Alderman, Phillip D.; Stanfill, Bryan
2016-10-06
Recent international efforts have brought renewed emphasis on the comparison of different agricultural systems models. Thus far, analysis of model-ensemble simulated results has not clearly differentiated between ensemble prediction uncertainties due to model structural differences per se and those due to parameter value uncertainties. Additionally, despite increasing use of Bayesian parameter estimation approaches with field-scale crop models, inadequate attention has been given to the full posterior distributions for estimated parameters. The objectives of this study were to quantify the impact of parameter value uncertainty on prediction uncertainty for modeling spring wheat phenology using Bayesian analysis and to assess the relativemore » contributions of model-structure-driven and parameter-value-driven uncertainty to overall prediction uncertainty. This study used a random walk Metropolis algorithm to estimate parameters for 30 spring wheat genotypes using nine phenology models based on multi-location trial data for days to heading and days to maturity. Across all cases, parameter-driven uncertainty accounted for between 19 and 52% of predictive uncertainty, while model-structure-driven uncertainty accounted for between 12 and 64%. Here, this study demonstrated the importance of quantifying both model-structure- and parameter-value-driven uncertainty when assessing overall prediction uncertainty in modeling spring wheat phenology. More generally, Bayesian parameter estimation provided a useful framework for quantifying and analyzing sources of prediction uncertainty.« less
Evaluating Predictive Uncertainty of Hyporheic Exchange Modelling
NASA Astrophysics Data System (ADS)
Chow, R.; Bennett, J.; Dugge, J.; Wöhling, T.; Nowak, W.
2017-12-01
Hyporheic exchange is the interaction of water between rivers and groundwater, and is difficult to predict. One of the largest contributions to predictive uncertainty for hyporheic fluxes have been attributed to the representation of heterogeneous subsurface properties. This research aims to evaluate which aspect of the subsurface representation - the spatial distribution of hydrofacies or the model for local-scale (within-facies) heterogeneity - most influences the predictive uncertainty. Also, we seek to identify data types that help reduce this uncertainty best. For this investigation, we conduct a modelling study of the Steinlach River meander, in Southwest Germany. The Steinlach River meander is an experimental site established in 2010 to monitor hyporheic exchange at the meander scale. We use HydroGeoSphere, a fully integrated surface water-groundwater model, to model hyporheic exchange and to assess the predictive uncertainty of hyporheic exchange transit times (HETT). A highly parameterized complex model is built and treated as `virtual reality', which is in turn modelled with simpler subsurface parameterization schemes (Figure). Then, we conduct Monte-Carlo simulations with these models to estimate the predictive uncertainty. Results indicate that: Uncertainty in HETT is relatively small for early times and increases with transit times. Uncertainty from local-scale heterogeneity is negligible compared to uncertainty in the hydrofacies distribution. Introducing more data to a poor model structure may reduce predictive variance, but does not reduce predictive bias. Hydraulic head observations alone cannot constrain the uncertainty of HETT, however an estimate of hyporheic exchange flux proves to be more effective at reducing this uncertainty. Figure: Approach for evaluating predictive model uncertainty. A conceptual model is first developed from the field investigations. A complex model (`virtual reality') is then developed based on that conceptual model. This complex model then serves as the basis to compare simpler model structures. Through this approach, predictive uncertainty can be quantified relative to a known reference solution.
Sensitivity and uncertainty analysis for the annual phosphorus loss estimator model
USDA-ARS?s Scientific Manuscript database
Models are often used to predict phosphorus (P) loss from agricultural fields. While it is commonly recognized that there are inherent uncertainties with model predictions, limited studies have addressed model prediction uncertainty. In this study we assess the effect of model input error on predict...
Model parameter uncertainty analysis for an annual field-scale P loss model
NASA Astrophysics Data System (ADS)
Bolster, Carl H.; Vadas, Peter A.; Boykin, Debbie
2016-08-01
Phosphorous (P) fate and transport models are important tools for developing and evaluating conservation practices aimed at reducing P losses from agricultural fields. Because all models are simplifications of complex systems, there will exist an inherent amount of uncertainty associated with their predictions. It is therefore important that efforts be directed at identifying, quantifying, and communicating the different sources of model uncertainties. In this study, we conducted an uncertainty analysis with the Annual P Loss Estimator (APLE) model. Our analysis included calculating parameter uncertainties and confidence and prediction intervals for five internal regression equations in APLE. We also estimated uncertainties of the model input variables based on values reported in the literature. We then predicted P loss for a suite of fields under different management and climatic conditions while accounting for uncertainties in the model parameters and inputs and compared the relative contributions of these two sources of uncertainty to the overall uncertainty associated with predictions of P loss. Both the overall magnitude of the prediction uncertainties and the relative contributions of the two sources of uncertainty varied depending on management practices and field characteristics. This was due to differences in the number of model input variables and the uncertainties in the regression equations associated with each P loss pathway. Inspection of the uncertainties in the five regression equations brought attention to a previously unrecognized limitation with the equation used to partition surface-applied fertilizer P between leaching and runoff losses. As a result, an alternate equation was identified that provided similar predictions with much less uncertainty. Our results demonstrate how a thorough uncertainty and model residual analysis can be used to identify limitations with a model. Such insight can then be used to guide future data collection and model development and evaluation efforts.
Prediction uncertainty and optimal experimental design for learning dynamical systems.
Letham, Benjamin; Letham, Portia A; Rudin, Cynthia; Browne, Edward P
2016-06-01
Dynamical systems are frequently used to model biological systems. When these models are fit to data, it is necessary to ascertain the uncertainty in the model fit. Here, we present prediction deviation, a metric of uncertainty that determines the extent to which observed data have constrained the model's predictions. This is accomplished by solving an optimization problem that searches for a pair of models that each provides a good fit for the observed data, yet has maximally different predictions. We develop a method for estimating a priori the impact that additional experiments would have on the prediction deviation, allowing the experimenter to design a set of experiments that would most reduce uncertainty. We use prediction deviation to assess uncertainty in a model of interferon-alpha inhibition of viral infection, and to select a sequence of experiments that reduces this uncertainty. Finally, we prove a theoretical result which shows that prediction deviation provides bounds on the trajectories of the underlying true model. These results show that prediction deviation is a meaningful metric of uncertainty that can be used for optimal experimental design.
Incorporating uncertainty in predictive species distribution modelling.
Beale, Colin M; Lennon, Jack J
2012-01-19
Motivated by the need to solve ecological problems (climate change, habitat fragmentation and biological invasions), there has been increasing interest in species distribution models (SDMs). Predictions from these models inform conservation policy, invasive species management and disease-control measures. However, predictions are subject to uncertainty, the degree and source of which is often unrecognized. Here, we review the SDM literature in the context of uncertainty, focusing on three main classes of SDM: niche-based models, demographic models and process-based models. We identify sources of uncertainty for each class and discuss how uncertainty can be minimized or included in the modelling process to give realistic measures of confidence around predictions. Because this has typically not been performed, we conclude that uncertainty in SDMs has often been underestimated and a false precision assigned to predictions of geographical distribution. We identify areas where development of new statistical tools will improve predictions from distribution models, notably the development of hierarchical models that link different types of distribution model and their attendant uncertainties across spatial scales. Finally, we discuss the need to develop more defensible methods for assessing predictive performance, quantifying model goodness-of-fit and for assessing the significance of model covariates.
Ronald E. McRoberts
2005-01-01
Uncertainty in model-based predictions of individual tree diameter growth is attributed to three sources: measurement error for predictor variables, residual variability around model predictions, and uncertainty in model parameter estimates. Monte Carlo simulations are used to propagate the uncertainty from the three sources through a set of diameter growth models to...
Uncertainty aggregation and reduction in structure-material performance prediction
NASA Astrophysics Data System (ADS)
Hu, Zhen; Mahadevan, Sankaran; Ao, Dan
2018-02-01
An uncertainty aggregation and reduction framework is presented for structure-material performance prediction. Different types of uncertainty sources, structural analysis model, and material performance prediction model are connected through a Bayesian network for systematic uncertainty aggregation analysis. To reduce the uncertainty in the computational structure-material performance prediction model, Bayesian updating using experimental observation data is investigated based on the Bayesian network. It is observed that the Bayesian updating results will have large error if the model cannot accurately represent the actual physics, and that this error will be propagated to the predicted performance distribution. To address this issue, this paper proposes a novel uncertainty reduction method by integrating Bayesian calibration with model validation adaptively. The observation domain of the quantity of interest is first discretized into multiple segments. An adaptive algorithm is then developed to perform model validation and Bayesian updating over these observation segments sequentially. Only information from observation segments where the model prediction is highly reliable is used for Bayesian updating; this is found to increase the effectiveness and efficiency of uncertainty reduction. A composite rotorcraft hub component fatigue life prediction model, which combines a finite element structural analysis model and a material damage model, is used to demonstrate the proposed method.
Using CV-GLUE procedure in analysis of wetland model predictive uncertainty.
Huang, Chun-Wei; Lin, Yu-Pin; Chiang, Li-Chi; Wang, Yung-Chieh
2014-07-01
This study develops a procedure that is related to Generalized Likelihood Uncertainty Estimation (GLUE), called the CV-GLUE procedure, for assessing the predictive uncertainty that is associated with different model structures with varying degrees of complexity. The proposed procedure comprises model calibration, validation, and predictive uncertainty estimation in terms of a characteristic coefficient of variation (characteristic CV). The procedure first performed two-stage Monte-Carlo simulations to ensure predictive accuracy by obtaining behavior parameter sets, and then the estimation of CV-values of the model outcomes, which represent the predictive uncertainties for a model structure of interest with its associated behavior parameter sets. Three commonly used wetland models (the first-order K-C model, the plug flow with dispersion model, and the Wetland Water Quality Model; WWQM) were compared based on data that were collected from a free water surface constructed wetland with paddy cultivation in Taipei, Taiwan. The results show that the first-order K-C model, which is simpler than the other two models, has greater predictive uncertainty. This finding shows that predictive uncertainty does not necessarily increase with the complexity of the model structure because in this case, the more simplistic representation (first-order K-C model) of reality results in a higher uncertainty in the prediction made by the model. The CV-GLUE procedure is suggested to be a useful tool not only for designing constructed wetlands but also for other aspects of environmental management. Copyright © 2014 Elsevier Ltd. All rights reserved.
Latin hypercube approach to estimate uncertainty in ground water vulnerability
Gurdak, J.J.; McCray, J.E.; Thyne, G.; Qi, S.L.
2007-01-01
A methodology is proposed to quantify prediction uncertainty associated with ground water vulnerability models that were developed through an approach that coupled multivariate logistic regression with a geographic information system (GIS). This method uses Latin hypercube sampling (LHS) to illustrate the propagation of input error and estimate uncertainty associated with the logistic regression predictions of ground water vulnerability. Central to the proposed method is the assumption that prediction uncertainty in ground water vulnerability models is a function of input error propagation from uncertainty in the estimated logistic regression model coefficients (model error) and the values of explanatory variables represented in the GIS (data error). Input probability distributions that represent both model and data error sources of uncertainty were simultaneously sampled using a Latin hypercube approach with logistic regression calculations of probability of elevated nonpoint source contaminants in ground water. The resulting probability distribution represents the prediction intervals and associated uncertainty of the ground water vulnerability predictions. The method is illustrated through a ground water vulnerability assessment of the High Plains regional aquifer. Results of the LHS simulations reveal significant prediction uncertainties that vary spatially across the regional aquifer. Additionally, the proposed method enables a spatial deconstruction of the prediction uncertainty that can lead to improved prediction of ground water vulnerability. ?? 2007 National Ground Water Association.
Parameter uncertainty analysis for the annual phosphorus loss estimator (APLE) model
USDA-ARS?s Scientific Manuscript database
Technical abstract: Models are often used to predict phosphorus (P) loss from agricultural fields. While it is commonly recognized that model predictions are inherently uncertain, few studies have addressed prediction uncertainties using P loss models. In this study, we conduct an uncertainty analys...
Doherty, John E.; Hunt, Randall J.; Tonkin, Matthew J.
2010-01-01
Analysis of the uncertainty associated with parameters used by a numerical model, and with predictions that depend on those parameters, is fundamental to the use of modeling in support of decisionmaking. Unfortunately, predictive uncertainty analysis with regard to models can be very computationally demanding, due in part to complex constraints on parameters that arise from expert knowledge of system properties on the one hand (knowledge constraints) and from the necessity for the model parameters to assume values that allow the model to reproduce historical system behavior on the other hand (calibration constraints). Enforcement of knowledge and calibration constraints on parameters used by a model does not eliminate the uncertainty in those parameters. In fact, in many cases, enforcement of calibration constraints simply reduces the uncertainties associated with a number of broad-scale combinations of model parameters that collectively describe spatially averaged system properties. The uncertainties associated with other combinations of parameters, especially those that pertain to small-scale parameter heterogeneity, may not be reduced through the calibration process. To the extent that a prediction depends on system-property detail, its postcalibration variability may be reduced very little, if at all, by applying calibration constraints; knowledge constraints remain the only limits on the variability of predictions that depend on such detail. Regrettably, in many common modeling applications, these constraints are weak. Though the PEST software suite was initially developed as a tool for model calibration, recent developments have focused on the evaluation of model-parameter and predictive uncertainty. As a complement to functionality that it provides for highly parameterized inversion (calibration) by means of formal mathematical regularization techniques, the PEST suite provides utilities for linear and nonlinear error-variance and uncertainty analysis in these highly parameterized modeling contexts. Availability of these utilities is particularly important because, in many cases, a significant proportion of the uncertainty associated with model parameters-and the predictions that depend on them-arises from differences between the complex properties of the real world and the simplified representation of those properties that is expressed by the calibrated model. This report is intended to guide intermediate to advanced modelers in the use of capabilities available with the PEST suite of programs for evaluating model predictive error and uncertainty. A brief theoretical background is presented on sources of parameter and predictive uncertainty and on the means for evaluating this uncertainty. Applications of PEST tools are then discussed for overdetermined and underdetermined problems, both linear and nonlinear. PEST tools for calculating contributions to model predictive uncertainty, as well as optimization of data acquisition for reducing parameter and predictive uncertainty, are presented. The appendixes list the relevant PEST variables, files, and utilities required for the analyses described in the document.
Prediction and assimilation of surf-zone processes using a Bayesian network: Part I: Forward models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
Prediction of coastal processes, including waves, currents, and sediment transport, can be obtained from a variety of detailed geophysical-process models with many simulations showing significant skill. This capability supports a wide range of research and applied efforts that can benefit from accurate numerical predictions. However, the predictions are only as accurate as the data used to drive the models and, given the large temporal and spatial variability of the surf zone, inaccuracies in data are unavoidable such that useful predictions require corresponding estimates of uncertainty. We demonstrate how a Bayesian-network model can be used to provide accurate predictions of wave-height evolution in the surf zone given very sparse and/or inaccurate boundary-condition data. The approach is based on a formal treatment of a data-assimilation problem that takes advantage of significant reduction of the dimensionality of the model system. We demonstrate that predictions of a detailed geophysical model of the wave evolution are reproduced accurately using a Bayesian approach. In this surf-zone application, forward prediction skill was 83%, and uncertainties in the model inputs were accurately transferred to uncertainty in output variables. We also demonstrate that if modeling uncertainties were not conveyed to the Bayesian network (i.e., perfect data or model were assumed), then overly optimistic prediction uncertainties were computed. More consistent predictions and uncertainties were obtained by including model-parameter errors as a source of input uncertainty. Improved predictions (skill of 90%) were achieved because the Bayesian network simultaneously estimated optimal parameters while predicting wave heights.
NASA Astrophysics Data System (ADS)
Suzuki, Kazuyoshi; Zupanski, Milija
2018-01-01
In this study, we investigate the uncertainties associated with land surface processes in an ensemble predication context. Specifically, we compare the uncertainties produced by a coupled atmosphere-land modeling system with two different land surface models, the Noah- MP land surface model (LSM) and the Noah LSM, by using the Maximum Likelihood Ensemble Filter (MLEF) data assimilation system as a platform for ensemble prediction. We carried out 24-hour prediction simulations in Siberia with 32 ensemble members beginning at 00:00 UTC on 5 March 2013. We then compared the model prediction uncertainty of snow depth and solid precipitation with observation-based research products and evaluated the standard deviation of the ensemble spread. The prediction skill and ensemble spread exhibited high positive correlation for both LSMs, indicating a realistic uncertainty estimation. The inclusion of a multiple snowlayer model in the Noah-MP LSM was beneficial for reducing the uncertainties of snow depth and snow depth change compared to the Noah LSM, but the uncertainty in daily solid precipitation showed minimal difference between the two LSMs. The impact of LSM choice in reducing temperature uncertainty was limited to surface layers of the atmosphere. In summary, we found that the more sophisticated Noah-MP LSM reduces uncertainties associated with land surface processes compared to the Noah LSM. Thus, using prediction models with improved skill implies improved predictability and greater certainty of prediction.
NASA Astrophysics Data System (ADS)
Ricciuto, Daniel M.; King, Anthony W.; Dragoni, D.; Post, Wilfred M.
2011-03-01
Many parameters in terrestrial biogeochemical models are inherently uncertain, leading to uncertainty in predictions of key carbon cycle variables. At observation sites, this uncertainty can be quantified by applying model-data fusion techniques to estimate model parameters using eddy covariance observations and associated biometric data sets as constraints. Uncertainty is reduced as data records become longer and different types of observations are added. We estimate parametric and associated predictive uncertainty at the Morgan Monroe State Forest in Indiana, USA. Parameters in the Local Terrestrial Ecosystem Carbon (LoTEC) are estimated using both synthetic and actual constraints. These model parameters and uncertainties are then used to make predictions of carbon flux for up to 20 years. We find a strong dependence of both parametric and prediction uncertainty on the length of the data record used in the model-data fusion. In this model framework, this dependence is strongly reduced as the data record length increases beyond 5 years. If synthetic initial biomass pool constraints with realistic uncertainties are included in the model-data fusion, prediction uncertainty is reduced by more than 25% when constraining flux records are less than 3 years. If synthetic annual aboveground woody biomass increment constraints are also included, uncertainty is similarly reduced by an additional 25%. When actual observed eddy covariance data are used as constraints, there is still a strong dependence of parameter and prediction uncertainty on data record length, but the results are harder to interpret because of the inability of LoTEC to reproduce observed interannual variations and the confounding effects of model structural error.
NASA Astrophysics Data System (ADS)
Mockler, E. M.; Chun, K. P.; Sapriza-Azuri, G.; Bruen, M.; Wheater, H. S.
2016-11-01
Predictions of river flow dynamics provide vital information for many aspects of water management including water resource planning, climate adaptation, and flood and drought assessments. Many of the subjective choices that modellers make including model and criteria selection can have a significant impact on the magnitude and distribution of the output uncertainty. Hydrological modellers are tasked with understanding and minimising the uncertainty surrounding streamflow predictions before communicating the overall uncertainty to decision makers. Parameter uncertainty in conceptual rainfall-runoff models has been widely investigated, and model structural uncertainty and forcing data have been receiving increasing attention. This study aimed to assess uncertainties in streamflow predictions due to forcing data and the identification of behavioural parameter sets in 31 Irish catchments. By combining stochastic rainfall ensembles and multiple parameter sets for three conceptual rainfall-runoff models, an analysis of variance model was used to decompose the total uncertainty in streamflow simulations into contributions from (i) forcing data, (ii) identification of model parameters and (iii) interactions between the two. The analysis illustrates that, for our subjective choices, hydrological model selection had a greater contribution to overall uncertainty, while performance criteria selection influenced the relative intra-annual uncertainties in streamflow predictions. Uncertainties in streamflow predictions due to the method of determining parameters were relatively lower for wetter catchments, and more evenly distributed throughout the year when the Nash-Sutcliffe Efficiency of logarithmic values of flow (lnNSE) was the evaluation criterion.
Flassig, Robert J; Migal, Iryna; der Zalm, Esther van; Rihko-Struckmann, Liisa; Sundmacher, Kai
2015-01-16
Understanding the dynamics of biological processes can substantially be supported by computational models in the form of nonlinear ordinary differential equations (ODE). Typically, this model class contains many unknown parameters, which are estimated from inadequate and noisy data. Depending on the ODE structure, predictions based on unmeasured states and associated parameters are highly uncertain, even undetermined. For given data, profile likelihood analysis has been proven to be one of the most practically relevant approaches for analyzing the identifiability of an ODE structure, and thus model predictions. In case of highly uncertain or non-identifiable parameters, rational experimental design based on various approaches has shown to significantly reduce parameter uncertainties with minimal amount of effort. In this work we illustrate how to use profile likelihood samples for quantifying the individual contribution of parameter uncertainty to prediction uncertainty. For the uncertainty quantification we introduce the profile likelihood sensitivity (PLS) index. Additionally, for the case of several uncertain parameters, we introduce the PLS entropy to quantify individual contributions to the overall prediction uncertainty. We show how to use these two criteria as an experimental design objective for selecting new, informative readouts in combination with intervention site identification. The characteristics of the proposed multi-criterion objective are illustrated with an in silico example. We further illustrate how an existing practically non-identifiable model for the chlorophyll fluorescence induction in a photosynthetic organism, D. salina, can be rendered identifiable by additional experiments with new readouts. Having data and profile likelihood samples at hand, the here proposed uncertainty quantification based on prediction samples from the profile likelihood provides a simple way for determining individual contributions of parameter uncertainties to uncertainties in model predictions. The uncertainty quantification of specific model predictions allows identifying regions, where model predictions have to be considered with care. Such uncertain regions can be used for a rational experimental design to render initially highly uncertain model predictions into certainty. Finally, our uncertainty quantification directly accounts for parameter interdependencies and parameter sensitivities of the specific prediction.
A model-averaging method for assessing groundwater conceptual model uncertainty.
Ye, Ming; Pohlmann, Karl F; Chapman, Jenny B; Pohll, Greg M; Reeves, Donald M
2010-01-01
This study evaluates alternative groundwater models with different recharge and geologic components at the northern Yucca Flat area of the Death Valley Regional Flow System (DVRFS), USA. Recharge over the DVRFS has been estimated using five methods, and five geological interpretations are available at the northern Yucca Flat area. Combining the recharge and geological components together with additional modeling components that represent other hydrogeological conditions yields a total of 25 groundwater flow models. As all the models are plausible given available data and information, evaluating model uncertainty becomes inevitable. On the other hand, hydraulic parameters (e.g., hydraulic conductivity) are uncertain in each model, giving rise to parametric uncertainty. Propagation of the uncertainty in the models and model parameters through groundwater modeling causes predictive uncertainty in model predictions (e.g., hydraulic head and flow). Parametric uncertainty within each model is assessed using Monte Carlo simulation, and model uncertainty is evaluated using the model averaging method. Two model-averaging techniques (on the basis of information criteria and GLUE) are discussed. This study shows that contribution of model uncertainty to predictive uncertainty is significantly larger than that of parametric uncertainty. For the recharge and geological components, uncertainty in the geological interpretations has more significant effect on model predictions than uncertainty in the recharge estimates. In addition, weighted residuals vary more for the different geological models than for different recharge models. Most of the calibrated observations are not important for discriminating between the alternative models, because their weighted residuals vary only slightly from one model to another.
Relating Data and Models to Characterize Parameter and Prediction Uncertainty
Applying PBPK models in risk analysis requires that we realistically assess the uncertainty of relevant model predictions in as quantitative a way as possible. The reality of human variability may add a confusing feature to the overall uncertainty assessment, as uncertainty and v...
NASA Technical Reports Server (NTRS)
Li, Tao; Hasegawa, Toshihiro; Yin, Xinyou; Zhu, Yan; Boote, Kenneth; Adam, Myriam; Bregaglio, Simone; Buis, Samuel; Confalonieri, Roberto; Fumoto, Tamon;
2014-01-01
Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We evaluated 13 rice models against multi-year experimental yield data at four sites with diverse climatic conditions in Asia and examined whether different modeling approaches on major physiological processes attribute to the uncertainties of prediction to field measured yields and to the uncertainties of sensitivity to changes in temperature and CO2 concentration [CO2]. We also examined whether a use of an ensemble of crop models can reduce the uncertainties. Individual models did not consistently reproduce both experimental and regional yields well, and uncertainty was larger at the warmest and coolest sites. The variation in yield projections was larger among crop models than variation resulting from 16 global climate model-based scenarios. However, the mean of predictions of all crop models reproduced experimental data, with an uncertainty of less than 10 percent of measured yields. Using an ensemble of eight models calibrated only for phenology or five models calibrated in detail resulted in the uncertainty equivalent to that of the measured yield in well-controlled agronomic field experiments. Sensitivity analysis indicates the necessity to improve the accuracy in predicting both biomass and harvest index in response to increasing [CO2] and temperature.
Sources of Uncertainty in Predicting Land Surface Fluxes Using Diverse Data and Models
NASA Technical Reports Server (NTRS)
Dungan, Jennifer L.; Wang, Weile; Michaelis, Andrew; Votava, Petr; Nemani, Ramakrishma
2010-01-01
In the domain of predicting land surface fluxes, models are used to bring data from large observation networks and satellite remote sensing together to make predictions about present and future states of the Earth. Characterizing the uncertainty about such predictions is a complex process and one that is not yet fully understood. Uncertainty exists about initialization, measurement and interpolation of input variables; model parameters; model structure; and mixed spatial and temporal supports. Multiple models or structures often exist to describe the same processes. Uncertainty about structure is currently addressed by running an ensemble of different models and examining the distribution of model outputs. To illustrate structural uncertainty, a multi-model ensemble experiment we have been conducting using the Terrestrial Observation and Prediction System (TOPS) will be discussed. TOPS uses public versions of process-based ecosystem models that use satellite-derived inputs along with surface climate data and land surface characterization to produce predictions of ecosystem fluxes including gross and net primary production and net ecosystem exchange. Using the TOPS framework, we have explored the uncertainty arising from the application of models with different assumptions, structures, parameters, and variable definitions. With a small number of models, this only begins to capture the range of possible spatial fields of ecosystem fluxes. Few attempts have been made to systematically address the components of uncertainty in such a framework. We discuss the characterization of uncertainty for this approach including both quantifiable and poorly known aspects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, Wilfred M; King, Anthony Wayne; Dragoni, Danilo
Many parameters in terrestrial biogeochemical models are inherently uncertain, leading to uncertainty in predictions of key carbon cycle variables. At observation sites, this uncertainty can be quantified by applying model-data fusion techniques to estimate model parameters using eddy covariance observations and associated biometric data sets as constraints. Uncertainty is reduced as data records become longer and different types of observations are added. We estimate parametric and associated predictive uncertainty at the Morgan Monroe State Forest in Indiana, USA. Parameters in the Local Terrestrial Ecosystem Carbon (LoTEC) are estimated using both synthetic and actual constraints. These model parameters and uncertainties aremore » then used to make predictions of carbon flux for up to 20 years. We find a strong dependence of both parametric and prediction uncertainty on the length of the data record used in the model-data fusion. In this model framework, this dependence is strongly reduced as the data record length increases beyond 5 years. If synthetic initial biomass pool constraints with realistic uncertainties are included in the model-data fusion, prediction uncertainty is reduced by more than 25% when constraining flux records are less than 3 years. If synthetic annual aboveground woody biomass increment constraints are also included, uncertainty is similarly reduced by an additional 25%. When actual observed eddy covariance data are used as constraints, there is still a strong dependence of parameter and prediction uncertainty on data record length, but the results are harder to interpret because of the inability of LoTEC to reproduce observed interannual variations and the confounding effects of model structural error.« less
Watling, James I.; Brandt, Laura A.; Bucklin, David N.; Fujisaki, Ikuko; Mazzotti, Frank J.; Romañach, Stephanie; Speroterra, Carolina
2015-01-01
Species distribution models (SDMs) are widely used in basic and applied ecology, making it important to understand sources and magnitudes of uncertainty in SDM performance and predictions. We analyzed SDM performance and partitioned variance among prediction maps for 15 rare vertebrate species in the southeastern USA using all possible combinations of seven potential sources of uncertainty in SDMs: algorithms, climate datasets, model domain, species presences, variable collinearity, CO2 emissions scenarios, and general circulation models. The choice of modeling algorithm was the greatest source of uncertainty in SDM performance and prediction maps, with some additional variation in performance associated with the comprehensiveness of the species presences used for modeling. Other sources of uncertainty that have received attention in the SDM literature such as variable collinearity and model domain contributed little to differences in SDM performance or predictions in this study. Predictions from different algorithms tended to be more variable at northern range margins for species with more northern distributions, which may complicate conservation planning at the leading edge of species' geographic ranges. The clear message emerging from this work is that researchers should use multiple algorithms for modeling rather than relying on predictions from a single algorithm, invest resources in compiling a comprehensive set of species presences, and explicitly evaluate uncertainty in SDM predictions at leading range margins.
Performance of Trajectory Models with Wind Uncertainty
NASA Technical Reports Server (NTRS)
Lee, Alan G.; Weygandt, Stephen S.; Schwartz, Barry; Murphy, James R.
2009-01-01
Typical aircraft trajectory predictors use wind forecasts but do not account for the forecast uncertainty. A method for generating estimates of wind prediction uncertainty is described and its effect on aircraft trajectory prediction uncertainty is investigated. The procedure for estimating the wind prediction uncertainty relies uses a time-lagged ensemble of weather model forecasts from the hourly updated Rapid Update Cycle (RUC) weather prediction system. Forecast uncertainty is estimated using measures of the spread amongst various RUC time-lagged ensemble forecasts. This proof of concept study illustrates the estimated uncertainty and the actual wind errors, and documents the validity of the assumed ensemble-forecast accuracy relationship. Aircraft trajectory predictions are made using RUC winds with provision for the estimated uncertainty. Results for a set of simulated flights indicate this simple approach effectively translates the wind uncertainty estimate into an aircraft trajectory uncertainty. A key strength of the method is the ability to relate uncertainty to specific weather phenomena (contained in the various ensemble members) allowing identification of regional variations in uncertainty.
NASA Astrophysics Data System (ADS)
Wang, Weizong; Berthelot, Antonin; Zhang, Quanzhi; Bogaerts, Annemie
2018-05-01
One of the main issues in plasma chemistry modeling is that the cross sections and rate coefficients are subject to uncertainties, which yields uncertainties in the modeling results and hence hinders the predictive capabilities. In this paper, we reveal the impact of these uncertainties on the model predictions of plasma-based dry reforming in a dielectric barrier discharge. For this purpose, we performed a detailed uncertainty analysis and sensitivity study. 2000 different combinations of rate coefficients, based on the uncertainty from a log-normal distribution, are used to predict the uncertainties in the model output. The uncertainties in the electron density and electron temperature are around 11% and 8% at the maximum of the power deposition for a 70% confidence level. Still, this can have a major effect on the electron impact rates and hence on the calculated conversions of CO2 and CH4, as well as on the selectivities of CO and H2. For the CO2 and CH4 conversion, we obtain uncertainties of 24% and 33%, respectively. For the CO and H2 selectivity, the corresponding uncertainties are 28% and 14%, respectively. We also identify which reactions contribute most to the uncertainty in the model predictions. In order to improve the accuracy and reliability of plasma chemistry models, we recommend using only verified rate coefficients, and we point out the need for dedicated verification experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J. D.; Oberkampf, William Louis; Helton, Jon Craig
2006-10-01
Evidence theory provides an alternative to probability theory for the representation of epistemic uncertainty in model predictions that derives from epistemic uncertainty in model inputs, where the descriptor epistemic is used to indicate uncertainty that derives from a lack of knowledge with respect to the appropriate values to use for various inputs to the model. The potential benefit, and hence appeal, of evidence theory is that it allows a less restrictive specification of uncertainty than is possible within the axiomatic structure on which probability theory is based. Unfortunately, the propagation of an evidence theory representation for uncertainty through a modelmore » is more computationally demanding than the propagation of a probabilistic representation for uncertainty, with this difficulty constituting a serious obstacle to the use of evidence theory in the representation of uncertainty in predictions obtained from computationally intensive models. This presentation describes and illustrates a sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory. Preliminary trials indicate that the presented strategy can be used to propagate uncertainty representations based on evidence theory in analysis situations where naive sampling-based (i.e., unsophisticated Monte Carlo) procedures are impracticable due to computational cost.« less
NASA Astrophysics Data System (ADS)
Touhidul Mustafa, Syed Md.; Nossent, Jiri; Ghysels, Gert; Huysmans, Marijke
2017-04-01
Transient numerical groundwater flow models have been used to understand and forecast groundwater flow systems under anthropogenic and climatic effects, but the reliability of the predictions is strongly influenced by different sources of uncertainty. Hence, researchers in hydrological sciences are developing and applying methods for uncertainty quantification. Nevertheless, spatially distributed flow models pose significant challenges for parameter and spatially distributed input estimation and uncertainty quantification. In this study, we present a general and flexible approach for input and parameter estimation and uncertainty analysis of groundwater models. The proposed approach combines a fully distributed groundwater flow model (MODFLOW) with the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. To avoid over-parameterization, the uncertainty of the spatially distributed model input has been represented by multipliers. The posterior distributions of these multipliers and the regular model parameters were estimated using DREAM. The proposed methodology has been applied in an overexploited aquifer in Bangladesh where groundwater pumping and recharge data are highly uncertain. The results confirm that input uncertainty does have a considerable effect on the model predictions and parameter distributions. Additionally, our approach also provides a new way to optimize the spatially distributed recharge and pumping data along with the parameter values under uncertain input conditions. It can be concluded from our approach that considering model input uncertainty along with parameter uncertainty is important for obtaining realistic model predictions and a correct estimation of the uncertainty bounds.
An Efficient Deterministic Approach to Model-based Prediction Uncertainty Estimation
NASA Technical Reports Server (NTRS)
Daigle, Matthew J.; Saxena, Abhinav; Goebel, Kai
2012-01-01
Prognostics deals with the prediction of the end of life (EOL) of a system. EOL is a random variable, due to the presence of process noise and uncertainty in the future inputs to the system. Prognostics algorithm must account for this inherent uncertainty. In addition, these algorithms never know exactly the state of the system at the desired time of prediction, or the exact model describing the future evolution of the system, accumulating additional uncertainty into the predicted EOL. Prediction algorithms that do not account for these sources of uncertainty are misrepresenting the EOL and can lead to poor decisions based on their results. In this paper, we explore the impact of uncertainty in the prediction problem. We develop a general model-based prediction algorithm that incorporates these sources of uncertainty, and propose a novel approach to efficiently handle uncertainty in the future input trajectories of a system by using the unscented transformation. Using this approach, we are not only able to reduce the computational load but also estimate the bounds of uncertainty in a deterministic manner, which can be useful to consider during decision-making. Using a lithium-ion battery as a case study, we perform several simulation-based experiments to explore these issues, and validate the overall approach using experimental data from a battery testbed.
NASA Astrophysics Data System (ADS)
Brannan, K. M.; Somor, A.
2016-12-01
A variety of statistics are used to assess watershed model performance but these statistics do not directly answer the question: what is the uncertainty of my prediction. Understanding predictive uncertainty is important when using a watershed model to develop a Total Maximum Daily Load (TMDL). TMDLs are a key component of the US Clean Water Act and specify the amount of a pollutant that can enter a waterbody when the waterbody meets water quality criteria. TMDL developers use watershed models to estimate pollutant loads from nonpoint sources of pollution. We are developing a TMDL for bacteria impairments in a watershed in the Coastal Range of Oregon. We setup an HSPF model of the watershed and used the calibration software PEST to estimate HSPF hydrologic parameters and then perform predictive uncertainty analysis of stream flow. We used Monte-Carlo simulation to run the model with 1,000 different parameter sets and assess predictive uncertainty. In order to reduce the chance of specious parameter sets, we accounted for the relationships among parameter values by using mathematically-based regularization techniques and an estimate of the parameter covariance when generating random parameter sets. We used a novel approach to select flow data for predictive uncertainty analysis. We set aside flow data that occurred on days that bacteria samples were collected. We did not use these flows in the estimation of the model parameters. We calculated a percent uncertainty for each flow observation based 1,000 model runs. We also used several methods to visualize results with an emphasis on making the data accessible to both technical and general audiences. We will use the predictive uncertainty estimates in the next phase of our work, simulating bacteria fate and transport in the watershed.
Model structures amplify uncertainty in predicted soil carbon responses to climate change.
Shi, Zheng; Crowell, Sean; Luo, Yiqi; Moore, Berrien
2018-06-04
Large model uncertainty in projected future soil carbon (C) dynamics has been well documented. However, our understanding of the sources of this uncertainty is limited. Here we quantify the uncertainties arising from model parameters, structures and their interactions, and how those uncertainties propagate through different models to projections of future soil carbon stocks. Both the vertically resolved model and the microbial explicit model project much greater uncertainties to climate change than the conventional soil C model, with both positive and negative C-climate feedbacks, whereas the conventional model consistently predicts positive soil C-climate feedback. Our findings suggest that diverse model structures are necessary to increase confidence in soil C projection. However, the larger uncertainty in the complex models also suggests that we need to strike a balance between model complexity and the need to include diverse model structures in order to forecast soil C dynamics with high confidence and low uncertainty.
Uncertainty prediction for PUB
NASA Astrophysics Data System (ADS)
Mendiondo, E. M.; Tucci, C. M.; Clarke, R. T.; Castro, N. M.; Goldenfum, J. A.; Chevallier, P.
2003-04-01
IAHS’ initiative of Prediction in Ungaged Basins (PUB) attempts to integrate monitoring needs and uncertainty prediction for river basins. This paper outlines alternative ways of uncertainty prediction which could be linked with new blueprints for PUB, thereby showing how equifinality-based models should be grasped using practical strategies of gauging like the Nested Catchment Experiment (NCE). Uncertainty prediction is discussed from observations of Potiribu Project, which is a NCE layout at representative basins of a suptropical biome of 300,000 km2 in South America. Uncertainty prediction is assessed at the microscale (1 m2 plots), at the hillslope (0,125 km2) and at the mesoscale (0,125 - 560 km2). At the microscale, uncertainty-based models are constrained by temporal variations of state variables with changing likelihood surfaces of experiments using Green-Ampt model. Two new blueprints emerged from this NCE for PUB: (1) the Scale Transferability Scheme (STS) at the hillslope scale and the Integrating Process Hypothesis (IPH) at the mesoscale. The STS integrates a multi-dimensional scaling with similarity thresholds, as a generalization of the Representative Elementary Area (REA), using spatial correlation from point (distributed) to area (lumped) process. In this way, STS addresses uncertainty-bounds of model parameters, into an upscaling process at the hillslope. In the other hand, the IPH approach regionalizes synthetic hydrographs, thereby interpreting the uncertainty bounds of streamflow variables. Multiscale evidences from Potiribu NCE layout show novel pathways of uncertainty prediction under a PUB perspective in representative basins of world biomes.
A Reliability Estimation in Modeling Watershed Runoff With Uncertainties
NASA Astrophysics Data System (ADS)
Melching, Charles S.; Yen, Ben Chie; Wenzel, Harry G., Jr.
1990-10-01
The reliability of simulation results produced by watershed runoff models is a function of uncertainties in nature, data, model parameters, and model structure. A framework is presented here for using a reliability analysis method (such as first-order second-moment techniques or Monte Carlo simulation) to evaluate the combined effect of the uncertainties on the reliability of output hydrographs from hydrologic models. For a given event the prediction reliability can be expressed in terms of the probability distribution of the estimated hydrologic variable. The peak discharge probability for a watershed in Illinois using the HEC-1 watershed model is given as an example. The study of the reliability of predictions from watershed models provides useful information on the stochastic nature of output from deterministic models subject to uncertainties and identifies the relative contribution of the various uncertainties to unreliability of model predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballard, Sanford; Hipp, James R.; Begnaud, Michael L.
The task of monitoring the Earth for nuclear explosions relies heavily on seismic data to detect, locate, and characterize suspected nuclear tests. In this study, motivated by the need to locate suspected explosions as accurately and precisely as possible, we developed a tomographic model of the compressional wave slowness in the Earth’s mantle with primary focus on the accuracy and precision of travel-time predictions for P and Pn ray paths through the model. Path-dependent travel-time prediction uncertainties are obtained by computing the full 3D model covariance matrix and then integrating slowness variance and covariance along ray paths from source tomore » receiver. Path-dependent travel-time prediction uncertainties reflect the amount of seismic data that was used in tomography with very low values for paths represented by abundant data in the tomographic data set and very high values for paths through portions of the model that were poorly sampled by the tomography data set. The pattern of travel-time prediction uncertainty is a direct result of the off-diagonal terms of the model covariance matrix and underscores the importance of incorporating the full model covariance matrix in the determination of travel-time prediction uncertainty. In addition, the computed pattern of uncertainty differs significantly from that of 1D distance-dependent travel-time uncertainties computed using traditional methods, which are only appropriate for use with travel times computed through 1D velocity models.« less
Ballard, Sanford; Hipp, James R.; Begnaud, Michael L.; ...
2016-10-11
The task of monitoring the Earth for nuclear explosions relies heavily on seismic data to detect, locate, and characterize suspected nuclear tests. In this study, motivated by the need to locate suspected explosions as accurately and precisely as possible, we developed a tomographic model of the compressional wave slowness in the Earth’s mantle with primary focus on the accuracy and precision of travel-time predictions for P and Pn ray paths through the model. Path-dependent travel-time prediction uncertainties are obtained by computing the full 3D model covariance matrix and then integrating slowness variance and covariance along ray paths from source tomore » receiver. Path-dependent travel-time prediction uncertainties reflect the amount of seismic data that was used in tomography with very low values for paths represented by abundant data in the tomographic data set and very high values for paths through portions of the model that were poorly sampled by the tomography data set. The pattern of travel-time prediction uncertainty is a direct result of the off-diagonal terms of the model covariance matrix and underscores the importance of incorporating the full model covariance matrix in the determination of travel-time prediction uncertainty. In addition, the computed pattern of uncertainty differs significantly from that of 1D distance-dependent travel-time uncertainties computed using traditional methods, which are only appropriate for use with travel times computed through 1D velocity models.« less
Predicting ecological responses in a changing ocean: the effects of future climate uncertainty.
Freer, Jennifer J; Partridge, Julian C; Tarling, Geraint A; Collins, Martin A; Genner, Martin J
2018-01-01
Predicting how species will respond to climate change is a growing field in marine ecology, yet knowledge of how to incorporate the uncertainty from future climate data into these predictions remains a significant challenge. To help overcome it, this review separates climate uncertainty into its three components (scenario uncertainty, model uncertainty, and internal model variability) and identifies four criteria that constitute a thorough interpretation of an ecological response to climate change in relation to these parts (awareness, access, incorporation, communication). Through a literature review, the extent to which the marine ecology community has addressed these criteria in their predictions was assessed. Despite a high awareness of climate uncertainty, articles favoured the most severe emission scenario, and only a subset of climate models were used as input into ecological analyses. In the case of sea surface temperature, these models can have projections unrepresentative against a larger ensemble mean. Moreover, 91% of studies failed to incorporate the internal variability of a climate model into results. We explored the influence that the choice of emission scenario, climate model, and model realisation can have when predicting the future distribution of the pelagic fish, Electrona antarctica . Future distributions were highly influenced by the choice of climate model, and in some cases, internal variability was important in determining the direction and severity of the distribution change. Increased clarity and availability of processed climate data would facilitate more comprehensive explorations of climate uncertainty, and increase in the quality and standard of marine prediction studies.
Beekhuizen, Johan; Heuvelink, Gerard B M; Huss, Anke; Bürgi, Alfred; Kromhout, Hans; Vermeulen, Roel
2014-11-01
With the increased availability of spatial data and computing power, spatial prediction approaches have become a standard tool for exposure assessment in environmental epidemiology. However, such models are largely dependent on accurate input data. Uncertainties in the input data can therefore have a large effect on model predictions, but are rarely quantified. With Monte Carlo simulation we assessed the effect of input uncertainty on the prediction of radio-frequency electromagnetic fields (RF-EMF) from mobile phone base stations at 252 receptor sites in Amsterdam, The Netherlands. The impact on ranking and classification was determined by computing the Spearman correlations and weighted Cohen's Kappas (based on tertiles of the RF-EMF exposure distribution) between modelled values and RF-EMF measurements performed at the receptor sites. The uncertainty in modelled RF-EMF levels was large with a median coefficient of variation of 1.5. Uncertainty in receptor site height, building damping and building height contributed most to model output uncertainty. For exposure ranking and classification, the heights of buildings and receptor sites were the most important sources of uncertainty, followed by building damping, antenna- and site location. Uncertainty in antenna power, tilt, height and direction had a smaller impact on model performance. We quantified the effect of input data uncertainty on the prediction accuracy of an RF-EMF environmental exposure model, thereby identifying the most important sources of uncertainty and estimating the total uncertainty stemming from potential errors in the input data. This approach can be used to optimize the model and better interpret model output. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zell, Wesley O.; Culver, Teresa B.; Sanford, Ward E.
2018-06-01
Uncertainties about the age of base-flow discharge can have serious implications for the management of degraded environmental systems where subsurface pathways, and the ongoing release of pollutants that accumulated in the subsurface during past decades, dominate the water quality signal. Numerical groundwater models may be used to estimate groundwater return times and base-flow ages and thus predict the time required for stakeholders to see the results of improved agricultural management practices. However, the uncertainty inherent in the relationship between (i) the observations of atmospherically-derived tracers that are required to calibrate such models and (ii) the predictions of system age that the observations inform have not been investigated. For example, few if any studies have assessed the uncertainty of numerically-simulated system ages or evaluated the uncertainty reductions that may result from the expense of collecting additional subsurface tracer data. In this study we combine numerical flow and transport modeling of atmospherically-derived tracers with prediction uncertainty methods to accomplish four objectives. First, we show the relative importance of head, discharge, and tracer information for characterizing response times in a uniquely data rich catchment that includes 266 age-tracer measurements (SF6, CFCs, and 3H) in addition to long term monitoring of water levels and stream discharge. Second, we calculate uncertainty intervals for model-simulated base-flow ages using both linear and non-linear methods, and find that the prediction sensitivity vector used by linear first-order second-moment methods results in much larger uncertainties than non-linear Monte Carlo methods operating on the same parameter uncertainty. Third, by combining prediction uncertainty analysis with multiple models of the system, we show that data-worth calculations and monitoring network design are sensitive to variations in the amount of water leaving the system via stream discharge and irrigation withdrawals. Finally, we demonstrate a novel model-averaged computation of potential data worth that can account for these uncertainties in model structure.
Special Issue on Uncertainty Quantification in Multiscale System Design and Simulation
Wang, Yan; Swiler, Laura
2017-09-07
The importance of uncertainty has been recognized in various modeling, simulation, and analysis applications, where inherent assumptions and simplifications affect the accuracy of model predictions for physical phenomena. As model predictions are now heavily relied upon for simulation-based system design, which includes new materials, vehicles, mechanical and civil structures, and even new drugs, wrong model predictions could potentially cause catastrophic consequences. Therefore, uncertainty and associated risks due to model errors should be quantified to support robust systems engineering.
Special Issue on Uncertainty Quantification in Multiscale System Design and Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yan; Swiler, Laura
The importance of uncertainty has been recognized in various modeling, simulation, and analysis applications, where inherent assumptions and simplifications affect the accuracy of model predictions for physical phenomena. As model predictions are now heavily relied upon for simulation-based system design, which includes new materials, vehicles, mechanical and civil structures, and even new drugs, wrong model predictions could potentially cause catastrophic consequences. Therefore, uncertainty and associated risks due to model errors should be quantified to support robust systems engineering.
NASA Astrophysics Data System (ADS)
Vesselinov, V. V.; Harp, D.
2010-12-01
The process of decision making to protect groundwater resources requires a detailed estimation of uncertainties in model predictions. Various uncertainties associated with modeling a natural system, such as: (1) measurement and computational errors; (2) uncertainties in the conceptual model and model-parameter estimates; (3) simplifications in model setup and numerical representation of governing processes, contribute to the uncertainties in the model predictions. Due to this combination of factors, the sources of predictive uncertainties are generally difficult to quantify individually. Decision support related to optimal design of monitoring networks requires (1) detailed analyses of existing uncertainties related to model predictions of groundwater flow and contaminant transport, (2) optimization of the proposed monitoring network locations in terms of their efficiency to detect contaminants and provide early warning. We apply existing and newly-proposed methods to quantify predictive uncertainties and to optimize well locations. An important aspect of the analysis is the application of newly-developed optimization technique based on coupling of Particle Swarm and Levenberg-Marquardt optimization methods which proved to be robust and computationally efficient. These techniques and algorithms are bundled in a software package called MADS. MADS (Model Analyses for Decision Support) is an object-oriented code that is capable of performing various types of model analyses and supporting model-based decision making. The code can be executed under different computational modes, which include (1) sensitivity analyses (global and local), (2) Monte Carlo analysis, (3) model calibration, (4) parameter estimation, (5) uncertainty quantification, and (6) model selection. The code can be externally coupled with any existing model simulator through integrated modules that read/write input and output files using a set of template and instruction files (consistent with the PEST I/O protocol). MADS can also be internally coupled with a series of built-in analytical simulators. MADS provides functionality to work directly with existing control files developed for the code PEST (Doherty 2009). To perform the computational modes mentioned above, the code utilizes (1) advanced Latin-Hypercube sampling techniques (including Improved Distributed Sampling), (2) various gradient-based Levenberg-Marquardt optimization methods, (3) advanced global optimization methods (including Particle Swarm Optimization), and (4) a selection of alternative objective functions. The code has been successfully applied to perform various model analyses related to environmental management of real contamination sites. Examples include source identification problems, quantification of uncertainty, model calibration, and optimization of monitoring networks. The methodology and software codes are demonstrated using synthetic and real case studies where monitoring networks are optimized taking into account the uncertainty in model predictions of contaminant transport.
Uncertainty of climate change impact on groundwater reserves - Application to a chalk aquifer
NASA Astrophysics Data System (ADS)
Goderniaux, Pascal; Brouyère, Serge; Wildemeersch, Samuel; Therrien, René; Dassargues, Alain
2015-09-01
Recent studies have evaluated the impact of climate change on groundwater resources for different geographical and climatic contexts. However, most studies have either not estimated the uncertainty around projected impacts or have limited the analysis to the uncertainty related to climate models. In this study, the uncertainties around impact projections from several sources (climate models, natural variability of the weather, hydrological model calibration) are calculated and compared for the Geer catchment (465 km2) in Belgium. We use a surface-subsurface integrated model implemented using the finite element code HydroGeoSphere, coupled with climate change scenarios (2010-2085) and the UCODE_2005 inverse model, to assess the uncertainty related to the calibration of the hydrological model. This integrated model provides a more realistic representation of the water exchanges between surface and subsurface domains and constrains more the calibration with the use of both surface and subsurface observed data. Sensitivity and uncertainty analyses were performed on predictions. The linear uncertainty analysis is approximate for this nonlinear system, but it provides some measure of uncertainty for computationally demanding models. Results show that, for the Geer catchment, the most important uncertainty is related to calibration of the hydrological model. The total uncertainty associated with the prediction of groundwater levels remains large. By the end of the century, however, the uncertainty becomes smaller than the predicted decline in groundwater levels.
Li, Wei Bo; Greiter, Matthias; Oeh, Uwe; Hoeschen, Christoph
2011-12-01
The reliability of biokinetic models is essential in internal dose assessments and radiation risk analysis for the public, occupational workers, and patients exposed to radionuclides. In this paper, a method for assessing the reliability of biokinetic models by means of uncertainty and sensitivity analysis was developed. The paper is divided into two parts. In the first part of the study published here, the uncertainty sources of the model parameters for zirconium (Zr), developed by the International Commission on Radiological Protection (ICRP), were identified and analyzed. Furthermore, the uncertainty of the biokinetic experimental measurement performed at the Helmholtz Zentrum München-German Research Center for Environmental Health (HMGU) for developing a new biokinetic model of Zr was analyzed according to the Guide to the Expression of Uncertainty in Measurement, published by the International Organization for Standardization. The confidence interval and distribution of model parameters of the ICRP and HMGU Zr biokinetic models were evaluated. As a result of computer biokinetic modelings, the mean, standard uncertainty, and confidence interval of model prediction calculated based on the model parameter uncertainty were presented and compared to the plasma clearance and urinary excretion measured after intravenous administration. It was shown that for the most important compartment, the plasma, the uncertainty evaluated for the HMGU model was much smaller than that for the ICRP model; that phenomenon was observed for other organs and tissues as well. The uncertainty of the integral of the radioactivity of Zr up to 50 y calculated by the HMGU model after ingestion by adult members of the public was shown to be smaller by a factor of two than that of the ICRP model. It was also shown that the distribution type of the model parameter strongly influences the model prediction, and the correlation of the model input parameters affects the model prediction to a certain extent depending on the strength of the correlation. In the case of model prediction, the qualitative comparison of the model predictions with the measured plasma and urinary data showed the HMGU model to be more reliable than the ICRP model; quantitatively, the uncertainty model prediction by the HMGU systemic biokinetic model is smaller than that of the ICRP model. The uncertainty information on the model parameters analyzed in this study was used in the second part of the paper regarding a sensitivity analysis of the Zr biokinetic models.
NASA Technical Reports Server (NTRS)
Thomas, Russell H.; Burley, Casey L.; Guo, Yueping
2016-01-01
Aircraft system noise predictions have been performed for NASA modeled hybrid wing body aircraft advanced concepts with 2025 entry-into-service technology assumptions. The system noise predictions developed over a period from 2009 to 2016 as a result of improved modeling of the aircraft concepts, design changes, technology development, flight path modeling, and the use of extensive integrated system level experimental data. In addition, the system noise prediction models and process have been improved in many ways. An additional process is developed here for quantifying the uncertainty with a 95% confidence level. This uncertainty applies only to the aircraft system noise prediction process. For three points in time during this period, the vehicle designs, technologies, and noise prediction process are documented. For each of the three predictions, and with the information available at each of those points in time, the uncertainty is quantified using the direct Monte Carlo method with 10,000 simulations. For the prediction of cumulative noise of an advanced aircraft at the conceptual level of design, the total uncertainty band has been reduced from 12.2 to 9.6 EPNL dB. A value of 3.6 EPNL dB is proposed as the lower limit of uncertainty possible for the cumulative system noise prediction of an advanced aircraft concept.
Estimating model predictive uncertainty is imperative to informed environmental decision making and management of water resources. This paper applies the Generalized Sensitivity Analysis (GSA) to examine parameter sensitivity and the Generalized Likelihood Uncertainty Estimation...
NASA Astrophysics Data System (ADS)
Lilly, P.; Yanai, R. D.; Buckley, H. L.; Case, B. S.; Woollons, R. C.; Holdaway, R. J.; Johnson, J.
2016-12-01
Calculations of forest biomass and elemental content require many measurements and models, each contributing uncertainty to the final estimates. While sampling error is commonly reported, based on replicate plots, error due to uncertainty in the regression used to estimate biomass from tree diameter is usually not quantified. Some published estimates of uncertainty due to the regression models have used the uncertainty in the prediction of individuals, ignoring uncertainty in the mean, while others have propagated uncertainty in the mean while ignoring individual variation. Using the simple case of the calcium concentration of sugar maple leaves, we compare the variation among individuals (the standard deviation) to the uncertainty in the mean (the standard error) and illustrate the declining importance in the prediction of individual concentrations as the number of individuals increases. For allometric models, the analogous statistics are the prediction interval (or the residual variation in the model fit) and the confidence interval (describing the uncertainty in the best fit model). The effect of propagating these two sources of error is illustrated using the mass of sugar maple foliage. The uncertainty in individual tree predictions was large for plots with few trees; for plots with 30 trees or more, the uncertainty in individuals was less important than the uncertainty in the mean. Authors of previously published analyses have reanalyzed their data to show the magnitude of these two sources of uncertainty in scales ranging from experimental plots to entire countries. The most correct analysis will take both sources of uncertainty into account, but for practical purposes, country-level reports of uncertainty in carbon stocks, as required by the IPCC, can ignore the uncertainty in individuals. Ignoring the uncertainty in the mean will lead to exaggerated estimates of confidence in estimates of forest biomass and carbon and nutrient contents.
Methods for exploring uncertainty in groundwater management predictions
Guillaume, Joseph H. A.; Hunt, Randall J.; Comunian, Alessandro; Fu, Baihua; Blakers, Rachel S; Jakeman, Anthony J.; Barreteau, Olivier; Hunt, Randall J.; Rinaudo, Jean-Daniel; Ross, Andrew
2016-01-01
Models of groundwater systems help to integrate knowledge about the natural and human system covering different spatial and temporal scales, often from multiple disciplines, in order to address a range of issues of concern to various stakeholders. A model is simply a tool to express what we think we know. Uncertainty, due to lack of knowledge or natural variability, means that there are always alternative models that may need to be considered. This chapter provides an overview of uncertainty in models and in the definition of a problem to model, highlights approaches to communicating and using predictions of uncertain outcomes and summarises commonly used methods to explore uncertainty in groundwater management predictions. It is intended to raise awareness of how alternative models and hence uncertainty can be explored in order to facilitate the integration of these techniques with groundwater management.
Groenenberg, Jan E; Koopmans, Gerwin F; Comans, Rob N J
2010-02-15
Ion binding models such as the nonideal competitive adsorption-Donnan model (NICA-Donnan) and model VI successfully describe laboratory data of proton and metal binding to purified humic substances (HS). In this study model performance was tested in more complex natural systems. The speciation predicted with the NICA-Donnan model and the associated uncertainty were compared with independent measurements in soil solution extracts, including the free metal ion activity and fulvic (FA) and humic acid (HA) fractions of dissolved organic matter (DOM). Potentially important sources of uncertainty are the DOM composition and the variation in binding properties of HS. HS fractions of DOM in soil solution extracts varied between 14 and 63% and consisted mainly of FA. Moreover, binding parameters optimized for individual FA samples show substantial variation. Monte Carlo simulations show that uncertainties in predicted metal speciation, for metals with a high affinity for FA (Cu, Pb), are largely due to the natural variation in binding properties (i.e., the affinity) of FA. Predictions for metals with a lower affinity (Cd) are more prone to uncertainties in the fraction FA in DOM and the maximum site density (i.e., the capacity) of the FA. Based on these findings, suggestions are provided to reduce uncertainties in model predictions.
Hierarchical Bayesian Model Averaging for Chance Constrained Remediation Designs
NASA Astrophysics Data System (ADS)
Chitsazan, N.; Tsai, F. T.
2012-12-01
Groundwater remediation designs are heavily relying on simulation models which are subjected to various sources of uncertainty in their predictions. To develop a robust remediation design, it is crucial to understand the effect of uncertainty sources. In this research, we introduce a hierarchical Bayesian model averaging (HBMA) framework to segregate and prioritize sources of uncertainty in a multi-layer frame, where each layer targets a source of uncertainty. The HBMA framework provides an insight to uncertainty priorities and propagation. In addition, HBMA allows evaluating model weights in different hierarchy levels and assessing the relative importance of models in each level. To account for uncertainty, we employ a chance constrained (CC) programming for stochastic remediation design. Chance constrained programming was implemented traditionally to account for parameter uncertainty. Recently, many studies suggested that model structure uncertainty is not negligible compared to parameter uncertainty. Using chance constrained programming along with HBMA can provide a rigorous tool for groundwater remediation designs under uncertainty. In this research, the HBMA-CC was applied to a remediation design in a synthetic aquifer. The design was to develop a scavenger well approach to mitigate saltwater intrusion toward production wells. HBMA was employed to assess uncertainties from model structure, parameter estimation and kriging interpolation. An improved harmony search optimization method was used to find the optimal location of the scavenger well. We evaluated prediction variances of chloride concentration at the production wells through the HBMA framework. The results showed that choosing the single best model may lead to a significant error in evaluating prediction variances for two reasons. First, considering the single best model, variances that stem from uncertainty in the model structure will be ignored. Second, considering the best model with non-dominant model weight may underestimate or overestimate prediction variances by ignoring other plausible propositions. Chance constraints allow developing a remediation design with a desirable reliability. However, considering the single best model, the calculated reliability will be different from the desirable reliability. We calculated the reliability of the design for the models at different levels of HBMA. The results showed that by moving toward the top layers of HBMA, the calculated reliability converges to the chosen reliability. We employed the chance constrained optimization along with the HBMA framework to find the optimal location and pumpage for the scavenger well. The results showed that using models at different levels in the HBMA framework, the optimal location of the scavenger well remained the same, but the optimal extraction rate was altered. Thus, we concluded that the optimal pumping rate was sensitive to the prediction variance. Also, the prediction variance was changed by using different extraction rate. Using very high extraction rate will cause prediction variances of chloride concentration at the production wells to approach zero regardless of which HBMA models used.
Uncertainty and Variability in Physiologically-Based ...
EPA announced the availability of the final report, Uncertainty and Variability in Physiologically-Based Pharmacokinetic (PBPK) Models: Key Issues and Case Studies. This report summarizes some of the recent progress in characterizing uncertainty and variability in physiologically-based pharmacokinetic models and their predictions for use in risk assessment. This report summarizes some of the recent progress in characterizing uncertainty and variability in physiologically-based pharmacokinetic models and their predictions for use in risk assessment.
Modeling transport phenomena and uncertainty quantification in solidification processes
NASA Astrophysics Data System (ADS)
Fezi, Kyle S.
Direct chill (DC) casting is the primary processing route for wrought aluminum alloys. This semicontinuous process consists of primary cooling as the metal is pulled through a water cooled mold followed by secondary cooling with a water jet spray and free falling water. To gain insight into this complex solidification process, a fully transient model of DC casting was developed to predict the transport phenomena of aluminum alloys for various conditions. This model is capable of solving mixture mass, momentum, energy, and species conservation equations during multicomponent solidification. Various DC casting process parameters were examined for their effect on transport phenomena predictions in an alloy of commercial interest (aluminum alloy 7050). The practice of placing a wiper to divert cooling water from the ingot surface was studied and the results showed that placement closer to the mold causes remelting at the surface and increases susceptibility to bleed outs. Numerical models of metal alloy solidification, like the one previously mentioned, are used to gain insight into physical phenomena that cannot be observed experimentally. However, uncertainty in model inputs cause uncertainty in results and those insights. The analysis of model assumptions and probable input variability on the level of uncertainty in model predictions has not been calculated in solidification modeling as yet. As a step towards understanding the effect of uncertain inputs on solidification modeling, uncertainty quantification (UQ) and sensitivity analysis were first performed on a transient solidification model of a simple binary alloy (Al-4.5wt.%Cu) in a rectangular cavity with both columnar and equiaxed solid growth models. This analysis was followed by quantifying the uncertainty in predictions from the recently developed transient DC casting model. The PRISM Uncertainty Quantification (PUQ) framework quantified the uncertainty and sensitivity in macrosegregation, solidification time, and sump profile predictions. Uncertain model inputs of interest included the secondary dendrite arm spacing, equiaxed particle size, equiaxed packing fraction, heat transfer coefficient, and material properties. The most influential input parameters for predicting the macrosegregation level were the dendrite arm spacing, which also strongly depended on the choice of mushy zone permeability model, and the equiaxed packing fraction. Additionally, the degree of uncertainty required to produce accurate predictions depended on the output of interest from the model.
Shao, Kan; Small, Mitchell J
2011-10-01
A methodology is presented for assessing the information value of an additional dosage experiment in existing bioassay studies. The analysis demonstrates the potential reduction in the uncertainty of toxicity metrics derived from expanded studies, providing insights for future studies. Bayesian methods are used to fit alternative dose-response models using Markov chain Monte Carlo (MCMC) simulation for parameter estimation and Bayesian model averaging (BMA) is used to compare and combine the alternative models. BMA predictions for benchmark dose (BMD) are developed, with uncertainty in these predictions used to derive the lower bound BMDL. The MCMC and BMA results provide a basis for a subsequent Monte Carlo analysis that backcasts the dosage where an additional test group would have been most beneficial in reducing the uncertainty in the BMD prediction, along with the magnitude of the expected uncertainty reduction. Uncertainty reductions are measured in terms of reduced interval widths of predicted BMD values and increases in BMDL values that occur as a result of this reduced uncertainty. The methodology is illustrated using two existing data sets for TCDD carcinogenicity, fitted with two alternative dose-response models (logistic and quantal-linear). The example shows that an additional dose at a relatively high value would have been most effective for reducing the uncertainty in BMA BMD estimates, with predicted reductions in the widths of uncertainty intervals of approximately 30%, and expected increases in BMDL values of 5-10%. The results demonstrate that dose selection for studies that subsequently inform dose-response models can benefit from consideration of how these models will be fit, combined, and interpreted. © 2011 Society for Risk Analysis.
Multifidelity, Multidisciplinary Design Under Uncertainty with Non-Intrusive Polynomial Chaos
NASA Technical Reports Server (NTRS)
West, Thomas K., IV; Gumbert, Clyde
2017-01-01
The primary objective of this work is to develop an approach for multifidelity uncertainty quantification and to lay the framework for future design under uncertainty efforts. In this study, multifidelity is used to describe both the fidelity of the modeling of the physical systems, as well as the difference in the uncertainty in each of the models. For computational efficiency, a multifidelity surrogate modeling approach based on non-intrusive polynomial chaos using the point-collocation technique is developed for the treatment of both multifidelity modeling and multifidelity uncertainty modeling. Two stochastic model problems are used to demonstrate the developed methodologies: a transonic airfoil model and multidisciplinary aircraft analysis model. The results of both showed the multifidelity modeling approach was able to predict the output uncertainty predicted by the high-fidelity model as a significant reduction in computational cost.
Validation and uncertainty analysis of a pre-treatment 2D dose prediction model
NASA Astrophysics Data System (ADS)
Baeza, Jose A.; Wolfs, Cecile J. A.; Nijsten, Sebastiaan M. J. J. G.; Verhaegen, Frank
2018-02-01
Independent verification of complex treatment delivery with megavolt photon beam radiotherapy (RT) has been effectively used to detect and prevent errors. This work presents the validation and uncertainty analysis of a model that predicts 2D portal dose images (PDIs) without a patient or phantom in the beam. The prediction model is based on an exponential point dose model with separable primary and secondary photon fluence components. The model includes a scatter kernel, off-axis ratio map, transmission values and penumbra kernels for beam-delimiting components. These parameters were derived through a model fitting procedure supplied with point dose and dose profile measurements of radiation fields. The model was validated against a treatment planning system (TPS; Eclipse) and radiochromic film measurements for complex clinical scenarios, including volumetric modulated arc therapy (VMAT). Confidence limits on fitted model parameters were calculated based on simulated measurements. A sensitivity analysis was performed to evaluate the effect of the parameter uncertainties on the model output. For the maximum uncertainty, the maximum deviating measurement sets were propagated through the fitting procedure and the model. The overall uncertainty was assessed using all simulated measurements. The validation of the prediction model against the TPS and the film showed a good agreement, with on average 90.8% and 90.5% of pixels passing a (2%,2 mm) global gamma analysis respectively, with a low dose threshold of 10%. The maximum and overall uncertainty of the model is dependent on the type of clinical plan used as input. The results can be used to study the robustness of the model. A model for predicting accurate 2D pre-treatment PDIs in complex RT scenarios can be used clinically and its uncertainties can be taken into account.
The Effect of Nondeterministic Parameters on Shock-Associated Noise Prediction Modeling
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Khavaran, Abbas
2010-01-01
Engineering applications for aircraft noise prediction contain models for physical phenomenon that enable solutions to be computed quickly. These models contain parameters that have an uncertainty not accounted for in the solution. To include uncertainty in the solution, nondeterministic computational methods are applied. Using prediction models for supersonic jet broadband shock-associated noise, fixed model parameters are replaced by probability distributions to illustrate one of these methods. The results show the impact of using nondeterministic parameters both on estimating the model output uncertainty and on the model spectral level prediction. In addition, a global sensitivity analysis is used to determine the influence of the model parameters on the output, and to identify the parameters with the least influence on model output.
Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions
NASA Technical Reports Server (NTRS)
Nearing, Grey S.; Mocko, David M.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Xia, Youlong
2016-01-01
Model benchmarking allows us to separate uncertainty in model predictions caused 1 by model inputs from uncertainty due to model structural error. We extend this method with a large-sample approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of the NLDAS-2 system. In particular, continued work toward refining the parameter maps and look-up tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.
Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions
Nearing, Grey S.; Mocko, David M.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Xia, Youlong
2018-01-01
Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. We extend this method with a “large-sample” approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of the NLDAS-2 system. In particular, continued work toward refining the parameter maps and look-up tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances. PMID:29697706
Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions.
Nearing, Grey S; Mocko, David M; Peters-Lidard, Christa D; Kumar, Sujay V; Xia, Youlong
2016-03-01
Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. We extend this method with a "large-sample" approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of the NLDAS-2 system. In particular, continued work toward refining the parameter maps and look-up tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.
NASA Astrophysics Data System (ADS)
Behmanesh, Iman; Yousefianmoghadam, Seyedsina; Nozari, Amin; Moaveni, Babak; Stavridis, Andreas
2018-07-01
This paper investigates the application of Hierarchical Bayesian model updating for uncertainty quantification and response prediction of civil structures. In this updating framework, structural parameters of an initial finite element (FE) model (e.g., stiffness or mass) are calibrated by minimizing error functions between the identified modal parameters and the corresponding parameters of the model. These error functions are assumed to have Gaussian probability distributions with unknown parameters to be determined. The estimated parameters of error functions represent the uncertainty of the calibrated model in predicting building's response (modal parameters here). The focus of this paper is to answer whether the quantified model uncertainties using dynamic measurement at building's reference/calibration state can be used to improve the model prediction accuracies at a different structural state, e.g., damaged structure. Also, the effects of prediction error bias on the uncertainty of the predicted values is studied. The test structure considered here is a ten-story concrete building located in Utica, NY. The modal parameters of the building at its reference state are identified from ambient vibration data and used to calibrate parameters of the initial FE model as well as the error functions. Before demolishing the building, six of its exterior walls were removed and ambient vibration measurements were also collected from the structure after the wall removal. These data are not used to calibrate the model; they are only used to assess the predicted results. The model updating framework proposed in this paper is applied to estimate the modal parameters of the building at its reference state as well as two damaged states: moderate damage (removal of four walls) and severe damage (removal of six walls). Good agreement is observed between the model-predicted modal parameters and those identified from vibration tests. Moreover, it is shown that including prediction error bias in the updating process instead of commonly-used zero-mean error function can significantly reduce the prediction uncertainties.
Predicting uncertainty in future marine ice sheet volume using Bayesian statistical methods
NASA Astrophysics Data System (ADS)
Davis, A. D.
2015-12-01
The marine ice instability can trigger rapid retreat of marine ice streams. Recent observations suggest that marine ice systems in West Antarctica have begun retreating. However, unknown ice dynamics, computationally intensive mathematical models, and uncertain parameters in these models make predicting retreat rate and ice volume difficult. In this work, we fuse current observational data with ice stream/shelf models to develop probabilistic predictions of future grounded ice sheet volume. Given observational data (e.g., thickness, surface elevation, and velocity) and a forward model that relates uncertain parameters (e.g., basal friction and basal topography) to these observations, we use a Bayesian framework to define a posterior distribution over the parameters. A stochastic predictive model then propagates uncertainties in these parameters to uncertainty in a particular quantity of interest (QoI)---here, the volume of grounded ice at a specified future time. While the Bayesian approach can in principle characterize the posterior predictive distribution of the QoI, the computational cost of both the forward and predictive models makes this effort prohibitively expensive. To tackle this challenge, we introduce a new Markov chain Monte Carlo method that constructs convergent approximations of the QoI target density in an online fashion, yielding accurate characterizations of future ice sheet volume at significantly reduced computational cost.Our second goal is to attribute uncertainty in these Bayesian predictions to uncertainties in particular parameters. Doing so can help target data collection, for the purpose of constraining the parameters that contribute most strongly to uncertainty in the future volume of grounded ice. For instance, smaller uncertainties in parameters to which the QoI is highly sensitive may account for more variability in the prediction than larger uncertainties in parameters to which the QoI is less sensitive. We use global sensitivity analysis to help answer this question, and make the computation of sensitivity indices computationally tractable using a combination of polynomial chaos and Monte Carlo techniques.
NASA Astrophysics Data System (ADS)
Hughes, J. D.; White, J.; Doherty, J.
2011-12-01
Linear prediction uncertainty analysis in a Bayesian framework was applied to guide the conditioning of an integrated surface water/groundwater model that will be used to predict the effects of groundwater withdrawals on surface-water and groundwater flows. Linear prediction uncertainty analysis is an effective approach for identifying (1) raw and processed data most effective for model conditioning prior to inversion, (2) specific observations and periods of time critically sensitive to specific predictions, and (3) additional observation data that would reduce model uncertainty relative to specific predictions. We present results for a two-dimensional groundwater model of a 2,186 km2 area of the Biscayne aquifer in south Florida implicitly coupled to a surface-water routing model of the actively managed canal system. The model domain includes 5 municipal well fields withdrawing more than 1 Mm3/day and 17 operable surface-water control structures that control freshwater releases from the Everglades and freshwater discharges to Biscayne Bay. More than 10 years of daily observation data from 35 groundwater wells and 24 surface water gages are available to condition model parameters. A dense parameterization was used to fully characterize the contribution of the inversion null space to predictive uncertainty and included bias-correction parameters. This approach allows better resolution of the boundary between the inversion null space and solution space. Bias-correction parameters (e.g., rainfall, potential evapotranspiration, and structure flow multipliers) absorb information that is present in structural noise that may otherwise contaminate the estimation of more physically-based model parameters. This allows greater precision in predictions that are entirely solution-space dependent, and reduces the propensity for bias in predictions that are not. Results show that application of this analysis is an effective means of identifying those surface-water and groundwater data, both raw and processed, that minimize predictive uncertainty, while simultaneously identifying the maximum solution-space dimensionality of the inverse problem supported by the data.
NASA Astrophysics Data System (ADS)
Honti, Mark; Reichert, Peter; Scheidegger, Andreas; Stamm, Christian
2013-04-01
Climate change impact assessments have become more and more popular in hydrology since the middle 1980's with another boost after the publication of the IPCC AR4 report. During hundreds of impact studies a quasi-standard methodology emerged, which is mainly shaped by the growing public demand for predicting how water resources management or flood protection should change in the close future. The ``standard'' workflow considers future climate under a specific IPCC emission scenario simulated by global circulation models (GCMs), possibly downscaled by a regional climate model (RCM) and/or a stochastic weather generator. The output from the climate models is typically corrected for bias before feeding it into a calibrated hydrological model, which is run on the past and future meteorological data to analyse the impacts of climate change on the hydrological indicators of interest. The impact predictions are as uncertain as any forecast that tries to describe the behaviour of an extremely complex system decades into the future. Future climate predictions are uncertain due to the scenario uncertainty and the GCM model uncertainty that is obvious on finer resolution than continental scale. Like in any hierarchical model system, uncertainty propagates through the descendant components. Downscaling increases uncertainty with the deficiencies of RCMs and/or weather generators. Bias correction adds a strong deterministic shift to the input data. Finally the predictive uncertainty of the hydrological model ends the cascade that leads to the total uncertainty of the hydrological impact assessment. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. There are only few studies, which found that the predictive uncertainty of hydrological models can be in the same range or even larger than climatic uncertainty. We carried out a climate change impact assessment and estimated the relative importance of the uncertainty sources. The study was performed on 2 small catchments in the Swiss Plateau with a lumped conceptual rainfall runoff model. In the climatic part we applied the standard ensemble approach to quantify uncertainty but in hydrology we used formal Bayesian uncertainty assessment method with 2 different likelihood functions. One was a time-series error model that was able to deal with the complicated statistical properties of hydrological model residuals. The second was a likelihood function for the flow quantiles directly. Due to the better data coverage and smaller hydrological complexity in one of our test catchments we had better performance from the hydrological model and thus could observe that the relative importance of different uncertainty sources varied between sites, boundary conditions and flow indicators. The uncertainty of future climate was important, but not dominant. The deficiencies of the hydrological model were on the same scale, especially for the sites and flow components where model performance for the past observations was further from optimal (Nash-Sutcliffe index = 0.5 - 0.7). The overall uncertainty of predictions was well beyond the expected change signal even for the best performing site and flow indicator.
NASA Astrophysics Data System (ADS)
Pianosi, Francesca; Lal Shrestha, Durga; Solomatine, Dimitri
2010-05-01
This research presents an extension of UNEEC (Uncertainty Estimation based on Local Errors and Clustering, Shrestha and Solomatine, 2006, 2008 & Solomatine and Shrestha, 2009) method in the direction of explicit inclusion of parameter uncertainty. UNEEC method assumes that there is an optimal model and the residuals of the model can be used to assess the uncertainty of the model prediction. It is assumed that all sources of uncertainty including input, parameter and model structure uncertainty are explicitly manifested in the model residuals. In this research, theses assumptions are relaxed, and the UNEEC method is extended to consider parameter uncertainty as well (abbreviated as UNEEC-P). In UNEEC-P, first we use Monte Carlo (MC) sampling in parameter space to generate N model realizations (each of which is a time series), estimate the prediction quantiles based on the empirical distribution functions of the model residuals considering all the residual realizations, and only then apply the standard UNEEC method that encapsulates the uncertainty of a hydrologic model (expressed by quantiles of the error distribution) in a machine learning model (e.g., ANN). UNEEC-P is applied first to a linear regression model of synthetic data, and then to a real case study of forecasting inflow to lake Lugano in northern Italy. The inflow forecasting model is a stochastic heteroscedastic model (Pianosi and Soncini-Sessa, 2009). The preliminary results show that the UNEEC-P method produces wider uncertainty bounds, which is consistent with the fact that the method considers also parameter uncertainty of the optimal model. In the future UNEEC method will be further extended to consider input and structure uncertainty which will provide more realistic estimation of model predictions.
