificial Neural Network Modeling for Predicting Welding-Induced Distortion in Butt-Welded 304L Stainless Steel Plates

    NASA Astrophysics Data System (ADS)

    Narayanareddy, V. V.; Chandrasekhar, N.; Vasudevan, M.; Muthukumaran, S.; Vasantharaja, P.

    2016-02-01

    In the present study, artificial neural network modeling has been employed for predicting welding-induced angular distortions in autogenous butt-welded 304L stainless steel plates. The input data for the neural network have been obtained from a series of three-dimensional finite element simulations of TIG welding for a wide range of plate dimensions. Thermo-elasto-plastic analysis was carried out for 304L stainless steel plates during autogenous TIG welding employing double ellipsoidal heat source. The simulated thermal cycles were validated by measuring thermal cycles using thermocouples at predetermined positions, and the simulated distortion values were validated by measuring distortion using vertical height gauge for three cases. There was a good agreement between the model predictions and the measured values. Then, a multilayer feed-forward back propagation neural network has been developed using the numerically simulated data. Artificial neural network model developed in the present study predicted the angular distortion accurately.

  10. Modeling of adipose/blood partition coefficient for environmental chemicals.

    PubMed

    Papadaki, K C; Karakitsios, S P; Sarigiannis, D A

    2017-12-01

    A Quantitative Structure Activity Relationship (QSAR) model was developed in order to predict the adipose/blood partition coefficient of environmental chemical compounds. The first step of QSAR modeling was the collection of inputs. Input data included the experimental values of adipose/blood partition coefficient and two sets of molecular descriptors for 67 organic chemical compounds; a) the descriptors from Linear Free Energy Relationship (LFER) and b) the PaDEL descriptors. The datasets were split to training and prediction set and were analysed using two statistical methods; Genetic Algorithm based Multiple Linear Regression (GA-MLR) and Artificial Neural Networks (ANN). The models with LFER and PaDEL descriptors, coupled with ANN, produced satisfying performance results. The fitting performance (R 2 ) of the models, using LFER and PaDEL descriptors, was 0.94 and 0.96, respectively. The Applicability Domain (AD) of the models was assessed and then the models were applied to a large number of chemical compounds with unknown values of adipose/blood partition coefficient. In conclusion, the proposed models were checked for fitting, validity and applicability. It was demonstrated that they are stable, reliable and capable to predict the values of adipose/blood partition coefficient of "data poor" chemical compounds that fall within the applicability domain. Copyright © 2017. Published by Elsevier Ltd.

  11. Novel applications of multitask learning and multiple output regression to multiple genetic trait prediction.

    PubMed

    He, Dan; Kuhn, David; Parida, Laxmi

    2016-06-15

    Given a set of biallelic molecular markers, such as SNPs, with genotype values encoded numerically on a collection of plant, animal or human samples, the goal of genetic trait prediction is to predict the quantitative trait values by simultaneously modeling all marker effects. Genetic trait prediction is usually represented as linear regression models. In many cases, for the same set of samples and markers, multiple traits are observed. Some of these traits might be correlated with each other. Therefore, modeling all the multiple traits together may improve the prediction accuracy. In this work, we view the multitrait prediction problem from a machine learning angle: as either a multitask learning problem or a multiple output regression problem, depending on whether different traits share the same genotype matrix or not. We then adapted multitask learning algorithms and multiple output regression algorithms to solve the multitrait prediction problem. We proposed a few strategies to improve the least square error of the prediction from these algorithms. Our experiments show that modeling multiple traits together could improve the prediction accuracy for correlated traits. The programs we used are either public or directly from the referred authors, such as MALSAR (http://www.public.asu.edu/~jye02/Software/MALSAR/) package. The Avocado data set has not been published yet and is available upon request. dhe@us.ibm.com. © The Author 2016. Published by Oxford University Press.

  12. A novel neuroimaging model to predict early neurological deterioration after acute ischemic stroke.

    PubMed

    Huang, Yen-Chu; Tsai, Yuan-Hsiung; Lee, Jiann-Der; Yang, Jen-Tsung; Pan, Yi-Ting

    2018-05-16

    In acute ischemic stroke, early neurological deterioration (END) may occur in up to one-third of patients. However, there is still no satisfying or comprehensive predictive model for all the stroke subtypes. We propose a practical model to predict END using magnetic resonance imaging (MRI). Patients with anterior circulation infarct were recruited and they underwent an MRI within 24 hours of stroke onset. END was defined as an elevation of ≥2 points on the National Institute of Health Stroke Scale (NIHSS) within 72 hours of stroke onset. We examined the relationships of END to individual END models, including: A, infarct swelling; B, small subcortical infarct; C, mismatch; and D, recurrence. There were 163 patients recruited and 43 (26.4%) of them had END. The END models A, B and C significantly predicted END respectively after adjusting for confounding factors (p=0.022, p=0.007 and p<0.001 respectively). In END model D, we examined all imaging predictors of Recurrence Risk Estimator (RRE) individually and only the "multiple acute infarcts" pattern was significantly associated with END (p=0.032). When applying END models A, B, C and D, they successfully predicted END (p<0.001; odds ratio: 17.5[95% confidence interval: 5.1-60.8]), with 93.0% sensitivity, 60.0% specificity, 45.5% positive predictive value and 96.0% negative predictive value. The results demonstrate that the proposed model could predict END in all stroke subtypes of anterior circulation infarction. It provides a practical model for clinical physicians to select high-risk patients for more aggressive treatment to prevent END. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Development of a prognostic model for predicting spontaneous singleton preterm birth.

    PubMed

    Schaaf, Jelle M; Ravelli, Anita C J; Mol, Ben Willem J; Abu-Hanna, Ameen

    2012-10-01

    To develop and validate a prognostic model for prediction of spontaneous preterm birth. Prospective cohort study using data of the nationwide perinatal registry in The Netherlands. We studied 1,524,058 singleton pregnancies between 1999 and 2007. We developed a multiple logistic regression model to estimate the risk of spontaneous preterm birth based on maternal and pregnancy characteristics. We used bootstrapping techniques to internally validate our model. Discrimination (AUC), accuracy (Brier score) and calibration (calibration graphs and Hosmer-Lemeshow C-statistic) were used to assess the model's predictive performance. Our primary outcome measure was spontaneous preterm birth at <37 completed weeks. Spontaneous preterm birth occurred in 57,796 (3.8%) pregnancies. The final model included 13 variables for predicting preterm birth. The predicted probabilities ranged from 0.01 to 0.71 (IQR 0.02-0.04). The model had an area under the receiver operator characteristic curve (AUC) of 0.63 (95% CI 0.63-0.63), the Brier score was 0.04 (95% CI 0.04-0.04) and the Hosmer Lemeshow C-statistic was significant (p<0.0001). The calibration graph showed overprediction at higher values of predicted probability. The positive predictive value was 26% (95% CI 20-33%) for the 0.4 probability cut-off point. The model's discrimination was fair and it had modest calibration. Previous preterm birth, drug abuse and vaginal bleeding in the first half of pregnancy were the most important predictors for spontaneous preterm birth. Although not applicable in clinical practice yet, this model is a next step towards early prediction of spontaneous preterm birth that enables caregivers to start preventive therapy in women at higher risk. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Testing Einstein's gravity and dark energy with growth of matter perturbations: Indications for new physics?

    NASA Astrophysics Data System (ADS)

    Basilakos, Spyros; Nesseris, Savvas

    2016-12-01

    The growth index of matter fluctuations is computed for ten distinct accelerating cosmological models and confronted by the latest growth-rate data via a two-step process. First, we implement a joint statistical analysis in order to place constraints on the free parameters of all models using solely background data. Second, using the observed growth rate of clustering from various galaxy surveys we test the performance of the current cosmological models at the perturbation level while either marginalizing over σ8 or having it as a free parameter. As a result, we find that at a statistical level, i.e., after considering the best-fit χ2 or the value of the Akaike information criterion, most models are in very good agreement with the growth-rate data and are practically indistinguishable from Λ CDM . However, when we also consider the internal consistency of the models by comparing the theoretically predicted values of (γ0,γ1), i.e., the value of the growth index γ (z ) and its derivative today, with the best-fit ones, we find that the predictions of three out of ten dark energy models are in mild tension with the best-fit ones when σ8 is marginalized over. When σ8 is free we find that most models are not only in mild tension, but also predict low values for σ8. This could be attributed to either a systematic problem with the growth-rate data or the emergence of new physics at low redshifts, with the latter possibly being related to the well-known issue of the lack of power at small scales. Finally, by utilizing mock data based on an large synoptic survey telescope-like survey we show that with future surveys and by using the growth index parametrization, it will be possible to resolve the issue of the low σ8 but also the tension between the fitted and theoretically predicted values of (γ0,γ1).