NASA Astrophysics Data System (ADS)
Noh, Seong Jin; Rakovec, Oldrich; Kumar, Rohini; Samaniego, Luis
2016-04-01
There have been tremendous improvements in distributed hydrologic modeling (DHM) which made a process-based simulation with a high spatiotemporal resolution applicable on a large spatial scale. Despite of increasing information on heterogeneous property of a catchment, DHM is still subject to uncertainties inherently coming from model structure, parameters and input forcing. Sequential data assimilation (DA) may facilitate improved streamflow prediction via DHM using real-time observations to correct internal model states. In conventional DA methods such as state updating, parametric uncertainty is, however, often ignored mainly due to practical limitations of methodology to specify modeling uncertainty with limited ensemble members. If parametric uncertainty related with routing and runoff components is not incorporated properly, predictive uncertainty by DHM may be insufficient to capture dynamics of observations, which may deteriorate predictability. Recently, a multi-scale parameter regionalization (MPR) method was proposed to make hydrologic predictions at different scales using a same set of model parameters without losing much of the model performance. The MPR method incorporated within the mesoscale hydrologic model (mHM, http://www.ufz.de/mhm) could effectively represent and control uncertainty of high-dimensional parameters in a distributed model using global parameters. In this study, we present a global multi-parametric ensemble approach to incorporate parametric uncertainty of DHM in DA to improve streamflow predictions. To effectively represent and control uncertainty of high-dimensional parameters with limited number of ensemble, MPR method is incorporated with DA. Lagged particle filtering is utilized to consider the response times and non-Gaussian characteristics of internal hydrologic processes. The hindcasting experiments are implemented to evaluate impacts of the proposed DA method on streamflow predictions in multiple European river basins having different climate and catchment characteristics. Because augmentation of parameters is not required within an assimilation window, the approach could be stable with limited ensemble members and viable for practical uses.
Effects of uncertain topographic input data on two-dimensional flow modeling in a gravel-bed river
Legleiter, C.J.; Kyriakidis, P.C.; McDonald, R.R.; Nelson, J.M.
2011-01-01
Many applications in river research and management rely upon two-dimensional (2D) numerical models to characterize flow fields, assess habitat conditions, and evaluate channel stability. Predictions from such models are potentially highly uncertain due to the uncertainty associated with the topographic data provided as input. This study used a spatial stochastic simulation strategy to examine the effects of topographic uncertainty on flow modeling. Many, equally likely bed elevation realizations for a simple meander bend were generated and propagated through a typical 2D model to produce distributions of water-surface elevation, depth, velocity, and boundary shear stress at each node of the model's computational grid. Ensemble summary statistics were used to characterize the uncertainty associated with these predictions and to examine the spatial structure of this uncertainty in relation to channel morphology. Simulations conditioned to different data configurations indicated that model predictions became increasingly uncertain as the spacing between surveyed cross sections increased. Model sensitivity to topographic uncertainty was greater for base flow conditions than for a higher, subbankfull flow (75% of bankfull discharge). The degree of sensitivity also varied spatially throughout the bend, with the greatest uncertainty occurring over the point bar where the flow field was influenced by topographic steering effects. Uncertain topography can therefore introduce significant uncertainty to analyses of habitat suitability and bed mobility based on flow model output. In the presence of such uncertainty, the results of these studies are most appropriately represented in probabilistic terms using distributions of model predictions derived from a series of topographic realizations. Copyright 2011 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Sawicka, K.; Breuer, L.; Houska, T.; Santabarbara Ruiz, I.; Heuvelink, G. B. M.
2016-12-01
Computer models have become a crucial tool in engineering and environmental sciences for simulating the behaviour of complex static and dynamic systems. However, while many models are deterministic, the uncertainty in their predictions needs to be estimated before they are used for decision support. Advances in uncertainty propagation analysis and assessment have been paralleled by a growing number of software tools for uncertainty analysis, but none has gained recognition for a universal applicability, including case studies with spatial models and spatial model inputs. Due to the growing popularity and applicability of the open source R programming language we undertook a project to develop an R package that facilitates uncertainty propagation analysis in spatial environmental modelling. In particular, the `spup' package provides functions for examining the uncertainty propagation starting from input data and model parameters, via the environmental model onto model predictions. The functions include uncertainty model specification, stochastic simulation and propagation of uncertainty using Monte Carlo techniques, as well as several uncertainty visualization functions. Here we will demonstrate that the 'spup' package is an effective and easy-to-use tool to be applied even in a very complex study case, and that it can be used in multi-disciplinary research and model-based decision support. As an example, we use the ecological LandscapeDNDC model to analyse propagation of uncertainties associated with spatial variability of the model driving forces such as rainfall, nitrogen deposition and fertilizer inputs. The uncertainty propagation is analysed for the prediction of emissions of N2O and CO2 for a German low mountainous, agriculturally developed catchment. The study tests the effect of spatial correlations on spatially aggregated model outputs, and could serve as an advice for developing best management practices and model improvement strategies.
Crown fuel spatial variability and predictability of fire spread
Russell A. Parsons; Jeremy Sauer; Rodman R. Linn
2010-01-01
Fire behavior predictions, as well as measures of uncertainty in those predictions, are essential in operational and strategic fire management decisions. While it is becoming common practice to assess uncertainty in fire behavior predictions arising from variability in weather inputs, uncertainty arising from the fire models themselves is difficult to assess. This is...
Nolan, Bernard T.; Malone, Robert W.; Doherty, John E.; Barbash, Jack E.; Ma, Liwang; Shaner, Dale L.
2015-01-01
CONCLUSIONS: Although the observed data were sparse, they substantially reduced prediction uncertainty in unsampled regions of pesticide breakthrough curves. Nitrate evidently functioned as a surrogate for soil hydraulic data in well-drained loam soils conducive to conservative transport of nitrogen. Pesticide properties and macropore parameters could most benefit from improved characterization further to reduce model misfit and prediction uncertainty.
NASA Technical Reports Server (NTRS)
Groves, Curtis E.; LLie, Marcel; Shallhorn, Paul A.
2012-01-01
There are inherent uncertainties and errors associated with using Computational Fluid Dynamics (CFD) to predict the flow field and there is no standard method for evaluating uncertainty in the CFD community. This paper describes an approach to -validate the . uncertainty in using CFD. The method will use the state of the art uncertainty analysis applying different turbulence niodels and draw conclusions on which models provide the least uncertainty and which models most accurately predict the flow of a backward facing step.
The importance of hydrological uncertainty assessment methods in climate change impact studies
NASA Astrophysics Data System (ADS)
Honti, M.; Scheidegger, A.; Stamm, C.
2014-08-01
Climate change impact assessments have become more and more popular in hydrology since the middle 1980s with a recent boost after the publication of the IPCC AR4 report. From hundreds of impact studies a quasi-standard methodology has emerged, to a large extent shaped by the growing public demand for predicting how water resources management or flood protection should change in the coming decades. The "standard" workflow relies on a model cascade from global circulation model (GCM) predictions for selected IPCC scenarios to future catchment hydrology. Uncertainty is present at each level and propagates through the model cascade. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. Our hypothesis was that the relative importance of climatic and hydrologic uncertainty is (among other factors) heavily influenced by the uncertainty assessment method. To test this we carried out a climate change impact assessment and estimated the relative importance of the uncertainty sources. The study was performed on two small catchments in the Swiss Plateau with a lumped conceptual rainfall runoff model. In the climatic part we applied the standard ensemble approach to quantify uncertainty but in hydrology we used formal Bayesian uncertainty assessment with two different likelihood functions. One was a time series error model that was able to deal with the complicated statistical properties of hydrological model residuals. The second was an approximate likelihood function for the flow quantiles. The results showed that the expected climatic impact on flow quantiles was small compared to prediction uncertainty. The choice of uncertainty assessment method actually determined what sources of uncertainty could be identified at all. This demonstrated that one could arrive at rather different conclusions about the causes behind predictive uncertainty for the same hydrological model and calibration data when considering different objective functions for calibration.
Characterizing bias correction uncertainty in wheat yield predictions
NASA Astrophysics Data System (ADS)
Ortiz, Andrea Monica; Jones, Julie; Freckleton, Robert; Scaife, Adam
2017-04-01
Farming systems are under increased pressure due to current and future climate change, variability and extremes. Research on the impacts of climate change on crop production typically rely on the output of complex Global and Regional Climate Models, which are used as input to crop impact models. Yield predictions from these top-down approaches can have high uncertainty for several reasons, including diverse model construction and parameterization, future emissions scenarios, and inherent or response uncertainty. These uncertainties propagate down each step of the 'cascade of uncertainty' that flows from climate input to impact predictions, leading to yield predictions that may be too complex for their intended use in practical adaptation options. In addition to uncertainty from impact models, uncertainty can also stem from the intermediate steps that are used in impact studies to adjust climate model simulations to become more realistic when compared to observations, or to correct the spatial or temporal resolution of climate simulations, which are often not directly applicable as input into impact models. These important steps of bias correction or calibration also add uncertainty to final yield predictions, given the various approaches that exist to correct climate model simulations. In order to address how much uncertainty the choice of bias correction method can add to yield predictions, we use several evaluation runs from Regional Climate Models from the Coordinated Regional Downscaling Experiment over Europe (EURO-CORDEX) at different resolutions together with different bias correction methods (linear and variance scaling, power transformation, quantile-quantile mapping) as input to a statistical crop model for wheat, a staple European food crop. The objective of our work is to compare the resulting simulation-driven hindcasted wheat yields to climate observation-driven wheat yield hindcasts from the UK and Germany in order to determine ranges of yield uncertainty that result from different climate model simulation input and bias correction methods. We simulate wheat yields using a General Linear Model that includes the effects of seasonal maximum temperatures and precipitation, since wheat is sensitive to heat stress during important developmental stages. We use the same statistical model to predict future wheat yields using the recently available bias-corrected simulations of EURO-CORDEX-Adjust. While statistical models are often criticized for their lack of complexity, an advantage is that we are here able to consider only the effect of the choice of climate model, resolution or bias correction method on yield. Initial results using both past and future bias-corrected climate simulations with a process-based model will also be presented. Through these methods, we make recommendations in preparing climate model output for crop models.
Extracting falsifiable predictions from sloppy models.
Gutenkunst, Ryan N; Casey, Fergal P; Waterfall, Joshua J; Myers, Christopher R; Sethna, James P
2007-12-01
Successful predictions are among the most compelling validations of any model. Extracting falsifiable predictions from nonlinear multiparameter models is complicated by the fact that such models are commonly sloppy, possessing sensitivities to different parameter combinations that range over many decades. Here we discuss how sloppiness affects the sorts of data that best constrain model predictions, makes linear uncertainty approximations dangerous, and introduces computational difficulties in Monte-Carlo uncertainty analysis. We also present a useful test problem and suggest refinements to the standards by which models are communicated.
The effects of geometric uncertainties on computational modelling of knee biomechanics
NASA Astrophysics Data System (ADS)
Meng, Qingen; Fisher, John; Wilcox, Ruth
2017-08-01
The geometry of the articular components of the knee is an important factor in predicting joint mechanics in computational models. There are a number of uncertainties in the definition of the geometry of cartilage and meniscus, and evaluating the effects of these uncertainties is fundamental to understanding the level of reliability of the models. In this study, the sensitivity of knee mechanics to geometric uncertainties was investigated by comparing polynomial-based and image-based knee models and varying the size of meniscus. The results suggested that the geometric uncertainties in cartilage and meniscus resulting from the resolution of MRI and the accuracy of segmentation caused considerable effects on the predicted knee mechanics. Moreover, even if the mathematical geometric descriptors can be very close to the imaged-based articular surfaces, the detailed contact pressure distribution produced by the mathematical geometric descriptors was not the same as that of the image-based model. However, the trends predicted by the models based on mathematical geometric descriptors were similar to those of the imaged-based models.
NASA Astrophysics Data System (ADS)
Hogue, T. S.; He, M.; Franz, K. J.; Margulis, S. A.; Vrugt, J. A.
2010-12-01
The current study presents an integrated uncertainty analysis and data assimilation approach to improve streamflow predictions while simultaneously providing meaningful estimates of the associated uncertainty. Study models include the National Weather Service (NWS) operational snow model (SNOW17) and rainfall-runoff model (SAC-SMA). The proposed approach uses the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) to simultaneously estimate uncertainties in model parameters, forcing, and observations. An ensemble Kalman filter (EnKF) is configured with the DREAM-identified uncertainty structure and applied to assimilating snow water equivalent data into the SNOW17 model for improved snowmelt simulations. Snowmelt estimates then serves as an input to the SAC-SMA model to provide streamflow predictions at the basin outlet. The robustness and usefulness of the approach is evaluated for a snow-dominated watershed in the northern Sierra Mountains. This presentation describes the implementation of DREAM and EnKF into the coupled SNOW17 and SAC-SMA models and summarizes study results and findings.
Stochastic Residual-Error Analysis For Estimating Hydrologic Model Predictive Uncertainty
A hybrid time series-nonparametric sampling approach, referred to herein as semiparametric, is presented for the estimation of model predictive uncertainty. The methodology is a two-step procedure whereby a distributed hydrologic model is first calibrated, then followed by brute ...
Ronald E. McRoberts; Veronica C. Lessard
2001-01-01
Uncertainty in diameter growth predictions is attributed to three general sources: measurement error or sampling variability in predictor variables, parameter covariances, and residual or unexplained variation around model expectations. Using measurement error and sampling variability distributions obtained from the literature and Monte Carlo simulation methods, the...
Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures
NASA Astrophysics Data System (ADS)
Emory, Michael; Larsson, Johan; Iaccarino, Gianluca
2013-11-01
Estimation of the uncertainty in numerical predictions by Reynolds-averaged Navier-Stokes closures is a vital step in building confidence in such predictions. An approach to model-form uncertainty quantification that does not assume the eddy-viscosity hypothesis to be exact is proposed. The methodology for estimation of uncertainty is demonstrated for plane channel flow, for a duct with secondary flows, and for the shock/boundary-layer interaction over a transonic bump.
Bayesian averaging over Decision Tree models for trauma severity scoring.
Schetinin, V; Jakaite, L; Krzanowski, W
2018-01-01
Health care practitioners analyse possible risks of misleading decisions and need to estimate and quantify uncertainty in predictions. We have examined the "gold" standard of screening a patient's conditions for predicting survival probability, based on logistic regression modelling, which is used in trauma care for clinical purposes and quality audit. This methodology is based on theoretical assumptions about data and uncertainties. Models induced within such an approach have exposed a number of problems, providing unexplained fluctuation of predicted survival and low accuracy of estimating uncertainty intervals within which predictions are made. Bayesian method, which in theory is capable of providing accurate predictions and uncertainty estimates, has been adopted in our study using Decision Tree models. Our approach has been tested on a large set of patients registered in the US National Trauma Data Bank and has outperformed the standard method in terms of prediction accuracy, thereby providing practitioners with accurate estimates of the predictive posterior densities of interest that are required for making risk-aware decisions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Keating, Elizabeth H.; Doherty, John; Vrugt, Jasper A.; Kang, Qinjun
2010-10-01
Highly parameterized and CPU-intensive groundwater models are increasingly being used to understand and predict flow and transport through aquifers. Despite their frequent use, these models pose significant challenges for parameter estimation and predictive uncertainty analysis algorithms, particularly global methods which usually require very large numbers of forward runs. Here we present a general methodology for parameter estimation and uncertainty analysis that can be utilized in these situations. Our proposed method includes extraction of a surrogate model that mimics key characteristics of a full process model, followed by testing and implementation of a pragmatic uncertainty analysis technique, called null-space Monte Carlo (NSMC), that merges the strengths of gradient-based search and parameter dimensionality reduction. As part of the surrogate model analysis, the results of NSMC are compared with a formal Bayesian approach using the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. Such a comparison has never been accomplished before, especially in the context of high parameter dimensionality. Despite the highly nonlinear nature of the inverse problem, the existence of multiple local minima, and the relatively large parameter dimensionality, both methods performed well and results compare favorably with each other. Experiences gained from the surrogate model analysis are then transferred to calibrate the full highly parameterized and CPU intensive groundwater model and to explore predictive uncertainty of predictions made by that model. The methodology presented here is generally applicable to any highly parameterized and CPU-intensive environmental model, where efficient methods such as NSMC provide the only practical means for conducting predictive uncertainty analysis.
An Efficient Deterministic Approach to Model-based Prediction Uncertainty Estimation
2012-09-01
94035, USA abhinav.saxena@nasa.gov ABSTRACT Prognostics deals with the prediction of the end of life ( EOL ) of a system. EOL is a random variable, due...future evolution of the system, accumulating additional uncertainty into the predicted EOL . Prediction algorithms that do not account for these sources of...uncertainty are misrepresenting the EOL and can lead to poor decisions based on their results. In this paper, we explore the impact of uncertainty in
USDA-ARS?s Scientific Manuscript database
In Ensemble Kalman Filter (EnKF)-based data assimilation, the background prediction of a model is updated using observations and relative weights based on the model prediction and observation uncertainties. In practice, both model and observation uncertainties are difficult to quantify and they have...
Uncertainty analysis of a groundwater flow model in East-central Florida.
Sepúlveda, Nicasio; Doherty, John
2015-01-01
A groundwater flow model for east-central Florida has been developed to help water-resource managers assess the impact of increased groundwater withdrawals from the Floridan aquifer system on heads and spring flows originating from the Upper Floridan Aquifer. The model provides a probabilistic description of predictions of interest to water-resource managers, given the uncertainty associated with system heterogeneity, the large number of input parameters, and a nonunique groundwater flow solution. The uncertainty associated with these predictions can then be considered in decisions with which the model has been designed to assist. The "Null Space Monte Carlo" method is a stochastic probabilistic approach used to generate a suite of several hundred parameter field realizations, each maintaining the model in a calibrated state, and each considered to be hydrogeologically plausible. The results presented herein indicate that the model's capacity to predict changes in heads or spring flows that originate from increased groundwater withdrawals is considerably greater than its capacity to predict the absolute magnitudes of heads or spring flows. Furthermore, the capacity of the model to make predictions that are similar in location and in type to those in the calibration dataset exceeds its capacity to make predictions of different types at different locations. The quantification of these outcomes allows defensible use of the modeling process in support of future water-resources decisions. The model allows the decision-making process to recognize the uncertainties, and the spatial or temporal variability of uncertainties that are associated with predictions of future system behavior in a complex hydrogeological context. © 2014, National Ground Water Association.
Methods for evaluating the predictive accuracy of structural dynamic models
NASA Technical Reports Server (NTRS)
Hasselman, Timothy K.; Chrostowski, Jon D.
1991-01-01
Modeling uncertainty is defined in terms of the difference between predicted and measured eigenvalues and eigenvectors. Data compiled from 22 sets of analysis/test results was used to create statistical databases for large truss-type space structures and both pretest and posttest models of conventional satellite-type space structures. Modeling uncertainty is propagated through the model to produce intervals of uncertainty on frequency response functions, both amplitude and phase. This methodology was used successfully to evaluate the predictive accuracy of several structures, including the NASA CSI Evolutionary Structure tested at Langley Research Center. Test measurements for this structure were within + one-sigma intervals of predicted accuracy for the most part, demonstrating the validity of the methodology and computer code.
Model Update of a Micro Air Vehicle (MAV) Flexible Wing Frame with Uncertainty Quantification
NASA Technical Reports Server (NTRS)
Reaves, Mercedes C.; Horta, Lucas G.; Waszak, Martin R.; Morgan, Benjamin G.
2004-01-01
This paper describes a procedure to update parameters in the finite element model of a Micro Air Vehicle (MAV) to improve displacement predictions under aerodynamics loads. Because of fabrication, materials, and geometric uncertainties, a statistical approach combined with Multidisciplinary Design Optimization (MDO) is used to modify key model parameters. Static test data collected using photogrammetry are used to correlate with model predictions. Results show significant improvements in model predictions after parameters are updated; however, computed probabilities values indicate low confidence in updated values and/or model structure errors. Lessons learned in the areas of wing design, test procedures, modeling approaches with geometric nonlinearities, and uncertainties quantification are all documented.
NASA Astrophysics Data System (ADS)
Kumar, V.; Nayagum, D.; Thornton, S.; Banwart, S.; Schuhmacher2, M.; Lerner, D.
2006-12-01
Characterization of uncertainty associated with groundwater quality models is often of critical importance, as for example in cases where environmental models are employed in risk assessment. Insufficient data, inherent variability and estimation errors of environmental model parameters introduce uncertainty into model predictions. However, uncertainty analysis using conventional methods such as standard Monte Carlo sampling (MCS) may not be efficient, or even suitable, for complex, computationally demanding models and involving different nature of parametric variability and uncertainty. General MCS or variant of MCS such as Latin Hypercube Sampling (LHS) assumes variability and uncertainty as a single random entity and the generated samples are treated as crisp assuming vagueness as randomness. Also when the models are used as purely predictive tools, uncertainty and variability lead to the need for assessment of the plausible range of model outputs. An improved systematic variability and uncertainty analysis can provide insight into the level of confidence in model estimates, and can aid in assessing how various possible model estimates should be weighed. The present study aims to introduce, Fuzzy Latin Hypercube Sampling (FLHS), a hybrid approach of incorporating cognitive and noncognitive uncertainties. The noncognitive uncertainty such as physical randomness, statistical uncertainty due to limited information, etc can be described by its own probability density function (PDF); whereas the cognitive uncertainty such estimation error etc can be described by the membership function for its fuzziness and confidence interval by ?-cuts. An important property of this theory is its ability to merge inexact generated data of LHS approach to increase the quality of information. The FLHS technique ensures that the entire range of each variable is sampled with proper incorporation of uncertainty and variability. A fuzzified statistical summary of the model results will produce indices of sensitivity and uncertainty that relate the effects of heterogeneity and uncertainty of input variables to model predictions. The feasibility of the method is validated to assess uncertainty propagation of parameter values for estimation of the contamination level of a drinking water supply well due to transport of dissolved phenolics from a contaminated site in the UK.
Sources of Uncertainty in the Prediction of LAI / fPAR from MODIS
NASA Technical Reports Server (NTRS)
Dungan, Jennifer L.; Ganapol, Barry D.; Brass, James A. (Technical Monitor)
2002-01-01
To explicate the sources of uncertainty in the prediction of biophysical variables over space, consider the general equation: where z is a variable with values on some nominal, ordinal, interval or ratio scale; y is a vector of input variables; u is the spatial support of y and z ; x and u are the spatial locations of y and z , respectively; f is a model and B is the vector of the parameters of this model. Any y or z has a value and a spatial extent which is called its support. Viewed in this way, categories of uncertainty are from variable (e.g. measurement), parameter, positional. support and model (e.g. structural) sources. The prediction of Leaf Area Index (LAI) and the fraction of absorbed photosynthetically active radiation (fPAR) are examples of z variables predicted using model(s) as a function of y variables and spatially constant parameters. The MOD15 algorithm is an example of f, called f(sub 1), with parameters including those defined by one of six biome types and solar and view angles. The Leaf Canopy Model (LCM)2, a nested model that combines leaf radiative transfer with a full canopy reflectance model through the phase function, is a simpler though similar radiative transfer approach to f(sub 1). In a previous study, MOD15 and LCM2 gave similar results for the broadleaf forest biome. Differences between these two models can be used to consider the structural uncertainty in prediction results. In an effort to quantify each of the five sources of uncertainty and rank their relative importance for the LAI/fPAR prediction problem, we used recent data for an EOS Core Validation Site in the broadleaf biome with coincident surface reflectance, vegetation index, fPAR and LAI products from the Moderate Resolution Imaging Spectrometer (MODIS). Uncertainty due to support on the input reflectance variable was characterized using Landsat ETM+ data. Input uncertainties were propagated through the LCM2 model and compared with published uncertainties from the MOD15 algorithm.
NASA Astrophysics Data System (ADS)
Multsch, S.; Exbrayat, J.-F.; Kirby, M.; Viney, N. R.; Frede, H.-G.; Breuer, L.
2014-11-01
Irrigation agriculture plays an increasingly important role in food supply. Many evapotranspiration models are used today to estimate the water demand for irrigation. They consider different stages of crop growth by empirical crop coefficients to adapt evapotranspiration throughout the vegetation period. We investigate the importance of the model structural vs. model parametric uncertainty for irrigation simulations by considering six evapotranspiration models and five crop coefficient sets to estimate irrigation water requirements for growing wheat in the Murray-Darling Basin, Australia. The study is carried out using the spatial decision support system SPARE:WATER. We find that structural model uncertainty is far more important than model parametric uncertainty to estimate irrigation water requirement. Using the Reliability Ensemble Averaging (REA) technique, we are able to reduce the overall predictive model uncertainty by more than 10%. The exceedance probability curve of irrigation water requirements shows that a certain threshold, e.g. an irrigation water limit due to water right of 400 mm, would be less frequently exceeded in case of the REA ensemble average (45%) in comparison to the equally weighted ensemble average (66%). We conclude that multi-model ensemble predictions and sophisticated model averaging techniques are helpful in predicting irrigation demand and provide relevant information for decision making.
NASA Astrophysics Data System (ADS)
Foster, L. K.; Clark, B. R.; Duncan, L. L.; Tebo, D. T.; White, J.
2017-12-01
Several historical groundwater models exist within the Coastal Lowlands Aquifer System (CLAS), which spans the Gulf Coastal Plain in Texas, Louisiana, Mississippi, Alabama, and Florida. The largest of these models, called the Gulf Coast Regional Aquifer System Analysis (RASA) model, has been brought into a new framework using the Newton formulation for MODFLOW-2005 (MODFLOW-NWT) and serves as the starting point of a new investigation underway by the U.S. Geological Survey to improve understanding of the CLAS and provide predictions of future groundwater availability within an uncertainty quantification (UQ) framework. The use of an UQ framework will not only provide estimates of water-level observation worth, hydraulic parameter uncertainty, boundary-condition uncertainty, and uncertainty of future potential predictions, but it will also guide the model development process. Traditionally, model development proceeds from dataset construction to the process of deterministic history matching, followed by deterministic predictions using the model. This investigation will combine the use of UQ with existing historical models of the study area to assess in a quantitative framework the effect model package and property improvements have on the ability to represent past-system states, as well as the effect on the model's ability to make certain predictions of water levels, water budgets, and base-flow estimates. Estimates of hydraulic property information and boundary conditions from the existing models and literature, forming the prior, will be used to make initial estimates of model forecasts and their corresponding uncertainty, along with an uncalibrated groundwater model run within an unconstrained Monte Carlo analysis. First-Order Second-Moment (FOSM) analysis will also be used to investigate parameter and predictive uncertainty, and guide next steps in model development prior to rigorous history matching by using PEST++ parameter estimation code.
NASA Astrophysics Data System (ADS)
Savani, N. P.; Vourlidas, A.; Richardson, I. G.; Szabo, A.; Thompson, B. J.; Pulkkinen, A.; Mays, M. L.; Nieves-Chinchilla, T.; Bothmer, V.
2017-02-01
This is a companion to Savani et al. (2015) that discussed how a first-order prediction of the internal magnetic field of a coronal mass ejection (CME) may be made from observations of its initial state at the Sun for space weather forecasting purposes (Bothmer-Schwenn scheme (BSS) model). For eight CME events, we investigate how uncertainties in their predicted magnetic structure influence predictions of the geomagnetic activity. We use an empirical relationship between the solar wind plasma drivers and Kp index together with the inferred magnetic vectors, to make a prediction of the time variation of Kp (Kp(BSS)). We find a 2σ uncertainty range on the magnetic field magnitude (|B|) provides a practical and convenient solution for predicting the uncertainty in geomagnetic storm strength. We also find the estimated CME velocity is a major source of error in the predicted maximum Kp. The time variation of Kp(BSS) is important for predicting periods of enhanced and maximum geomagnetic activity, driven by southerly directed magnetic fields, and periods of lower activity driven by northerly directed magnetic field. We compare the skill score of our model to a number of other forecasting models, including the NOAA/Space Weather Prediction Center (SWPC) and Community Coordinated Modeling Center (CCMC)/SWRC estimates. The BSS model was the most unbiased prediction model, while the other models predominately tended to significantly overforecast. The True skill score of the BSS prediction model (TSS = 0.43 ± 0.06) exceeds the results of two baseline models and the NOAA/SWPC forecast. The BSS model prediction performed equally with CCMC/SWRC predictions while demonstrating a lower uncertainty.
Approximating prediction uncertainty for random forest regression models
John W. Coulston; Christine E. Blinn; Valerie A. Thomas; Randolph H. Wynne
2016-01-01
Machine learning approaches such as random forest have increased for the spatial modeling and mapping of continuous variables. Random forest is a non-parametric ensemble approach, and unlike traditional regression approaches there is no direct quantification of prediction error. Understanding prediction uncertainty is important when using model-based continuous maps as...
Uncertainty analysis of a groundwater flow model in east-central Florida
Sepúlveda, Nicasio; Doherty, John E.
2014-01-01
A groundwater flow model for east-central Florida has been developed to help water-resource managers assess the impact of increased groundwater withdrawals from the Floridan aquifer system on heads and spring flows originating from the Upper Floridan aquifer. The model provides a probabilistic description of predictions of interest to water-resource managers, given the uncertainty associated with system heterogeneity, the large number of input parameters, and a nonunique groundwater flow solution. The uncertainty associated with these predictions can then be considered in decisions with which the model has been designed to assist. The “Null Space Monte Carlo” method is a stochastic probabilistic approach used to generate a suite of several hundred parameter field realizations, each maintaining the model in a calibrated state, and each considered to be hydrogeologically plausible. The results presented herein indicate that the model’s capacity to predict changes in heads or spring flows that originate from increased groundwater withdrawals is considerably greater than its capacity to predict the absolute magnitudes of heads or spring flows. Furthermore, the capacity of the model to make predictions that are similar in location and in type to those in the calibration dataset exceeds its capacity to make predictions of different types at different locations. The quantification of these outcomes allows defensible use of the modeling process in support of future water-resources decisions. The model allows the decision-making process to recognize the uncertainties, and the spatial/temporal variability of uncertainties that are associated with predictions of future system behavior in a complex hydrogeological context.
NASA Technical Reports Server (NTRS)
West, Thomas K., IV; Reuter, Bryan W.; Walker, Eric L.; Kleb, Bil; Park, Michael A.
2014-01-01
The primary objective of this work was to develop and demonstrate a process for accurate and efficient uncertainty quantification and certification prediction of low-boom, supersonic, transport aircraft. High-fidelity computational fluid dynamics models of multiple low-boom configurations were investigated including the Lockheed Martin SEEB-ALR body of revolution, the NASA 69 Delta Wing, and the Lockheed Martin 1021-01 configuration. A nonintrusive polynomial chaos surrogate modeling approach was used for reduced computational cost of propagating mixed, inherent (aleatory) and model-form (epistemic) uncertainty from both the computation fluid dynamics model and the near-field to ground level propagation model. A methodology has also been introduced to quantify the plausibility of a design to pass a certification under uncertainty. Results of this study include the analysis of each of the three configurations of interest under inviscid and fully turbulent flow assumptions. A comparison of the uncertainty outputs and sensitivity analyses between the configurations is also given. The results of this study illustrate the flexibility and robustness of the developed framework as a tool for uncertainty quantification and certification prediction of low-boom, supersonic aircraft.
NASA Technical Reports Server (NTRS)
Maggioni, V.; Anagnostou, E. N.; Reichle, R. H.
2013-01-01
The contribution of rainfall forcing errors relative to model (structural and parameter) uncertainty in the prediction of soil moisture is investigated by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. Rainfall-forcing uncertainty is introduced using a stochastic error model that generates ensemble rainfall fields from satellite rainfall products. The ensemble satellite rain fields are propagated through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with two different approaches: either by perturbing model parameters (representing model parameter uncertainty) or by adding randomly generated noise (representing model structure and parameter uncertainty) to the model prognostic variables. Our findings highlight that the method currently used in the NASA GEOS-5 Land Data Assimilation System to perturb CLSM variables poorly describes the uncertainty in the predicted soil moisture, even when combined with rainfall model perturbations. On the other hand, by adding model parameter perturbations to rainfall forcing perturbations, a better characterization of uncertainty in soil moisture simulations is observed. Specifically, an analysis of the rank histograms shows that the most consistent ensemble of soil moisture is obtained by combining rainfall and model parameter perturbations. When rainfall forcing and model prognostic perturbations are added, the rank histogram shows a U-shape at the domain average scale, which corresponds to a lack of variability in the forecast ensemble. The more accurate estimation of the soil moisture prediction uncertainty obtained by combining rainfall and parameter perturbations is encouraging for the application of this approach in ensemble data assimilation systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, S.; Toll, J.; Cothern, K.
1995-12-31
The authors have performed robust sensitivity studies of the physico-chemical Hudson River PCB model PCHEPM to identify the parameters and process uncertainties contributing the most to uncertainty in predictions of water column and sediment PCB concentrations, over the time period 1977--1991 in one segment of the lower Hudson River. The term ``robust sensitivity studies`` refers to the use of several sensitivity analysis techniques to obtain a more accurate depiction of the relative importance of different sources of uncertainty. Local sensitivity analysis provided data on the sensitivity of PCB concentration estimates to small perturbations in nominal parameter values. Range sensitivity analysismore » provided information about the magnitude of prediction uncertainty associated with each input uncertainty. Rank correlation analysis indicated which parameters had the most dominant influence on model predictions. Factorial analysis identified important interactions among model parameters. Finally, term analysis looked at the aggregate influence of combinations of parameters representing physico-chemical processes. The authors scored the results of the local and range sensitivity and rank correlation analyses. The authors considered parameters that scored high on two of the three analyses to be important contributors to PCB concentration prediction uncertainty, and treated them probabilistically in simulations. They also treated probabilistically parameters identified in the factorial analysis as interacting with important parameters. The authors used the term analysis to better understand how uncertain parameters were influencing the PCB concentration predictions. The importance analysis allowed us to reduce the number of parameters to be modeled probabilistically from 16 to 5. This reduced the computational complexity of Monte Carlo simulations, and more importantly, provided a more lucid depiction of prediction uncertainty and its causes.« less
The role of correlations in uncertainty quantification of transportation relevant fuel models
Fridlyand, Aleksandr; Johnson, Matthew S.; Goldsborough, S. Scott; ...
2017-02-03
Large reaction mechanisms are often used to describe the combustion behavior of transportation-relevant fuels like gasoline, where these are typically represented by surrogate blends, e.g., n-heptane/iso-octane/toluene. We describe efforts to quantify the uncertainty in the predictions of such mechanisms at realistic engine conditions, seeking to better understand the robustness of the model as well as the important reaction pathways and their impacts on combustion behavior. In this work, we examine the importance of taking into account correlations among reactions that utilize the same rate rules and those with multiple product channels on forward propagation of uncertainty by Monte Carlo simulations.more » Automated means are developed to generate the uncertainty factor assignment for a detailed chemical kinetic mechanism, by first uniquely identifying each reacting species, then sorting each of the reactions based on the rate rule utilized. Simulation results reveal that in the low temperature combustion regime for iso-octane, the majority of the uncertainty in the model predictions can be attributed to low temperature reactions of the fuel sub-mechanism. The foundational, or small-molecule chemistry (C 0-C 4) only contributes significantly to uncertainties in the predictions at the highest temperatures (Tc=900 K). Accounting for correlations between important reactions is shown to produce non-negligible differences in the estimates of uncertainty. Including correlations among reactions that use the same rate rules increases uncertainty in the model predictions, while accounting for correlations among reactions with multiple branches decreases uncertainty in some cases. Significant non-linear response is observed in the model predictions depending on how the probability distributions of the uncertain rate constants are defined.Finally, we concluded that care must be exercised in defining these probability distributions in order to reduce bias, and physically unrealistic estimates in the forward propagation of uncertainty for a range of UQ activities.« less
NASA Astrophysics Data System (ADS)
Xu, Y.; Jones, A. D.; Rhoades, A.
2017-12-01
Precipitation is a key component in hydrologic cycles, and changing precipitation regimes contribute to more intense and frequent drought and flood events around the world. Numerical climate modeling is a powerful tool to study climatology and to predict future changes. Despite the continuous improvement in numerical models, long-term precipitation prediction remains a challenge especially at regional scales. To improve numerical simulations of precipitation, it is important to find out where the uncertainty in precipitation simulations comes from. There are two types of uncertainty in numerical model predictions. One is related to uncertainty in the input data, such as model's boundary and initial conditions. These uncertainties would propagate to the final model outcomes even if the numerical model has exactly replicated the true world. But a numerical model cannot exactly replicate the true world. Therefore, the other type of model uncertainty is related the errors in the model physics, such as the parameterization of sub-grid scale processes, i.e., given precise input conditions, how much error could be generated by the in-precise model. Here, we build two statistical models based on a neural network algorithm to predict long-term variation of precipitation over California: one uses "true world" information derived from observations, and the other uses "modeled world" information using model inputs and outputs from the North America Coordinated Regional Downscaling Project (NA CORDEX). We derive multiple climate feature metrics as the predictors for the statistical model to represent the impact of global climate on local hydrology, and include topography as a predictor to represent the local control. We first compare the predictors between the true world and the modeled world to determine the errors contained in the input data. By perturbing the predictors in the statistical model, we estimate how much uncertainty in the model's final outcomes is accounted for by each predictor. By comparing the statistical model derived from true world information and modeled world information, we assess the errors lying in the physics of the numerical models. This work provides a unique insight to assess the performance of numerical climate models, and can be used to guide improvement of precipitation prediction.
A Monte Carlo Uncertainty Analysis of Ozone Trend Predictions in a Two Dimensional Model. Revision
NASA Technical Reports Server (NTRS)
Considine, D. B.; Stolarski, R. S.; Hollandsworth, S. M.; Jackman, C. H.; Fleming, E. L.
1998-01-01
We use Monte Carlo analysis to estimate the uncertainty in predictions of total O3 trends between 1979 and 1995 made by the Goddard Space Flight Center (GSFC) two-dimensional (2D) model of stratospheric photochemistry and dynamics. The uncertainty is caused by gas-phase chemical reaction rates, photolysis coefficients, and heterogeneous reaction parameters which are model inputs. The uncertainty represents a lower bound to the total model uncertainty assuming the input parameter uncertainties are characterized correctly. Each of the Monte Carlo runs was initialized in 1970 and integrated for 26 model years through the end of 1995. This was repeated 419 times using input parameter sets generated by Latin Hypercube Sampling. The standard deviation (a) of the Monte Carlo ensemble of total 03 trend predictions is used to quantify the model uncertainty. The 34% difference between the model trend in globally and annually averaged total O3 using nominal inputs and atmospheric trends calculated from Nimbus 7 and Meteor 3 total ozone mapping spectrometer (TOMS) version 7 data is less than the 46% calculated 1 (sigma), model uncertainty, so there is no significant difference between the modeled and observed trends. In the northern hemisphere midlatitude spring the modeled and observed total 03 trends differ by more than 1(sigma) but less than 2(sigma), which we refer to as marginal significance. We perform a multiple linear regression analysis of the runs which suggests that only a few of the model reactions contribute significantly to the variance in the model predictions. The lack of significance in these comparisons suggests that they are of questionable use as guides for continuing model development. Large model/measurement differences which are many multiples of the input parameter uncertainty are seen in the meridional gradients of the trend and the peak-to-peak variations in the trends over an annual cycle. These discrepancies unambiguously indicate model formulation problems and provide a measure of model performance which can be used in attempts to improve such models.
Hunt, Randall J.
2012-01-01
Management decisions will often be directly informed by model predictions. However, we now know there can be no expectation of a single ‘true’ model; thus, model results are uncertain. Understandable reporting of underlying uncertainty provides necessary context to decision-makers, as model results are used for management decisions. This, in turn, forms a mechanism by which groundwater models inform a risk-management framework because uncertainty around a prediction provides the basis for estimating the probability or likelihood of some event occurring. Given that the consequences of management decisions vary, it follows that the extent of and resources devoted to an uncertainty analysis may depend on the consequences. For events with low impact, a qualitative, limited uncertainty analysis may be sufficient for informing a decision. For events with a high impact, on the other hand, the risks might be better assessed and associated decisions made using a more robust and comprehensive uncertainty analysis. The purpose of this chapter is to provide guidance on uncertainty analysis through discussion of concepts and approaches, which can vary from heuristic (i.e. the modeller’s assessment of prediction uncertainty based on trial and error and experience) to a comprehensive, sophisticated, statistics-based uncertainty analysis. Most of the material presented here is taken from Doherty et al. (2010) if not otherwise cited. Although the treatment here is necessarily brief, the reader can find citations for the source material and additional references within this chapter.
Photovoltaic System Modeling. Uncertainty and Sensitivity Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Clifford W.; Martin, Curtis E.
2015-08-01
We report an uncertainty and sensitivity analysis for modeling AC energy from ph otovoltaic systems . Output from a PV system is predicted by a sequence of models. We quantify u ncertainty i n the output of each model using empirical distribution s of each model's residuals. We propagate uncertainty through the sequence of models by sampli ng these distributions to obtain a n empirical distribution of a PV system's output. We consider models that: (1) translate measured global horizontal, direct and global diffuse irradiance to plane - of - array irradiance; (2) estimate effective irradiance; (3) predict cell temperature;more » (4) estimate DC voltage, current and power ; (5) reduce DC power for losses due to inefficient maximum power point tracking or mismatch among modules; and (6) convert DC to AC power . O ur analysis consider s a notional PV system com prising an array of FirstSolar FS - 387 modules and a 250 kW AC inverter ; we use measured irradiance and weather at Albuquerque, NM. We found the uncertainty in PV syste m output to be relatively small, on the order of 1% for daily energy. We found that unce rtainty in the models for POA irradiance and effective irradiance to be the dominant contributors to uncertainty in predicted daily energy. Our analysis indicates that efforts to reduce the uncertainty in PV system output predictions may yield the greatest improvements by focusing on the POA and effective irradiance models.« less
NASA Astrophysics Data System (ADS)
Schöniger, Anneli; Wöhling, Thomas; Nowak, Wolfgang
2014-05-01
Bayesian model averaging ranks the predictive capabilities of alternative conceptual models based on Bayes' theorem. The individual models are weighted with their posterior probability to be the best one in the considered set of models. Finally, their predictions are combined into a robust weighted average and the predictive uncertainty can be quantified. This rigorous procedure does, however, not yet account for possible instabilities due to measurement noise in the calibration data set. This is a major drawback, since posterior model weights may suffer a lack of robustness related to the uncertainty in noisy data, which may compromise the reliability of model ranking. We present a new statistical concept to account for measurement noise as source of uncertainty for the weights in Bayesian model averaging. Our suggested upgrade reflects the limited information content of data for the purpose of model selection. It allows us to assess the significance of the determined posterior model weights, the confidence in model selection, and the accuracy of the quantified predictive uncertainty. Our approach rests on a brute-force Monte Carlo framework. We determine the robustness of model weights against measurement noise by repeatedly perturbing the observed data with random realizations of measurement error. Then, we analyze the induced variability in posterior model weights and introduce this "weighting variance" as an additional term into the overall prediction uncertainty analysis scheme. We further determine the theoretical upper limit in performance of the model set which is imposed by measurement noise. As an extension to the merely relative model ranking, this analysis provides a measure of absolute model performance. To finally decide, whether better data or longer time series are needed to ensure a robust basis for model selection, we resample the measurement time series and assess the convergence of model weights for increasing time series length. We illustrate our suggested approach with an application to model selection between different soil-plant models following up on a study by Wöhling et al. (2013). Results show that measurement noise compromises the reliability of model ranking and causes a significant amount of weighting uncertainty, if the calibration data time series is not long enough to compensate for its noisiness. This additional contribution to the overall predictive uncertainty is neglected without our approach. Thus, we strongly advertise to include our suggested upgrade in the Bayesian model averaging routine.
The effects of geometric uncertainties on computational modelling of knee biomechanics
Fisher, John; Wilcox, Ruth
2017-01-01
The geometry of the articular components of the knee is an important factor in predicting joint mechanics in computational models. There are a number of uncertainties in the definition of the geometry of cartilage and meniscus, and evaluating the effects of these uncertainties is fundamental to understanding the level of reliability of the models. In this study, the sensitivity of knee mechanics to geometric uncertainties was investigated by comparing polynomial-based and image-based knee models and varying the size of meniscus. The results suggested that the geometric uncertainties in cartilage and meniscus resulting from the resolution of MRI and the accuracy of segmentation caused considerable effects on the predicted knee mechanics. Moreover, even if the mathematical geometric descriptors can be very close to the imaged-based articular surfaces, the detailed contact pressure distribution produced by the mathematical geometric descriptors was not the same as that of the image-based model. However, the trends predicted by the models based on mathematical geometric descriptors were similar to those of the imaged-based models. PMID:28879008
NASA Astrophysics Data System (ADS)
Engel, Dave W.; Reichardt, Thomas A.; Kulp, Thomas J.; Graff, David L.; Thompson, Sandra E.
2016-05-01
Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensor level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.
CALCULATION OF NONLINEAR CONFIDENCE AND PREDICTION INTERVALS FOR GROUND-WATER FLOW MODELS.
Cooley, Richard L.; Vecchia, Aldo V.
1987-01-01
A method is derived to efficiently compute nonlinear confidence and prediction intervals on any function of parameters derived as output from a mathematical model of a physical system. The method is applied to the problem of obtaining confidence and prediction intervals for manually-calibrated ground-water flow models. To obtain confidence and prediction intervals resulting from uncertainties in parameters, the calibrated model and information on extreme ranges and ordering of the model parameters within one or more independent groups are required. If random errors in the dependent variable are present in addition to uncertainties in parameters, then calculation of prediction intervals also requires information on the extreme range of error expected. A simple Monte Carlo method is used to compute the quantiles necessary to establish probability levels for the confidence and prediction intervals. Application of the method to a hypothetical example showed that inclusion of random errors in the dependent variable in addition to uncertainties in parameters can considerably widen the prediction intervals.
BAYESIAN METHODS FOR REGIONAL-SCALE EUTROPHICATION MODELS. (R830887)
We demonstrate a Bayesian classification and regression tree (CART) approach to link multiple environmental stressors to biological responses and quantify uncertainty in model predictions. Such an approach can: (1) report prediction uncertainty, (2) be consistent with the amou...
Wei Wu; James S. Clark; James M. Vose
2012-01-01
Predicting long-term consequences of climate change on hydrologic processes has been limited due to the needs to accommodate the uncertainties in hydrological measurements for calibration, and to account for the uncertainties in the models that would ingest those calibrations and uncertainties in climate predictions as basis for hydrological predictions. We implemented...
Error discrimination of an operational hydrological forecasting system at a national scale
NASA Astrophysics Data System (ADS)
Jordan, F.; Brauchli, T.
2010-09-01
The use of operational hydrological forecasting systems is recommended for hydropower production as well as flood management. However, the forecast uncertainties can be important and lead to bad decisions such as false alarms and inappropriate reservoir management of hydropower plants. In order to improve the forecasting systems, it is important to discriminate the different sources of uncertainties. To achieve this task, reanalysis of past predictions can be realized and provide information about the structure of the global uncertainty. In order to discriminate between uncertainty due to the weather numerical model and uncertainty due to the rainfall-runoff model, simulations assuming perfect weather forecast must be realized. This contribution presents the spatial analysis of the weather uncertainties and their influence on the river discharge prediction of a few different river basins where an operational forecasting system exists. The forecast is based on the RS 3.0 system [1], [2], which is also running the open Internet platform www.swissrivers.ch [3]. The uncertainty related to the hydrological model is compared to the uncertainty related to the weather prediction. A comparison between numerous weather prediction models [4] at different lead times is also presented. The results highlight an important improving potential of both forecasting components: the hydrological rainfall-runoff model and the numerical weather prediction models. The hydrological processes must be accurately represented during the model calibration procedure, while weather prediction models suffer from a systematic spatial bias. REFERENCES [1] Garcia, J., Jordan, F., Dubois, J. & Boillat, J.-L. 2007. "Routing System II, Modélisation d'écoulements dans des systèmes hydrauliques", Communication LCH n° 32, Ed. Prof. A. Schleiss, Lausanne [2] Jordan, F. 2007. Modèle de prévision et de gestion des crues - optimisation des opérations des aménagements hydroélectriques à accumulation pour la réduction des débits de crue, thèse de doctorat n° 3711, Ecole Polytechnique Fédérale, Lausanne [3] Keller, R. 2009. "Le débit des rivières au peigne fin", Revue Technique Suisse, N°7/8 2009, Swiss engineering RTS, UTS SA, Lausanne, p. 11 [4] Kaufmann, P., Schubiger, F. & Binder, P. 2003. Precipitation forecasting by a mesoscale numerical weather prediction (NWP) model : eight years of experience, Hydrology and Earth System
Hasegawa, Toshihiro; Li, Tao; Yin, Xinyou; Zhu, Yan; Boote, Kenneth; Baker, Jeffrey; Bregaglio, Simone; Buis, Samuel; Confalonieri, Roberto; Fugice, Job; Fumoto, Tamon; Gaydon, Donald; Kumar, Soora Naresh; Lafarge, Tanguy; Marcaida Iii, Manuel; Masutomi, Yuji; Nakagawa, Hiroshi; Oriol, Philippe; Ruget, Françoise; Singh, Upendra; Tang, Liang; Tao, Fulu; Wakatsuki, Hitomi; Wallach, Daniel; Wang, Yulong; Wilson, Lloyd Ted; Yang, Lianxin; Yang, Yubin; Yoshida, Hiroe; Zhang, Zhao; Zhu, Jianguo
2017-11-01
The CO 2 fertilization effect is a major source of uncertainty in crop models for future yield forecasts, but coordinated efforts to determine the mechanisms of this uncertainty have been lacking. Here, we studied causes of uncertainty among 16 crop models in predicting rice yield in response to elevated [CO 2 ] (E-[CO 2 ]) by comparison to free-air CO 2 enrichment (FACE) and chamber experiments. The model ensemble reproduced the experimental results well. However, yield prediction in response to E-[CO 2 ] varied significantly among the rice models. The variation was not random: models that overestimated at one experiment simulated greater yield enhancements at the others. The variation was not associated with model structure or magnitude of photosynthetic response to E-[CO 2 ] but was significantly associated with the predictions of leaf area. This suggests that modelled secondary effects of E-[CO 2 ] on morphological development, primarily leaf area, are the sources of model uncertainty. Rice morphological development is conservative to carbon acquisition. Uncertainty will be reduced by incorporating this conservative nature of the morphological response to E-[CO 2 ] into the models. Nitrogen levels, particularly under limited situations, make the prediction more uncertain. Improving models to account for [CO 2 ] × N interactions is necessary to better evaluate management practices under climate change.
NASA Astrophysics Data System (ADS)
Noh, S. J.; Rakovec, O.; Kumar, R.; Samaniego, L. E.
2015-12-01
Accurate and reliable streamflow prediction is essential to mitigate social and economic damage coming from water-related disasters such as flood and drought. Sequential data assimilation (DA) may facilitate improved streamflow prediction using real-time observations to correct internal model states. In conventional DA methods such as state updating, parametric uncertainty is often ignored mainly due to practical limitations of methodology to specify modeling uncertainty with limited ensemble members. However, if parametric uncertainty related with routing and runoff components is not incorporated properly, predictive uncertainty by model ensemble may be insufficient to capture dynamics of observations, which may deteriorate predictability. Recently, a multi-scale parameter regionalization (MPR) method was proposed to make hydrologic predictions at different scales using a same set of model parameters without losing much of the model performance. The MPR method incorporated within the mesoscale hydrologic model (mHM, http://www.ufz.de/mhm) could effectively represent and control uncertainty of high-dimensional parameters in a distributed model using global parameters. In this study, we evaluate impacts of streamflow data assimilation over European river basins. Especially, a multi-parametric ensemble approach is tested to consider the effects of parametric uncertainty in DA. Because augmentation of parameters is not required within an assimilation window, the approach could be more stable with limited ensemble members and have potential for operational uses. To consider the response times and non-Gaussian characteristics of internal hydrologic processes, lagged particle filtering is utilized. The presentation will be focused on gains and limitations of streamflow data assimilation and multi-parametric ensemble method over large-scale basins.
NASA Astrophysics Data System (ADS)
Perdigão, R. A. P.
2017-12-01
Predictability assessments are traditionally made on a case-by-case basis, often by running the particular model of interest with randomly perturbed initial/boundary conditions and parameters, producing computationally expensive ensembles. These approaches provide a lumped statistical view of uncertainty evolution, without eliciting the fundamental processes and interactions at play in the uncertainty dynamics. In order to address these limitations, we introduce a systematic dynamical framework for predictability assessment and forecast, by analytically deriving governing equations of predictability in terms of the fundamental architecture of dynamical systems, independent of any particular problem under consideration. The framework further relates multiple uncertainty sources along with their coevolutionary interplay, enabling a comprehensive and explicit treatment of uncertainty dynamics along time, without requiring the actual model to be run. In doing so, computational resources are freed and a quick and effective a-priori systematic dynamic evaluation is made of predictability evolution and its challenges, including aspects in the model architecture and intervening variables that may require optimization ahead of initiating any model runs. It further brings out universal dynamic features in the error dynamics elusive to any case specific treatment, ultimately shedding fundamental light on the challenging issue of predictability. The formulated approach, framed with broad mathematical physics generality in mind, is then implemented in dynamic models of nonlinear geophysical systems with various degrees of complexity, in order to evaluate their limitations and provide informed assistance on how to optimize their design and improve their predictability in fundamental dynamical terms.
Chemical kinetic model uncertainty minimization through laminar flame speed measurements
Park, Okjoo; Veloo, Peter S.; Sheen, David A.; Tao, Yujie; Egolfopoulos, Fokion N.; Wang, Hai
2016-01-01
Laminar flame speed measurements were carried for mixture of air with eight C3-4 hydrocarbons (propene, propane, 1,3-butadiene, 1-butene, 2-butene, iso-butene, n-butane, and iso-butane) at the room temperature and ambient pressure. Along with C1-2 hydrocarbon data reported in a recent study, the entire dataset was used to demonstrate how laminar flame speed data can be utilized to explore and minimize the uncertainties in a reaction model for foundation fuels. The USC Mech II kinetic model was chosen as a case study. The method of uncertainty minimization using polynomial chaos expansions (MUM-PCE) (D.A. Sheen and H. Wang, Combust. Flame 2011, 158, 2358–2374) was employed to constrain the model uncertainty for laminar flame speed predictions. Results demonstrate that a reaction model constrained only by the laminar flame speed values of methane/air flames notably reduces the uncertainty in the predictions of the laminar flame speeds of C3 and C4 alkanes, because the key chemical pathways of all of these flames are similar to each other. The uncertainty in model predictions for flames of unsaturated C3-4 hydrocarbons remain significant without considering fuel specific laminar flames speeds in the constraining target data set, because the secondary rate controlling reaction steps are different from those in the saturated alkanes. It is shown that the constraints provided by the laminar flame speeds of the foundation fuels could reduce notably the uncertainties in the predictions of laminar flame speeds of C4 alcohol/air mixtures. Furthermore, it is demonstrated that an accurate prediction of the laminar flame speed of a particular C4 alcohol/air mixture is better achieved through measurements for key molecular intermediates formed during the pyrolysis and oxidation of the parent fuel. PMID:27890938
Chemical kinetic model uncertainty minimization through laminar flame speed measurements.
Park, Okjoo; Veloo, Peter S; Sheen, David A; Tao, Yujie; Egolfopoulos, Fokion N; Wang, Hai
2016-10-01
Laminar flame speed measurements were carried for mixture of air with eight C 3-4 hydrocarbons (propene, propane, 1,3-butadiene, 1-butene, 2-butene, iso -butene, n -butane, and iso -butane) at the room temperature and ambient pressure. Along with C 1-2 hydrocarbon data reported in a recent study, the entire dataset was used to demonstrate how laminar flame speed data can be utilized to explore and minimize the uncertainties in a reaction model for foundation fuels. The USC Mech II kinetic model was chosen as a case study. The method of uncertainty minimization using polynomial chaos expansions (MUM-PCE) (D.A. Sheen and H. Wang, Combust. Flame 2011, 158, 2358-2374) was employed to constrain the model uncertainty for laminar flame speed predictions. Results demonstrate that a reaction model constrained only by the laminar flame speed values of methane/air flames notably reduces the uncertainty in the predictions of the laminar flame speeds of C 3 and C 4 alkanes, because the key chemical pathways of all of these flames are similar to each other. The uncertainty in model predictions for flames of unsaturated C 3-4 hydrocarbons remain significant without considering fuel specific laminar flames speeds in the constraining target data set, because the secondary rate controlling reaction steps are different from those in the saturated alkanes. It is shown that the constraints provided by the laminar flame speeds of the foundation fuels could reduce notably the uncertainties in the predictions of laminar flame speeds of C 4 alcohol/air mixtures. Furthermore, it is demonstrated that an accurate prediction of the laminar flame speed of a particular C 4 alcohol/air mixture is better achieved through measurements for key molecular intermediates formed during the pyrolysis and oxidation of the parent fuel.
Uncertainty Analysis Framework - Hanford Site-Wide Groundwater Flow and Transport Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Charles R.; Bergeron, Marcel P.; Murray, Christopher J.
2001-11-09
Pacific Northwest National Laboratory (PNNL) embarked on a new initiative to strengthen the technical defensibility of the predictions being made with a site-wide groundwater flow and transport model at the U.S. Department of Energy Hanford Site in southeastern Washington State. In FY 2000, the focus of the initiative was on the characterization of major uncertainties in the current conceptual model that would affect model predictions. The long-term goals of the initiative are the development and implementation of an uncertainty estimation methodology in future assessments and analyses using the site-wide model. This report focuses on the development and implementation of anmore » uncertainty analysis framework.« less
Payne, Courtney E; Wolfrum, Edward J
2015-01-01
Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. Our objective was to use near-infrared (NIR) spectroscopy and partial least squares (PLS) multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. Major feedstocks included in the calibration models are corn stover, sorghum, switchgrass, perennial cool season grasses, rice straw, and miscanthus. We present individual model statistics to demonstrate model performance and validation samples to more accurately measure predictive quality of the models. The PLS-2 model for composition predicts glucan, xylan, lignin, and ash (wt%) with uncertainties similar to primary measurement methods. A PLS-2 model was developed to predict glucose and xylose release following pretreatment and enzymatic hydrolysis. An additional PLS-2 model was developed to predict glucan and xylan yield. PLS-1 models were developed to predict the sum of glucose/glucan and xylose/xylan for release and yield (grams per gram). The release and yield models have higher uncertainties than the primary methods used to develop the models. It is possible to build effective multispecies feedstock models for composition, as well as carbohydrate release and yield. The model for composition is useful for predicting glucan, xylan, lignin, and ash with good uncertainties. The release and yield models have higher uncertainties; however, these models are useful for rapidly screening sample populations to identify unusual samples.
Enhancing Flood Prediction Reliability Using Bayesian Model Averaging
NASA Astrophysics Data System (ADS)
Liu, Z.; Merwade, V.
2017-12-01
Uncertainty analysis is an indispensable part of modeling the hydrology and hydrodynamics of non-idealized environmental systems. Compared to reliance on prediction from one model simulation, using on ensemble of predictions that consider uncertainty from different sources is more reliable. In this study, Bayesian model averaging (BMA) is applied to Black River watershed in Arkansas and Missouri by combining multi-model simulations to get reliable deterministic water stage and probabilistic inundation extent predictions. The simulation ensemble is generated from 81 LISFLOOD-FP subgrid model configurations that include uncertainty from channel shape, channel width, channel roughness and discharge. Model simulation outputs are trained with observed water stage data during one flood event, and BMA prediction ability is validated for another flood event. Results from this study indicate that BMA does not always outperform all members in the ensemble, but it provides relatively robust deterministic flood stage predictions across the basin. Station based BMA (BMA_S) water stage prediction has better performance than global based BMA (BMA_G) prediction which is superior to the ensemble mean prediction. Additionally, high-frequency flood inundation extent (probability greater than 60%) in BMA_G probabilistic map is more accurate than the probabilistic flood inundation extent based on equal weights.
NASA Astrophysics Data System (ADS)
Multsch, S.; Exbrayat, J.-F.; Kirby, M.; Viney, N. R.; Frede, H.-G.; Breuer, L.
2015-04-01
Irrigation agriculture plays an increasingly important role in food supply. Many evapotranspiration models are used today to estimate the water demand for irrigation. They consider different stages of crop growth by empirical crop coefficients to adapt evapotranspiration throughout the vegetation period. We investigate the importance of the model structural versus model parametric uncertainty for irrigation simulations by considering six evapotranspiration models and five crop coefficient sets to estimate irrigation water requirements for growing wheat in the Murray-Darling Basin, Australia. The study is carried out using the spatial decision support system SPARE:WATER. We find that structural model uncertainty among reference ET is far more important than model parametric uncertainty introduced by crop coefficients. These crop coefficients are used to estimate irrigation water requirement following the single crop coefficient approach. Using the reliability ensemble averaging (REA) technique, we are able to reduce the overall predictive model uncertainty by more than 10%. The exceedance probability curve of irrigation water requirements shows that a certain threshold, e.g. an irrigation water limit due to water right of 400 mm, would be less frequently exceeded in case of the REA ensemble average (45%) in comparison to the equally weighted ensemble average (66%). We conclude that multi-model ensemble predictions and sophisticated model averaging techniques are helpful in predicting irrigation demand and provide relevant information for decision making.
Hierarchical models for informing general biomass equations with felled tree data
Brian J. Clough; Matthew B. Russell; Christopher W. Woodall; Grant M. Domke; Philip J. Radtke
2015-01-01
We present a hierarchical framework that uses a large multispecies felled tree database to inform a set of general models for predicting tree foliage biomass, with accompanying uncertainty, within the FIA database. Results suggest significant prediction uncertainty for individual trees and reveal higher errors when predicting foliage biomass for larger trees and for...
Uncertainty in the Bayesian meta-analysis of normally distributed surrogate endpoints
Thompson, John R; Spata, Enti; Abrams, Keith R
2015-01-01
We investigate the effect of the choice of parameterisation of meta-analytic models and related uncertainty on the validation of surrogate endpoints. Different meta-analytical approaches take into account different levels of uncertainty which may impact on the accuracy of the predictions of treatment effect on the target outcome from the treatment effect on a surrogate endpoint obtained from these models. A range of Bayesian as well as frequentist meta-analytical methods are implemented using illustrative examples in relapsing–remitting multiple sclerosis, where the treatment effect on disability worsening is the primary outcome of interest in healthcare evaluation, while the effect on relapse rate is considered as a potential surrogate to the effect on disability progression, and in gastric cancer, where the disease-free survival has been shown to be a good surrogate endpoint to the overall survival. Sensitivity analysis was carried out to assess the impact of distributional assumptions on the predictions. Also, sensitivity to modelling assumptions and performance of the models were investigated by simulation. Although different methods can predict mean true outcome almost equally well, inclusion of uncertainty around all relevant parameters of the model may lead to less certain and hence more conservative predictions. When investigating endpoints as candidate surrogate outcomes, a careful choice of the meta-analytical approach has to be made. Models underestimating the uncertainty of available evidence may lead to overoptimistic predictions which can then have an effect on decisions made based on such predictions. PMID:26271918
Uncertainty in the Bayesian meta-analysis of normally distributed surrogate endpoints.
Bujkiewicz, Sylwia; Thompson, John R; Spata, Enti; Abrams, Keith R
2017-10-01
We investigate the effect of the choice of parameterisation of meta-analytic models and related uncertainty on the validation of surrogate endpoints. Different meta-analytical approaches take into account different levels of uncertainty which may impact on the accuracy of the predictions of treatment effect on the target outcome from the treatment effect on a surrogate endpoint obtained from these models. A range of Bayesian as well as frequentist meta-analytical methods are implemented using illustrative examples in relapsing-remitting multiple sclerosis, where the treatment effect on disability worsening is the primary outcome of interest in healthcare evaluation, while the effect on relapse rate is considered as a potential surrogate to the effect on disability progression, and in gastric cancer, where the disease-free survival has been shown to be a good surrogate endpoint to the overall survival. Sensitivity analysis was carried out to assess the impact of distributional assumptions on the predictions. Also, sensitivity to modelling assumptions and performance of the models were investigated by simulation. Although different methods can predict mean true outcome almost equally well, inclusion of uncertainty around all relevant parameters of the model may lead to less certain and hence more conservative predictions. When investigating endpoints as candidate surrogate outcomes, a careful choice of the meta-analytical approach has to be made. Models underestimating the uncertainty of available evidence may lead to overoptimistic predictions which can then have an effect on decisions made based on such predictions.
Predicting long-range transport: a systematic evaluation of two multimedia transport models.
Bennett, D H; Scheringer, M; McKone, T E; Hungerbühler, K
2001-03-15
The United Nations Environment Program has recently developed criteria to identify and restrict chemicals with a potential for persistence and long-range transport (persistent organic pollutants or POPs). There are many stakeholders involved, and the issues are not only scientific but also include social, economic, and political factors. This work focuses on one aspect of the POPs debate, the criteria for determining the potential for long-range transport (LRT). Our goal is to determine if current models are reliable enough to support decisions that classify a chemical based on the LRT potential. We examine the robustness of two multimedia fate models for determining the relative ranking and absolute spatial range of various chemicals in the environment. We also consider the effect of parameter uncertainties and the model uncertainty associated with the selection of an algorithm for gas-particle partitioning on the model results. Given the same chemical properties, both models give virtually the same ranking. However, when chemical parameter uncertainties and model uncertainties such as particle partitioning are considered, the spatial range distributions obtained for the individual chemicals overlap, preventing a distinct rank order. The absolute values obtained for the predicted spatial range or travel distance differ significantly between the two models for the uncertainties evaluated. We find that to evaluate a chemical when large and unresolved uncertainties exist, it is more informative to use two or more models and include multiple types of uncertainty. Model differences and uncertainties must be explicitly confronted to determine how the limitations of scientific knowledge impact predictions in the decision-making process.
Tyler Jon Smith; Lucy Amanda Marshall
2010-01-01
Model selection is an extremely important aspect of many hydrologic modeling studies because of the complexity, variability, and uncertainty that surrounds the current understanding of watershed-scale systems. However, development and implementation of a complete precipitation-runoff modeling framework, from model selection to calibration and uncertainty analysis, are...
NASA Astrophysics Data System (ADS)
Jiang, Sanyuan; Jomaa, Seifeddine; Büttner, Olaf; Rode, Michael
2014-05-01
Hydrological water quality modeling is increasingly used for investigating runoff and nutrient transport processes as well as watershed management but it is mostly unclear how data availablity determins model identification. In this study, the HYPE (HYdrological Predictions for the Environment) model, which is a process-based, semi-distributed hydrological water quality model, was applied in two different mesoscale catchments (Selke (463 km2) and Weida (99 km2)) located in central Germany to simulate discharge and inorganic nitrogen (IN) transport. PEST and DREAM(ZS) were combined with the HYPE model to conduct parameter calibration and uncertainty analysis. Split-sample test was used for model calibration (1994-1999) and validation (1999-2004). IN concentration and daily IN load were found to be highly correlated with discharge, indicating that IN leaching is mainly controlled by runoff. Both dynamics and balances of water and IN load were well captured with NSE greater than 0.83 during validation period. Multi-objective calibration (calibrating hydrological and water quality parameters simultaneously) was found to outperform step-wise calibration in terms of model robustness. Multi-site calibration was able to improve model performance at internal sites, decrease parameter posterior uncertainty and prediction uncertainty. Nitrogen-process parameters calibrated using continuous daily averages of nitrate-N concentration observations produced better and more robust simulations of IN concentration and load, lower posterior parameter uncertainty and IN concentration prediction uncertainty compared to the calibration against uncontinuous biweekly nitrate-N concentration measurements. Both PEST and DREAM(ZS) are efficient in parameter calibration. However, DREAM(ZS) is more sound in terms of parameter identification and uncertainty analysis than PEST because of its capability to evolve parameter posterior distributions and estimate prediction uncertainty based on global search and Bayesian inference schemes.
Uncertainty and sensitivity analysis for photovoltaic system modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Clifford W.; Pohl, Andrew Phillip; Jordan, Dirk
2013-12-01
We report an uncertainty and sensitivity analysis for modeling DC energy from photovoltaic systems. We consider two systems, each comprised of a single module using either crystalline silicon or CdTe cells, and located either at Albuquerque, NM, or Golden, CO. Output from a PV system is predicted by a sequence of models. Uncertainty in the output of each model is quantified by empirical distributions of each model's residuals. We sample these distributions to propagate uncertainty through the sequence of models to obtain an empirical distribution for each PV system's output. We considered models that: (1) translate measured global horizontal, directmore » and global diffuse irradiance to plane-of-array irradiance; (2) estimate effective irradiance from plane-of-array irradiance; (3) predict cell temperature; and (4) estimate DC voltage, current and power. We found that the uncertainty in PV system output to be relatively small, on the order of 1% for daily energy. Four alternative models were considered for the POA irradiance modeling step; we did not find the choice of one of these models to be of great significance. However, we observed that the POA irradiance model introduced a bias of upwards of 5% of daily energy which translates directly to a systematic difference in predicted energy. Sensitivity analyses relate uncertainty in the PV system output to uncertainty arising from each model. We found that the residuals arising from the POA irradiance and the effective irradiance models to be the dominant contributors to residuals for daily energy, for either technology or location considered. This analysis indicates that efforts to reduce the uncertainty in PV system output should focus on improvements to the POA and effective irradiance models.« less
NASA Astrophysics Data System (ADS)
Liang, Zhongmin; Li, Yujie; Hu, Yiming; Li, Binquan; Wang, Jun
2017-06-01
Accurate and reliable long-term forecasting plays an important role in water resources management and utilization. In this paper, a hybrid model called SVR-HUP is presented to predict long-term runoff and quantify the prediction uncertainty. The model is created based on three steps. First, appropriate predictors are selected according to the correlations between meteorological factors and runoff. Second, a support vector regression (SVR) model is structured and optimized based on the LibSVM toolbox and a genetic algorithm. Finally, using forecasted and observed runoff, a hydrologic uncertainty processor (HUP) based on a Bayesian framework is used to estimate the posterior probability distribution of the simulated values, and the associated uncertainty of prediction was quantitatively analyzed. Six precision evaluation indexes, including the correlation coefficient (CC), relative root mean square error (RRMSE), relative error (RE), mean absolute percentage error (MAPE), Nash-Sutcliffe efficiency (NSE), and qualification rate (QR), are used to measure the prediction accuracy. As a case study, the proposed approach is applied in the Han River basin, South Central China. Three types of SVR models are established to forecast the monthly, flood season and annual runoff volumes. The results indicate that SVR yields satisfactory accuracy and reliability at all three scales. In addition, the results suggest that the HUP cannot only quantify the uncertainty of prediction based on a confidence interval but also provide a more accurate single value prediction than the initial SVR forecasting result. Thus, the SVR-HUP model provides an alternative method for long-term runoff forecasting.
Data Assimilation and Propagation of Uncertainty in Multiscale Cardiovascular Simulation
NASA Astrophysics Data System (ADS)
Schiavazzi, Daniele; Marsden, Alison
2015-11-01
Cardiovascular modeling is the application of computational tools to predict hemodynamics. State-of-the-art techniques couple a 3D incompressible Navier-Stokes solver with a boundary circulation model and can predict local and peripheral hemodynamics, analyze the post-operative performance of surgical designs and complement clinical data collection minimizing invasive and risky measurement practices. The ability of these tools to make useful predictions is directly related to their accuracy in representing measured physiologies. Tuning of model parameters is therefore a topic of paramount importance and should include clinical data uncertainty, revealing how this uncertainty will affect the predictions. We propose a fully Bayesian, multi-level approach to data assimilation of uncertain clinical data in multiscale circulation models. To reduce the computational cost, we use a stable, condensed approximation of the 3D model build by linear sparse regression of the pressure/flow rate relationship at the outlets. Finally, we consider the problem of non-invasively propagating the uncertainty in model parameters to the resulting hemodynamics and compare Monte Carlo simulation with Stochastic Collocation approaches based on Polynomial or Multi-resolution Chaos expansions.
Predictive uncertainty in auditory sequence processing
Hansen, Niels Chr.; Pearce, Marcus T.
2014-01-01
Previous studies of auditory expectation have focused on the expectedness perceived by listeners retrospectively in response to events. In contrast, this research examines predictive uncertainty—a property of listeners' prospective state of expectation prior to the onset of an event. We examine the information-theoretic concept of Shannon entropy as a model of predictive uncertainty in music cognition. This is motivated by the Statistical Learning Hypothesis, which proposes that schematic expectations reflect probabilistic relationships between sensory events learned implicitly through exposure. Using probability estimates from an unsupervised, variable-order Markov model, 12 melodic contexts high in entropy and 12 melodic contexts low in entropy were selected from two musical repertoires differing in structural complexity (simple and complex). Musicians and non-musicians listened to the stimuli and provided explicit judgments of perceived uncertainty (explicit uncertainty). We also examined an indirect measure of uncertainty computed as the entropy of expectedness distributions obtained using a classical probe-tone paradigm where listeners rated the perceived expectedness of the final note in a melodic sequence (inferred uncertainty). Finally, we simulate listeners' perception of expectedness and uncertainty using computational models of auditory expectation. A detailed model comparison indicates which model parameters maximize fit to the data and how they compare to existing models in the literature. The results show that listeners experience greater uncertainty in high-entropy musical contexts than low-entropy contexts. This effect is particularly apparent for inferred uncertainty and is stronger in musicians than non-musicians. Consistent with the Statistical Learning Hypothesis, the results suggest that increased domain-relevant training is associated with an increasingly accurate cognitive model of probabilistic structure in music. PMID:25295018
Fast integration-based prediction bands for ordinary differential equation models.
Hass, Helge; Kreutz, Clemens; Timmer, Jens; Kaschek, Daniel
2016-04-15
To gain a deeper understanding of biological processes and their relevance in disease, mathematical models are built upon experimental data. Uncertainty in the data leads to uncertainties of the model's parameters and in turn to uncertainties of predictions. Mechanistic dynamic models of biochemical networks are frequently based on nonlinear differential equation systems and feature a large number of parameters, sparse observations of the model components and lack of information in the available data. Due to the curse of dimensionality, classical and sampling approaches propagating parameter uncertainties to predictions are hardly feasible and insufficient. However, for experimental design and to discriminate between competing models, prediction and confidence bands are essential. To circumvent the hurdles of the former methods, an approach to calculate a profile likelihood on arbitrary observations for a specific time point has been introduced, which provides accurate confidence and prediction intervals for nonlinear models and is computationally feasible for high-dimensional models. In this article, reliable and smooth point-wise prediction and confidence bands to assess the model's uncertainty on the whole time-course are achieved via explicit integration with elaborate correction mechanisms. The corresponding system of ordinary differential equations is derived and tested on three established models for cellular signalling. An efficiency analysis is performed to illustrate the computational benefit compared with repeated profile likelihood calculations at multiple time points. The integration framework and the examples used in this article are provided with the software package Data2Dynamics, which is based on MATLAB and freely available at http://www.data2dynamics.org helge.hass@fdm.uni-freiburg.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Bassam, S.; Ren, J.
2017-12-01
Predicting future water availability in watersheds is very important for proper water resources management, especially in semi-arid regions with scarce water resources. Hydrological models have been considered as powerful tools in predicting future hydrological conditions in watershed systems in the past two decades. Streamflow and evapotranspiration are the two important components in watershed water balance estimation as the former is the most commonly-used indicator of the overall water budget estimation, and the latter is the second biggest component of water budget (biggest outflow from the system). One of the main concerns in watershed scale hydrological modeling is the uncertainties associated with model prediction, which could arise from errors in model parameters and input meteorological data, or errors in model representation of the physics of hydrological processes. Understanding and quantifying these uncertainties are vital to water resources managers for proper decision making based on model predictions. In this study, we evaluated the impacts of different climate change scenarios on the future stream discharge and evapotranspiration, and their associated uncertainties, throughout a large semi-arid basin using a stochastically-calibrated, physically-based, semi-distributed hydrological model. The results of this study could provide valuable insights in applying hydrological models in large scale watersheds, understanding the associated sensitivity and uncertainties in model parameters, and estimating the corresponding impacts on interested hydrological process variables under different climate change scenarios.
NASA Astrophysics Data System (ADS)
Shafii, M.; Tolson, B.; Matott, L. S.
2012-04-01
Hydrologic modeling has benefited from significant developments over the past two decades. This has resulted in building of higher levels of complexity into hydrologic models, which eventually makes the model evaluation process (parameter estimation via calibration and uncertainty analysis) more challenging. In order to avoid unreasonable parameter estimates, many researchers have suggested implementation of multi-criteria calibration schemes. Furthermore, for predictive hydrologic models to be useful, proper consideration of uncertainty is essential. Consequently, recent research has emphasized comprehensive model assessment procedures in which multi-criteria parameter estimation is combined with statistically-based uncertainty analysis routines such as Bayesian inference using Markov Chain Monte Carlo (MCMC) sampling. Such a procedure relies on the use of formal likelihood functions based on statistical assumptions, and moreover, the Bayesian inference structured on MCMC samplers requires a considerably large number of simulations. Due to these issues, especially in complex non-linear hydrological models, a variety of alternative informal approaches have been proposed for uncertainty analysis in the multi-criteria context. This study aims at exploring a number of such informal uncertainty analysis techniques in multi-criteria calibration of hydrological models. The informal methods addressed in this study are (i) Pareto optimality which quantifies the parameter uncertainty using the Pareto solutions, (ii) DDS-AU which uses the weighted sum of objective functions to derive the prediction limits, and (iii) GLUE which describes the total uncertainty through identification of behavioral solutions. The main objective is to compare such methods with MCMC-based Bayesian inference with respect to factors such as computational burden, and predictive capacity, which are evaluated based on multiple comparative measures. The measures for comparison are calculated both for calibration and evaluation periods. The uncertainty analysis methodologies are applied to a simple 5-parameter rainfall-runoff model, called HYMOD.
Urbina, Angel; Mahadevan, Sankaran; Paez, Thomas L.
2012-03-01
Here, performance assessment of complex systems is ideally accomplished through system-level testing, but because they are expensive, such tests are seldom performed. On the other hand, for economic reasons, data from tests on individual components that are parts of complex systems are more readily available. The lack of system-level data leads to a need to build computational models of systems and use them for performance prediction in lieu of experiments. Because their complexity, models are sometimes built in a hierarchical manner, starting with simple components, progressing to collections of components, and finally, to the full system. Quantification of uncertainty inmore » the predicted response of a system model is required in order to establish confidence in the representation of actual system behavior. This paper proposes a framework for the complex, but very practical problem of quantification of uncertainty in system-level model predictions. It is based on Bayes networks and uses the available data at multiple levels of complexity (i.e., components, subsystem, etc.). Because epistemic sources of uncertainty were shown to be secondary, in this application, aleatoric only uncertainty is included in the present uncertainty quantification. An example showing application of the techniques to uncertainty quantification of measures of response of a real, complex aerospace system is included.« less
NASA Astrophysics Data System (ADS)
Rodríguez-Rincón, J. P.; Pedrozo-Acuña, A.; Breña-Naranjo, J. A.
2015-07-01
This investigation aims to study the propagation of meteorological uncertainty within a cascade modelling approach to flood prediction. The methodology was comprised of a numerical weather prediction (NWP) model, a distributed rainfall-runoff model and a 2-D hydrodynamic model. The uncertainty evaluation was carried out at the meteorological and hydrological levels of the model chain, which enabled the investigation of how errors that originated in the rainfall prediction interact at a catchment level and propagate to an estimated inundation area and depth. For this, a hindcast scenario is utilised removing non-behavioural ensemble members at each stage, based on the fit with observed data. At the hydrodynamic level, an uncertainty assessment was not incorporated; instead, the model was setup following guidelines for the best possible representation of the case study. The selected extreme event corresponds to a flood that took place in the southeast of Mexico during November 2009, for which field data (e.g. rain gauges; discharge) and satellite imagery were available. Uncertainty in the meteorological model was estimated by means of a multi-physics ensemble technique, which is designed to represent errors from our limited knowledge of the processes generating precipitation. In the hydrological model, a multi-response validation was implemented through the definition of six sets of plausible parameters from past flood events. Precipitation fields from the meteorological model were employed as input in a distributed hydrological model, and resulting flood hydrographs were used as forcing conditions in the 2-D hydrodynamic model. The evolution of skill within the model cascade shows a complex aggregation of errors between models, suggesting that in valley-filling events hydro-meteorological uncertainty has a larger effect on inundation depths than that observed in estimated flood inundation extents.
NASA Astrophysics Data System (ADS)
Kasiviswanathan, K.; Sudheer, K.
2013-05-01
Artificial neural network (ANN) based hydrologic models have gained lot of attention among water resources engineers and scientists, owing to their potential for accurate prediction of flood flows as compared to conceptual or physics based hydrologic models. The ANN approximates the non-linear functional relationship between the complex hydrologic variables in arriving at the river flow forecast values. Despite a large number of applications, there is still some criticism that ANN's point prediction lacks in reliability since the uncertainty of predictions are not quantified, and it limits its use in practical applications. A major concern in application of traditional uncertainty analysis techniques on neural network framework is its parallel computing architecture with large degrees of freedom, which makes the uncertainty assessment a challenging task. Very limited studies have considered assessment of predictive uncertainty of ANN based hydrologic models. In this study, a novel method is proposed that help construct the prediction interval of ANN flood forecasting model during calibration itself. The method is designed to have two stages of optimization during calibration: at stage 1, the ANN model is trained with genetic algorithm (GA) to obtain optimal set of weights and biases vector, and during stage 2, the optimal variability of ANN parameters (obtained in stage 1) is identified so as to create an ensemble of predictions. During the 2nd stage, the optimization is performed with multiple objectives, (i) minimum residual variance for the ensemble mean, (ii) maximum measured data points to fall within the estimated prediction interval and (iii) minimum width of prediction interval. The method is illustrated using a real world case study of an Indian basin. The method was able to produce an ensemble that has an average prediction interval width of 23.03 m3/s, with 97.17% of the total validation data points (measured) lying within the interval. The derived prediction interval for a selected hydrograph in the validation data set is presented in Fig 1. It is noted that most of the observed flows lie within the constructed prediction interval, and therefore provides information about the uncertainty of the prediction. One specific advantage of the method is that when ensemble mean value is considered as a forecast, the peak flows are predicted with improved accuracy by this method compared to traditional single point forecasted ANNs. Fig. 1 Prediction Interval for selected hydrograph
Artificial neural network modelling of uncertainty in gamma-ray spectrometry
NASA Astrophysics Data System (ADS)
Dragović, S.; Onjia, A.; Stanković, S.; Aničin, I.; Bačić, G.
2005-03-01
An artificial neural network (ANN) model for the prediction of measuring uncertainties in gamma-ray spectrometry was developed and optimized. A three-layer feed-forward ANN with back-propagation learning algorithm was used to model uncertainties of measurement of activity levels of eight radionuclides ( 226Ra, 238U, 235U, 40K, 232Th, 134Cs, 137Cs and 7Be) in soil samples as a function of measurement time. It was shown that the neural network provides useful data even from small experimental databases. The performance of the optimized neural network was found to be very good, with correlation coefficients ( R2) between measured and predicted uncertainties ranging from 0.9050 to 0.9915. The correlation coefficients did not significantly deteriorate when the network was tested on samples with greatly different uranium-to-thorium ( 238U/ 232Th) ratios. The differences between measured and predicted uncertainties were not influenced by the absolute values of uncertainties of measured radionuclide activities. Once the ANN is trained, it could be employed in analyzing soil samples regardless of the 238U/ 232Th ratio. It was concluded that a considerable saving in time could be obtained using the trained neural network model for predicting the measurement times needed to attain the desired statistical accuracy.
A multi-model assessment of terrestrial biosphere model data needs
NASA Astrophysics Data System (ADS)
Gardella, A.; Cowdery, E.; De Kauwe, M. G.; Desai, A. R.; Duveneck, M.; Fer, I.; Fisher, R.; Knox, R. G.; Kooper, R.; LeBauer, D.; McCabe, T.; Minunno, F.; Raiho, A.; Serbin, S.; Shiklomanov, A. N.; Thomas, A.; Walker, A.; Dietze, M.
2017-12-01
Terrestrial biosphere models provide us with the means to simulate the impacts of climate change and their uncertainties. Going beyond direct observation and experimentation, models synthesize our current understanding of ecosystem processes and can give us insight on data needed to constrain model parameters. In previous work, we leveraged the Predictive Ecosystem Analyzer (PEcAn) to assess the contribution of different parameters to the uncertainty of the Ecosystem Demography model v2 (ED) model outputs across various North American biomes (Dietze et al., JGR-G, 2014). While this analysis identified key research priorities, the extent to which these priorities were model- and/or biome-specific was unclear. Furthermore, because the analysis only studied one model, we were unable to comment on the effect of variability in model structure to overall predictive uncertainty. Here, we expand this analysis to all biomes globally and a wide sample of models that vary in complexity: BioCro, CABLE, CLM, DALEC, ED2, FATES, G'DAY, JULES, LANDIS, LINKAGES, LPJ-GUESS, MAESPA, PRELES, SDGVM, SIPNET, and TEM. Prior to performing uncertainty analyses, model parameter uncertainties were assessed by assimilating all available trait data from the combination of the BETYdb and TRY trait databases, using an updated multivariate version of PEcAn's Hierarchical Bayesian meta-analysis. Next, sensitivity analyses were performed for all models across a range of sites globally to assess sensitivities for a range of different outputs (GPP, ET, SH, Ra, NPP, Rh, NEE, LAI) at multiple time scales from the sub-annual to the decadal. Finally, parameter uncertainties and model sensitivities were combined to evaluate the fractional contribution of each parameter to the predictive uncertainty for a specific variable at a specific site and timescale. Facilitated by PEcAn's automated workflows, this analysis represents the broadest assessment of the sensitivities and uncertainties in terrestrial models to date, and provides a comprehensive roadmap for constraining model uncertainties through model development and data collection.
NASA Astrophysics Data System (ADS)
Feyen, Luc; Caers, Jef
2006-06-01
In this work, we address the problem of characterizing the heterogeneity and uncertainty of hydraulic properties for complex geological settings. Hereby, we distinguish between two scales of heterogeneity, namely the hydrofacies structure and the intrafacies variability of the hydraulic properties. We employ multiple-point geostatistics to characterize the hydrofacies architecture. The multiple-point statistics are borrowed from a training image that is designed to reflect the prior geological conceptualization. The intrafacies variability of the hydraulic properties is represented using conventional two-point correlation methods, more precisely, spatial covariance models under a multi-Gaussian spatial law. We address the different levels and sources of uncertainty in characterizing the subsurface heterogeneity, and explore their effect on groundwater flow and transport predictions. Typically, uncertainty is assessed by way of many images, termed realizations, of a fixed statistical model. However, in many cases, sampling from a fixed stochastic model does not adequately represent the space of uncertainty. It neglects the uncertainty related to the selection of the stochastic model and the estimation of its input parameters. We acknowledge the uncertainty inherent in the definition of the prior conceptual model of aquifer architecture and in the estimation of global statistics, anisotropy, and correlation scales. Spatial bootstrap is used to assess the uncertainty of the unknown statistical parameters. As an illustrative example, we employ a synthetic field that represents a fluvial setting consisting of an interconnected network of channel sands embedded within finer-grained floodplain material. For this highly non-stationary setting we quantify the groundwater flow and transport model prediction uncertainty for various levels of hydrogeological uncertainty. Results indicate the importance of accurately describing the facies geometry, especially for transport predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel, David W.; Reichardt, Thomas A.; Kulp, Thomas J.
Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensormore » level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.« less
Fienen, Michael N.; Doherty, John E.; Hunt, Randall J.; Reeves, Howard W.
2010-01-01
The importance of monitoring networks for resource-management decisions is becoming more recognized, in both theory and application. Quantitative computer models provide a science-based framework to evaluate the efficacy and efficiency of existing and possible future monitoring networks. In the study described herein, two suites of tools were used to evaluate the worth of new data for specific predictions, which in turn can support efficient use of resources needed to construct a monitoring network. The approach evaluates the uncertainty of a model prediction and, by using linear propagation of uncertainty, estimates how much uncertainty could be reduced if the model were calibrated with addition information (increased a priori knowledge of parameter values or new observations). The theoretical underpinnings of the two suites of tools addressing this technique are compared, and their application to a hypothetical model based on a local model inset into the Great Lakes Water Availability Pilot model are described. Results show that meaningful guidance for monitoring network design can be obtained by using the methods explored. The validity of this guidance depends substantially on the parameterization as well; hence, parameterization must be considered not only when designing the parameter-estimation paradigm but also-importantly-when designing the prediction-uncertainty paradigm.
NASA Astrophysics Data System (ADS)
Wellen, Christopher; Arhonditsis, George B.; Long, Tanya; Boyd, Duncan
2014-11-01
Spatially distributed nonpoint source watershed models are essential tools to estimate the magnitude and sources of diffuse pollution. However, little work has been undertaken to understand the sources and ramifications of the uncertainty involved in their use. In this study we conduct the first Bayesian uncertainty analysis of the water quality components of the SWAT model, one of the most commonly used distributed nonpoint source models. Working in Southern Ontario, we apply three Bayesian configurations for calibrating SWAT to Redhill Creek, an urban catchment, and Grindstone Creek, an agricultural one. We answer four interrelated questions: can SWAT determine suspended sediment sources with confidence when end of basin data is used for calibration? How does uncertainty propagate from the discharge submodel to the suspended sediment submodels? Do the estimated sediment sources vary when different calibration approaches are used? Can we combine the knowledge gained from different calibration approaches? We show that: (i) despite reasonable fit at the basin outlet, the simulated sediment sources are subject to uncertainty sufficient to undermine the typical approach of reliance on a single, best fit simulation; (ii) more than a third of the uncertainty of sediment load predictions may stem from the discharge submodel; (iii) estimated sediment sources do vary significantly across the three statistical configurations of model calibration despite end-of-basin predictions being virtually identical; and (iv) Bayesian model averaging is an approach that can synthesize predictions when a number of adequate distributed models make divergent source apportionments. We conclude with recommendations for future research to reduce the uncertainty encountered when using distributed nonpoint source models for source apportionment.
Understanding and quantifying the uncertainty of model parameters and predictions has gained more interest in recent years with the increased use of computational models in chemical risk assessment. Fully characterizing the uncertainty in risk metrics derived from linked quantita...
NASA Astrophysics Data System (ADS)
Wang, Jun; Wang, Yang; Zeng, Hui
2016-01-01
A key issue to address in synthesizing spatial data with variable-support in spatial analysis and modeling is the change-of-support problem. We present an approach for solving the change-of-support and variable-support data fusion problems. This approach is based on geostatistical inverse modeling that explicitly accounts for differences in spatial support. The inverse model is applied here to produce both the best predictions of a target support and prediction uncertainties, based on one or more measurements, while honoring measurements. Spatial data covering large geographic areas often exhibit spatial nonstationarity and can lead to computational challenge due to the large data size. We developed a local-window geostatistical inverse modeling approach to accommodate these issues of spatial nonstationarity and alleviate computational burden. We conducted experiments using synthetic and real-world raster data. Synthetic data were generated and aggregated to multiple supports and downscaled back to the original support to analyze the accuracy of spatial predictions and the correctness of prediction uncertainties. Similar experiments were conducted for real-world raster data. Real-world data with variable-support were statistically fused to produce single-support predictions and associated uncertainties. The modeling results demonstrate that geostatistical inverse modeling can produce accurate predictions and associated prediction uncertainties. It is shown that the local-window geostatistical inverse modeling approach suggested offers a practical way to solve the well-known change-of-support problem and variable-support data fusion problem in spatial analysis and modeling.
NASA Astrophysics Data System (ADS)
Carmichael, G. R.; Saide, P. E.; Gao, M.; Streets, D. G.; Kim, J.; Woo, J. H.
2017-12-01
Ambient aerosols are important air pollutants with direct impacts on human health and on the Earth's weather and climate systems through their interactions with radiation and clouds. Their role is dependent on their distributions of size, number, phase and composition, which vary significantly in space and time. There remain large uncertainties in simulated aerosol distributions due to uncertainties in emission estimates and in chemical and physical processes associated with their formation and removal. These uncertainties lead to large uncertainties in weather and air quality predictions and in estimates of health and climate change impacts. Despite these uncertainties and challenges, regional-scale coupled chemistry-meteorological models such as WRF-Chem have significant capabilities in predicting aerosol distributions and explaining aerosol-weather interactions. We explore the hypothesis that new advances in on-line, coupled atmospheric chemistry/meteorological models, and new emission inversion and data assimilation techniques applicable to such coupled models, can be applied in innovative ways using current and evolving observation systems to improve predictions of aerosol distributions at regional scales. We investigate the impacts of assimilating AOD from geostationary satellite (GOCI) and surface PM2.5 measurements on predictions of AOD and PM in Korea during KORUS-AQ through a series of experiments. The results suggest assimilating datasets from multiple platforms can improve the predictions of aerosol temporal and spatial distributions.
Assessment of parametric uncertainty for groundwater reactive transport modeling,
Shi, Xiaoqing; Ye, Ming; Curtis, Gary P.; Miller, Geoffery L.; Meyer, Philip D.; Kohler, Matthias; Yabusaki, Steve; Wu, Jichun
2014-01-01
The validity of using Gaussian assumptions for model residuals in uncertainty quantification of a groundwater reactive transport model was evaluated in this study. Least squares regression methods explicitly assume Gaussian residuals, and the assumption leads to Gaussian likelihood functions, model parameters, and model predictions. While the Bayesian methods do not explicitly require the Gaussian assumption, Gaussian residuals are widely used. This paper shows that the residuals of the reactive transport model are non-Gaussian, heteroscedastic, and correlated in time; characterizing them requires using a generalized likelihood function such as the formal generalized likelihood function developed by Schoups and Vrugt (2010). For the surface complexation model considered in this study for simulating uranium reactive transport in groundwater, parametric uncertainty is quantified using the least squares regression methods and Bayesian methods with both Gaussian and formal generalized likelihood functions. While the least squares methods and Bayesian methods with Gaussian likelihood function produce similar Gaussian parameter distributions, the parameter distributions of Bayesian uncertainty quantification using the formal generalized likelihood function are non-Gaussian. In addition, predictive performance of formal generalized likelihood function is superior to that of least squares regression and Bayesian methods with Gaussian likelihood function. The Bayesian uncertainty quantification is conducted using the differential evolution adaptive metropolis (DREAM(zs)) algorithm; as a Markov chain Monte Carlo (MCMC) method, it is a robust tool for quantifying uncertainty in groundwater reactive transport models. For the surface complexation model, the regression-based local sensitivity analysis and Morris- and DREAM(ZS)-based global sensitivity analysis yield almost identical ranking of parameter importance. The uncertainty analysis may help select appropriate likelihood functions, improve model calibration, and reduce predictive uncertainty in other groundwater reactive transport and environmental modeling.
Grain growth prediction based on data assimilation by implementing 4DVar on multi-phase-field model
NASA Astrophysics Data System (ADS)
Ito, Shin-ichi; Nagao, Hiromichi; Kasuya, Tadashi; Inoue, Junya
2017-12-01
We propose a method to predict grain growth based on data assimilation by using a four-dimensional variational method (4DVar). When implemented on a multi-phase-field model, the proposed method allows us to calculate the predicted grain structures and uncertainties in them that depend on the quality and quantity of the observational data. We confirm through numerical tests involving synthetic data that the proposed method correctly reproduces the true phase-field assumed in advance. Furthermore, it successfully quantifies uncertainties in the predicted grain structures, where such uncertainty quantifications provide valuable information to optimize the experimental design.
Uncertainty in predicting soil hydraulic properties at the hillslope scale with indirect methods
NASA Astrophysics Data System (ADS)
Chirico, G. B.; Medina, H.; Romano, N.
2007-02-01
SummarySeveral hydrological applications require the characterisation of the soil hydraulic properties at large spatial scales. Pedotransfer functions (PTFs) are being developed as simplified methods to estimate soil hydraulic properties as an alternative to direct measurements, which are unfeasible for most practical circumstances. The objective of this study is to quantify the uncertainty in PTFs spatial predictions at the hillslope scale as related to the sampling density, due to: (i) the error in estimated soil physico-chemical properties and (ii) PTF model error. The analysis is carried out on a 2-km-long experimental hillslope in South Italy. The method adopted is based on a stochastic generation of patterns of soil variables using sequential Gaussian simulation, conditioned to the observed sample data. The following PTFs are applied: Vereecken's PTF [Vereecken, H., Diels, J., van Orshoven, J., Feyen, J., Bouma, J., 1992. Functional evaluation of pedotransfer functions for the estimation of soil hydraulic properties. Soil Sci. Soc. Am. J. 56, 1371-1378] and HYPRES PTF [Wösten, J.H.M., Lilly, A., Nemes, A., Le Bas, C., 1999. Development and use of a database of hydraulic properties of European soils. Geoderma 90, 169-185]. The two PTFs estimate reliably the soil water retention characteristic even for a relatively coarse sampling resolution, with prediction uncertainties comparable to the uncertainties in direct laboratory or field measurements. The uncertainty of soil water retention prediction due to the model error is as much as or more significant than the uncertainty associated with the estimated input, even for a relatively coarse sampling resolution. Prediction uncertainties are much more important when PTF are applied to estimate the saturated hydraulic conductivity. In this case model error dominates the overall prediction uncertainties, making negligible the effect of the input error.
Convergence in parameters and predictions using computational experimental design.
Hagen, David R; White, Jacob K; Tidor, Bruce
2013-08-06
Typically, biological models fitted to experimental data suffer from significant parameter uncertainty, which can lead to inaccurate or uncertain predictions. One school of thought holds that accurate estimation of the true parameters of a biological system is inherently problematic. Recent work, however, suggests that optimal experimental design techniques can select sets of experiments whose members probe complementary aspects of a biochemical network that together can account for its full behaviour. Here, we implemented an experimental design approach for selecting sets of experiments that constrain parameter uncertainty. We demonstrated with a model of the epidermal growth factor-nerve growth factor pathway that, after synthetically performing a handful of optimal experiments, the uncertainty in all 48 parameters converged below 10 per cent. Furthermore, the fitted parameters converged to their true values with a small error consistent with the residual uncertainty. When untested experimental conditions were simulated with the fitted models, the predicted species concentrations converged to their true values with errors that were consistent with the residual uncertainty. This paper suggests that accurate parameter estimation is achievable with complementary experiments specifically designed for the task, and that the resulting parametrized models are capable of accurate predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, J.; Moteabbed, M.; Paganetti, H., E-mail: hpaganetti@mgh.harvard.edu
2015-01-15
Purpose: Theoretical dose–response models offer the possibility to assess second cancer induction risks after external beam therapy. The parameters used in these models are determined with limited data from epidemiological studies. Risk estimations are thus associated with considerable uncertainties. This study aims at illustrating uncertainties when predicting the risk for organ-specific second cancers in the primary radiation field illustrated by choosing selected treatment plans for brain cancer patients. Methods: A widely used risk model was considered in this study. The uncertainties of the model parameters were estimated with reported data of second cancer incidences for various organs. Standard error propagationmore » was then subsequently applied to assess the uncertainty in the risk model. Next, second cancer risks of five pediatric patients treated for cancer in the head and neck regions were calculated. For each case, treatment plans for proton and photon therapy were designed to estimate the uncertainties (a) in the lifetime attributable risk (LAR) for a given treatment modality and (b) when comparing risks of two different treatment modalities. Results: Uncertainties in excess of 100% of the risk were found for almost all organs considered. When applied to treatment plans, the calculated LAR values have uncertainties of the same magnitude. A comparison between cancer risks of different treatment modalities, however, does allow statistically significant conclusions. In the studied cases, the patient averaged LAR ratio of proton and photon treatments was 0.35, 0.56, and 0.59 for brain carcinoma, brain sarcoma, and bone sarcoma, respectively. Their corresponding uncertainties were estimated to be potentially below 5%, depending on uncertainties in dosimetry. Conclusions: The uncertainty in the dose–response curve in cancer risk models makes it currently impractical to predict the risk for an individual external beam treatment. On the other hand, the ratio of absolute risks between two modalities is less sensitive to the uncertainties in the risk model and can provide statistically significant estimates.« less
Modeling Errors in Daily Precipitation Measurements: Additive or Multiplicative?
NASA Technical Reports Server (NTRS)
Tian, Yudong; Huffman, George J.; Adler, Robert F.; Tang, Ling; Sapiano, Matthew; Maggioni, Viviana; Wu, Huan
2013-01-01
The definition and quantification of uncertainty depend on the error model used. For uncertainties in precipitation measurements, two types of error models have been widely adopted: the additive error model and the multiplicative error model. This leads to incompatible specifications of uncertainties and impedes intercomparison and application.In this letter, we assess the suitability of both models for satellite-based daily precipitation measurements in an effort to clarify the uncertainty representation. Three criteria were employed to evaluate the applicability of either model: (1) better separation of the systematic and random errors; (2) applicability to the large range of variability in daily precipitation; and (3) better predictive skills. It is found that the multiplicative error model is a much better choice under all three criteria. It extracted the systematic errors more cleanly, was more consistent with the large variability of precipitation measurements, and produced superior predictions of the error characteristics. The additive error model had several weaknesses, such as non constant variance resulting from systematic errors leaking into random errors, and the lack of prediction capability. Therefore, the multiplicative error model is a better choice.
Eigenspace perturbations for uncertainty estimation of single-point turbulence closures
NASA Astrophysics Data System (ADS)
Iaccarino, Gianluca; Mishra, Aashwin Ananda; Ghili, Saman
2017-02-01
Reynolds-averaged Navier-Stokes (RANS) models represent the workhorse for predicting turbulent flows in complex industrial applications. However, RANS closures introduce a significant degree of epistemic uncertainty in predictions due to the potential lack of validity of the assumptions utilized in model formulation. Estimating this uncertainty is a fundamental requirement for building confidence in such predictions. We outline a methodology to estimate this structural uncertainty, incorporating perturbations to the eigenvalues and the eigenvectors of the modeled Reynolds stress tensor. The mathematical foundations of this framework are derived and explicated. Thence, this framework is applied to a set of separated turbulent flows, while compared to numerical and experimental data and contrasted against the predictions of the eigenvalue-only perturbation methodology. It is exhibited that for separated flows, this framework is able to yield significant enhancement over the established eigenvalue perturbation methodology in explaining the discrepancy against experimental observations and high-fidelity simulations. Furthermore, uncertainty bounds of potential engineering utility can be estimated by performing five specific RANS simulations, reducing the computational expenditure on such an exercise.
How predictable is the timing of a summer ice-free Arctic?
NASA Astrophysics Data System (ADS)
Jahn, Alexandra; Kay, Jennifer E.; Holland, Marika M.; Hall, David M.
2016-09-01
Climate model simulations give a large range of over 100 years for predictions of when the Arctic could first become ice free in the summer, and many studies have attempted to narrow this uncertainty range. However, given the chaotic nature of the climate system, what amount of spread in the prediction of an ice-free summer Arctic is inevitable? Based on results from large ensemble simulations with the Community Earth System Model, we show that internal variability alone leads to a prediction uncertainty of about two decades, while scenario uncertainty between the strong (Representative Concentration Pathway (RCP) 8.5) and medium (RCP4.5) forcing scenarios adds at least another 5 years. Common metrics of the past and present mean sea ice state (such as ice extent, volume, and thickness) as well as global mean temperatures do not allow a reduction of the prediction uncertainty from internal variability.
Payne, Courtney E.; Wolfrum, Edward J.
2015-03-12
Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. Our objective was to use near-infrared (NIR) spectroscopy and partial least squares (PLS) multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. Major feedstocks included in the calibration models are corn stover, sorghum, switchgrass, perennial cool season grasses, rice straw, and miscanthus. Here are the results: We present individual model statistics tomore » demonstrate model performance and validation samples to more accurately measure predictive quality of the models. The PLS-2 model for composition predicts glucan, xylan, lignin, and ash (wt%) with uncertainties similar to primary measurement methods. A PLS-2 model was developed to predict glucose and xylose release following pretreatment and enzymatic hydrolysis. An additional PLS-2 model was developed to predict glucan and xylan yield. PLS-1 models were developed to predict the sum of glucose/glucan and xylose/xylan for release and yield (grams per gram). The release and yield models have higher uncertainties than the primary methods used to develop the models. In conclusion, it is possible to build effective multispecies feedstock models for composition, as well as carbohydrate release and yield. The model for composition is useful for predicting glucan, xylan, lignin, and ash with good uncertainties. The release and yield models have higher uncertainties; however, these models are useful for rapidly screening sample populations to identify unusual samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, Courtney E.; Wolfrum, Edward J.
Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. Our objective was to use near-infrared (NIR) spectroscopy and partial least squares (PLS) multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. Major feedstocks included in the calibration models are corn stover, sorghum, switchgrass, perennial cool season grasses, rice straw, and miscanthus. Here are the results: We present individual model statistics tomore » demonstrate model performance and validation samples to more accurately measure predictive quality of the models. The PLS-2 model for composition predicts glucan, xylan, lignin, and ash (wt%) with uncertainties similar to primary measurement methods. A PLS-2 model was developed to predict glucose and xylose release following pretreatment and enzymatic hydrolysis. An additional PLS-2 model was developed to predict glucan and xylan yield. PLS-1 models were developed to predict the sum of glucose/glucan and xylose/xylan for release and yield (grams per gram). The release and yield models have higher uncertainties than the primary methods used to develop the models. In conclusion, it is possible to build effective multispecies feedstock models for composition, as well as carbohydrate release and yield. The model for composition is useful for predicting glucan, xylan, lignin, and ash with good uncertainties. The release and yield models have higher uncertainties; however, these models are useful for rapidly screening sample populations to identify unusual samples.« less
NASA Technical Reports Server (NTRS)
Groves, Curtis E.
2013-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This proposal describes an approach to validate the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft. The research described here is absolutely cutting edge. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional"validation by test only'' mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computationaf Fluid Dynamics can be used to veritY these requirements; however, the model must be validated by test data. The proposed research project includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT and OPEN FOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid . . . Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. To date, the author is the only person to look at the uncertainty in the entire computational domain. For the flow regime being analyzed (turbulent, threedimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
NASA Astrophysics Data System (ADS)
Jacquin, A. P.
2012-04-01
This study is intended to quantify the impact of uncertainty about precipitation spatial distribution on predictive uncertainty of a snowmelt runoff model. This problem is especially relevant in mountain catchments with a sparse precipitation observation network and relative short precipitation records. The model analysed is a conceptual watershed model operating at a monthly time step. The model divides the catchment into five elevation zones, where the fifth zone corresponds to the catchment's glaciers. Precipitation amounts at each elevation zone i are estimated as the product between observed precipitation at a station and a precipitation factor FPi. If other precipitation data are not available, these precipitation factors must be adjusted during the calibration process and are thus seen as parameters of the model. In the case of the fifth zone, glaciers are seen as an inexhaustible source of water that melts when the snow cover is depleted.The catchment case study is Aconcagua River at Chacabuquito, located in the Andean region of Central Chile. The model's predictive uncertainty is measured in terms of the output variance of the mean squared error of the Box-Cox transformed discharge, the relative volumetric error, and the weighted average of snow water equivalent in the elevation zones at the end of the simulation period. Sobol's variance decomposition (SVD) method is used for assessing the impact of precipitation spatial distribution, represented by the precipitation factors FPi, on the models' predictive uncertainty. In the SVD method, the first order effect of a parameter (or group of parameters) indicates the fraction of predictive uncertainty that could be reduced if the true value of this parameter (or group) was known. Similarly, the total effect of a parameter (or group) measures the fraction of predictive uncertainty that would remain if the true value of this parameter (or group) was unknown, but all the remaining model parameters could be fixed. In this study, first order and total effects of the group of precipitation factors FP1- FP4, and the precipitation factor FP5, are calculated separately. First order and total effects of the group FP1- FP4 are much higher than first order and total effects of the factor FP5, which are negligible This situation is due to the fact that the actual value taken by FP5 does not have much influence in the contribution of the glacier zone to the catchment's output discharge, mainly limited by incident solar radiation. In addition to this, first order effects indicate that, in average, nearly 25% of predictive uncertainty could be reduced if the true values of the precipitation factors FPi could be known, but no information was available on the appropriate values for the remaining model parameters. Finally, the total effects of the precipitation factors FP1- FP4 are close to 41% in average, implying that even if the appropriate values for the remaining model parameters could be fixed, predictive uncertainty would be still quite high if the spatial distribution of precipitation remains unknown. Acknowledgements: This research was funded by FONDECYT, Research Project 1110279.
Eigenspace perturbations for structural uncertainty estimation of turbulence closure models
NASA Astrophysics Data System (ADS)
Jofre, Lluis; Mishra, Aashwin; Iaccarino, Gianluca
2017-11-01
With the present state of computational resources, a purely numerical resolution of turbulent flows encountered in engineering applications is not viable. Consequently, investigations into turbulence rely on various degrees of modeling. Archetypal amongst these variable resolution approaches would be RANS models in two-equation closures, and subgrid-scale models in LES. However, owing to the simplifications introduced during model formulation, the fidelity of all such models is limited, and therefore the explicit quantification of the predictive uncertainty is essential. In such scenario, the ideal uncertainty estimation procedure must be agnostic to modeling resolution, methodology, and the nature or level of the model filter. The procedure should be able to give reliable prediction intervals for different Quantities of Interest, over varied flows and flow conditions, and at diametric levels of modeling resolution. In this talk, we present and substantiate the Eigenspace perturbation framework as an uncertainty estimation paradigm that meets these criteria. Commencing from a broad overview, we outline the details of this framework at different modeling resolution. Thence, using benchmark flows, along with engineering problems, the efficacy of this procedure is established. This research was partially supported by NNSA under the Predictive Science Academic Alliance Program (PSAAP) II, and by DARPA under the Enabling Quantification of Uncertainty in Physical Systems (EQUiPS) project (technical monitor: Dr Fariba Fahroo).
Chan, Kelvin K W; Xie, Feng; Willan, Andrew R; Pullenayegum, Eleanor M
2017-04-01
Parameter uncertainty in value sets of multiattribute utility-based instruments (MAUIs) has received little attention previously. This false precision leads to underestimation of the uncertainty of the results of cost-effectiveness analyses. The aim of this study is to examine the use of multiple imputation as a method to account for this uncertainty of MAUI scoring algorithms. We fitted a Bayesian model with random effects for respondents and health states to the data from the original US EQ-5D-3L valuation study, thereby estimating the uncertainty in the EQ-5D-3L scoring algorithm. We applied these results to EQ-5D-3L data from the Commonwealth Fund (CWF) Survey for Sick Adults ( n = 3958), comparing the standard error of the estimated mean utility in the CWF population using the predictive distribution from the Bayesian mixed-effect model (i.e., incorporating parameter uncertainty in the value set) with the standard error of the estimated mean utilities based on multiple imputation and the standard error using the conventional approach of using MAUI (i.e., ignoring uncertainty in the value set). The mean utility in the CWF population based on the predictive distribution of the Bayesian model was 0.827 with a standard error (SE) of 0.011. When utilities were derived using the conventional approach, the estimated mean utility was 0.827 with an SE of 0.003, which is only 25% of the SE based on the full predictive distribution of the mixed-effect model. Using multiple imputation with 20 imputed sets, the mean utility was 0.828 with an SE of 0.011, which is similar to the SE based on the full predictive distribution. Ignoring uncertainty of the predicted health utilities derived from MAUIs could lead to substantial underestimation of the variance of mean utilities. Multiple imputation corrects for this underestimation so that the results of cost-effectiveness analyses using MAUIs can report the correct degree of uncertainty.
Opportunities of probabilistic flood loss models
NASA Astrophysics Data System (ADS)
Schröter, Kai; Kreibich, Heidi; Lüdtke, Stefan; Vogel, Kristin; Merz, Bruno
2016-04-01
Oftentimes, traditional uni-variate damage models as for instance depth-damage curves fail to reproduce the variability of observed flood damage. However, reliable flood damage models are a prerequisite for the practical usefulness of the model results. Innovative multi-variate probabilistic modelling approaches are promising to capture and quantify the uncertainty involved and thus to improve the basis for decision making. In this study we compare the predictive capability of two probabilistic modelling approaches, namely Bagging Decision Trees and Bayesian Networks and traditional stage damage functions. For model evaluation we use empirical damage data which are available from computer aided telephone interviews that were respectively compiled after the floods in 2002, 2005, 2006 and 2013 in the Elbe and Danube catchments in Germany. We carry out a split sample test by sub-setting the damage records. One sub-set is used to derive the models and the remaining records are used to evaluate the predictive performance of the model. Further we stratify the sample according to catchments which allows studying model performance in a spatial transfer context. Flood damage estimation is carried out on the scale of the individual buildings in terms of relative damage. The predictive performance of the models is assessed in terms of systematic deviations (mean bias), precision (mean absolute error) as well as in terms of sharpness of the predictions the reliability which is represented by the proportion of the number of observations that fall within the 95-quantile and 5-quantile predictive interval. The comparison of the uni-variable Stage damage function and the multivariable model approach emphasises the importance to quantify predictive uncertainty. With each explanatory variable, the multi-variable model reveals an additional source of uncertainty. However, the predictive performance in terms of precision (mbe), accuracy (mae) and reliability (HR) is clearly improved in comparison to uni-variable Stage damage function. Overall, Probabilistic models provide quantitative information about prediction uncertainty which is crucial to assess the reliability of model predictions and improves the usefulness of model results.
NASA Astrophysics Data System (ADS)
Shi, X.; Zhang, G.
2013-12-01
Because of the extensive computational burden, parametric uncertainty analyses are rarely conducted for geological carbon sequestration (GCS) process based multi-phase models. The difficulty of predictive uncertainty analysis for the CO2 plume migration in realistic GCS models is not only due to the spatial distribution of the caprock and reservoir (i.e. heterogeneous model parameters), but also because the GCS optimization estimation problem has multiple local minima due to the complex nonlinear multi-phase (gas and aqueous), and multi-component (water, CO2, salt) transport equations. The geological model built by Doughty and Pruess (2004) for the Frio pilot site (Texas) was selected and assumed to represent the 'true' system, which was composed of seven different facies (geological units) distributed among 10 layers. We chose to calibrate the permeabilities of these facies. Pressure and gas saturation values from this true model were then extracted and used as observations for subsequent model calibration. Random noise was added to the observations to approximate realistic field conditions. Each simulation of the model lasts about 2 hours. In this study, we develop a new approach that improves computational efficiency of Bayesian inference by constructing a surrogate system based on an adaptive sparse-grid stochastic collocation method. This surrogate response surface global optimization algorithm is firstly used to calibrate the model parameters, then prediction uncertainty of the CO2 plume position is quantified due to the propagation from parametric uncertainty in the numerical experiments, which is also compared to the actual plume from the 'true' model. Results prove that the approach is computationally efficient for multi-modal optimization and prediction uncertainty quantification for computationally expensive simulation models. Both our inverse methodology and findings can be broadly applicable to GCS in heterogeneous storage formations.
Comparing the STEMS and AFIS growth models with respect to the uncertainty of predictions
Ronald E. McRoberts; Margaret R. Holdaway; Veronica C. Lessard
2000-01-01
The uncertainty in 5-, 10-, and 20-year diameter growth predictions is estimated using Monte Carlo simulations for four Lake States tree species. Two sets of diameter growth models are used: recalibrations of the STEMS models using forest inventory and analysis data, and new growth models developed as a component of an annual forest inventory system for the North...
Tan, Can Ozan; Bullock, Daniel
2008-10-01
Recently, dopamine (DA) neurons of the substantia nigra pars compacta (SNc) were found to exhibit sustained responses related to reward uncertainty, in addition to the phasic responses related to reward-prediction errors (RPEs). Thus, cue-dependent anticipations of the timing, magnitude, and uncertainty of rewards are learned and reflected in components of DA signals. Here we simulate a local circuit model to show how learned uncertainty responses are generated, along with phasic RPE responses, on single trials. Both types of simulated DA responses exhibit the empirically observed dependencies on conditional probability, expected value of reward, and time since onset of the reward-predicting cue. The model's three major pathways compute expected values of cues, timed predictions of reward magnitudes, and uncertainties associated with these predictions. The first two pathways' computations refine those modeled by Brown et al. (1999). The third, newly modeled, pathway involves medium spiny projection neurons (MSPNs) of the striatal matrix, whose axons corelease GABA and substance P, both at synapses with GABAergic neurons in the substantia nigra pars reticulata (SNr) and with distal dendrites (in SNr) of DA neurons whose somas are located in ventral SNc. Corelease enables efficient computation of uncertainty responses that are a nonmonotonic function of the conditional probability of reward, and variability in striatal cholinergic transmission can explain observed individual differences in the amplitudes of uncertainty responses. The involvement of matricial MSPNs and cholinergic transmission within the striatum implies a relation between uncertainty in cue-reward contingencies and action-selection functions of the basal ganglia.
Ronald E. McRoberts; Paolo Moser; Laio Zimermann Oliveira; Alexander C. Vibrans
2015-01-01
Forest inventory estimates of tree volume for large areas are typically calculated by adding the model predictions of volumes for individual trees at the plot level, calculating the mean over plots, and expressing the result on a per unit area basis. The uncertainty in the model predictions is generally ignored, with the result that the precision of the large-area...
NASA Astrophysics Data System (ADS)
Denissenkov, Pavel; Perdikakis, Georgios; Herwig, Falk; Schatz, Hendrik; Ritter, Christian; Pignatari, Marco; Jones, Samuel; Nikas, Stylianos; Spyrou, Artemis
2018-05-01
The first-peak s-process elements Rb, Sr, Y and Zr in the post-AGB star Sakurai's object (V4334 Sagittarii) have been proposed to be the result of i-process nucleosynthesis in a post-AGB very-late thermal pulse event. We estimate the nuclear physics uncertainties in the i-process model predictions to determine whether the remaining discrepancies with observations are significant and point to potential issues with the underlying astrophysical model. We find that the dominant source in the nuclear physics uncertainties are predictions of neutron capture rates on unstable neutron rich nuclei, which can have uncertainties of more than a factor 20 in the band of the i-process. We use a Monte Carlo variation of 52 neutron capture rates and a 1D multi-zone post-processing model for the i-process in Sakurai's object to determine the cumulative effect of these uncertainties on the final elemental abundance predictions. We find that the nuclear physics uncertainties are large and comparable to observational errors. Within these uncertainties the model predictions are consistent with observations. A correlation analysis of the results of our MC simulations reveals that the strongest impact on the predicted abundances of Rb, Sr, Y and Zr is made by the uncertainties in the (n, γ) reaction rates of 85Br, 86Br, 87Kr, 88Kr, 89Kr, 89Rb, 89Sr, and 92Sr. This conclusion is supported by a series of multi-zone simulations in which we increased and decreased to their maximum and minimum limits one or two reaction rates per run. We also show that simple and fast one-zone simulations should not be used instead of more realistic multi-zone stellar simulations for nuclear sensitivity and uncertainty studies of convective–reactive processes. Our findings apply more generally to any i-process site with similar neutron exposure, such as rapidly accreting white dwarfs with near-solar metallicities.
NASA Astrophysics Data System (ADS)
Alexander, R. B.; Boyer, E. W.; Schwarz, G. E.; Smith, R. A.
2013-12-01
Estimating water and material stores and fluxes in watershed studies is frequently complicated by uncertainties in quantifying hydrological and biogeochemical effects of factors such as land use, soils, and climate. Although these process-related effects are commonly measured and modeled in separate catchments, researchers are especially challenged by their complexity across catchments and diverse environmental settings, leading to a poor understanding of how model parameters and prediction uncertainties vary spatially. To address these concerns, we illustrate the use of Bayesian hierarchical modeling techniques with a dynamic version of the spatially referenced watershed model SPARROW (SPAtially Referenced Regression On Watershed attributes). The dynamic SPARROW model is designed to predict streamflow and other water cycle components (e.g., evapotranspiration, soil and groundwater storage) for monthly varying hydrological regimes, using mechanistic functions, mass conservation constraints, and statistically estimated parameters. In this application, the model domain includes nearly 30,000 NHD (National Hydrologic Data) stream reaches and their associated catchments in the Susquehanna River Basin. We report the results of our comparisons of alternative models of varying complexity, including models with different explanatory variables as well as hierarchical models that account for spatial and temporal variability in model parameters and variance (error) components. The model errors are evaluated for changes with season and catchment size and correlations in time and space. The hierarchical models consist of a two-tiered structure in which climate forcing parameters are modeled as random variables, conditioned on watershed properties. Quantification of spatial and temporal variations in the hydrological parameters and model uncertainties in this approach leads to more efficient (lower variance) and less biased model predictions throughout the river network. Moreover, predictions of water-balance components are reported according to probabilistic metrics (e.g., percentiles, prediction intervals) that include both parameter and model uncertainties. These improvements in predictions of streamflow dynamics can inform the development of more accurate predictions of spatial and temporal variations in biogeochemical stores and fluxes (e.g., nutrients and carbon) in watersheds.
Communicating uncertainties in earth sciences in view of user needs
NASA Astrophysics Data System (ADS)
de Vries, Wim; Kros, Hans; Heuvelink, Gerard
2014-05-01
Uncertainties are inevitable in all results obtained in the earth sciences, regardless whether these are based on field observations, experimental research or predictive modelling. When informing decision and policy makers or stakeholders, it is important that these uncertainties are also communicated. In communicating results, it important to apply a "Progressive Disclosure of Information (PDI)" from non-technical information through more specialised information, according to the user needs. Generalized information is generally directed towards non-scientific audiences and intended for policy advice. Decision makers have to be aware of the implications of the uncertainty associated with results, so that they can account for it in their decisions. Detailed information on the uncertainties is generally intended for scientific audiences to give insight in underlying approaches and results. When communicating uncertainties, it is important to distinguish between scientific results that allow presentation in terms of probabilistic measures of uncertainty and more intrinsic uncertainties and errors that cannot be expressed in mathematical terms. Examples of earth science research that allow probabilistic measures of uncertainty, involving sophisticated statistical methods, are uncertainties in spatial and/or temporal variations in results of: • Observations, such as soil properties measured at sampling locations. In this case, the interpolation uncertainty, caused by a lack of data collected in space, can be quantified by e.g. kriging standard deviation maps or animations of conditional simulations. • Experimental measurements, comparing impacts of treatments at different sites and/or under different conditions. In this case, an indication of the average and range in measured responses to treatments can be obtained from a meta-analysis, summarizing experimental findings between replicates and across studies, sites, ecosystems, etc. • Model predictions due to uncertain model parameters (parametric variability). These uncertainties can be quantified by uncertainty propagation methods such as Monte Carlo simulation methods. Examples of intrinsic uncertainties that generally cannot be expressed in mathematical terms are errors or biases in: • Results of experiments and observations due to inadequate sampling and errors in analyzing data in the laboratory and even in data reporting. • Results of (laboratory) experiments that are limited to a specific domain or performed under circumstances that differ from field circumstances. • Model structure, due to lack of knowledge of the underlying processes. Structural uncertainty, which may cause model inadequacy/ bias, is inherent in model approaches since models are approximations of reality. Intrinsic uncertainties often occur in an emerging field where ongoing new findings, either experiments or field observations of new model findings, challenge earlier work. In this context, climate scientists working within the IPCC have adopted a lexicon to communicate confidence in their findings, ranging from "very high", "high", "medium", "low" and "very low" confidence. In fact, there are also statistical methods to gain insight in uncertainties in model predictions due to model assumptions (i.e. model structural error). Examples are comparing model results with independent observations or a systematic intercomparison of predictions from multiple models. In the latter case, Bayesian model averaging techniques can be used, in which each model considered gets an assigned prior probability of being the 'true' model. This approach works well with statistical (regression) models, but extension to physically-based models is cumbersome. An alternative is the use of state-space models in which structural errors are represent as (additive) noise terms. In this presentation, we focus on approaches that are relevant at the science - policy interface, including multiple scientific disciplines and policy makers with different subject areas. Approaches to communicate uncertainties in results of observations or model predictions are discussed, distinguishing results that include probabilistic measures of uncertainty and more intrinsic uncertainties. Examples concentrate on uncertainties in nitrogen (N) related environmental issues, including: • Spatio-temporal trends in atmospheric N deposition, in view of the policy question whether there is a declining or increasing trend. • Carbon response to N inputs to terrestrial ecosystems, based on meta-analysis of N addition experiments and other approaches, in view of the policy relevance of N emission control. • Calculated spatial variations in the emissions of nitrous-oxide and ammonia, in view of the need of emission policies at different spatial scales. • Calculated N emissions and losses by model intercomparisons, in view of the policy need to apply no-regret decisions with respect to the control of those emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrugt, Jasper A; Robinson, Bruce A; Ter Braak, Cajo J F
In recent years, a strong debate has emerged in the hydrologic literature regarding what constitutes an appropriate framework for uncertainty estimation. Particularly, there is strong disagreement whether an uncertainty framework should have its roots within a proper statistical (Bayesian) context, or whether such a framework should be based on a different philosophy and implement informal measures and weaker inference to summarize parameter and predictive distributions. In this paper, we compare a formal Bayesian approach using Markov Chain Monte Carlo (MCMC) with generalized likelihood uncertainty estimation (GLUE) for assessing uncertainty in conceptual watershed modeling. Our formal Bayesian approach is implemented usingmore » the recently developed differential evolution adaptive metropolis (DREAM) MCMC scheme with a likelihood function that explicitly considers model structural, input and parameter uncertainty. Our results demonstrate that DREAM and GLUE can generate very similar estimates of total streamflow uncertainty. This suggests that formal and informal Bayesian approaches have more common ground than the hydrologic literature and ongoing debate might suggest. The main advantage of formal approaches is, however, that they attempt to disentangle the effect of forcing, parameter and model structural error on total predictive uncertainty. This is key to improving hydrologic theory and to better understand and predict the flow of water through catchments.« less
Determination of Uncertainties for the New SSME Model
NASA Technical Reports Server (NTRS)
Coleman, Hugh W.; Hawk, Clark W.
1996-01-01
This report discusses the uncertainty analysis performed in support of a new test analysis and performance prediction model for the Space Shuttle Main Engine. The new model utilizes uncertainty estimates for experimental data and for the analytical model to obtain the most plausible operating condition for the engine system. This report discusses the development of the data sets and uncertainty estimates to be used in the development of the new model. It also presents the application of uncertainty analysis to analytical models and the uncertainty analysis for the conservation of mass and energy balance relations is presented. A new methodology for the assessment of the uncertainty associated with linear regressions is presented.
Gaussian Process Regression (GPR) Representation in Predictive Model Markup Language (PMML)
Lechevalier, D.; Ak, R.; Ferguson, M.; Law, K. H.; Lee, Y.-T. T.; Rachuri, S.
2017-01-01
This paper describes Gaussian process regression (GPR) models presented in predictive model markup language (PMML). PMML is an extensible-markup-language (XML) -based standard language used to represent data-mining and predictive analytic models, as well as pre- and post-processed data. The previous PMML version, PMML 4.2, did not provide capabilities for representing probabilistic (stochastic) machine-learning algorithms that are widely used for constructing predictive models taking the associated uncertainties into consideration. The newly released PMML version 4.3, which includes the GPR model, provides new features: confidence bounds and distribution for the predictive estimations. Both features are needed to establish the foundation for uncertainty quantification analysis. Among various probabilistic machine-learning algorithms, GPR has been widely used for approximating a target function because of its capability of representing complex input and output relationships without predefining a set of basis functions, and predicting a target output with uncertainty quantification. GPR is being employed to various manufacturing data-analytics applications, which necessitates representing this model in a standardized form for easy and rapid employment. In this paper, we present a GPR model and its representation in PMML. Furthermore, we demonstrate a prototype using a real data set in the manufacturing domain. PMID:29202125
Gaussian Process Regression (GPR) Representation in Predictive Model Markup Language (PMML).
Park, J; Lechevalier, D; Ak, R; Ferguson, M; Law, K H; Lee, Y-T T; Rachuri, S
2017-01-01
This paper describes Gaussian process regression (GPR) models presented in predictive model markup language (PMML). PMML is an extensible-markup-language (XML) -based standard language used to represent data-mining and predictive analytic models, as well as pre- and post-processed data. The previous PMML version, PMML 4.2, did not provide capabilities for representing probabilistic (stochastic) machine-learning algorithms that are widely used for constructing predictive models taking the associated uncertainties into consideration. The newly released PMML version 4.3, which includes the GPR model, provides new features: confidence bounds and distribution for the predictive estimations. Both features are needed to establish the foundation for uncertainty quantification analysis. Among various probabilistic machine-learning algorithms, GPR has been widely used for approximating a target function because of its capability of representing complex input and output relationships without predefining a set of basis functions, and predicting a target output with uncertainty quantification. GPR is being employed to various manufacturing data-analytics applications, which necessitates representing this model in a standardized form for easy and rapid employment. In this paper, we present a GPR model and its representation in PMML. Furthermore, we demonstrate a prototype using a real data set in the manufacturing domain.
Seamless hydrological predictions for a monsoon driven catchment in North-East India
NASA Astrophysics Data System (ADS)
Köhn, Lisei; Bürger, Gerd; Bronstert, Axel
2016-04-01
Improving hydrological forecasting systems on different time scales is interesting and challenging with regards to humanitarian as well as scientific aspects. In meteorological research, short-, medium-, and long-term forecasts are now being merged to form a system of seamless weather and climate predictions. Coupling of these meteorological forecasts with a hydrological model leads to seamless predictions of streamflow, ranging from one day to a season. While there are big efforts made to analyse the uncertainties of probabilistic streamflow forecasts, knowledge of the single uncertainty contributions from meteorological and hydrological modeling is still limited. The overarching goal of this project is to gain knowledge in this subject by decomposing and quantifying the overall predictive uncertainty into its single factors for the entire seamless forecast horizon. Our study area is the Mahanadi River Basin in North-East India, which is prone to severe floods and droughts. Improved streamflow forecasts on different time scales would contribute to early flood warning as well as better water management operations in the agricultural sector. Because of strong inter-annual monsoon variations in this region, which are, unlike the mid-latitudes, partly predictable from long-term atmospheric-oceanic oscillations, the Mahanadi catchment represents an ideal study site. Regionalized precipitation forecasts are obtained by applying the method of expanded downscaling to the ensemble prediction systems of ECMWF and NCEP. The semi-distributed hydrological model HYPSO-RR, which was developed in the Eco-Hydrological Simulation Environment ECHSE, is set up for several sub-catchments of the Mahanadi River Basin. The model is calibrated automatically using the Dynamically Dimensioned Search algorithm, with a modified Nash-Sutcliff efficiency as objective function. Meteorological uncertainty is estimated from the existing ensemble simulations, while the hydrological uncertainty is derived from a statistical post-processor. After running the hydrological model with the precipitation forecasts and applying the hydrological post-processor, the predictive uncertainty of the streamflow forecast can be analysed. The decomposition of total uncertainty is done using a two-way analysis of variance. In this contribution we present the model set-up and the first results of our hydrological forecasts with up to a 180 days lead time, which are derived by using 15 downscaled members of the ECMWF multi-model seasonal forecast ensemble as model input.
Analyzing The Uncertainty Of Diameter Growth Model Predictions
Ronald E. McRoberts; Veronica C. Lessard; Margaret R. Holdaway
1999-01-01
The North Central Research Station of the USDA Forest Service is developing a new set of individual tree, diameter growth models to be used as a component of an annual forest inventory system. The criterion for selection of predictor variables for these models is the uncertainty in 5-, 10-, and 20-year diameter growth predictions estimated using Monte Carlo simulations...
Model and parametric uncertainty in source-based kinematic models of earthquake ground motion
Hartzell, Stephen; Frankel, Arthur; Liu, Pengcheng; Zeng, Yuehua; Rahman, Shariftur
2011-01-01
Four independent ground-motion simulation codes are used to model the strong ground motion for three earthquakes: 1994 Mw 6.7 Northridge, 1989 Mw 6.9 Loma Prieta, and 1999 Mw 7.5 Izmit. These 12 sets of synthetics are used to make estimates of the variability in ground-motion predictions. In addition, ground-motion predictions over a grid of sites are used to estimate parametric uncertainty for changes in rupture velocity. We find that the combined model uncertainty and random variability of the simulations is in the same range as the variability of regional empirical ground-motion data sets. The majority of the standard deviations lie between 0.5 and 0.7 natural-log units for response spectra and 0.5 and 0.8 for Fourier spectra. The estimate of model epistemic uncertainty, based on the different model predictions, lies between 0.2 and 0.4, which is about one-half of the estimates for the standard deviation of the combined model uncertainty and random variability. Parametric uncertainty, based on variation of just the average rupture velocity, is shown to be consistent in amplitude with previous estimates, showing percentage changes in ground motion from 50% to 300% when rupture velocity changes from 2.5 to 2.9 km/s. In addition, there is some evidence that mean biases can be reduced by averaging ground-motion estimates from different methods.
Olondo, C; Legarda, F; Herranz, M; Idoeta, R
2017-04-01
This paper shows the procedure performed to validate the migration equation and the migration parameters' values presented in a previous paper (Legarda et al., 2011) regarding the migration of 137 Cs in Spanish mainland soils. In this paper, this model validation has been carried out checking experimentally obtained activity concentration values against those predicted by the model. This experimental data come from the measured vertical activity profiles of 8 new sampling points which are located in northern Spain. Before testing predicted values of the model, the uncertainty of those values has been assessed with the appropriate uncertainty analysis. Once establishing the uncertainty of the model, both activity concentration values, experimental versus model predicted ones, have been compared. Model validation has been performed analyzing its accuracy, studying it as a whole and also at different depth intervals. As a result, this model has been validated as a tool to predict 137 Cs behaviour in a Mediterranean environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Flores-Alsina, Xavier; Rodriguez-Roda, Ignasi; Sin, Gürkan; Gernaey, Krist V
2009-01-01
The objective of this paper is to perform an uncertainty and sensitivity analysis of the predictions of the Benchmark Simulation Model (BSM) No. 1, when comparing four activated sludge control strategies. The Monte Carlo simulation technique is used to evaluate the uncertainty in the BSM1 predictions, considering the ASM1 bio-kinetic parameters and influent fractions as input uncertainties while the Effluent Quality Index (EQI) and the Operating Cost Index (OCI) are focused on as model outputs. The resulting Monte Carlo simulations are presented using descriptive statistics indicating the degree of uncertainty in the predicted EQI and OCI. Next, the Standard Regression Coefficients (SRC) method is used for sensitivity analysis to identify which input parameters influence the uncertainty in the EQI predictions the most. The results show that control strategies including an ammonium (S(NH)) controller reduce uncertainty in both overall pollution removal and effluent total Kjeldahl nitrogen. Also, control strategies with an external carbon source reduce the effluent nitrate (S(NO)) uncertainty increasing both their economical cost and variability as a trade-off. Finally, the maximum specific autotrophic growth rate (micro(A)) causes most of the variance in the effluent for all the evaluated control strategies. The influence of denitrification related parameters, e.g. eta(g) (anoxic growth rate correction factor) and eta(h) (anoxic hydrolysis rate correction factor), becomes less important when a S(NO) controller manipulating an external carbon source addition is implemented.
Chemical kinetic model uncertainty minimization through laminar flame speed measurements
Park, Okjoo; Veloo, Peter S.; Sheen, David A.; ...
2016-07-25
Laminar flame speed measurements were carried for mixture of air with eight C 3-4 hydrocarbons (propene, propane, 1,3-butadiene, 1-butene, 2-butene, iso-butene, n-butane, and iso-butane) at the room temperature and ambient pressure. Along with C 1-2 hydrocarbon data reported in a recent study, the entire dataset was used to demonstrate how laminar flame speed data can be utilized to explore and minimize the uncertainties in a reaction model for foundation fuels. The USC Mech II kinetic model was chosen as a case study. The method of uncertainty minimization using polynomial chaos expansions (MUM-PCE) (D.A. Sheen and H. Wang, Combust. Flame 2011,more » 158, 2358–2374) was employed to constrain the model uncertainty for laminar flame speed predictions. Results demonstrate that a reaction model constrained only by the laminar flame speed values of methane/air flames notably reduces the uncertainty in the predictions of the laminar flame speeds of C 3 and C 4 alkanes, because the key chemical pathways of all of these flames are similar to each other. The uncertainty in model predictions for flames of unsaturated C 3-4 hydrocarbons remain significant without considering fuel specific laminar flames speeds in the constraining target data set, because the secondary rate controlling reaction steps are different from those in the saturated alkanes. It is shown that the constraints provided by the laminar flame speeds of the foundation fuels could reduce notably the uncertainties in the predictions of laminar flame speeds of C 4 alcohol/air mixtures. Furthermore, it is demonstrated that an accurate prediction of the laminar flame speed of a particular C 4 alcohol/air mixture is better achieved through measurements for key molecular intermediates formed during the pyrolysis and oxidation of the parent fuel.« less
Chemical kinetic model uncertainty minimization through laminar flame speed measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Okjoo; Veloo, Peter S.; Sheen, David A.
Laminar flame speed measurements were carried for mixture of air with eight C 3-4 hydrocarbons (propene, propane, 1,3-butadiene, 1-butene, 2-butene, iso-butene, n-butane, and iso-butane) at the room temperature and ambient pressure. Along with C 1-2 hydrocarbon data reported in a recent study, the entire dataset was used to demonstrate how laminar flame speed data can be utilized to explore and minimize the uncertainties in a reaction model for foundation fuels. The USC Mech II kinetic model was chosen as a case study. The method of uncertainty minimization using polynomial chaos expansions (MUM-PCE) (D.A. Sheen and H. Wang, Combust. Flame 2011,more » 158, 2358–2374) was employed to constrain the model uncertainty for laminar flame speed predictions. Results demonstrate that a reaction model constrained only by the laminar flame speed values of methane/air flames notably reduces the uncertainty in the predictions of the laminar flame speeds of C 3 and C 4 alkanes, because the key chemical pathways of all of these flames are similar to each other. The uncertainty in model predictions for flames of unsaturated C 3-4 hydrocarbons remain significant without considering fuel specific laminar flames speeds in the constraining target data set, because the secondary rate controlling reaction steps are different from those in the saturated alkanes. It is shown that the constraints provided by the laminar flame speeds of the foundation fuels could reduce notably the uncertainties in the predictions of laminar flame speeds of C 4 alcohol/air mixtures. Furthermore, it is demonstrated that an accurate prediction of the laminar flame speed of a particular C 4 alcohol/air mixture is better achieved through measurements for key molecular intermediates formed during the pyrolysis and oxidation of the parent fuel.« less
Application of a baseflow filter for evaluating model structure suitability of the IHACRES CMD
NASA Astrophysics Data System (ADS)
Kim, H. S.
2015-02-01
The main objective of this study was to assess the predictive uncertainty from the rainfall-runoff model structure coupling a conceptual module (non-linear module) with a metric transfer function module (linear module). The methodology was primarily based on the comparison between the outputs of the rainfall-runoff model and those from an alternative model approach. An alternative model approach was used to minimise uncertainties arising from data and the model structure. A baseflow filter was adopted to better understand deficiencies in the forms of the rainfall-runoff model by avoiding the uncertainties related to data and the model structure. The predictive uncertainty from the model structure was investigated for representative groups of catchments having similar hydrological response characteristics in the upper Murrumbidgee Catchment. In the assessment of model structure suitability, the consistency (or variability) of catchment response over time and space in model performance and parameter values has been investigated to detect problems related to the temporal and spatial variability of the model accuracy. The predictive error caused by model uncertainty was evaluated through analysis of the variability of the model performance and parameters. A graphical comparison of model residuals, effective rainfall estimates and hydrographs was used to determine a model's ability related to systematic model deviation between simulated and observed behaviours and general behavioural differences in the timing and magnitude of peak flows. The model's predictability was very sensitive to catchment response characteristics. The linear module performs reasonably well in the wetter catchments but has considerable difficulties when applied to the drier catchments where a hydrologic response is dominated by quick flow. The non-linear module has a potential limitation in its capacity to capture non-linear processes for converting observed rainfall into effective rainfall in both the wetter and drier catchments. The comparative study based on a better quantification of the accuracy and precision of hydrological modelling predictions yields a better understanding for the potential improvement of model deficiencies.
NASA Astrophysics Data System (ADS)
Blum, David Arthur
Algae biodiesel is the sole sustainable and abundant transportation fuel source that can replace petrol diesel use; however, high competition and economic uncertainties exist, influencing independent venture capital decision making. Technology, market, management, and government action uncertainties influence competition and economic uncertainties in the venture capital industry. The purpose of this qualitative case study was to identify the best practice skills at IVC firms to predict uncertainty between early and late funding stages. The basis of the study was real options theory, a framework used to evaluate and understand the economic and competition uncertainties inherent in natural resource investment and energy derived from plant-based oils. Data were collected from interviews of 24 venture capital partners based in the United States who invest in algae and other renewable energy solutions. Data were analyzed by coding and theme development interwoven with the conceptual framework. Eight themes emerged: (a) expected returns model, (b) due diligence, (c) invest in specific sectors, (d) reduced uncertainty-late stage, (e) coopetition, (f) portfolio firm relationships, (g) differentiation strategy, and (h) modeling uncertainty and best practice. The most noteworthy finding was that predicting uncertainty at the early stage was impractical; at the expansion and late funding stages, however, predicting uncertainty was possible. The implications of these findings will affect social change by providing independent venture capitalists with best practice skills to increase successful exits, lessen uncertainty, and encourage increased funding of renewable energy firms, contributing to cleaner and healthier communities throughout the United States..
Measures of GCM Performance as Functions of Model Parameters Affecting Clouds and Radiation
NASA Astrophysics Data System (ADS)
Jackson, C.; Mu, Q.; Sen, M.; Stoffa, P.
2002-05-01
This abstract is one of three related presentations at this meeting dealing with several issues surrounding optimal parameter and uncertainty estimation of model predictions of climate. Uncertainty in model predictions of climate depends in part on the uncertainty produced by model approximations or parameterizations of unresolved physics. Evaluating these uncertainties is computationally expensive because one needs to evaluate how arbitrary choices for any given combination of model parameters affects model performance. Because the computational effort grows exponentially with the number of parameters being investigated, it is important to choose parameters carefully. Evaluating whether a parameter is worth investigating depends on two considerations: 1) does reasonable choices of parameter values produce a large range in model response relative to observational uncertainty? and 2) does the model response depend non-linearly on various combinations of model parameters? We have decided to narrow our attention to selecting parameters that affect clouds and radiation, as it is likely that these parameters will dominate uncertainties in model predictions of future climate. We present preliminary results of ~20 to 30 AMIPII style climate model integrations using NCAR's CCM3.10 that show model performance as functions of individual parameters controlling 1) critical relative humidity for cloud formation (RHMIN), and 2) boundary layer critical Richardson number (RICR). We also explore various definitions of model performance that include some or all observational data sources (surface air temperature and pressure, meridional and zonal winds, clouds, long and short-wave cloud forcings, etc...) and evaluate in a few select cases whether the model's response depends non-linearly on the parameter values we have selected.
NASA Astrophysics Data System (ADS)
Zahmatkesh, Zahra; Karamouz, Mohammad; Nazif, Sara
2015-09-01
Simulation of rainfall-runoff process in urban areas is of great importance considering the consequences and damages of extreme runoff events and floods. The first issue in flood hazard analysis is rainfall simulation. Large scale climate signals have been proved to be effective in rainfall simulation and prediction. In this study, an integrated scheme is developed for rainfall-runoff modeling considering different sources of uncertainty. This scheme includes three main steps of rainfall forecasting, rainfall-runoff simulation and future runoff prediction. In the first step, data driven models are developed and used to forecast rainfall using large scale climate signals as rainfall predictors. Due to high effect of different sources of uncertainty on the output of hydrologic models, in the second step uncertainty associated with input data, model parameters and model structure is incorporated in rainfall-runoff modeling and simulation. Three rainfall-runoff simulation models are developed for consideration of model conceptual (structural) uncertainty in real time runoff forecasting. To analyze the uncertainty of the model structure, streamflows generated by alternative rainfall-runoff models are combined, through developing a weighting method based on K-means clustering. Model parameters and input uncertainty are investigated using an adaptive Markov Chain Monte Carlo method. Finally, calibrated rainfall-runoff models are driven using the forecasted rainfall to predict future runoff for the watershed. The proposed scheme is employed in the case study of the Bronx River watershed, New York City. Results of uncertainty analysis of rainfall-runoff modeling reveal that simultaneous estimation of model parameters and input uncertainty significantly changes the probability distribution of the model parameters. It is also observed that by combining the outputs of the hydrological models using the proposed clustering scheme, the accuracy of runoff simulation in the watershed is remarkably improved up to 50% in comparison to the simulations by the individual models. Results indicate that the developed methodology not only provides reliable tools for rainfall and runoff modeling, but also adequate time for incorporating required mitigation measures in dealing with potentially extreme runoff events and flood hazard. Results of this study can be used in identification of the main factors affecting flood hazard analysis.
NASA Technical Reports Server (NTRS)
Sankararaman, Shankar; Goebel, Kai
2013-01-01
This paper investigates the use of the inverse first-order reliability method (inverse- FORM) to quantify the uncertainty in the remaining useful life (RUL) of aerospace components. The prediction of remaining useful life is an integral part of system health prognosis, and directly helps in online health monitoring and decision-making. However, the prediction of remaining useful life is affected by several sources of uncertainty, and therefore it is necessary to quantify the uncertainty in the remaining useful life prediction. While system parameter uncertainty and physical variability can be easily included in inverse-FORM, this paper extends the methodology to include: (1) future loading uncertainty, (2) process noise; and (3) uncertainty in the state estimate. The inverse-FORM method has been used in this paper to (1) quickly obtain probability bounds on the remaining useful life prediction; and (2) calculate the entire probability distribution of remaining useful life prediction, and the results are verified against Monte Carlo sampling. The proposed methodology is illustrated using a numerical example.
Predictions of space radiation fatality risk for exploration missions
NASA Astrophysics Data System (ADS)
Cucinotta, Francis A.; To, Khiet; Cacao, Eliedonna
2017-05-01
In this paper we describe revisions to the NASA Space Cancer Risk (NSCR) model focusing on updates to probability distribution functions (PDF) representing the uncertainties in the radiation quality factor (QF) model parameters and the dose and dose-rate reduction effectiveness factor (DDREF). We integrate recent heavy ion data on liver, colorectal, intestinal, lung, and Harderian gland tumors with other data from fission neutron experiments into the model analysis. In an earlier work we introduced distinct QFs for leukemia and solid cancer risk predictions, and here we consider liver cancer risks separately because of the higher RBE's reported in mouse experiments compared to other tumors types, and distinct risk factors for liver cancer for astronauts compared to the U.S. population. The revised model is used to make predictions of fatal cancer and circulatory disease risks for 1-year deep space and International Space Station (ISS) missions, and a 940 day Mars mission. We analyzed the contribution of the various model parameter uncertainties to the overall uncertainty, which shows that the uncertainties in relative biological effectiveness (RBE) factors at high LET due to statistical uncertainties and differences across tissue types and mouse strains are the dominant uncertainty. NASA's exposure limits are approached or exceeded for each mission scenario considered. Two main conclusions are made: 1) Reducing the current estimate of about a 3-fold uncertainty to a 2-fold or lower uncertainty will require much more expansive animal carcinogenesis studies in order to reduce statistical uncertainties and understand tissue, sex and genetic variations. 2) Alternative model assumptions such as non-targeted effects, increased tumor lethality and decreased latency at high LET, and non-cancer mortality risks from circulatory diseases could significantly increase risk estimates to several times higher than the NASA limits.
NASA Technical Reports Server (NTRS)
Groves, Curtis Edward
2014-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
NASA Technical Reports Server (NTRS)
Groves, Curtis Edward
2014-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System spacecraft system.Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
Aeroservoelastic Model Validation and Test Data Analysis of the F/A-18 Active Aeroelastic Wing
NASA Technical Reports Server (NTRS)
Brenner, Martin J.; Prazenica, Richard J.
2003-01-01
Model validation and flight test data analysis require careful consideration of the effects of uncertainty, noise, and nonlinearity. Uncertainty prevails in the data analysis techniques and results in a composite model uncertainty from unmodeled dynamics, assumptions and mechanics of the estimation procedures, noise, and nonlinearity. A fundamental requirement for reliable and robust model development is an attempt to account for each of these sources of error, in particular, for model validation, robust stability prediction, and flight control system development. This paper is concerned with data processing procedures for uncertainty reduction in model validation for stability estimation and nonlinear identification. F/A-18 Active Aeroelastic Wing (AAW) aircraft data is used to demonstrate signal representation effects on uncertain model development, stability estimation, and nonlinear identification. Data is decomposed using adaptive orthonormal best-basis and wavelet-basis signal decompositions for signal denoising into linear and nonlinear identification algorithms. Nonlinear identification from a wavelet-based Volterra kernel procedure is used to extract nonlinear dynamics from aeroelastic responses, and to assist model development and uncertainty reduction for model validation and stability prediction by removing a class of nonlinearity from the uncertainty.
NASA Technical Reports Server (NTRS)
Miller, David W.; Uebelhart, Scott A.; Blaurock, Carl
2004-01-01
This report summarizes work performed by the Space Systems Laboratory (SSL) for NASA Langley Research Center in the field of performance optimization for systems subject to uncertainty. The objective of the research is to develop design methods and tools to the aerospace vehicle design process which take into account lifecycle uncertainties. It recognizes that uncertainty between the predictions of integrated models and data collected from the system in its operational environment is unavoidable. Given the presence of uncertainty, the goal of this work is to develop means of identifying critical sources of uncertainty, and to combine these with the analytical tools used with integrated modeling. In this manner, system uncertainty analysis becomes part of the design process, and can motivate redesign. The specific program objectives were: 1. To incorporate uncertainty modeling, propagation and analysis into the integrated (controls, structures, payloads, disturbances, etc.) design process to derive the error bars associated with performance predictions. 2. To apply modern optimization tools to guide in the expenditure of funds in a way that most cost-effectively improves the lifecycle productivity of the system by enhancing the subsystem reliability and redundancy. The results from the second program objective are described. This report describes the work and results for the first objective: uncertainty modeling, propagation, and synthesis with integrated modeling.
Cross, Paul C.; Klaver, Robert W.; Brennan, Angela; Creel, Scott; Beckmann, Jon P.; Higgs, Megan D.; Scurlock, Brandon M.
2013-01-01
Abstract. It is increasingly common for studies of animal ecology to use model-based predictions of environmental variables as explanatory or predictor variables, even though model prediction uncertainty is typically unknown. To demonstrate the potential for misleading inferences when model predictions with error are used in place of direct measurements, we compared snow water equivalent (SWE) and snow depth as predicted by the Snow Data Assimilation System (SNODAS) to field measurements of SWE and snow depth. We examined locations on elk (Cervus canadensis) winter ranges in western Wyoming, because modeled data such as SNODAS output are often used for inferences on elk ecology. Overall, SNODAS predictions tended to overestimate field measurements, prediction uncertainty was high, and the difference between SNODAS predictions and field measurements was greater in snow shadows for both snow variables compared to non-snow shadow areas. We used a simple simulation of snow effects on the probability of an elk being killed by a predator to show that, if SNODAS prediction uncertainty was ignored, we might have mistakenly concluded that SWE was not an important factor in where elk were killed in predatory attacks during the winter. In this simulation, we were interested in the effects of snow at finer scales (2) than the resolution of SNODAS. If bias were to decrease when SNODAS predictions are averaged over coarser scales, SNODAS would be applicable to population-level ecology studies. In our study, however, averaging predictions over moderate to broad spatial scales (9–2200 km2) did not reduce the differences between SNODAS predictions and field measurements. This study highlights the need to carefully evaluate two issues when using model output as an explanatory variable in subsequent analysis: (1) the model’s resolution relative to the scale of the ecological question of interest and (2) the implications of prediction uncertainty on inferences when using model predictions as explanatory or predictor variables.
Developing an Online Framework for Publication of Uncertainty Information in Hydrological Modeling
NASA Astrophysics Data System (ADS)
Etienne, E.; Piasecki, M.
2012-12-01
Inaccuracies in data collection and parameters estimation, and imperfection of models structures imply uncertain predictions of the hydrological models. Finding a way to communicate the uncertainty information in a model output is important in decision-making. This work aims to publish uncertainty information (computed by project partner at Penn State) associated with hydrological predictions on catchments. To this end we have developed a DB schema (derived from the CUAHSI ODM design) which is focused on storing uncertainty information and its associated metadata. The technologies used to build the system are: OGC's Sensor Observation Service (SOS) for publication, the uncertML markup language (also developed by the OGC) to describe uncertainty information, and use of the Interoperability and Automated Mapping (INTAMAP) Web Processing Service (WPS) that handles part of the statistics computations. We develop a service to provide users with the capability to exploit all the functionality of the system (based on DRUPAL). Users will be able to request and visualize uncertainty data, and also publish their data in the system.
Performance assessment of a Bayesian Forecasting System (BFS) for real-time flood forecasting
NASA Astrophysics Data System (ADS)
Biondi, D.; De Luca, D. L.
2013-02-01
SummaryThe paper evaluates, for a number of flood events, the performance of a Bayesian Forecasting System (BFS), with the aim of evaluating total uncertainty in real-time flood forecasting. The predictive uncertainty of future streamflow is estimated through the Bayesian integration of two separate processors. The former evaluates the propagation of input uncertainty on simulated river discharge, the latter computes the hydrological uncertainty of actual river discharge associated with all other possible sources of error. A stochastic model and a distributed rainfall-runoff model were assumed, respectively, for rainfall and hydrological response simulations. A case study was carried out for a small basin in the Calabria region (southern Italy). The performance assessment of the BFS was performed with adequate verification tools suited for probabilistic forecasts of continuous variables such as streamflow. Graphical tools and scalar metrics were used to evaluate several attributes of the forecast quality of the entire time-varying predictive distributions: calibration, sharpness, accuracy, and continuous ranked probability score (CRPS). Besides the overall system, which incorporates both sources of uncertainty, other hypotheses resulting from the BFS properties were examined, corresponding to (i) a perfect hydrological model; (ii) a non-informative rainfall forecast for predicting streamflow; and (iii) a perfect input forecast. The results emphasize the importance of using different diagnostic approaches to perform comprehensive analyses of predictive distributions, to arrive at a multifaceted view of the attributes of the prediction. For the case study, the selected criteria revealed the interaction of the different sources of error, in particular the crucial role of the hydrological uncertainty processor when compensating, at the cost of wider forecast intervals, for the unreliable and biased predictive distribution resulting from the Precipitation Uncertainty Processor.
NASA Astrophysics Data System (ADS)
Khademian, Amir; Abdollahipour, Hamed; Bagherpour, Raheb; Faramarzi, Lohrasb
2017-10-01
In addition to the numerous planning and executive challenges, underground excavation in urban areas is always followed by certain destructive effects especially on the ground surface; ground settlement is the most important of these effects for which estimation there exist different empirical, analytical and numerical methods. Since geotechnical models are associated with considerable model uncertainty, this study characterized the model uncertainty of settlement estimation models through a systematic comparison between model predictions and past performance data derived from instrumentation. To do so, the amount of surface settlement induced by excavation of the Qom subway tunnel was estimated via empirical (Peck), analytical (Loganathan and Poulos) and numerical (FDM) methods; the resulting maximum settlement value of each model were 1.86, 2.02 and 1.52 cm, respectively. The comparison of these predicted amounts with the actual data from instrumentation was employed to specify the uncertainty of each model. The numerical model outcomes, with a relative error of 3.8%, best matched the reality and the analytical method, with a relative error of 27.8%, yielded the highest level of model uncertainty.