  15. Daily Suspended Sediment Discharge Prediction Using Multiple Linear Regression and Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Uca; Toriman, Ekhwan; Jaafar, Othman; Maru, Rosmini; Arfan, Amal; Saleh Ahmar, Ansari

    2018-01-01

    Prediction of suspended sediment discharge in a catchments area is very important because it can be used to evaluation the erosion hazard, management of its water resources, water quality, hydrology project management (dams, reservoirs, and irrigation) and to determine the extent of the damage that occurred in the catchments. Multiple Linear Regression analysis and artificial neural network can be used to predict the amount of daily suspended sediment discharge. Regression analysis using the least square method, whereas artificial neural networks using Radial Basis Function (RBF) and feedforward multilayer perceptron with three learning algorithms namely Levenberg-Marquardt (LM), Scaled Conjugate Descent (SCD) and Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton (BFGS). The number neuron of hidden layer is three to sixteen, while in output layer only one neuron because only one output target. The mean absolute error (MAE), root mean square error (RMSE), coefficient of determination (R2 ) and coefficient of efficiency (CE) of the multiple linear regression (MLRg) value Model 2 (6 input variable independent) has the lowest the value of MAE and RMSE (0.0000002 and 13.6039) and highest R2 and CE (0.9971 and 0.9971). When compared between LM, SCG and RBF, the BFGS model structure 3-7-1 is the better and more accurate to prediction suspended sediment discharge in Jenderam catchment. The performance value in testing process, MAE and RMSE (13.5769 and 17.9011) is smallest, meanwhile R2 and CE (0.9999 and 0.9998) is the highest if it compared with the another BFGS Quasi-Newton model (6-3-1, 9-10-1 and 12-12-1). Based on the performance statistics value, MLRg, LM, SCG, BFGS and RBF suitable and accurately for prediction by modeling the non-linear complex behavior of suspended sediment responses to rainfall, water depth and discharge. The comparison between artificial neural network (ANN) and MLRg, the MLRg Model 2 accurately for to prediction suspended sediment discharge (kg/day) in Jenderan catchment area.

  16. Progress towards a more predictive model for hohlraum radiation drive and symmetry

    NASA Astrophysics Data System (ADS)

    Jones, O. S.; Suter, L. J.; Scott, H. A.; Barrios, M. A.; Farmer, W. A.; Hansen, S. B.; Liedahl, D. A.; Mauche, C. W.; Moore, A. S.; Rosen, M. D.; Salmonson, J. D.; Strozzi, D. J.; Thomas, C. A.; Turnbull, D. P.

    2017-05-01

    For several years, we have been calculating the radiation drive in laser-heated gold hohlraums using flux-limited heat transport with a limiter of 0.15, tabulated values of local thermodynamic equilibrium gold opacity, and an approximate model for not in a local thermodynamic equilibrium (NLTE) gold emissivity (DCA_2010). This model has been successful in predicting the radiation drive in vacuum hohlraums, but for gas-filled hohlraums used to drive capsule implosions, the model consistently predicts too much drive and capsule bang times earlier than measured. In this work, we introduce a new model that brings the calculated bang time into better agreement with the measured bang time. The new model employs (1) a numerical grid that is fully converged in space, energy, and time, (2) a modified approximate NLTE model that includes more physics and is in better agreement with more detailed offline emissivity models, and (3) a reduced flux limiter value of 0.03. We applied this model to gas-filled hohlraum experiments using high density carbon and plastic ablator capsules that had hohlraum He fill gas densities ranging from 0.06 to 1.6 mg/cc and hohlraum diameters of 5.75 or 6.72 mm. The new model predicts bang times to within ±100 ps for most experiments with low to intermediate fill densities (up to 0.85 mg/cc). This model predicts higher temperatures in the plasma than the old model and also predicts that at higher gas fill densities, a significant amount of inner beam laser energy escapes the hohlraum through the opposite laser entrance hole.

  17. Basal glycogenolysis in mouse skeletal muscle: in vitro model predicts in vivo fluxes

    NASA Technical Reports Server (NTRS)

    Lambeth, Melissa J.; Kushmerick, Martin J.; Marcinek, David J.; Conley, Kevin E.

    2002-01-01

    A previously published mammalian kinetic model of skeletal muscle glycogenolysis, consisting of literature in vitro parameters, was modified by substituting mouse specific Vmax values. The model demonstrates that glycogen breakdown to lactate is under ATPase control. Our criteria to test whether in vitro parameters could reproduce in vivo dynamics was the ability of the model to fit phosphocreatine (PCr) and inorganic phosphate (Pi) dynamic NMR data from ischemic basal mouse hindlimbs and predict biochemically-assayed lactate concentrations. Fitting was accomplished by optimizing four parameters--the ATPase rate coefficient, fraction of activated glycogen phosphorylase, and the equilibrium constants of creatine kinase and adenylate kinase (due to the absence of pH in the model). The optimized parameter values were physiologically reasonable, the resultant model fit the [PCr] and [Pi] timecourses well, and the model predicted the final measured lactate concentration. This result demonstrates that additional features of in vivo enzyme binding are not necessary for quantitative description of glycogenolytic dynamics.

  18. Mathematical model to predict drivers' reaction speeds.

    PubMed

    Long, Benjamin L; Gillespie, A Isabella; Tanaka, Martin L

    2012-02-01

    Mental distractions and physical impairments can increase the risk of accidents by affecting a driver's ability to control the vehicle. In this article, we developed a linear mathematical model that can be used to quantitatively predict drivers' performance over a variety of possible driving conditions. Predictions were not limited only to conditions tested, but also included linear combinations of these tests conditions. Two groups of 12 participants were evaluated using a custom drivers' reaction speed testing device to evaluate the effect of cell phone talking, texting, and a fixed knee brace on the components of drivers' reaction speed. Cognitive reaction time was found to increase by 24% for cell phone talking and 74% for texting. The fixed knee brace increased musculoskeletal reaction time by 24%. These experimental data were used to develop a mathematical model to predict reaction speed for an untested condition, talking on a cell phone with a fixed knee brace. The model was verified by comparing the predicted reaction speed to measured experimental values from an independent test. The model predicted full braking time within 3% of the measured value. Although only a few influential conditions were evaluated, we present a general approach that can be expanded to include other types of distractions, impairments, and environmental conditions.

  19. Predictive model for falling in Parkinson disease patients.

    PubMed

    Custodio, Nilton; Lira, David; Herrera-Perez, Eder; Montesinos, Rosa; Castro-Suarez, Sheila; Cuenca-Alfaro, Jose; Cortijo, Patricia

    2016-12-01

    Falls are a common complication of advancing Parkinson's disease (PD). Although numerous risk factors are known, reliable predictors of future falls are still lacking. The aim of this study was to develop a multivariate model to predict falling in PD patients. Prospective cohort with forty-nine PD patients. The area under the receiver-operating characteristic curve (AUC) was calculated to evaluate predictive performance of the purposed multivariate model. The median of PD duration and UPDRS-III score in the cohort was 6 years and 24 points, respectively. Falls occurred in 18 PD patients (30%). Predictive factors for falling identified by univariate analysis were age, PD duration, physical activity, and scores of UPDRS motor, FOG, ACE, IFS, PFAQ and GDS ( p -value < 0.001), as well as fear of falling score ( p -value = 0.04). The final multivariate model (PD duration, FOG, ACE, and physical activity) showed an AUC = 0.9282 (correctly classified = 89.83%; sensitivity = 92.68%; specificity = 83.33%). This study showed that our multivariate model have a high performance to predict falling in a sample of PD patients.

  20. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling

    NASA Astrophysics Data System (ADS)

    Khanum, Rizwana; Mumtaz, A. S.; Kumar, Sunil

    2013-05-01

    Maximum entropy (Maxent) modeling was used to predict the potential climatic niches of three medicinally important Asclepiad species: Pentatropis spiralis, Tylophora hirsuta, and Vincetoxicum arnottianum. All three species are members of the Asclepiad plant family, yet they differ in ecological requirements, biogeographic importance, and conservation value. Occurrence data were collected from herbarium specimens held in major herbaria of Pakistan and two years (2010 and 2011) of field surveys. The Maxent model performed better than random for the three species with an average test AUC value of 0.74 for P. spiralis, 0.84 for V. arnottianum, and 0.59 for T. hirsuta. Under the future climate change scenario, the Maxent model predicted habitat gains for P. spiralis in southern Punjab and Balochistan, and loss of habitat in south-eastern Sindh. Vincetoxicum arnottianum as well as T. hirsuta would gain habitat in upper Peaks of northern parts of Pakistan. T. hirsuta is predicted to lose most of the habitats in northern Punjab and in parches from lower peaks of Galliat, Zhob, Qalat etc. The predictive modeling approach presented here may be applied to other rare Asclepiad species, especially those under constant extinction threat.