Opening new institutional spaces for grappling with uncertainty: A constructivist perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, Ronlyn, E-mail: Ronlyn.Duncan@lincoln.ac.nz
In the context of an increasing reliance on predictive computer simulation models to calculate potential project impacts, it has become common practice in impact assessment (IA) to call on proponents to disclose uncertainties in assumptions and conclusions assembled in support of a development project. Understandably, it is assumed that such disclosures lead to greater scrutiny and better policy decisions. This paper questions this assumption. Drawing on constructivist theories of knowledge and an analysis of the role of narratives in managing uncertainty, I argue that the disclosure of uncertainty can obscure as much as it reveals about the impacts of amore » development project. It is proposed that the opening up of institutional spaces that can facilitate the negotiation and deliberation of foundational assumptions and parameters that feed into predictive models could engender greater legitimacy and credibility for IA outcomes. - Highlights: Black-Right-Pointing-Pointer A reliance on supposedly objective disclosure is unreliable in the predictive model context in which IA is now embedded. Black-Right-Pointing-Pointer A reliance on disclosure runs the risk of reductionism and leaves unexamined the social-interactive aspects of uncertainty. Black-Right-Pointing-Pointer Opening new institutional spaces could facilitate deliberation on foundational predictive model assumptions.« less
NASA Astrophysics Data System (ADS)
Hosseiny, S. M. H.; Zarzar, C.; Gomez, M.; Siddique, R.; Smith, V.; Mejia, A.; Demir, I.
2016-12-01
The National Water Model (NWM) provides a platform for operationalize nationwide flood inundation forecasting and mapping. The ability to model flood inundation on a national scale will provide invaluable information to decision makers and local emergency officials. Often, forecast products use deterministic model output to provide a visual representation of a single inundation scenario, which is subject to uncertainty from various sources. While this provides a straightforward representation of the potential inundation, the inherent uncertainty associated with the model output should be considered to optimize this tool for decision making support. The goal of this study is to produce ensembles of future flood inundation conditions (i.e. extent, depth, and velocity) to spatially quantify and visually assess uncertainties associated with the predicted flood inundation maps. The setting for this study is located in a highly urbanized watershed along the Darby Creek in Pennsylvania. A forecasting framework coupling the NWM with multiple hydraulic models was developed to produce a suite ensembles of future flood inundation predictions. Time lagged ensembles from the NWM short range forecasts were used to account for uncertainty associated with the hydrologic forecasts. The forecasts from the NWM were input to iRIC and HEC-RAS two-dimensional software packages, from which water extent, depth, and flow velocity were output. Quantifying the agreement between output ensembles for each forecast grid provided the uncertainty metrics for predicted flood water inundation extent, depth, and flow velocity. For visualization, a series of flood maps that display flood extent, water depth, and flow velocity along with the underlying uncertainty associated with each of the forecasted variables were produced. The results from this study demonstrate the potential to incorporate and visualize model uncertainties in flood inundation maps in order to identify the high flood risk zones.
NASA Astrophysics Data System (ADS)
He, M.; Hogue, T. S.; Franz, K.; Margulis, S. A.; Vrugt, J. A.
2009-12-01
The National Weather Service (NWS), the agency responsible for short- and long-term streamflow predictions across the nation, primarily applies the SNOW17 model for operational forecasting of snow accumulation and melt. The SNOW17-forecasted snowmelt serves as an input to a rainfall-runoff model for streamflow forecasts in snow-dominated areas. The accuracy of streamflow predictions in these areas largely relies on the accuracy of snowmelt. However, no direct snowmelt measurements are available to validate the SNOW17 predictions. Instead, indirect measurements such as snow water equivalent (SWE) measurements or discharge are typically used to calibrate SNOW17 parameters. In addition, the forecast practice is inherently deterministic, lacking tools to systematically address forecasting uncertainties (e.g., uncertainties in parameters, forcing, SWE and discharge observations, etc.). The current research presents an Integrated Uncertainty analysis and Ensemble-based data Assimilation (IUEA) framework to improve predictions of snowmelt and discharge while simultaneously providing meaningful estimates of the associated uncertainty. The IUEA approach uses the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) to simultaneously estimate uncertainties in model parameters, forcing, and observations. The robustness and usefulness of the IUEA-SNOW17 framework is evaluated for snow-dominated watersheds in the northern Sierra Mountains, using the coupled IUEA-SNOW17 and an operational soil moisture accounting model (SAC-SMA). Preliminary results are promising and indicate successful performance of the coupled IUEA-SNOW17 framework. Implementation of the SNOW17 with the IUEA is straightforward and requires no major modification to the SNOW17 model structure. The IUEA-SNOW17 framework is intended to be modular and transferable and should assist the NWS in advancing the current forecasting system and reinforcing current operational forecasting skill.
Jennings, Simon; Collingridge, Kate
2015-01-01
Existing estimates of fish and consumer biomass in the world's oceans are disparate. This creates uncertainty about the roles of fish and other consumers in biogeochemical cycles and ecosystem processes, the extent of human and environmental impacts and fishery potential. We develop and use a size-based macroecological model to assess the effects of parameter uncertainty on predicted consumer biomass, production and distribution. Resulting uncertainty is large (e.g. median global biomass 4.9 billion tonnes for consumers weighing 1 g to 1000 kg; 50% uncertainty intervals of 2 to 10.4 billion tonnes; 90% uncertainty intervals of 0.3 to 26.1 billion tonnes) and driven primarily by uncertainty in trophic transfer efficiency and its relationship with predator-prey body mass ratios. Even the upper uncertainty intervals for global predictions of consumer biomass demonstrate the remarkable scarcity of marine consumers, with less than one part in 30 million by volume of the global oceans comprising tissue of macroscopic animals. Thus the apparently high densities of marine life seen in surface and coastal waters and frequently visited abundance hotspots will likely give many in society a false impression of the abundance of marine animals. Unexploited baseline biomass predictions from the simple macroecological model were used to calibrate a more complex size- and trait-based model to estimate fisheries yield and impacts. Yields are highly dependent on baseline biomass and fisheries selectivity. Predicted global sustainable fisheries yield increases ≈4 fold when smaller individuals (< 20 cm from species of maximum mass < 1 kg) are targeted in all oceans, but the predicted yields would rarely be accessible in practice and this fishing strategy leads to the collapse of larger species if fishing mortality rates on different size classes cannot be decoupled. Our analyses show that models with minimal parameter demands that are based on a few established ecological principles can support equitable analysis and comparison of diverse ecosystems. The analyses provide insights into the effects of parameter uncertainty on global biomass and production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented. Consequently, our simple models become increasingly less useful than more complex alternatives when addressing questions about food web structure and function, biodiversity, resilience and human impacts at smaller scales and for areas closer to coasts.
Use of paired simple and complex models to reduce predictive bias and quantify uncertainty
NASA Astrophysics Data System (ADS)
Doherty, John; Christensen, Steen
2011-12-01
Modern environmental management and decision-making is based on the use of increasingly complex numerical models. Such models have the advantage of allowing representation of complex processes and heterogeneous system property distributions inasmuch as these are understood at any particular study site. The latter are often represented stochastically, this reflecting knowledge of the character of system heterogeneity at the same time as it reflects a lack of knowledge of its spatial details. Unfortunately, however, complex models are often difficult to calibrate because of their long run times and sometimes questionable numerical stability. Analysis of predictive uncertainty is also a difficult undertaking when using models such as these. Such analysis must reflect a lack of knowledge of spatial hydraulic property details. At the same time, it must be subject to constraints on the spatial variability of these details born of the necessity for model outputs to replicate observations of historical system behavior. In contrast, the rapid run times and general numerical reliability of simple models often promulgates good calibration and ready implementation of sophisticated methods of calibration-constrained uncertainty analysis. Unfortunately, however, many system and process details on which uncertainty may depend are, by design, omitted from simple models. This can lead to underestimation of the uncertainty associated with many predictions of management interest. The present paper proposes a methodology that attempts to overcome the problems associated with complex models on the one hand and simple models on the other hand, while allowing access to the benefits each of them offers. It provides a theoretical analysis of the simplification process from a subspace point of view, this yielding insights into the costs of model simplification, and into how some of these costs may be reduced. It then describes a methodology for paired model usage through which predictive bias of a simplified model can be detected and corrected, and postcalibration predictive uncertainty can be quantified. The methodology is demonstrated using a synthetic example based on groundwater modeling environments commonly encountered in northern Europe and North America.
Wildhaber, Mark L.; Wikle, Christopher K.; Anderson, Christopher J.; Franz, Kristie J.; Moran, Edward H.; Dey, Rima; Mader, Helmut; Kraml, Julia
2012-01-01
Climate change operates over a broad range of spatial and temporal scales. Understanding its effects on ecosystems requires multi-scale models. For understanding effects on fish populations of riverine ecosystems, climate predicted by coarse-resolution Global Climate Models must be downscaled to Regional Climate Models to watersheds to river hydrology to population response. An additional challenge is quantifying sources of uncertainty given the highly nonlinear nature of interactions between climate variables and community level processes. We present a modeling approach for understanding and accomodating uncertainty by applying multi-scale climate models and a hierarchical Bayesian modeling framework to Midwest fish population dynamics and by linking models for system components together by formal rules of probability. The proposed hierarchical modeling approach will account for sources of uncertainty in forecasts of community or population response. The goal is to evaluate the potential distributional changes in an ecological system, given distributional changes implied by a series of linked climate and system models under various emissions/use scenarios. This understanding will aid evaluation of management options for coping with global climate change. In our initial analyses, we found that predicted pallid sturgeon population responses were dependent on the climate scenario considered.
NASA Astrophysics Data System (ADS)
Harken, B.; Geiges, A.; Rubin, Y.
2013-12-01
There are several stages in any hydrological modeling campaign, including: formulation and analysis of a priori information, data acquisition through field campaigns, inverse modeling, and forward modeling and prediction of some environmental performance metric (EPM). The EPM being predicted could be, for example, contaminant concentration, plume travel time, or aquifer recharge rate. These predictions often have significant bearing on some decision that must be made. Examples include: how to allocate limited remediation resources between multiple contaminated groundwater sites, where to place a waste repository site, and what extraction rates can be considered sustainable in an aquifer. Providing an answer to these questions depends on predictions of EPMs using forward models as well as levels of uncertainty related to these predictions. Uncertainty in model parameters, such as hydraulic conductivity, leads to uncertainty in EPM predictions. Often, field campaigns and inverse modeling efforts are planned and undertaken with reduction of parametric uncertainty as the objective. The tool of hypothesis testing allows this to be taken one step further by considering uncertainty reduction in the ultimate prediction of the EPM as the objective and gives a rational basis for weighing costs and benefits at each stage. When using the tool of statistical hypothesis testing, the EPM is cast into a binary outcome. This is formulated as null and alternative hypotheses, which can be accepted and rejected with statistical formality. When accounting for all sources of uncertainty at each stage, the level of significance of this test provides a rational basis for planning, optimization, and evaluation of the entire campaign. Case-specific information, such as consequences prediction error and site-specific costs can be used in establishing selection criteria based on what level of risk is deemed acceptable. This framework is demonstrated and discussed using various synthetic case studies. The case studies involve contaminated aquifers where a decision must be made based on prediction of when a contaminant will arrive at a given location. The EPM, in this case contaminant travel time, is cast into the hypothesis testing framework. The null hypothesis states that the contaminant plume will arrive at the specified location before a critical value of time passes, and the alternative hypothesis states that the plume will arrive after the critical time passes. Different field campaigns are analyzed based on effectiveness in reducing the probability of selecting the wrong hypothesis, which in this case corresponds to reducing uncertainty in the prediction of plume arrival time. To examine the role of inverse modeling in this framework, case studies involving both Maximum Likelihood parameter estimation and Bayesian inversion are used.
Impacts of Process and Prediction Uncertainties on Projected Hanford Waste Glass Amount
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gervasio, Vivianaluxa; Vienna, John D.; Kim, Dong-Sang
Analyses were performed to evaluate the impacts of using the advanced glass models, constraints (Vienna et al. 2016), and uncertainty descriptions on projected Hanford glass mass. The maximum allowable WOL was estimated for waste compositions while simultaneously satisfying all applicable glass property and composition constraints with sufficient confidence. Different components of prediction and composition/process uncertainties were systematically included in the calculations to evaluate their impacts on glass mass. The analyses estimated the production of 23,360 MT of IHLW glass when no uncertainties were taken into accound. Accounting for prediction and composition/process uncertainties resulted in 5.01 relative percent increase in estimatedmore » glass mass 24,531 MT. Roughly equal impacts were found for prediction uncertainties (2.58 RPD) and composition/process uncertainties (2.43 RPD). ILAW mass was predicted to be 282,350 MT without uncertainty and with weaste loading “line” rules in place. Accounting for prediction and composition/process uncertainties resulted in only 0.08 relative percent increase in estimated glass mass of 282,562 MTG. Without application of line rules the glass mass decreases by 10.6 relative percent (252,490 MT) for the case with no uncertainties. Addition of prediction uncertainties increases glass mass by 1.32 relative percent and the addition of composition/process uncertainties increase glass mass by an additional 7.73 relative percent (9.06 relative percent increase combined). The glass mass estimate without line rules (275,359 MT) was 2.55 relative percent lower than that with the line rules (282,562 MT), after accounting for all applicable uncertainties.« less
Methodology for Uncertainty Analysis of Dynamic Computational Toxicology Models
The task of quantifying the uncertainty in both parameter estimates and model predictions has become more important with the increased use of dynamic computational toxicology models by the EPA. Dynamic toxicological models include physiologically-based pharmacokinetic (PBPK) mode...
NASA Astrophysics Data System (ADS)
Sun, Ruochen; Yuan, Huiling; Liu, Xiaoli
2017-11-01
The heteroscedasticity treatment in residual error models directly impacts the model calibration and prediction uncertainty estimation. This study compares three methods to deal with the heteroscedasticity, including the explicit linear modeling (LM) method and nonlinear modeling (NL) method using hyperbolic tangent function, as well as the implicit Box-Cox transformation (BC). Then a combined approach (CA) combining the advantages of both LM and BC methods has been proposed. In conjunction with the first order autoregressive model and the skew exponential power (SEP) distribution, four residual error models are generated, namely LM-SEP, NL-SEP, BC-SEP and CA-SEP, and their corresponding likelihood functions are applied to the Variable Infiltration Capacity (VIC) hydrologic model over the Huaihe River basin, China. Results show that the LM-SEP yields the poorest streamflow predictions with the widest uncertainty band and unrealistic negative flows. The NL and BC methods can better deal with the heteroscedasticity and hence their corresponding predictive performances are improved, yet the negative flows cannot be avoided. The CA-SEP produces the most accurate predictions with the highest reliability and effectively avoids the negative flows, because the CA approach is capable of addressing the complicated heteroscedasticity over the study basin.
Wei Wu; James Clark; James Vose
2010-01-01
Hierarchical Bayesian (HB) modeling allows for multiple sources of uncertainty by factoring complex relationships into conditional distributions that can be used to draw inference and make predictions. We applied an HB model to estimate the parameters and state variables of a parsimonious hydrological model â GR4J â by coherently assimilating the uncertainties from the...
Inventory Uncertainty Quantification using TENDL Covariance Data in Fispact-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eastwood, J.W.; Morgan, J.G.; Sublet, J.-Ch., E-mail: jean-christophe.sublet@ccfe.ac.uk
2015-01-15
The new inventory code Fispact-II provides predictions of inventory, radiological quantities and their uncertainties using nuclear data covariance information. Central to the method is a novel fast pathways search algorithm using directed graphs. The pathways output provides (1) an aid to identifying important reactions, (2) fast estimates of uncertainties, (3) reduced models that retain important nuclides and reactions for use in the code's Monte Carlo sensitivity analysis module. Described are the methods that are being implemented for improving uncertainty predictions, quantification and propagation using the covariance data that the recent nuclear data libraries contain. In the TENDL library, above themore » upper energy of the resolved resonance range, a Monte Carlo method in which the covariance data come from uncertainties of the nuclear model calculations is used. The nuclear data files are read directly by FISPACT-II without any further intermediate processing. Variance and covariance data are processed and used by FISPACT-II to compute uncertainties in collapsed cross sections, and these are in turn used to predict uncertainties in inventories and all derived radiological data.« less
Are Subject-Specific Musculoskeletal Models Robust to the Uncertainties in Parameter Identification?
Valente, Giordano; Pitto, Lorenzo; Testi, Debora; Seth, Ajay; Delp, Scott L.; Stagni, Rita; Viceconti, Marco; Taddei, Fulvia
2014-01-01
Subject-specific musculoskeletal modeling can be applied to study musculoskeletal disorders, allowing inclusion of personalized anatomy and properties. Independent of the tools used for model creation, there are unavoidable uncertainties associated with parameter identification, whose effect on model predictions is still not fully understood. The aim of the present study was to analyze the sensitivity of subject-specific model predictions (i.e., joint angles, joint moments, muscle and joint contact forces) during walking to the uncertainties in the identification of body landmark positions, maximum muscle tension and musculotendon geometry. To this aim, we created an MRI-based musculoskeletal model of the lower limbs, defined as a 7-segment, 10-degree-of-freedom articulated linkage, actuated by 84 musculotendon units. We then performed a Monte-Carlo probabilistic analysis perturbing model parameters according to their uncertainty, and solving a typical inverse dynamics and static optimization problem using 500 models that included the different sets of perturbed variable values. Model creation and gait simulations were performed by using freely available software that we developed to standardize the process of model creation, integrate with OpenSim and create probabilistic simulations of movement. The uncertainties in input variables had a moderate effect on model predictions, as muscle and joint contact forces showed maximum standard deviation of 0.3 times body-weight and maximum range of 2.1 times body-weight. In addition, the output variables significantly correlated with few input variables (up to 7 out of 312) across the gait cycle, including the geometry definition of larger muscles and the maximum muscle tension in limited gait portions. Although we found subject-specific models not markedly sensitive to parameter identification, researchers should be aware of the model precision in relation to the intended application. In fact, force predictions could be affected by an uncertainty in the same order of magnitude of its value, although this condition has low probability to occur. PMID:25390896
Spectral optimization and uncertainty quantification in combustion modeling
NASA Astrophysics Data System (ADS)
Sheen, David Allan
Reliable simulations of reacting flow systems require a well-characterized, detailed chemical model as a foundation. Accuracy of such a model can be assured, in principle, by a multi-parameter optimization against a set of experimental data. However, the inherent uncertainties in the rate evaluations and experimental data leave a model still characterized by some finite kinetic rate parameter space. Without a careful analysis of how this uncertainty space propagates into the model's predictions, those predictions can at best be trusted only qualitatively. In this work, the Method of Uncertainty Minimization using Polynomial Chaos Expansions is proposed to quantify these uncertainties. In this method, the uncertainty in the rate parameters of the as-compiled model is quantified. Then, the model is subjected to a rigorous multi-parameter optimization, as well as a consistency-screening process. Lastly, the uncertainty of the optimized model is calculated using an inverse spectral optimization technique, and then propagated into a range of simulation conditions. An as-compiled, detailed H2/CO/C1-C4 kinetic model is combined with a set of ethylene combustion data to serve as an example. The idea that the hydrocarbon oxidation model should be understood and developed in a hierarchical fashion has been a major driving force in kinetics research for decades. How this hierarchical strategy works at a quantitative level, however, has never been addressed. In this work, we use ethylene and propane combustion as examples and explore the question of hierarchical model development quantitatively. The Method of Uncertainty Minimization using Polynomial Chaos Expansions is utilized to quantify the amount of information that a particular combustion experiment, and thereby each data set, contributes to the model. This knowledge is applied to explore the relationships among the combustion chemistry of hydrogen/carbon monoxide, ethylene, and larger alkanes. Frequently, new data will become available, and it will be desirable to know the effect that inclusion of these data has on the optimized model. Two cases are considered here. In the first, a study of H2/CO mass burning rates has recently been published, wherein the experimentally-obtained results could not be reconciled with any extant H2/CO oxidation model. It is shown in that an optimized H2/CO model can be developed that will reproduce the results of the new experimental measurements. In addition, the high precision of the new experiments provide a strong constraint on the reaction rate parameters of the chemistry model, manifested in a significant improvement in the precision of simulations. In the second case, species time histories were measured during n-heptane oxidation behind reflected shock waves. The highly precise nature of these measurements is expected to impose critical constraints on chemical kinetic models of hydrocarbon combustion. The results show that while an as-compiled, prior reaction model of n-alkane combustion can be accurate in its prediction of the detailed species profiles, the kinetic parameter uncertainty in the model remains to be too large to obtain a precise prediction of the data. Constraining the prior model against the species time histories within the measurement uncertainties led to notable improvements in the precision of model predictions against the species data as well as the global combustion properties considered. Lastly, we show that while the capability of the multispecies measurement presents a step-change in our precise knowledge of the chemical processes in hydrocarbon combustion, accurate data of global combustion properties are still necessary to predict fuel combustion.
Developing Uncertainty Models for Robust Flutter Analysis Using Ground Vibration Test Data
NASA Technical Reports Server (NTRS)
Potter, Starr; Lind, Rick; Kehoe, Michael W. (Technical Monitor)
2001-01-01
A ground vibration test can be used to obtain information about structural dynamics that is important for flutter analysis. Traditionally, this information#such as natural frequencies of modes#is used to update analytical models used to predict flutter speeds. The ground vibration test can also be used to obtain uncertainty models, such as natural frequencies and their associated variations, that can update analytical models for the purpose of predicting robust flutter speeds. Analyzing test data using the -norm, rather than the traditional 2-norm, is shown to lead to a minimum-size uncertainty description and, consequently, a least-conservative robust flutter speed. This approach is demonstrated using ground vibration test data for the Aerostructures Test Wing. Different norms are used to formulate uncertainty models and their associated robust flutter speeds to evaluate which norm is least conservative.
NASA Technical Reports Server (NTRS)
Steele, W. G.; Molder, K. J.; Hudson, S. T.; Vadasy, K. V.; Rieder, P. T.; Giel, T.
2005-01-01
NASA and the U.S. Air Force are working on a joint project to develop a new hydrogen-fueled, full-flow, staged combustion rocket engine. The initial testing and modeling work for the Integrated Powerhead Demonstrator (IPD) project is being performed by NASA Marshall and Stennis Space Centers. A key factor in the testing of this engine is the ability to predict and measure the transient fluid flow during engine start and shutdown phases of operation. A model built by NASA Marshall in the ROCket Engine Transient Simulation (ROCETS) program is used to predict transient engine fluid flows. The model is initially calibrated to data from previous tests on the Stennis E1 test stand. The model is then used to predict the next run. Data from this run can then be used to recalibrate the model providing a tool to guide the test program in incremental steps to reduce the risk to the prototype engine. In this paper, they define this type of model as a calibrated model. This paper proposes a method to estimate the uncertainty of a model calibrated to a set of experimental test data. The method is similar to that used in the calibration of experiment instrumentation. For the IPD example used in this paper, the model uncertainty is determined for both LOX and LH flow rates using previous data. The successful use of this model is then demonstrated to predict another similar test run within the uncertainty bounds. The paper summarizes the uncertainty methodology when a model is continually recalibrated with new test data. The methodology is general and can be applied to other calibrated models.
Uncertainty Estimation using Bootstrapped Kriging Predictions for Precipitation Isoscapes
NASA Astrophysics Data System (ADS)
Ma, C.; Bowen, G. J.; Vander Zanden, H.; Wunder, M.
2017-12-01
Isoscapes are spatial models representing the distribution of stable isotope values across landscapes. Isoscapes of hydrogen and oxygen in precipitation are now widely used in a diversity of fields, including geology, biology, hydrology, and atmospheric science. To generate isoscapes, geostatistical methods are typically applied to extend predictions from limited data measurements. Kriging is a popular method in isoscape modeling, but quantifying the uncertainty associated with the resulting isoscapes is challenging. Applications that use precipitation isoscapes to determine sample origin require estimation of uncertainty. Here we present a simple bootstrap method (SBM) to estimate the mean and uncertainty of the krigged isoscape and compare these results with a generalized bootstrap method (GBM) applied in previous studies. We used hydrogen isotopic data from IsoMAP to explore these two approaches for estimating uncertainty. We conducted 10 simulations for each bootstrap method and found that SBM results in more kriging predictions (9/10) compared to GBM (4/10). Prediction from SBM was closer to the original prediction generated without bootstrapping and had less variance than GBM. SBM was tested on different datasets from IsoMAP with different numbers of observation sites. We determined that predictions from the datasets with fewer than 40 observation sites using SBM were more variable than the original prediction. The approaches we used for estimating uncertainty will be compiled in an R package that is under development. We expect that these robust estimates of precipitation isoscape uncertainty can be applied in diagnosing the origin of samples ranging from various type of waters to migratory animals, food products, and humans.
NASA Astrophysics Data System (ADS)
Pun, Betty Kong-Ling
1998-12-01
Uncertainty is endemic in modeling. This thesis is a two- phase program to understand the uncertainties in urban air pollution model predictions and in field data used to validate them. Part I demonstrates how to improve atmospheric models by analyzing the uncertainties in these models and using the results to guide new experimentation endeavors. Part II presents an experiment designed to characterize atmospheric fluctuations, which have significant implications towards the model validation process. A systematic study was undertaken to investigate the effects of uncertainties in the SAPRC mechanism for gas- phase chemistry in polluted atmospheres. The uncertainties of more than 500 parameters were compiled, including reaction rate constants, product coefficients, organic composition, and initial conditions. Uncertainty propagation using the Deterministic Equivalent Modeling Method (DEMM) revealed that the uncertainties in ozone predictions can be up to 45% based on these parametric uncertainties. The key parameters found to dominate the uncertainties of the predictions include photolysis rates of NO2, O3, and formaldehyde; the rate constant for nitric acid formation; and initial amounts of NOx and VOC. Similar uncertainty analysis procedures applied to two other mechanisms used in regional air quality models led to the conclusion that in the presence of parametric uncertainties, the mechanisms cannot be discriminated. Research efforts should focus on reducing parametric uncertainties in photolysis rates, reaction rate constants, and source terms. A new tunable diode laser (TDL) infrared spectrometer was designed and constructed to measure multiple pollutants simultaneously in the same ambient air parcels. The sensitivities of the one hertz measurements were 2 ppb for ozone, 1 ppb for NO, and 0.5 ppb for NO2. Meteorological data were also collected for wind, temperature, and UV intensity. The field data showed clear correlations between ozone, NO, and NO2 in the one-second time scale. Fluctuations in pollutant concentrations were found to be extremely dependent on meteorological conditions. Deposition fluxes calculated using the Eddy Correlation technique were found to be small on concrete surfaces. These high time-resolution measurements were used to develop an understanding of the variability in atmospheric measurements, which would be useful in determining the acceptable discrepancy of model and observations. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
Parameter uncertainty analysis of a biokinetic model of caesium
Li, W. B.; Klein, W.; Blanchardon, Eric; ...
2014-04-17
Parameter uncertainties for the biokinetic model of caesium (Cs) developed by Leggett et al. were inventoried and evaluated. The methods of parameter uncertainty analysis were used to assess the uncertainties of model predictions with the assumptions of model parameter uncertainties and distributions. Furthermore, the importance of individual model parameters was assessed by means of sensitivity analysis. The calculated uncertainties of model predictions were compared with human data of Cs measured in blood and in the whole body. It was found that propagating the derived uncertainties in model parameter values reproduced the range of bioassay data observed in human subjects atmore » different times after intake. The maximum ranges, expressed as uncertainty factors (UFs) (defined as a square root of ratio between 97.5th and 2.5th percentiles) of blood clearance, whole-body retention and urinary excretion of Cs predicted at earlier time after intake were, respectively: 1.5, 1.0 and 2.5 at the first day; 1.8, 1.1 and 2.4 at Day 10 and 1.8, 2.0 and 1.8 at Day 100; for the late times (1000 d) after intake, the UFs were increased to 43, 24 and 31, respectively. The model parameters of transfer rates between kidneys and blood, muscle and blood and the rate of transfer from kidneys to urinary bladder content are most influential to the blood clearance and to the whole-body retention of Cs. For the urinary excretion, the parameters of transfer rates from urinary bladder content to urine and from kidneys to urinary bladder content impact mostly. The implication and effect on the estimated equivalent and effective doses of the larger uncertainty of 43 in whole-body retention in the later time, say, after Day 500 will be explored in a successive work in the framework of EURADOS.« less
Tyler Jon Smith
2008-01-01
In Montana and much of the Rocky Mountain West, the single most important parameter in forecasting the controls on regional water resources is snowpack. Despite the heightened importance of snowpack, few studies have considered the representation of uncertainty in coupled snowmelt/hydrologic conceptual models. Uncertainty estimation provides a direct interpretation of...
Probabilistic fatigue life prediction of metallic and composite materials
NASA Astrophysics Data System (ADS)
Xiang, Yibing
Fatigue is one of the most common failure modes for engineering structures, such as aircrafts, rotorcrafts and aviation transports. Both metallic materials and composite materials are widely used and affected by fatigue damage. Huge uncertainties arise from material properties, measurement noise, imperfect models, future anticipated loads and environmental conditions. These uncertainties are critical issues for accurate remaining useful life (RUL) prediction for engineering structures in service. Probabilistic fatigue prognosis considering various uncertainties is of great importance for structural safety. The objective of this study is to develop probabilistic fatigue life prediction models for metallic materials and composite materials. A fatigue model based on crack growth analysis and equivalent initial flaw size concept is proposed for metallic materials. Following this, the developed model is extended to include structural geometry effects (notch effect), environmental effects (corroded specimens) and manufacturing effects (shot peening effects). Due to the inhomogeneity and anisotropy, the fatigue model suitable for metallic materials cannot be directly applied to composite materials. A composite fatigue model life prediction is proposed based on a mixed-mode delamination growth model and a stiffness degradation law. After the development of deterministic fatigue models of metallic and composite materials, a general probabilistic life prediction methodology is developed. The proposed methodology combines an efficient Inverse First-Order Reliability Method (IFORM) for the uncertainty propogation in fatigue life prediction. An equivalent stresstransformation has been developed to enhance the computational efficiency under realistic random amplitude loading. A systematical reliability-based maintenance optimization framework is proposed for fatigue risk management and mitigation of engineering structures.
NASA Astrophysics Data System (ADS)
Lowman, L.; Barros, A. P.
2017-12-01
Data assimilation (DA) is the widely accepted procedure for estimating parameters within predictive models because of the adaptability and uncertainty quantification offered by Bayesian methods. DA applications in phenology modeling offer critical insights into how extreme weather or changes in climate impact the vegetation life cycle. Changes in leaf onset and senescence, root phenology, and intermittent leaf shedding imply large changes in the surface radiative, water, and carbon budgets at multiple scales. Models of leaf phenology require concurrent atmospheric and soil conditions to determine how biophysical plant properties respond to changes in temperature, light and water demand. Presently, climatological records for fraction of photosynthetically active radiation (FPAR) and leaf area index (LAI), the modelled states indicative of plant phenology, are not available. Further, DA models are typically trained on short periods of record (e.g. less than 10 years). Using limited records with a DA framework imposes non-stationarity on estimated parameters and the resulting predicted model states. This talk discusses how uncertainty introduced by the inherent non-stationarity of the modeled processes propagates through a land-surface hydrology model coupled to a predictive phenology model. How water demand is accounted for in the upscaling of DA model inputs and analysis period serves as a key source of uncertainty in the FPAR and LAI predictions. Parameters estimated from different DA effectively calibrate a plant water-use strategy within the land-surface hydrology model. For example, when extreme droughts are included in the DA period, the plants are trained to uptake water, transpire, and assimilate carbon under favorable conditions and quickly shut down at the onset of water stress.
'spup' - an R package for uncertainty propagation in spatial environmental modelling
NASA Astrophysics Data System (ADS)
Sawicka, Kasia; Heuvelink, Gerard
2016-04-01
Computer models have become a crucial tool in engineering and environmental sciences for simulating the behaviour of complex static and dynamic systems. However, while many models are deterministic, the uncertainty in their predictions needs to be estimated before they are used for decision support. Currently, advances in uncertainty propagation and assessment have been paralleled by a growing number of software tools for uncertainty analysis, but none has gained recognition for a universal applicability, including case studies with spatial models and spatial model inputs. Due to the growing popularity and applicability of the open source R programming language we undertook a project to develop an R package that facilitates uncertainty propagation analysis in spatial environmental modelling. In particular, the 'spup' package provides functions for examining the uncertainty propagation starting from input data and model parameters, via the environmental model onto model predictions. The functions include uncertainty model specification, stochastic simulation and propagation of uncertainty using Monte Carlo (MC) techniques, as well as several uncertainty visualization functions. Uncertain environmental variables are represented in the package as objects whose attribute values may be uncertain and described by probability distributions. Both numerical and categorical data types are handled. Spatial auto-correlation within an attribute and cross-correlation between attributes is also accommodated for. For uncertainty propagation the package has implemented the MC approach with efficient sampling algorithms, i.e. stratified random sampling and Latin hypercube sampling. The design includes facilitation of parallel computing to speed up MC computation. The MC realizations may be used as an input to the environmental models called from R, or externally. Selected static and interactive visualization methods that are understandable by non-experts with limited background in statistics can be used to summarize and visualize uncertainty about the measured input, model parameters and output of the uncertainty propagation. We demonstrate that the 'spup' package is an effective and easy tool to apply and can be used in multi-disciplinary research and model-based decision support.
'spup' - an R package for uncertainty propagation analysis in spatial environmental modelling
NASA Astrophysics Data System (ADS)
Sawicka, Kasia; Heuvelink, Gerard
2017-04-01
Computer models have become a crucial tool in engineering and environmental sciences for simulating the behaviour of complex static and dynamic systems. However, while many models are deterministic, the uncertainty in their predictions needs to be estimated before they are used for decision support. Currently, advances in uncertainty propagation and assessment have been paralleled by a growing number of software tools for uncertainty analysis, but none has gained recognition for a universal applicability and being able to deal with case studies with spatial models and spatial model inputs. Due to the growing popularity and applicability of the open source R programming language we undertook a project to develop an R package that facilitates uncertainty propagation analysis in spatial environmental modelling. In particular, the 'spup' package provides functions for examining the uncertainty propagation starting from input data and model parameters, via the environmental model onto model predictions. The functions include uncertainty model specification, stochastic simulation and propagation of uncertainty using Monte Carlo (MC) techniques, as well as several uncertainty visualization functions. Uncertain environmental variables are represented in the package as objects whose attribute values may be uncertain and described by probability distributions. Both numerical and categorical data types are handled. Spatial auto-correlation within an attribute and cross-correlation between attributes is also accommodated for. For uncertainty propagation the package has implemented the MC approach with efficient sampling algorithms, i.e. stratified random sampling and Latin hypercube sampling. The design includes facilitation of parallel computing to speed up MC computation. The MC realizations may be used as an input to the environmental models called from R, or externally. Selected visualization methods that are understandable by non-experts with limited background in statistics can be used to summarize and visualize uncertainty about the measured input, model parameters and output of the uncertainty propagation. We demonstrate that the 'spup' package is an effective and easy tool to apply and can be used in multi-disciplinary research and model-based decision support.
Assessing model sensitivity and uncertainty across multiple Free-Air CO2 Enrichment experiments.
NASA Astrophysics Data System (ADS)
Cowdery, E.; Dietze, M.
2015-12-01
As atmospheric levels of carbon dioxide levels continue to increase, it is critical that terrestrial ecosystem models can accurately predict ecological responses to the changing environment. Current predictions of net primary productivity (NPP) in response to elevated atmospheric CO2 concentrations are highly variable and contain a considerable amount of uncertainty. It is necessary that we understand which factors are driving this uncertainty. The Free-Air CO2 Enrichment (FACE) experiments have equipped us with a rich data source that can be used to calibrate and validate these model predictions. To identify and evaluate the assumptions causing inter-model differences we performed model sensitivity and uncertainty analysis across ambient and elevated CO2 treatments using the Data Assimilation Linked Ecosystem Carbon (DALEC) model and the Ecosystem Demography Model (ED2), two process-based models ranging from low to high complexity respectively. These modeled process responses were compared to experimental data from the Kennedy Space Center Open Top Chamber Experiment, the Nevada Desert Free Air CO2 Enrichment Facility, the Rhinelander FACE experiment, the Wyoming Prairie Heating and CO2 Enrichment Experiment, the Duke Forest Face experiment and the Oak Ridge Experiment on CO2 Enrichment. By leveraging data access proxy and data tilling services provided by the BrownDog data curation project alongside analysis modules available in the Predictive Ecosystem Analyzer (PEcAn), we produced automated, repeatable benchmarking workflows that are generalized to incorporate different sites and ecological models. Combining the observed patterns of uncertainty between the two models with results of the recent FACE-model data synthesis project (FACE-MDS) can help identify which processes need further study and additional data constraints. These findings can be used to inform future experimental design and in turn can provide informative starting point for data assimilation.
NASA Astrophysics Data System (ADS)
Bennett, J.; David, R. E.; Wang, Q.; Li, M.; Shrestha, D. L.
2016-12-01
Flood forecasting in Australia has historically relied on deterministic forecasting models run only when floods are imminent, with considerable forecaster input and interpretation. These now co-existed with a continually available 7-day streamflow forecasting service (also deterministic) aimed at operational water management applications such as environmental flow releases. The 7-day service is not optimised for flood prediction. We describe progress on developing a system for ensemble streamflow forecasting that is suitable for both flood prediction and water management applications. Precipitation uncertainty is handled through post-processing of Numerical Weather Prediction (NWP) output with a Bayesian rainfall post-processor (RPP). The RPP corrects biases, downscales NWP output, and produces reliable ensemble spread. Ensemble precipitation forecasts are used to force a semi-distributed conceptual rainfall-runoff model. Uncertainty in precipitation forecasts is insufficient to reliably describe streamflow forecast uncertainty, particularly at shorter lead-times. We characterise hydrological prediction uncertainty separately with a 4-stage error model. The error model relies on data transformation to ensure residuals are homoscedastic and symmetrically distributed. To ensure streamflow forecasts are accurate and reliable, the residuals are modelled using a mixture-Gaussian distribution with distinct parameters for the rising and falling limbs of the forecast hydrograph. In a case study of the Murray River in south-eastern Australia, we show ensemble predictions of floods generally have lower errors than deterministic forecasting methods. We also discuss some of the challenges in operationalising short-term ensemble streamflow forecasts in Australia, including meeting the needs for accurate predictions across all flow ranges and comparing forecasts generated by event and continuous hydrological models.
NASA Astrophysics Data System (ADS)
Verardo, E.; Atteia, O.; Rouvreau, L.
2015-12-01
In-situ bioremediation is a commonly used remediation technology to clean up the subsurface of petroleum-contaminated sites. Forecasting remedial performance (in terms of flux and mass reduction) is a challenge due to uncertainties associated with source properties and the uncertainties associated with contribution and efficiency of concentration reducing mechanisms. In this study, predictive uncertainty analysis of bio-remediation system efficiency is carried out with the null-space Monte Carlo (NSMC) method which combines the calibration solution-space parameters with the ensemble of null-space parameters, creating sets of calibration-constrained parameters for input to follow-on remedial efficiency. The first step in the NSMC methodology for uncertainty analysis is model calibration. The model calibration was conducted by matching simulated BTEX concentration to a total of 48 observations from historical data before implementation of treatment. Two different bio-remediation designs were then implemented in the calibrated model. The first consists in pumping/injection wells and the second in permeable barrier coupled with infiltration across slotted piping. The NSMC method was used to calculate 1000 calibration-constrained parameter sets for the two different models. Several variants of the method were implemented to investigate their effect on the efficiency of the NSMC method. The first variant implementation of the NSMC is based on a single calibrated model. In the second variant, models were calibrated from different initial parameter sets. NSMC calibration-constrained parameter sets were sampled from these different calibrated models. We demonstrate that in context of nonlinear model, second variant avoids to underestimate parameter uncertainty which may lead to a poor quantification of predictive uncertainty. Application of the proposed approach to manage bioremediation of groundwater in a real site shows that it is effective to provide support in management of the in-situ bioremediation systems. Moreover, this study demonstrates that the NSMC method provides a computationally efficient and practical methodology of utilizing model predictive uncertainty methods in environmental management.
Frontal Theta Reflects Uncertainty and Unexpectedness during Exploration and Exploitation
Figueroa, Christina M.; Cohen, Michael X; Frank, Michael J.
2012-01-01
In order to understand the exploitation/exploration trade-off in reinforcement learning, previous theoretical and empirical accounts have suggested that increased uncertainty may precede the decision to explore an alternative option. To date, the neural mechanisms that support the strategic application of uncertainty-driven exploration remain underspecified. In this study, electroencephalography (EEG) was used to assess trial-to-trial dynamics relevant to exploration and exploitation. Theta-band activities over middle and lateral frontal areas have previously been implicated in EEG studies of reinforcement learning and strategic control. It was hypothesized that these areas may interact during top-down strategic behavioral control involved in exploratory choices. Here, we used a dynamic reward–learning task and an associated mathematical model that predicted individual response times. This reinforcement-learning model generated value-based prediction errors and trial-by-trial estimates of exploration as a function of uncertainty. Mid-frontal theta power correlated with unsigned prediction error, although negative prediction errors had greater power overall. Trial-to-trial variations in response-locked frontal theta were linearly related to relative uncertainty and were larger in individuals who used uncertainty to guide exploration. This finding suggests that theta-band activities reflect prefrontal-directed strategic control during exploratory choices. PMID:22120491
Application of an Integrated HPC Reliability Prediction Framework to HMMWV Suspension System
2010-09-13
model number M966 (TOW Missle Carrier, Basic Armor without weapons), since they were available. Tires used for all simulations were the bias-type...vehicle fleet, including consideration of all kinds of uncertainty, especially including model uncertainty. The end result will be a tool to use...building an adequate vehicle reliability prediction framework for military vehicles is the accurate modeling of the integration of various types of
NASA Astrophysics Data System (ADS)
Subramanian, Aneesh C.; Palmer, Tim N.
2017-06-01
Stochastic schemes to represent model uncertainty in the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble prediction system has helped improve its probabilistic forecast skill over the past decade by both improving its reliability and reducing the ensemble mean error. The largest uncertainties in the model arise from the model physics parameterizations. In the tropics, the parameterization of moist convection presents a major challenge for the accurate prediction of weather and climate. Superparameterization is a promising alternative strategy for including the effects of moist convection through explicit turbulent fluxes calculated from a cloud-resolving model (CRM) embedded within a global climate model (GCM). In this paper, we compare the impact of initial random perturbations in embedded CRMs, within the ECMWF ensemble prediction system, with stochastically perturbed physical tendency (SPPT) scheme as a way to represent model uncertainty in medium-range tropical weather forecasts. We especially focus on forecasts of tropical convection and dynamics during MJO events in October-November 2011. These are well-studied events for MJO dynamics as they were also heavily observed during the DYNAMO field campaign. We show that a multiscale ensemble modeling approach helps improve forecasts of certain aspects of tropical convection during the MJO events, while it also tends to deteriorate certain large-scale dynamic fields with respect to stochastically perturbed physical tendencies approach that is used operationally at ECMWF.
Adamson, M W; Morozov, A Y; Kuzenkov, O A
2016-09-01
Mathematical models in biology are highly simplified representations of a complex underlying reality and there is always a high degree of uncertainty with regards to model function specification. This uncertainty becomes critical for models in which the use of different functions fitting the same dataset can yield substantially different predictions-a property known as structural sensitivity. Thus, even if the model is purely deterministic, then the uncertainty in the model functions carries through into uncertainty in model predictions, and new frameworks are required to tackle this fundamental problem. Here, we consider a framework that uses partially specified models in which some functions are not represented by a specific form. The main idea is to project infinite dimensional function space into a low-dimensional space taking into account biological constraints. The key question of how to carry out this projection has so far remained a serious mathematical challenge and hindered the use of partially specified models. Here, we propose and demonstrate a potentially powerful technique to perform such a projection by using optimal control theory to construct functions with the specified global properties. This approach opens up the prospect of a flexible and easy to use method to fulfil uncertainty analysis of biological models.
Matrix approach to uncertainty assessment and reduction for modeling terrestrial carbon cycle
NASA Astrophysics Data System (ADS)
Luo, Y.; Xia, J.; Ahlström, A.; Zhou, S.; Huang, Y.; Shi, Z.; Wang, Y.; Du, Z.; Lu, X.
2017-12-01
Terrestrial ecosystems absorb approximately 30% of the anthropogenic carbon dioxide emissions. This estimate has been deduced indirectly: combining analyses of atmospheric carbon dioxide concentrations with ocean observations to infer the net terrestrial carbon flux. In contrast, when knowledge about the terrestrial carbon cycle is integrated into different terrestrial carbon models they make widely different predictions. To improve the terrestrial carbon models, we have recently developed a matrix approach to uncertainty assessment and reduction. Specifically, the terrestrial carbon cycle has been commonly represented by a series of carbon balance equations to track carbon influxes into and effluxes out of individual pools in earth system models. This representation matches our understanding of carbon cycle processes well and can be reorganized into one matrix equation without changing any modeled carbon cycle processes and mechanisms. We have developed matrix equations of several global land C cycle models, including CLM3.5, 4.0 and 4.5, CABLE, LPJ-GUESS, and ORCHIDEE. Indeed, the matrix equation is generic and can be applied to other land carbon models. This matrix approach offers a suite of new diagnostic tools, such as the 3-dimensional (3-D) parameter space, traceability analysis, and variance decomposition, for uncertainty analysis. For example, predictions of carbon dynamics with complex land models can be placed in a 3-D parameter space (carbon input, residence time, and storage potential) as a common metric to measure how much model predictions are different. The latter can be traced to its source components by decomposing model predictions to a hierarchy of traceable components. Then, variance decomposition can help attribute the spread in predictions among multiple models to precisely identify sources of uncertainty. The highly uncertain components can be constrained by data as the matrix equation makes data assimilation computationally possible. We will illustrate various applications of this matrix approach to uncertainty assessment and reduction for terrestrial carbon cycle models.
A data-driven model for constraint of present-day glacial isostatic adjustment in North America
NASA Astrophysics Data System (ADS)
Simon, K. M.; Riva, R. E. M.; Kleinherenbrink, M.; Tangdamrongsub, N.
2017-09-01
Geodetic measurements of vertical land motion and gravity change are incorporated into an a priori model of present-day glacial isostatic adjustment (GIA) in North America via least-squares adjustment. The result is an updated GIA model wherein the final predicted signal is informed by both observational data, and prior knowledge (or intuition) of GIA inferred from models. The data-driven method allows calculation of the uncertainties of predicted GIA fields, and thus offers a significant advantage over predictions from purely forward GIA models. In order to assess the influence each dataset has on the final GIA prediction, the vertical land motion and GRACE-measured gravity data are incorporated into the model first independently (i.e., one dataset only), then simultaneously. The relative weighting of the datasets and the prior input is iteratively determined by variance component estimation in order to achieve the most statistically appropriate fit to the data. The best-fit model is obtained when both datasets are inverted and gives respective RMS misfits to the GPS and GRACE data of 1.3 mm/yr and 0.8 mm/yr equivalent water layer change. Non-GIA signals (e.g., hydrology) are removed from the datasets prior to inversion. The post-fit residuals between the model predictions and the vertical motion and gravity datasets, however, suggest particular regions where significant non-GIA signals may still be present in the data, including unmodeled hydrological changes in the central Prairies west of Lake Winnipeg. Outside of these regions of misfit, the posterior uncertainty of the predicted model provides a measure of the formal uncertainty associated with the GIA process; results indicate that this quantity is sensitive to the uncertainty and spatial distribution of the input data as well as that of the prior model information. In the study area, the predicted uncertainty of the present-day GIA signal ranges from ∼0.2-1.2 mm/yr for rates of vertical land motion, and from ∼3-4 mm/yr of equivalent water layer change for gravity variations.
Lessons from Climate Modeling on the Design and Use of Ensembles for Crop Modeling
NASA Technical Reports Server (NTRS)
Wallach, Daniel; Mearns, Linda O.; Ruane, Alexander C.; Roetter, Reimund P.; Asseng, Senthold
2016-01-01
Working with ensembles of crop models is a recent but important development in crop modeling which promises to lead to better uncertainty estimates for model projections and predictions, better predictions using the ensemble mean or median, and closer collaboration within the modeling community. There are numerous open questions about the best way to create and analyze such ensembles. Much can be learned from the field of climate modeling, given its much longer experience with ensembles. We draw on that experience to identify questions and make propositions that should help make ensemble modeling with crop models more rigorous and informative. The propositions include defining criteria for acceptance of models in a crop MME, exploring criteria for evaluating the degree of relatedness of models in a MME, studying the effect of number of models in the ensemble, development of a statistical model of model sampling, creation of a repository for MME results, studies of possible differential weighting of models in an ensemble, creation of single model ensembles based on sampling from the uncertainty distribution of parameter values or inputs specifically oriented toward uncertainty estimation, the creation of super ensembles that sample more than one source of uncertainty, the analysis of super ensemble results to obtain information on total uncertainty and the separate contributions of different sources of uncertainty and finally further investigation of the use of the multi-model mean or median as a predictor.
Estimating Model Prediction Error: Should You Treat Predictions as Fixed or Random?
NASA Technical Reports Server (NTRS)
Wallach, Daniel; Thorburn, Peter; Asseng, Senthold; Challinor, Andrew J.; Ewert, Frank; Jones, James W.; Rotter, Reimund; Ruane, Alexander
2016-01-01
Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEP fixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEP uncertain( X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEP uncertain (X) can be estimated using a random effects ANOVA. It is argued that MSEP uncertain (X) is the more informative uncertainty criterion, because it is specific to each prediction situation.
Utility of distributed hydrologic and water quality models for watershed management and sustainability studies should be accompanied by rigorous model uncertainty analysis. However, the use of complex watershed models primarily follows the traditional {calibrate/validate/predict}...
Impacts of Process and Prediction Uncertainties on Projected Hanford Waste Glass Amount
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gervasio, V.; Kim, D. S.; Vienna, J. D.
Analyses were performed to evaluate the impacts of using the advanced glass models, constraints, and uncertainty descriptions on projected Hanford glass mass. The maximum allowable waste oxide loading (WOL) was estimated for waste compositions while simultaneously satisfying all applicable glass property and composition constraints with sufficient confidence. Different components of prediction and composition/process uncertainties were systematically included in the calculations to evaluate their impacts on glass mass. The analyses estimated the production of 23,360 MT of immobilized high-level waste (IHLW) glass when no uncertainties were taken into account. Accounting for prediction and composition/process uncertainties resulted in 5.01 relative percent increasemore » in estimated glass mass of 24,531 MT. Roughly equal impacts were found for prediction uncertainties (2.58 RPD) and composition/process uncertainties (2.43 RPD). The immobilized low-activity waste (ILAW) mass was predicted to be 282,350 MT without uncertainty and with waste loading “line” rules in place. Accounting for prediction and composition/process uncertainties resulted in only 0.08 relative percent increase in estimated glass mass of 282,562 MT. Without application of line rules the glass mass decreases by 10.6 relative percent (252,490 MT) for the case with no uncertainties. Addition of prediction uncertainties increases glass mass by 1.32 relative percent and the addition of composition/process uncertainties increase glass mass by an additional 7.73 relative percent (9.06 relative percent increase combined). The glass mass estimate without line rules (275,359 MT) was 2.55 relative percent lower than that with the line rules (282,562 MT), after accounting for all applicable uncertainties.« less
Assessing Uncertainty of Interspecies Correlation Estimation Models for Aromatic Compounds
We developed Interspecies Correlation Estimation (ICE) models for aromatic compounds containing 1 to 4 benzene rings to assess uncertainty in toxicity extrapolation in two data compilation approaches. ICE models are mathematical relationships between surrogate and predicted test ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, John R.; Brooks, Dusty Marie
In pressurized water reactors, the prevention, detection, and repair of cracks within dissimilar metal welds is essential to ensure proper plant functionality and safety. Weld residual stresses, which are difficult to model and cannot be directly measured, contribute to the formation and growth of cracks due to primary water stress corrosion cracking. Additionally, the uncertainty in weld residual stress measurements and modeling predictions is not well understood, further complicating the prediction of crack evolution. The purpose of this document is to develop methodology to quantify the uncertainty associated with weld residual stress that can be applied to modeling predictions andmore » experimental measurements. Ultimately, the results can be used to assess the current state of uncertainty and to build confidence in both modeling and experimental procedures. The methodology consists of statistically modeling the variation in the weld residual stress profiles using functional data analysis techniques. Uncertainty is quantified using statistical bounds (e.g. confidence and tolerance bounds) constructed with a semi-parametric bootstrap procedure. Such bounds describe the range in which quantities of interest, such as means, are expected to lie as evidenced by the data. The methodology is extended to provide direct comparisons between experimental measurements and modeling predictions by constructing statistical confidence bounds for the average difference between the two quantities. The statistical bounds on the average difference can be used to assess the level of agreement between measurements and predictions. The methodology is applied to experimental measurements of residual stress obtained using two strain relief measurement methods and predictions from seven finite element models developed by different organizations during a round robin study.« less
Bird-landscape relations in the Chihuahuan Desert: Coping with uncertainties about predictive models
Gutzwiller, K.J.; Barrow, W.C.
2001-01-01
During the springs of 1995-1997, we studied birds and landscapes in the Chihuahuan Desert along part of the Texas-Mexico border. Our objectives were to assess bird-landscape relations and their interannual consistency and to identify ways to cope with associated uncertainties that undermine confidence in using such relations in conservation decision processes. Bird distributions were often significantly associated with landscape features, and many bird-landscape models were valid and useful for predictive purposes. Differences in early spring rainfall appeared to influence bird abundance, but there was no evidence that annual differences in bird abundance affected model consistency. Model consistency for richness (42%) was higher than mean model consistency for 26 focal species (mean 30%, range 0-67%), suggesting that relations involving individual species are, on average, more subject to factors that cause variation than are richness-landscape relations. Consistency of bird-landscape relations may be influenced by such factors as plant succession, exotic species invasion, bird species' tolerances for environmental variation, habitat occupancy patterns, and variation in food density or weather. The low model consistency that we observed for most species indicates the high variation in bird-landscape relations that managers and other decision makers may encounter. The uncertainty of interannual variation in bird-landscape relations can be reduced by using projections of bird distributions from different annual models to determine the likely range of temporal and spatial variation in a species' distribution. Stochastic simulation models can be used to incorporate the uncertainty of random environmental variation into predictions of bird distributions based on bird-landscape relations and to provide probabilistic projections with which managers can weigh the costs and benefits of various decisions, Uncertainty about the true structure of bird-landscape relations (structural uncertainty) can be reduced by ensuring that models meet important statistical assumptions, designing studies with sufficient statistical power, validating the predictive ability of models, and improving model accuracy through continued field sampling and model fitting. Un certainty associated with sampling variation (partial observability) can be reduced by ensuring that sample sizes are large enough to provide precise estimates of both bird and landscape parameters. By decreasing the uncertainty due to partial observability, managers will improve their ability to reduce structural uncertainty.
Predictive uncertainty analysis of a saltwater intrusion model using null-space Monte Carlo
Herckenrath, Daan; Langevin, Christian D.; Doherty, John
2011-01-01
Because of the extensive computational burden and perhaps a lack of awareness of existing methods, rigorous uncertainty analyses are rarely conducted for variable-density flow and transport models. For this reason, a recently developed null-space Monte Carlo (NSMC) method for quantifying prediction uncertainty was tested for a synthetic saltwater intrusion model patterned after the Henry problem. Saltwater intrusion caused by a reduction in fresh groundwater discharge was simulated for 1000 randomly generated hydraulic conductivity distributions, representing a mildly heterogeneous aquifer. From these 1000 simulations, the hydraulic conductivity distribution giving rise to the most extreme case of saltwater intrusion was selected and was assumed to represent the "true" system. Head and salinity values from this true model were then extracted and used as observations for subsequent model calibration. Random noise was added to the observations to approximate realistic field conditions. The NSMC method was used to calculate 1000 calibration-constrained parameter fields. If the dimensionality of the solution space was set appropriately, the estimated uncertainty range from the NSMC analysis encompassed the truth. Several variants of the method were implemented to investigate their effect on the efficiency of the NSMC method. Reducing the dimensionality of the null-space for the processing of the random parameter sets did not result in any significant gains in efficiency and compromised the ability of the NSMC method to encompass the true prediction value. The addition of intrapilot point heterogeneity to the NSMC process was also tested. According to a variogram comparison, this provided the same scale of heterogeneity that was used to generate the truth. However, incorporation of intrapilot point variability did not make a noticeable difference to the uncertainty of the prediction. With this higher level of heterogeneity, however, the computational burden of generating calibration-constrained parameter fields approximately doubled. Predictive uncertainty variance computed through the NSMC method was compared with that computed through linear analysis. The results were in good agreement, with the NSMC method estimate showing a slightly smaller range of prediction uncertainty than was calculated by the linear method. Copyright 2011 by the American Geophysical Union.
How uncertain is model-based prediction of copper loads in stormwater runoff?
Lindblom, E; Ahlman, S; Mikkelsen, P S
2007-01-01
In this paper, we conduct a systematic analysis of the uncertainty related with estimating the total load of pollution (copper) from a separate stormwater drainage system, conditioned on a specific combination of input data, a dynamic conceptual pollutant accumulation-washout model and measurements (runoff volumes and pollutant masses). We use the generalized likelihood uncertainty estimation (GLUE) methodology and generate posterior parameter distributions that result in model outputs encompassing a significant number of the highly variable measurements. Given the applied pollution accumulation-washout model and a total of 57 measurements during one month, the total predicted copper masses can be predicted within a range of +/-50% of the median value. The message is that this relatively large uncertainty should be acknowledged in connection with posting statements about micropollutant loads as estimated from dynamic models, even when calibrated with on-site concentration data.
Risk-Based, Hypothesis-Driven Framework for Hydrological Field Campaigns with Case Studies
NASA Astrophysics Data System (ADS)
Harken, B.; Rubin, Y.
2014-12-01
There are several stages in any hydrological modeling campaign, including: formulation and analysis of a priori information, data acquisition through field campaigns, inverse modeling, and prediction of some environmental performance metric (EPM). The EPM being predicted could be, for example, contaminant concentration or plume travel time. These predictions often have significant bearing on a decision that must be made. Examples include: how to allocate limited remediation resources between contaminated groundwater sites or where to place a waste repository site. Answering such questions depends on predictions of EPMs using forward models as well as levels of uncertainty related to these predictions. Uncertainty in EPM predictions stems from uncertainty in model parameters, which can be reduced by measurements taken in field campaigns. The costly nature of field measurements motivates a rational basis for determining a measurement strategy that is optimal with respect to the uncertainty in the EPM prediction. The tool of hypothesis testing allows this uncertainty to be quantified by computing the significance of the test resulting from a proposed field campaign. The significance of the test gives a rational basis for determining the optimality of a proposed field campaign. This hypothesis testing framework is demonstrated and discussed using various synthetic case studies. This study involves contaminated aquifers where a decision must be made based on prediction of when a contaminant will arrive at a specified location. The EPM, in this case contaminant travel time, is cast into the hypothesis testing framework. The null hypothesis states that the contaminant plume will arrive at the specified location before a critical amount of time passes, and the alternative hypothesis states that the plume will arrive after the critical time passes. The optimality of different field campaigns is assessed by computing the significance of the test resulting from each one. Evaluating the level of significance caused by a field campaign involves steps including likelihood-based inverse modeling and semi-analytical conditional particle tracking.
Trapped Radiation Model Uncertainties: Model-Data and Model-Model Comparisons
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Colborn, B. L.
2000-01-01
The standard AP8 and AE8 models for predicting trapped proton and electron environments have been compared with several sets of flight data to evaluate model uncertainties. Model comparisons are made with flux and dose measurements made on various U.S. low-Earth orbit satellites (APEX, CRRES, DMSP, LDEF, NOAA) and Space Shuttle flights, on Russian satellites (Photon-8, Cosmos-1887, Cosmos-2044), and on the Russian Mir Space Station. This report gives the details of the model-data comparisons-summary results in terms of empirical model uncertainty factors that can be applied for spacecraft design applications are given in a combination report. The results of model-model comparisons are also presented from standard AP8 and AE8 model predictions compared with the European Space Agency versions of AP8 and AE8 and with Russian-trapped radiation models.
Trapped Radiation Model Uncertainties: Model-Data and Model-Model Comparisons
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Colborn, B. L.
2000-01-01
The standard AP8 and AE8 models for predicting trapped proton and electron environments have been compared with several sets of flight data to evaluate model uncertainties. Model comparisons are made with flux and dose measurements made on various U.S. low-Earth orbit satellites (APEX, CRRES, DMSP. LDEF, NOAA) and Space Shuttle flights, on Russian satellites (Photon-8, Cosmos-1887, Cosmos-2044), and on the Russian Mir space station. This report gives the details of the model-data comparisons -- summary results in terms of empirical model uncertainty factors that can be applied for spacecraft design applications are given in a companion report. The results of model-model comparisons are also presented from standard AP8 and AE8 model predictions compared with the European Space Agency versions of AP8 and AE8 and with Russian trapped radiation models.
Parameter estimation for groundwater models under uncertain irrigation data
Demissie, Yonas; Valocchi, Albert J.; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen
2015-01-01
The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p < 0.05) bias in estimated parameters and model predictions that persist despite calibrating the models to different calibration data and sample sizes. However, by directly accounting for the irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.
DRAINMOD-GIS: a lumped parameter watershed scale drainage and water quality model
G.P. Fernandez; G.M. Chescheir; R.W. Skaggs; D.M. Amatya
2006-01-01
A watershed scale lumped parameter hydrology and water quality model that includes an uncertainty analysis component was developed and tested on a lower coastal plain watershed in North Carolina. Uncertainty analysis was used to determine the impacts of uncertainty in field and network parameters of the model on the predicted outflows and nitrate-nitrogen loads at the...
Evaluating critical uncertainty thresholds in a spatial model of forest pest invasion risk
Frank H. Koch; Denys Yemshanov; Daniel W. McKenney; William D. Smith
2009-01-01
Pest risk maps can provide useful decision support in invasive species management, but most do not adequately consider the uncertainty associated with predicted risk values. This study explores how increased uncertainty in a risk modelâs numeric assumptions might affect the resultant risk map. We used a spatial stochastic model, integrating components for...
NASA Astrophysics Data System (ADS)
Arnault, Joel; Rummler, Thomas; Baur, Florian; Lerch, Sebastian; Wagner, Sven; Fersch, Benjamin; Zhang, Zhenyu; Kerandi, Noah; Keil, Christian; Kunstmann, Harald
2017-04-01
Precipitation predictability can be assessed by the spread within an ensemble of atmospheric simulations being perturbed in the initial, lateral boundary conditions and/or modeled processes within a range of uncertainty. Surface-related processes are more likely to change precipitation when synoptic forcing is weak. This study investigates the effect of uncertainty in the representation of terrestrial water flows on precipitation predictability. The tools used for this investigation are the Weather Research and Forecasting (WRF) model and its hydrologically-enhanced version WRF-Hydro, applied over Central Europe during April-October 2008. The WRF grid is that of COSMO-DE, with a resolution of 2.8 km. In WRF-Hydro, the WRF grid is coupled with a sub-grid at 280 m resolution to resolve lateral terrestrial water flows. Vertical flow uncertainty is considered by modifying the parameter controlling the partitioning between surface runoff and infiltration in WRF, and horizontal flow uncertainty is considered by comparing WRF with WRF-Hydro. Precipitation predictability is deduced from the spread of an ensemble based on three turbulence parameterizations. Model results are validated with E-OBS precipitation and surface temperature, ESA-CCI soil moisture, FLUXNET-MTE surface evaporation and GRDC discharge. It is found that the uncertainty in the representation of terrestrial water flows is more likely to significantly affect precipitation predictability when surface flux spatial variability is high. In comparison to the WRF ensemble, WRF-Hydro slightly improves the adjusted continuous ranked probability score of daily precipitation. The reproduction of observed daily discharge with Nash-Sutcliffe model efficiency coefficients up to 0.91 demonstrates the potential of WRF-Hydro for flood forecasting.
Accounting for uncertainty in health economic decision models by using model averaging.
Jackson, Christopher H; Thompson, Simon G; Sharples, Linda D
2009-04-01
Health economic decision models are subject to considerable uncertainty, much of which arises from choices between several plausible model structures, e.g. choices of covariates in a regression model. Such structural uncertainty is rarely accounted for formally in decision models but can be addressed by model averaging. We discuss the most common methods of averaging models and the principles underlying them. We apply them to a comparison of two surgical techniques for repairing abdominal aortic aneurysms. In model averaging, competing models are usually either weighted by using an asymptotically consistent model assessment criterion, such as the Bayesian information criterion, or a measure of predictive ability, such as Akaike's information criterion. We argue that the predictive approach is more suitable when modelling the complex underlying processes of interest in health economics, such as individual disease progression and response to treatment.
When 1+1 can be >2: Uncertainties compound when simulating climate, fisheries and marine ecosystems
NASA Astrophysics Data System (ADS)
Evans, Karen; Brown, Jaclyn N.; Sen Gupta, Alex; Nicol, Simon J.; Hoyle, Simon; Matear, Richard; Arrizabalaga, Haritz
2015-03-01
Multi-disciplinary approaches that combine oceanographic, biogeochemical, ecosystem, fisheries population and socio-economic models are vital tools for modelling whole ecosystems. Interpreting the outputs from such complex models requires an appreciation of the many different types of modelling frameworks being used and their associated limitations and uncertainties. Both users and developers of particular model components will often have little involvement or understanding of other components within such modelling frameworks. Failure to recognise limitations and uncertainties associated with components and how these uncertainties might propagate throughout modelling frameworks can potentially result in poor advice for resource management. Unfortunately, many of the current integrative frameworks do not propagate the uncertainties of their constituent parts. In this review, we outline the major components of a generic whole of ecosystem modelling framework incorporating the external pressures of climate and fishing. We discuss the limitations and uncertainties associated with each component of such a modelling system, along with key research gaps. Major uncertainties in modelling frameworks are broadly categorised into those associated with (i) deficient knowledge in the interactions of climate and ocean dynamics with marine organisms and ecosystems; (ii) lack of observations to assess and advance modelling efforts and (iii) an inability to predict with confidence natural ecosystem variability and longer term changes as a result of external drivers (e.g. greenhouse gases, fishing effort) and the consequences for marine ecosystems. As a result of these uncertainties and intrinsic differences in the structure and parameterisation of models, users are faced with considerable challenges associated with making appropriate choices on which models to use. We suggest research directions required to address these uncertainties, and caution against overconfident predictions. Understanding the full impact of uncertainty makes it clear that full comprehension and robust certainty about the systems themselves are not feasible. A key research direction is the development of management systems that are robust to this unavoidable uncertainty.
Uncertainty Considerations for Ballistic Limit Equations
NASA Technical Reports Server (NTRS)
Schonberg, W. P.; Evans, H. J.; Williamsen, J. E.; Boyer, R. L.; Nakayama, G. S.
2005-01-01
The overall risk for any spacecraft system is typically determined using a Probabilistic Risk Assessment (PRA). A PRA attempts to determine the overall risk associated with a particular mission by factoring in all known risks (and their corresponding uncertainties, if known) to the spacecraft during its mission. The threat to mission and human life posed by the mircro-meteoroid & orbital debris (MMOD) environment is one of the risks. NASA uses the BUMPER II program to provide point estimate predictions of MMOD risk for the Space Shuttle and the International Space Station. However, BUMPER II does not provide uncertainty bounds or confidence intervals for its predictions. With so many uncertainties believed to be present in the models used within BUMPER II, providing uncertainty bounds with BUMPER II results would appear to be essential to properly evaluating its predictions of MMOD risk. The uncertainties in BUMPER II come primarily from three areas: damage prediction/ballistic limit equations, environment models, and failure criteria definitions. In order to quantify the overall uncertainty bounds on MMOD risk predictions, the uncertainties in these three areas must be identified. In this paper, possible approaches through which uncertainty bounds can be developed for the various damage prediction and ballistic limit equations encoded within the shuttle and station versions of BUMPER II are presented and discussed. We begin the paper with a review of the current approaches used by NASA to perform a PRA for the Space Shuttle and the International Space Station, followed by a review of the results of a recent sensitivity analysis performed by NASA using the shuttle version of the BUMPER II code. Following a discussion of the various equations that are encoded in BUMPER II, we propose several possible approaches for establishing uncertainty bounds for the equations within BUMPER II. We conclude with an evaluation of these approaches and present a recommendation regarding which of them would be the most appropriate to follow.
Impact of inherent meteorology uncertainty on air quality model predictions
It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is impor...
Understanding Climate Uncertainty with an Ocean Focus
NASA Astrophysics Data System (ADS)
Tokmakian, R. T.
2009-12-01
Uncertainty in climate simulations arises from various aspects of the end-to-end process of modeling the Earth’s climate. First, there is uncertainty from the structure of the climate model components (e.g. ocean/ice/atmosphere). Even the most complex models are deficient, not only in the complexity of the processes they represent, but in which processes are included in a particular model. Next, uncertainties arise from the inherent error in the initial and boundary conditions of a simulation. Initial conditions are the state of the weather or climate at the beginning of the simulation and other such things, and typically come from observations. Finally, there is the uncertainty associated with the values of parameters in the model. These parameters may represent physical constants or effects, such as ocean mixing, or non-physical aspects of modeling and computation. The uncertainty in these input parameters propagates through the non-linear model to give uncertainty in the outputs. The models in 2020 will no doubt be better than today’s models, but they will still be imperfect, and development of uncertainty analysis technology is a critical aspect of understanding model realism and prediction capability. Smith [2002] and Cox and Stephenson [2007] discuss the need for methods to quantify the uncertainties within complicated systems so that limitations or weaknesses of the climate model can be understood. In making climate predictions, we need to have available both the most reliable model or simulation and a methods to quantify the reliability of a simulation. If quantitative uncertainty questions of the internal model dynamics are to be answered with complex simulations such as AOGCMs, then the only known path forward is based on model ensembles that characterize behavior with alternative parameter settings [e.g. Rougier, 2007]. The relevance and feasibility of using "Statistical Analysis of Computer Code Output" (SACCO) methods for examining uncertainty in ocean circulation due to parameter specification will be described and early results using the ocean/ice components of the CCSM climate model in a designed experiment framework will be shown. Cox, P. and D. Stephenson, Climate Change: A Changing Climate for Prediction, 2007, Science 317 (5835), 207, DOI: 10.1126/science.1145956. Rougier, J. C., 2007: Probabilistic Inference for Future Climate Using an Ensemble of Climate Model Evaluations, Climatic Change, 81, 247-264. Smith L., 2002, What might we learn from climate forecasts? Proc. Nat’l Academy of Sciences, Vol. 99, suppl. 1, 2487-2492 doi:10.1073/pnas.012580599.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Lai, Canhai; Marcy, Peter William
2017-05-01
A challenging problem in designing pilot-scale carbon capture systems is to predict, with uncertainty, the adsorber performance and capture efficiency under various operating conditions where no direct experimental data exist. Motivated by this challenge, we previously proposed a hierarchical framework in which relevant parameters of physical models were sequentially calibrated from different laboratory-scale carbon capture unit (C2U) experiments. Specifically, three models of increasing complexity were identified based on the fundamental physical and chemical processes of the sorbent-based carbon capture technology. Results from the corresponding laboratory experiments were used to statistically calibrate the physical model parameters while quantifying some of theirmore » inherent uncertainty. The parameter distributions obtained from laboratory-scale C2U calibration runs are used in this study to facilitate prediction at a larger scale where no corresponding experimental results are available. In this paper, we first describe the multiphase reactive flow model for a sorbent-based 1-MW carbon capture system then analyze results from an ensemble of simulations with the upscaled model. The simulation results are used to quantify uncertainty regarding the design’s predicted efficiency in carbon capture. In particular, we determine the minimum gas flow rate necessary to achieve 90% capture efficiency with 95% confidence.« less
NASA Astrophysics Data System (ADS)
Ciriello, V.; Lauriola, I.; Bonvicini, S.; Cozzani, V.; Di Federico, V.; Tartakovsky, Daniel M.
2017-11-01
Ubiquitous hydrogeological uncertainty undermines the veracity of quantitative predictions of soil and groundwater contamination due to accidental hydrocarbon spills from onshore pipelines. Such predictions, therefore, must be accompanied by quantification of predictive uncertainty, especially when they are used for environmental risk assessment. We quantify the impact of parametric uncertainty on quantitative forecasting of temporal evolution of two key risk indices, volumes of unsaturated and saturated soil contaminated by a surface spill of light nonaqueous-phase liquids. This is accomplished by treating the relevant uncertain parameters as random variables and deploying two alternative probabilistic models to estimate their effect on predictive uncertainty. A physics-based model is solved with a stochastic collocation method and is supplemented by a global sensitivity analysis. A second model represents the quantities of interest as polynomials of random inputs and has a virtually negligible computational cost, which enables one to explore any number of risk-related contamination scenarios. For a typical oil-spill scenario, our method can be used to identify key flow and transport parameters affecting the risk indices, to elucidate texture-dependent behavior of different soils, and to evaluate, with a degree of confidence specified by the decision-maker, the extent of contamination and the correspondent remediation costs.
Guaranteeing robustness of structural condition monitoring to environmental variability
NASA Astrophysics Data System (ADS)
Van Buren, Kendra; Reilly, Jack; Neal, Kyle; Edwards, Harry; Hemez, François
2017-01-01
Advances in sensor deployment and computational modeling have allowed significant strides to be recently made in the field of Structural Health Monitoring (SHM). One widely used SHM strategy is to perform a vibration analysis where a model of the structure's pristine (undamaged) condition is compared with vibration response data collected from the physical structure. Discrepancies between model predictions and monitoring data can be interpreted as structural damage. Unfortunately, multiple sources of uncertainty must also be considered in the analysis, including environmental variability, unknown model functional forms, and unknown values of model parameters. Not accounting for these sources of uncertainty can lead to false-positives or false-negatives in the structural condition assessment. To manage the uncertainty, we propose a robust SHM methodology that combines three technologies. A time series algorithm is trained using "baseline" data to predict the vibration response, compare predictions to actual measurements collected on a potentially damaged structure, and calculate a user-defined damage indicator. The second technology handles the uncertainty present in the problem. An analysis of robustness is performed to propagate this uncertainty through the time series algorithm and obtain the corresponding bounds of variation of the damage indicator. The uncertainty description and robustness analysis are both inspired by the theory of info-gap decision-making. Lastly, an appropriate "size" of the uncertainty space is determined through physical experiments performed in laboratory conditions. Our hypothesis is that examining how the uncertainty space changes throughout time might lead to superior diagnostics of structural damage as compared to only monitoring the damage indicator. This methodology is applied to a portal frame structure to assess if the strategy holds promise for robust SHM. (Publication approved for unlimited, public release on October-28-2015, LA-UR-15-28442, unclassified.)
How to Make Data a Blessing to Parametric Uncertainty Quantification and Reduction?
NASA Astrophysics Data System (ADS)
Ye, M.; Shi, X.; Curtis, G. P.; Kohler, M.; Wu, J.
2013-12-01
In a Bayesian point of view, probability of model parameters and predictions are conditioned on data used for parameter inference and prediction analysis. It is critical to use appropriate data for quantifying parametric uncertainty and its propagation to model predictions. However, data are always limited and imperfect. When a dataset cannot properly constrain model parameters, it may lead to inaccurate uncertainty quantification. While in this case data appears to be a curse to uncertainty quantification, a comprehensive modeling analysis may help understand the cause and characteristics of parametric uncertainty and thus turns data into a blessing. In this study, we illustrate impacts of data on uncertainty quantification and reduction using an example of surface complexation model (SCM) developed to simulate uranyl (U(VI)) adsorption. The model includes two adsorption sites, referred to as strong and weak sites. The amount of uranium adsorption on these sites determines both the mean arrival time and the long tail of the breakthrough curves. There is one reaction on the weak site but two reactions on the strong site. The unknown parameters include fractions of the total surface site density of the two sites and surface complex formation constants of the three reactions. A total of seven experiments were conducted with different geochemical conditions to estimate these parameters. The experiments with low initial concentration of U(VI) result in a large amount of parametric uncertainty. A modeling analysis shows that it is because the experiments cannot distinguish the relative adsorption affinity of the strong and weak sites on uranium adsorption. Therefore, the experiments with high initial concentration of U(VI) are needed, because in the experiments the strong site is nearly saturated and the weak site can be determined. The experiments with high initial concentration of U(VI) are a blessing to uncertainty quantification, and the experiments with low initial concentration help modelers turn a curse into a blessing. The data impacts on uncertainty quantification and reduction are quantified using probability density functions of model parameters obtained from Markov Chain Monte Carlo simulation using the DREAM algorithm. This study provides insights to model calibration, uncertainty quantification, experiment design, and data collection in groundwater reactive transport modeling and other environmental modeling.
Planning for robust reserve networks using uncertainty analysis
Moilanen, A.; Runge, M.C.; Elith, Jane; Tyre, A.; Carmel, Y.; Fegraus, E.; Wintle, B.A.; Burgman, M.; Ben-Haim, Y.
2006-01-01
Planning land-use for biodiversity conservation frequently involves computer-assisted reserve selection algorithms. Typically such algorithms operate on matrices of species presence?absence in sites, or on species-specific distributions of model predicted probabilities of occurrence in grid cells. There are practically always errors in input data?erroneous species presence?absence data, structural and parametric uncertainty in predictive habitat models, and lack of correspondence between temporal presence and long-run persistence. Despite these uncertainties, typical reserve selection methods proceed as if there is no uncertainty in the data or models. Having two conservation options of apparently equal biological value, one would prefer the option whose value is relatively insensitive to errors in planning inputs. In this work we show how uncertainty analysis for reserve planning can be implemented within a framework of information-gap decision theory, generating reserve designs that are robust to uncertainty. Consideration of uncertainty involves modifications to the typical objective functions used in reserve selection. Search for robust-optimal reserve structures can still be implemented via typical reserve selection optimization techniques, including stepwise heuristics, integer-programming and stochastic global search.