  1. CALCULATING PHYSICAL PROPERTIES OF ORGANIC COMPOUNDS FOR ENVIRONMENTAL MODELING FROM MOLECULAR STRUCTURE

    EPA Science Inventory

    Mathematical models for predicting the transport and fate of pollutants in the environment require reactivity parameter values-- that is value of the physical and chemical constants that govern reactivity. Although empirical structure activity relationships have been developed t...

  2. The effect of geographical indices on left ventricular structure in healthy Han Chinese population

    NASA Astrophysics Data System (ADS)

    Cen, Minyi; Ge, Miao; Liu, Yonglin; Wang, Congxia; Yang, Shaofang

    2017-02-01

    The left ventricular posterior wall thickness (LVPWT) and interventricular septum thickness (IVST) are generally regarded as the functional parts of the left ventricular (LV) structure. This paper aims to examine the effects of geographical indices on healthy Han adults' LV structural indices and to offer a scientific basis for developing a unified standard for the reference values of adults' LV structural indices in China. Fifteen terrain, climate, and soil indices were examined as geographical explanatory variables. Statistical analysis was performed using correlation analysis. Moreover, a back propagation neural network (BPNN) and a support vector regression (SVR) were applied to developing models to predict the values of two indices. After the prediction models were built, distribution maps were produced. The results show that LV structural indices are characteristically associated with latitude, longitude, altitude, average temperature, average wind velocity, topsoil sand fraction, topsoil silt fraction, topsoil organic carbon, and topsoil sodicity. The model test analyses show the BPNN model possesses better simulative and predictive ability in comparison with the SVR model. The distribution maps of the LV structural indices show that, in China, the values are higher in the west and lower in the east. These results demonstrate that the reference values of the adults' LV structural indices will be different affected by different geographical environment. The reference values of LV structural indices in one region can be calculated by setting up a BPNN, which showed better applicability in this study. The distribution of the reference values of the LV structural indices can be seen clearly on the geographical distribution map.

  3. The effect of geographical indices on left ventricular structure in healthy Han Chinese population.

    PubMed

    Cen, Minyi; Ge, Miao; Liu, Yonglin; Wang, Congxia; Yang, Shaofang

    2017-02-01

    The left ventricular posterior wall thickness (LVPWT) and interventricular septum thickness (IVST) are generally regarded as the functional parts of the left ventricular (LV) structure. This paper aims to examine the effects of geographical indices on healthy Han adults' LV structural indices and to offer a scientific basis for developing a unified standard for the reference values of adults' LV structural indices in China. Fifteen terrain, climate, and soil indices were examined as geographical explanatory variables. Statistical analysis was performed using correlation analysis. Moreover, a back propagation neural network (BPNN) and a support vector regression (SVR) were applied to developing models to predict the values of two indices. After the prediction models were built, distribution maps were produced. The results show that LV structural indices are characteristically associated with latitude, longitude, altitude, average temperature, average wind velocity, topsoil sand fraction, topsoil silt fraction, topsoil organic carbon, and topsoil sodicity. The model test analyses show the BPNN model possesses better simulative and predictive ability in comparison with the SVR model. The distribution maps of the LV structural indices show that, in China, the values are higher in the west and lower in the east. These results demonstrate that the reference values of the adults' LV structural indices will be different affected by different geographical environment. The reference values of LV structural indices in one region can be calculated by setting up a BPNN, which showed better applicability in this study. The distribution of the reference values of the LV structural indices can be seen clearly on the geographical distribution map.

  4. Threshold Values for Identification of Contamination Predicted by Reduced-Order Models

    DOE PAGES

    Last, George V.; Murray, Christopher J.; Bott, Yi-Ju; ...

    2014-12-31

    The U.S. Department of Energy’s (DOE’s) National Risk Assessment Partnership (NRAP) Project is developing reduced-order models to evaluate potential impacts on underground sources of drinking water (USDWs) if CO2 or brine leaks from deep CO2 storage reservoirs. Threshold values, below which there would be no predicted impacts, were determined for portions of two aquifer systems. These threshold values were calculated using an interwell approach for determining background groundwater concentrations that is an adaptation of methods described in the U.S. Environmental Protection Agency’s Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities.

  5. Estimation and prediction under local volatility jump-diffusion model

    NASA Astrophysics Data System (ADS)

    Kim, Namhyoung; Lee, Younhee

    2018-02-01

    Volatility is an important factor in operating a company and managing risk. In the portfolio optimization and risk hedging using the option, the value of the option is evaluated using the volatility model. Various attempts have been made to predict option value. Recent studies have shown that stochastic volatility models and jump-diffusion models reflect stock price movements accurately. However, these models have practical limitations. Combining them with the local volatility model, which is widely used among practitioners, may lead to better performance. In this study, we propose a more effective and efficient method of estimating option prices by combining the local volatility model with the jump-diffusion model and apply it using both artificial and actual market data to evaluate its performance. The calibration process for estimating the jump parameters and local volatility surfaces is divided into three stages. We apply the local volatility model, stochastic volatility model, and local volatility jump-diffusion model estimated by the proposed method to KOSPI 200 index option pricing. The proposed method displays good estimation and prediction performance.

  6. Does Spontaneous Favorability to Power (vs. Universalism) Values Predict Spontaneous Prejudice and Discrimination?

    PubMed

    Souchon, Nicolas; Maio, Gregory R; Hanel, Paul H P; Bardin, Brigitte

    2017-10-01

    We conducted five studies testing whether an implicit measure of favorability toward power over universalism values predicts spontaneous prejudice and discrimination. Studies 1 (N = 192) and 2 (N = 86) examined correlations between spontaneous favorability toward power (vs. universalism) values, achievement (vs. benevolence) values, and a spontaneous measure of prejudice toward ethnic minorities. Study 3 (N = 159) tested whether conditioning participants to associate power values with positive adjectives and universalism values with negative adjectives (or inversely) affects spontaneous prejudice. Study 4 (N = 95) tested whether decision bias toward female handball players could be predicted by spontaneous attitude toward power (vs. universalism) values. Study 5 (N = 123) examined correlations between spontaneous attitude toward power (vs. universalism) values, spontaneous importance toward power (vs. universalism) values, and spontaneous prejudice toward Black African people. Spontaneous positivity toward power (vs. universalism) values was associated with spontaneous negativity toward minorities and predicted gender bias in a decision task, whereas the explicit measures did not. These results indicate that the implicit assessment of evaluative responses attached to human values helps to model value-attitude-behavior relations. © 2016 The Authors. Journal of Personality Published by Wiley Periodicals, Inc.

  7. Impact of fitting dominance and additive effects on accuracy of genomic prediction of breeding values in layers.

    PubMed

    Heidaritabar, M; Wolc, A; Arango, J; Zeng, J; Settar, P; Fulton, J E; O'Sullivan, N P; Bastiaansen, J W M; Fernando, R L; Garrick, D J; Dekkers, J C M

    2016-10-01

    Most genomic prediction studies fit only additive effects in models to estimate genomic breeding values (GEBV). However, if dominance genetic effects are an important source of variation for complex traits, accounting for them may improve the accuracy of GEBV. We investigated the effect of fitting dominance and additive effects on the accuracy of GEBV for eight egg production and quality traits in a purebred line of brown layers using pedigree or genomic information (42K single-nucleotide polymorphism (SNP) panel). Phenotypes were corrected for the effect of hatch date. Additive and dominance genetic variances were estimated using genomic-based [genomic best linear unbiased prediction (GBLUP)-REML and BayesC] and pedigree-based (PBLUP-REML) methods. Breeding values were predicted using a model that included both additive and dominance effects and a model that included only additive effects. The reference population consisted of approximately 1800 animals hatched between 2004 and 2009, while approximately 300 young animals hatched in 2010 were used for validation. Accuracy of prediction was computed as the correlation between phenotypes and estimated breeding values of the validation animals divided by the square root of the estimate of heritability in the whole population. The proportion of dominance variance to total phenotypic variance ranged from 0.03 to 0.22 with PBLUP-REML across traits, from 0 to 0.03 with GBLUP-REML and from 0.01 to 0.05 with BayesC. Accuracies of GEBV ranged from 0.28 to 0.60 across traits. Inclusion of dominance effects did not improve the accuracy of GEBV, and differences in their accuracies between genomic-based methods were small (0.01-0.05), with GBLUP-REML yielding higher prediction accuracies than BayesC for egg production, egg colour and yolk weight, while BayesC yielded higher accuracies than GBLUP-REML for the other traits. In conclusion, fitting dominance effects did not impact accuracy of genomic prediction of breeding values in this population. © 2016 Blackwell Verlag GmbH.