NASA Technical Reports Server (NTRS)
Johnston, John D.; Parrish, Keith; Howard, Joseph M.; Mosier, Gary E.; McGinnis, Mark; Bluth, Marcel; Kim, Kevin; Ha, Hong Q.
2004-01-01
This is a continuation of a series of papers on modeling activities for JWST. The structural-thermal- optical, often referred to as "STOP", analysis process is used to predict the effect of thermal distortion on optical performance. The benchmark STOP analysis for JWST assesses the effect of an observatory slew on wavefront error. The paper begins an overview of multi-disciplinary engineering analysis, or integrated modeling, which is a critical element of the JWST mission. The STOP analysis process is then described. This process consists of the following steps: thermal analysis, structural analysis, and optical analysis. Temperatures predicted using geometric and thermal math models are mapped to the structural finite element model in order to predict thermally-induced deformations. Motions and deformations at optical surfaces are input to optical models and optical performance is predicted using either an optical ray trace or WFE estimation techniques based on prior ray traces or first order optics. Following the discussion of the analysis process, results based on models representing the design at the time of the System Requirements Review. In addition to baseline performance predictions, sensitivity studies are performed to assess modeling uncertainties. Of particular interest is the sensitivity of optical performance to uncertainties in temperature predictions and variations in metal properties. The paper concludes with a discussion of modeling uncertainty as it pertains to STOP analysis.
Jennings, Simon; Collingridge, Kate
2015-01-01
Existing estimates of fish and consumer biomass in the world’s oceans are disparate. This creates uncertainty about the roles of fish and other consumers in biogeochemical cycles and ecosystem processes, the extent of human and environmental impacts and fishery potential. We develop and use a size-based macroecological model to assess the effects of parameter uncertainty on predicted consumer biomass, production and distribution. Resulting uncertainty is large (e.g. median global biomass 4.9 billion tonnes for consumers weighing 1 g to 1000 kg; 50% uncertainty intervals of 2 to 10.4 billion tonnes; 90% uncertainty intervals of 0.3 to 26.1 billion tonnes) and driven primarily by uncertainty in trophic transfer efficiency and its relationship with predator-prey body mass ratios. Even the upper uncertainty intervals for global predictions of consumer biomass demonstrate the remarkable scarcity of marine consumers, with less than one part in 30 million by volume of the global oceans comprising tissue of macroscopic animals. Thus the apparently high densities of marine life seen in surface and coastal waters and frequently visited abundance hotspots will likely give many in society a false impression of the abundance of marine animals. Unexploited baseline biomass predictions from the simple macroecological model were used to calibrate a more complex size- and trait-based model to estimate fisheries yield and impacts. Yields are highly dependent on baseline biomass and fisheries selectivity. Predicted global sustainable fisheries yield increases ≈4 fold when smaller individuals (< 20 cm from species of maximum mass < 1kg) are targeted in all oceans, but the predicted yields would rarely be accessible in practice and this fishing strategy leads to the collapse of larger species if fishing mortality rates on different size classes cannot be decoupled. Our analyses show that models with minimal parameter demands that are based on a few established ecological principles can support equitable analysis and comparison of diverse ecosystems. The analyses provide insights into the effects of parameter uncertainty on global biomass and production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented. Consequently, our simple models become increasingly less useful than more complex alternatives when addressing questions about food web structure and function, biodiversity, resilience and human impacts at smaller scales and for areas closer to coasts. PMID:26226590
Spacecraft Collision Avoidance
NASA Astrophysics Data System (ADS)
Bussy-Virat, Charles
The rapid increase of the number of objects in orbit around the Earth poses a serious threat to operational spacecraft and astronauts. In order to effectively avoid collisions, mission operators need to assess the risk of collision between the satellite and any other object whose orbit is likely to approach its trajectory. Several algorithms predict the probability of collision but have limitations that impair the accuracy of the prediction. An important limitation is that uncertainties in the atmospheric density are usually not taken into account in the propagation of the covariance matrix from current epoch to closest approach time. The Spacecraft Orbital Characterization Kit (SpOCK) was developed to accurately predict the positions and velocities of spacecraft. The central capability of SpOCK is a high accuracy numerical propagator of spacecraft orbits and computations of ancillary parameters. The numerical integration uses a comprehensive modeling of the dynamics of spacecraft in orbit that includes all the perturbing forces that a spacecraft is subject to in orbit. In particular, the atmospheric density is modeled by thermospheric models to allow for an accurate representation of the atmospheric drag. SpOCK predicts the probability of collision between two orbiting objects taking into account the uncertainties in the atmospheric density. Monte Carlo procedures are used to perturb the initial position and velocity of the primary and secondary spacecraft from their covariance matrices. Developed in C, SpOCK supports parallelism to quickly assess the risk of collision so it can be used operationally in real time. The upper atmosphere of the Earth is strongly driven by the solar activity. In particular, abrupt transitions from slow to fast solar wind cause important disturbances of the atmospheric density, hence of the drag acceleration that spacecraft are subject to. The Probability Distribution Function (PDF) model was developed to predict the solar wind speed five days in advance. In particular, the PDF model is able to predict rapid enhancements in the solar wind speed. It was found that 60% of the positive predictions were correct, while 91% of the negative predictions were correct, and 20% to 33% of the peaks in the speed were found by the model. En-semble forecasts provide the forecasters with an estimation of the uncertainty in the prediction, which can be used to derive uncertainties in the atmospheric density and in the drag acceleration. The dissertation then demonstrates that uncertainties in the atmospheric density result in large uncertainties in the prediction of the probability of collision. As an example, the effects of a geomagnetic storm on the probability of collision are illustrated. The research aims at providing tools and analyses that help understand and predict the effects of uncertainties in the atmospheric density on the probability of collision. The ultimate motivation is to support mission operators in making the correct decision with regard to a potential collision avoidance maneuver by providing an uncertainty on the prediction of the probability of collision instead of a single value. This approach can help avoid performing unnecessary costly maneuvers, while making sure that the risk of collision is fully evaluated.
NASA Astrophysics Data System (ADS)
Babcock, Chad; Finley, Andrew O.; Andersen, Hans-Erik; Pattison, Robert; Cook, Bruce D.; Morton, Douglas C.; Alonzo, Michael; Nelson, Ross; Gregoire, Timothy; Ene, Liviu; Gobakken, Terje; Næsset, Erik
2018-06-01
The goal of this research was to develop and examine the performance of a geostatistical coregionalization modeling approach for combining field inventory measurements, strip samples of airborne lidar and Landsat-based remote sensing data products to predict aboveground biomass (AGB) in interior Alaska's Tanana Valley. The proposed modeling strategy facilitates pixel-level mapping of AGB density predictions across the entire spatial domain. Additionally, the coregionalization framework allows for statistically sound estimation of total AGB for arbitrary areal units within the study area---a key advance to support diverse management objectives in interior Alaska. This research focuses on appropriate characterization of prediction uncertainty in the form of posterior predictive coverage intervals and standard deviations. Using the framework detailed here, it is possible to quantify estimation uncertainty for any spatial extent, ranging from pixel-level predictions of AGB density to estimates of AGB stocks for the full domain. The lidar-informed coregionalization models consistently outperformed their counterpart lidar-free models in terms of point-level predictive performance and total AGB precision. Additionally, the inclusion of Landsat-derived forest cover as a covariate further improved estimation precision in regions with lower lidar sampling intensity. Our findings also demonstrate that model-based approaches that do not explicitly account for residual spatial dependence can grossly underestimate uncertainty, resulting in falsely precise estimates of AGB. On the other hand, in a geostatistical setting, residual spatial structure can be modeled within a Bayesian hierarchical framework to obtain statistically defensible assessments of uncertainty for AGB estimates.
Calibration of Predictor Models Using Multiple Validation Experiments
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.
2015-01-01
This paper presents a framework for calibrating computational models using data from several and possibly dissimilar validation experiments. The offset between model predictions and observations, which might be caused by measurement noise, model-form uncertainty, and numerical error, drives the process by which uncertainty in the models parameters is characterized. The resulting description of uncertainty along with the computational model constitute a predictor model. Two types of predictor models are studied: Interval Predictor Models (IPMs) and Random Predictor Models (RPMs). IPMs use sets to characterize uncertainty, whereas RPMs use random vectors. The propagation of a set through a model makes the response an interval valued function of the state, whereas the propagation of a random vector yields a random process. Optimization-based strategies for calculating both types of predictor models are proposed. Whereas the formulations used to calculate IPMs target solutions leading to the interval value function of minimal spread containing all observations, those for RPMs seek to maximize the models' ability to reproduce the distribution of observations. Regarding RPMs, we choose a structure for the random vector (i.e., the assignment of probability to points in the parameter space) solely dependent on the prediction error. As such, the probabilistic description of uncertainty is not a subjective assignment of belief, nor is it expected to asymptotically converge to a fixed value, but instead it casts the model's ability to reproduce the experimental data. This framework enables evaluating the spread and distribution of the predicted response of target applications depending on the same parameters beyond the validation domain.
NASA Astrophysics Data System (ADS)
Lee, Silvia Wen-Yu; Liang, Jyh-Chong; Tsai, Chin-Chung
2016-10-01
This study investigated the relationships among college students' epistemic beliefs in biology (EBB), conceptions of learning biology (COLB), and strategies of learning biology (SLB). EBB includes four dimensions, namely 'multiple-source,' 'uncertainty,' 'development,' and 'justification.' COLB is further divided into 'constructivist' and 'reproductive' conceptions, while SLB represents deep strategies and surface learning strategies. Questionnaire responses were gathered from 303 college students. The results of the confirmatory factor analysis and structural equation modelling showed acceptable model fits. Mediation testing further revealed two paths with complete mediation. In sum, students' epistemic beliefs of 'uncertainty' and 'justification' in biology were statistically significant in explaining the constructivist and reproductive COLB, respectively; and 'uncertainty' was statistically significant in explaining the deep SLB as well. The results of mediation testing further revealed that 'uncertainty' predicted surface strategies through the mediation of 'reproductive' conceptions; and the relationship between 'justification' and deep strategies was mediated by 'constructivist' COLB. This study provides evidence for the essential roles some epistemic beliefs play in predicting students' learning.
NASA Astrophysics Data System (ADS)
Wang, S.; Huang, G. H.; Huang, W.; Fan, Y. R.; Li, Z.
2015-10-01
In this study, a fractional factorial probabilistic collocation method is proposed to reveal statistical significance of hydrologic model parameters and their multi-level interactions affecting model outputs, facilitating uncertainty propagation in a reduced dimensional space. The proposed methodology is applied to the Xiangxi River watershed in China to demonstrate its validity and applicability, as well as its capability of revealing complex and dynamic parameter interactions. A set of reduced polynomial chaos expansions (PCEs) only with statistically significant terms can be obtained based on the results of factorial analysis of variance (ANOVA), achieving a reduction of uncertainty in hydrologic predictions. The predictive performance of reduced PCEs is verified by comparing against standard PCEs and the Monte Carlo with Latin hypercube sampling (MC-LHS) method in terms of reliability, sharpness, and Nash-Sutcliffe efficiency (NSE). Results reveal that the reduced PCEs are able to capture hydrologic behaviors of the Xiangxi River watershed, and they are efficient functional representations for propagating uncertainties in hydrologic predictions.
Confronting uncertainty in flood damage predictions
NASA Astrophysics Data System (ADS)
Schröter, Kai; Kreibich, Heidi; Vogel, Kristin; Merz, Bruno
2015-04-01
Reliable flood damage models are a prerequisite for the practical usefulness of the model results. Oftentimes, traditional uni-variate damage models as for instance depth-damage curves fail to reproduce the variability of observed flood damage. Innovative multi-variate probabilistic modelling approaches are promising to capture and quantify the uncertainty involved and thus to improve the basis for decision making. In this study we compare the predictive capability of two probabilistic modelling approaches, namely Bagging Decision Trees and Bayesian Networks. For model evaluation we use empirical damage data which are available from computer aided telephone interviews that were respectively compiled after the floods in 2002, 2005 and 2006, in the Elbe and Danube catchments in Germany. We carry out a split sample test by sub-setting the damage records. One sub-set is used to derive the models and the remaining records are used to evaluate the predictive performance of the model. Further we stratify the sample according to catchments which allows studying model performance in a spatial transfer context. Flood damage estimation is carried out on the scale of the individual buildings in terms of relative damage. The predictive performance of the models is assessed in terms of systematic deviations (mean bias), precision (mean absolute error) as well as in terms of reliability which is represented by the proportion of the number of observations that fall within the 95-quantile and 5-quantile predictive interval. The reliability of the probabilistic predictions within validation runs decreases only slightly and achieves a very good coverage of observations within the predictive interval. Probabilistic models provide quantitative information about prediction uncertainty which is crucial to assess the reliability of model predictions and improves the usefulness of model results.
Predictions of space radiation fatality risk for exploration missions.
Cucinotta, Francis A; To, Khiet; Cacao, Eliedonna
2017-05-01
In this paper we describe revisions to the NASA Space Cancer Risk (NSCR) model focusing on updates to probability distribution functions (PDF) representing the uncertainties in the radiation quality factor (QF) model parameters and the dose and dose-rate reduction effectiveness factor (DDREF). We integrate recent heavy ion data on liver, colorectal, intestinal, lung, and Harderian gland tumors with other data from fission neutron experiments into the model analysis. In an earlier work we introduced distinct QFs for leukemia and solid cancer risk predictions, and here we consider liver cancer risks separately because of the higher RBE's reported in mouse experiments compared to other tumors types, and distinct risk factors for liver cancer for astronauts compared to the U.S. The revised model is used to make predictions of fatal cancer and circulatory disease risks for 1-year deep space and International Space Station (ISS) missions, and a 940 day Mars mission. We analyzed the contribution of the various model parameter uncertainties to the overall uncertainty, which shows that the uncertainties in relative biological effectiveness (RBE) factors at high LET due to statistical uncertainties and differences across tissue types and mouse strains are the dominant uncertainty. NASA's exposure limits are approached or exceeded for each mission scenario considered. Two main conclusions are made: 1) Reducing the current estimate of about a 3-fold uncertainty to a 2-fold or lower uncertainty will require much more expansive animal carcinogenesis studies in order to reduce statistical uncertainties and understand tissue, sex and genetic variations. 2) Alternative model assumptions such as non-targeted effects, increased tumor lethality and decreased latency at high LET, and non-cancer mortality risks from circulatory diseases could significantly increase risk estimates to several times higher than the NASA limits. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
HZETRN radiation transport validation using balloon-based experimental data
NASA Astrophysics Data System (ADS)
Warner, James E.; Norman, Ryan B.; Blattnig, Steve R.
2018-05-01
The deterministic radiation transport code HZETRN (High charge (Z) and Energy TRaNsport) was developed by NASA to study the effects of cosmic radiation on astronauts and instrumentation shielded by various materials. This work presents an analysis of computed differential flux from HZETRN compared with measurement data from three balloon-based experiments over a range of atmospheric depths, particle types, and energies. Model uncertainties were quantified using an interval-based validation metric that takes into account measurement uncertainty both in the flux and the energy at which it was measured. Average uncertainty metrics were computed for the entire dataset as well as subsets of the measurements (by experiment, particle type, energy, etc.) to reveal any specific trends of systematic over- or under-prediction by HZETRN. The distribution of individual model uncertainties was also investigated to study the range and dispersion of errors beyond just single scalar and interval metrics. The differential fluxes from HZETRN were generally well-correlated with balloon-based measurements; the median relative model difference across the entire dataset was determined to be 30%. The distribution of model uncertainties, however, revealed that the range of errors was relatively broad, with approximately 30% of the uncertainties exceeding ± 40%. The distribution also indicated that HZETRN systematically under-predicts the measurement dataset as a whole, with approximately 80% of the relative uncertainties having negative values. Instances of systematic bias for subsets of the data were also observed, including a significant underestimation of alpha particles and protons for energies below 2.5 GeV/u. Muons were found to be systematically over-predicted at atmospheric depths deeper than 50 g/cm2 but under-predicted for shallower depths. Furthermore, a systematic under-prediction of alpha particles and protons was observed below the geomagnetic cutoff, suggesting that improvements to the light ion production cross sections in HZETRN should be investigated.
Predicting future uncertainty constraints on global warming projections
Shiogama, H.; Stone, D.; Emori, S.; ...
2016-01-11
Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by "current knowledge" of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudomore » observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2°C (3°C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change.« less
Predicting future uncertainty constraints on global warming projections
Shiogama, H.; Stone, D.; Emori, S.; Takahashi, K.; Mori, S.; Maeda, A.; Ishizaki, Y.; Allen, M. R.
2016-01-01
Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by “current knowledge” of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudo observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2 °C (3 °C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change. PMID:26750491
Predicting future uncertainty constraints on global warming projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiogama, H.; Stone, D.; Emori, S.
Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by "current knowledge" of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudomore » observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2°C (3°C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change.« less
Absolute, SI-traceable lunar irradiance tie-points for the USGS Lunar Model
NASA Astrophysics Data System (ADS)
Brown, Steven W.; Eplee, Robert E.; Xiong, Xiaoxiong J.
2017-10-01
The United States Geological Survey (USGS) has developed an empirical model, known as the Robotic Lunar Observatory (ROLO) Model, that predicts the reflectance of the Moon for any Sun-sensor-Moon configuration over the spectral range from 350 nm to 2500 nm. The lunar irradiance can be predicted from the modeled lunar reflectance using a spectrum of the incident solar irradiance. While extremely successful as a relative exo-atmospheric calibration target, the ROLO Model is not SI-traceable and has estimated uncertainties too large for the Moon to be used as an absolute celestial calibration target. In this work, two recent absolute, low uncertainty, SI-traceable top-of-the-atmosphere (TOA) lunar irradiances, measured over the spectral range from 380 nm to 1040 nm, at lunar phase angles of 6.6° and 16.9° , are used as tie-points to the output of the ROLO Model. Combined with empirically derived phase and libration corrections to the output of the ROLO Model and uncertainty estimates in those corrections, the measurements enable development of a corrected TOA lunar irradiance model and its uncertainty budget for phase angles between +/-80° and libration angles from 7° to 51° . The uncertainties in the empirically corrected output from the ROLO model are approximately 1 % from 440 nm to 865 nm and increase to almost 3 % at 412 nm. The dominant components in the uncertainty budget are the uncertainty in the absolute TOA lunar irradiance and the uncertainty in the fit to the phase correction from the output of the ROLO model.
Uncertainty in weather and climate prediction
Slingo, Julia; Palmer, Tim
2011-01-01
Following Lorenz's seminal work on chaos theory in the 1960s, probabilistic approaches to prediction have come to dominate the science of weather and climate forecasting. This paper gives a perspective on Lorenz's work and how it has influenced the ways in which we seek to represent uncertainty in forecasts on all lead times from hours to decades. It looks at how model uncertainty has been represented in probabilistic prediction systems and considers the challenges posed by a changing climate. Finally, the paper considers how the uncertainty in projections of climate change can be addressed to deliver more reliable and confident assessments that support decision-making on adaptation and mitigation. PMID:22042896
A Bayesian approach to model structural error and input variability in groundwater modeling
NASA Astrophysics Data System (ADS)
Xu, T.; Valocchi, A. J.; Lin, Y. F. F.; Liang, F.
2015-12-01
Effective water resource management typically relies on numerical models to analyze groundwater flow and solute transport processes. Model structural error (due to simplification and/or misrepresentation of the "true" environmental system) and input forcing variability (which commonly arises since some inputs are uncontrolled or estimated with high uncertainty) are ubiquitous in groundwater models. Calibration that overlooks errors in model structure and input data can lead to biased parameter estimates and compromised predictions. We present a fully Bayesian approach for a complete assessment of uncertainty for spatially distributed groundwater models. The approach explicitly recognizes stochastic input and uses data-driven error models based on nonparametric kernel methods to account for model structural error. We employ exploratory data analysis to assist in specifying informative prior for error models to improve identifiability. The inference is facilitated by an efficient sampling algorithm based on DREAM-ZS and a parameter subspace multiple-try strategy to reduce the required number of forward simulations of the groundwater model. We demonstrate the Bayesian approach through a synthetic case study of surface-ground water interaction under changing pumping conditions. It is found that explicit treatment of errors in model structure and input data (groundwater pumping rate) has substantial impact on the posterior distribution of groundwater model parameters. Using error models reduces predictive bias caused by parameter compensation. In addition, input variability increases parametric and predictive uncertainty. The Bayesian approach allows for a comparison among the contributions from various error sources, which could inform future model improvement and data collection efforts on how to best direct resources towards reducing predictive uncertainty.
Additional challenges for uncertainty analysis in river engineering
NASA Astrophysics Data System (ADS)
Berends, Koen; Warmink, Jord; Hulscher, Suzanne
2016-04-01
The management of rivers for improving safety, shipping and environment requires conscious effort on the part of river managers. River engineers design hydraulic works to tackle various challenges, from increasing flow conveyance to ensuring minimal water depths for environmental flow and inland shipping. Last year saw the completion of such large scale river engineering in the 'Room for the River' programme for the Dutch Rhine River system, in which several dozen of human interventions were built to increase flood safety. Engineering works in rivers are not completed in isolation from society. Rather, their benefits - increased safety, landscaping beauty - and their disadvantages - expropriation, hindrance - directly affect inhabitants. Therefore river managers are required to carefully defend their plans. The effect of engineering works on river dynamics is being evaluated using hydraulic river models. Two-dimensional numerical models based on the shallow water equations provide the predictions necessary to make decisions on designs and future plans. However, like all environmental models, these predictions are subject to uncertainty. In recent years progress has been made in the identification of the main sources of uncertainty for hydraulic river models. Two of the most important sources are boundary conditions and hydraulic roughness (Warmink et al. 2013). The result of these sources of uncertainty is that the identification of single, deterministic prediction model is a non-trivial task. This is this is a well-understood problem in other fields as well - most notably hydrology - and known as equifinality. However, the particular case of human intervention modelling with hydraulic river models compounds the equifinality case. The model that provides the reference baseline situation is usually identified through calibration and afterwards modified for the engineering intervention. This results in two distinct models, the evaluation of which yields the effect of the proposed intervention. The implicit assumption underlying such analysis is that both models are commensurable. We hypothesize that they are commensurable only to a certain extent. In an idealised study we have demonstrated that prediction performance loss should be expected with increasingly large engineering works. When accounting for parametric uncertainty of floodplain roughness in model identification, we see uncertainty bounds for predicted effects of interventions increase with increasing intervention scale. Calibration of these types of models therefore seems to have a shelf-life, beyond which calibration does not longer improves prediction. Therefore a qualification scheme for model use is required that can be linked to model validity. In this study, we characterize model use along three dimensions: extrapolation (using the model with different external drivers), extension (using the model for different output or indicators) and modification (using modified models). Such use of models is expected to have implications for the applicability of surrogating modelling for efficient uncertainty analysis as well, which is recommended for future research. Warmink, J. J.; Straatsma, M. W.; Huthoff, F.; Booij, M. J. & Hulscher, S. J. M. H. 2013. Uncertainty of design water levels due to combined bed form and vegetation roughness in the Dutch river Waal. Journal of Flood Risk Management 6, 302-318 . DOI: 10.1111/jfr3.12014
Gorguluarslan, Recep M; Choi, Seung-Kyum; Saldana, Christopher J
2017-07-01
A methodology is proposed for uncertainty quantification and validation to accurately predict the mechanical response of lattice structures used in the design of scaffolds. Effective structural properties of the scaffolds are characterized using a developed multi-level stochastic upscaling process that propagates the quantified uncertainties at strut level to the lattice structure level. To obtain realistic simulation models for the stochastic upscaling process and minimize the experimental cost, high-resolution finite element models of individual struts were reconstructed from the micro-CT scan images of lattice structures which are fabricated by selective laser melting. The upscaling method facilitates the process of determining homogenized strut properties to reduce the computational cost of the detailed simulation model for the scaffold. Bayesian Information Criterion is utilized to quantify the uncertainties with parametric distributions based on the statistical data obtained from the reconstructed strut models. A systematic validation approach that can minimize the experimental cost is also developed to assess the predictive capability of the stochastic upscaling method used at the strut level and lattice structure level. In comparison with physical compression test results, the proposed methodology of linking the uncertainty quantification with the multi-level stochastic upscaling method enabled an accurate prediction of the elastic behavior of the lattice structure with minimal experimental cost by accounting for the uncertainties induced by the additive manufacturing process. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Engeland, Kolbjørn; Steinsland, Ingelin; Johansen, Stian Solvang; Petersen-Øverleir, Asgeir; Kolberg, Sjur
2016-05-01
In this study, we explore the effect of uncertainty and poor observation quality on hydrological model calibration and predictions. The Osali catchment in Western Norway was selected as case study and an elevation distributed HBV-model was used. We systematically evaluated the effect of accounting for uncertainty in parameters, precipitation input, temperature input and streamflow observations. For precipitation and temperature we accounted for the interpolation uncertainty, and for streamflow we accounted for rating curve uncertainty. Further, the effects of poorer quality of precipitation input and streamflow observations were explored. Less information about precipitation was obtained by excluding the nearest precipitation station from the analysis, while reduced information about the streamflow was obtained by omitting the highest and lowest streamflow observations when estimating the rating curve. The results showed that including uncertainty in the precipitation and temperature inputs has a negligible effect on the posterior distribution of parameters and for the Nash-Sutcliffe (NS) efficiency for the predicted flows, while the reliability and the continuous rank probability score (CRPS) improves. Less information in precipitation input resulted in a shift in the water balance parameter Pcorr, a model producing smoother streamflow predictions, giving poorer NS and CRPS, but higher reliability. The effect of calibrating the hydrological model using streamflow observations based on different rating curves is mainly seen as variability in the water balance parameter Pcorr. When evaluating predictions, the best evaluation scores were not achieved for the rating curve used for calibration, but for rating curves giving smoother streamflow observations. Less information in streamflow influenced the water balance parameter Pcorr, and increased the spread in evaluation scores by giving both better and worse scores.
Bennett, Erin R; Clausen, Jay; Linkov, Eugene; Linkov, Igor
2009-11-01
Reliable, up-front information on physical and biological properties of emerging materials is essential before making a decision and investment to formulate, synthesize, scale-up, test, and manufacture a new material for use in both military and civilian applications. Multiple quantitative structure-activity relationships (QSARs) software tools are available for predicting a material's physical/chemical properties and environmental effects. Even though information on emerging materials is often limited, QSAR software output is treated without sufficient uncertainty analysis. We hypothesize that uncertainty and variability in material properties and uncertainty in model prediction can be too large to provide meaningful results. To test this hypothesis, we predicted octanol water partitioning coefficients (logP) for multiple, similar compounds with limited physical-chemical properties using six different commercial logP calculators (KOWWIN, MarvinSketch, ACD/Labs, ALogP, CLogP, SPARC). Analysis was done for materials with largely uncertain properties that were similar, based on molecular formula, to military compounds (RDX, BTTN, TNT) and pharmaceuticals (Carbamazepine, Gemfibrizol). We have also compared QSAR modeling results for a well-studied pesticide and pesticide breakdown product (Atrazine, DDE). Our analysis shows variability due to structural variations of the emerging chemicals may be several orders of magnitude. The model uncertainty across six software packages was very high (10 orders of magnitude) for emerging materials while it was low for traditional chemicals (e.g. Atrazine). Thus the use of QSAR models for emerging materials screening requires extensive model validation and coupling QSAR output with available empirical data and other relevant information.
Space shuttle launch vehicle aerodynamic uncertainties: Lessons learned
NASA Technical Reports Server (NTRS)
Hamilton, J. T.
1983-01-01
The chronological development and evolution of an uncertainties model which defines the complex interdependency and interaction of the individual Space Shuttle element and component uncertainties for the launch vehicle are presented. Emphasis is placed on user requirements which dictated certain concessions, simplifications, and assumptions in the analytical model. The use of the uncertainty model in the vehicle design process and flight planning support is discussed. The terminology and justification associated with tolerances as opposed to variations are also presented. Comparisons of and conclusions drawn from flight minus predicted data and uncertainties are given. Lessons learned from the Space Shuttle program concerning aerodynamic uncertainties are examined.
Ehrhardt, Fiona; Soussana, Jean-François; Bellocchi, Gianni; Grace, Peter; McAuliffe, Russel; Recous, Sylvie; Sándor, Renáta; Smith, Pete; Snow, Val; de Antoni Migliorati, Massimiliano; Basso, Bruno; Bhatia, Arti; Brilli, Lorenzo; Doltra, Jordi; Dorich, Christopher D; Doro, Luca; Fitton, Nuala; Giacomini, Sandro J; Grant, Brian; Harrison, Matthew T; Jones, Stephanie K; Kirschbaum, Miko U F; Klumpp, Katja; Laville, Patricia; Léonard, Joël; Liebig, Mark; Lieffering, Mark; Martin, Raphaël; Massad, Raia S; Meier, Elizabeth; Merbold, Lutz; Moore, Andrew D; Myrgiotis, Vasileios; Newton, Paul; Pattey, Elizabeth; Rolinski, Susanne; Sharp, Joanna; Smith, Ward N; Wu, Lianhai; Zhang, Qing
2018-02-01
Simulation models are extensively used to predict agricultural productivity and greenhouse gas emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multi-species agricultural contexts. We report an international model comparison and benchmarking exercise, showing the potential of multi-model ensembles to predict productivity and nitrous oxide (N 2 O) emissions for wheat, maize, rice and temperate grasslands. Using a multi-stage modelling protocol, from blind simulations (stage 1) to partial (stages 2-4) and full calibration (stage 5), 24 process-based biogeochemical models were assessed individually or as an ensemble against long-term experimental data from four temperate grassland and five arable crop rotation sites spanning four continents. Comparisons were performed by reference to the experimental uncertainties of observed yields and N 2 O emissions. Results showed that across sites and crop/grassland types, 23%-40% of the uncalibrated individual models were within two standard deviations (SD) of observed yields, while 42 (rice) to 96% (grasslands) of the models were within 1 SD of observed N 2 O emissions. At stage 1, ensembles formed by the three lowest prediction model errors predicted both yields and N 2 O emissions within experimental uncertainties for 44% and 33% of the crop and grassland growth cycles, respectively. Partial model calibration (stages 2-4) markedly reduced prediction errors of the full model ensemble E-median for crop grain yields (from 36% at stage 1 down to 4% on average) and grassland productivity (from 44% to 27%) and to a lesser and more variable extent for N 2 O emissions. Yield-scaled N 2 O emissions (N 2 O emissions divided by crop yields) were ranked accurately by three-model ensembles across crop species and field sites. The potential of using process-based model ensembles to predict jointly productivity and N 2 O emissions at field scale is discussed. © 2017 John Wiley & Sons Ltd.
The significance of parameter uncertainties for the prediction of offshore pile driving noise.
Lippert, Tristan; von Estorff, Otto
2014-11-01
Due to the construction of offshore wind farms and its potential effect on marine wildlife, the numerical prediction of pile driving noise over long ranges has recently gained importance. In this contribution, a coupled finite element/wavenumber integration model for noise prediction is presented and validated by measurements. The ocean environment, especially the sea bottom, can only be characterized with limited accuracy in terms of input parameters for the numerical model at hand. Therefore the effect of these parameter uncertainties on the prediction of sound pressure levels (SPLs) in the water column is investigated by a probabilistic approach. In fact, a variation of the bottom material parameters by means of Monte-Carlo simulations shows significant effects on the predicted SPLs. A sensitivity analysis of the model with respect to the single quantities is performed, as well as a global variation. Based on the latter, the probability distribution of the SPLs at an exemplary receiver position is evaluated and compared to measurements. The aim of this procedure is to develop a model to reliably predict an interval for the SPLs, by quantifying the degree of uncertainty of the SPLs with the MC simulations.
Accounting for uncertainty in health economic decision models by using model averaging
Jackson, Christopher H; Thompson, Simon G; Sharples, Linda D
2009-01-01
Health economic decision models are subject to considerable uncertainty, much of which arises from choices between several plausible model structures, e.g. choices of covariates in a regression model. Such structural uncertainty is rarely accounted for formally in decision models but can be addressed by model averaging. We discuss the most common methods of averaging models and the principles underlying them. We apply them to a comparison of two surgical techniques for repairing abdominal aortic aneurysms. In model averaging, competing models are usually either weighted by using an asymptotically consistent model assessment criterion, such as the Bayesian information criterion, or a measure of predictive ability, such as Akaike's information criterion. We argue that the predictive approach is more suitable when modelling the complex underlying processes of interest in health economics, such as individual disease progression and response to treatment. PMID:19381329
Optimal test selection for prediction uncertainty reduction
Mullins, Joshua; Mahadevan, Sankaran; Urbina, Angel
2016-12-02
Economic factors and experimental limitations often lead to sparse and/or imprecise data used for the calibration and validation of computational models. This paper addresses resource allocation for calibration and validation experiments, in order to maximize their effectiveness within given resource constraints. When observation data are used for model calibration, the quality of the inferred parameter descriptions is directly affected by the quality and quantity of the data. This paper characterizes parameter uncertainty within a probabilistic framework, which enables the uncertainty to be systematically reduced with additional data. The validation assessment is also uncertain in the presence of sparse and imprecisemore » data; therefore, this paper proposes an approach for quantifying the resulting validation uncertainty. Since calibration and validation uncertainty affect the prediction of interest, the proposed framework explores the decision of cost versus importance of data in terms of the impact on the prediction uncertainty. Often, calibration and validation tests may be performed for different input scenarios, and this paper shows how the calibration and validation results from different conditions may be integrated into the prediction. Then, a constrained discrete optimization formulation that selects the number of tests of each type (calibration or validation at given input conditions) is proposed. Furthermore, the proposed test selection methodology is demonstrated on a microelectromechanical system (MEMS) example.« less
NASA Astrophysics Data System (ADS)
Downey, N.; Begnaud, M. L.; Hipp, J. R.; Ballard, S.; Young, C. S.; Encarnacao, A. V.
2017-12-01
The SALSA3D global 3D velocity model of the Earth was developed to improve the accuracy and precision of seismic travel time predictions for a wide suite of regional and teleseismic phases. Recently, the global SALSA3D model was updated to include additional body wave phases including mantle phases, core phases, reflections off the core-mantle boundary and underside reflections off the surface of the Earth. We show that this update improves travel time predictions and leads directly to significant improvements in the accuracy and precision of seismic event locations as compared to locations computed using standard 1D velocity models like ak135, or 2½D models like RSTT. A key feature of our inversions is that path-specific model uncertainty of travel time predictions are calculated using the full 3D model covariance matrix computed during tomography, which results in more realistic uncertainty ellipses that directly reflect tomographic data coverage. Application of this method can also be done at a regional scale: we present a velocity model with uncertainty obtained using data obtained from the University of Utah Seismograph Stations. These results show a reduction in travel-time residuals for re-located events compared with those obtained using previously published models.
Multi-model comparison highlights consistency in predicted effect of warming on a semi-arid shrub
Renwick, Katherine M.; Curtis, Caroline; Kleinhesselink, Andrew R.; Schlaepfer, Daniel R.; Bradley, Bethany A.; Aldridge, Cameron L.; Poulter, Benjamin; Adler, Peter B.
2018-01-01
A number of modeling approaches have been developed to predict the impacts of climate change on species distributions, performance, and abundance. The stronger the agreement from models that represent different processes and are based on distinct and independent sources of information, the greater the confidence we can have in their predictions. Evaluating the level of confidence is particularly important when predictions are used to guide conservation or restoration decisions. We used a multi-model approach to predict climate change impacts on big sagebrush (Artemisia tridentata), the dominant plant species on roughly 43 million hectares in the western United States and a key resource for many endemic wildlife species. To evaluate the climate sensitivity of A. tridentata, we developed four predictive models, two based on empirically derived spatial and temporal relationships, and two that applied mechanistic approaches to simulate sagebrush recruitment and growth. This approach enabled us to produce an aggregate index of climate change vulnerability and uncertainty based on the level of agreement between models. Despite large differences in model structure, predictions of sagebrush response to climate change were largely consistent. Performance, as measured by change in cover, growth, or recruitment, was predicted to decrease at the warmest sites, but increase throughout the cooler portions of sagebrush's range. A sensitivity analysis indicated that sagebrush performance responds more strongly to changes in temperature than precipitation. Most of the uncertainty in model predictions reflected variation among the ecological models, raising questions about the reliability of forecasts based on a single modeling approach. Our results highlight the value of a multi-model approach in forecasting climate change impacts and uncertainties and should help land managers to maximize the value of conservation investments.
NASA Astrophysics Data System (ADS)
Jough, Fooad Karimi Ghaleh; Şensoy, Serhan
2016-12-01
Different performance levels may be obtained for sideway collapse evaluation of steel moment frames depending on the evaluation procedure used to handle uncertainties. In this article, the process of representing modelling uncertainties, record to record (RTR) variations and cognitive uncertainties for moment resisting steel frames of various heights is discussed in detail. RTR uncertainty is used by incremental dynamic analysis (IDA), modelling uncertainties are considered through backbone curves and hysteresis loops of component, and cognitive uncertainty is presented in three levels of material quality. IDA is used to evaluate RTR uncertainty based on strong ground motion records selected by the k-means algorithm, which is favoured over Monte Carlo selection due to its time saving appeal. Analytical equations of the Response Surface Method are obtained through IDA results by the Cuckoo algorithm, which predicts the mean and standard deviation of the collapse fragility curve. The Takagi-Sugeno-Kang model is used to represent material quality based on the response surface coefficients. Finally, collapse fragility curves with the various sources of uncertainties mentioned are derived through a large number of material quality values and meta variables inferred by the Takagi-Sugeno-Kang fuzzy model based on response surface method coefficients. It is concluded that a better risk management strategy in countries where material quality control is weak, is to account for cognitive uncertainties in fragility curves and the mean annual frequency.
NASA Astrophysics Data System (ADS)
Mel, Riccardo; Viero, Daniele Pietro; Carniello, Luca; Defina, Andrea; D'Alpaos, Luigi
2014-09-01
Providing reliable and accurate storm surge forecasts is important for a wide range of problems related to coastal environments. In order to adequately support decision-making processes, it also become increasingly important to be able to estimate the uncertainty associated with the storm surge forecast. The procedure commonly adopted to do this uses the results of a hydrodynamic model forced by a set of different meteorological forecasts; however, this approach requires a considerable, if not prohibitive, computational cost for real-time application. In the present paper we present two simplified methods for estimating the uncertainty affecting storm surge prediction with moderate computational effort. In the first approach we use a computationally fast, statistical tidal model instead of a hydrodynamic numerical model to estimate storm surge uncertainty. The second approach is based on the observation that the uncertainty in the sea level forecast mainly stems from the uncertainty affecting the meteorological fields; this has led to the idea to estimate forecast uncertainty via a linear combination of suitable meteorological variances, directly extracted from the meteorological fields. The proposed methods were applied to estimate the uncertainty in the storm surge forecast in the Venice Lagoon. The results clearly show that the uncertainty estimated through a linear combination of suitable meteorological variances nicely matches the one obtained using the deterministic approach and overcomes some intrinsic limitations in the use of a statistical tidal model.
Huang, Zhijiong; Hu, Yongtao; Zheng, Junyu; Yuan, Zibing; Russell, Armistead G; Ou, Jiamin; Zhong, Zhuangmin
2017-04-04
The traditional reduced-form model (RFM) based on the high-order decoupled direct method (HDDM), is an efficient uncertainty analysis approach for air quality models, but it has large biases in uncertainty propagation due to the limitation of the HDDM in predicting nonlinear responses to large perturbations of model inputs. To overcome the limitation, a new stepwise-based RFM method that combines several sets of local sensitive coefficients under different conditions is proposed. Evaluations reveal that the new RFM improves the prediction of nonlinear responses. The new method is applied to quantify uncertainties in simulated PM 2.5 concentrations in the Pearl River Delta (PRD) region of China as a case study. Results show that the average uncertainty range of hourly PM 2.5 concentrations is -28% to 57%, which can cover approximately 70% of the observed PM 2.5 concentrations, while the traditional RFM underestimates the upper bound of the uncertainty range by 1-6%. Using a variance-based method, the PM 2.5 boundary conditions and primary PM 2.5 emissions are found to be the two major uncertainty sources in PM 2.5 simulations. The new RFM better quantifies the uncertainty range in model simulations and can be applied to improve applications that rely on uncertainty information.
NASA Astrophysics Data System (ADS)
Hernández-López, Mario R.; Romero-Cuéllar, Jonathan; Camilo Múnera-Estrada, Juan; Coccia, Gabriele; Francés, Félix
2017-04-01
It is noticeably important to emphasize the role of uncertainty particularly when the model forecasts are used to support decision-making and water management. This research compares two approaches for the evaluation of the predictive uncertainty in hydrological modeling. First approach is the Bayesian Joint Inference of hydrological and error models. Second approach is carried out through the Model Conditional Processor using the Truncated Normal Distribution in the transformed space. This comparison is focused on the predictive distribution reliability. The case study is applied to two basins included in the Model Parameter Estimation Experiment (MOPEX). These two basins, which have different hydrological complexity, are the French Broad River (North Carolina) and the Guadalupe River (Texas). The results indicate that generally, both approaches are able to provide similar predictive performances. However, the differences between them can arise in basins with complex hydrology (e.g. ephemeral basins). This is because obtained results with Bayesian Joint Inference are strongly dependent on the suitability of the hypothesized error model. Similarly, the results in the case of the Model Conditional Processor are mainly influenced by the selected model of tails or even by the selected full probability distribution model of the data in the real space, and by the definition of the Truncated Normal Distribution in the transformed space. In summary, the different hypotheses that the modeler choose on each of the two approaches are the main cause of the different results. This research also explores a proper combination of both methodologies which could be useful to achieve less biased hydrological parameter estimation. For this approach, firstly the predictive distribution is obtained through the Model Conditional Processor. Secondly, this predictive distribution is used to derive the corresponding additive error model which is employed for the hydrological parameter estimation with the Bayesian Joint Inference methodology.
NASA Astrophysics Data System (ADS)
Langer, P.; Sepahvand, K.; Guist, C.; Bär, J.; Peplow, A.; Marburg, S.
2018-03-01
The simulation model which examines the dynamic behavior of real structures needs to address the impact of uncertainty in both geometry and material parameters. This article investigates three-dimensional finite element models for structural dynamics problems with respect to both model and parameter uncertainties. The parameter uncertainties are determined via laboratory measurements on several beam-like samples. The parameters are then considered as random variables to the finite element model for exploring the uncertainty effects on the quality of the model outputs, i.e. natural frequencies. The accuracy of the output predictions from the model is compared with the experimental results. To this end, the non-contact experimental modal analysis is conducted to identify the natural frequency of the samples. The results show a good agreement compared with experimental data. Furthermore, it is demonstrated that geometrical uncertainties have more influence on the natural frequencies compared to material parameters and material uncertainties are about two times higher than geometrical uncertainties. This gives valuable insights for improving the finite element model due to various parameter ranges required in a modeling process involving uncertainty.
Evaluation of calibration efficacy under different levels of uncertainty
Heo, Yeonsook; Graziano, Diane J.; Guzowski, Leah; ...
2014-06-10
This study examines how calibration performs under different levels of uncertainty in model input data. It specifically assesses the efficacy of Bayesian calibration to enhance the reliability of EnergyPlus model predictions. A Bayesian approach can be used to update uncertain values of parameters, given measured energy-use data, and to quantify the associated uncertainty.We assess the efficacy of Bayesian calibration under a controlled virtual-reality setup, which enables rigorous validation of the accuracy of calibration results in terms of both calibrated parameter values and model predictions. Case studies demonstrate the performance of Bayesian calibration of base models developed from audit data withmore » differing levels of detail in building design, usage, and operation.« less
NASA Astrophysics Data System (ADS)
Honti, Mark; Schuwirth, Nele; Rieckermann, Jörg; Stamm, Christian
2017-03-01
The design and evaluation of solutions for integrated surface water quality management requires an integrated modelling approach. Integrated models have to be comprehensive enough to cover the aspects relevant for management decisions, allowing for mapping of larger-scale processes such as climate change to the regional and local contexts. Besides this, models have to be sufficiently simple and fast to apply proper methods of uncertainty analysis, covering model structure deficits and error propagation through the chain of sub-models. Here, we present a new integrated catchment model satisfying both conditions. The conceptual iWaQa
model was developed to support the integrated management of small streams. It can be used to predict traditional water quality parameters, such as nutrients and a wide set of organic micropollutants (plant and material protection products), by considering all major pollutant pathways in urban and agricultural environments. Due to its simplicity, the model allows for a full, propagative analysis of predictive uncertainty, including certain structural and input errors. The usefulness of the model is demonstrated by predicting future surface water quality in a small catchment with mixed land use in the Swiss Plateau. We consider climate change, population growth or decline, socio-economic development, and the implementation of management strategies to tackle urban and agricultural point and non-point sources of pollution. Our results indicate that input and model structure uncertainties are the most influential factors for certain water quality parameters. In these cases model uncertainty is already high for present conditions. Nevertheless, accounting for today's uncertainty makes management fairly robust to the foreseen range of potential changes in the next decades. The assessment of total predictive uncertainty allows for selecting management strategies that show small sensitivity to poorly known boundary conditions. The identification of important sources of uncertainty helps to guide future monitoring efforts and pinpoints key indicators, whose evolution should be closely followed to adapt management. The possible impact of climate change is clearly demonstrated by water quality substantially changing depending on single climate model chains. However, when all climate trajectories are combined, the human land use and management decisions have a larger influence on water quality against a time horizon of 2050 in the study.
NASA Astrophysics Data System (ADS)
Wang, S.; Huang, G. H.; Baetz, B. W.; Ancell, B. C.
2017-05-01
The particle filtering techniques have been receiving increasing attention from the hydrologic community due to its ability to properly estimate model parameters and states of nonlinear and non-Gaussian systems. To facilitate a robust quantification of uncertainty in hydrologic predictions, it is necessary to explicitly examine the forward propagation and evolution of parameter uncertainties and their interactions that affect the predictive performance. This paper presents a unified probabilistic framework that merges the strengths of particle Markov chain Monte Carlo (PMCMC) and factorial polynomial chaos expansion (FPCE) algorithms to robustly quantify and reduce uncertainties in hydrologic predictions. A Gaussian anamorphosis technique is used to establish a seamless bridge between the data assimilation using the PMCMC and the uncertainty propagation using the FPCE through a straightforward transformation of posterior distributions of model parameters. The unified probabilistic framework is applied to the Xiangxi River watershed of the Three Gorges Reservoir (TGR) region in China to demonstrate its validity and applicability. Results reveal that the degree of spatial variability of soil moisture capacity is the most identifiable model parameter with the fastest convergence through the streamflow assimilation process. The potential interaction between the spatial variability in soil moisture conditions and the maximum soil moisture capacity has the most significant effect on the performance of streamflow predictions. In addition, parameter sensitivities and interactions vary in magnitude and direction over time due to temporal and spatial dynamics of hydrologic processes.
Interval Predictor Models with a Formal Characterization of Uncertainty and Reliability
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Giesy, Daniel P.; Kenny, Sean P.
2014-01-01
This paper develops techniques for constructing empirical predictor models based on observations. By contrast to standard models, which yield a single predicted output at each value of the model's inputs, Interval Predictors Models (IPM) yield an interval into which the unobserved output is predicted to fall. The IPMs proposed prescribe the output as an interval valued function of the model's inputs, render a formal description of both the uncertainty in the model's parameters and of the spread in the predicted output. Uncertainty is prescribed as a hyper-rectangular set in the space of model's parameters. The propagation of this set through the empirical model yields a range of outputs of minimal spread containing all (or, depending on the formulation, most) of the observations. Optimization-based strategies for calculating IPMs and eliminating the effects of outliers are proposed. Outliers are identified by evaluating the extent by which they degrade the tightness of the prediction. This evaluation can be carried out while the IPM is calculated. When the data satisfies mild stochastic assumptions, and the optimization program used for calculating the IPM is convex (or, when its solution coincides with the solution to an auxiliary convex program), the model's reliability (that is, the probability that a future observation would be within the predicted range of outputs) can be bounded rigorously by a non-asymptotic formula.
Sonic Boom Pressure Signature Uncertainty Calculation and Propagation to Ground Noise
NASA Technical Reports Server (NTRS)
West, Thomas K., IV; Bretl, Katherine N.; Walker, Eric L.; Pinier, Jeremy T.
2015-01-01
The objective of this study was to outline an approach for the quantification of uncertainty in sonic boom measurements and to investigate the effect of various near-field uncertainty representation approaches on ground noise predictions. These approaches included a symmetric versus asymmetric uncertainty band representation and a dispersion technique based on a partial sum Fourier series that allows for the inclusion of random error sources in the uncertainty. The near-field uncertainty was propagated to the ground level, along with additional uncertainty in the propagation modeling. Estimates of perceived loudness were obtained for the various types of uncertainty representation in the near-field. Analyses were performed on three configurations of interest to the sonic boom community: the SEEB-ALR, the 69o DeltaWing, and the LM 1021-01. Results showed that representation of the near-field uncertainty plays a key role in ground noise predictions. Using a Fourier series based dispersion approach can double the amount of uncertainty in the ground noise compared to a pure bias representation. Compared to previous computational fluid dynamics results, uncertainty in ground noise predictions were greater when considering the near-field experimental uncertainty.
Benchmarking hydrological model predictive capability for UK River flows and flood peaks.
NASA Astrophysics Data System (ADS)
Lane, Rosanna; Coxon, Gemma; Freer, Jim; Wagener, Thorsten
2017-04-01
Data and hydrological models are now available for national hydrological analyses. However, hydrological model performance varies between catchments, and lumped, conceptual models are not able to produce adequate simulations everywhere. This study aims to benchmark hydrological model performance for catchments across the United Kingdom within an uncertainty analysis framework. We have applied four hydrological models from the FUSE framework to 1128 catchments across the UK. These models are all lumped models and run at a daily timestep, but differ in the model structural architecture and process parameterisations, therefore producing different but equally plausible simulations. We apply FUSE over a 20 year period from 1988-2008, within a GLUE Monte Carlo uncertainty analyses framework. Model performance was evaluated for each catchment, model structure and parameter set using standard performance metrics. These were calculated both for the whole time series and to assess seasonal differences in model performance. The GLUE uncertainty analysis framework was then applied to produce simulated 5th and 95th percentile uncertainty bounds for the daily flow time-series and additionally the annual maximum prediction bounds for each catchment. The results show that the model performance varies significantly in space and time depending on catchment characteristics including climate, geology and human impact. We identify regions where models are systematically failing to produce good results, and present reasons why this could be the case. We also identify regions or catchment characteristics where one model performs better than others, and have explored what structural component or parameterisation enables certain models to produce better simulations in these catchments. Model predictive capability was assessed for each catchment, through looking at the ability of the models to produce discharge prediction bounds which successfully bound the observed discharge. These results improve our understanding of the predictive capability of simple conceptual hydrological models across the UK and help us to identify where further effort is needed to develop modelling approaches to better represent different catchment and climate typologies.
NASA Astrophysics Data System (ADS)
Berthet, Lionel; Marty, Renaud; Bourgin, François; Viatgé, Julie; Piotte, Olivier; Perrin, Charles
2017-04-01
An increasing number of operational flood forecasting centres assess the predictive uncertainty associated with their forecasts and communicate it to the end users. This information can match the end-users needs (i.e. prove to be useful for an efficient crisis management) only if it is reliable: reliability is therefore a key quality for operational flood forecasts. In 2015, the French flood forecasting national and regional services (Vigicrues network; www.vigicrues.gouv.fr) implemented a framework to compute quantitative discharge and water level forecasts and to assess the predictive uncertainty. Among the possible technical options to achieve this goal, a statistical analysis of past forecasting errors of deterministic models has been selected (QUOIQUE method, Bourgin, 2014). It is a data-based and non-parametric approach based on as few assumptions as possible about the forecasting error mathematical structure. In particular, a very simple assumption is made regarding the predictive uncertainty distributions for large events outside the range of the calibration data: the multiplicative error distribution is assumed to be constant, whatever the magnitude of the flood. Indeed, the predictive distributions may not be reliable in extrapolation. However, estimating the predictive uncertainty for these rare events is crucial when major floods are of concern. In order to improve the forecasts reliability for major floods, an attempt at combining the operational strength of the empirical statistical analysis and a simple error modelling is done. Since the heteroscedasticity of forecast errors can considerably weaken the predictive reliability for large floods, this error modelling is based on the log-sinh transformation which proved to reduce significantly the heteroscedasticity of the transformed error in a simulation context, even for flood peaks (Wang et al., 2012). Exploratory tests on some operational forecasts issued during the recent floods experienced in France (major spring floods in June 2016 on the Loire river tributaries and flash floods in fall 2016) will be shown and discussed. References Bourgin, F. (2014). How to assess the predictive uncertainty in hydrological modelling? An exploratory work on a large sample of watersheds, AgroParisTech Wang, Q. J., Shrestha, D. L., Robertson, D. E. and Pokhrel, P (2012). A log-sinh transformation for data normalization and variance stabilization. Water Resources Research, , W05514, doi:10.1029/2011WR010973
Using models for the optimization of hydrologic monitoring
Fienen, Michael N.; Hunt, Randall J.; Doherty, John E.; Reeves, Howard W.
2011-01-01
Hydrologists are often asked what kind of monitoring network can most effectively support science-based water-resources management decisions. Currently (2011), hydrologic monitoring locations often are selected by addressing observation gaps in the existing network or non-science issues such as site access. A model might then be calibrated to available data and applied to a prediction of interest (regardless of how well-suited that model is for the prediction). However, modeling tools are available that can inform which locations and types of data provide the most 'bang for the buck' for a specified prediction. Put another way, the hydrologist can determine which observation data most reduce the model uncertainty around a specified prediction. An advantage of such an approach is the maximization of limited monitoring resources because it focuses on the difference in prediction uncertainty with or without additional collection of field data. Data worth can be calculated either through the addition of new data or subtraction of existing information by reducing monitoring efforts (Beven, 1993). The latter generally is not widely requested as there is explicit recognition that the worth calculated is fundamentally dependent on the prediction specified. If a water manager needs a new prediction, the benefits of reducing the scope of a monitoring effort, based on an old prediction, may be erased by the loss of information important for the new prediction. This fact sheet focuses on the worth or value of new data collection by quantifying the reduction in prediction uncertainty achieved be adding a monitoring observation. This calculation of worth can be performed for multiple potential locations (and types) of observations, which then can be ranked for their effectiveness for reducing uncertainty around the specified prediction. This is implemented using a Bayesian approach with the PREDUNC utility in the parameter estimation software suite PEST (Doherty, 2010). The techniques briefly described earlier are described in detail in a U.S. Geological Survey Scientific Investigations Report available on the Internet (Fienen and others, 2010; http://pubs.usgs.gov/sir/2010/5159/). This fact sheet presents a synopsis of the techniques as applied to a synthetic model based on a model constructed using properties from the Lake Michigan Basin (Hoard, 2010).
Fieberg, J.; Jenkins, Kurt J.
2005-01-01
Often landmark conservation decisions are made despite an incomplete knowledge of system behavior and inexact predictions of how complex ecosystems will respond to management actions. For example, predicting the feasibility and likely effects of restoring top-level carnivores such as the gray wolf (Canis lupus) to North American wilderness areas is hampered by incomplete knowledge of the predator-prey system processes and properties. In such cases, global sensitivity measures, such as Sobola?? indices, allow one to quantify the effect of these uncertainties on model predictions. Sobola?? indices are calculated by decomposing the variance in model predictions (due to parameter uncertainty) into main effects of model parameters and their higher order interactions. Model parameters with large sensitivity indices can then be identified for further study in order to improve predictive capabilities. Here, we illustrate the use of Sobola?? sensitivity indices to examine the effect of parameter uncertainty on the predicted decline of elk (Cervus elaphus) population sizes following a hypothetical reintroduction of wolves to Olympic National Park, Washington, USA. The strength of density dependence acting on survival of adult elk and magnitude of predation were the most influential factors controlling elk population size following a simulated wolf reintroduction. In particular, the form of density dependence in natural survival rates and the per-capita predation rate together accounted for over 90% of variation in simulated elk population trends. Additional research on wolf predation rates on elk and natural compensations in prey populations is needed to reliably predict the outcome of predatora??prey system behavior following wolf reintroductions.
NASA Astrophysics Data System (ADS)
Gbaguidi, Audrey J.-M.
Structural health monitoring (SHM) has become indispensable for reducing maintenance costs and increasing the in-service capacity of a structure. The increased use of lightweight composite materials in aircraft structures drastically increased the effects of fatigue induced damage on their critical structural components and thus the necessity to predict the remaining life of those components. Damage prognosis, one of the least investigated fields in SHM, uses the current damage state of the system to forecast its future performance by estimating the expected loading environments. A successful damage prediction model requires the integration of technologies in areas like measurements, materials science, mechanics of materials, and probability theories, but most importantly the quantification of uncertainty in all these areas. In this study, Affine Arithmetic is used as a method for incorporating the uncertainties due to the material properties into the fatigue life prognosis of composite plates subjected to cyclic compressive loadings. When loadings are compressive in nature, the composite plates undergo repeated buckling-unloading of the delaminated layer which induces mixed modes I and II states of stress at the tip of the delamination in the plates. The Kardomateas model-based prediction law is used to predict the growth of the delamination, while the integration of the effects of the uncertainties for modes I and II coefficients in the fatigue life prediction model is handled using Affine arithmetic. The Mode I and Mode II interlaminar fracture toughness and fatigue characterization of the composite plates are first experimentally studied to obtain the material coefficients and fracture toughness, respectively. Next, these obtained coefficients are used in the Kardomateas law to predict the delamination lengths in the composite plates while using Affine Arithmetic to handle their uncertainties. At last, the fatigue characterization of the composite plates during compressive-buckling loadings is experimentally studied, and the delamination lengths obtained are compared with the predicted values to check the performance of Affine Arithmetic as an uncertainty propagation tool.
USDA-ARS?s Scientific Manuscript database
Simulation models are extensively used to predict agricultural productivity and greenhouse gas (GHG) emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multisp...
Assessing uncertainty in high-resolution spatial climate data across the US Northeast.
Bishop, Daniel A; Beier, Colin M
2013-01-01
Local and regional-scale knowledge of climate change is needed to model ecosystem responses, assess vulnerabilities and devise effective adaptation strategies. High-resolution gridded historical climate (GHC) products address this need, but come with multiple sources of uncertainty that are typically not well understood by data users. To better understand this uncertainty in a region with a complex climatology, we conducted a ground-truthing analysis of two 4 km GHC temperature products (PRISM and NRCC) for the US Northeast using 51 Cooperative Network (COOP) weather stations utilized by both GHC products. We estimated GHC prediction error for monthly temperature means and trends (1980-2009) across the US Northeast and evaluated any landscape effects (e.g., elevation, distance from coast) on those prediction errors. Results indicated that station-based prediction errors for the two GHC products were similar in magnitude, but on average, the NRCC product predicted cooler than observed temperature means and trends, while PRISM was cooler for means and warmer for trends. We found no evidence for systematic sources of uncertainty across the US Northeast, although errors were largest at high elevations. Errors in the coarse-scale (4 km) digital elevation models used by each product were correlated with temperature prediction errors, more so for NRCC than PRISM. In summary, uncertainty in spatial climate data has many sources and we recommend that data users develop an understanding of uncertainty at the appropriate scales for their purposes. To this end, we demonstrate a simple method for utilizing weather stations to assess local GHC uncertainty and inform decisions among alternative GHC products.
Thermospheric mass density model error variance as a function of time scale
NASA Astrophysics Data System (ADS)
Emmert, J. T.; Sutton, E. K.
2017-12-01
In the increasingly crowded low-Earth orbit environment, accurate estimation of orbit prediction uncertainties is essential for collision avoidance. Poor characterization of such uncertainty can result in unnecessary and costly avoidance maneuvers (false positives) or disregard of a collision risk (false negatives). Atmospheric drag is a major source of orbit prediction uncertainty, and is particularly challenging to account for because it exerts a cumulative influence on orbital trajectories and is therefore not amenable to representation by a single uncertainty parameter. To address this challenge, we examine the variance of measured accelerometer-derived and orbit-derived mass densities with respect to predictions by thermospheric empirical models, using the data-minus-model variance as a proxy for model uncertainty. Our analysis focuses mainly on the power spectrum of the residuals, and we construct an empirical model of the variance as a function of time scale (from 1 hour to 10 years), altitude, and solar activity. We find that the power spectral density approximately follows a power-law process but with an enhancement near the 27-day solar rotation period. The residual variance increases monotonically with altitude between 250 and 550 km. There are two components to the variance dependence on solar activity: one component is 180 degrees out of phase (largest variance at solar minimum), and the other component lags 2 years behind solar maximum (largest variance in the descending phase of the solar cycle).
NASA Astrophysics Data System (ADS)
Edouard, Simon; Vincendon, Béatrice; Ducrocq, Véronique
2018-05-01
Intense precipitation events in the Mediterranean often lead to devastating flash floods (FF). FF modelling is affected by several kinds of uncertainties and Hydrological Ensemble Prediction Systems (HEPS) are designed to take those uncertainties into account. The major source of uncertainty comes from rainfall forcing and convective-scale meteorological ensemble prediction systems can manage it for forecasting purpose. But other sources are related to the hydrological modelling part of the HEPS. This study focuses on the uncertainties arising from the hydrological model parameters and initial soil moisture with aim to design an ensemble-based version of an hydrological model dedicated to Mediterranean fast responding rivers simulations, the ISBA-TOP coupled system. The first step consists in identifying the parameters that have the strongest influence on FF simulations by assuming perfect precipitation. A sensitivity study is carried out first using a synthetic framework and then for several real events and several catchments. Perturbation methods varying the most sensitive parameters as well as initial soil moisture allow designing an ensemble-based version of ISBA-TOP. The first results of this system on some real events are presented. The direct perspective of this work will be to drive this ensemble-based version with the members of a convective-scale meteorological ensemble prediction system to design a complete HEPS for FF forecasting.
Visual Attention to Radar Displays
NASA Technical Reports Server (NTRS)
Moray, N.; Richards, M.; Brophy, C.
1984-01-01
A model is described which predicts the allocation of attention to the features of a radar display. It uses the growth of uncertainty and the probability of near collision to call the eye to a feature of the display. The main source of uncertainty is forgetting following a fixation, which is modelled as a two dimensional diffusion process. The model was used to predict information overload in intercept controllers, and preliminary validation obtained by recording eye movements of intercept controllers in simulated and live (practice) interception.
NASA Astrophysics Data System (ADS)
Cockx, K.; Van de Voorde, T.; Canters, F.; Poelmans, L.; Uljee, I.; Engelen, G.; de Jong, K.; Karssenberg, D.; van der Kwast, J.
2013-05-01
Building urban growth models typically involves a process of historic calibration based on historic time series of land-use maps, usually obtained from satellite imagery. Both the remote sensing data analysis to infer land use and the subsequent modelling of land-use change are subject to uncertainties, which may have an impact on the accuracy of future land-use predictions. Our research aims to quantify and reduce these uncertainties by means of a particle filter data assimilation approach that incorporates uncertainty in land-use mapping and land-use model parameter assessment into the calibration process. This paper focuses on part of this work, more in particular the modelling of uncertainties associated with the impervious surface cover estimation and urban land-use classification adopted in the land-use mapping approach. Both stages are submitted to a Monte Carlo simulation to assess their relative contribution to and their combined impact on the uncertainty in the derived land-use maps. The approach was applied on the central part of the Flanders region (Belgium), using a time-series of Landsat/SPOT-HRV data covering the years 1987, 1996, 2005 and 2012. Although the most likely land-use map obtained from the simulation is very similar to the original classification, it is shown that the errors related to the impervious surface sub-pixel fraction estimation have a strong impact on the land-use map's uncertainty. Hence, incorporating uncertainty in the land-use change model calibration through particle filter data assimilation is proposed to address the uncertainty observed in the derived land-use maps and to reduce uncertainty in future land-use predictions.
NASA Astrophysics Data System (ADS)
Leube, Philipp; Geiges, Andreas; Nowak, Wolfgang
2010-05-01
Incorporating hydrogeological data, such as head and tracer data, into stochastic models of subsurface flow and transport helps to reduce prediction uncertainty. Considering limited financial resources available for the data acquisition campaign, information needs towards the prediction goal should be satisfied in a efficient and task-specific manner. For finding the best one among a set of design candidates, an objective function is commonly evaluated, which measures the expected impact of data on prediction confidence, prior to their collection. An appropriate approach to this task should be stochastically rigorous, master non-linear dependencies between data, parameters and model predictions, and allow for a wide variety of different data types. Existing methods fail to fulfill all these requirements simultaneously. For this reason, we introduce a new method, denoted as CLUE (Cross-bred Likelihood Uncertainty Estimator), that derives the essential distributions and measures of data utility within a generalized, flexible and accurate framework. The method makes use of Bayesian GLUE (Generalized Likelihood Uncertainty Estimator) and extends it to an optimal design method by marginalizing over the yet unknown data values. Operating in a purely Bayesian Monte-Carlo framework, CLUE is a strictly formal information processing scheme free of linearizations. It provides full flexibility associated with the type of measurements (linear, non-linear, direct, indirect) and accounts for almost arbitrary sources of uncertainty (e.g. heterogeneity, geostatistical assumptions, boundary conditions, model concepts) via stochastic simulation and Bayesian model averaging. This helps to minimize the strength and impact of possible subjective prior assumptions, that would be hard to defend prior to data collection. Our study focuses on evaluating two different uncertainty measures: (i) expected conditional variance and (ii) expected relative entropy of a given prediction goal. The applicability and advantages are shown in a synthetic example. Therefor, we consider a contaminant source, posing a threat on a drinking water well in an aquifer. Furthermore, we assume uncertainty in geostatistical parameters, boundary conditions and hydraulic gradient. The two mentioned measures evaluate the sensitivity of (1) general prediction confidence and (2) exceedance probability of a legal regulatory threshold value on sampling locations.
A Gaussian Processes Technique for Short-term Load Forecasting with Considerations of Uncertainty
NASA Astrophysics Data System (ADS)
Ohmi, Masataro; Mori, Hiroyuki
In this paper, an efficient method is proposed to deal with short-term load forecasting with the Gaussian Processes. Short-term load forecasting plays a key role to smooth power system operation such as economic load dispatching, unit commitment, etc. Recently, the deregulated and competitive power market increases the degree of uncertainty. As a result, it is more important to obtain better prediction results to save the cost. One of the most important aspects is that power system operator needs the upper and lower bounds of the predicted load to deal with the uncertainty while they require more accurate predicted values. The proposed method is based on the Bayes model in which output is expressed in a distribution rather than a point. To realize the model efficiently, this paper proposes the Gaussian Processes that consists of the Bayes linear model and kernel machine to obtain the distribution of the predicted value. The proposed method is successively applied to real data of daily maximum load forecasting.
Bayesian analysis of input uncertainty in hydrological modeling: 2. Application
NASA Astrophysics Data System (ADS)
Kavetski, Dmitri; Kuczera, George; Franks, Stewart W.
2006-03-01
The Bayesian total error analysis (BATEA) methodology directly addresses both input and output errors in hydrological modeling, requiring the modeler to make explicit, rather than implicit, assumptions about the likely extent of data uncertainty. This study considers a BATEA assessment of two North American catchments: (1) French Broad River and (2) Potomac basins. It assesses the performance of the conceptual Variable Infiltration Capacity (VIC) model with and without accounting for input (precipitation) uncertainty. The results show the considerable effects of precipitation errors on the predicted hydrographs (especially the prediction limits) and on the calibrated parameters. In addition, the performance of BATEA in the presence of severe model errors is analyzed. While BATEA allows a very direct treatment of input uncertainty and yields some limited insight into model errors, it requires the specification of valid error models, which are currently poorly understood and require further work. Moreover, it leads to computationally challenging highly dimensional problems. For some types of models, including the VIC implemented using robust numerical methods, the computational cost of BATEA can be reduced using Newton-type methods.
A comprehensive evaluation of input data-induced uncertainty in nonpoint source pollution modeling
NASA Astrophysics Data System (ADS)
Chen, L.; Gong, Y.; Shen, Z.
2015-11-01
Watershed models have been used extensively for quantifying nonpoint source (NPS) pollution, but few studies have been conducted on the error-transitivity from different input data sets to NPS modeling. In this paper, the effects of four input data, including rainfall, digital elevation models (DEMs), land use maps, and the amount of fertilizer, on NPS simulation were quantified and compared. A systematic input-induced uncertainty was investigated using watershed model for phosphorus load prediction. Based on the results, the rain gauge density resulted in the largest model uncertainty, followed by DEMs, whereas land use and fertilizer amount exhibited limited impacts. The mean coefficient of variation for errors in single rain gauges-, multiple gauges-, ASTER GDEM-, NFGIS DEM-, land use-, and fertilizer amount information was 0.390, 0.274, 0.186, 0.073, 0.033 and 0.005, respectively. The use of specific input information, such as key gauges, is also highlighted to achieve the required model accuracy. In this sense, these results provide valuable information to other model-based studies for the control of prediction uncertainty.
Protein construct storage: Bayesian variable selection and prediction with mixtures.
Clyde, M A; Parmigiani, G
1998-07-01
Determining optimal conditions for protein storage while maintaining a high level of protein activity is an important question in pharmaceutical research. A designed experiment based on a space-filling design was conducted to understand the effects of factors affecting protein storage and to establish optimal storage conditions. Different model-selection strategies to identify important factors may lead to very different answers about optimal conditions. Uncertainty about which factors are important, or model uncertainty, can be a critical issue in decision-making. We use Bayesian variable selection methods for linear models to identify important variables in the protein storage data, while accounting for model uncertainty. We also use the Bayesian framework to build predictions based on a large family of models, rather than an individual model, and to evaluate the probability that certain candidate storage conditions are optimal.
Quantification of uncertainties for application in detonation simulation
NASA Astrophysics Data System (ADS)
Zheng, Miao; Ma, Zhibo
2016-06-01
Numerical simulation has become an important means in designing detonation systems, and the quantification of its uncertainty is also necessary to reliability certification. As to quantifying the uncertainty, it is the most important to analyze how the uncertainties occur and develop, and how the simulations develop from benchmark models to new models. Based on the practical needs of engineering and the technology of verification & validation, a framework of QU(quantification of uncertainty) is brought forward in the case that simulation is used on detonation system for scientific prediction. An example is offered to describe the general idea of quantification of simulation uncertainties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sig Drellack, Lance Prothro
2007-12-01
The Underground Test Area (UGTA) Project of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is in the process of assessing and developing regulatory decision options based on modeling predictions of contaminant transport from underground testing of nuclear weapons at the Nevada Test Site (NTS). The UGTA Project is attempting to develop an effective modeling strategy that addresses and quantifies multiple components of uncertainty including natural variability, parameter uncertainty, conceptual/model uncertainty, and decision uncertainty in translating model results into regulatory requirements. The modeling task presents multiple unique challenges to the hydrological sciences as a result ofmore » the complex fractured and faulted hydrostratigraphy, the distributed locations of sources, the suite of reactive and non-reactive radionuclides, and uncertainty in conceptual models. Characterization of the hydrogeologic system is difficult and expensive because of deep groundwater in the arid desert setting and the large spatial setting of the NTS. Therefore, conceptual model uncertainty is partially addressed through the development of multiple alternative conceptual models of the hydrostratigraphic framework and multiple alternative models of recharge and discharge. Uncertainty in boundary conditions is assessed through development of alternative groundwater fluxes through multiple simulations using the regional groundwater flow model. Calibration of alternative models to heads and measured or inferred fluxes has not proven to provide clear measures of model quality. Therefore, model screening by comparison to independently-derived natural geochemical mixing targets through cluster analysis has also been invoked to evaluate differences between alternative conceptual models. Advancing multiple alternative flow models, sensitivity of transport predictions to parameter uncertainty is assessed through Monte Carlo simulations. The simulations are challenged by the distributed sources in each of the Corrective Action Units, by complex mass transfer processes, and by the size and complexity of the field-scale flow models. An efficient methodology utilizing particle tracking results and convolution integrals provides in situ concentrations appropriate for Monte Carlo analysis. Uncertainty in source releases and transport parameters including effective porosity, fracture apertures and spacing, matrix diffusion coefficients, sorption coefficients, and colloid load and mobility are considered. With the distributions of input uncertainties and output plume volumes, global analysis methods including stepwise regression, contingency table analysis, and classification tree analysis are used to develop sensitivity rankings of parameter uncertainties for each model considered, thus assisting a variety of decisions.« less
Satellite Re-entry Modeling and Uncertainty Quantification
NASA Astrophysics Data System (ADS)
Horsley, M.
2012-09-01
LEO trajectory modeling is a fundamental aerospace capability and has applications in many areas of aerospace, such as maneuver planning, sensor scheduling, re-entry prediction, collision avoidance, risk analysis, and formation flying. Somewhat surprisingly, modeling the trajectory of an object in low Earth orbit is still a challenging task. This is primarily due to the large uncertainty in the upper atmospheric density, about 15-20% (1-sigma) for most thermosphere models. Other contributions come from our inability to precisely model future solar and geomagnetic activities, the potentially unknown shape, material construction and attitude history of the satellite, and intermittent, noisy tracking data. Current methods to predict a satellite's re-entry trajectory typically involve making a single prediction, with the uncertainty dealt with in an ad-hoc manner, usually based on past experience. However, due to the extreme speed of a LEO satellite, even small uncertainties in the re-entry time translate into a very large uncertainty in the location of the re-entry event. Currently, most methods simply update the re-entry estimate on a regular basis. This results in a wide range of estimates that are literally spread over the entire globe. With no understanding of the underlying distribution of potential impact points, the sequence of impact points predicted by the current methodology are largely useless until just a few hours before re-entry. This paper will discuss the development of a set of the High Performance Computing (HPC)-based capabilities to support near real-time quantification of the uncertainty inherent in uncontrolled satellite re-entries. An appropriate management of the uncertainties is essential for a rigorous treatment of the re-entry/LEO trajectory problem. The development of HPC-based tools for re-entry analysis is important as it will allow a rigorous and robust approach to risk assessment by decision makers in an operational setting. Uncertainty quantification results from the recent uncontrolled re-entry of the Phobos-Grunt satellite will be presented and discussed. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Matos, José P.; Schaefli, Bettina; Schleiss, Anton J.
2017-04-01
Uncertainty affects hydrological modelling efforts from the very measurements (or forecasts) that serve as inputs to the more or less inaccurate predictions that are produced. Uncertainty is truly inescapable in hydrology and yet, due to the theoretical and technical hurdles associated with its quantification, it is at times still neglected or estimated only qualitatively. In recent years the scientific community has made a significant effort towards quantifying this hydrologic prediction uncertainty. Despite this, most of the developed methodologies can be computationally demanding, are complex from a theoretical point of view, require substantial expertise to be employed, and are constrained by a number of assumptions about the model error distribution. These assumptions limit the reliability of many methods in case of errors that show particular cases of non-normality, heteroscedasticity, or autocorrelation. The present contribution builds on a non-parametric data-driven approach that was developed for uncertainty quantification in operational (real-time) forecasting settings. The approach is based on the concept of Pareto optimality and can be used as a standalone forecasting tool or as a postprocessor. By virtue of its non-parametric nature and a general operating principle, it can be applied directly and with ease to predictions of streamflow, water stage, or even accumulated runoff. Also, it is a methodology capable of coping with high heteroscedasticity and seasonal hydrological regimes (e.g. snowmelt and rainfall driven events in the same catchment). Finally, the training and operation of the model are very fast, making it a tool particularly adapted to operational use. To illustrate its practical use, the uncertainty quantification method is coupled with a process-based hydrological model to produce statistically reliable forecasts for an Alpine catchment located in Switzerland. Results are presented and discussed in terms of their reliability and resolution.
Uncertainty in predictions of oil spill trajectories in a coastal zone
NASA Astrophysics Data System (ADS)
Sebastião, P.; Guedes Soares, C.
2006-12-01
A method is introduced to determine the uncertainties in the predictions of oil spill trajectories using a classic oil spill model. The method considers the output of the oil spill model as a function of random variables, which are the input parameters, and calculates the standard deviation of the output results which provides a measure of the uncertainty of the model as a result of the uncertainties of the input parameters. In addition to a single trajectory that is calculated by the oil spill model using the mean values of the parameters, a band of trajectories can be defined when various simulations are done taking into account the uncertainties of the input parameters. This band of trajectories defines envelopes of the trajectories that are likely to be followed by the spill given the uncertainties of the input. The method was applied to an oil spill that occurred in 1989 near Sines in the southwestern coast of Portugal. This model represented well the distinction between a wind driven part that remained offshore, and a tide driven part that went ashore. For both parts, the method defined two trajectory envelopes, one calculated exclusively with the wind fields, and the other using wind and tidal currents. In both cases reasonable approximation to the observed results was obtained. The envelope of likely trajectories that is obtained with the uncertainty modelling proved to give a better interpretation of the trajectories that were simulated by the oil spill model.
Neudecker, D.; Talou, P.; Kawano, T.; ...