  8. Prognostic Value of the Thrombolysis in Myocardial Infarction Risk Score in ST-Elevation Myocardial Infarction Patients With Left Ventricular Dysfunction (from the EPHESUS Trial).

    PubMed

    Popovic, Batric; Girerd, Nicolas; Rossignol, Patrick; Agrinier, Nelly; Camenzind, Edoardo; Fay, Renaud; Pitt, Bertram; Zannad, Faiez

    2016-11-15

    The Thrombolysis in Myocardial Infarction (TIMI) risk score remains a robust prediction tool for short-term and midterm outcome in the patients with ST-elevation myocardial infarction (STEMI). However, the validity of this risk score in patients with STEMI with reduced left ventricular ejection fraction (LVEF) remains unclear. A total of 2,854 patients with STEMI with early coronary revascularization participating in the randomized EPHESUS (Epleronone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study) trial were analyzed. TIMI risk score was calculated at baseline, and its predictive value was evaluated using C-indexes from Cox models. The increase in reclassification of other variables in addition to TIMI score was assessed using the net reclassification index. TIMI risk score had a poor predictive accuracy for all-cause mortality (C-index values at 30 days and 1 year ≤0.67) and recurrent myocardial infarction (MI; C-index values ≤0.60). Among TIMI score items, diabetes/hypertension/angina, heart rate >100 beats/min, and systolic blood pressure <100 mm Hg were inconsistently associated with survival, whereas none of the TIMI score items, aside from age, were significantly associated with MI recurrence. Using a constructed predictive model, lower LVEF, lower estimated glomerular filtration rate (eGFR), and previous MI were significantly associated with all-cause mortality. The predictive accuracy of this model, which included LVEF and eGFR, was fair for both 30-day and 1-year all-cause mortality (C-index values ranging from 0.71 to 0.75). In conclusion, TIMI risk score demonstrates poor discrimination in predicting mortality or recurrent MI in patients with STEMI with reduced LVEF. LVEF and eGFR are major factors that should not be ignored by predictive risk scores in this population. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The value of identity: olfactory notes on orbitofrontal cortex function.

    PubMed

    Gottfried, Jay A; Zelano, Christina

    2011-12-01

    Neuroscientific research has emphatically promoted the idea that the key function of the orbitofrontal cortex (OFC) is to encode value. Associative learning studies indicate that OFC representations of stimulus cues reflect the predictive value of expected outcomes. Neuroeconomic studies suggest that the OFC distills abstract representations of value from discrete commodities to optimize choice. Although value-based models provide good explanatory power for many different findings, these models are typically disconnected from the very stimuli and commodities giving rise to those value representations. Little provision is made, either theoretically or empirically, for the necessary cooperative role of object identity, without which value becomes orphaned from its source. As a step toward remediating the value of identity, this review provides a focused olfactory survey of OFC research, including new work from our lab, to highlight the elemental involvement of this region in stimulus-specific predictive coding of both perceptual outcomes and expected values. © 2011 New York Academy of Sciences.

  10. Comparison of observed rheological properties of hard wheat flour dough with predictions of the Giesekus-Leonov, White-Metzner and Phan-Thien Tanner models

    NASA Technical Reports Server (NTRS)

    Dhanasekharan, M.; Huang, H.; Kokini, J. L.; Janes, H. W. (Principal Investigator)

    1999-01-01

    The measured rheological behavior of hard wheat flour dough was predicted using three nonlinear differential viscoelastic models. The Phan-Thien Tanner model gave good zero shear viscosity prediction, but overpredicted the shear viscosity at higher shear rates and the transient and extensional properties. The Giesekus-Leonov model gave similar predictions to the Phan-Thien Tanner model, but the extensional viscosity prediction showed extension thickening. Using high values of the mobility factor, extension thinning behavior was observed but the predictions were not satisfactory. The White-Metzner model gave good predictions of the steady shear viscosity and the first normal stress coefficient but it was unable to predict the uniaxial extensional viscosity as it exhibited asymptotic behavior in the tested extensional rates. It also predicted the transient shear properties with moderate accuracy in the transient phase, but very well at higher times, compared to the Phan-Thien Tanner model and the Giesekus-Leonov model. None of the models predicted all observed data consistently well. Overall the White-Metzner model appeared to make the best predictions of all the observed data.

  11. Study on elevated-temperature flow behavior of Ni-Cr-Mo-B ultra-heavy-plate steel via experiment and modelling

    NASA Astrophysics Data System (ADS)

    Gao, Zhi-yu; Kang, Yu; Li, Yan-shuai; Meng, Chao; Pan, Tao

    2018-04-01

    Elevated-temperature flow behavior of a novel Ni-Cr-Mo-B ultra-heavy-plate steel was investigated by conducting hot compressive deformation tests on a Gleeble-3800 thermo-mechanical simulator at a temperature range of 1123 K–1423 K with a strain rate range from 0.01 s‑1 to10 s‑1 and a height reduction of 70%. Based on the experimental results, classic strain-compensated Arrhenius-type, a new revised strain-compensated Arrhenius-type and classic modified Johnson-Cook constitutive models were developed for predicting the high-temperature deformation behavior of the steel. The predictability of these models were comparatively evaluated in terms of statistical parameters including correlation coefficient (R), average absolute relative error (AARE), average root mean square error (RMSE), normalized mean bias error (NMBE) and relative error. The statistical results indicate that the new revised strain-compensated Arrhenius-type model could give prediction of elevated-temperature flow stress for the steel accurately under the entire process conditions. However, the predicted values by the classic modified Johnson-Cook model could not agree well with the experimental values, and the classic strain-compensated Arrhenius-type model could track the deformation behavior more accurately compared with the modified Johnson-Cook model, but less accurately with the new revised strain-compensated Arrhenius-type model. In addition, reasons of differences in predictability of these models were discussed in detail.

  12. Errors in Representing Regional Acid Deposition with Spatially Sparse Monitoring: Case Studies of the Eastern US Using Model Predictions

    EPA Science Inventory

    The current study uses case studies of model-estimated regional precipitation and wet ion deposition to estimate errors in corresponding regional values derived from the means of site-specific values within regions of interest located in the eastern US. The mean of model-estimate...

  13. Network model for thermal conductivities of unidirectional fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Peng, Chaoyi; Zhang, Weihua

    2014-12-01

    An empirical network model has been developed to predict the in-plane thermal conductivities along arbitrary directions for unidirectional fiber-reinforced composites lamina. Measurements of thermal conductivities along different orientations were carried out. Good agreement was observed between values predicted by the network model and the experimental data; compared with the established analytical models, the newly proposed network model could give values with higher precision. Therefore, this network model is helpful to get a wider and more comprehensive understanding of heat transmission characteristics of fiber-reinforced composites and can be utilized as guidance to design and fabricate laminated composites with specific directional or specific locational thermal conductivities for structures that simultaneously perform mechanical and thermal functions, i.e. multifunctional structures (MFS).

  14. First trimester prediction of maternal glycemic status.

    PubMed

    Gabbay-Benziv, Rinat; Doyle, Lauren E; Blitzer, Miriam; Baschat, Ahmet A

    2015-05-01

    To predict gestational diabetes mellitus (GDM) or normoglycemic status using first trimester maternal characteristics. We used data from a prospective cohort study. First trimester maternal characteristics were compared between women with and without GDM. Association of these variables with sugar values at glucose challenge test (GCT) and subsequent GDM was tested to identify key parameters. A predictive algorithm for GDM was developed and receiver operating characteristics (ROC) statistics was used to derive the optimal risk score. We defined normoglycemic state, when GCT and all four sugar values at oral glucose tolerance test, whenever obtained, were normal. Using same statistical approach, we developed an algorithm to predict the normoglycemic state. Maternal age, race, prior GDM, first trimester BMI, and systolic blood pressure (SBP) were all significantly associated with GDM. Age, BMI, and SBP were also associated with GCT values. The logistic regression analysis constructed equation and the calculated risk score yielded sensitivity, specificity, positive predictive value, and negative predictive value of 85%, 62%, 13.8%, and 98.3% for a cut-off value of 0.042, respectively (ROC-AUC - area under the curve 0.819, CI - confidence interval 0.769-0.868). The model constructed for normoglycemia prediction demonstrated lower performance (ROC-AUC 0.707, CI 0.668-0.746). GDM prediction can be achieved during the first trimester encounter by integration of maternal characteristics and basic measurements while normoglycemic status prediction is less effective.

  15. Bayesian model aggregation for ensemble-based estimates of protein pKa values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gosink, Luke J.; Hogan, Emilie A.; Pulsipher, Trenton C.

    2014-03-01

    This paper investigates an ensemble-based technique called Bayesian Model Averaging (BMA) to improve the performance of protein amino acid pmore » $$K_a$$ predictions. Structure-based p$$K_a$$ calculations play an important role in the mechanistic interpretation of protein structure and are also used to determine a wide range of protein properties. A diverse set of methods currently exist for p$$K_a$$ prediction, ranging from empirical statistical models to {\\it ab initio} quantum mechanical approaches. However, each of these methods are based on a set of assumptions that have inherent bias and sensitivities that can effect a model's accuracy and generalizability for p$$K_a$$ prediction in complicated biomolecular systems. We use BMA to combine eleven diverse prediction methods that each estimate pKa values of amino acids in staphylococcal nuclease. These methods are based on work conducted for the pKa Cooperative and the pKa measurements are based on experimental work conducted by the Garc{\\'i}a-Moreno lab. Our study demonstrates that the aggregated estimate obtained from BMA outperforms all individual prediction methods in our cross-validation study with improvements from 40-70\\% over other method classes. This work illustrates a new possible mechanism for improving the accuracy of p$$K_a$$ prediction and lays the foundation for future work on aggregate models that balance computational cost with prediction accuracy.« less

  16. A CBR-Based and MAHP-Based Customer Value Prediction Model for New Product Development

    PubMed Central

    Zhao, Yu-Jie; Luo, Xin-xing; Deng, Li

    2014-01-01

    In the fierce market environment, the enterprise which wants to meet customer needs and boost its market profit and share must focus on the new product development. To overcome the limitations of previous research, Chan et al. proposed a dynamic decision support system to predict the customer lifetime value (CLV) for new product development. However, to better meet the customer needs, there are still some deficiencies in their model, so this study proposes a CBR-based and MAHP-based customer value prediction model for a new product (C&M-CVPM). CBR (case based reasoning) can reduce experts' workload and evaluation time, while MAHP (multiplicative analytic hierarchy process) can use actual but average influencing factor's effectiveness in stimulation, and at same time C&M-CVPM uses dynamic customers' transition probability which is more close to reality. This study not only introduces the realization of CBR and MAHP, but also elaborates C&M-CVPM's three main modules. The application of the proposed model is illustrated and confirmed to be sensible and convincing through a stimulation experiment. PMID:25162050

  17. Effects of phase vector and history extension on prediction power of adaptive-network based fuzzy inference system (ANFIS) model for a real scale anaerobic wastewater treatment plant operating under unsteady state.

    PubMed

    Perendeci, Altinay; Arslan, Sever; Tanyolaç, Abdurrahman; Celebi, Serdar S

    2009-10-01

    A conceptual neural fuzzy model based on adaptive-network based fuzzy inference system, ANFIS, was proposed using available input on-line and off-line operational variables for a sugar factory anaerobic wastewater treatment plant operating under unsteady state to estimate the effluent chemical oxygen demand, COD. The predictive power of the developed model was improved as a new approach by adding the phase vector and the recent values of COD up to 5-10 days, longer than overall retention time of wastewater in the system. History of last 10 days for COD effluent with two-valued phase vector in the input variable matrix including all parameters had more predictive power. History of 7 days with two-valued phase vector in the matrix comprised of only on-line variables yielded fairly well estimations. The developed ANFIS model with phase vector and history extension has been able to adequately represent the behavior of the treatment system.

  18. A CBR-based and MAHP-based customer value prediction model for new product development.

    PubMed

    Zhao, Yu-Jie; Luo, Xin-xing; Deng, Li

    2014-01-01

    In the fierce market environment, the enterprise which wants to meet customer needs and boost its market profit and share must focus on the new product development. To overcome the limitations of previous research, Chan et al. proposed a dynamic decision support system to predict the customer lifetime value (CLV) for new product development. However, to better meet the customer needs, there are still some deficiencies in their model, so this study proposes a CBR-based and MAHP-based customer value prediction model for a new product (C&M-CVPM). CBR (case based reasoning) can reduce experts' workload and evaluation time, while MAHP (multiplicative analytic hierarchy process) can use actual but average influencing factor's effectiveness in stimulation, and at same time C&M-CVPM uses dynamic customers' transition probability which is more close to reality. This study not only introduces the realization of CBR and MAHP, but also elaborates C&M-CVPM's three main modules. The application of the proposed model is illustrated and confirmed to be sensible and convincing through a stimulation experiment.

  19. Construction of a model for predicting creatinine clearance in Japanese patients treated with Cisplatin therapy.

    PubMed

    Yajima, Airi; Uesawa, Yoshihiro; Ogawa, Chiaki; Yatabe, Megumi; Kondo, Naoki; Saito, Shinichiro; Suzuki, Yoshihiko; Atsuda, Kouichiro; Kagaya, Hajime

    2015-05-01

    There exist various useful predictive models, such as the Cockcroft-Gault model, for estimating creatinine clearance (CLcr). However, the prediction of renal function is difficult in patients with cancer treated with cisplatin. Therefore, we attempted to construct a new model for predicting CLcr in such patients. Japanese patients with head and neck cancer who had received cisplatin-based chemotherapy were used as subjects. A multiple regression equation was constructed as a model for predicting CLcr values based on background and laboratory data. A model for predicting CLcr, which included body surface area, serum creatinine and albumin, was constructed. The model exhibited good performance prior to cisplatin therapy. In addition, it performed better than previously reported models after cisplatin therapy. The predictive model constructed in the present study displayed excellent potential and was useful for estimating the renal function of patients treated with cisplatin therapy. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model

    USGS Publications Warehouse

    Tonkin, J.W.; Balistrieri, L.S.; Murray, J.W.

    2004-01-01

    Manganese oxides are important scavengers of trace metals and other contaminants in the environment. The inclusion of Mn oxides in predictive models, however, has been difficult due to the lack of a comprehensive set of sorption reactions consistent with a given surface complexation model (SCM), and the discrepancies between published sorption data and predictions using the available models. The authors have compiled a set of surface complexation reactions for synthetic hydrous Mn oxide (HMO) using a two surface site model and the diffuse double layer SCM which complements databases developed for hydrous Fe (III) oxide, goethite and crystalline Al oxide. This compilation encompasses a range of data observed in the literature for the complex HMO surface and provides an error envelope for predictions not well defined by fitting parameters for single or limited data sets. Data describing surface characteristics and cation sorption were compiled from the literature for the synthetic HMO phases birnessite, vernadite and ??-MnO2. A specific surface area of 746 m2g-1 and a surface site density of 2.1 mmol g-1 were determined from crystallographic data and considered fixed parameters in the model. Potentiometric titration data sets were adjusted to a pH1EP value of 2.2. Two site types (???XOH and ???YOH) were used. The fraction of total sites attributed to ???XOH (??) and pKa2 were optimized for each of 7 published potentiometric titration data sets using the computer program FITEQL3.2. pKa2 values of 2.35??0.077 (???XOH) and 6.06??0.040 (???YOH) were determined at the 95% confidence level. The calculated average ?? value was 0.64, with high and low values ranging from 1.0 to 0.24, respectively. pKa2 and ?? values and published cation sorption data were used subsequently to determine equilibrium surface complexation constants for Ba2+, Ca2+, Cd 2+, Co2+, Cu2+, Mg2+, Mn 2+, Ni2+, Pb2+, Sr2+ and Zn 2+. In addition, average model parameters were used to predict additional sorption data for which complementary titration data were not available. The two-site model accounts for variability in the titration data and most metal sorption data are fit well using the pKa2 and ?? values reported above. A linear free energy relationship (LFER) appears to exist for some of the metals; however, redox and cation exchange reactions may limit the prediction of surface complexation constants for additional metals using the LFER. ?? 2003 Elsevier Ltd. All rights reserved.