2015-08-01
We present evaluations of the prompt fission neutron spectrum (PFNS) of ²³⁹Pu induced by 500 keV neutrons, and associated covariances. In a previous evaluation by Talou et al. 2010, surprisingly low evaluated uncertainties were obtained, partly due to simplifying assumptions in the quantification of uncertainties from experiment and model. Therefore, special emphasis is placed here on a thorough uncertainty quantification of experimental data and of the Los Alamos model predicted values entering the evaluation. In addition, the Los Alamos model was extended and an evaluation technique was employed that takes into account the qualitative differences between normalized model predicted valuesmore » and experimental shape data. These improvements lead to changes in the evaluated PFNS and overall larger evaluated uncertainties than in the previous work. However, these evaluated uncertainties are still smaller than those obtained in a statistical analysis using experimental information only, due to strong model correlations. Hence, suggestions to estimate model defect uncertainties are presented, which lead to more reasonable evaluated uncertainties. The calculated k eff of selected criticality benchmarks obtained with these new evaluations agree with each other within their uncertainties despite the different approaches to estimate model defect uncertainties. The k eff one standard deviations overlap with some of those obtained using ENDF/B-VII.1, albeit their mean values are further away from unity. Spectral indexes for the Jezebel critical assembly calculated with the newly evaluated PFNS agree with the experimental data for selected (n,γ) and (n,f) reactions, and show improvements for high-energy threshold (n,2n) reactions compared to ENDF/B-VII.1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neudecker, D.; Talou, P.; Kawano, T.
2015-08-01
We present evaluations of the prompt fission neutron spectrum (PFNS) of (PU)-P-239 induced by 500 keV neutrons, and associated covariances. In a previous evaluation by Talon et al. (2010), surprisingly low evaluated uncertainties were obtained, partly due to simplifying assumptions in the quantification of uncertainties from experiment and model. Therefore, special emphasis is placed here on a thorough uncertainty quantification of experimental data and of the Los Alamos model predicted values entering the evaluation. In addition, the Los Alamos model was extended and an evaluation technique was employed that takes into account the qualitative differences between normalized model predicted valuesmore » and experimental shape data These improvements lead to changes in the evaluated PENS and overall larger evaluated uncertainties than in the previous work. However, these evaluated uncertainties are still smaller than those obtained in a statistical analysis using experimental information only, due to strong model correlations. Hence, suggestions to estimate model defect uncertainties are presented. which lead to more reasonable evaluated uncertainties. The calculated k(eff) of selected criticality benchmarks obtained with these new evaluations agree with each other within their uncertainties despite the different approaches to estimate model defect uncertainties. The k(eff) one standard deviations overlap with some of those obtained using ENDF/B-VILl, albeit their mean values are further away from unity. Spectral indexes for the Jezebel critical assembly calculated with the newly evaluated PFNS agree with the experimental data for selected (n,) and (n,f) reactions, and show improvements for highenergy threshold (n,2n) reactions compared to ENDF/B-VII.l. (C) 2015 Elsevier B.V. All rights reserved.« less
Merging information from multi-model flood projections in a hierarchical Bayesian framework
NASA Astrophysics Data System (ADS)
Le Vine, Nataliya
2016-04-01
Multi-model ensembles are becoming widely accepted for flood frequency change analysis. The use of multiple models results in large uncertainty around estimates of flood magnitudes, due to both uncertainty in model selection and natural variability of river flow. The challenge is therefore to extract the most meaningful signal from the multi-model predictions, accounting for both model quality and uncertainties in individual model estimates. The study demonstrates the potential of a recently proposed hierarchical Bayesian approach to combine information from multiple models. The approach facilitates explicit treatment of shared multi-model discrepancy as well as the probabilistic nature of the flood estimates, by treating the available models as a sample from a hypothetical complete (but unobserved) set of models. The advantages of the approach are: 1) to insure an adequate 'baseline' conditions with which to compare future changes; 2) to reduce flood estimate uncertainty; 3) to maximize use of statistical information in circumstances where multiple weak predictions individually lack power, but collectively provide meaningful information; 4) to adjust multi-model consistency criteria when model biases are large; and 5) to explicitly consider the influence of the (model performance) stationarity assumption. Moreover, the analysis indicates that reducing shared model discrepancy is the key to further reduction of uncertainty in the flood frequency analysis. The findings are of value regarding how conclusions about changing exposure to flooding are drawn, and to flood frequency change attribution studies.
A stochastic method to characterize model uncertainty for a Nutrient TMDL
USDA-ARS?s Scientific Manuscript database
The U.S. EPA’s Total Maximum Daily Load (TMDL) program has encountered resistances in its implementation partly because of its strong dependence on mathematical models to set limitations on the release of impairing substances. The uncertainty associated with predictions of such models is often not s...
Tainio, Marko; Tuomisto, Jouni T; Hänninen, Otto; Ruuskanen, Juhani; Jantunen, Matti J; Pekkanen, Juha
2007-01-01
Background The estimation of health impacts involves often uncertain input variables and assumptions which have to be incorporated into the model structure. These uncertainties may have significant effects on the results obtained with model, and, thus, on decision making. Fine particles (PM2.5) are believed to cause major health impacts, and, consequently, uncertainties in their health impact assessment have clear relevance to policy-making. We studied the effects of various uncertain input variables by building a life-table model for fine particles. Methods Life-expectancy of the Helsinki metropolitan area population and the change in life-expectancy due to fine particle exposures were predicted using a life-table model. A number of parameter and model uncertainties were estimated. Sensitivity analysis for input variables was performed by calculating rank-order correlations between input and output variables. The studied model uncertainties were (i) plausibility of mortality outcomes and (ii) lag, and parameter uncertainties (iii) exposure-response coefficients for different mortality outcomes, and (iv) exposure estimates for different age groups. The monetary value of the years-of-life-lost and the relative importance of the uncertainties related to monetary valuation were predicted to compare the relative importance of the monetary valuation on the health effect uncertainties. Results The magnitude of the health effects costs depended mostly on discount rate, exposure-response coefficient, and plausibility of the cardiopulmonary mortality. Other mortality outcomes (lung cancer, other non-accidental and infant mortality) and lag had only minor impact on the output. The results highlight the importance of the uncertainties associated with cardiopulmonary mortality in the fine particle impact assessment when compared with other uncertainties. Conclusion When estimating life-expectancy, the estimates used for cardiopulmonary exposure-response coefficient, discount rate, and plausibility require careful assessment, while complicated lag estimates can be omitted without this having any major effect on the results. PMID:17714598
Tainio, Marko; Tuomisto, Jouni T; Hänninen, Otto; Ruuskanen, Juhani; Jantunen, Matti J; Pekkanen, Juha
2007-08-23
The estimation of health impacts involves often uncertain input variables and assumptions which have to be incorporated into the model structure. These uncertainties may have significant effects on the results obtained with model, and, thus, on decision making. Fine particles (PM2.5) are believed to cause major health impacts, and, consequently, uncertainties in their health impact assessment have clear relevance to policy-making. We studied the effects of various uncertain input variables by building a life-table model for fine particles. Life-expectancy of the Helsinki metropolitan area population and the change in life-expectancy due to fine particle exposures were predicted using a life-table model. A number of parameter and model uncertainties were estimated. Sensitivity analysis for input variables was performed by calculating rank-order correlations between input and output variables. The studied model uncertainties were (i) plausibility of mortality outcomes and (ii) lag, and parameter uncertainties (iii) exposure-response coefficients for different mortality outcomes, and (iv) exposure estimates for different age groups. The monetary value of the years-of-life-lost and the relative importance of the uncertainties related to monetary valuation were predicted to compare the relative importance of the monetary valuation on the health effect uncertainties. The magnitude of the health effects costs depended mostly on discount rate, exposure-response coefficient, and plausibility of the cardiopulmonary mortality. Other mortality outcomes (lung cancer, other non-accidental and infant mortality) and lag had only minor impact on the output. The results highlight the importance of the uncertainties associated with cardiopulmonary mortality in the fine particle impact assessment when compared with other uncertainties. When estimating life-expectancy, the estimates used for cardiopulmonary exposure-response coefficient, discount rate, and plausibility require careful assessment, while complicated lag estimates can be omitted without this having any major effect on the results.
Decay heat uncertainty for BWR used fuel due to modeling and nuclear data uncertainties
Ilas, Germina; Liljenfeldt, Henrik
2017-05-19
Characterization of the energy released from radionuclide decay in nuclear fuel discharged from reactors is essential for the design, safety, and licensing analyses of used nuclear fuel storage, transportation, and repository systems. There are a limited number of decay heat measurements available for commercial used fuel applications. Because decay heat measurements can be expensive or impractical for covering the multitude of existing fuel designs, operating conditions, and specific application purposes, decay heat estimation relies heavily on computer code prediction. Uncertainty evaluation for calculated decay heat is an important aspect when assessing code prediction and a key factor supporting decision makingmore » for used fuel applications. While previous studies have largely focused on uncertainties in code predictions due to nuclear data uncertainties, this study discusses uncertainties in calculated decay heat due to uncertainties in assembly modeling parameters as well as in nuclear data. Capabilities in the SCALE nuclear analysis code system were used to quantify the effect on calculated decay heat of uncertainties in nuclear data and selected manufacturing and operation parameters for a typical boiling water reactor (BWR) fuel assembly. Furthermore, the BWR fuel assembly used as the reference case for this study was selected from a set of assemblies for which high-quality decay heat measurements are available, to assess the significance of the results through comparison with calculated and measured decay heat data.« less
Decay heat uncertainty for BWR used fuel due to modeling and nuclear data uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilas, Germina; Liljenfeldt, Henrik
Characterization of the energy released from radionuclide decay in nuclear fuel discharged from reactors is essential for the design, safety, and licensing analyses of used nuclear fuel storage, transportation, and repository systems. There are a limited number of decay heat measurements available for commercial used fuel applications. Because decay heat measurements can be expensive or impractical for covering the multitude of existing fuel designs, operating conditions, and specific application purposes, decay heat estimation relies heavily on computer code prediction. Uncertainty evaluation for calculated decay heat is an important aspect when assessing code prediction and a key factor supporting decision makingmore » for used fuel applications. While previous studies have largely focused on uncertainties in code predictions due to nuclear data uncertainties, this study discusses uncertainties in calculated decay heat due to uncertainties in assembly modeling parameters as well as in nuclear data. Capabilities in the SCALE nuclear analysis code system were used to quantify the effect on calculated decay heat of uncertainties in nuclear data and selected manufacturing and operation parameters for a typical boiling water reactor (BWR) fuel assembly. Furthermore, the BWR fuel assembly used as the reference case for this study was selected from a set of assemblies for which high-quality decay heat measurements are available, to assess the significance of the results through comparison with calculated and measured decay heat data.« less
Effects of Parameter Uncertainty on Long-Term Simulations of Lake Alkalinity
NASA Astrophysics Data System (ADS)
Lee, Sijin; Georgakakos, Konstantine P.; Schnoor, Jerald L.
1990-03-01
A first-order second-moment uncertainty analysis has been applied to two lakes in the Adirondack Park, New York, to assess the long-term response of lakes to acid deposition. Uncertainty due to parameter error and initial condition error was considered. Because the enhanced trickle-down (ETD) model is calibrated with only 3 years of field data and is used to simulate a 50-year period, the uncertainty in the lake alkalinity prediction is relatively large. When a best estimate of parameter uncertainty is used, the annual average alkalinity is predicted to be -11 ±28 μeq/L for Lake Woods and 142 ± 139 μeq/L for Lake Panther after 50 years. Hydrologic parameters and chemical weathering rate constants contributed most to the uncertainty of the simulations. Results indicate that the uncertainty in long-range predictions of lake alkalinity increased significantly over a 5- to 10-year period and then reached a steady state.
Walter, Donald A.; LeBlanc, Denis R.
2008-01-01
Historical weapons testing and disposal activities at Camp Edwards, which is located on the Massachusetts Military Reservation, western Cape Cod, have resulted in the release of contaminants into an underlying sand and gravel aquifer that is the sole source of potable water to surrounding communities. Ground-water models have been used at the site to simulate advective transport in the aquifer in support of field investigations. Reasonable models developed by different groups and calibrated by trial and error often yield different predictions of advective transport, and the predictions lack quantitative measures of uncertainty. A recently (2004) developed regional model of western Cape Cod, modified to include the sensitivity and parameter-estimation capabilities of MODFLOW-2000, was used in this report to evaluate the utility of inverse (statistical) methods to (1) improve model calibration and (2) assess model-prediction uncertainty. Simulated heads and flows were most sensitive to recharge and to the horizontal hydraulic conductivity of the Buzzards Bay and Sandwich Moraines and the Buzzards Bay and northern parts of the Mashpee outwash plains. Conversely, simulated heads and flows were much less sensitive to vertical hydraulic conductivity. Parameter estimation (inverse calibration) improved the match to observed heads and flows; the absolute mean residual for heads improved by 0.32 feet and the absolute mean residual for streamflows improved by about 0.2 cubic feet per second. Advective-transport predictions in Camp Edwards generally were most sensitive to the parameters with the highest precision (lowest coefficients of variation), indicating that the numerical model is adequate for evaluating prediction uncertainties in and around Camp Edwards. The incorporation of an advective-transport observation, representing the leading edge of a contaminant plume that had been difficult to match by using trial-and-error calibration, improved the match between an observed and simulated plume path; however, a modified representation of local geology was needed to simultaneously maintain a reasonable calibration to heads and flows and to the plume path. Advective-transport uncertainties were expressed as about 68-, 95-, and 99-percent confidence intervals on three dimensional simulated particle positions. The confidence intervals can be graphically represented as ellipses around individual particle positions in the X-Y (geographic) plane and in the X-Z or Y-Z (vertical) planes. The merging of individual ellipses allows uncertainties on forward particle tracks to be displayed in map or cross-sectional view as a cone of uncertainty around a simulated particle path; uncertainties on reverse particle-track endpoints - representing simulated recharge locations - can be geographically displayed as areas at the water table around the discrete particle endpoints. This information gives decisionmakers insight into the level of confidence they can have in particle-tracking results and can assist them in the efficient use of available field resources.
Analytical Algorithms to Quantify the Uncertainty in Remaining Useful Life Prediction
NASA Technical Reports Server (NTRS)
Sankararaman, Shankar; Saxena, Abhinav; Daigle, Matthew; Goebel, Kai
2013-01-01
This paper investigates the use of analytical algorithms to quantify the uncertainty in the remaining useful life (RUL) estimate of components used in aerospace applications. The prediction of RUL is affected by several sources of uncertainty and it is important to systematically quantify their combined effect by computing the uncertainty in the RUL prediction in order to aid risk assessment, risk mitigation, and decisionmaking. While sampling-based algorithms have been conventionally used for quantifying the uncertainty in RUL, analytical algorithms are computationally cheaper and sometimes, are better suited for online decision-making. While exact analytical algorithms are available only for certain special cases (for e.g., linear models with Gaussian variables), effective approximations can be made using the the first-order second moment method (FOSM), the first-order reliability method (FORM), and the inverse first-order reliability method (Inverse FORM). These methods can be used not only to calculate the entire probability distribution of RUL but also to obtain probability bounds on RUL. This paper explains these three methods in detail and illustrates them using the state-space model of a lithium-ion battery.
Quantifying Uncertainty in Model Predictions for the Pliocene (Plio-QUMP): Initial results
Pope, J.O.; Collins, M.; Haywood, A.M.; Dowsett, H.J.; Hunter, S.J.; Lunt, D.J.; Pickering, S.J.; Pound, M.J.
2011-01-01
Examination of the mid-Pliocene Warm Period (mPWP; ~. 3.3 to 3.0. Ma BP) provides an excellent opportunity to test the ability of climate models to reproduce warm climate states, thereby assessing our confidence in model predictions. To do this it is necessary to relate the uncertainty in model simulations of mPWP climate to uncertainties in projections of future climate change. The uncertainties introduced by the model can be estimated through the use of a Perturbed Physics Ensemble (PPE). Developing on the UK Met Office Quantifying Uncertainty in Model Predictions (QUMP) Project, this paper presents the results from an initial investigation using the end members of a PPE in a fully coupled atmosphere-ocean model (HadCM3) running with appropriate mPWP boundary conditions. Prior work has shown that the unperturbed version of HadCM3 may underestimate mPWP sea surface temperatures at higher latitudes. Initial results indicate that neither the low sensitivity nor the high sensitivity simulations produce unequivocally improved mPWP climatology relative to the standard. Whilst the high sensitivity simulation was able to reconcile up to 6 ??C of the data/model mismatch in sea surface temperatures in the high latitudes of the Northern Hemisphere (relative to the standard simulation), it did not produce a better prediction of global vegetation than the standard simulation. Overall the low sensitivity simulation was degraded compared to the standard and high sensitivity simulations in all aspects of the data/model comparison. The results have shown that a PPE has the potential to explore weaknesses in mPWP modelling simulations which have been identified by geological proxies, but that a 'best fit' simulation will more likely come from a full ensemble in which simulations that contain the strengths of the two end member simulations shown here are combined. ?? 2011 Elsevier B.V.
Analyzing the uncertainty of suspended sediment load prediction using sequential data assimilation
NASA Astrophysics Data System (ADS)
Leisenring, Marc; Moradkhani, Hamid
2012-10-01
SummaryA first step in understanding the impacts of sediment and controlling the sources of sediment is to quantify the mass loading. Since mass loading is the product of flow and concentration, the quantification of loads first requires the quantification of runoff volume. Using the National Weather Service's SNOW-17 and the Sacramento Soil Moisture Accounting (SAC-SMA) models, this study employed particle filter based Bayesian data assimilation methods to predict seasonal snow water equivalent (SWE) and runoff within a small watershed in the Lake Tahoe Basin located in California, USA. A procedure was developed to scale the variance multipliers (a.k.a hyperparameters) for model parameters and predictions based on the accuracy of the mean predictions relative to the ensemble spread. In addition, an online bias correction algorithm based on the lagged average bias was implemented to detect and correct for systematic bias in model forecasts prior to updating with the particle filter. Both of these methods significantly improved the performance of the particle filter without requiring excessively wide prediction bounds. The flow ensemble was linked to a non-linear regression model that was used to predict suspended sediment concentrations (SSCs) based on runoff rate and time of year. Runoff volumes and SSC were then combined to produce an ensemble of suspended sediment load estimates. Annual suspended sediment loads for the 5 years of simulation were finally computed along with 95% prediction intervals that account for uncertainty in both the SSC regression model and flow rate estimates. Understanding the uncertainty associated with annual suspended sediment load predictions is critical for making sound watershed management decisions aimed at maintaining the exceptional clarity of Lake Tahoe. The computational methods developed and applied in this research could assist with similar studies where it is important to quantify the predictive uncertainty of pollutant load estimates.
Hararuk, Oleksandra; Smith, Matthew J; Luo, Yiqi
2015-06-01
Long-term carbon (C) cycle feedbacks to climate depend on the future dynamics of soil organic carbon (SOC). Current models show low predictive accuracy at simulating contemporary SOC pools, which can be improved through parameter estimation. However, major uncertainty remains in global soil responses to climate change, particularly uncertainty in how the activity of soil microbial communities will respond. To date, the role of microbes in SOC dynamics has been implicitly described by decay rate constants in most conventional global carbon cycle models. Explicitly including microbial biomass dynamics into C cycle model formulations has shown potential to improve model predictive performance when assessed against global SOC databases. This study aimed to data-constrained parameters of two soil microbial models, evaluate the improvements in performance of those calibrated models in predicting contemporary carbon stocks, and compare the SOC responses to climate change and their uncertainties between microbial and conventional models. Microbial models with calibrated parameters explained 51% of variability in the observed total SOC, whereas a calibrated conventional model explained 41%. The microbial models, when forced with climate and soil carbon input predictions from the 5th Coupled Model Intercomparison Project (CMIP5), produced stronger soil C responses to 95 years of climate change than any of the 11 CMIP5 models. The calibrated microbial models predicted between 8% (2-pool model) and 11% (4-pool model) soil C losses compared with CMIP5 model projections which ranged from a 7% loss to a 22.6% gain. Lastly, we observed unrealistic oscillatory SOC dynamics in the 2-pool microbial model. The 4-pool model also produced oscillations, but they were less prominent and could be avoided, depending on the parameter values. © 2014 John Wiley & Sons Ltd.
Computer Model Inversion and Uncertainty Quantification in the Geosciences
NASA Astrophysics Data System (ADS)
White, Jeremy T.
The subject of this dissertation is use of computer models as data analysis tools in several different geoscience settings, including integrated surface water/groundwater modeling, tephra fallout modeling, geophysical inversion, and hydrothermal groundwater modeling. The dissertation is organized into three chapters, which correspond to three individual publication manuscripts. In the first chapter, a linear framework is developed to identify and estimate the potential predictive consequences of using a simple computer model as a data analysis tool. The framework is applied to a complex integrated surface-water/groundwater numerical model with thousands of parameters. Several types of predictions are evaluated, including particle travel time and surface-water/groundwater exchange volume. The analysis suggests that model simplifications have the potential to corrupt many types of predictions. The implementation of the inversion, including how the objective function is formulated, what minimum of the objective function value is acceptable, and how expert knowledge is enforced on parameters, can greatly influence the manifestation of model simplification. Depending on the prediction, failure to specifically address each of these important issues during inversion is shown to degrade the reliability of some predictions. In some instances, inversion is shown to increase, rather than decrease, the uncertainty of a prediction, which defeats the purpose of using a model as a data analysis tool. In the second chapter, an efficient inversion and uncertainty quantification approach is applied to a computer model of volcanic tephra transport and deposition. The computer model simulates many physical processes related to tephra transport and fallout. The utility of the approach is demonstrated for two eruption events. In both cases, the importance of uncertainty quantification is highlighted by exposing the variability in the conditioning provided by the observations used for inversion. The worth of different types of tephra data to reduce parameter uncertainty is evaluated, as is the importance of different observation error models. The analyses reveal the importance using tephra granulometry data for inversion, which results in reduced uncertainty for most eruption parameters. In the third chapter, geophysical inversion is combined with hydrothermal modeling to evaluate the enthalpy of an undeveloped geothermal resource in a pull-apart basin located in southeastern Armenia. A high-dimensional gravity inversion is used to define the depth to the contact between the lower-density valley fill sediments and the higher-density surrounding host rock. The inverted basin depth distribution was used to define the hydrostratigraphy for the coupled groundwater-flow and heat-transport model that simulates the circulation of hydrothermal fluids in the system. Evaluation of several different geothermal system configurations indicates that the most likely system configuration is a low-enthalpy, liquid-dominated geothermal system.
Uncertainties in ozone concentrations predicted with a Lagrangian photochemical air quality model have been estimated using Bayesian Monte Carlo (BMC) analysis. Bayesian Monte Carlo analysis provides a means of combining subjective "prior" uncertainty estimates developed ...
NASA Astrophysics Data System (ADS)
Bulthuis, Kevin; Arnst, Maarten; Pattyn, Frank; Favier, Lionel
2017-04-01
Uncertainties in sea-level rise projections are mostly due to uncertainties in Antarctic ice-sheet predictions (IPCC AR5 report, 2013), because key parameters related to the current state of the Antarctic ice sheet (e.g. sub-ice-shelf melting) and future climate forcing are poorly constrained. Here, we propose to improve the predictions of Antarctic ice-sheet behaviour using new uncertainty quantification methods. As opposed to ensemble modelling (Bindschadler et al., 2013) which provides a rather limited view on input and output dispersion, new stochastic methods (Le Maître and Knio, 2010) can provide deeper insight into the impact of uncertainties on complex system behaviour. Such stochastic methods usually begin with deducing a probabilistic description of input parameter uncertainties from the available data. Then, the impact of these input parameter uncertainties on output quantities is assessed by estimating the probability distribution of the outputs by means of uncertainty propagation methods such as Monte Carlo methods or stochastic expansion methods. The use of such uncertainty propagation methods in glaciology may be computationally costly because of the high computational complexity of ice-sheet models. This challenge emphasises the importance of developing reliable and computationally efficient ice-sheet models such as the f.ETISh ice-sheet model (Pattyn, 2015), a new fast thermomechanical coupled ice sheet/ice shelf model capable of handling complex and critical processes such as the marine ice-sheet instability mechanism. Here, we apply these methods to investigate the role of uncertainties in sub-ice-shelf melting, calving rates and climate projections in assessing Antarctic contribution to sea-level rise for the next centuries using the f.ETISh model. We detail the methods and show results that provide nominal values and uncertainty bounds for future sea-level rise as a reflection of the impact of the input parameter uncertainties under consideration, as well as a ranking of the input parameter uncertainties in the order of the significance of their contribution to uncertainty in future sea-level rise. In addition, we discuss how limitations posed by the available information (poorly constrained data) pose challenges that motivate our current research.
Wu, Sheng; Jin, Qibing; Zhang, Ridong; Zhang, Junfeng; Gao, Furong
2017-07-01
In this paper, an improved constrained tracking control design is proposed for batch processes under uncertainties. A new process model that facilitates process state and tracking error augmentation with further additional tuning is first proposed. Then a subsequent controller design is formulated using robust stable constrained MPC optimization. Unlike conventional robust model predictive control (MPC), the proposed method enables the controller design to bear more degrees of tuning so that improved tracking control can be acquired, which is very important since uncertainties exist inevitably in practice and cause model/plant mismatches. An injection molding process is introduced to illustrate the effectiveness of the proposed MPC approach in comparison with conventional robust MPC. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Methodologies for evaluating performance and assessing uncertainty of atmospheric dispersion models
NASA Astrophysics Data System (ADS)
Chang, Joseph C.
This thesis describes methodologies to evaluate the performance and to assess the uncertainty of atmospheric dispersion models, tools that predict the fate of gases and aerosols upon their release into the atmosphere. Because of the large economic and public-health impacts often associated with the use of the dispersion model results, these models should be properly evaluated, and their uncertainty should be properly accounted for and understood. The CALPUFF, HPAC, and VLSTRACK dispersion modeling systems were applied to the Dipole Pride (DP26) field data (˜20 km in scale), in order to demonstrate the evaluation and uncertainty assessment methodologies. Dispersion model performance was found to be strongly dependent on the wind models used to generate gridded wind fields from observed station data. This is because, despite the fact that the test site was a flat area, the observed surface wind fields still showed considerable spatial variability, partly because of the surrounding mountains. It was found that the two components were comparable for the DP26 field data, with variability more important than uncertainty closer to the source, and less important farther away from the source. Therefore, reducing data errors for input meteorology may not necessarily increase model accuracy due to random turbulence. DP26 was a research-grade field experiment, where the source, meteorological, and concentration data were all well-measured. Another typical application of dispersion modeling is a forensic study where the data are usually quite scarce. An example would be the modeling of the alleged releases of chemical warfare agents during the 1991 Persian Gulf War, where the source data had to rely on intelligence reports, and where Iraq had stopped reporting weather data to the World Meteorological Organization since the 1981 Iran-Iraq-war. Therefore the meteorological fields inside Iraq must be estimated by models such as prognostic mesoscale meteorological models, based on observational data from areas outside of Iraq, and using the global fields simulated by the global meteorological models as the initial and boundary conditions for the mesoscale models. It was found that while comparing model predictions to observations in areas outside of Iraq, the predicted surface wind directions had errors between 30 to 90 deg, but the inter-model differences (or uncertainties) in the predicted surface wind directions inside Iraq, where there were no onsite data, were fairly constant at about 70 deg. (Abstract shortened by UMI.)
Hristov, A N; Kebreab, E; Niu, M; Oh, J; Bannink, A; Bayat, A R; Boland, T B; Brito, A F; Casper, D P; Crompton, L A; Dijkstra, J; Eugène, M; Garnsworthy, P C; Haque, N; Hellwing, A L F; Huhtanen, P; Kreuzer, M; Kuhla, B; Lund, P; Madsen, J; Martin, C; Moate, P J; Muetzel, S; Muñoz, C; Peiren, N; Powell, J M; Reynolds, C K; Schwarm, A; Shingfield, K J; Storlien, T M; Weisbjerg, M R; Yáñez-Ruiz, D R; Yu, Z
2018-04-18
Ruminant production systems are important contributors to anthropogenic methane (CH 4 ) emissions, but there are large uncertainties in national and global livestock CH 4 inventories. Sources of uncertainty in enteric CH 4 emissions include animal inventories, feed dry matter intake (DMI), ingredient and chemical composition of the diets, and CH 4 emission factors. There is also significant uncertainty associated with enteric CH 4 measurements. The most widely used techniques are respiration chambers, the sulfur hexafluoride (SF 6 ) tracer technique, and the automated head-chamber system (GreenFeed; C-Lock Inc., Rapid City, SD). All 3 methods have been successfully used in a large number of experiments with dairy or beef cattle in various environmental conditions, although studies that compare techniques have reported inconsistent results. Although different types of models have been developed to predict enteric CH 4 emissions, relatively simple empirical (statistical) models have been commonly used for inventory purposes because of their broad applicability and ease of use compared with more detailed empirical and process-based mechanistic models. However, extant empirical models used to predict enteric CH 4 emissions suffer from narrow spatial focus, limited observations, and limitations of the statistical technique used. Therefore, prediction models must be developed from robust data sets that can only be generated through collaboration of scientists across the world. To achieve high prediction accuracy, these data sets should encompass a wide range of diets and production systems within regions and globally. Overall, enteric CH 4 prediction models are based on various animal or feed characteristic inputs but are dominated by DMI in one form or another. As a result, accurate prediction of DMI is essential for accurate prediction of livestock CH 4 emissions. Analysis of a large data set of individual dairy cattle data showed that simplified enteric CH 4 prediction models based on DMI alone or DMI and limited feed- or animal-related inputs can predict average CH 4 emission with a similar accuracy to more complex empirical models. These simplified models can be reliably used for emission inventory purposes. The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
2012-01-01
Background Formulation and evaluation of public health policy commonly employs science-based mathematical models. For instance, epidemiological dynamics of TB is dominated, in general, by flow between actively and latently infected populations. Thus modelling is central in planning public health intervention. However, models are highly uncertain because they are based on observations that are geographically and temporally distinct from the population to which they are applied. Aims We aim to demonstrate the advantages of info-gap theory, a non-probabilistic approach to severe uncertainty when worst cases cannot be reliably identified and probability distributions are unreliable or unavailable. Info-gap is applied here to mathematical modelling of epidemics and analysis of public health decision-making. Methods Applying info-gap robustness analysis to tuberculosis/HIV (TB/HIV) epidemics, we illustrate the critical role of incorporating uncertainty in formulating recommendations for interventions. Robustness is assessed as the magnitude of uncertainty that can be tolerated by a given intervention. We illustrate the methodology by exploring interventions that alter the rates of diagnosis, cure, relapse and HIV infection. Results We demonstrate several policy implications. Equivalence among alternative rates of diagnosis and relapse are identified. The impact of initial TB and HIV prevalence on the robustness to uncertainty is quantified. In some configurations, increased aggressiveness of intervention improves the predicted outcome but also reduces the robustness to uncertainty. Similarly, predicted outcomes may be better at larger target times, but may also be more vulnerable to model error. Conclusions The info-gap framework is useful for managing model uncertainty and is attractive when uncertainties on model parameters are extreme. When a public health model underlies guidelines, info-gap decision theory provides valuable insight into the confidence of achieving agreed-upon goals. PMID:23249291
Ben-Haim, Yakov; Dacso, Clifford C; Zetola, Nicola M
2012-12-19
Formulation and evaluation of public health policy commonly employs science-based mathematical models. For instance, epidemiological dynamics of TB is dominated, in general, by flow between actively and latently infected populations. Thus modelling is central in planning public health intervention. However, models are highly uncertain because they are based on observations that are geographically and temporally distinct from the population to which they are applied. We aim to demonstrate the advantages of info-gap theory, a non-probabilistic approach to severe uncertainty when worst cases cannot be reliably identified and probability distributions are unreliable or unavailable. Info-gap is applied here to mathematical modelling of epidemics and analysis of public health decision-making. Applying info-gap robustness analysis to tuberculosis/HIV (TB/HIV) epidemics, we illustrate the critical role of incorporating uncertainty in formulating recommendations for interventions. Robustness is assessed as the magnitude of uncertainty that can be tolerated by a given intervention. We illustrate the methodology by exploring interventions that alter the rates of diagnosis, cure, relapse and HIV infection. We demonstrate several policy implications. Equivalence among alternative rates of diagnosis and relapse are identified. The impact of initial TB and HIV prevalence on the robustness to uncertainty is quantified. In some configurations, increased aggressiveness of intervention improves the predicted outcome but also reduces the robustness to uncertainty. Similarly, predicted outcomes may be better at larger target times, but may also be more vulnerable to model error. The info-gap framework is useful for managing model uncertainty and is attractive when uncertainties on model parameters are extreme. When a public health model underlies guidelines, info-gap decision theory provides valuable insight into the confidence of achieving agreed-upon goals.
Computational Fluid Dynamics Uncertainty Analysis Applied to Heat Transfer over a Flat Plate
NASA Technical Reports Server (NTRS)
Groves, Curtis Edward; Ilie, Marcel; Schallhorn, Paul A.
2013-01-01
There have been few discussions on using Computational Fluid Dynamics (CFD) without experimental validation. Pairing experimental data, uncertainty analysis, and analytical predictions provides a comprehensive approach to verification and is the current state of the art. With pressed budgets, collecting experimental data is rare or non-existent. This paper investigates and proposes a method to perform CFD uncertainty analysis only from computational data. The method uses current CFD uncertainty techniques coupled with the Student-T distribution to predict the heat transfer coefficient over a at plate. The inputs to the CFD model are varied from a specified tolerance or bias error and the difference in the results are used to estimate the uncertainty. The variation in each input is ranked from least to greatest to determine the order of importance. The results are compared to heat transfer correlations and conclusions drawn about the feasibility of using CFD without experimental data. The results provide a tactic to analytically estimate the uncertainty in a CFD model when experimental data is unavailable
Effect of correlated observation error on parameters, predictions, and uncertainty
Tiedeman, Claire; Green, Christopher T.
2013-01-01
Correlations among observation errors are typically omitted when calculating observation weights for model calibration by inverse methods. We explore the effects of omitting these correlations on estimates of parameters, predictions, and uncertainties. First, we develop a new analytical expression for the difference in parameter variance estimated with and without error correlations for a simple one-parameter two-observation inverse model. Results indicate that omitting error correlations from both the weight matrix and the variance calculation can either increase or decrease the parameter variance, depending on the values of error correlation (ρ) and the ratio of dimensionless scaled sensitivities (rdss). For small ρ, the difference in variance is always small, but for large ρ, the difference varies widely depending on the sign and magnitude of rdss. Next, we consider a groundwater reactive transport model of denitrification with four parameters and correlated geochemical observation errors that are computed by an error-propagation approach that is new for hydrogeologic studies. We compare parameter estimates, predictions, and uncertainties obtained with and without the error correlations. Omitting the correlations modestly to substantially changes parameter estimates, and causes both increases and decreases of parameter variances, consistent with the analytical expression. Differences in predictions for the models calibrated with and without error correlations can be greater than parameter differences when both are considered relative to their respective confidence intervals. These results indicate that including observation error correlations in weighting for nonlinear regression can have important effects on parameter estimates, predictions, and their respective uncertainties.
Identifying and assessing critical uncertainty thresholds in a forest pest risk model
Frank H. Koch; Denys Yemshanov
2015-01-01
Pest risk maps can provide helpful decision support for invasive alien species management, but often fail to address adequately the uncertainty associated with their predicted risk values. Th is chapter explores how increased uncertainty in a risk modelâs numeric assumptions (i.e. its principal parameters) might aff ect the resulting risk map. We used a spatial...
Final Technical Report: Advanced Measurement and Analysis of PV Derate Factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Bruce Hardison; Burton, Patrick D.; Hansen, Clifford
2015-12-01
The Advanced Measurement and Analysis of PV Derate Factors project focuses on improving the accuracy and reducing the uncertainty of PV performance model predictions by addressing a common element of all PV performance models referred to as “derates”. Widespread use of “rules of thumb”, combined with significant uncertainty regarding appropriate values for these factors contribute to uncertainty in projected energy production.
Alan K. Swanson; Solomon Z. Dobrowski; Andrew O. Finley; James H. Thorne; Michael K. Schwartz
2013-01-01
The uncertainty associated with species distribution model (SDM) projections is poorly characterized, despite its potential value to decision makers. Error estimates from most modelling techniques have been shown to be biased due to their failure to account for spatial autocorrelation (SAC) of residual error. Generalized linear mixed models (GLMM) have the ability to...
NASA Astrophysics Data System (ADS)
Taverniers, Søren; Tartakovsky, Daniel M.
2017-11-01
Predictions of the total energy deposited into a brain tumor through X-ray irradiation are notoriously error-prone. We investigate how this predictive uncertainty is affected by uncertainty in both the location of the region occupied by a dose-enhancing iodinated contrast agent and the agent's concentration. This is done within the probabilistic framework in which these uncertain parameters are modeled as random variables. We employ the stochastic collocation (SC) method to estimate statistical moments of the deposited energy in terms of statistical moments of the random inputs, and the global sensitivity analysis (GSA) to quantify the relative importance of uncertainty in these parameters on the overall predictive uncertainty. A nonlinear radiation-diffusion equation dramatically magnifies the coefficient of variation of the uncertain parameters, yielding a large coefficient of variation for the predicted energy deposition. This demonstrates that accurate prediction of the energy deposition requires a proper treatment of even small parametric uncertainty. Our analysis also reveals that SC outperforms standard Monte Carlo, but its relative efficiency decreases as the number of uncertain parameters increases from one to three. A robust GSA ameliorates this problem by reducing this number.
NASA Astrophysics Data System (ADS)
Paul, M.; Negahban-Azar, M.
2017-12-01
The hydrologic models usually need to be calibrated against observed streamflow at the outlet of a particular drainage area through a careful model calibration. However, a large number of parameters are required to fit in the model due to their unavailability of the field measurement. Therefore, it is difficult to calibrate the model for a large number of potential uncertain model parameters. This even becomes more challenging if the model is for a large watershed with multiple land uses and various geophysical characteristics. Sensitivity analysis (SA) can be used as a tool to identify most sensitive model parameters which affect the calibrated model performance. There are many different calibration and uncertainty analysis algorithms which can be performed with different objective functions. By incorporating sensitive parameters in streamflow simulation, effects of the suitable algorithm in improving model performance can be demonstrated by the Soil and Water Assessment Tool (SWAT) modeling. In this study, the SWAT was applied in the San Joaquin Watershed in California covering 19704 km2 to calibrate the daily streamflow. Recently, sever water stress escalating due to intensified climate variability, prolonged drought and depleting groundwater for agricultural irrigation in this watershed. Therefore it is important to perform a proper uncertainty analysis given the uncertainties inherent in hydrologic modeling to predict the spatial and temporal variation of the hydrologic process to evaluate the impacts of different hydrologic variables. The purpose of this study was to evaluate the sensitivity and uncertainty of the calibrated parameters for predicting streamflow. To evaluate the sensitivity of the calibrated parameters three different optimization algorithms (Sequential Uncertainty Fitting- SUFI-2, Generalized Likelihood Uncertainty Estimation- GLUE and Parameter Solution- ParaSol) were used with four different objective functions (coefficient of determination- r2, Nash-Sutcliffe efficiency- NSE, percent bias- PBIAS, and Kling-Gupta efficiency- KGE). The preliminary results showed that using the SUFI-2 algorithm with the objective function NSE and KGE has improved significantly the calibration (e.g. R2 and NSE is found 0.52 and 0.47 respectively for daily streamflow calibration).
NASA Astrophysics Data System (ADS)
Migliavacca, M.; Sonnentag, O.; Keenan, T. F.; Cescatti, A.; O'Keefe, J.; Richardson, A. D.
2012-01-01
Phenology, the timing of recurring life cycle events, controls numerous land surface feedbacks to the climate systems through the regulation of exchanges of carbon, water and energy between the biosphere and atmosphere. Land surface models, however, are known to have systematic errors in the simulation of spring phenology, which potentially could propagate to uncertainty in modeled responses to future climate change. Here, we analyzed the Harvard Forest phenology record to investigate and characterize the sources of uncertainty in phenological forecasts and the subsequent impacts on model forecasts of carbon and water cycling in the future. Using a model-data fusion approach, we combined information from 20 yr of phenological observations of 11 North American woody species with 12 phenological models of different complexity to predict leaf bud-burst. The evaluation of different phenological models indicated support for spring warming models with photoperiod limitations and, though to a lesser extent, to chilling models based on the alternating model structure. We assessed three different sources of uncertainty in phenological forecasts: parameter uncertainty, model uncertainty, and driver uncertainty. The latter was characterized running the models to 2099 using 2 different IPCC climate scenarios (A1fi vs. B1, i.e. high CO2 emissions vs. low CO2 emissions scenario). Parameter uncertainty was the smallest (average 95% CI: 2.4 day century-1 for scenario B1 and 4.5 day century-1 for A1fi), whereas driver uncertainty was the largest (up to 8.4 day century-1 in the simulated trends). The uncertainty related to model structure is also large and the predicted bud-burst trends as well as the shape of the smoothed projections varied somewhat among models (±7.7 day century-1 for A1fi, ±3.6 day century-1 for B1). The forecast sensitivity of bud-burst to temperature (i.e. days bud-burst advanced per degree of warming) varied between 2.2 day °C-1 and 5.2 day °C-1 depending on model structure. We quantified the impact of uncertainties in bud-burst forecasts on simulated carbon and water fluxes using a process-based terrestrial biosphere model. Uncertainty in phenology model structure led to uncertainty in the description of the seasonality of processes, which accumulated to uncertainty in annual model estimates of gross primary productivity (GPP) and evapotranspiration (ET) of 9.6% and 2.9% respectively. A sensitivity analysis shows that a variation of ±10 days in bud-burst dates led to a variation of ±5.0% for annual GPP and about ±2.0% for ET. For phenology models, differences among future climate scenarios represent the largest source of uncertainty, followed by uncertainties related to model structure, and finally, uncertainties related to model parameterization. The uncertainties we have quantified will affect the description of the seasonality of processes and in particular the simulation of carbon uptake by forest ecosystems, with a larger impact of uncertainties related to phenology model structure, followed by uncertainties related to phenological model parameterization.
The new g-2 experiment at Fermilab
NASA Astrophysics Data System (ADS)
Anastasi, A.
2017-04-01
There is a long standing discrepancy between the Standard Model prediction for the muon g-2 and the value measured by the Brookhaven E821 Experiment. At present the discrepancy stands at about three standard deviations, with an uncertainty dominated by the theoretical error. Two new proposals - at Fermilab and J-PARC - plan to improve the experimental uncertainty by a factor of 4, and it is expected that there will be a significant reduction in the uncertainty of the Standard Model prediction. I will review the status of the planned experiment at Fermilab, E989, which will analyse 21 times more muons than the BNL experiment and discuss how the systematic uncertainty will be reduced by a factor of 3 such that a precision of 0.14 ppm can be achieved.
Testing for ontological errors in probabilistic forecasting models of natural systems
Marzocchi, Warner; Jordan, Thomas H.
2014-01-01
Probabilistic forecasting models describe the aleatory variability of natural systems as well as our epistemic uncertainty about how the systems work. Testing a model against observations exposes ontological errors in the representation of a system and its uncertainties. We clarify several conceptual issues regarding the testing of probabilistic forecasting models for ontological errors: the ambiguity of the aleatory/epistemic dichotomy, the quantification of uncertainties as degrees of belief, the interplay between Bayesian and frequentist methods, and the scientific pathway for capturing predictability. We show that testability of the ontological null hypothesis derives from an experimental concept, external to the model, that identifies collections of data, observed and not yet observed, that are judged to be exchangeable when conditioned on a set of explanatory variables. These conditional exchangeability judgments specify observations with well-defined frequencies. Any model predicting these behaviors can thus be tested for ontological error by frequentist methods; e.g., using P values. In the forecasting problem, prior predictive model checking, rather than posterior predictive checking, is desirable because it provides more severe tests. We illustrate experimental concepts using examples from probabilistic seismic hazard analysis. Severe testing of a model under an appropriate set of experimental concepts is the key to model validation, in which we seek to know whether a model replicates the data-generating process well enough to be sufficiently reliable for some useful purpose, such as long-term seismic forecasting. Pessimistic views of system predictability fail to recognize the power of this methodology in separating predictable behaviors from those that are not. PMID:25097265
Krishnamurthy, Dilip; Sumaria, Vaidish; Viswanathan, Venkatasubramanian
2018-02-01
Density functional theory (DFT) calculations are being routinely used to identify new material candidates that approach activity near fundamental limits imposed by thermodynamics or scaling relations. DFT calculations are associated with inherent uncertainty, which limits the ability to delineate materials (distinguishability) that possess high activity. Development of error-estimation capabilities in DFT has enabled uncertainty propagation through activity-prediction models. In this work, we demonstrate an approach to propagating uncertainty through thermodynamic activity models leading to a probability distribution of the computed activity and thereby its expectation value. A new metric, prediction efficiency, is defined, which provides a quantitative measure of the ability to distinguish activity of materials and can be used to identify the optimal descriptor(s) ΔG opt . We demonstrate the framework for four important electrochemical reactions: hydrogen evolution, chlorine evolution, oxygen reduction and oxygen evolution. Future studies could utilize expected activity and prediction efficiency to significantly improve the prediction accuracy of highly active material candidates.
Advances in Applications of Hierarchical Bayesian Methods with Hydrological Models
NASA Astrophysics Data System (ADS)
Alexander, R. B.; Schwarz, G. E.; Boyer, E. W.
2017-12-01
Mechanistic and empirical watershed models are increasingly used to inform water resource decisions. Growing access to historical stream measurements and data from in-situ sensor technologies has increased the need for improved techniques for coupling models with hydrological measurements. Techniques that account for the intrinsic uncertainties of both models and measurements are especially needed. Hierarchical Bayesian methods provide an efficient modeling tool for quantifying model and prediction uncertainties, including those associated with measurements. Hierarchical methods can also be used to explore spatial and temporal variations in model parameters and uncertainties that are informed by hydrological measurements. We used hierarchical Bayesian methods to develop a hybrid (statistical-mechanistic) SPARROW (SPAtially Referenced Regression On Watershed attributes) model of long-term mean annual streamflow across diverse environmental and climatic drainages in 18 U.S. hydrological regions. Our application illustrates the use of a new generation of Bayesian methods that offer more advanced computational efficiencies than the prior generation. Evaluations of the effects of hierarchical (regional) variations in model coefficients and uncertainties on model accuracy indicates improved prediction accuracies (median of 10-50%) but primarily in humid eastern regions, where model uncertainties are one-third of those in arid western regions. Generally moderate regional variability is observed for most hierarchical coefficients. Accounting for measurement and structural uncertainties, using hierarchical state-space techniques, revealed the effects of spatially-heterogeneous, latent hydrological processes in the "localized" drainages between calibration sites; this improved model precision, with only minor changes in regional coefficients. Our study can inform advances in the use of hierarchical methods with hydrological models to improve their integration with stream measurements.
NASA Astrophysics Data System (ADS)
Almeida, Susana; Holcombe, Liz; Pianosi, Francesca; Wagener, Thorsten
2016-04-01
Landslides have many negative economic and societal impacts, including the potential for significant loss of life and damage to infrastructure. Slope stability assessment can be used to guide decisions about the management of landslide risk, but its usefulness can be challenged by high levels of uncertainty in predicting landslide occurrence. Prediction uncertainty may be associated with the choice of model that is used to assess slope stability, the quality of the available input data, or a lack of knowledge of how future climatic and socio-economic changes may affect future landslide risk. While some of these uncertainties can be characterised by relatively well-defined probability distributions, for other uncertainties, such as those linked to climate change, no probability distribution is available to characterise them. This latter type of uncertainty, often referred to as deep uncertainty, means that robust policies need to be developed that are expected to perform acceptably well over a wide range of future conditions. In our study the impact of deep uncertainty on slope stability predictions is assessed in a quantitative and structured manner using Global Sensitivity Analysis (GSA) and the Combined Hydrology and Stability Model (CHASM). In particular, we use several GSA methods including the Method of Morris, Regional Sensitivity Analysis and Classification and Regression Trees (CART), as well as advanced visualization tools, to assess the combination of conditions that may lead to slope failure. Our example application is a slope in the Caribbean, an area that is naturally susceptible to landslides due to a combination of high rainfall rates during the hurricane season, steep slopes, and highly weathered residual soils. Rapid unplanned urbanisation and changing climate may further exacerbate landslide risk in the future. Our example shows how we can gain useful information in the presence of deep uncertainty by combining physically based models with GSA in a scenario discovery framework.
Data-free and data-driven spectral perturbations for RANS UQ
NASA Astrophysics Data System (ADS)
Edeling, Wouter; Mishra, Aashwin; Iaccarino, Gianluca
2017-11-01
Despite recent developments in high-fidelity turbulent flow simulations, RANS modeling is still vastly used by industry, due to its inherent low cost. Since accuracy is a concern in RANS modeling, model-form UQ is an essential tool for assessing the impacts of this uncertainty on quantities of interest. Applying the spectral decomposition to the modeled Reynolds-Stress Tensor (RST) allows for the introduction of decoupled perturbations into the baseline intensity (kinetic energy), shape (eigenvalues), and orientation (eigenvectors). This constitutes a natural methodology to evaluate the model form uncertainty associated to different aspects of RST modeling. In a predictive setting, one frequently encounters an absence of any relevant reference data. To make data-free predictions with quantified uncertainty we employ physical bounds to a-priori define maximum spectral perturbations. When propagated, these perturbations yield intervals of engineering utility. High-fidelity data opens up the possibility of inferring a distribution of uncertainty, by means of various data-driven machine-learning techniques. We will demonstrate our framework on a number of flow problems where RANS models are prone to failure. This research was partially supported by the Defense Advanced Research Projects Agency under the Enabling Quantification of Uncertainty in Physical Systems (EQUiPS) project (technical monitor: Dr Fariba Fahroo), and the DOE PSAAP-II program.
Comparison of Drainmod Based Watershed Scale Models
Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya
2004-01-01
Watershed scale hydrology and water quality models (DRAINMOD-DUFLOW, DRAINMOD-W, DRAINMOD-GIS and WATGIS) that describe the nitrogen loadings at the outlet of poorly drained watersheds were examined with respect to their accuracy and uncertainty in model predictions. Latin Hypercube Sampling (LHS) was applied to determine the impact of uncertainty in estimating field...
Multiple Damage Progression Paths in Model-Based Prognostics
NASA Technical Reports Server (NTRS)
Daigle, Matthew; Goebel, Kai Frank
2011-01-01
Model-based prognostics approaches employ domain knowledge about a system, its components, and how they fail through the use of physics-based models. Component wear is driven by several different degradation phenomena, each resulting in their own damage progression path, overlapping to contribute to the overall degradation of the component. We develop a model-based prognostics methodology using particle filters, in which the problem of characterizing multiple damage progression paths is cast as a joint state-parameter estimation problem. The estimate is represented as a probability distribution, allowing the prediction of end of life and remaining useful life within a probabilistic framework that supports uncertainty management. We also develop a novel variance control mechanism that maintains an uncertainty bound around the hidden parameters to limit the amount of estimation uncertainty and, consequently, reduce prediction uncertainty. We construct a detailed physics-based model of a centrifugal pump, to which we apply our model-based prognostics algorithms. We illustrate the operation of the prognostic solution with a number of simulation-based experiments and demonstrate the performance of the chosen approach when multiple damage mechanisms are active
Accounting for control mislabeling in case-control biomarker studies.
Rantalainen, Mattias; Holmes, Chris C
2011-12-02
In biomarker discovery studies, uncertainty associated with case and control labels is often overlooked. By omitting to take into account label uncertainty, model parameters and the predictive risk can become biased, sometimes severely. The most common situation is when the control set contains an unknown number of undiagnosed, or future, cases. This has a marked impact in situations where the model needs to be well-calibrated, e.g., when the prediction performance of a biomarker panel is evaluated. Failing to account for class label uncertainty may lead to underestimation of classification performance and bias in parameter estimates. This can further impact on meta-analysis for combining evidence from multiple studies. Using a simulation study, we outline how conventional statistical models can be modified to address class label uncertainty leading to well-calibrated prediction performance estimates and reduced bias in meta-analysis. We focus on the problem of mislabeled control subjects in case-control studies, i.e., when some of the control subjects are undiagnosed cases, although the procedures we report are generic. The uncertainty in control status is a particular situation common in biomarker discovery studies in the context of genomic and molecular epidemiology, where control subjects are commonly sampled from the general population with an established expected disease incidence rate.
A data-driven approach for modeling post-fire debris-flow volumes and their uncertainty
Friedel, Michael J.
2011-01-01
This study demonstrates the novel application of genetic programming to evolve nonlinear post-fire debris-flow volume equations from variables associated with a data-driven conceptual model of the western United States. The search space is constrained using a multi-component objective function that simultaneously minimizes root-mean squared and unit errors for the evolution of fittest equations. An optimization technique is then used to estimate the limits of nonlinear prediction uncertainty associated with the debris-flow equations. In contrast to a published multiple linear regression three-variable equation, linking basin area with slopes greater or equal to 30 percent, burn severity characterized as area burned moderate plus high, and total storm rainfall, the data-driven approach discovers many nonlinear and several dimensionally consistent equations that are unbiased and have less prediction uncertainty. Of the nonlinear equations, the best performance (lowest prediction uncertainty) is achieved when using three variables: average basin slope, total burned area, and total storm rainfall. Further reduction in uncertainty is possible for the nonlinear equations when dimensional consistency is not a priority and by subsequently applying a gradient solver to the fittest solutions. The data-driven modeling approach can be applied to nonlinear multivariate problems in all fields of study.
The development of a probabilistic approach to forecast coastal change
Lentz, Erika E.; Hapke, Cheryl J.; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.
2011-01-01
This study demonstrates the applicability of a Bayesian probabilistic model as an effective tool in predicting post-storm beach changes along sandy coastlines. Volume change and net shoreline movement are modeled for two study sites at Fire Island, New York in response to two extratropical storms in 2007 and 2009. Both study areas include modified areas adjacent to unmodified areas in morphologically different segments of coast. Predicted outcomes are evaluated against observed changes to test model accuracy and uncertainty along 163 cross-shore transects. Results show strong agreement in the cross validation of predictions vs. observations, with 70-82% accuracies reported. Although no consistent spatial pattern in inaccurate predictions could be determined, the highest prediction uncertainties appeared in locations that had been recently replenished. Further testing and model refinement are needed; however, these initial results show that Bayesian networks have the potential to serve as important decision-support tools in forecasting coastal change.
NASA Astrophysics Data System (ADS)
Cowdery, E.; Dietze, M.
2016-12-01
As atmospheric levels of carbon dioxide levels continue to increase, it is critical that terrestrial ecosystem models can accurately predict ecological responses to the changing environment. Current predictions of net primary productivity (NPP) in response to elevated atmospheric CO2 concentration are highly variable and contain a considerable amount of uncertainty.The Predictive Ecosystem Analyzer (PEcAn) is an informatics toolbox that wraps around an ecosystem model and can be used to help identify which factors drive uncertainty. We tested a suite of models (LPJ-GUESS, MAESPA, GDAY, CLM5, DALEC, ED2), which represent a range from low to high structural complexity, across a range of Free-Air CO2 Enrichment (FACE) experiments: the Kennedy Space Center Open Top Chamber Experiment, the Rhinelander FACE experiment, the Duke Forest FACE experiment and the Oak Ridge Experiment on CO2 Enrichment. These tests were implemented in a novel benchmarking workflow that is automated, repeatable, and generalized to incorporate different sites and ecological models. Observational data from the FACE experiments represent a first test of this flexible, extensible approach aimed at providing repeatable tests of model process representation.To identify and evaluate the assumptions causing inter-model differences we used PEcAn to perform model sensitivity and uncertainty analysis, not only to assess the components of NPP, but also to examine system processes such nutrient uptake and and water use. Combining the observed patterns of uncertainty between multiple models with results of the recent FACE-model data synthesis project (FACE-MDS) can help identify which processes need further study and additional data constraints. These findings can be used to inform future experimental design and in turn can provide informative starting point for data assimilation.
Prediction and assimilation of surf-zone processes using a Bayesian network: Part II: Inverse models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
A Bayesian network model has been developed to simulate a relatively simple problem of wave propagation in the surf zone (detailed in Part I). Here, we demonstrate that this Bayesian model can provide both inverse modeling and data-assimilation solutions for predicting offshore wave heights and depth estimates given limited wave-height and depth information from an onshore location. The inverse method is extended to allow data assimilation using observational inputs that are not compatible with deterministic solutions of the problem. These inputs include sand bar positions (instead of bathymetry) and estimates of the intensity of wave breaking (instead of wave-height observations). Our results indicate that wave breaking information is essential to reduce prediction errors. In many practical situations, this information could be provided from a shore-based observer or from remote-sensing systems. We show that various combinations of the assimilated inputs significantly reduce the uncertainty in the estimates of water depths and wave heights in the model domain. Application of the Bayesian network model to new field data demonstrated significant predictive skill (R2 = 0.7) for the inverse estimate of a month-long time series of offshore wave heights. The Bayesian inverse results include uncertainty estimates that were shown to be most accurate when given uncertainty in the inputs (e.g., depth and tuning parameters). Furthermore, the inverse modeling was extended to directly estimate tuning parameters associated with the underlying wave-process model. The inverse estimates of the model parameters not only showed an offshore wave height dependence consistent with results of previous studies but the uncertainty estimates of the tuning parameters also explain previously reported variations in the model parameters.
Multi-Hypothesis Modelling Capabilities for Robust Data-Model Integration
NASA Astrophysics Data System (ADS)
Walker, A. P.; De Kauwe, M. G.; Lu, D.; Medlyn, B.; Norby, R. J.; Ricciuto, D. M.; Rogers, A.; Serbin, S.; Weston, D. J.; Ye, M.; Zaehle, S.
2017-12-01
Large uncertainty is often inherent in model predictions due to imperfect knowledge of how to describe the mechanistic processes (hypotheses) that a model is intended to represent. Yet this model hypothesis uncertainty (MHU) is often overlooked or informally evaluated, as methods to quantify and evaluate MHU are limited. MHU is increased as models become more complex because each additional processes added to a model comes with inherent MHU as well as parametric unceratinty. With the current trend of adding more processes to Earth System Models (ESMs), we are adding uncertainty, which can be quantified for parameters but not MHU. Model inter-comparison projects do allow for some consideration of hypothesis uncertainty but in an ad hoc and non-independent fashion. This has stymied efforts to evaluate ecosystem models against data and intepret the results mechanistically because it is not simple to interpret exactly why a model is producing the results it does and identify which model assumptions are key as they combine models of many sub-systems and processes, each of which may be conceptualised and represented mathematically in various ways. We present a novel modelling framework—the multi-assumption architecture and testbed (MAAT)—that automates the combination, generation, and execution of a model ensemble built with different representations of process. We will present the argument that multi-hypothesis modelling needs to be considered in conjunction with other capabilities (e.g. the Predictive Ecosystem Analyser; PecAn) and statistical methods (e.g. sensitivity anaylsis, data assimilation) to aid efforts in robust data model integration to enhance our predictive understanding of biological systems.
Several examples where turbulence models fail in inlet flow field analysis
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.
1993-01-01
Computational uncertainties in turbulence modeling for three dimensional inlet flow fields include flows approaching separation, strength of secondary flow field, three dimensional flow predictions of vortex liftoff, and influence of vortex-boundary layer interactions; computational uncertainties in vortex generator modeling include representation of generator vorticity field and the relationship between generator and vorticity field. The objectives of the inlet flow field studies presented in this document are to advance the understanding, prediction, and control of intake distortion and to study the basic interactions that influence this design problem.
Characterizing Uncertainty and Variability in PBPK Models ...
Mode-of-action based risk and safety assessments can rely upon tissue dosimetry estimates in animals and humans obtained from physiologically-based pharmacokinetic (PBPK) modeling. However, risk assessment also increasingly requires characterization of uncertainty and variability; such characterization for PBPK model predictions represents a continuing challenge to both modelers and users. Current practices show significant progress in specifying deterministic biological models and the non-deterministic (often statistical) models, estimating their parameters using diverse data sets from multiple sources, and using them to make predictions and characterize uncertainty and variability. The International Workshop on Uncertainty and Variability in PBPK Models, held Oct 31-Nov 2, 2006, sought to identify the state-of-the-science in this area and recommend priorities for research and changes in practice and implementation. For the short term, these include: (1) multidisciplinary teams to integrate deterministic and non-deterministic/statistical models; (2) broader use of sensitivity analyses, including for structural and global (rather than local) parameter changes; and (3) enhanced transparency and reproducibility through more complete documentation of the model structure(s) and parameter values, the results of sensitivity and other analyses, and supporting, discrepant, or excluded data. Longer-term needs include: (1) theoretic and practical methodological impro
McMichael, Christine E; Hope, Allen S
2007-08-01
Fire is a primary agent of landcover transformation in California semi-arid shrubland watersheds, however few studies have examined the impacts of fire and post-fire succession on streamflow dynamics in these basins. While it may seem intuitive that larger fires will have a greater impact on streamflow response than smaller fires in these watersheds, the nature of these relationships has not been determined. The effects of fire size on seasonal and annual streamflow responses were investigated for a medium-sized basin in central California using a modified version of the MIKE SHE model which had been previously calibrated and tested for this watershed using the Generalized Likelihood Uncertainty Estimation methodology. Model simulations were made for two contrasting periods, wet and dry, in order to assess whether fire size effects varied with weather regime. Results indicated that seasonal and annual streamflow response increased nearly linearly with fire size in a given year under both regimes. Annual flow response was generally higher in wetter years for both weather regimes, however a clear trend was confounded by the effect of stand age. These results expand our understanding of the effects of fire size on hydrologic response in chaparral watersheds, but it is important to note that the majority of model predictions were largely indistinguishable from the predictive uncertainty associated with the calibrated model - a key finding that highlights the importance of analyzing hydrologic predictions for altered landcover conditions in the context of model uncertainty. Future work is needed to examine how alternative decisions (e.g., different likelihood measures) may influence GLUE-based MIKE SHE streamflow predictions following different size fires, and how the effect of fire size on streamflow varies with other factors such as fire location.
NASA Astrophysics Data System (ADS)
Samaniego, Luis; Kumar, Rohini; Pechlivanidis, Illias; Breuer, Lutz; Wortmann, Michel; Vetter, Tobias; Flörke, Martina; Chamorro, Alejandro; Schäfer, David; Shah, Harsh; Zeng, Xiaofan
2016-04-01
The quantification of the predictive uncertainty in hydrologic models and their attribution to its main sources is of particular interest in climate change studies. In recent years, a number of studies have been aimed at assessing the ability of hydrologic models (HMs) to reproduce extreme hydrologic events. Disentangling the overall uncertainty of streamflow -including its derived low-flow characteristics- into individual contributions, stemming from forcings and model structure, has also been studied. Based on recent literature, it can be stated that there is a controversy with respect to which source is the largest (e.g., Teng, et al. 2012, Bosshard et al. 2013, Prudhomme et al. 2014). Very little has also been done to estimate the relative impact of the parametric uncertainty of the HMs with respect to overall uncertainty of low-flow characteristics. The ISI-MIP2 project provides a unique opportunity to understand the propagation of forcing and model structure uncertainties into century-long time series of drought characteristics. This project defines a consistent framework to deal with compatible initial conditions for the HMs and a set of standardized historical and future forcings. Moreover, the ensemble of hydrologic model predictions varies across a broad range of climate scenarios and regions. To achieve this goal, we use six preconditioned hydrologic models (HYPE or HBV, mHM, SWIM, VIC, and WaterGAP3) set up in seven large continental river basins: Amazon, Blue Nile, Ganges, Niger, Mississippi, Rhine, Yellow. These models are forced with bias-corrected outputs of five CMIP5 general circulation models (GCM) under four extreme representative concentration pathway (RCP) scenarios (i.e. 2.6, 4.5, 6.0, and 8.5 Wm-2) for the period 1971-2099. Simulated streamflow is transformed into a monthly runoff index (RI) to analyze the attribution of the GCM and HM uncertainty into drought magnitude and duration over time. Uncertainty contributions are investigated during periods: 1) 2006-2035, 2) 2036-2065 and 3) 2070-2099. Results presented in Samaniego et al. 2015 (submitted) indicate that GCM uncertainty mostly dominates over HM uncertainty for predictions of runoff drought characteristics, irrespective of the selected RCP and region. For the mHM model, in particular, GCM uncertainty always dominates over parametric uncertainty. In general, the overall uncertainty increases with time. The larger the radiative forcing of the RCP, the larger the uncertainty in drought characteristics, however, the propagation of the GCM uncertainty onto a drought characteristic depends largely upon the hydro-climatic regime. While our study emphasizes the need for multi-model ensembles for the assessment of future drought projections, the agreement between GCM forcings is still weak to draw conclusive recommendations. References: L. Samaniego, R. Kumar, I. G. Pechlivanidis, L. Breuer, M. Wortmann, T. Vetter, M. Flörke, A. Chamorro, D. Schäfer, H. Shah, X. Zeng: Propagation of forcing and model uncertainty into hydrological drought characteristics in a multi-model century-long experiment in continental river basins. Submitted to Climatic Change on Dec 2015. Bosshard, et al. 2013. doi:10.1029/2011WR011533. Prudhomme et al. 2014, doi:10.1073/pnas.1222473110. Teng, et al. 2012, doi:10.1175/JHM-D-11-058.1.
Viskari, Toni; Hardiman, Brady; Desai, Ankur R; Dietze, Michael C
2015-03-01
Our limited ability to accurately simulate leaf phenology is a leading source of uncertainty in models of ecosystem carbon cycling. We evaluate if continuously updating canopy state variables with observations is beneficial for predicting phenological events. We employed ensemble adjustment Kalman filter (EAKF) to update predictions of leaf area index (LAI) and leaf extension using tower-based photosynthetically active radiation (PAR) and moderate resolution imaging spectrometer (MODIS) data for 2002-2005 at Willow Creek, Wisconsin, USA, a mature, even-aged, northern hardwood, deciduous forest. The ecosystem demography model version 2 (ED2) was used as the prediction model, forced by offline climate data. EAKF successfully incorporated information from both the observations and model predictions weighted by their respective uncertainties. The resulting. estimate reproduced the observed leaf phenological cycle in the spring and the fall better than a parametric model prediction. These results indicate that during spring the observations contribute most in determining the correct bud-burst date, after which the model performs well, but accurately modeling fall leaf senesce requires continuous model updating from observations. While the predicted net ecosystem exchange (NEE) of CO2 precedes tower observations and unassimilated model predictions in the spring, overall the prediction follows observed NEE better than the model alone. Our results show state data assimilation successfully simulates the evolution of plant leaf phenology and improves model predictions of forest NEE.
Guidelines 13 and 14—Prediction uncertainty
Hill, Mary C.; Tiedeman, Claire
2005-01-01
An advantage of using optimization for model development and calibration is that optimization provides methods for evaluating and quantifying prediction uncertainty. Both deterministic and statistical methods can be used. Guideline 13 discusses using regression and post-audits, which we classify as deterministic methods. Guideline 14 discusses inferential statistics and Monte Carlo methods, which we classify as statistical methods.
Aeroservoelastic Uncertainty Model Identification from Flight Data
NASA Technical Reports Server (NTRS)
Brenner, Martin J.
2001-01-01
Uncertainty modeling is a critical element in the estimation of robust stability margins for stability boundary prediction and robust flight control system development. There has been a serious deficiency to date in aeroservoelastic data analysis with attention to uncertainty modeling. Uncertainty can be estimated from flight data using both parametric and nonparametric identification techniques. The model validation problem addressed in this paper is to identify aeroservoelastic models with associated uncertainty structures from a limited amount of controlled excitation inputs over an extensive flight envelope. The challenge to this problem is to update analytical models from flight data estimates while also deriving non-conservative uncertainty descriptions consistent with the flight data. Multisine control surface command inputs and control system feedbacks are used as signals in a wavelet-based modal parameter estimation procedure for model updates. Transfer function estimates are incorporated in a robust minimax estimation scheme to get input-output parameters and error bounds consistent with the data and model structure. Uncertainty estimates derived from the data in this manner provide an appropriate and relevant representation for model development and robust stability analysis. This model-plus-uncertainty identification procedure is applied to aeroservoelastic flight data from the NASA Dryden Flight Research Center F-18 Systems Research Aircraft.
NASA Astrophysics Data System (ADS)
Migliavacca, M.; Sonnentag, O.; Keenan, T. F.; Cescatti, A.; O'Keefe, J.; Richardson, A. D.
2012-06-01
Phenology, the timing of recurring life cycle events, controls numerous land surface feedbacks to the climate system through the regulation of exchanges of carbon, water and energy between the biosphere and atmosphere. Terrestrial biosphere models, however, are known to have systematic errors in the simulation of spring phenology, which potentially could propagate to uncertainty in modeled responses to future climate change. Here, we used the Harvard Forest phenology record to investigate and characterize sources of uncertainty in predicting phenology, and the subsequent impacts on model forecasts of carbon and water cycling. Using a model-data fusion approach, we combined information from 20 yr of phenological observations of 11 North American woody species, with 12 leaf bud-burst models that varied in complexity. Akaike's Information Criterion indicated support for spring warming models with photoperiod limitations and, to a lesser extent, models that included chilling requirements. We assessed three different sources of uncertainty in phenological forecasts: parameter uncertainty, model uncertainty, and driver uncertainty. The latter was characterized running the models to 2099 using 2 different IPCC climate scenarios (A1fi vs. B1, i.e. high CO2 emissions vs. low CO2 emissions scenario). Parameter uncertainty was the smallest (average 95% Confidence Interval - CI: 2.4 days century-1 for scenario B1 and 4.5 days century-1 for A1fi), whereas driver uncertainty was the largest (up to 8.4 days century-1 in the simulated trends). The uncertainty related to model structure is also large and the predicted bud-burst trends as well as the shape of the smoothed projections varied among models (±7.7 days century-1 for A1fi, ±3.6 days century-1 for B1). The forecast sensitivity of bud-burst to temperature (i.e. days bud-burst advanced per degree of warming) varied between 2.2 days °C-1 and 5.2 days °C-1 depending on model structure. We quantified the impact of uncertainties in bud-burst forecasts on simulated photosynthetic CO2 uptake and evapotranspiration (ET) using a process-based terrestrial biosphere model. Uncertainty in phenology model structure led to uncertainty in the description of forest seasonality, which accumulated to uncertainty in annual model estimates of gross primary productivity (GPP) and ET of 9.6% and 2.9%, respectively. A sensitivity analysis shows that a variation of ±10 days in bud-burst dates led to a variation of ±5.0% for annual GPP and about ±2.0% for ET. For phenology models, differences among future climate scenarios (i.e. driver) represent the largest source of uncertainty, followed by uncertainties related to model structure, and finally, related to model parameterization. The uncertainties we have quantified will affect the description of the seasonality of ecosystem processes and in particular the simulation of carbon uptake by forest ecosystems, with a larger impact of uncertainties related to phenology model structure, followed by uncertainties related to phenological model parameterization.
NASA Astrophysics Data System (ADS)
Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.
2016-02-01
The effects of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The null-space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of predictive uncertainty (due to soil property (parametric) uncertainty) and the inter-annual climate variability due to year to year differences in CESM climate forcings. After calibrating to measured borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant predictive uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Inter-annual climate variability in projected soil moisture content and Stefan number are small. A volume- and time-integrated Stefan number decreases significantly, indicating a shift in subsurface energy utilization in the future climate (latent heat of phase change becomes more important than heat conduction). Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we quantify the relative magnitude of soil property uncertainty to another source of permafrost uncertainty, structural climate model uncertainty. We show that the effect of calibration-constrained uncertainty in soil properties, although significant, is less than that produced by structural climate model uncertainty for this location.
NASA Astrophysics Data System (ADS)
Wentworth, Mami Tonoe
Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification techniques for model calibration. For Bayesian model calibration, we employ adaptive Metropolis algorithms to construct densities for input parameters in the heat model and the HIV model. To quantify the uncertainty in the parameters, we employ two MCMC algorithms: Delayed Rejection Adaptive Metropolis (DRAM) [33] and Differential Evolution Adaptive Metropolis (DREAM) [66, 68]. The densities obtained using these methods are compared to those obtained through the direct numerical evaluation of the Bayes' formula. We also combine uncertainties in input parameters and measurement errors to construct predictive estimates for a model response. A significant emphasis is on the development and illustration of techniques to verify the accuracy of sampling-based Metropolis algorithms. We verify the accuracy of DRAM and DREAM by comparing chains, densities and correlations obtained using DRAM, DREAM and the direct evaluation of Bayes formula. We also perform similar analysis for credible and prediction intervals for responses. Once the parameters are estimated, we employ energy statistics test [63, 64] to compare the densities obtained by different methods for the HIV model. The energy statistics are used to test the equality of distributions. We also consider parameter selection and verification techniques for models having one or more parameters that are noninfluential in the sense that they minimally impact model outputs. We illustrate these techniques for a dynamic HIV model but note that the parameter selection and verification framework is applicable to a wide range of biological and physical models. To accommodate the nonlinear input to output relations, which are typical for such models, we focus on global sensitivity analysis techniques, including those based on partial correlations, Sobol indices based on second-order model representations, and Morris indices, as well as a parameter selection technique based on standard errors. A significant objective is to provide verification strategies to assess the accuracy of those techniques, which we illustrate in the context of the HIV model. Finally, we examine active subspace methods as an alternative to parameter subset selection techniques. The objective of active subspace methods is to determine the subspace of inputs that most strongly affect the model response, and to reduce the dimension of the input space. The major difference between active subspace methods and parameter selection techniques is that parameter selection identifies influential parameters whereas subspace selection identifies a linear combination of parameters that impacts the model responses significantly. We employ active subspace methods discussed in [22] for the HIV model and present a verification that the active subspace successfully reduces the input dimensions.
Machine learning approaches for estimation of prediction interval for the model output.
Shrestha, Durga L; Solomatine, Dimitri P
2006-03-01
A novel method for estimating prediction uncertainty using machine learning techniques is presented. Uncertainty is expressed in the form of the two quantiles (constituting the prediction interval) of the underlying distribution of prediction errors. The idea is to partition the input space into different zones or clusters having similar model errors using fuzzy c-means clustering. The prediction interval is constructed for each cluster on the basis of empirical distributions of the errors associated with all instances belonging to the cluster under consideration and propagated from each cluster to the examples according to their membership grades in each cluster. Then a regression model is built for in-sample data using computed prediction limits as targets, and finally, this model is applied to estimate the prediction intervals (limits) for out-of-sample data. The method was tested on artificial and real hydrologic data sets using various machine learning techniques. Preliminary results show that the method is superior to other methods estimating the prediction interval. A new method for evaluating performance for estimating prediction interval is proposed as well.
Multi-Temporal Decomposed Wind and Load Power Models for Electric Energy Systems
NASA Astrophysics Data System (ADS)
Abdel-Karim, Noha
This thesis is motivated by the recognition that sources of uncertainties in electric power systems are multifold and may have potentially far-reaching effects. In the past, only system load forecast was considered to be the main challenge. More recently, however, the uncertain price of electricity and hard-to-predict power produced by renewable resources, such as wind and solar, are making the operating and planning environment much more challenging. The near-real-time power imbalances are compensated by means of frequency regulation and generally require fast-responding costly resources. Because of this, a more accurate forecast and look-ahead scheduling would result in a reduced need for expensive power balancing. Similarly, long-term planning and seasonal maintenance need to take into account long-term demand forecast as well as how the short-term generation scheduling is done. The better the demand forecast, the more efficient planning will be as well. Moreover, computer algorithms for scheduling and planning are essential in helping the system operators decide what to schedule and planners what to build. This is needed given the overall complexity created by different abilities to adjust the power output of generation technologies, demand uncertainties and by the network delivery constraints. Given the growing presence of major uncertainties, it is likely that the main control applications will use more probabilistic approaches. Today's predominantly deterministic methods will be replaced by methods which account for key uncertainties as decisions are made. It is well-understood that although demand and wind power cannot be predicted at very high accuracy, taking into consideration predictions and scheduling in a look-ahead way over several time horizons generally results in more efficient and reliable utilization, than when decisions are made assuming deterministic, often worst-case scenarios. This change is in approach is going to ultimately require new electricity market rules capable of providing the right incentives to manage uncertainties and of differentiating various technologies according to the rate at which they can respond to ever changing conditions. Given the overall need for modeling uncertainties in electric energy systems, we consider in this thesis the problem of multi-temporal modeling of wind and demand power, in particular. Historic data is used to derive prediction models for several future time horizons. Short-term prediction models derived can be used for look-ahead economic dispatch and unit commitment, while the long-term annual predictive models can be used for investment planning. As expected, the accuracy of such predictive models depends on the time horizons over which the predictions are made, as well as on the nature of uncertain signals. It is shown that predictive models obtained using the same general modeling approaches result in different accuracy for wind than for demand power. In what follows, we introduce several models which have qualitatively different patterns, ranging from hourly to annual. We first transform historic time-stamped data into the Fourier Transform (Fr) representation. The frequency domain data representation is used to decompose the wind and load power signals and to derive predictive models relevant for short-term and long-term predictions using extracted spectral techniques. The short-term results are interpreted next as a Linear Prediction Coding Model (LPC) and its accuracy is analyzed. Next, a new Markov-Based Sensitivity Model (MBSM) for short term prediction has been proposed and the dispatched costs of uncertainties for different predictive models with comparisons have been developed. Moreover, the Discrete Markov Process (DMP) representation is applied to help assess probabilities of most likely short-, medium- and long-term states and the related multi-temporal risks. In addition, this thesis discusses operational impacts of wind power integration in different scenario levels by performing more than 9,000 AC Optimal Power Flow runs. The effects of both wind and load variations on system constraints and costs are presented. The limitations of DC Optimal Power Flow (DCOPF) vs. ACOPF are emphasized by means of system convergence problems due to the effect of wind power on changing line flows and net power injections. By studying the effect of having wind power on line flows, we found that the divergence problem applies in areas with high wind and hydro generation capacity share (cheap generations). (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Ruiz, Rafael O.; Meruane, Viviana
2017-06-01
The goal of this work is to describe a framework to propagate uncertainties in piezoelectric energy harvesters (PEHs). These uncertainties are related to the incomplete knowledge of the model parameters. The framework presented could be employed to conduct prior robust stochastic predictions. The prior analysis assumes a known probability density function for the uncertain variables and propagates the uncertainties to the output voltage. The framework is particularized to evaluate the behavior of the frequency response functions (FRFs) in PEHs, while its implementation is illustrated by the use of different unimorph and bimorph PEHs subjected to different scenarios: free of uncertainties, common uncertainties, and uncertainties as a product of imperfect clamping. The common variability associated with the PEH parameters are tabulated and reported. A global sensitivity analysis is conducted to identify the Sobol indices. Results indicate that the elastic modulus, density, and thickness of the piezoelectric layer are the most relevant parameters of the output variability. The importance of including the model parameter uncertainties in the estimation of the FRFs is revealed. In this sense, the present framework constitutes a powerful tool in the robust design and prediction of PEH performance.