  1. Comparison of ionospheric F2 peak parameters foF2 and hmF2 with IRI2001 at Hainan

    NASA Astrophysics Data System (ADS)

    Wang, X.; Shi, J. K.; Wang, G. J.; Gong, Y.

    2009-06-01

    Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with quarter-hourly time interval resolution for the diurnal variation, obtained with DPS4 digisonde at Hainan (19.5°N, 109.1°E; Geomagnetic coordinates: 178.95°E, 8.1°N) are used to investigate the low-latitude ionospheric variations and comparisons with the International Reference Ionosphere (IRI) model predictions. The data used for the present study covers the period from February 2002 to April 2007, which is characterized by a wide range of solar activity, ranging from high solar activity (2002) to low solar activity (2007). The results show that (1) Generally, IRI predictions follow well the diurnal and seasonal variation patterns of the experimental values of foF2, especially in the summer of 2002. However, there are systematic deviation between experimental values and IRI predictions with either CCIR or URSI coefficients. Generally IRI model greatly underestimate the values of foF2 from about noon to sunrise of next day, especially in the afternoon, and slightly overestimate them from sunrise to about noon. It seems that there are bigger deviations between IRI Model predictions and the experimental observations for the moderate solar activity. (2) Generally the IRI-predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the experimental results, but there is a relatively good agreement in summer at low solar activity. The deviation between the IRI-predicted hmF2 using CCIR M(3000)F2 and observed hmF2 is bigger from noon to sunset and around sunrise especially at high solar activity. The occurrence time of hmF2 peak (about 1200 LT) of the IRI model predictions is earlier than that of observations (around 1500 LT). The agreement between the IRI hmF2 obtained with the measured M(3000)F2 and the observed hmF2 is very good except that IRI overestimates slightly hmF2 in the daytime in summer at high solar activity and underestimates it in the nighttime with lower values near sunrise at low solar activity.

  2. Geomorphically based predictive mapping of soil thickness in upland watersheds

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.; Rasmussen, Craig

    2009-09-01

    The hydrologic response of upland watersheds is strongly controlled by soil (regolith) thickness. Despite the need to quantify soil thickness for input into hydrologic models, there is currently no widely used, geomorphically based method for doing so. In this paper we describe and illustrate a new method for predictive mapping of soil thicknesses using high-resolution topographic data, numerical modeling, and field-based calibration. The model framework works directly with input digital elevation model data to predict soil thicknesses assuming a long-term balance between soil production and erosion. Erosion rates in the model are quantified using one of three geomorphically based sediment transport models: nonlinear slope-dependent transport, nonlinear area- and slope-dependent transport, and nonlinear depth- and slope-dependent transport. The model balances soil production and erosion locally to predict a family of solutions corresponding to a range of values of two unconstrained model parameters. A small number of field-based soil thickness measurements can then be used to calibrate the local value of those unconstrained parameters, thereby constraining which solution is applicable at a particular study site. As an illustration, the model is used to predictively map soil thicknesses in two small, ˜0.1 km2, drainage basins in the Marshall Gulch watershed, a semiarid drainage basin in the Santa Catalina Mountains of Pima County, Arizona. Field observations and calibration data indicate that the nonlinear depth- and slope-dependent sediment transport model is the most appropriate transport model for this site. The resulting framework provides a generally applicable, geomorphically based tool for predictive mapping of soil thickness using high-resolution topographic data sets.

  3. Model variations in predicting incidence of Plasmodium falciparum malaria using 1998-2007 morbidity and meteorological data from south Ethiopia.

    PubMed

    Loha, Eskindir; Lindtjørn, Bernt

    2010-06-16

    Malaria transmission is complex and is believed to be associated with local climate changes. However, simple attempts to extrapolate malaria incidence rates from averaged regional meteorological conditions have proven unsuccessful. Therefore, the objective of this study was to determine if variations in specific meteorological factors are able to consistently predict P. falciparum malaria incidence at different locations in south Ethiopia. Retrospective data from 42 locations were collected including P. falciparum malaria incidence for the period of 1998-2007 and meteorological variables such as monthly rainfall (all locations), temperature (17 locations), and relative humidity (three locations). Thirty-five data sets qualified for the analysis. Ljung-Box Q statistics was used for model diagnosis, and R squared or stationary R squared was taken as goodness of fit measure. Time series modelling was carried out using Transfer Function (TF) models and univariate auto-regressive integrated moving average (ARIMA) when there was no significant predictor meteorological variable. Of 35 models, five were discarded because of the significant value of Ljung-Box Q statistics. Past P. falciparum malaria incidence alone (17 locations) or when coupled with meteorological variables (four locations) was able to predict P. falciparum malaria incidence within statistical significance. All seasonal AIRMA orders were from locations at altitudes above 1742 m. Monthly rainfall, minimum and maximum temperature was able to predict incidence at four, five and two locations, respectively. In contrast, relative humidity was not able to predict P. falciparum malaria incidence. The R squared values for the models ranged from 16% to 97%, with the exception of one model which had a negative value. Models with seasonal ARIMA orders were found to perform better. However, the models for predicting P. falciparum malaria incidence varied from location to location, and among lagged effects, data transformation forms, ARIMA and TF orders. This study describes P. falciparum malaria incidence models linked with meteorological data. Variability in the models was principally attributed to regional differences, and a single model was not found that fits all locations. Past P. falciparum malaria incidence appeared to be a superior predictor than meteorology. Future efforts in malaria modelling may benefit from inclusion of non-meteorological factors.

  4. Multivariate linear regression analysis to identify general factors for quantitative predictions of implant stability quotient values

    PubMed Central

    Huang, Hairong; Xu, Zanzan; Shao, Xianhong; Wismeijer, Daniel; Sun, Ping; Wang, Jingxiao

    2017-01-01

    Objectives This study identified potential general influencing factors for a mathematical prediction of implant stability quotient (ISQ) values in clinical practice. Methods We collected the ISQ values of 557 implants from 2 different brands (SICace and Osstem) placed by 2 surgeons in 336 patients. Surgeon 1 placed 329 SICace implants, and surgeon 2 placed 113 SICace implants and 115 Osstem implants. ISQ measurements were taken at T1 (immediately after implant placement) and T2 (before dental restoration). A multivariate linear regression model was used to analyze the influence of the following 11 candidate factors for stability prediction: sex, age, maxillary/mandibular location, bone type, immediate/delayed implantation, bone grafting, insertion torque, I-stage or II-stage healing pattern, implant diameter, implant length and T1-T2 time interval. Results The need for bone grafting as a predictor significantly influenced ISQ values in all three groups at T1 (weight coefficients ranging from -4 to -5). In contrast, implant diameter consistently influenced the ISQ values in all three groups at T2 (weight coefficients ranging from 3.4 to 4.2). Other factors, such as sex, age, I/II-stage implantation and bone type, did not significantly influence ISQ values at T2, and implant length did not significantly influence ISQ values at T1 or T2. Conclusions These findings provide a rational basis for mathematical models to quantitatively predict the ISQ values of implants in clinical practice. PMID:29084260

  5. SALSA3D: A Tomographic Model of Compressional Wave Slowness in the Earth’s Mantle for Improved Travel-Time Prediction and Travel-Time Prediction Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballard, Sanford; Hipp, James R.; Begnaud, Michael L.

    The task of monitoring the Earth for nuclear explosions relies heavily on seismic data to detect, locate, and characterize suspected nuclear tests. In this study, motivated by the need to locate suspected explosions as accurately and precisely as possible, we developed a tomographic model of the compressional wave slowness in the Earth’s mantle with primary focus on the accuracy and precision of travel-time predictions for P and Pn ray paths through the model. Path-dependent travel-time prediction uncertainties are obtained by computing the full 3D model covariance matrix and then integrating slowness variance and covariance along ray paths from source tomore » receiver. Path-dependent travel-time prediction uncertainties reflect the amount of seismic data that was used in tomography with very low values for paths represented by abundant data in the tomographic data set and very high values for paths through portions of the model that were poorly sampled by the tomography data set. The pattern of travel-time prediction uncertainty is a direct result of the off-diagonal terms of the model covariance matrix and underscores the importance of incorporating the full model covariance matrix in the determination of travel-time prediction uncertainty. In addition, the computed pattern of uncertainty differs significantly from that of 1D distance-dependent travel-time uncertainties computed using traditional methods, which are only appropriate for use with travel times computed through 1D velocity models.« less

  6. SALSA3D: A Tomographic Model of Compressional Wave Slowness in the Earth’s Mantle for Improved Travel-Time Prediction and Travel-Time Prediction Uncertainty

    DOE PAGES

    Ballard, Sanford; Hipp, James R.; Begnaud, Michael L.; ...

    2016-10-11

    The task of monitoring the Earth for nuclear explosions relies heavily on seismic data to detect, locate, and characterize suspected nuclear tests. In this study, motivated by the need to locate suspected explosions as accurately and precisely as possible, we developed a tomographic model of the compressional wave slowness in the Earth’s mantle with primary focus on the accuracy and precision of travel-time predictions for P and Pn ray paths through the model. Path-dependent travel-time prediction uncertainties are obtained by computing the full 3D model covariance matrix and then integrating slowness variance and covariance along ray paths from source tomore » receiver. Path-dependent travel-time prediction uncertainties reflect the amount of seismic data that was used in tomography with very low values for paths represented by abundant data in the tomographic data set and very high values for paths through portions of the model that were poorly sampled by the tomography data set. The pattern of travel-time prediction uncertainty is a direct result of the off-diagonal terms of the model covariance matrix and underscores the importance of incorporating the full model covariance matrix in the determination of travel-time prediction uncertainty. In addition, the computed pattern of uncertainty differs significantly from that of 1D distance-dependent travel-time uncertainties computed using traditional methods, which are only appropriate for use with travel times computed through 1D velocity models.« less

  7. Validation of Statistical Predictive Models Meant to Select Melanoma Patients for Sentinel Lymph Node Biopsy

    PubMed Central

    Sabel, Michael S.; Rice, John D.; Griffith, Kent A.; Lowe, Lori; Wong, Sandra L.; Chang, Alfred E.; Johnson, Timothy M.; Taylor, Jeremy M.G.

    2013-01-01

    Introduction To identify melanoma patients at sufficiently low risk of nodal metastases who could avoid SLN biopsy (SLNB). Several statistical models have been proposed based upon patient/tumor characteristics, including logistic regression, classification trees, random forests and support vector machines. We sought to validate recently published models meant to predict sentinel node status. Methods We queried our comprehensive, prospectively-collected melanoma database for consecutive melanoma patients undergoing SLNB. Prediction values were estimated based upon 4 published models, calculating the same reported metrics: negative predictive value (NPV), rate of negative predictions (RNP), and false negative rate (FNR). Results Logistic regression performed comparably with our data when considering NPV (89.4% vs. 93.6%); however the model’s specificity was not high enough to significantly reduce the rate of biopsies (SLN reduction rate of 2.9%). When applied to our data, the classification tree produced NPV and reduction in biopsies rates that were lower 87.7% vs. 94.1% and 29.8% vs. 14.3%, respectively. Two published models could not be applied to our data due to model complexity and the use of proprietary software. Conclusions Published models meant to reduce the SLNB rate among patients with melanoma either underperformed when applied to our larger dataset, or could not be validated. Differences in selection criteria and histopathologic interpretation likely resulted in underperformance. Development of statistical predictive models must be created in a clinically applicable manner to allow for both validation and ultimately clinical utility. PMID:21822550

  8. Predictive value of sperm morphology and progressively motile sperm count for pregnancy outcomes in intrauterine insemination.

    PubMed

    Lemmens, Louise; Kos, Snjezana; Beijer, Cornelis; Brinkman, Jacoline W; van der Horst, Frans A L; van den Hoven, Leonie; Kieslinger, Dorit C; van Trooyen-van Vrouwerff, Netty J; Wolthuis, Albert; Hendriks, Jan C M; Wetzels, Alex M M

    2016-06-01

    To investigate the value of sperm parameters to predict an ongoing pregnancy outcome in couples treated with intrauterine insemination (IUI), during a methodologically stable period of time. Retrospective, observational study with logistic regression analyses. University hospital. A total of 1,166 couples visiting the fertility laboratory for their first IUI episode, including 4,251 IUI cycles. None. Sperm morphology, total progressively motile sperm count (TPMSC), and number of inseminated progressively motile spermatozoa (NIPMS); odds ratios (ORs) of the sperm parameters after the first IUI cycle and the first finished IUI episode; discriminatory accuracy of the multivariable model. None of the sperm parameters was of predictive value for pregnancy after the first IUI cycle. In the first finished IUI episode, a positive relationship was found for ≤4% of morphologically normal spermatozoa (OR 1.39) and a moderate NIPMS (5-10 million; OR 1.73). Low NIPMS showed a negative relation (≤1 million; OR 0.42). The TPMSC had no predictive value. The multivariable model (i.e., sperm morphology, NIPMS, female age, male age, and the number of cycles in the episode) had a moderate discriminatory accuracy (area under the curve 0.73). Intrauterine insemination is especially relevant for couples with moderate male factor infertility (sperm morphology ≤4%, NIPMS 5-10 million). In the multivariable model, however, the predictive power of these sperm parameters is rather low. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  9. Optimization of Regression Models of Experimental Data Using Confirmation Points

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2010-01-01

    A new search metric is discussed that may be used to better assess the predictive capability of different math term combinations during the optimization of a regression model of experimental data. The new search metric can be determined for each tested math term combination if the given experimental data set is split into two subsets. The first subset consists of data points that are only used to determine the coefficients of the regression model. The second subset consists of confirmation points that are exclusively used to test the regression model. The new search metric value is assigned after comparing two values that describe the quality of the fit of each subset. The first value is the standard deviation of the PRESS residuals of the data points. The second value is the standard deviation of the response residuals of the confirmation points. The greater of the two values is used as the new search metric value. This choice guarantees that both standard deviations are always less or equal to the value that is used during the optimization. Experimental data from the calibration of a wind tunnel strain-gage balance is used to illustrate the application of the new search metric. The new search metric ultimately generates an optimized regression model that was already tested at regression model independent confirmation points before it is ever used to predict an unknown response from a set of regressors.

  10. A battery power model for the EUVE spacecraft

    NASA Technical Reports Server (NTRS)

    Yen, Wen L.; Littlefield, Ronald G.; Mclean, David R.; Tuchman, Alan; Broseghini, Todd A.; Page, Brenda J.

    1993-01-01

    This paper describes a battery power model that has been developed to simulate and predict the behavior of the 50 ampere-hour nickel-cadmium battery that supports the Extreme Ultraviolet Explorer (EUVE) spacecraft in its low Earth orbit. First, for given orbit, attitude, solar array panel and spacecraft load data, the model calculates minute-by-minute values for the net power available for charging the battery for a user-specified time period (usually about two weeks). Next, the model is used to calculate minute-by-minute values for the battery voltage, current and state-of-charge for the time period. The model's calculations are explained for its three phases: sunrise charging phase, constant voltage phase, and discharge phase. A comparison of predicted model values for voltage, current and state-of-charge with telemetry data for a complete charge-discharge cycle shows good correlation. This C-based computer model will be used by the EUVE Flight Operations Team for various 'what-if' scheduling analyses.

  11. Preclinical models used for immunogenicity prediction of therapeutic proteins.

    PubMed

    Brinks, Vera; Weinbuch, Daniel; Baker, Matthew; Dean, Yann; Stas, Philippe; Kostense, Stefan; Rup, Bonita; Jiskoot, Wim

    2013-07-01

    All therapeutic proteins are potentially immunogenic. Antibodies formed against these drugs can decrease efficacy, leading to drastically increased therapeutic costs and in rare cases to serious and sometimes life threatening side-effects. Many efforts are therefore undertaken to develop therapeutic proteins with minimal immunogenicity. For this, immunogenicity prediction of candidate drugs during early drug development is essential. Several in silico, in vitro and in vivo models are used to predict immunogenicity of drug leads, to modify potentially immunogenic properties and to continue development of drug candidates with expected low immunogenicity. Despite the extensive use of these predictive models, their actual predictive value varies. Important reasons for this uncertainty are the limited/insufficient knowledge on the immune mechanisms underlying immunogenicity of therapeutic proteins, the fact that different predictive models explore different components of the immune system and the lack of an integrated clinical validation. In this review, we discuss the predictive models in use, summarize aspects of immunogenicity that these models predict and explore the merits and the limitations of each of the models.