Modeling Input Errors to Improve Uncertainty Estimates for Sediment Transport Model Predictions
NASA Astrophysics Data System (ADS)
Jung, J. Y.; Niemann, J. D.; Greimann, B. P.
2016-12-01
Bayesian methods using Markov chain Monte Carlo algorithms have recently been applied to sediment transport models to assess the uncertainty in the model predictions due to the parameter values. Unfortunately, the existing approaches can only attribute overall uncertainty to the parameters. This limitation is critical because no model can produce accurate forecasts if forced with inaccurate input data, even if the model is well founded in physical theory. In this research, an existing Bayesian method is modified to consider the potential errors in input data during the uncertainty evaluation process. The input error is modeled using Gaussian distributions, and the means and standard deviations are treated as uncertain parameters. The proposed approach is tested by coupling it to the Sedimentation and River Hydraulics - One Dimension (SRH-1D) model and simulating a 23-km reach of the Tachia River in Taiwan. The Wu equation in SRH-1D is used for computing the transport capacity for a bed material load of non-cohesive material. Three types of input data are considered uncertain: (1) the input flowrate at the upstream boundary, (2) the water surface elevation at the downstream boundary, and (3) the water surface elevation at a hydraulic structure in the middle of the reach. The benefits of modeling the input errors in the uncertainty analysis are evaluated by comparing the accuracy of the most likely forecast and the coverage of the observed data by the credible intervals to those of the existing method. The results indicate that the internal boundary condition has the largest uncertainty among those considered. Overall, the uncertainty estimates from the new method are notably different from those of the existing method for both the calibration and forecast periods.
Brakefield, Linzy K.; White, Jeremy T.; Houston, Natalie A.; Thomas, Jonathan V.
2015-01-01
Predictive results of total spring discharge during the 7-year period, as well as head predictions at Bexar County index well J-17, were much different than the dissolved-solids concentration change results at the production wells. These upper bounds are an order of magnitude larger than the actual prediction which implies that (1) the predictions of total spring discharge at Comal and San Marcos Springs and head at Bexar County index well J-17 made with this model are not reliable, and (2) parameters that control these predictions are not informed well by the observation dataset during historymatching, even though the history-matching process yielded parameters to reproduce spring discharges and heads at these locations during the history-matching period. Furthermore, because spring discharges at these two springs and heads at Bexar County index well J-17 represent more of a cumulative effect of upstream conditions over a larger distance (and longer time), many more parameters (with their own uncertainties) are potentially controlling these predictions than the prediction of dissolved-solids concentration change at the prediction wells, and therefore contributing to a large posterior uncertainty.
Using analogues to quantify geological uncertainty in stochastic reserve modelling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, B.; Brown, I.
1995-08-01
The petroleum industry seeks to minimize exploration risk by employing the best possible expertise, methods and tools. Is it possible to quantify the success of this process of risk reduction? Due to inherent uncertainty in predicting geological reality and due to changing environments for hydrocarbon exploration, it is not enough simply to record the proportion of successful wells drilled; in various parts of the world it has been noted that pseudo-random drilling would apparently have been as successful as the actual drilling programme. How, then, should we judge the success of risk reduction? For many years the E&P industry hasmore » routinely used Monte Carlo modelling to generate a probability distribution for prospect reserves. One aspect of Monte Carlo modelling which has received insufficient attention, but which is essential for quantifying risk reduction, is the consistency and repeatability with which predictions can be made. Reducing the subjective element inherent in the specification of geological uncertainty allows better quantification of uncertainty in the prediction of reserves, in both exploration and appraisal. Building on work reported at the AAPG annual conventions in 1994 and 1995, the present paper incorporates analogue information with uncertainty modelling. Analogues provide a major step forward in the quantification of risk, but their significance is potentially greater still. The two principal contributors to uncertainty in field and prospect analysis are the hydrocarbon life-cycle and the geometry of the trap. These are usually treated separately. Combining them into a single model is a major contribution to the reduction risk. This work is based in part on a joint project with Oryx Energy UK Ltd., and thanks are due in particular to Richard Benmore and Mike Cooper.« less
NASA Astrophysics Data System (ADS)
Sun, Mei; Zhang, Xiaolin; Huo, Zailin; Feng, Shaoyuan; Huang, Guanhua; Mao, Xiaomin
2016-03-01
Quantitatively ascertaining and analyzing the effects of model uncertainty on model reliability is a focal point for agricultural-hydrological models due to more uncertainties of inputs and processes. In this study, the generalized likelihood uncertainty estimation (GLUE) method with Latin hypercube sampling (LHS) was used to evaluate the uncertainty of the RZWQM-DSSAT (RZWQM2) model outputs responses and the sensitivity of 25 parameters related to soil properties, nutrient transport and crop genetics. To avoid the one-sided risk of model prediction caused by using a single calibration criterion, the combined likelihood (CL) function integrated information concerning water, nitrogen, and crop production was introduced in GLUE analysis for the predictions of the following four model output responses: the total amount of water content (T-SWC) and the nitrate nitrogen (T-NIT) within the 1-m soil profile, the seed yields of waxy maize (Y-Maize) and winter wheat (Y-Wheat). In the process of evaluating RZWQM2, measurements and meteorological data were obtained from a field experiment that involved a winter wheat and waxy maize crop rotation system conducted from 2003 to 2004 in southern Beijing. The calibration and validation results indicated that RZWQM2 model can be used to simulate the crop growth and water-nitrogen migration and transformation in wheat-maize crop rotation planting system. The results of uncertainty analysis using of GLUE method showed T-NIT was sensitive to parameters relative to nitrification coefficient, maize growth characteristics on seedling period, wheat vernalization period, and wheat photoperiod. Parameters on soil saturated hydraulic conductivity, nitrogen nitrification and denitrification, and urea hydrolysis played an important role in crop yield component. The prediction errors for RZWQM2 outputs with CL function were relatively lower and uniform compared with other likelihood functions composed of individual calibration criterion. This new and successful application of the GLUE method for determining the uncertainty and sensitivity of the RZWQM2 could provide a reference for the optimization of model parameters with different emphases according to research interests.
NASA Astrophysics Data System (ADS)
Pathiraja, S. D.; Moradkhani, H.; Marshall, L. A.; Sharma, A.; Geenens, G.
2016-12-01
Effective combination of model simulations and observations through Data Assimilation (DA) depends heavily on uncertainty characterisation. Many traditional methods for quantifying model uncertainty in DA require some level of subjectivity (by way of tuning parameters or by assuming Gaussian statistics). Furthermore, the focus is typically on only estimating the first and second moments. We propose a data-driven methodology to estimate the full distributional form of model uncertainty, i.e. the transition density p(xt|xt-1). All sources of uncertainty associated with the model simulations are considered collectively, without needing to devise stochastic perturbations for individual components (such as model input, parameter and structural uncertainty). A training period is used to derive the distribution of errors in observed variables conditioned on hidden states. Errors in hidden states are estimated from the conditional distribution of observed variables using non-linear optimization. The theory behind the framework and case study applications are discussed in detail. Results demonstrate improved predictions and more realistic uncertainty bounds compared to a standard perturbation approach.
Optimal observation network design for conceptual model discrimination and uncertainty reduction
NASA Astrophysics Data System (ADS)
Pham, Hai V.; Tsai, Frank T.-C.
2016-02-01
This study expands the Box-Hill discrimination function to design an optimal observation network to discriminate conceptual models and, in turn, identify a most favored model. The Box-Hill discrimination function measures the expected decrease in Shannon entropy (for model identification) before and after the optimal design for one additional observation. This study modifies the discrimination function to account for multiple future observations that are assumed spatiotemporally independent and Gaussian-distributed. Bayesian model averaging (BMA) is used to incorporate existing observation data and quantify future observation uncertainty arising from conceptual and parametric uncertainties in the discrimination function. In addition, the BMA method is adopted to predict future observation data in a statistical sense. The design goal is to find optimal locations and least data via maximizing the Box-Hill discrimination function value subject to a posterior model probability threshold. The optimal observation network design is illustrated using a groundwater study in Baton Rouge, Louisiana, to collect additional groundwater heads from USGS wells. The sources of uncertainty creating multiple groundwater models are geological architecture, boundary condition, and fault permeability architecture. Impacts of considering homoscedastic and heteroscedastic future observation data and the sources of uncertainties on potential observation areas are analyzed. Results show that heteroscedasticity should be considered in the design procedure to account for various sources of future observation uncertainty. After the optimal design is obtained and the corresponding data are collected for model updating, total variances of head predictions can be significantly reduced by identifying a model with a superior posterior model probability.
Likelihood of achieving air quality targets under model uncertainties.
Digar, Antara; Cohan, Daniel S; Cox, Dennis D; Kim, Byeong-Uk; Boylan, James W
2011-01-01
Regulatory attainment demonstrations in the United States typically apply a bright-line test to predict whether a control strategy is sufficient to attain an air quality standard. Photochemical models are the best tools available to project future pollutant levels and are a critical part of regulatory attainment demonstrations. However, because photochemical models are uncertain and future meteorology is unknowable, future pollutant levels cannot be predicted perfectly and attainment cannot be guaranteed. This paper introduces a computationally efficient methodology for estimating the likelihood that an emission control strategy will achieve an air quality objective in light of uncertainties in photochemical model input parameters (e.g., uncertain emission and reaction rates, deposition velocities, and boundary conditions). The method incorporates Monte Carlo simulations of a reduced form model representing pollutant-precursor response under parametric uncertainty to probabilistically predict the improvement in air quality due to emission control. The method is applied to recent 8-h ozone attainment modeling for Atlanta, Georgia, to assess the likelihood that additional controls would achieve fixed (well-defined) or flexible (due to meteorological variability and uncertain emission trends) targets of air pollution reduction. The results show that in certain instances ranking of the predicted effectiveness of control strategies may differ between probabilistic and deterministic analyses.
“Wrong, but Useful”: Negotiating Uncertainty in Infectious Disease Modelling
Christley, Robert M.; Mort, Maggie; Wynne, Brian; Wastling, Jonathan M.; Heathwaite, A. Louise; Pickup, Roger; Austin, Zoë; Latham, Sophia M.
2013-01-01
For infectious disease dynamical models to inform policy for containment of infectious diseases the models must be able to predict; however, it is well recognised that such prediction will never be perfect. Nevertheless, the consensus is that although models are uncertain, some may yet inform effective action. This assumes that the quality of a model can be ascertained in order to evaluate sufficiently model uncertainties, and to decide whether or not, or in what ways or under what conditions, the model should be ‘used’. We examined uncertainty in modelling, utilising a range of data: interviews with scientists, policy-makers and advisors, and analysis of policy documents, scientific publications and reports of major inquiries into key livestock epidemics. We show that the discourse of uncertainty in infectious disease models is multi-layered, flexible, contingent, embedded in context and plays a critical role in negotiating model credibility. We argue that usability and stability of a model is an outcome of the negotiation that occurs within the networks and discourses surrounding it. This negotiation employs a range of discursive devices that renders uncertainty in infectious disease modelling a plastic quality that is amenable to ‘interpretive flexibility’. The utility of models in the face of uncertainty is a function of this flexibility, the negotiation this allows, and the contexts in which model outputs are framed and interpreted in the decision making process. We contend that rather than being based predominantly on beliefs about quality, the usefulness and authority of a model may at times be primarily based on its functional status within the broad social and political environment in which it acts. PMID:24146851
NASA Technical Reports Server (NTRS)
Daigle, Matthew J.; Sankararaman, Shankar
2013-01-01
Prognostics is centered on predicting the time of and time until adverse events in components, subsystems, and systems. It typically involves both a state estimation phase, in which the current health state of a system is identified, and a prediction phase, in which the state is projected forward in time. Since prognostics is mainly a prediction problem, prognostic approaches cannot avoid uncertainty, which arises due to several sources. Prognostics algorithms must both characterize this uncertainty and incorporate it into the predictions so that informed decisions can be made about the system. In this paper, we describe three methods to solve these problems, including Monte Carlo-, unscented transform-, and first-order reliability-based methods. Using a planetary rover as a case study, we demonstrate and compare the different methods in simulation for battery end-of-discharge prediction.
Impact of Damping Uncertainty on SEA Model Response Variance
NASA Technical Reports Server (NTRS)
Schiller, Noah; Cabell, Randolph; Grosveld, Ferdinand
2010-01-01
Statistical Energy Analysis (SEA) is commonly used to predict high-frequency vibroacoustic levels. This statistical approach provides the mean response over an ensemble of random subsystems that share the same gross system properties such as density, size, and damping. Recently, techniques have been developed to predict the ensemble variance as well as the mean response. However these techniques do not account for uncertainties in the system properties. In the present paper uncertainty in the damping loss factor is propagated through SEA to obtain more realistic prediction bounds that account for both ensemble and damping variance. The analysis is performed on a floor-equipped cylindrical test article that resembles an aircraft fuselage. Realistic bounds on the damping loss factor are determined from measurements acquired on the sidewall of the test article. The analysis demonstrates that uncertainties in damping have the potential to significantly impact the mean and variance of the predicted response.
Towards quantifying uncertainty in predictions of Amazon 'dieback'.
Huntingford, Chris; Fisher, Rosie A; Mercado, Lina; Booth, Ben B B; Sitch, Stephen; Harris, Phil P; Cox, Peter M; Jones, Chris D; Betts, Richard A; Malhi, Yadvinder; Harris, Glen R; Collins, Mat; Moorcroft, Paul
2008-05-27
Simulations with the Hadley Centre general circulation model (HadCM3), including carbon cycle model and forced by a 'business-as-usual' emissions scenario, predict a rapid loss of Amazonian rainforest from the middle of this century onwards. The robustness of this projection to both uncertainty in physical climate drivers and the formulation of the land surface scheme is investigated. We analyse how the modelled vegetation cover in Amazonia responds to (i) uncertainty in the parameters specified in the atmosphere component of HadCM3 and their associated influence on predicted surface climate. We then enhance the land surface description and (ii) implement a multilayer canopy light interception model and compare with the simple 'big-leaf' approach used in the original simulations. Finally, (iii) we investigate the effect of changing the method of simulating vegetation dynamics from an area-based model (TRIFFID) to a more complex size- and age-structured approximation of an individual-based model (ecosystem demography). We find that the loss of Amazonian rainforest is robust across the climate uncertainty explored by perturbed physics simulations covering a wide range of global climate sensitivity. The introduction of the refined light interception model leads to an increase in simulated gross plant carbon uptake for the present day, but, with altered respiration, the net effect is a decrease in net primary productivity. However, this does not significantly affect the carbon loss from vegetation and soil as a consequence of future simulated depletion in soil moisture; the Amazon forest is still lost. The introduction of the more sophisticated dynamic vegetation model reduces but does not halt the rate of forest dieback. The potential for human-induced climate change to trigger the loss of Amazon rainforest appears robust within the context of the uncertainties explored in this paper. Some further uncertainties should be explored, particularly with respect to the representation of rooting depth.
Embedded Model Error Representation and Propagation in Climate Models
NASA Astrophysics Data System (ADS)
Sargsyan, K.; Ricciuto, D. M.; Safta, C.; Thornton, P. E.
2017-12-01
Over the last decade, parametric uncertainty quantification (UQ) methods have reached a level of maturity, while the same can not be said about representation and quantification of structural or model errors. Lack of characterization of model errors, induced by physical assumptions, phenomenological parameterizations or constitutive laws, is a major handicap in predictive science. In particular, e.g. in climate models, significant computational resources are dedicated to model calibration without gaining improvement in predictive skill. Neglecting model errors during calibration/tuning will lead to overconfident and biased model parameters. At the same time, the most advanced methods accounting for model error merely correct output biases, augmenting model outputs with statistical error terms that can potentially violate physical laws, or make the calibrated model ineffective for extrapolative scenarios. This work will overview a principled path for representing and quantifying model errors, as well as propagating them together with the rest of the predictive uncertainty budget, including data noise, parametric uncertainties and surrogate-related errors. Namely, the model error terms will be embedded in select model components rather than as external corrections. Such embedding ensures consistency with physical constraints on model predictions, and renders calibrated model predictions meaningful and robust with respect to model errors. Besides, in the presence of observational data, the approach can effectively differentiate model structural deficiencies from those of data acquisition. The methodology is implemented in UQ Toolkit (www.sandia.gov/uqtoolkit), relying on a host of available forward and inverse UQ tools. We will demonstrate the application of the technique on few application of interest, including ACME Land Model calibration via a wide range of measurements obtained at select sites.
Probabilistic accounting of uncertainty in forecasts of species distributions under climate change
Wenger, Seth J.; Som, Nicholas A.; Dauwalter, Daniel C.; Isaak, Daniel J.; Neville, Helen M.; Luce, Charles H.; Dunham, Jason B.; Young, Michael K.; Fausch, Kurt D.; Rieman, Bruce E.
2013-01-01
Forecasts of species distributions under future climates are inherently uncertain, but there have been few attempts to describe this uncertainty comprehensively in a probabilistic manner. We developed a Monte Carlo approach that accounts for uncertainty within generalized linear regression models (parameter uncertainty and residual error), uncertainty among competing models (model uncertainty), and uncertainty in future climate conditions (climate uncertainty) to produce site-specific frequency distributions of occurrence probabilities across a species’ range. We illustrated the method by forecasting suitable habitat for bull trout (Salvelinus confluentus) in the Interior Columbia River Basin, USA, under recent and projected 2040s and 2080s climate conditions. The 95% interval of total suitable habitat under recent conditions was estimated at 30.1–42.5 thousand km; this was predicted to decline to 0.5–7.9 thousand km by the 2080s. Projections for the 2080s showed that the great majority of stream segments would be unsuitable with high certainty, regardless of the climate data set or bull trout model employed. The largest contributor to uncertainty in total suitable habitat was climate uncertainty, followed by parameter uncertainty and model uncertainty. Our approach makes it possible to calculate a full distribution of possible outcomes for a species, and permits ready graphical display of uncertainty for individual locations and of total habitat.
Karin Riley; Matthew Thompson; Peter Webley; Kevin D. Hyde
2017-01-01
Modeling has been used to characterize and map natural hazards and hazard susceptibility for decades. Uncertainties are pervasive in natural hazards analysis, including a limited ability to predict where and when extreme events will occur, with what consequences, and driven by what contributing factors. Modeling efforts are challenged by the intrinsic...
Peter B. Woodbury; James E. Smith; David A. Weinstein; John A. Laurence
1998-01-01
Most models of the potential effects of climate change on forest growth have produced deterministic predictions. However, there are large uncertainties in data on regional forest condition, estimates of future climate, and quantitative relationships between environmental conditions and forest growth rate. We constructed a new model to analyze these uncertainties...
Stochastic estimation of plant-available soil water under fluctuating water table depths
NASA Astrophysics Data System (ADS)
Or, Dani; Groeneveld, David P.
1994-12-01
Preservation of native valley-floor phreatophytes while pumping groundwater for export from Owens Valley, California, requires reliable predictions of plant water use. These predictions are compared with stored soil water within well field regions and serve as a basis for managing groundwater resources. Soil water measurement errors, variable recharge, unpredictable climatic conditions affecting plant water use, and modeling errors make soil water predictions uncertain and error-prone. We developed and tested a scheme based on soil water balance coupled with implementation of Kalman filtering (KF) for (1) providing physically based soil water storage predictions with prediction errors projected from the statistics of the various inputs, and (2) reducing the overall uncertainty in both estimates and predictions. The proposed KF-based scheme was tested using experimental data collected at a location on the Owens Valley floor where the water table was artificially lowered by groundwater pumping and later allowed to recover. Vegetation composition and per cent cover, climatic data, and soil water information were collected and used for developing a soil water balance. Predictions and updates of soil water storage under different types of vegetation were obtained for a period of 5 years. The main results show that: (1) the proposed predictive model provides reliable and resilient soil water estimates under a wide range of external conditions; (2) the predicted soil water storage and the error bounds provided by the model offer a realistic and rational basis for decisions such as when to curtail well field operation to ensure plant survival. The predictive model offers a practical means for accommodating simple aspects of spatial variability by considering the additional source of uncertainty as part of modeling or measurement uncertainty.
A Worst-Case Approach for On-Line Flutter Prediction
NASA Technical Reports Server (NTRS)
Lind, Rick C.; Brenner, Martin J.
1998-01-01
Worst-case flutter margins may be computed for a linear model with respect to a set of uncertainty operators using the structured singular value. This paper considers an on-line implementation to compute these robust margins in a flight test program. Uncertainty descriptions are updated at test points to account for unmodeled time-varying dynamics of the airplane by ensuring the robust model is not invalidated by measured flight data. Robust margins computed with respect to this uncertainty remain conservative to the changing dynamics throughout the flight. A simulation clearly demonstrates this method can improve the efficiency of flight testing by accurately predicting the flutter margin to improve safety while reducing the necessary flight time.
NASA Astrophysics Data System (ADS)
Jiang, Jiang; Huang, Yuanyuan; Ma, Shuang; Stacy, Mark; Shi, Zheng; Ricciuto, Daniel M.; Hanson, Paul J.; Luo, Yiqi
2018-03-01
The ability to forecast ecological carbon cycling is imperative to land management in a world where past carbon fluxes are no longer a clear guide in the Anthropocene. However, carbon-flux forecasting has not been practiced routinely like numerical weather prediction. This study explored (1) the relative contributions of model forcing data and parameters to uncertainty in forecasting flux- versus pool-based carbon cycle variables and (2) the time points when temperature and CO2 treatments may cause statistically detectable differences in those variables. We developed an online forecasting workflow (Ecological Platform for Assimilation of Data (EcoPAD)), which facilitates iterative data-model integration. EcoPAD automates data transfer from sensor networks, data assimilation, and ecological forecasting. We used the Spruce and Peatland Responses Under Changing Experiments data collected from 2011 to 2014 to constrain the parameters in the Terrestrial Ecosystem Model, forecast carbon cycle responses to elevated CO2 and a gradient of warming from 2015 to 2024, and specify uncertainties in the model output. Our results showed that data assimilation substantially reduces forecasting uncertainties. Interestingly, we found that the stochasticity of future external forcing contributed more to the uncertainty of forecasting future dynamics of C flux-related variables than model parameters. However, the parameter uncertainty primarily contributes to the uncertainty in forecasting C pool-related response variables. Given the uncertainties in forecasting carbon fluxes and pools, our analysis showed that statistically different responses of fast-turnover pools to various CO2 and warming treatments were observed sooner than slow-turnover pools. Our study has identified the sources of uncertainties in model prediction and thus leads to improve ecological carbon cycling forecasts in the future.
NASA Astrophysics Data System (ADS)
Zhang, Langwen; Xie, Wei; Wang, Jingcheng
2017-11-01
In this work, synthesis of robust distributed model predictive control (MPC) is presented for a class of linear systems subject to structured time-varying uncertainties. By decomposing a global system into smaller dimensional subsystems, a set of distributed MPC controllers, instead of a centralised controller, are designed. To ensure the robust stability of the closed-loop system with respect to model uncertainties, distributed state feedback laws are obtained by solving a min-max optimisation problem. The design of robust distributed MPC is then transformed into solving a minimisation optimisation problem with linear matrix inequality constraints. An iterative online algorithm with adjustable maximum iteration is proposed to coordinate the distributed controllers to achieve a global performance. The simulation results show the effectiveness of the proposed robust distributed MPC algorithm.
Dynamic wake prediction and visualization with uncertainty analysis
NASA Technical Reports Server (NTRS)
Holforty, Wendy L. (Inventor); Powell, J. David (Inventor)
2005-01-01
A dynamic wake avoidance system utilizes aircraft and atmospheric parameters readily available in flight to model and predict airborne wake vortices in real time. A novel combination of algorithms allows for a relatively simple yet robust wake model to be constructed based on information extracted from a broadcast. The system predicts the location and movement of the wake based on the nominal wake model and correspondingly performs an uncertainty analysis on the wake model to determine a wake hazard zone (no fly zone), which comprises a plurality of wake planes, each moving independently from another. The system selectively adjusts dimensions of each wake plane to minimize spatial and temporal uncertainty, thereby ensuring that the actual wake is within the wake hazard zone. The predicted wake hazard zone is communicated in real time directly to a user via a realistic visual representation. In an example, the wake hazard zone is visualized on a 3-D flight deck display to enable a pilot to visualize or see a neighboring aircraft as well as its wake. The system substantially enhances the pilot's situational awareness and allows for a further safe decrease in spacing, which could alleviate airport and airspace congestion.
Balancing the stochastic description of uncertainties as a function of hydrologic model complexity
NASA Astrophysics Data System (ADS)
Del Giudice, D.; Reichert, P.; Albert, C.; Kalcic, M.; Logsdon Muenich, R.; Scavia, D.; Bosch, N. S.; Michalak, A. M.
2016-12-01
Uncertainty analysis is becoming an important component of forecasting water and pollutant fluxes in urban and rural environments. Properly accounting for errors in the modeling process can help to robustly assess the uncertainties associated with the inputs (e.g. precipitation) and outputs (e.g. runoff) of hydrological models. In recent years we have investigated several Bayesian methods to infer the parameters of a mechanistic hydrological model along with those of the stochastic error component. The latter describes the uncertainties of model outputs and possibly inputs. We have adapted our framework to a variety of applications, ranging from predicting floods in small stormwater systems to nutrient loads in large agricultural watersheds. Given practical constraints, we discuss how in general the number of quantities to infer probabilistically varies inversely with the complexity of the mechanistic model. Most often, when evaluating a hydrological model of intermediate complexity, we can infer the parameters of the model as well as of the output error model. Describing the output errors as a first order autoregressive process can realistically capture the "downstream" effect of inaccurate inputs and structure. With simpler runoff models we can additionally quantify input uncertainty by using a stochastic rainfall process. For complex hydrologic transport models, instead, we show that keeping model parameters fixed and just estimating time-dependent output uncertainties could be a viable option. The common goal across all these applications is to create time-dependent prediction intervals which are both reliable (cover the nominal amount of validation data) and precise (are as narrow as possible). In conclusion, we recommend focusing both on the choice of the hydrological model and of the probabilistic error description. The latter can include output uncertainty only, if the model is computationally-expensive, or, with simpler models, it can separately account for different sources of errors like in the inputs and the structure of the model.
Johnson, Aaron W; Duda, Kevin R; Sheridan, Thomas B; Oman, Charles M
2017-03-01
This article describes a closed-loop, integrated human-vehicle model designed to help understand the underlying cognitive processes that influenced changes in subject visual attention, mental workload, and situation awareness across control mode transitions in a simulated human-in-the-loop lunar landing experiment. Control mode transitions from autopilot to manual flight may cause total attentional demands to exceed operator capacity. Attentional resources must be reallocated and reprioritized, which can increase the average uncertainty in the operator's estimates of low-priority system states. We define this increase in uncertainty as a reduction in situation awareness. We present a model built upon the optimal control model for state estimation, the crossover model for manual control, and the SEEV (salience, effort, expectancy, value) model for visual attention. We modify the SEEV attention executive to direct visual attention based, in part, on the uncertainty in the operator's estimates of system states. The model was validated using the simulated lunar landing experimental data, demonstrating an average difference in the percentage of attention ≤3.6% for all simulator instruments. The model's predictions of mental workload and situation awareness, measured by task performance and system state uncertainty, also mimicked the experimental data. Our model supports the hypothesis that visual attention is influenced by the uncertainty in system state estimates. Conceptualizing situation awareness around the metric of system state uncertainty is a valuable way for system designers to understand and predict how reallocations in the operator's visual attention during control mode transitions can produce reallocations in situation awareness of certain states.
NASA Astrophysics Data System (ADS)
Rautman, C. A.; Treadway, A. H.
1991-11-01
Regulatory geologists are concerned with predicting the performance of sites proposed for waste disposal or for remediation of existing pollution problems. Geologic modeling of these sites requires large-scale expansion of knowledge obtained from very limited sampling. This expansion induces considerable uncertainty into the geologic models of rock properties that are required for modeling the predicted performance of the site. One method for assessing this uncertainty is through nonparametric geostatistical simulation. Simulation can produce a series of equiprobable models of a rock property of interest. Each model honors measured values at sampled locations, and each can be constructed to emulate both the univariate histogram and the spatial covariance structure of the measured data. Computing a performance model for a number of geologic simulations allows evaluation of the effects of geologic uncertainty. A site may be judged acceptable if the number of failures to meet a particular performance criterion produced by these computations is sufficiently low. A site that produces too many failures may be either unacceptable or simply inadequately described. The simulation approach to addressing geologic uncertainty is being applied to the potential high-level nuclear waste repository site at Yucca Mountain, Nevada, U.S.A. Preliminary geologic models of unsaturated permeability have been created that reproduce observed statistical properties reasonably well. A spread of unsaturated groundwater travel times has been computed that reflects the variability of those geologic models. Regions within the simulated models exhibiting the greatest variability among multiple runs are candidates for obtaining the greatest reduction in uncertainty through additional site characterization.
Evaluation of incremental reactivity and its uncertainty in Southern California.
Martien, Philip T; Harley, Robert A; Milford, Jana B; Russell, Armistead G
2003-04-15
The incremental reactivity (IR) and relative incremental reactivity (RIR) of carbon monoxide and 30 individual volatile organic compounds (VOC) were estimated for the South Coast Air Basin using two photochemical air quality models: a 3-D, grid-based model and a vertically resolved trajectory model. Both models include an extended version of the SAPRC99 chemical mechanism. For the 3-D modeling, the decoupled direct method (DDM-3D) was used to assess reactivities. The trajectory model was applied to estimate uncertainties in reactivities due to uncertainties in chemical rate parameters, deposition parameters, and emission rates using Monte Carlo analysis with Latin hypercube sampling. For most VOC, RIRs were found to be consistent in rankings with those produced by Carter using a box model. However, 3-D simulations show that coastal regions, upwind of most of the emissions, have comparatively low IR but higher RIR than predicted by box models for C4-C5 alkenes and carbonyls that initiate the production of HOx radicals. Biogenic VOC emissions were found to have a lower RIR than predicted by box model estimates, because emissions of these VOC were mostly downwind of the areas of primary ozone production. Uncertainties in RIR of individual VOC were found to be dominated by uncertainties in the rate parameters of their primary oxidation reactions. The coefficient of variation (COV) of most RIR values ranged from 20% to 30%, whereas the COV of absolute incremental reactivity ranged from about 30% to 40%. In general, uncertainty and variability both decreased when relative rather than absolute reactivity metrics were used.
NASA Astrophysics Data System (ADS)
Sreekanth, J.; Moore, Catherine
2018-04-01
The application of global sensitivity and uncertainty analysis techniques to groundwater models of deep sedimentary basins are typically challenged by large computational burdens combined with associated numerical stability issues. The highly parameterized approaches required for exploring the predictive uncertainty associated with the heterogeneous hydraulic characteristics of multiple aquifers and aquitards in these sedimentary basins exacerbate these issues. A novel Patch Modelling Methodology is proposed for improving the computational feasibility of stochastic modelling analysis of large-scale and complex groundwater models. The method incorporates a nested groundwater modelling framework that enables efficient simulation of groundwater flow and transport across multiple spatial and temporal scales. The method also allows different processes to be simulated within different model scales. Existing nested model methodologies are extended by employing 'joining predictions' for extrapolating prediction-salient information from one model scale to the next. This establishes a feedback mechanism supporting the transfer of information from child models to parent models as well as parent models to child models in a computationally efficient manner. This feedback mechanism is simple and flexible and ensures that while the salient small scale features influencing larger scale prediction are transferred back to the larger scale, this does not require the live coupling of models. This method allows the modelling of multiple groundwater flow and transport processes using separate groundwater models that are built for the appropriate spatial and temporal scales, within a stochastic framework, while also removing the computational burden associated with live model coupling. The utility of the method is demonstrated by application to an actual large scale aquifer injection scheme in Australia.
NASA Astrophysics Data System (ADS)
Arhonditsis, George B.; Papantou, Dimitra; Zhang, Weitao; Perhar, Gurbir; Massos, Evangelia; Shi, Molu
2008-09-01
Aquatic biogeochemical models have been an indispensable tool for addressing pressing environmental issues, e.g., understanding oceanic response to climate change, elucidation of the interplay between plankton dynamics and atmospheric CO 2 levels, and examination of alternative management schemes for eutrophication control. Their ability to form the scientific basis for environmental management decisions can be undermined by the underlying structural and parametric uncertainty. In this study, we outline how we can attain realistic predictive links between management actions and ecosystem response through a probabilistic framework that accommodates rigorous uncertainty analysis of a variety of error sources, i.e., measurement error, parameter uncertainty, discrepancy between model and natural system. Because model uncertainty analysis essentially aims to quantify the joint probability distribution of model parameters and to make inference about this distribution, we believe that the iterative nature of Bayes' Theorem is a logical means to incorporate existing knowledge and update the joint distribution as new information becomes available. The statistical methodology begins with the characterization of parameter uncertainty in the form of probability distributions, then water quality data are used to update the distributions, and yield posterior parameter estimates along with predictive uncertainty bounds. Our illustration is based on a six state variable (nitrate, ammonium, dissolved organic nitrogen, phytoplankton, zooplankton, and bacteria) ecological model developed for gaining insight into the mechanisms that drive plankton dynamics in a coastal embayment; the Gulf of Gera, Island of Lesvos, Greece. The lack of analytical expressions for the posterior parameter distributions was overcome using Markov chain Monte Carlo simulations; a convenient way to obtain representative samples of parameter values. The Bayesian calibration resulted in realistic reproduction of the key temporal patterns of the system, offered insights into the degree of information the data contain about model inputs, and also allowed the quantification of the dependence structure among the parameter estimates. Finally, our study uses two synthetic datasets to examine the ability of the updated model to provide estimates of predictive uncertainty for water quality variables of environmental management interest.
Combined Estimation of Hydrogeologic Conceptual Model and Parameter Uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Philip D.; Ye, Ming; Neuman, Shlomo P.
2004-03-01
The objective of the research described in this report is the development and application of a methodology for comprehensively assessing the hydrogeologic uncertainties involved in dose assessment, including uncertainties associated with conceptual models, parameters, and scenarios. This report describes and applies a statistical method to quantitatively estimate the combined uncertainty in model predictions arising from conceptual model and parameter uncertainties. The method relies on model averaging to combine the predictions of a set of alternative models. Implementation is driven by the available data. When there is minimal site-specific data the method can be carried out with prior parameter estimates basedmore » on generic data and subjective prior model probabilities. For sites with observations of system behavior (and optionally data characterizing model parameters), the method uses model calibration to update the prior parameter estimates and model probabilities based on the correspondence between model predictions and site observations. The set of model alternatives can contain both simplified and complex models, with the requirement that all models be based on the same set of data. The method was applied to the geostatistical modeling of air permeability at a fractured rock site. Seven alternative variogram models of log air permeability were considered to represent data from single-hole pneumatic injection tests in six boreholes at the site. Unbiased maximum likelihood estimates of variogram and drift parameters were obtained for each model. Standard information criteria provided an ambiguous ranking of the models, which would not justify selecting one of them and discarding all others as is commonly done in practice. Instead, some of the models were eliminated based on their negligibly small updated probabilities and the rest were used to project the measured log permeabilities by kriging onto a rock volume containing the six boreholes. These four projections, and associated kriging variances, were averaged using the posterior model probabilities as weights. Finally, cross-validation was conducted by eliminating from consideration all data from one borehole at a time, repeating the above process, and comparing the predictive capability of the model-averaged result with that of each individual model. Using two quantitative measures of comparison, the model-averaged result was superior to any individual geostatistical model of log permeability considered.« less
An analytical framework to assist decision makers in the use of forest ecosystem model predictions
USDA-ARS?s Scientific Manuscript database
The predictions of most terrestrial ecosystem models originate from deterministic simulations. Relatively few uncertainty evaluation exercises in model outputs are performed by either model developers or users. This issue has important consequences for decision makers who rely on models to develop n...
NASA Technical Reports Server (NTRS)
Dungan, Jennifer L.; Brass, Jim (Technical Monitor)
2001-01-01
A fundamental strategy in NASA's Earth Observing System's (EOS) monitoring of vegetation and its contribution to the global carbon cycle is to rely on deterministic, process-based ecosystem models to make predictions of carbon flux over large regions. These models are parameterized (that is, the input variables are derived) using remotely sensed images such as those from the Moderate Resolution Imaging Spectroradiometer (MODIS), ground measurements and interpolated maps. Since early applications of these models, investigators have noted that results depend partly on the spatial support of the input variables. In general, the larger the support of the input data, the greater the chance that the effects of important components of the ecosystem will be averaged out. A review of previous work shows that using large supports can cause either positive or negative bias in carbon flux predictions. To put the magnitude and direction of these biases in perspective, we must quantify the range of uncertainty on our best measurements of carbon-related variables made on equivalent areas. In other words, support-effect bias should be placed in the context of prediction uncertainty from other sources. If the range of uncertainty at the smallest support is less than the support-effect bias, more research emphasis should probably be placed on support sizes that are intermediate between those of field measurements and MODIS. If the uncertainty range at the smallest support is larger than the support-effect bias, the accuracy of MODIS-based predictions will be difficult to quantify and more emphasis should be placed on field-scale characterization and sampling. This talk will describe methods to address these issues using a field measurement campaign in North America and "upscaling" using geostatistical estimation and simulation.
Incorporating parametric uncertainty into population viability analysis models
McGowan, Conor P.; Runge, Michael C.; Larson, Michael A.
2011-01-01
Uncertainty in parameter estimates from sampling variation or expert judgment can introduce substantial uncertainty into ecological predictions based on those estimates. However, in standard population viability analyses, one of the most widely used tools for managing plant, fish and wildlife populations, parametric uncertainty is often ignored in or discarded from model projections. We present a method for explicitly incorporating this source of uncertainty into population models to fully account for risk in management and decision contexts. Our method involves a two-step simulation process where parametric uncertainty is incorporated into the replication loop of the model and temporal variance is incorporated into the loop for time steps in the model. Using the piping plover, a federally threatened shorebird in the USA and Canada, as an example, we compare abundance projections and extinction probabilities from simulations that exclude and include parametric uncertainty. Although final abundance was very low for all sets of simulations, estimated extinction risk was much greater for the simulation that incorporated parametric uncertainty in the replication loop. Decisions about species conservation (e.g., listing, delisting, and jeopardy) might differ greatly depending on the treatment of parametric uncertainty in population models.
NASA Astrophysics Data System (ADS)
Savage, James; Pianosi, Francesca; Bates, Paul; Freer, Jim; Wagener, Thorsten
2015-04-01
Predicting flood inundation extents using hydraulic models is subject to a number of critical uncertainties. For a specific event, these uncertainties are known to have a large influence on model outputs and any subsequent analyses made by risk managers. Hydraulic modellers often approach such problems by applying uncertainty analysis techniques such as the Generalised Likelihood Uncertainty Estimation (GLUE) methodology. However, these methods do not allow one to attribute which source of uncertainty has the most influence on the various model outputs that inform flood risk decision making. Another issue facing modellers is the amount of computational resource that is available to spend on modelling flood inundations that are 'fit for purpose' to the modelling objectives. Therefore a balance needs to be struck between computation time, realism and spatial resolution, and effectively characterising the uncertainty spread of predictions (for example from boundary conditions and model parameterisations). However, it is not fully understood how much of an impact each factor has on model performance, for example how much influence changing the spatial resolution of a model has on inundation predictions in comparison to other uncertainties inherent in the modelling process. Furthermore, when resampling fine scale topographic data in the form of a Digital Elevation Model (DEM) to coarser resolutions, there are a number of possible coarser DEMs that can be produced. Deciding which DEM is then chosen to represent the surface elevations in the model could also influence model performance. In this study we model a flood event using the hydraulic model LISFLOOD-FP and apply Sobol' Sensitivity Analysis to estimate which input factor, among the uncertainty in model boundary conditions, uncertain model parameters, the spatial resolution of the DEM and the choice of resampled DEM, have the most influence on a range of model outputs. These outputs include whole domain maximum inundation indicators and flood wave travel time in addition to temporally and spatially variable indicators. This enables us to assess whether the sensitivity of the model to various input factors is stationary in both time and space. Furthermore, competing models are assessed against observations of water depths from a historical flood event. Consequently we are able to determine which of the input factors has the most influence on model performance. Initial findings suggest the sensitivity of the model to different input factors varies depending on the type of model output assessed and at what stage during the flood hydrograph the model output is assessed. We have also found that initial decisions regarding the characterisation of the input factors, for example defining the upper and lower bounds of the parameter sample space, can be significant in influencing the implied sensitivities.
Generalized Polynomial Chaos Based Uncertainty Quantification for Planning MRgLITT Procedures
Fahrenholtz, S.; Stafford, R. J.; Maier, F.; Hazle, J. D.; Fuentes, D.
2014-01-01
Purpose A generalized polynomial chaos (gPC) method is used to incorporate constitutive parameter uncertainties within the Pennes representation of bioheat transfer phenomena. The stochastic temperature predictions of the mathematical model are critically evaluated against MR thermometry data for planning MR-guided Laser Induced Thermal Therapies (MRgLITT). Methods Pennes bioheat transfer model coupled with a diffusion theory approximation of laser tissue interaction was implemented as the underlying deterministic kernel. A probabilistic sensitivity study was used to identify parameters that provide the most variance in temperature output. Confidence intervals of the temperature predictions are compared to MR temperature imaging (MRTI) obtained during phantom and in vivo canine (n=4) MRgLITT experiments. The gPC predictions were quantitatively compared to MRTI data using probabilistic linear and temporal profiles as well as 2-D 60 °C isotherms. Results Within the range of physically meaningful constitutive values relevant to the ablative temperature regime of MRgLITT, the sensitivity study indicated that the optical parameters, particularly the anisotropy factor, created the most variance in the stochastic model's output temperature prediction. Further, within the statistical sense considered, a nonlinear model of the temperature and damage dependent perfusion, absorption, and scattering is captured within the confidence intervals of the linear gPC method. Multivariate stochastic model predictions using parameters with the dominant sensitivities show good agreement with experimental MRTI data. Conclusions Given parameter uncertainties and mathematical modeling approximations of the Pennes bioheat model, the statistical framework demonstrates conservative estimates of the therapeutic heating and has potential for use as a computational prediction tool for thermal therapy planning. PMID:23692295
Setting priorities for research on pollution reduction functions of agricultural buffers.
Dosskey, Michael G
2002-11-01
The success of buffer installation initiatives and programs to reduce nonpoint source pollution of streams on agricultural lands will depend the ability of local planners to locate and design buffers for specific circumstances with substantial and predictable results. Current predictive capabilities are inadequate, and major sources of uncertainty remain. An assessment of these uncertainties cautions that there is greater risk of overestimating buffer impact than underestimating it. Priorities for future research are proposed that will lead more quickly to major advances in predictive capabilities. Highest priority is given for work on the surface runoff filtration function, which is almost universally important to the amount of pollution reduction expected from buffer installation and for which there remain major sources of uncertainty for predicting level of impact. Foremost uncertainties surround the extent and consequences of runoff flow concentration and pollutant accumulation. Other buffer functions, including filtration of groundwater nitrate and stabilization of channel erosion sources of sediments, may be important in some regions. However, uncertainty surrounds our ability to identify and quantify the extent of site conditions where buffer installation can substantially reduce stream pollution in these ways. Deficiencies in predictive models reflect gaps in experimental information as well as technology to account for spatial heterogeneity of pollutant sources, pathways, and buffer capabilities across watersheds. Since completion of a comprehensive watershed-scale buffer model is probably far off, immediate needs call for simpler techniques to gage the probable impacts of buffer installation at local scales.
Assessment of Radiative Heating Uncertainty for Hyperbolic Earth Entry
NASA Technical Reports Server (NTRS)
Johnston, Christopher O.; Mazaheri, Alireza; Gnoffo, Peter A.; Kleb, W. L.; Sutton, Kenneth; Prabhu, Dinesh K.; Brandis, Aaron M.; Bose, Deepak
2011-01-01
This paper investigates the shock-layer radiative heating uncertainty for hyperbolic Earth entry, with the main focus being a Mars return. In Part I of this work, a baseline simulation approach involving the LAURA Navier-Stokes code with coupled ablation and radiation is presented, with the HARA radiation code being used for the radiation predictions. Flight cases representative of peak-heating Mars or asteroid return are de ned and the strong influence of coupled ablation and radiation on their aerothermodynamic environments are shown. Structural uncertainties inherent in the baseline simulations are identified, with turbulence modeling, precursor absorption, grid convergence, and radiation transport uncertainties combining for a +34% and ..24% structural uncertainty on the radiative heating. A parametric uncertainty analysis, which assumes interval uncertainties, is presented. This analysis accounts for uncertainties in the radiation models as well as heat of formation uncertainties in the flow field model. Discussions and references are provided to support the uncertainty range chosen for each parameter. A parametric uncertainty of +47.3% and -28.3% is computed for the stagnation-point radiative heating for the 15 km/s Mars-return case. A breakdown of the largest individual uncertainty contributors is presented, which includes C3 Swings cross-section, photoionization edge shift, and Opacity Project atomic lines. Combining the structural and parametric uncertainty components results in a total uncertainty of +81.3% and ..52.3% for the Mars-return case. In Part II, the computational technique and uncertainty analysis presented in Part I are applied to 1960s era shock-tube and constricted-arc experimental cases. It is shown that experiments contain shock layer temperatures and radiative ux values relevant to the Mars-return cases of present interest. Comparisons between the predictions and measurements, accounting for the uncertainty in both, are made for a range of experiments. A measure of comparison quality is de ned, which consists of the percent overlap of the predicted uncertainty bar with the corresponding measurement uncertainty bar. For nearly all cases, this percent overlap is greater than zero, and for most of the higher temperature cases (T >13,000 K) it is greater than 50%. These favorable comparisons provide evidence that the baseline computational technique and uncertainty analysis presented in Part I are adequate for Mars-return simulations. In Part III, the computational technique and uncertainty analysis presented in Part I are applied to EAST shock-tube cases. These experimental cases contain wavelength dependent intensity measurements in a wavelength range that covers 60% of the radiative intensity for the 11 km/s, 5 m radius flight case studied in Part I. Comparisons between the predictions and EAST measurements are made for a range of experiments. The uncertainty analysis presented in Part I is applied to each prediction, and comparisons are made using the metrics defined in Part II. The agreement between predictions and measurements is excellent for velocities greater than 10.5 km/s. Both the wavelength dependent and wavelength integrated intensities agree within 30% for nearly all cases considered. This agreement provides confidence in the computational technique and uncertainty analysis presented in Part I, and provides further evidence that this approach is adequate for Mars-return simulations. Part IV of this paper reviews existing experimental data that include the influence of massive ablation on radiative heating. It is concluded that this existing data is not sufficient for the present uncertainty analysis. Experiments to capture the influence of massive ablation on radiation are suggested as future work, along with further studies of the radiative precursor and improvements in the radiation properties of ablation products.
Syamlal, Madhava; Celik, Ismail B.; Benyahia, Sofiane
2017-07-12
The two-fluid model (TFM) has become a tool for the design and troubleshooting of industrial fluidized bed reactors. To use TFM for scale up with confidence, the uncertainty in its predictions must be quantified. Here, we study two sources of uncertainty: discretization and time-averaging. First, we show that successive grid refinement may not yield grid-independent transient quantities, including cross-section–averaged quantities. Successive grid refinement would yield grid-independent time-averaged quantities on sufficiently fine grids. A Richardson extrapolation can then be used to estimate the discretization error, and the grid convergence index gives an estimate of the uncertainty. Richardson extrapolation may not workmore » for industrial-scale simulations that use coarse grids. We present an alternative method for coarse grids and assess its ability to estimate the discretization error. Second, we assess two methods (autocorrelation and binning) and find that the autocorrelation method is more reliable for estimating the uncertainty introduced by time-averaging TFM data.« less
Uncertainty in predictions of forest carbon dynamics: separating driver error from model error.
Spadavecchia, L; Williams, M; Law, B E
2011-07-01
We present an analysis of the relative magnitude and contribution of parameter and driver uncertainty to the confidence intervals on estimates of net carbon fluxes. Model parameters may be difficult or impractical to measure, while driver fields are rarely complete, with data gaps due to sensor failure and sparse observational networks. Parameters are generally derived through some optimization method, while driver fields may be interpolated from available data sources. For this study, we used data from a young ponderosa pine stand at Metolius, Central Oregon, and a simple daily model of coupled carbon and water fluxes (DALEC). An ensemble of acceptable parameterizations was generated using an ensemble Kalman filter and eddy covariance measurements of net C exchange. Geostatistical simulations generated an ensemble of meteorological driving variables for the site, consistent with the spatiotemporal autocorrelations inherent in the observational data from 13 local weather stations. Simulated meteorological data were propagated through the model to derive the uncertainty on the CO2 flux resultant from driver uncertainty typical of spatially extensive modeling studies. Furthermore, the model uncertainty was partitioned between temperature and precipitation. With at least one meteorological station within 25 km of the study site, driver uncertainty was relatively small ( 10% of the total net flux), while parameterization uncertainty was larger, 50% of the total net flux. The largest source of driver uncertainty was due to temperature (8% of the total flux). The combined effect of parameter and driver uncertainty was 57% of the total net flux. However, when the nearest meteorological station was > 100 km from the study site, uncertainty in net ecosystem exchange (NEE) predictions introduced by meteorological drivers increased by 88%. Precipitation estimates were a larger source of bias in NEE estimates than were temperature estimates, although the biases partly compensated for each other. The time scales on which precipitation errors occurred in the simulations were shorter than the temporal scales over which drought developed in the model, so drought events were reasonably simulated. The approach outlined here provides a means to assess the uncertainty and bias introduced by meteorological drivers in regional-scale ecological forecasting.
Development of the X-33 Aerodynamic Uncertainty Model
NASA Technical Reports Server (NTRS)
Cobleigh, Brent R.
1998-01-01
An aerodynamic uncertainty model for the X-33 single-stage-to-orbit demonstrator aircraft has been developed at NASA Dryden Flight Research Center. The model is based on comparisons of historical flight test estimates to preflight wind-tunnel and analysis code predictions of vehicle aerodynamics documented during six lifting-body aircraft and the Space Shuttle Orbiter flight programs. The lifting-body and Orbiter data were used to define an appropriate uncertainty magnitude in the subsonic and supersonic flight regions, and the Orbiter data were used to extend the database to hypersonic Mach numbers. The uncertainty data consist of increments or percentage variations in the important aerodynamic coefficients and derivatives as a function of Mach number along a nominal trajectory. The uncertainty models will be used to perform linear analysis of the X-33 flight control system and Monte Carlo mission simulation studies. Because the X-33 aerodynamic uncertainty model was developed exclusively using historical data rather than X-33 specific characteristics, the model may be useful for other lifting-body studies.
FORECAST MODEL FOR MODERATE EARTHQUAKES NEAR PARKFIELD, CALIFORNIA.
Stuart, William D.; Archuleta, Ralph J.; Lindh, Allan G.
1985-01-01
The paper outlines a procedure for using an earthquake instability model and repeated geodetic measurements to attempt an earthquake forecast. The procedure differs from other prediction methods, such as recognizing trends in data or assuming failure at a critical stress level, by using a self-contained instability model that simulates both preseismic and coseismic faulting in a natural way. In short, physical theory supplies a family of curves, and the field data select the member curves whose continuation into the future constitutes a prediction. Model inaccuracy and resolving power of the data determine the uncertainty of the selected curves and hence the uncertainty of the earthquake time.
Inter-sectoral comparison of model uncertainty of climate change impacts in Africa
NASA Astrophysics Data System (ADS)
van Griensven, Ann; Vetter, Tobias; Piontek, Franzisca; Gosling, Simon N.; Kamali, Bahareh; Reinhardt, Julia; Dinkneh, Aklilu; Yang, Hong; Alemayehu, Tadesse
2016-04-01
We present the model results and their uncertainties of an inter-sectoral impact model inter-comparison initiative (ISI-MIP) for climate change impacts in Africa. The study includes results on hydrological, crop and health aspects. The impact models used ensemble inputs consisting of 20 time series of daily rainfall and temperature data obtained from 5 Global Circulation Models (GCMs) and 4 Representative concentration pathway (RCP). In this study, we analysed model uncertainty for the Regional Hydrological Models, Global Hydrological Models, Malaria models and Crop models. For the regional hydrological models, we used 2 African test cases: the Blue Nile in Eastern Africa and the Niger in Western Africa. For both basins, the main sources of uncertainty are originating from the GCM and RCPs, while the uncertainty of the regional hydrological models is relatively low. The hydrological model uncertainty becomes more important when predicting changes on low flows compared to mean or high flows. For the other sectors, the impact models have the largest share of uncertainty compared to GCM and RCP, especially for Malaria and crop modelling. The overall conclusion of the ISI-MIP is that it is strongly advised to use ensemble modeling approach for climate change impact studies throughout the whole modelling chain.
Regional Seismic Travel-Time Prediction, Uncertainty, and Location Improvement in Western Eurasia
NASA Astrophysics Data System (ADS)
Flanagan, M. P.; Myers, S. C.
2004-12-01
We investigate our ability to improve regional travel-time prediction and seismic event location using an a priori, three-dimensional velocity model of Western Eurasia and North Africa: WENA1.0 [Pasyanos et al., 2004]. Our objective is to improve the accuracy of seismic location estimates and calculate representative location uncertainty estimates. As we focus on the geographic region of Western Eurasia, the Middle East, and North Africa, we develop, test, and validate 3D model-based travel-time prediction models for 30 stations in the study region. Three principal results are presented. First, the 3D WENA1.0 velocity model improves travel-time prediction over the iasp91 model, as measured by variance reduction, for regional Pg, Pn, and P phases recorded at the 30 stations. Second, a distance-dependent uncertainty model is developed and tested for the WENA1.0 model. Third, an end-to-end validation test based on 500 event relocations demonstrates improved location performance over the 1-dimensional iasp91 model. Validation of the 3D model is based on a comparison of approximately 11,000 Pg, Pn, and P travel-time predictions and empirical observations from ground truth (GT) events. Ray coverage for the validation dataset is chosen to provide representative, regional-distance sampling across Eurasia and North Africa. The WENA1.0 model markedly improves travel-time predictions for most stations with an average variance reduction of 25% for all ray paths. We find that improvement is station dependent, with some stations benefiting greatly from WENA1.0 predictions (52% at APA, 33% at BKR, and 32% at NIL), some stations showing moderate improvement (12% at KEV, 14% at BOM, and 12% at TAM), some benefiting only slightly (6% at MOX, and 4% at SVE), and some are degraded (-6% at MLR and -18% at QUE). We further test WENA1.0 by comparing location accuracy with results obtained using the iasp91 model. Again, relocation of these events is dependent on ray paths that evenly sample WENA1.0 and therefore provide an unbiased assessment of location performance. A statistically significant sample is achieved by generating 500 location realizations based on 5 events with location accuracy between 1 km and 5 km. Each realization is a randomly selected event with location determined by randomly selecting 5 stations from the available network. In 340 cases (68% of the instances), locations are improved, and average mislocation is reduced from 31 km to 26 km. Preliminary test of uncertainty estimates suggest that our uncertainty model produces location uncertainty ellipses that are representative of location accuracy. These results highlight the importance of accurate GT datasets in assessing regional travel-time models and demonstrate that an a priori 3D model can markedly improve our ability to locate small magnitude events in a regional monitoring context. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48, Contribution UCRL-CONF-206386.
NASA Astrophysics Data System (ADS)
Varouchakis, Emmanouil; Hristopulos, Dionissios
2015-04-01
Space-time geostatistical approaches can improve the reliability of dynamic groundwater level models in areas with limited spatial and temporal data. Space-time residual Kriging (STRK) is a reliable method for spatiotemporal interpolation that can incorporate auxiliary information. The method usually leads to an underestimation of the prediction uncertainty. The uncertainty of spatiotemporal models is usually estimated by determining the space-time Kriging variance or by means of cross validation analysis. For de-trended data the former is not usually applied when complex spatiotemporal trend functions are assigned. A Bayesian approach based on the bootstrap idea and sequential Gaussian simulation are employed to determine the uncertainty of the spatiotemporal model (trend and covariance) parameters. These stochastic modelling approaches produce multiple realizations, rank the prediction results on the basis of specified criteria and capture the range of the uncertainty. The correlation of the spatiotemporal residuals is modeled using a non-separable space-time variogram based on the Spartan covariance family (Hristopulos and Elogne 2007, Varouchakis and Hristopulos 2013). We apply these simulation methods to investigate the uncertainty of groundwater level variations. The available dataset consists of bi-annual (dry and wet hydrological period) groundwater level measurements in 15 monitoring locations for the time period 1981 to 2010. The space-time trend function is approximated using a physical law that governs the groundwater flow in the aquifer in the presence of pumping. The main objective of this research is to compare the performance of two simulation methods for prediction uncertainty estimation. In addition, we investigate the performance of the Spartan spatiotemporal covariance function for spatiotemporal geostatistical analysis. Hristopulos, D.T. and Elogne, S.N. 2007. Analytic properties and covariance functions for a new class of generalized Gibbs random fields. IΕΕΕ Transactions on Information Theory, 53:4667-4467. Varouchakis, E.A. and Hristopulos, D.T. 2013. Improvement of groundwater level prediction in sparsely gauged basins using physical laws and local geographic features as auxiliary variables. Advances in Water Resources, 52:34-49. Research supported by the project SPARTA 1591: "Development of Space-Time Random Fields based on Local Interaction Models and Applications in the Processing of Spatiotemporal Datasets". "SPARTA" is implemented under the "ARISTEIA" Action of the operational programme Education and Lifelong Learning and is co-funded by the European Social Fund (ESF) and National Resources.
Steen Magnussen; Ronald E. McRoberts; Erkki O. Tomppo
2009-01-01
New model-based estimators of the uncertainty of pixel-level and areal k-nearest neighbour (knn) predictions of attribute Y from remotely-sensed ancillary data X are presented. Non-parametric functions predict Y from scalar 'Single Index Model' transformations of X. Variance functions generated...
NASA Astrophysics Data System (ADS)
Debry, E.; Malherbe, L.; Schillinger, C.; Bessagnet, B.; Rouil, L.
2009-04-01
Evaluation of human exposure to atmospheric pollution usually requires the knowledge of pollutants concentrations in ambient air. In the framework of PAISA project, which studies the influence of socio-economical status on relationships between air pollution and short term health effects, the concentrations of gas and particle pollutants are computed over Strasbourg with the ADMS-Urban model. As for any modeling result, simulated concentrations come with uncertainties which have to be characterized and quantified. There are several sources of uncertainties related to input data and parameters, i.e. fields used to execute the model like meteorological fields, boundary conditions and emissions, related to the model formulation because of incomplete or inaccurate treatment of dynamical and chemical processes, and inherent to the stochastic behavior of atmosphere and human activities [1]. Our aim is here to assess the uncertainties of the simulated concentrations with respect to input data and model parameters. In this scope the first step consisted in bringing out the input data and model parameters that contribute most effectively to space and time variability of predicted concentrations. Concentrations of several pollutants were simulated for two months in winter 2004 and two months in summer 2004 over five areas of Strasbourg. The sensitivity analysis shows the dominating influence of boundary conditions and emissions. Among model parameters, the roughness and Monin-Obukhov lengths appear to have non neglectable local effects. Dry deposition is also an important dynamic process. The second step of the characterization and quantification of uncertainties consists in attributing a probability distribution to each input data and model parameter and in propagating the joint distribution of all data and parameters into the model so as to associate a probability distribution to the modeled concentrations. Several analytical and numerical methods exist to perform an uncertainty analysis. We chose the Monte Carlo method which has already been applied to atmospheric dispersion models [2, 3, 4]. The main advantage of this method is to be insensitive to the number of perturbed parameters but its drawbacks are its computation cost and its slow convergence. In order to speed up this one we used the method of antithetic variable which takes adavantage of the symmetry of probability laws. The air quality model simulations were carried out by the Association for study and watching of Atmospheric Pollution in Alsace (ASPA). The output concentrations distributions can then be updated with a Bayesian method. This work is part of an INERIS Research project also aiming at assessing the uncertainty of the CHIMERE dispersion model used in the Prev'Air forecasting platform (www.prevair.org) in order to deliver more accurate predictions. (1) Rao, K.S. Uncertainty Analysis in Atmospheric Dispersion Modeling, Pure and Applied Geophysics, 2005, 162, 1893-1917. (2) Beekmann, M. and Derognat, C. Monte Carlo uncertainty analysis of a regional-scale transport chemistry model constrained by measurements from the Atmospheric Pollution Over the PAris Area (ESQUIF) campaign, Journal of Geophysical Research, 2003, 108, 8559-8576. (3) Hanna, S.R. and Lu, Z. and Frey, H.C. and Wheeler, N. and Vukovich, J. and Arunachalam, S. and Fernau, M. and Hansen, D.A. Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain, Atmospheric Environment, 2001, 35, 891-903. (4) Romanowicz, R. and Higson, H. and Teasdale, I. Bayesian uncertainty estimation methodology applied to air pollution modelling, Environmetrics, 2000, 11, 351-371.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzouk, Youssef
Predictive simulation of complex physical systems increasingly rests on the interplay of experimental observations with computational models. Key inputs, parameters, or structural aspects of models may be incomplete or unknown, and must be developed from indirect and limited observations. At the same time, quantified uncertainties are needed to qualify computational predictions in the support of design and decision-making. In this context, Bayesian statistics provides a foundation for inference from noisy and limited data, but at prohibitive computional expense. This project intends to make rigorous predictive modeling *feasible* in complex physical systems, via accelerated and scalable tools for uncertainty quantification, Bayesianmore » inference, and experimental design. Specific objectives are as follows: 1. Develop adaptive posterior approximations and dimensionality reduction approaches for Bayesian inference in high-dimensional nonlinear systems. 2. Extend accelerated Bayesian methodologies to large-scale {\\em sequential} data assimilation, fully treating nonlinear models and non-Gaussian state and parameter distributions. 3. Devise efficient surrogate-based methods for Bayesian model selection and the learning of model structure. 4. Develop scalable simulation/optimization approaches to nonlinear Bayesian experimental design, for both parameter inference and model selection. 5. Demonstrate these inferential tools on chemical kinetic models in reacting flow, constructing and refining thermochemical and electrochemical models from limited data. Demonstrate Bayesian filtering on canonical stochastic PDEs and in the dynamic estimation of inhomogeneous subsurface properties and flow fields.« less
Watershed scale rainfall‐runoff models are used for environmental management and regulatory modeling applications, but their effectiveness are limited by predictive uncertainties associated with model input data. This study evaluated the effect of temporal and spatial rainfall re...
Vanderborght, Jan; Tiktak, Aaldrik; Boesten, Jos J T I; Vereecken, Harry
2011-03-01
For the registration of pesticides in the European Union, model simulations for worst-case scenarios are used to demonstrate that leaching concentrations to groundwater do not exceed a critical threshold. A worst-case scenario is a combination of soil and climate properties for which predicted leaching concentrations are higher than a certain percentile of the spatial concentration distribution within a region. The derivation of scenarios is complicated by uncertainty about soil and pesticide fate parameters. As the ranking of climate and soil property combinations according to predicted leaching concentrations is different for different pesticides, the worst-case scenario for one pesticide may misrepresent the worst case for another pesticide, which leads to 'scenario uncertainty'. Pesticide fate parameter uncertainty led to higher concentrations in the higher percentiles of spatial concentration distributions, especially for distributions in smaller and more homogeneous regions. The effect of pesticide fate parameter uncertainty on the spatial concentration distribution was small when compared with the uncertainty of local concentration predictions and with the scenario uncertainty. Uncertainty in pesticide fate parameters and scenario uncertainty can be accounted for using higher percentiles of spatial concentration distributions and considering a range of pesticides for the scenario selection. Copyright © 2010 Society of Chemical Industry.
NASA Technical Reports Server (NTRS)
Kirtman, Ben P.; Min, Dughong; Infanti, Johnna M.; Kinter, James L., III; Paolino, Daniel A.; Zhang, Qin; vandenDool, Huug; Saha, Suranjana; Mendez, Malaquias Pena; Becker, Emily;
2013-01-01
The recent US National Academies report "Assessment of Intraseasonal to Interannual Climate Prediction and Predictability" was unequivocal in recommending the need for the development of a North American Multi-Model Ensemble (NMME) operational predictive capability. Indeed, this effort is required to meet the specific tailored regional prediction and decision support needs of a large community of climate information users. The multi-model ensemble approach has proven extremely effective at quantifying prediction uncertainty due to uncertainty in model formulation, and has proven to produce better prediction quality (on average) then any single model ensemble. This multi-model approach is the basis for several international collaborative prediction research efforts, an operational European system and there are numerous examples of how this multi-model ensemble approach yields superior forecasts compared to any single model. Based on two NOAA Climate Test Bed (CTB) NMME workshops (February 18, and April 8, 2011) a collaborative and coordinated implementation strategy for a NMME prediction system has been developed and is currently delivering real-time seasonal-to-interannual predictions on the NOAA Climate Prediction Center (CPC) operational schedule. The hindcast and real-time prediction data is readily available (e.g., http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/) and in graphical format from CPC (http://origin.cpc.ncep.noaa.gov/products/people/wd51yf/NMME/index.html). Moreover, the NMME forecast are already currently being used as guidance for operational forecasters. This paper describes the new NMME effort, presents an overview of the multi-model forecast quality, and the complementary skill associated with individual models.
Sources of uncertainty in flood inundation maps
Bales, J.D.; Wagner, C.R.
2009-01-01
Flood inundation maps typically have been used to depict inundated areas for floods having specific exceedance levels. The uncertainty associated with the inundation boundaries is seldom quantified, in part, because all of the sources of uncertainty are not recognized and because data available to quantify uncertainty seldom are available. Sources of uncertainty discussed in this paper include hydrologic data used for hydraulic model development and validation, topographic data, and the hydraulic model. The assumption of steady flow, which typically is made to produce inundation maps, has less of an effect on predicted inundation at lower flows than for higher flows because more time typically is required to inundate areas at high flows than at low flows. Difficulties with establishing reasonable cross sections that do not intersect and that represent water-surface slopes in tributaries contribute additional uncertainties in the hydraulic modelling. As a result, uncertainty in the flood inundation polygons simulated with a one-dimensional model increases with distance from the main channel.
A Model-Based Prognostics Approach Applied to Pneumatic Valves
NASA Technical Reports Server (NTRS)
Daigle, Matthew J.; Goebel, Kai
2011-01-01
Within the area of systems health management, the task of prognostics centers on predicting when components will fail. Model-based prognostics exploits domain knowledge of the system, its components, and how they fail by casting the underlying physical phenomena in a physics-based model that is derived from first principles. Uncertainty cannot be avoided in prediction, therefore, algorithms are employed that help in managing these uncertainties. The particle filtering algorithm has become a popular choice for model-based prognostics due to its wide applicability, ease of implementation, and support for uncertainty management. We develop a general model-based prognostics methodology within a robust probabilistic framework using particle filters. As a case study, we consider a pneumatic valve from the Space Shuttle cryogenic refueling system. We develop a detailed physics-based model of the pneumatic valve, and perform comprehensive simulation experiments to illustrate our prognostics approach and evaluate its effectiveness and robustness. The approach is demonstrated using historical pneumatic valve data from the refueling system.
Yan, Zheng; Wang, Jun
2014-03-01
This paper presents a neural network approach to robust model predictive control (MPC) for constrained discrete-time nonlinear systems with unmodeled dynamics affected by bounded uncertainties. The exact nonlinear model of underlying process is not precisely known, but a partially known nominal model is available. This partially known nonlinear model is first decomposed to an affine term plus an unknown high-order term via Jacobian linearization. The linearization residue combined with unmodeled dynamics is then modeled using an extreme learning machine via supervised learning. The minimax methodology is exploited to deal with bounded uncertainties. The minimax optimization problem is reformulated as a convex minimization problem and is iteratively solved by a two-layer recurrent neural network. The proposed neurodynamic approach to nonlinear MPC improves the computational efficiency and sheds a light for real-time implementability of MPC technology. Simulation results are provided to substantiate the effectiveness and characteristics of the proposed approach.
NASA Astrophysics Data System (ADS)
Terando, A. J.; Reich, B. J.; Pacifici, K.
2013-12-01
Fire is an important disturbance process in many coupled natural-human systems. Changes in the frequency and severity of fires due to anthropogenic climate change could have significant costs to society and the plant and animal communities that are adapted to a particular fire regime Planning for these changes requires a robust model of the relationship between climate and fire that accounts for multiple sources of uncertainty that are present when simulating ecological and climatological processes. Here we model how anthropogenic climate change could affect the wildfire regime for a region in the Southeast US whose natural ecosystems are dependent on frequent, low-intensity fires while humans are at risk from large catastrophic fires. We develop a modeling framework that incorporates three major sources of uncertainty: (1) uncertainty in the ecological drivers of expected monthly area burned, (2) uncertainty in the environmental drivers influencing the probability of an extreme fire event, and (3) structural uncertainty in different downscaled climate models. In addition we use two policy-relevant emission scenarios (climate stabilization and 'business-as-usual') to characterize the uncertainty in future greenhouse gas forcings. We use a Bayesian framework to incorporate different sources of uncertainty including simulation of predictive errors and Stochastic Search Variable Selection. Our results suggest that although the mean process remains stationary, the probability of extreme fires declines through time, owing to the persistence of high atmospheric moisture content during the peak fire season that dampens the effect of increasing temperatures. Including multiple sources of uncertainty leads to wide prediction intervals, but is potentially more useful for decision-makers that will require adaptation strategies that are robust to rapid but uncertain climate and ecological change.
Verifying and Validating Simulation Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemez, Francois M.
2015-02-23
This presentation is a high-level discussion of the Verification and Validation (V&V) of computational models. Definitions of V&V are given to emphasize that “validation” is never performed in a vacuum; it accounts, instead, for the current state-of-knowledge in the discipline considered. In particular comparisons between physical measurements and numerical predictions should account for their respective sources of uncertainty. The differences between error (bias), aleatoric uncertainty (randomness) and epistemic uncertainty (ignorance, lack-of- knowledge) are briefly discussed. Four types of uncertainty in physics and engineering are discussed: 1) experimental variability, 2) variability and randomness, 3) numerical uncertainty and 4) model-form uncertainty. Statisticalmore » sampling methods are available to propagate, and analyze, variability and randomness. Numerical uncertainty originates from the truncation error introduced by the discretization of partial differential equations in time and space. Model-form uncertainty is introduced by assumptions often formulated to render a complex problem more tractable and amenable to modeling and simulation. The discussion concludes with high-level guidance to assess the “credibility” of numerical simulations, which stems from the level of rigor with which these various sources of uncertainty are assessed and quantified.« less
Seismic velocity uncertainties and their effect on geothermal predictions: A case study
NASA Astrophysics Data System (ADS)
Rabbel, Wolfgang; Köhn, Daniel; Bahadur Motra, Hem; Niederau, Jan; Thorwart, Martin; Wuttke, Frank; Descramble Working Group
2017-04-01
Geothermal exploration relies in large parts on geophysical subsurface models derived from seismic reflection profiling. These models are the framework of hydro-geothermal modeling, which further requires estimating thermal and hydraulic parameters to be attributed to the seismic strata. All petrophysical and structural properties involved in this process can be determined only with limited accuracy and thus impose uncertainties onto the resulting model predictions of temperature-depth profiles and hydraulic flow, too. In the present study we analyze sources and effects of uncertainties of the seismic velocity field, which translate directly into depth uncertainties of the hydraulically and thermally relevant horizons. Geological sources of these uncertainties are subsurface heterogeneity and seismic anisotropy, methodical sources are limitations in spread length and physical resolution. We demonstrate these effects using data of the EU-Horizon 2020 project DESCRAMBLE investigating a shallow super-critical geothermal reservoir in the Larderello area. The study is based on 2D- and 3D seismic reflection data and laboratory measurements on representative rock samples under simulated in-situ conditions. The rock samples consistently show P-wave anisotropy values of 10-20% order of magnitude. However, the uncertainty of layer depths induced by anisotropy is likely to be lower depending on the accuracy, with which the spatial orientation of bedding planes can be determined from the seismic reflection images.
Prediction Accuracy of Error Rates for MPTB Space Experiment
NASA Technical Reports Server (NTRS)
Buchner, S. P.; Campbell, A. B.; Davis, D.; McMorrow, D.; Petersen, E. L.; Stassinopoulos, E. G.; Ritter, J. C.
1998-01-01
This paper addresses the accuracy of radiation-induced upset-rate predictions in space using the results of ground-based measurements together with standard environmental and device models. The study is focused on two part types - 16 Mb NEC DRAM's (UPD4216) and 1 Kb SRAM's (AMD93L422) - both of which are currently in space on board the Microelectronics and Photonics Test Bed (MPTB). To date, ground-based measurements of proton-induced single event upset (SEM cross sections as a function of energy have been obtained and combined with models of the proton environment to predict proton-induced error rates in space. The role played by uncertainties in the environmental models will be determined by comparing the modeled radiation environment with the actual environment measured aboard MPTB. Heavy-ion induced upsets have also been obtained from MPTB and will be compared with the "predicted" error rate following ground testing that will be done in the near future. These results should help identify sources of uncertainty in predictions of SEU rates in space.
Cancer Risk Assessment for Space Radiation
NASA Technical Reports Server (NTRS)
Richmond, Robert C.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Predicting the occurrence of human cancer following exposure to any agent causing genetic damage is a difficult task. This is because the uncertainty of uniform exposure to the damaging agent, and the uncertainty of uniform processing of that damage within a complex set of biological variables, degrade the confidence of predicting the delayed expression of cancer as a relatively rare event within any given clinically normal individual. The radiation health research priorities for enabling long-duration human exploration of space were established in the 1996 NRC Report entitled "Radiation Hazards to Crews of Interplanetary Missions: Biological Issues and Research Strategies". This report emphasized that a 15-fold uncertainty in predicting radiation-induced cancer incidence must be reduced before NASA can commit humans to extended interplanetary missions. That report concluded that the great majority of this uncertainty is biologically based, while a minority is physically based due to uncertainties in radiation dosimetry and radiation transport codes. Since that report, the biologically based uncertainty has remained large, and the relatively small uncertainty associated with radiation dosimetry has increased due to the considerations raised by concepts of microdosimetry. In a practical sense, however, the additional uncertainties introduced by microdosimetry are encouraging since they are in a direction of lowered effective dose absorbed through infrequent interactions of any given cell with the high energy particle component of space radiation. The biological uncertainty in predicting cancer risk for space radiation derives from two primary facts. 1) One animal tumor study has been reported that includes a relevant spectrum of particle radiation energies, and that is the Harderian gland model in mice. Fact #1: Extension of cancer risk from animal models, and especially from a single study in an animal model, to humans is inherently uncertain. 2) One human database is predominantly used for assessing cancer risk caused by space radiation, and that is the Japanese atomic bomb survivors. Fact #2: The atomic-bomb-survivor database, itself a remarkable achievement, contains uncertainties. These include the actual exposure to each individual, the radiation quality of that exposure, and the fact that the exposure was to acute doses of predominantly low-LET radiation, not to chronic exposures of high-LET radiation expected on long-duration interplanetary manned missions.
NASA Astrophysics Data System (ADS)
Shoaib, Syed Abu; Marshall, Lucy; Sharma, Ashish
2018-06-01
Every model to characterise a real world process is affected by uncertainty. Selecting a suitable model is a vital aspect of engineering planning and design. Observation or input errors make the prediction of modelled responses more uncertain. By way of a recently developed attribution metric, this study is aimed at developing a method for analysing variability in model inputs together with model structure variability to quantify their relative contributions in typical hydrological modelling applications. The Quantile Flow Deviation (QFD) metric is used to assess these alternate sources of uncertainty. The Australian Water Availability Project (AWAP) precipitation data for four different Australian catchments is used to analyse the impact of spatial rainfall variability on simulated streamflow variability via the QFD. The QFD metric attributes the variability in flow ensembles to uncertainty associated with the selection of a model structure and input time series. For the case study catchments, the relative contribution of input uncertainty due to rainfall is higher than that due to potential evapotranspiration, and overall input uncertainty is significant compared to model structure and parameter uncertainty. Overall, this study investigates the propagation of input uncertainty in a daily streamflow modelling scenario and demonstrates how input errors manifest across different streamflow magnitudes.
Uncertainties in Decadal Model Evaluation due to the Choice of Different Reanalysis Products
NASA Astrophysics Data System (ADS)
Illing, Sebastian; Kadow, Christopher; Kunst, Oliver; Cubasch, Ulrich
2014-05-01
In recent years decadal predictions have become very popular in the climate science community. A major task is the evaluation and validation of a decadal prediction system. Therefore hindcast experiments are performed and evaluated against observation based or reanalysis data-sets. That is, various metrics and skill scores like the anomaly correlation or the mean squared error skill score (MSSS) are calculated to estimate potential prediction skill of the model system. Our results will mostly feature the Baseline 1 hindcast experiments from the MiKlip decadal prediction system. MiKlip (www.fona-miklip.de) is a project for medium-term climate prediction funded by the Federal Ministry of Education and Research in Germany (BMBF) and has the aim to create a model system that can provide reliable decadal forecasts on climate and weather. There are various reanalysis and observation based products covering at least the last forty years which can be used for model evaluation, for instance the 20th Century Reanalysis from NOAA-CIRES, the Climate Forecast System Reanalysis from NCEP or the Interim Reanalysis from ECMWF. Each of them is based on different climate models and observations. We will show that the choice of the reanalysis product has a huge impact on the value of various skill metrics. In some cases this may actually lead to a change in the interpretation of the results, e.g. when one tries to compare two model versions and the anomaly correlation difference changes its sign for two different reanalysis products. We will also show first results of our studies investigating the influence and effect of this source of uncertainty for decadal model evaluation. Furthermore we point out regions which are most affected by this uncertainty and where one has to cautious interpreting skill scores. In addition we introduce some strategies to overcome or at least reduce this source of uncertainty.