  12. Gender and Course Selection in Upper Secondary Education: Effects of Academic Self-Concept and Intrinsic Value

    ERIC Educational Resources Information Center

    Nagy, Gabriel; Trautwein, Ulrich; Baumert, Jurgen; Koller, Olaf; Garrett, Jessica

    2006-01-01

    Predictions about processes linking gender to students' choices of advanced courses were derived from the internal/external frame of reference (I/E) model and expectancy value (EV) theory. The predictions were tested for the domains of mathematics and biology using data from 1,148 students attending academically oriented secondary schools in…

  13. The Predictive Role of Values and Perceived Social Support Variables in Marital Adjustment

    ERIC Educational Resources Information Center

    Mert, Abdullah

    2018-01-01

    The aim of this study was to examine the predictive role of values and perceived social support variables in marital adjustment level among married individuals. A total of 422 (211 pairs) married individuals who agreed to participate voluntarily were included. The study was conducted in accordance with the relational screening model. "Dyadic…

  14. Predictive Relationships between Secondary School Students' Human Values, Motivational Beliefs, and Self-Regulated Learning Strategies

    ERIC Educational Resources Information Center

    Tanriseven, Isil; Dilmac, Bulent

    2013-01-01

    The purpose of this study was to investigate the exploratory and predictive relationships between secondary school students' human values and their motivational beliefs and self-regulated learning strategies and thus to test the relevant model was developed. A correlational filed study was used in this research. The sample of the research…

  15. Value Preferences Predicting Narcissistic Personality Traits in Young Adults

    ERIC Educational Resources Information Center

    Gungor, Ibrahim Halil; Eksi, Halil; Aricak, Osman Tolga

    2012-01-01

    This study aimed at showing how the value preferences of young adults could predict the narcissistic characteristics of young adults according to structural equation modeling. 133 female (59.6%) and 90 male (40.4%), total 223 young adults participated the study (average age: 25.66, ranging from 20 to 38). Ratio group sampling method was used while…

  16. Development of NIRS models to predict protein and amylose content of brown rice and proximate compositions of rice bran.

    PubMed

    Bagchi, Torit Baran; Sharma, Srigopal; Chattopadhyay, Krishnendu

    2016-01-15

    With the escalating persuasion of economic and nutritional importance of rice grain protein and nutritional components of rice bran (RB), NIRS can be an effective tool for high throughput screening in rice breeding programme. Optimization of NIRS is prerequisite for accurate prediction of grain quality parameters. In the present study, 173 brown rice (BR) and 86 RB samples with a wide range of values were used to compare the calibration models generated by different chemometrics for grain protein (GPC) and amylose content (AC) of BR and proximate compositions (protein, crude oil, moisture, ash and fiber content) of RB. Various modified partial least square (mPLSs) models corresponding with the best mathematical treatments were identified for all components. Another set of 29 genotypes derived from the breeding programme were employed for the external validation of these calibration models. High accuracy of all these calibration and prediction models was ensured through pair t-test and correlation regression analysis between reference and predicted values. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Forecasting peak asthma admissions in London: an application of quantile regression models.

    PubMed

    Soyiri, Ireneous N; Reidpath, Daniel D; Sarran, Christophe

    2013-07-01

    Asthma is a chronic condition of great public health concern globally. The associated morbidity, mortality and healthcare utilisation place an enormous burden on healthcare infrastructure and services. This study demonstrates a multistage quantile regression approach to predicting excess demand for health care services in the form of asthma daily admissions in London, using retrospective data from the Hospital Episode Statistics, weather and air quality. Trivariate quantile regression models (QRM) of asthma daily admissions were fitted to a 14-day range of lags of environmental factors, accounting for seasonality in a hold-in sample of the data. Representative lags were pooled to form multivariate predictive models, selected through a systematic backward stepwise reduction approach. Models were cross-validated using a hold-out sample of the data, and their respective root mean square error measures, sensitivity, specificity and predictive values compared. Two of the predictive models were able to detect extreme number of daily asthma admissions at sensitivity levels of 76 % and 62 %, as well as specificities of 66 % and 76 %. Their positive predictive values were slightly higher for the hold-out sample (29 % and 28 %) than for the hold-in model development sample (16 % and 18 %). QRMs can be used in multistage to select suitable variables to forecast extreme asthma events. The associations between asthma and environmental factors, including temperature, ozone and carbon monoxide can be exploited in predicting future events using QRMs.

  18. Forecasting peak asthma admissions in London: an application of quantile regression models

    NASA Astrophysics Data System (ADS)

    Soyiri, Ireneous N.; Reidpath, Daniel D.; Sarran, Christophe

    2013-07-01

    Asthma is a chronic condition of great public health concern globally. The associated morbidity, mortality and healthcare utilisation place an enormous burden on healthcare infrastructure and services. This study demonstrates a multistage quantile regression approach to predicting excess demand for health care services in the form of asthma daily admissions in London, using retrospective data from the Hospital Episode Statistics, weather and air quality. Trivariate quantile regression models (QRM) of asthma daily admissions were fitted to a 14-day range of lags of environmental factors, accounting for seasonality in a hold-in sample of the data. Representative lags were pooled to form multivariate predictive models, selected through a systematic backward stepwise reduction approach. Models were cross-validated using a hold-out sample of the data, and their respective root mean square error measures, sensitivity, specificity and predictive values compared. Two of the predictive models were able to detect extreme number of daily asthma admissions at sensitivity levels of 76 % and 62 %, as well as specificities of 66 % and 76 %. Their positive predictive values were slightly higher for the hold-out sample (29 % and 28 %) than for the hold-in model development sample (16 % and 18 %). QRMs can be used in multistage to select suitable variables to forecast extreme asthma events. The associations between asthma and environmental factors, including temperature, ozone and carbon monoxide can be exploited in predicting future events using QRMs.

  19. Reinforcement Learning Models and Their Neural Correlates: An Activation Likelihood Estimation Meta-Analysis

    PubMed Central

    Kumar, Poornima; Eickhoff, Simon B.; Dombrovski, Alexandre Y.

    2015-01-01

    Reinforcement learning describes motivated behavior in terms of two abstract signals. The representation of discrepancies between expected and actual rewards/punishments – prediction error – is thought to update the expected value of actions and predictive stimuli. Electrophysiological and lesion studies suggest that mesostriatal prediction error signals control behavior through synaptic modification of cortico-striato-thalamic networks. Signals in the ventromedial prefrontal and orbitofrontal cortex are implicated in representing expected value. To obtain unbiased maps of these representations in the human brain, we performed a meta-analysis of functional magnetic resonance imaging studies that employed algorithmic reinforcement learning models, across a variety of experimental paradigms. We found that the ventral striatum (medial and lateral) and midbrain/thalamus represented reward prediction errors, consistent with animal studies. Prediction error signals were also seen in the frontal operculum/insula, particularly for social rewards. In Pavlovian studies, striatal prediction error signals extended into the amygdala, while instrumental tasks engaged the caudate. Prediction error maps were sensitive to the model-fitting procedure (fixed or individually-estimated) and to the extent of spatial smoothing. A correlate of expected value was found in a posterior region of the ventromedial prefrontal cortex, caudal and medial to the orbitofrontal regions identified in animal studies. These findings highlight a reproducible motif of reinforcement learning in the cortico-striatal loops and identify methodological dimensions that may influence the reproducibility of activation patterns across studies. PMID:25665667

  20. Urban Ecological Security Simulation and Prediction Using an Improved Cellular Automata (CA) Approach-A Case Study for the City of Wuhan in China.

    PubMed

    Gao, Yuan; Zhang, Chuanrong; He, Qingsong; Liu, Yaolin

    2017-06-15

    Ecological security is an important research topic, especially urban ecological security. As highly populated eco-systems, cities always have more fragile ecological environments. However, most of the research on urban ecological security in literature has focused on evaluating current or past status of the ecological environment. Very little literature has carried out simulation or prediction of future ecological security. In addition, there is even less literature exploring the urban ecological environment at a fine scale. To fill-in the literature gap, in this study we simulated and predicted urban ecological security at a fine scale (district level) using an improved Cellular Automata (CA) approach. First we used the pressure-state-response (PSR) method based on grid-scale data to evaluate urban ecological security. Then, based on the evaluation results, we imported the geographically weighted regression (GWR) concept into the CA model to simulate and predict urban ecological security. We applied the improved CA approach in a case study-simulating and predicting urban ecological security for the city of Wuhan in Central China. By comparing the simulated ecological security values from 2010 using the improved CA model to the actual ecological security values of 2010, we got a relatively high value of the kappa coefficient, which indicates that this CA model can simulate or predict well future development of ecological security in Wuhan. Based on the prediction results for 2020, we made some policy recommendations for each district in Wuhan.

Top