Disturbance observer based model predictive control for accurate atmospheric entry of spacecraft
NASA Astrophysics Data System (ADS)
Wu, Chao; Yang, Jun; Li, Shihua; Li, Qi; Guo, Lei
2018-05-01
Facing the complex aerodynamic environment of Mars atmosphere, a composite atmospheric entry trajectory tracking strategy is investigated in this paper. External disturbances, initial states uncertainties and aerodynamic parameters uncertainties are the main problems. The composite strategy is designed to solve these problems and improve the accuracy of Mars atmospheric entry. This strategy includes a model predictive control for optimized trajectory tracking performance, as well as a disturbance observer based feedforward compensation for external disturbances and uncertainties attenuation. 500-run Monte Carlo simulations show that the proposed composite control scheme achieves more precise Mars atmospheric entry (3.8 km parachute deployment point distribution error) than the baseline control scheme (8.4 km) and integral control scheme (5.8 km).
Towards a generalized energy prediction model for machine tools
Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H.; Dornfeld, David A.; Helu, Moneer; Rachuri, Sudarsan
2017-01-01
Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process. PMID:28652687
Towards a generalized energy prediction model for machine tools.
Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H; Dornfeld, David A; Helu, Moneer; Rachuri, Sudarsan
2017-04-01
Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process.
Active subspace uncertainty quantification for a polydomain ferroelectric phase-field model
NASA Astrophysics Data System (ADS)
Leon, Lider S.; Smith, Ralph C.; Miles, Paul; Oates, William S.
2018-03-01
Quantum-informed ferroelectric phase field models capable of predicting material behavior, are necessary for facilitating the development and production of many adaptive structures and intelligent systems. Uncertainty is present in these models, given the quantum scale at which calculations take place. A necessary analysis is to determine how the uncertainty in the response can be attributed to the uncertainty in the model inputs or parameters. A second analysis is to identify active subspaces within the original parameter space, which quantify directions in which the model response varies most dominantly, thus reducing sampling effort and computational cost. In this investigation, we identify an active subspace for a poly-domain ferroelectric phase-field model. Using the active variables as our independent variables, we then construct a surrogate model and perform Bayesian inference. Once we quantify the uncertainties in the active variables, we obtain uncertainties for the original parameters via an inverse mapping. The analysis provides insight into how active subspace methodologies can be used to reduce computational power needed to perform Bayesian inference on model parameters informed by experimental or simulated data.
Bayesian assessment of the expected data impact on prediction confidence in optimal sampling design
NASA Astrophysics Data System (ADS)
Leube, P. C.; Geiges, A.; Nowak, W.
2012-02-01
Incorporating hydro(geo)logical data, such as head and tracer data, into stochastic models of (subsurface) flow and transport helps to reduce prediction uncertainty. Because of financial limitations for investigation campaigns, information needs toward modeling or prediction goals should be satisfied efficiently and rationally. Optimal design techniques find the best one among a set of investigation strategies. They optimize the expected impact of data on prediction confidence or related objectives prior to data collection. We introduce a new optimal design method, called PreDIA(gnosis) (Preposterior Data Impact Assessor). PreDIA derives the relevant probability distributions and measures of data utility within a fully Bayesian, generalized, flexible, and accurate framework. It extends the bootstrap filter (BF) and related frameworks to optimal design by marginalizing utility measures over the yet unknown data values. PreDIA is a strictly formal information-processing scheme free of linearizations. It works with arbitrary simulation tools, provides full flexibility concerning measurement types (linear, nonlinear, direct, indirect), allows for any desired task-driven formulations, and can account for various sources of uncertainty (e.g., heterogeneity, geostatistical assumptions, boundary conditions, measurement values, model structure uncertainty, a large class of model errors) via Bayesian geostatistics and model averaging. Existing methods fail to simultaneously provide these crucial advantages, which our method buys at relatively higher-computational costs. We demonstrate the applicability and advantages of PreDIA over conventional linearized methods in a synthetic example of subsurface transport. In the example, we show that informative data is often invisible for linearized methods that confuse zero correlation with statistical independence. Hence, PreDIA will often lead to substantially better sampling designs. Finally, we extend our example to specifically highlight the consideration of conceptual model uncertainty.
Yihdego, Yohannes; Webb, John
2016-05-01
Forecast evaluation is an important topic that addresses the development of reliable hydrological probabilistic forecasts, mainly through the use of climate uncertainties. Often, validation has no place in hydrology for most of the times, despite the parameters of a model are uncertain. Similarly, the structure of the model can be incorrectly chosen. A calibrated and verified dynamic hydrologic water balance spreadsheet model has been used to assess the effect of climate variability on Lake Burrumbeet, southeastern Australia. The lake level has been verified to lake level, lake volume, lake surface area, surface outflow and lake salinity. The current study aims to increase lake level confidence model prediction through historical validation for the year 2008-2013, under different climatic scenario. Based on the observed climatic condition (2008-2013), it fairly matches with a hybridization of scenarios, being the period interval (2008-2013), corresponds to both dry and wet climatic condition. Besides to the hydrologic stresses uncertainty, uncertainty in the calibrated model is among the major drawbacks involved in making scenario simulations. In line with this, the uncertainty in the calibrated model was tested using sensitivity analysis and showed that errors in the model can largely be attributed to erroneous estimates of evaporation and rainfall, and surface inflow to a lesser. The study demonstrates that several climatic scenarios should be analysed, with a combination of extreme climate, stream flow and climate change instead of one assumed climatic sequence, to improve climate variability prediction in the future. Performing such scenario analysis is a valid exercise to comprehend the uncertainty with the model structure and hydrology, in a meaningful way, without missing those, even considered as less probable, ultimately turned to be crucial for decision making and will definitely increase the confidence of model prediction for management of the water resources.
Potential New Lidar Observations for Cloud Studies
NASA Technical Reports Server (NTRS)
Winker, Dave; Hu, Yong; Narir, Amin; Cai, Xia
2015-01-01
The response of clouds to global warming represents a major uncertainty in estimating climate sensitivity. These uncertainties have been tracked to shallow marine clouds in the tropics and subtropics. CALIOP observations have already been used extensively to evaluate model predictions of shallow cloud fraction and top height (Leahy et al. 2013; Nam et al 2012). Tools are needed to probe the lowest levels of the troposphere. The large footprint of satellite lidars gives large multiple scattering from clouds which presents new possibilities for cloud retrievals to constrain model predictions.
A Formal Approach to Empirical Dynamic Model Optimization and Validation
NASA Technical Reports Server (NTRS)
Crespo, Luis G; Morelli, Eugene A.; Kenny, Sean P.; Giesy, Daniel P.
2014-01-01
A framework was developed for the optimization and validation of empirical dynamic models subject to an arbitrary set of validation criteria. The validation requirements imposed upon the model, which may involve several sets of input-output data and arbitrary specifications in time and frequency domains, are used to determine if model predictions are within admissible error limits. The parameters of the empirical model are estimated by finding the parameter realization for which the smallest of the margins of requirement compliance is as large as possible. The uncertainty in the value of this estimate is characterized by studying the set of model parameters yielding predictions that comply with all the requirements. Strategies are presented for bounding this set, studying its dependence on admissible prediction error set by the analyst, and evaluating the sensitivity of the model predictions to parameter variations. This information is instrumental in characterizing uncertainty models used for evaluating the dynamic model at operating conditions differing from those used for its identification and validation. A practical example based on the short period dynamics of the F-16 is used for illustration.
Detailed Uncertainty Analysis of the Ares I A106 Liftoff/Transition Database
NASA Technical Reports Server (NTRS)
Hanke, Jeremy L.
2011-01-01
The Ares I A106 Liftoff/Transition Force and Moment Aerodynamics Database describes the aerodynamics of the Ares I Crew Launch Vehicle (CLV) from the moment of liftoff through the transition from high to low total angles of attack at low subsonic Mach numbers. The database includes uncertainty estimates that were developed using a detailed uncertainty quantification procedure. The Ares I Aerodynamics Panel developed both the database and the uncertainties from wind tunnel test data acquired in the NASA Langley Research Center s 14- by 22-Foot Subsonic Wind Tunnel Test 591 using a 1.75 percent scale model of the Ares I and the tower assembly. The uncertainty modeling contains three primary uncertainty sources: experimental uncertainty, database modeling uncertainty, and database query interpolation uncertainty. The final database and uncertainty model represent a significant improvement in the quality of the aerodynamic predictions for this regime of flight over the estimates previously used by the Ares Project. The maximum possible aerodynamic force pushing the vehicle towards the launch tower assembly in a dispersed case using this database saw a 40 percent reduction from the worst-case scenario in previously released data for Ares I.
Effect of Uncertainty on Deterministic Runway Scheduling
NASA Technical Reports Server (NTRS)
Gupta, Gautam; Malik, Waqar; Jung, Yoon C.
2012-01-01
Active runway scheduling involves scheduling departures for takeoffs and arrivals for runway crossing subject to numerous constraints. This paper evaluates the effect of uncertainty on a deterministic runway scheduler. The evaluation is done against a first-come- first-serve scheme. In particular, the sequence from a deterministic scheduler is frozen and the times adjusted to satisfy all separation criteria; this approach is tested against FCFS. The comparison is done for both system performance (throughput and system delay) and predictability, and varying levels of congestion are considered. The modeling of uncertainty is done in two ways: as equal uncertainty in availability at the runway as for all aircraft, and as increasing uncertainty for later aircraft. Results indicate that the deterministic approach consistently performs better than first-come-first-serve in both system performance and predictability.
Gurdak, Jason J.; Qi, Sharon L.; Geisler, Michael L.
2009-01-01
The U.S. Geological Survey Raster Error Propagation Tool (REPTool) is a custom tool for use with the Environmental System Research Institute (ESRI) ArcGIS Desktop application to estimate error propagation and prediction uncertainty in raster processing operations and geospatial modeling. REPTool is designed to introduce concepts of error and uncertainty in geospatial data and modeling and provide users of ArcGIS Desktop a geoprocessing tool and methodology to consider how error affects geospatial model output. Similar to other geoprocessing tools available in ArcGIS Desktop, REPTool can be run from a dialog window, from the ArcMap command line, or from a Python script. REPTool consists of public-domain, Python-based packages that implement Latin Hypercube Sampling within a probabilistic framework to track error propagation in geospatial models and quantitatively estimate the uncertainty of the model output. Users may specify error for each input raster or model coefficient represented in the geospatial model. The error for the input rasters may be specified as either spatially invariant or spatially variable across the spatial domain. Users may specify model output as a distribution of uncertainty for each raster cell. REPTool uses the Relative Variance Contribution method to quantify the relative error contribution from the two primary components in the geospatial model - errors in the model input data and coefficients of the model variables. REPTool is appropriate for many types of geospatial processing operations, modeling applications, and related research questions, including applications that consider spatially invariant or spatially variable error in geospatial data.
Uncertainty Estimation Improves Energy Measurement and Verification Procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, Travis; Price, Phillip N.; Sohn, Michael D.
2014-05-14
Implementing energy conservation measures in buildings can reduce energy costs and environmental impacts, but such measures cost money to implement so intelligent investment strategies require the ability to quantify the energy savings by comparing actual energy used to how much energy would have been used in absence of the conservation measures (known as the baseline energy use). Methods exist for predicting baseline energy use, but a limitation of most statistical methods reported in the literature is inadequate quantification of the uncertainty in baseline energy use predictions. However, estimation of uncertainty is essential for weighing the risks of investing in retrofits.more » Most commercial buildings have, or soon will have, electricity meters capable of providing data at short time intervals. These data provide new opportunities to quantify uncertainty in baseline predictions, and to do so after shorter measurement durations than are traditionally used. In this paper, we show that uncertainty estimation provides greater measurement and verification (M&V) information and helps to overcome some of the difficulties with deciding how much data is needed to develop baseline models and to confirm energy savings. We also show that cross-validation is an effective method for computing uncertainty. In so doing, we extend a simple regression-based method of predicting energy use using short-interval meter data. We demonstrate the methods by predicting energy use in 17 real commercial buildings. We discuss the benefits of uncertainty estimates which can provide actionable decision making information for investing in energy conservation measures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Situ, S.; Wang, Xuemei; Guenther, Alex B.
2014-12-01
Using local observed emission factor, meteorological data, vegetation 5 information and dynamic MODIS LAI, MEGANv2.1 was constrained to predict the isoprene emission from Dinghushan forest in the Pearl River Delta region during a field campaign in November 2008, and the uncertainties in isoprene emission estimates were quantified by the Monte Carlo approach. The results indicate that MEGAN can predict the isoprene emission reasonably during the campaign, and the mean value of isoprene emission is 2.35 mg m-2 h-1 in daytime. There are high uncertainties associated with the MEGAN inputs and calculated parameters, and the relative error can be as highmore » as -89 to 111% for a 95% confidence interval. The emission factor of broadleaf trees and the activity factor accounting for light and temperature dependence are the most important contributors to the uncertainties in isoprene emission estimated for the Dinghushan forest during the campaign. The results also emphasize the importance of accurate observed PAR and temperature to reduce the uncertainties in isoprene emission estimated by model, because the MEGAN model activity factor accounting for light and temperature dependence is highly sensitive to PAR and temperature.« less
NASA Astrophysics Data System (ADS)
Honti, Mark; Schuwirth, Nele; Rieckermann, Jörg; Ghielmetti, Nico; Stamm, Christian
2014-05-01
Catchments are complex systems where water quantity, quality and the ecological services provided are determined by interacting physical, chemical, biological, economical and social factors. The realization of these interactions led to the prevailing catchment management paradigm: Integrated Water Resources Management (IWRM). IWRM requires considering all these aspects during the design of sustainable resource utilization. Due to the complexity of this task, mathematical modeling plays a key role in IWRM, namely in the evaluation of the impacts of hypothetical scenarios and management measures. Toxicity is a key determinant of the ecological state and as such a focal point in IWRM, but we still have significant knowledge gaps about the diffuse loads of organic micropollutants (OMP) that leak from both urban and agricultural areas. Most European catchments possess mixed land use, containing rural (natural and agricultural) landscapes and settlements in varying proportions. Thus, a catchment model supporting IWRM must be able to cope with both classes. However, the majority of existing catchment models is dedicated to either rural or urban areas, while the minority capable of simulating both contain overly simplified descriptions for either land use category. We applied a conceptual model that describes all major land use classes for assessing the impacts of climate change, socio-economic development and management alternatives on diffuse OMP loads. We simulated the loads of 12 compounds (agricultural and urban pesticides and urban biocides) with daily resolution at 11 locations in the stream network of a small catchment (46 km2) in Switzerland. The model considers all important diffuse transport pathways separately, but each with a simple empirical process rate. Consequently, some site-specific observations were required to calibrate rate parameters. We assessed uncertainty during both calibration and prediction phases. Predictions indicated that future OMP loads were predominantly determined by human activities in each simulated sub-catchment, as reflected by the socio-economic scenarios and management alternatives. Climatic and the corresponding hydrological changes had a much weaker influence. This indicates that - conditionally on the confidence of our predictions - catchment management would possess effective options to prevent the degradation of water quality in the future. However, prediction uncertainty varied between high and huge levels depending on compound. Most of the identified uncertainty was related to the quality of input data. Application rates and timings could be estimated only roughly for most compounds. Concentration peaks were simulated with high uncertainty. The highest pollutant concentrations were often associated with known but unidentified pollution sources such as accidental spills, or brief high-intensity precipitation events whose amount could only be observed with high uncertainty. So while acute exposure would be as important as the chronic one for IWRM, neither climatic nor catchment models excel at predicting rare and brief events. This deficiency highlights why the assessment of predictive uncertainty should be an integral part of OMP modeling.
A hierarchical spatial model for well yield in complex aquifers
NASA Astrophysics Data System (ADS)
Montgomery, J.; O'sullivan, F.
2017-12-01
Efficiently siting and managing groundwater wells requires reliable estimates of the amount of water that can be produced, or the well yield. This can be challenging to predict in highly complex, heterogeneous fractured aquifers due to the uncertainty around local hydraulic properties. Promising statistical approaches have been advanced in recent years. For instance, kriging and multivariate regression analysis have been applied to well test data with limited but encouraging levels of prediction accuracy. Additionally, some analytical solutions to diffusion in homogeneous porous media have been used to infer "effective" properties consistent with observed flow rates or drawdown. However, this is an under-specified inverse problem with substantial and irreducible uncertainty. We describe a flexible machine learning approach capable of combining diverse datasets with constraining physical and geostatistical models for improved well yield prediction accuracy and uncertainty quantification. Our approach can be implemented within a hierarchical Bayesian framework using Markov Chain Monte Carlo, which allows for additional sources of information to be incorporated in priors to further constrain and improve predictions and reduce the model order. We demonstrate the usefulness of this approach using data from over 7,000 wells in a fractured bedrock aquifer.
Bayesian flood forecasting methods: A review
NASA Astrophysics Data System (ADS)
Han, Shasha; Coulibaly, Paulin
2017-08-01
Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been developed and widely applied, but there is still room for improvements. Future research in the context of Bayesian flood forecasting should be on assimilation of various sources of newly available information and improvement of predictive performance assessment methods.
Gaussian Process Model for Antarctic Surface Mass Balance and Ice Core Site Selection
NASA Astrophysics Data System (ADS)
White, P. A.; Reese, S.; Christensen, W. F.; Rupper, S.
2017-12-01
Surface mass balance (SMB) is an important factor in the estimation of sea level change, and data are collected to estimate models for prediction of SMB on the Antarctic ice sheet. Using Favier et al.'s (2013) quality-controlled aggregate data set of SMB field measurements, a fully Bayesian spatial model is posed to estimate Antarctic SMB and propose new field measurement locations. Utilizing Nearest-Neighbor Gaussian process (NNGP) models, SMB is estimated over the Antarctic ice sheet. An Antarctic SMB map is rendered using this model and is compared with previous estimates. A prediction uncertainty map is created to identify regions of high SMB uncertainty. The model estimates net SMB to be 2173 Gton yr-1 with 95% credible interval (2021,2331) Gton yr-1. On average, these results suggest lower Antarctic SMB and higher uncertainty than previously purported [Vaughan et al. (1999); Van de Berg et al. (2006); Arthern, Winebrenner and Vaughan (2006); Bromwich et al. (2004); Lenaerts et al. (2012)], even though this model utilizes significantly more observations than previous models. Using the Gaussian process' uncertainty and model parameters, we propose 15 new measurement locations for field study utilizing a maximin space-filling, error-minimizing design; these potential measurements are identied to minimize future estimation uncertainty. Using currently accepted Antarctic mass balance estimates and our SMB estimate, we estimate net mass loss [Shepherd et al. (2012); Jacob et al. (2012)]. Furthermore, we discuss modeling details for both space-time data and combining field measurement data with output from mathematical models using the NNGP framework.
Measurement Uncertainty Budget of the PMV Thermal Comfort Equation
NASA Astrophysics Data System (ADS)
Ekici, Can
2016-05-01
Fanger's predicted mean vote (PMV) equation is the result of the combined quantitative effects of the air temperature, mean radiant temperature, air velocity, humidity activity level and clothing thermal resistance. PMV is a mathematical model of thermal comfort which was developed by Fanger. The uncertainty budget of the PMV equation was developed according to GUM in this study. An example is given for the uncertainty model of PMV in the exemplification section of the study. Sensitivity coefficients were derived from the PMV equation. Uncertainty budgets can be seen in the tables. A mathematical model of the sensitivity coefficients of Ta, hc, T_{mrt}, T_{cl}, and Pa is given in this study. And the uncertainty budgets for hc, T_{cl}, and Pa are given in this study.
Accuracy of Robotic Radiosurgical Liver Treatment Throughout the Respiratory Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, Jeff D.; Wong, Raimond; Swaminath, Anand
Purpose: To quantify random uncertainties in robotic radiosurgical treatment of liver lesions with real-time respiratory motion management. Methods and Materials: We conducted a retrospective analysis of 27 liver cancer patients treated with robotic radiosurgery over 118 fractions. The robotic radiosurgical system uses orthogonal x-ray images to determine internal target position and correlates this position with an external surrogate to provide robotic corrections of linear accelerator positioning. Verification and update of this internal–external correlation model was achieved using periodic x-ray images collected throughout treatment. To quantify random uncertainties in targeting, we analyzed logged tracking information and isolated x-ray images collected immediately beforemore » beam delivery. For translational correlation errors, we quantified the difference between correlation model–estimated target position and actual position determined by periodic x-ray imaging. To quantify prediction errors, we computed the mean absolute difference between the predicted coordinates and actual modeled position calculated 115 milliseconds later. We estimated overall random uncertainty by quadratically summing correlation, prediction, and end-to-end targeting errors. We also investigated relationships between tracking errors and motion amplitude using linear regression. Results: The 95th percentile absolute correlation errors in each direction were 2.1 mm left–right, 1.8 mm anterior–posterior, 3.3 mm cranio–caudal, and 3.9 mm 3-dimensional radial, whereas 95th percentile absolute radial prediction errors were 0.5 mm. Overall 95th percentile random uncertainty was 4 mm in the radial direction. Prediction errors were strongly correlated with modeled target amplitude (r=0.53-0.66, P<.001), whereas only weak correlations existed for correlation errors. Conclusions: Study results demonstrate that model correlation errors are the primary random source of uncertainty in Cyberknife liver treatment and, unlike prediction errors, are not strongly correlated with target motion amplitude. Aggregate 3-dimensional radial position errors presented here suggest the target will be within 4 mm of the target volume for 95% of the beam delivery.« less
New insights into faster computation of uncertainties
NASA Astrophysics Data System (ADS)
Bhattacharya, Atreyee
2012-11-01
Heavy computation power, lengthy simulations, and an exhaustive number of model runs—often these seem like the only statistical tools that scientists have at their disposal when computing uncertainties associated with predictions, particularly in cases of environmental processes such as groundwater movement. However, calculation of uncertainties need not be as lengthy, a new study shows. Comparing two approaches—the classical Bayesian “credible interval” and a less commonly used regression-based “confidence interval” method—Lu et al. show that for many practical purposes both methods provide similar estimates of uncertainties. The advantage of the regression method is that it demands 10-1000 model runs, whereas the classical Bayesian approach requires 10,000 to millions of model runs.
Error and Uncertainty Quantification in the Numerical Simulation of Complex Fluid Flows
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
2010-01-01
The failure of numerical simulation to predict physical reality is often a direct consequence of the compounding effects of numerical error arising from finite-dimensional approximation and physical model uncertainty resulting from inexact knowledge and/or statistical representation. In this topical lecture, we briefly review systematic theories for quantifying numerical errors and restricted forms of model uncertainty occurring in simulations of fluid flow. A goal of this lecture is to elucidate both positive and negative aspects of applying these theories to practical fluid flow problems. Finite-element and finite-volume calculations of subsonic and hypersonic fluid flow are presented to contrast the differing roles of numerical error and model uncertainty. for these problems.
Underwater noise modelling for environmental impact assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farcas, Adrian; Thompson, Paul M.; Merchant, Nathan D., E-mail: nathan.merchant@cefas.co.uk
Assessment of underwater noise is increasingly required by regulators of development projects in marine and freshwater habitats, and noise pollution can be a constraining factor in the consenting process. Noise levels arising from the proposed activity are modelled and the potential impact on species of interest within the affected area is then evaluated. Although there is considerable uncertainty in the relationship between noise levels and impacts on aquatic species, the science underlying noise modelling is well understood. Nevertheless, many environmental impact assessments (EIAs) do not reflect best practice, and stakeholders and decision makers in the EIA process are often unfamiliarmore » with the concepts and terminology that are integral to interpreting noise exposure predictions. In this paper, we review the process of underwater noise modelling and explore the factors affecting predictions of noise exposure. Finally, we illustrate the consequences of errors and uncertainties in noise modelling, and discuss future research needs to reduce uncertainty in noise assessments.« less
Parameter Uncertainty for Aircraft Aerodynamic Modeling using Recursive Least Squares
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Morelli, Eugene A.
2016-01-01
A real-time method was demonstrated for determining accurate uncertainty levels of stability and control derivatives estimated using recursive least squares and time-domain data. The method uses a recursive formulation of the residual autocorrelation to account for colored residuals, which are routinely encountered in aircraft parameter estimation and change the predicted uncertainties. Simulation data and flight test data for a subscale jet transport aircraft were used to demonstrate the approach. Results showed that the corrected uncertainties matched the observed scatter in the parameter estimates, and did so more accurately than conventional uncertainty estimates that assume white residuals. Only small differences were observed between batch estimates and recursive estimates at the end of the maneuver. It was also demonstrated that the autocorrelation could be reduced to a small number of lags to minimize computation and memory storage requirements without significantly degrading the accuracy of predicted uncertainty levels.
Sattar, Ahmed M.A.; Raslan, Yasser M.
2013-01-01
While construction of the Aswan High Dam (AHD) has stopped concurrent flooding events, River Nile is still subject to low intensity flood waves resulting from controlled release of water from the dam reservoir. Analysis of flow released from New Naga-Hammadi Barrage, which is located at 3460 km downstream AHD indicated an increase in magnitude of flood released from the barrage in the past 10 years. A 2D numerical mobile bed model is utilized to investigate the possible morphological changes in the downstream of Naga-Hammadi Barrage from possible higher flood releases. Monte Carlo simulation analyses (MCS) is applied to the deterministic results of the 2D model to account for and assess the uncertainty of sediment parameters and formulations in addition to sacristy of field measurements. Results showed that the predicted volume of erosion yielded the highest uncertainty and variation from deterministic run, while navigation velocity yielded the least uncertainty. Furthermore, the error budget method is used to rank various sediment parameters for their contribution in the total prediction uncertainty. It is found that the suspended sediment contributed to output uncertainty more than other sediment parameters followed by bed load with 10% less order of magnitude. PMID:25685476
Sattar, Ahmed M A; Raslan, Yasser M
2014-01-01
While construction of the Aswan High Dam (AHD) has stopped concurrent flooding events, River Nile is still subject to low intensity flood waves resulting from controlled release of water from the dam reservoir. Analysis of flow released from New Naga-Hammadi Barrage, which is located at 3460 km downstream AHD indicated an increase in magnitude of flood released from the barrage in the past 10 years. A 2D numerical mobile bed model is utilized to investigate the possible morphological changes in the downstream of Naga-Hammadi Barrage from possible higher flood releases. Monte Carlo simulation analyses (MCS) is applied to the deterministic results of the 2D model to account for and assess the uncertainty of sediment parameters and formulations in addition to sacristy of field measurements. Results showed that the predicted volume of erosion yielded the highest uncertainty and variation from deterministic run, while navigation velocity yielded the least uncertainty. Furthermore, the error budget method is used to rank various sediment parameters for their contribution in the total prediction uncertainty. It is found that the suspended sediment contributed to output uncertainty more than other sediment parameters followed by bed load with 10% less order of magnitude.
The treatment of uncertainties in reactive pollution dispersion models at urban scales.
Tomlin, A S; Ziehn, T; Goodman, P; Tate, J E; Dixon, N S
2016-07-18
The ability to predict NO2 concentrations ([NO2]) within urban street networks is important for the evaluation of strategies to reduce exposure to NO2. However, models aiming to make such predictions involve the coupling of several complex processes: traffic emissions under different levels of congestion; dispersion via turbulent mixing; chemical processes of relevance at the street-scale. Parameterisations of these processes are challenging to quantify with precision. Predictions are therefore subject to uncertainties which should be taken into account when using models within decision making. This paper presents an analysis of mean [NO2] predictions from such a complex modelling system applied to a street canyon within the city of York, UK including the treatment of model uncertainties and their causes. The model system consists of a micro-scale traffic simulation and emissions model, and a Reynolds averaged turbulent flow model coupled to a reactive Lagrangian particle dispersion model. The analysis focuses on the sensitivity of predicted in-street increments of [NO2] at different locations in the street to uncertainties in the model inputs. These include physical characteristics such as background wind direction, temperature and background ozone concentrations; traffic parameters such as overall demand and primary NO2 fraction; as well as model parameterisations such as roughness lengths, turbulent time- and length-scales and chemical reaction rate coefficients. Predicted [NO2] is shown to be relatively robust with respect to model parameterisations, although there are significant sensitivities to the activation energy for the reaction NO + O3 as well as the canyon wall roughness length. Under off-peak traffic conditions, demand is the key traffic parameter. Under peak conditions where the network saturates, road-side [NO2] is relatively insensitive to changes in demand and more sensitive to the primary NO2 fraction. The most important physical parameter was found to be the background wind direction. The study highlights the key parameters required for reliable [NO2] estimations suggesting that accurate reference measurements for wind direction should be a critical part of air quality assessments for in-street locations. It also highlights the importance of street scale chemical processes in forming road-side [NO2], particularly for regions of high NOx emissions such as close to traffic queues.
Uncertainties on exclusive diffractive Higgs boson and jet production at the LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dechambre, A.; CEA/IRFU/Service de physique des particules, CEA/Saclay; Kepka, O.
2011-03-01
Two theoretical descriptions of exclusive diffractive jets and Higgs production at the LHC were implemented into the FPMC generator: the Khoze, Martin, Ryskin model and the Cudell, Hernandez, Ivanov, Dechambre exclusive model. We then study the uncertainties. We compare their predictions to the CDF measurement and discuss the possibility of constraining the exclusive Higgs production at the LHC with early measurements of exclusive jets. We show that the present theoretical uncertainties can be reduced with such data by a factor of 5.
Lutchen, K R
1990-08-01
A sensitivity analysis based on weighted least-squares regression is presented to evaluate alternative methods for fitting lumped-parameter models to respiratory impedance data. The goal is to maintain parameter accuracy simultaneously with practical experiment design. The analysis focuses on predicting parameter uncertainties using a linearized approximation for joint confidence regions. Applications are with four-element parallel and viscoelastic models for 0.125- to 4-Hz data and a six-element model with separate tissue and airway properties for input and transfer impedance data from 2-64 Hz. The criterion function form was evaluated by comparing parameter uncertainties when data are fit as magnitude and phase, dynamic resistance and compliance, or real and imaginary parts of input impedance. The proper choice of weighting can make all three criterion variables comparable. For the six-element model, parameter uncertainties were predicted when both input impedance and transfer impedance are acquired and fit simultaneously. A fit to both data sets from 4 to 64 Hz could reduce parameter estimate uncertainties considerably from those achievable by fitting either alone. For the four-element models, use of an independent, but noisy, measure of static compliance was assessed as a constraint on model parameters. This may allow acceptable parameter uncertainties for a minimum frequency of 0.275-0.375 Hz rather than 0.125 Hz. This reduces data acquisition requirements from a 16- to a 5.33- to 8-s breath holding period. These results are approximations, and the impact of using the linearized approximation for the confidence regions is discussed.
Quantifying data worth toward reducing predictive uncertainty
Dausman, A.M.; Doherty, J.; Langevin, C.D.; Sukop, M.C.
2010-01-01
The present study demonstrates a methodology for optimization of environmental data acquisition. Based on the premise that the worth of data increases in proportion to its ability to reduce the uncertainty of key model predictions, the methodology can be used to compare the worth of different data types, gathered at different locations within study areas of arbitrary complexity. The method is applied to a hypothetical nonlinear, variable density numerical model of salt and heat transport. The relative utilities of temperature and concentration measurements at different locations within the model domain are assessed in terms of their ability to reduce the uncertainty associated with predictions of movement of the salt water interface in response to a decrease in fresh water recharge. In order to test the sensitivity of the method to nonlinear model behavior, analyses were repeated for multiple realizations of system properties. Rankings of observation worth were similar for all realizations, indicating robust performance of the methodology when employed in conjunction with a highly nonlinear model. The analysis showed that while concentration and temperature measurements can both aid in the prediction of interface movement, concentration measurements, especially when taken in proximity to the interface at locations where the interface is expected to move, are of greater worth than temperature measurements. Nevertheless, it was also demonstrated that pairs of temperature measurements, taken in strategic locations with respect to the interface, can also lead to more precise predictions of interface movement. Journal compilation ?? 2010 National Ground Water Association.
Predictive Scheduling for Electric Vehicles Considering Uncertainty of Load and User Behaviors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bin; Huang, Rui; Wang, Yubo
2016-05-02
Un-coordinated Electric Vehicle (EV) charging can create unexpected load in local distribution grid, which may degrade the power quality and system reliability. The uncertainty of EV load, user behaviors and other baseload in distribution grid, is one of challenges that impedes optimal control for EV charging problem. Previous researches did not fully solve this problem due to lack of real-world EV charging data and proper stochastic model to describe these behaviors. In this paper, we propose a new predictive EV scheduling algorithm (PESA) inspired by Model Predictive Control (MPC), which includes a dynamic load estimation module and a predictive optimizationmore » module. The user-related EV load and base load are dynamically estimated based on the historical data. At each time interval, the predictive optimization program will be computed for optimal schedules given the estimated parameters. Only the first element from the algorithm outputs will be implemented according to MPC paradigm. Current-multiplexing function in each Electric Vehicle Supply Equipment (EVSE) is considered and accordingly a virtual load is modeled to handle the uncertainties of future EV energy demands. This system is validated by the real-world EV charging data collected on UCLA campus and the experimental results indicate that our proposed model not only reduces load variation up to 40% but also maintains a high level of robustness. Finally, IEC 61850 standard is utilized to standardize the data models involved, which brings significance to more reliable and large-scale implementation.« less
Uncertainty propagation for statistical impact prediction of space debris
NASA Astrophysics Data System (ADS)
Hoogendoorn, R.; Mooij, E.; Geul, J.
2018-01-01
Predictions of the impact time and location of space debris in a decaying trajectory are highly influenced by uncertainties. The traditional Monte Carlo (MC) method can be used to perform accurate statistical impact predictions, but requires a large computational effort. A method is investigated that directly propagates a Probability Density Function (PDF) in time, which has the potential to obtain more accurate results with less computational effort. The decaying trajectory of Delta-K rocket stages was used to test the methods using a six degrees-of-freedom state model. The PDF of the state of the body was propagated in time to obtain impact-time distributions. This Direct PDF Propagation (DPP) method results in a multi-dimensional scattered dataset of the PDF of the state, which is highly challenging to process. No accurate results could be obtained, because of the structure of the DPP data and the high dimensionality. Therefore, the DPP method is less suitable for practical uncontrolled entry problems and the traditional MC method remains superior. Additionally, the MC method was used with two improved uncertainty models to obtain impact-time distributions, which were validated using observations of true impacts. For one of the two uncertainty models, statistically more valid impact-time distributions were obtained than in previous research.
Surrogate gas prediction model as a proxy for Δ14C-based measurements of fossil fuel-CO2.
Coakley, Kevin J; Miller, John B; Montzka, Stephen A; Sweeney, Colm; Miller, Ben R
2016-06-27
The measured 14 C: 12 C isotopic ratio of atmospheric CO 2 (and its associated derived Δ 14 C value) is an ideal tracer for determination of the fossil fuel derived CO 2 enhancement contributing to any atmospheric CO 2 measurement ( C ff ). Given enough such measurements, independent top-down estimation of US fossil fuel-CO 2 emissions should be possible. However, the number of Δ 14 C measurements is presently constrained by cost, available sample volume, and availability of mass spectrometer measurement facilities. Δ 14 C is therefore measured in just a small fraction of samples obtained by ask air sampling networks around the world. Here, we develop a Projection Pursuit Regression (PPR) model to predict C ff as a function of multiple surrogate gases acquired within the NOAA/ESRL Global Greenhouse Gas Reference Network (GGGRN). The surrogates consist of measured enhancements of various anthropogenic trace gases, including CO, SF 6 , and halo- and hydrocarbons acquired in vertical airborne sampling profiles near Cape May, NJ and Portsmouth, NH from 2005 through 2010. Model performance for these sites is quantified based on predicted values corresponding to test data excluded from the model building process. Chi-square hypothesis test analysis indicates that these predictions and corresponding observations are consistent given our uncertainty budget which accounts for random effects and one particular systematic effect. However, quantification of the combined uncertainty of the prediction due to all relevant systematic effects is difficult because of the limited range of the observations and their relatively high fractional uncertainties at the sampling sites considered here. To account for the possibility of additional systematic effects, we incorporate another component of uncertainty into our budget. Expanding the number of Δ 14 C measurements in the NOAA GGGRN and building new PPR models at additional sites would improve our understanding of uncertainties and potentially increase the number of C ff estimates by approximately a factor of three. Provided that these estimates are of comparable quality to Δ 14 C-based estimates, we expect an improved determination of fossil fuel-CO 2 emissions.
Discriminative Random Field Models for Subsurface Contamination Uncertainty Quantification
NASA Astrophysics Data System (ADS)
Arshadi, M.; Abriola, L. M.; Miller, E. L.; De Paolis Kaluza, C.
2017-12-01
Application of flow and transport simulators for prediction of the release, entrapment, and persistence of dense non-aqueous phase liquids (DNAPLs) and associated contaminant plumes is a computationally intensive process that requires specification of a large number of material properties and hydrologic/chemical parameters. Given its computational burden, this direct simulation approach is particularly ill-suited for quantifying both the expected performance and uncertainty associated with candidate remediation strategies under real field conditions. Prediction uncertainties primarily arise from limited information about contaminant mass distributions, as well as the spatial distribution of subsurface hydrologic properties. Application of direct simulation to quantify uncertainty would, thus, typically require simulating multiphase flow and transport for a large number of permeability and release scenarios to collect statistics associated with remedial effectiveness, a computationally prohibitive process. The primary objective of this work is to develop and demonstrate a methodology that employs measured field data to produce equi-probable stochastic representations of a subsurface source zone that capture the spatial distribution and uncertainty associated with key features that control remediation performance (i.e., permeability and contamination mass). Here we employ probabilistic models known as discriminative random fields (DRFs) to synthesize stochastic realizations of initial mass distributions consistent with known, and typically limited, site characterization data. Using a limited number of full scale simulations as training data, a statistical model is developed for predicting the distribution of contaminant mass (e.g., DNAPL saturation and aqueous concentration) across a heterogeneous domain. Monte-Carlo sampling methods are then employed, in conjunction with the trained statistical model, to generate realizations conditioned on measured borehole data. Performance of the statistical model is illustrated through comparisons of generated realizations with the `true' numerical simulations. Finally, we demonstrate how these realizations can be used to determine statistically optimal locations for further interrogation of the subsurface.
Slavinskaya, N. A.; Abbasi, M.; Starcke, J. H.; ...
2017-01-24
An automated data-centric infrastructure, Process Informatics Model (PrIMe), was applied to validation and optimization of a syngas combustion model. The Bound-to-Bound Data Collaboration (B2BDC) module of PrIMe was employed to discover the limits of parameter modifications based on uncertainty quantification (UQ) and consistency analysis of the model–data system and experimental data, including shock-tube ignition delay times and laminar flame speeds. Existing syngas reaction models are reviewed, and the selected kinetic data are described in detail. Empirical rules were developed and applied to evaluate the uncertainty bounds of the literature experimental data. Here, the initial H 2/CO reaction model, assembled frommore » 73 reactions and 17 species, was subjected to a B2BDC analysis. For this purpose, a dataset was constructed that included a total of 167 experimental targets and 55 active model parameters. Consistency analysis of the composed dataset revealed disagreement between models and data. Further analysis suggested that removing 45 experimental targets, 8 of which were self-inconsistent, would lead to a consistent dataset. This dataset was subjected to a correlation analysis, which highlights possible directions for parameter modification and model improvement. Additionally, several methods of parameter optimization were applied, some of them unique to the B2BDC framework. The optimized models demonstrated improved agreement with experiments compared to the initially assembled model, and their predictions for experiments not included in the initial dataset (i.e., a blind prediction) were investigated. The results demonstrate benefits of applying the B2BDC methodology for developing predictive kinetic models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slavinskaya, N. A.; Abbasi, M.; Starcke, J. H.
An automated data-centric infrastructure, Process Informatics Model (PrIMe), was applied to validation and optimization of a syngas combustion model. The Bound-to-Bound Data Collaboration (B2BDC) module of PrIMe was employed to discover the limits of parameter modifications based on uncertainty quantification (UQ) and consistency analysis of the model–data system and experimental data, including shock-tube ignition delay times and laminar flame speeds. Existing syngas reaction models are reviewed, and the selected kinetic data are described in detail. Empirical rules were developed and applied to evaluate the uncertainty bounds of the literature experimental data. Here, the initial H 2/CO reaction model, assembled frommore » 73 reactions and 17 species, was subjected to a B2BDC analysis. For this purpose, a dataset was constructed that included a total of 167 experimental targets and 55 active model parameters. Consistency analysis of the composed dataset revealed disagreement between models and data. Further analysis suggested that removing 45 experimental targets, 8 of which were self-inconsistent, would lead to a consistent dataset. This dataset was subjected to a correlation analysis, which highlights possible directions for parameter modification and model improvement. Additionally, several methods of parameter optimization were applied, some of them unique to the B2BDC framework. The optimized models demonstrated improved agreement with experiments compared to the initially assembled model, and their predictions for experiments not included in the initial dataset (i.e., a blind prediction) were investigated. The results demonstrate benefits of applying the B2BDC methodology for developing predictive kinetic models.« less
Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model
NASA Astrophysics Data System (ADS)
Urrego-Blanco, Jorge R.; Urban, Nathan M.; Hunke, Elizabeth C.; Turner, Adrian K.; Jeffery, Nicole
2016-04-01
Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea ice models. We characterize parametric uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify the sensitivity of sea ice area, extent, and volume with respect to uncertainty in 39 individual model parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. It is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea ice model.
Jost, John T; Napier, Jaime L; Thorisdottir, Hulda; Gosling, Samuel D; Palfai, Tibor P; Ostafin, Brian
2007-07-01
Three studies are conducted to assess the uncertainty- threat model of political conservatism, which posits that psychological needs to manage uncertainty and threat are associated with political orientation. Results from structural equation models provide consistent support for the hypothesis that uncertainty avoidance (e.g., need for order, intolerance of ambiguity, and lack of openness to experience) and threat management (e.g., death anxiety, system threat, and perceptions of a dangerous world) each contributes independently to conservatism (vs. liberalism). No support is obtained for alternative models, which predict that uncertainty and threat management are associated with ideological extremism or extreme forms of conservatism only. Study 3 also reveals that resistance to change fully mediates the association between uncertainty avoidance and conservatism, whereas opposition to equality partially mediates the association between threat and conservatism. Implications for understanding the epistemic and existential bases of political orientation are discussed.
Developing stochastic model of thrust and flight dynamics for small UAVs
NASA Astrophysics Data System (ADS)
Tjhai, Chandra
This thesis presents a stochastic thrust model and aerodynamic model for small propeller driven UAVs whose power plant is a small electric motor. First a model which relates thrust generated by a small propeller driven electric motor as a function of throttle setting and commanded engine RPM is developed. A perturbation of this model is then used to relate the uncertainty in throttle and engine RPM commanded to the error in the predicted thrust. Such a stochastic model is indispensable in the design of state estimation and control systems for UAVs where the performance requirements of the systems are specied in stochastic terms. It is shown that thrust prediction models for small UAVs are not a simple, explicit functions relating throttle input and RPM command to thrust generated. Rather they are non-linear, iterative procedures which depend on a geometric description of the propeller and mathematical model of the motor. A detailed derivation of the iterative procedure is presented and the impact of errors which arise from inaccurate propeller and motor descriptions are discussed. Validation results from a series of wind tunnel tests are presented. The results show a favorable statistical agreement between the thrust uncertainty predicted by the model and the errors measured in the wind tunnel. The uncertainty model of aircraft aerodynamic coefficients developed based on wind tunnel experiment will be discussed at the end of this thesis.
Barton, Hugh A; Chiu, Weihsueh A; Setzer, R Woodrow; Andersen, Melvin E; Bailer, A John; Bois, Frédéric Y; Dewoskin, Robert S; Hays, Sean; Johanson, Gunnar; Jones, Nancy; Loizou, George; Macphail, Robert C; Portier, Christopher J; Spendiff, Martin; Tan, Yu-Mei
2007-10-01
Physiologically based pharmacokinetic (PBPK) models are used in mode-of-action based risk and safety assessments to estimate internal dosimetry in animals and humans. When used in risk assessment, these models can provide a basis for extrapolating between species, doses, and exposure routes or for justifying nondefault values for uncertainty factors. Characterization of uncertainty and variability is increasingly recognized as important for risk assessment; this represents a continuing challenge for both PBPK modelers and users. Current practices show significant progress in specifying deterministic biological models and nondeterministic (often statistical) models, estimating parameters using diverse data sets from multiple sources, using them to make predictions, and characterizing uncertainty and variability of model parameters and predictions. The International Workshop on Uncertainty and Variability in PBPK Models, held 31 Oct-2 Nov 2006, identified the state-of-the-science, needed changes in practice and implementation, and research priorities. For the short term, these include (1) multidisciplinary teams to integrate deterministic and nondeterministic/statistical models; (2) broader use of sensitivity analyses, including for structural and global (rather than local) parameter changes; and (3) enhanced transparency and reproducibility through improved documentation of model structure(s), parameter values, sensitivity and other analyses, and supporting, discrepant, or excluded data. Longer-term needs include (1) theoretical and practical methodological improvements for nondeterministic/statistical modeling; (2) better methods for evaluating alternative model structures; (3) peer-reviewed databases of parameters and covariates, and their distributions; (4) expanded coverage of PBPK models across chemicals with different properties; and (5) training and reference materials, such as cases studies, bibliographies/glossaries, model repositories, and enhanced software. The multidisciplinary dialogue initiated by this Workshop will foster the collaboration, research, data collection, and training necessary to make characterizing uncertainty and variability a standard practice in PBPK modeling and risk assessment.
2013-09-01
based confidence metric is used to compare several different model predictions with the experimental data. II. Aerothermal Model Definition and...whereas 5% measurement uncertainty is assumed for aerodynamic pressure and heat flux measurements 4p y and 4Q y . Bayesian updating according... definitive conclusions for these particular aerodynamic models. However, given the confidence associated with the 4 sdp predictions for Run 30 (H/D
Bell, David M; Ward, Eric J; Oishi, A Christopher; Oren, Ram; Flikkema, Paul G; Clark, James S
2015-07-01
Uncertainties in ecophysiological responses to environment, such as the impact of atmospheric and soil moisture conditions on plant water regulation, limit our ability to estimate key inputs for ecosystem models. Advanced statistical frameworks provide coherent methodologies for relating observed data, such as stem sap flux density, to unobserved processes, such as canopy conductance and transpiration. To address this need, we developed a hierarchical Bayesian State-Space Canopy Conductance (StaCC) model linking canopy conductance and transpiration to tree sap flux density from a 4-year experiment in the North Carolina Piedmont, USA. Our model builds on existing ecophysiological knowledge, but explicitly incorporates uncertainty in canopy conductance, internal tree hydraulics and observation error to improve estimation of canopy conductance responses to atmospheric drought (i.e., vapor pressure deficit), soil drought (i.e., soil moisture) and above canopy light. Our statistical framework not only predicted sap flux observations well, but it also allowed us to simultaneously gap-fill missing data as we made inference on canopy processes, marking a substantial advance over traditional methods. The predicted and observed sap flux data were highly correlated (mean sensor-level Pearson correlation coefficient = 0.88). Variations in canopy conductance and transpiration associated with environmental variation across days to years were many times greater than the variation associated with model uncertainties. Because some variables, such as vapor pressure deficit and soil moisture, were correlated at the scale of days to weeks, canopy conductance responses to individual environmental variables were difficult to interpret in isolation. Still, our results highlight the importance of accounting for uncertainty in models of ecophysiological and ecosystem function where the process of interest, canopy conductance in this case, is not observed directly. The StaCC modeling framework provides a statistically coherent approach to estimating canopy conductance and transpiration and propagating estimation uncertainty into ecosystem models, paving the way for improved prediction of water and carbon uptake responses to environmental change. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Raje, Deepashree; Mujumdar, P. P.
2010-09-01
Representation and quantification of uncertainty in climate change impact studies are a difficult task. Several sources of uncertainty arise in studies of hydrologic impacts of climate change, such as those due to choice of general circulation models (GCMs), scenarios and downscaling methods. Recently, much work has focused on uncertainty quantification and modeling in regional climate change impacts. In this paper, an uncertainty modeling framework is evaluated, which uses a generalized uncertainty measure to combine GCM, scenario and downscaling uncertainties. The Dempster-Shafer (D-S) evidence theory is used for representing and combining uncertainty from various sources. A significant advantage of the D-S framework over the traditional probabilistic approach is that it allows for the allocation of a probability mass to sets or intervals, and can hence handle both aleatory or stochastic uncertainty, and epistemic or subjective uncertainty. This paper shows how the D-S theory can be used to represent beliefs in some hypotheses such as hydrologic drought or wet conditions, describe uncertainty and ignorance in the system, and give a quantitative measurement of belief and plausibility in results. The D-S approach has been used in this work for information synthesis using various evidence combination rules having different conflict modeling approaches. A case study is presented for hydrologic drought prediction using downscaled streamflow in the Mahanadi River at Hirakud in Orissa, India. Projections of n most likely monsoon streamflow sequences are obtained from a conditional random field (CRF) downscaling model, using an ensemble of three GCMs for three scenarios, which are converted to monsoon standardized streamflow index (SSFI-4) series. This range is used to specify the basic probability assignment (bpa) for a Dempster-Shafer structure, which represents uncertainty associated with each of the SSFI-4 classifications. These uncertainties are then combined across GCMs and scenarios using various evidence combination rules given by the D-S theory. A Bayesian approach is also presented for this case study, which models the uncertainty in projected frequencies of SSFI-4 classifications by deriving a posterior distribution for the frequency of each classification, using an ensemble of GCMs and scenarios. Results from the D-S and Bayesian approaches are compared, and relative merits of each approach are discussed. Both approaches show an increasing probability of extreme, severe and moderate droughts and decreasing probability of normal and wet conditions in Orissa as a result of climate change.
Stormwater quality modelling in combined sewers: calibration and uncertainty analysis.
Kanso, A; Chebbo, G; Tassin, B
2005-01-01
Estimating the level of uncertainty in urban stormwater quality models is vital for their utilization. This paper presents the results of application of a Monte Carlo Markov Chain method based on the Bayesian theory for the calibration and uncertainty analysis of a storm water quality model commonly used in available software. The tested model uses a hydrologic/hydrodynamic scheme to estimate the accumulation, the erosion and the transport of pollutants on surfaces and in sewers. It was calibrated for four different initial conditions of in-sewer deposits. Calibration results showed large variability in the model's responses in function of the initial conditions. They demonstrated that the model's predictive capacity is very low.
Model Selection for Monitoring CO2 Plume during Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-12-31
The model selection method developed as part of this project mainly includes four steps: (1) assessing the connectivity/dynamic characteristics of a large prior ensemble of models, (2) model clustering using multidimensional scaling coupled with k-mean clustering, (3) model selection using the Bayes' rule in the reduced model space, (4) model expansion using iterative resampling of the posterior models. The fourth step expresses one of the advantages of the method: it provides a built-in means of quantifying the uncertainty in predictions made with the selected models. In our application to plume monitoring, by expanding the posterior space of models, the finalmore » ensemble of representations of geological model can be used to assess the uncertainty in predicting the future displacement of the CO2 plume. The software implementation of this approach is attached here.« less
Denys Yemshanov; Frank H. Koch; D. Barry Lyons; Mark Ducey; Klaus Koehler
2012-01-01
Aim Uncertainty has been widely recognized as one of the most critical issues in predicting the expansion of ecological invasions. The uncertainty associated with the introduction and spread of invasive organisms influences how pest management decision makers respond to expanding incursions. We present a model-based approach to map risk of ecological invasions that...
Translating landfill methane generation parameters among first-order decay models.
Krause, Max J; Chickering, Giles W; Townsend, Timothy G
2016-11-01
Landfill gas (LFG) generation is predicted by a first-order decay (FOD) equation that incorporates two parameters: a methane generation potential (L 0 ) and a methane generation rate (k). Because non-hazardous waste landfills may accept many types of waste streams, multiphase models have been developed in an attempt to more accurately predict methane generation from heterogeneous waste streams. The ability of a single-phase FOD model to predict methane generation using weighted-average methane generation parameters and tonnages translated from multiphase models was assessed in two exercises. In the first exercise, waste composition from four Danish landfills represented by low-biodegradable waste streams was modeled in the Afvalzorg Multiphase Model and methane generation was compared to the single-phase Intergovernmental Panel on Climate Change (IPCC) Waste Model and LandGEM. In the second exercise, waste composition represented by IPCC waste components was modeled in the multiphase IPCC and compared to single-phase LandGEM and Australia's Solid Waste Calculator (SWC). In both cases, weight-averaging of methane generation parameters from waste composition data in single-phase models was effective in predicting cumulative methane generation from -7% to +6% of the multiphase models. The results underscore the understanding that multiphase models will not necessarily improve LFG generation prediction because the uncertainty of the method rests largely within the input parameters. A unique method of calculating the methane generation rate constant by mass of anaerobically degradable carbon was presented (k c ) and compared to existing methods, providing a better fit in 3 of 8 scenarios. Generally, single phase models with weighted-average inputs can accurately predict methane generation from multiple waste streams with varied characteristics; weighted averages should therefore be used instead of regional default values when comparing models. Translating multiphase first-order decay model input parameters by weighted average shows that single-phase models can predict cumulative methane generation within the level of uncertainty of many of the input parameters as defined by the Intergovernmental Panel on Climate Change (IPCC), which indicates that decreasing the uncertainty of the input parameters will make the model more accurate rather than adding multiple phases or input parameters.
NASA Technical Reports Server (NTRS)
Sotiropoulou, Rafaella-Eleni P.; Nenes, Athanasios; Adams, Peter J.; Seinfeld, John H.
2007-01-01
In situ observations of aerosol and cloud condensation nuclei (CCN) and the GISS GCM Model II' with an online aerosol simulation and explicit aerosol-cloud interactions are used to quantify the uncertainty in radiative forcing and autoconversion rate from application of Kohler theory. Simulations suggest that application of Koehler theory introduces a 10-20% uncertainty in global average indirect forcing and 2-11% uncertainty in autoconversion. Regionally, the uncertainty in indirect forcing ranges between 10-20%, and 5-50% for autoconversion. These results are insensitive to the range of updraft velocity and water vapor uptake coefficient considered. This study suggests that Koehler theory (as implemented in climate models) is not a significant source of uncertainty for aerosol indirect forcing but can be substantial for assessments of aerosol effects on the hydrological cycle in climatically sensitive regions of the globe. This implies that improvements in the representation of GCM subgrid processes and aerosol size distribution will mostly benefit indirect forcing assessments. Predictions of autoconversion, by nature, will be subject to considerable uncertainty; its reduction may require explicit representation of size-resolved aerosol composition and mixing state.
Accounting for uncertainty in marine reserve design.
Halpern, Benjamin S; Regan, Helen M; Possingham, Hugh P; McCarthy, Michael A
2006-01-01
Ecosystems and the species and communities within them are highly complex systems that defy predictions with any degree of certainty. Managing and conserving these systems in the face of uncertainty remains a daunting challenge, particularly with respect to developing networks of marine reserves. Here we review several modelling frameworks that explicitly acknowledge and incorporate uncertainty, and then use these methods to evaluate reserve spacing rules given increasing levels of uncertainty about larval dispersal distances. Our approach finds similar spacing rules as have been proposed elsewhere - roughly 20-200 km - but highlights several advantages provided by uncertainty modelling over more traditional approaches to developing these estimates. In particular, we argue that uncertainty modelling can allow for (1) an evaluation of the risk associated with any decision based on the assumed uncertainty; (2) a method for quantifying the costs and benefits of reducing uncertainty; and (3) a useful tool for communicating to stakeholders the challenges in managing highly uncertain systems. We also argue that incorporating rather than avoiding uncertainty will increase the chances of successfully achieving conservation and management goals.
Technical note: Bayesian calibration of dynamic ruminant nutrition models.
Reed, K F; Arhonditsis, G B; France, J; Kebreab, E
2016-08-01
Mechanistic models of ruminant digestion and metabolism have advanced our understanding of the processes underlying ruminant animal physiology. Deterministic modeling practices ignore the inherent variation within and among individual animals and thus have no way to assess how sources of error influence model outputs. We introduce Bayesian calibration of mathematical models to address the need for robust mechanistic modeling tools that can accommodate error analysis by remaining within the bounds of data-based parameter estimation. For the purpose of prediction, the Bayesian approach generates a posterior predictive distribution that represents the current estimate of the value of the response variable, taking into account both the uncertainty about the parameters and model residual variability. Predictions are expressed as probability distributions, thereby conveying significantly more information than point estimates in regard to uncertainty. Our study illustrates some of the technical advantages of Bayesian calibration and discusses the future perspectives in the context of animal nutrition modeling. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Traas, T P; Luttik, R; Jongbloed, R H
1996-08-01
In previous studies, the risk of toxicant accumulation in food chains was used to calculate quality criteria for surface water and soil. A simple algorithm was used to calculate maximum permissable concentrations [MPC = no-observed-effect concentration/bioconcentration factor(NOEC/BCF)]. These studies were limited to simple food chains. This study presents a method to calculate MPCs for more complex food webs of predators. The previous method is expanded. First, toxicity data (NOECs) for several compounds were corrected for differences between laboratory animals and animals in the wild. Second, for each compound, it was assumed these NOECs were a sample of a log-logistic distribution of mammalian and avian NOECs. Third, bioaccumulation factors (BAFs) for major food items of predators were collected and were assumed to derive from different log-logistic distributions of BAFs. Fourth, MPCs for each compound were calculated using Monte Carlo sampling from NOEC and BAF distributions. An uncertainty analysis for cadmium was performed to identify the most uncertain parameters of the model. Model analysis indicated that most of the prediction uncertainty of the model can be ascribed to uncertainty of species sensitivity as expressed by NOECs. A very small proportion of model uncertainty is contributed by BAFs from food webs. Correction factors for the conversion of NOECs from laboratory conditions to the field have some influence on the final value of MPC5, but the total prediction uncertainty of the MPC is quite large. It is concluded that the uncertainty in species sensitivity is quite large. To avoid unethical toxicity testing with mammalian or avian predators, it cannot be avoided to use this uncertainty in the method proposed to calculate MPC distributions. The fifth percentile of the MPC is suggested as a safe value for top predators.
Uncertainty quantification for environmental models
Hill, Mary C.; Lu, Dan; Kavetski, Dmitri; Clark, Martyn P.; Ye, Ming
2012-01-01
Environmental models are used to evaluate the fate of fertilizers in agricultural settings (including soil denitrification), the degradation of hydrocarbons at spill sites, and water supply for people and ecosystems in small to large basins and cities—to mention but a few applications of these models. They also play a role in understanding and diagnosing potential environmental impacts of global climate change. The models are typically mildly to extremely nonlinear. The persistent demand for enhanced dynamics and resolution to improve model realism [17] means that lengthy individual model execution times will remain common, notwithstanding continued enhancements in computer power. In addition, high-dimensional parameter spaces are often defined, which increases the number of model runs required to quantify uncertainty [2]. Some environmental modeling projects have access to extensive funding and computational resources; many do not. The many recent studies of uncertainty quantification in environmental model predictions have focused on uncertainties related to data error and sparsity of data, expert judgment expressed mathematically through prior information, poorly known parameter values, and model structure (see, for example, [1,7,9,10,13,18]). Approaches for quantifying uncertainty include frequentist (potentially with prior information [7,9]), Bayesian [13,18,19], and likelihood-based. A few of the numerous methods, including some sensitivity and inverse methods with consequences for understanding and quantifying uncertainty, are as follows: Bayesian hierarchical modeling and Bayesian model averaging; single-objective optimization with error-based weighting [7] and multi-objective optimization [3]; methods based on local derivatives [2,7,10]; screening methods like OAT (one at a time) and the method of Morris [14]; FAST (Fourier amplitude sensitivity testing) [14]; the Sobol' method [14]; randomized maximum likelihood [10]; Markov chain Monte Carlo (MCMC) [10]. There are also bootstrapping and cross-validation approaches.Sometimes analyses are conducted using surrogate models [12]. The availability of so many options can be confusing. Categorizing methods based on fundamental questions assists in communicating the essential results of uncertainty analyses to stakeholders. Such questions can focus on model adequacy (e.g., How well does the model reproduce observed system characteristics and dynamics?) and sensitivity analysis (e.g., What parameters can be estimated with available data? What observations are important to parameters and predictions? What parameters are important to predictions?), as well as on the uncertainty quantification (e.g., How accurate and precise are the predictions?). The methods can also be classified by the number of model runs required: few (10s to 1000s) or many (10,000s to 1,000,000s). Of the methods listed above, the most computationally frugal are generally those based on local derivatives; MCMC methods tend to be among the most computationally demanding. Surrogate models (emulators)do not necessarily produce computational frugality because many runs of the full model are generally needed to create a meaningful surrogate model. With this categorization, we can, in general, address all the fundamental questions mentioned above using either computationally frugal or demanding methods. Model development and analysis can thus be conducted consistently using either computation-ally frugal or demanding methods; alternatively, different fundamental questions can be addressed using methods that require different levels of effort. Based on this perspective, we pose the question: Can computationally frugal methods be useful companions to computationally demanding meth-ods? The reliability of computationally frugal methods generally depends on the model being reasonably linear, which usually means smooth nonlin-earities and the assumption of Gaussian errors; both tend to be more valid with more linear
Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urrego-Blanco, Jorge Rolando; Urban, Nathan Mark; Hunke, Elizabeth Clare
Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea ice models. We characterize parametric uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify the sensitivity of sea ice area, extent, and volume with respect to uncertainty in 39 individual modelmore » parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. Lastly, it is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea ice model.« less
Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model
Urrego-Blanco, Jorge Rolando; Urban, Nathan Mark; Hunke, Elizabeth Clare; ...
2016-04-01
Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea ice models. We characterize parametric uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify the sensitivity of sea ice area, extent, and volume with respect to uncertainty in 39 individual modelmore » parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. Lastly, it is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea ice model.« less
NASA Astrophysics Data System (ADS)
Brunner, Philip; Doherty, J.; Simmons, Craig T.
2012-07-01
The data set used for calibration of regional numerical models which simulate groundwater flow and vadose zone processes is often dominated by head observations. It is to be expected therefore, that parameters describing vadose zone processes are poorly constrained. A number of studies on small spatial scales explored how additional data types used in calibration constrain vadose zone parameters or reduce predictive uncertainty. However, available studies focused on subsets of observation types and did not jointly account for different measurement accuracies or different hydrologic conditions. In this study, parameter identifiability and predictive uncertainty are quantified in simulation of a 1-D vadose zone soil system driven by infiltration, evaporation and transpiration. The worth of different types of observation data (employed individually, in combination, and with different measurement accuracies) is evaluated by using a linear methodology and a nonlinear Pareto-based methodology under different hydrological conditions. Our main conclusions are (1) Linear analysis provides valuable information on comparative parameter and predictive uncertainty reduction accrued through acquisition of different data types. Its use can be supplemented by nonlinear methods. (2) Measurements of water table elevation can support future water table predictions, even if such measurements inform the individual parameters of vadose zone models to only a small degree. (3) The benefits of including ET and soil moisture observations in the calibration data set are heavily dependent on depth to groundwater. (4) Measurements of groundwater levels, measurements of vadose ET or soil moisture poorly constrain regional groundwater system forcing functions.
Quantifying uncertainty on sediment loads using bootstrap confidence intervals
NASA Astrophysics Data System (ADS)
Slaets, Johanna I. F.; Piepho, Hans-Peter; Schmitter, Petra; Hilger, Thomas; Cadisch, Georg
2017-01-01
Load estimates are more informative than constituent concentrations alone, as they allow quantification of on- and off-site impacts of environmental processes concerning pollutants, nutrients and sediment, such as soil fertility loss, reservoir sedimentation and irrigation channel siltation. While statistical models used to predict constituent concentrations have been developed considerably over the last few years, measures of uncertainty on constituent loads are rarely reported. Loads are the product of two predictions, constituent concentration and discharge, integrated over a time period, which does not make it straightforward to produce a standard error or a confidence interval. In this paper, a linear mixed model is used to estimate sediment concentrations. A bootstrap method is then developed that accounts for the uncertainty in the concentration and discharge predictions, allowing temporal correlation in the constituent data, and can be used when data transformations are required. The method was tested for a small watershed in Northwest Vietnam for the period 2010-2011. The results showed that confidence intervals were asymmetric, with the highest uncertainty in the upper limit, and that a load of 6262 Mg year-1 had a 95 % confidence interval of (4331, 12 267) in 2010 and a load of 5543 Mg an interval of (3593, 8975) in 2011. Additionally, the approach demonstrated that direct estimates from the data were biased downwards compared to bootstrap median estimates. These results imply that constituent loads predicted from regression-type water quality models could frequently be underestimating sediment yields and their environmental impact.
NASA Astrophysics Data System (ADS)
Lee, Lindsay; Mann, Graham; Carslaw, Ken; Toohey, Matthew; Aquila, Valentina
2016-04-01
The World Climate Research Program's SPARC initiative has a new international activity "Stratospheric Sulphur and its Role in Climate" (SSiRC) to better understand changes in stratospheric aerosol and precursor gaseous sulphur species. One component of SSiRC involves an intercomparison "ISA-MIP" of composition-climate models that simulate the stratospheric aerosol layer interactively. Within PoEMS each modelling group will run a "perturbed physics ensemble" (PPE) of interactive stratospheric aerosol (ISA) simulations of the Pinatubo eruption, varying several uncertain parameters associated with the eruption's SO2 emissions and model processes. A powerful new technique to quantify and attribute sources of uncertainty in complex global models is described by Lee et al. (2011, ACP). The analysis uses Gaussian emulation to derive a probability density function (pdf) of predicted quantities, essentially interpolating the PPE results in multi-dimensional parameter space. Once trained on the ensemble, a Monte Carlo simulation with the fast Gaussian emulator enabling a full variance-based sensitivity analysis. The approach has already been used effectively by Carslaw et al., (2013, Nature) to quantify the uncertainty in the cloud albedo effect forcing from a 3D global aerosol-microphysics model allowing to compare the sensitivy of different predicted quantities to uncertainties in natural and anthropogenic emissions types, and structural parameters in the models. Within ISA-MIP, each group will carry out a PPE of runs, with the subsequent analysis with the emulator assessing the uncertainty in the volcanic forcings predicted by each model. In this poster presentation we will give an outline of the "PoEMS" analysis, describing the uncertain parameters to be varied and the relevance to further understanding differences identified in previous international stratospheric aerosol assessments.
NASA Astrophysics Data System (ADS)
Pianosi, Francesca
2015-04-01
Sustainable water resource management in a quickly changing world poses new challenges to hydrology and decision sciences. Systems analysis can contribute to promote sustainable practices by providing the theoretical background and the operational tools for an objective and transparent appraisal of policy options for water resource systems (WRS) management. Traditionally, limited availability of data and computing resources imposed to use oversimplified WRS models, with little consideration of modeling uncertainties and of the non-stationarity and feedbacks between WRS drivers, and a priori aggregation of costs and benefits. Nowadays we increasingly recognize the inadequacy of these simplifications, and consider them among the reasons for the limited use of model-generated information in actual decision-making processes. On the other hand, fast-growing availability of data and computing resources are opening up unprecedented possibilities in the way we build and apply numerical models. In this talk I will discuss my experiences and ideas on how we can exploit this potential to improve model-informed decision-making while facing the challenges of uncertainty, non-stationarity, feedbacks and conflicting objectives. In particular, through practical examples of WRS design and operation problems, my talk will aim at stimulating discussion about the impact of uncertainty on decisions: can inaccurate and imprecise predictions still carry valuable information for decision-making? Does uncertainty in predictions necessarily limit our ability to make 'good' decisions? Or can uncertainty even be of help for decision-making, for instance by reducing the projected conflict between competing water use? Finally, I will also discuss how the traditionally separate disciplines of numerical modelling, optimization, and uncertainty and sensitivity analysis have in my experience been just different facets of the same 'systems approach'.
Forest management under uncertainty for multiple bird population objectives
Moore, C.T.; Plummer, W.T.; Conroy, M.J.; Ralph, C. John; Rich, Terrell D.
2005-01-01
We advocate adaptive programs of decision making and monitoring for the management of forest birds when responses by populations to management, and particularly management trade-offs among populations, are uncertain. Models are necessary components of adaptive management. Under this approach, uncertainty about the behavior of a managed system is explicitly captured in a set of alternative models. The models generate testable predictions about the response of populations to management, and monitoring data provide the basis for assessing these predictions and informing future management decisions. To illustrate these principles, we examine forest management at the Piedmont National Wildlife Refuge, where management attention is focused on the recovery of the Red-cockaded Woodpecker (Picoides borealis) population. However, managers are also sensitive to the habitat needs of many non-target organisms, including Wood Thrushes (Hylocichla mustelina) and other forest interior Neotropical migratory birds. By simulating several management policies on a set of-alternative forest and bird models, we found a decision policy that maximized a composite response by woodpeckers and Wood Thrushes despite our complete uncertainty regarding system behavior. Furthermore, we used monitoring data to update our measure of belief in each alternative model following one cycle of forest management. This reduction of uncertainty translates into a reallocation of model influence on the choice of optimal decision action at the next decision opportunity.
NASA Technical Reports Server (NTRS)
Galvan, Jose Ramon; Saxena, Abhinav; Goebel, Kai Frank
2012-01-01
This article discusses several aspects of uncertainty representation and management for model-based prognostics methodologies based on our experience with Kalman Filters when applied to prognostics for electronics components. In particular, it explores the implications of modeling remaining useful life prediction as a stochastic process, and how it relates to uncertainty representation, management and the role of prognostics in decision-making. A distinction between the interpretations of estimated remaining useful life probability density function is explained and a cautionary argument is provided against mixing interpretations for two while considering prognostics in making critical decisions.
The Sim-SEQ Project: Comparison of Selected Flow Models for the S-3 Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Sumit; Doughty, Christine A.; Bacon, Diana H.
Sim-SEQ is an international initiative on model comparison for geologic carbon sequestration, with an objective to understand and, if possible, quantify model uncertainties. Model comparison efforts in Sim-SEQ are at present focusing on one specific field test site, hereafter referred to as the Sim-SEQ Study site (or S-3 site). Within Sim-SEQ, different modeling teams are developing conceptual models of CO2 injection at the S-3 site. In this paper, we select five flow models of the S-3 site and provide a qualitative comparison of their attributes and predictions. These models are based on five different simulators or modeling approaches: TOUGH2/EOS7C, STOMP-CO2e,more » MoReS, TOUGH2-MP/ECO2N, and VESA. In addition to model-to-model comparison, we perform a limited model-to-data comparison, and illustrate how model choices impact model predictions. We conclude the paper by making recommendations for model refinement that are likely to result in less uncertainty in model predictions.« less
Model Uncertainty Quantification Methods In Data Assimilation
NASA Astrophysics Data System (ADS)
Pathiraja, S. D.; Marshall, L. A.; Sharma, A.; Moradkhani, H.
2017-12-01
Data Assimilation involves utilising observations to improve model predictions in a seamless and statistically optimal fashion. Its applications are wide-ranging; from improving weather forecasts to tracking targets such as in the Apollo 11 mission. The use of Data Assimilation methods in high dimensional complex geophysical systems is an active area of research, where there exists many opportunities to enhance existing methodologies. One of the central challenges is in model uncertainty quantification; the outcome of any Data Assimilation study is strongly dependent on the uncertainties assigned to both observations and models. I focus on developing improved model uncertainty quantification methods that are applicable to challenging real world scenarios. These include developing methods for cases where the system states are only partially observed, where there is little prior knowledge of the model errors, and where the model error statistics are likely to be highly non-Gaussian.
ICE CONTROL - Towards optimizing wind energy production during icing events
NASA Astrophysics Data System (ADS)
Dorninger, Manfred; Strauss, Lukas; Serafin, Stefano; Beck, Alexander; Wittmann, Christoph; Weidle, Florian; Meier, Florian; Bourgeois, Saskia; Cattin, René; Burchhart, Thomas; Fink, Martin
2017-04-01
Forecasts of wind power production loss caused by icing weather conditions are produced by a chain of physical models. The model chain consists of a numerical weather prediction model, an icing model and a production loss model. Each element of the model chain is affected by significant uncertainty, which can be quantified using targeted observations and a probabilistic forecasting approach. In this contribution, we present preliminary results from the recently launched project ICE CONTROL, an Austrian research initiative on measurements, probabilistic forecasting, and verification of icing on wind turbine blades. ICE CONTROL includes an experimental field phase, consisting of measurement campaigns in a wind park in Rhineland-Palatinate, Germany, in the winters 2016/17 and 2017/18. Instruments deployed during the campaigns consist of a conventional icing detector on the turbine hub and newly devised ice sensors (eologix Sensor System) on the turbine blades, as well as meteorological sensors for wind, temperature, humidity, visibility, and precipitation type and spectra. Liquid water content and spectral characteristics of super-cooled water droplets are measured using a Fog Monitor FM-120. Three cameras document the icing conditions on the instruments and on the blades. Different modelling approaches are used to quantify the components of the model-chain uncertainties. The uncertainty related to the initial conditions of the weather prediction is evaluated using the existing global ensemble prediction system (EPS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). Furthermore, observation system experiments are conducted with the AROME model and its 3D-Var data assimilation to investigate the impact of additional observations (such as Mode-S aircraft data, SCADA data and MSG cloud mask initialization) on the numerical icing forecast. The uncertainty related to model formulation is estimated from multi-physics ensembles based on the Weather Research and Forecasting model (WRF) by perturbing parameters in the physical parameterization schemes. In addition, uncertainties of the icing model and of its adaptations to the rotating turbine blade are addressed. The model forecasts combined with the suite of instruments and their measurements make it possible to conduct a step-wise verification of all the components of the model chain - a novel aspect compared to similar ongoing and completed forecasting projects.
Exploring prediction uncertainty of spatial data in geostatistical and machine learning Approaches
NASA Astrophysics Data System (ADS)
Klump, J. F.; Fouedjio, F.
2017-12-01
Geostatistical methods such as kriging with external drift as well as machine learning techniques such as quantile regression forest have been intensively used for modelling spatial data. In addition to providing predictions for target variables, both approaches are able to deliver a quantification of the uncertainty associated with the prediction at a target location. Geostatistical approaches are, by essence, adequate for providing such prediction uncertainties and their behaviour is well understood. However, they often require significant data pre-processing and rely on assumptions that are rarely met in practice. Machine learning algorithms such as random forest regression, on the other hand, require less data pre-processing and are non-parametric. This makes the application of machine learning algorithms to geostatistical problems an attractive proposition. The objective of this study is to compare kriging with external drift and quantile regression forest with respect to their ability to deliver reliable prediction uncertainties of spatial data. In our comparison we use both simulated and real world datasets. Apart from classical performance indicators, comparisons make use of accuracy plots, probability interval width plots, and the visual examinations of the uncertainty maps provided by the two approaches. By comparing random forest regression to kriging we found that both methods produced comparable maps of estimated values for our variables of interest. However, the measure of uncertainty provided by random forest seems to be quite different to the measure of uncertainty provided by kriging. In particular, the lack of spatial context can give misleading results in areas without ground truth data. These preliminary results raise questions about assessing the risks associated with decisions based on the predictions from geostatistical and machine learning algorithms in a spatial context, e.g. mineral exploration.
NASA Astrophysics Data System (ADS)
Sévellec, Florian; Dijkstra, Henk A.; Drijfhout, Sybren S.; Germe, Agathe
2017-11-01
In this study, the relation between two approaches to assess the ocean predictability on interannual to decadal time scales is investigated. The first pragmatic approach consists of sampling the initial condition uncertainty and assess the predictability through the divergence of this ensemble in time. The second approach is provided by a theoretical framework to determine error growth by estimating optimal linear growing modes. In this paper, it is shown that under the assumption of linearized dynamics and normal distributions of the uncertainty, the exact quantitative spread of ensemble can be determined from the theoretical framework. This spread is at least an order of magnitude less expensive to compute than the approximate solution given by the pragmatic approach. This result is applied to a state-of-the-art Ocean General Circulation Model to assess the predictability in the North Atlantic of four typical oceanic metrics: the strength of the Atlantic Meridional Overturning Circulation (AMOC), the intensity of its heat transport, the two-dimensional spatially-averaged Sea Surface Temperature (SST) over the North Atlantic, and the three-dimensional spatially-averaged temperature in the North Atlantic. For all tested metrics, except for SST, ˜ 75% of the total uncertainty on interannual time scales can be attributed to oceanic initial condition uncertainty rather than atmospheric stochastic forcing. The theoretical method also provide the sensitivity pattern to the initial condition uncertainty, allowing for targeted measurements to improve the skill of the prediction. It is suggested that a relatively small fleet of several autonomous underwater vehicles can reduce the uncertainty in AMOC strength prediction by 70% for 1-5 years lead times.
Mitigating Provider Uncertainty in Service Provision Contracts
NASA Astrophysics Data System (ADS)
Smith, Chris; van Moorsel, Aad
Uncertainty is an inherent property of open, distributed and multiparty systems. The viability of the mutually beneficial relationships which motivate these systems relies on rational decision-making by each constituent party under uncertainty. Service provision in distributed systems is one such relationship. Uncertainty is experienced by the service provider in his ability to deliver a service with selected quality level guarantees due to inherent non-determinism, such as load fluctuations and hardware failures. Statistical estimators utilized to model this non-determinism introduce additional uncertainty through sampling error. Inability of the provider to accurately model and analyze uncertainty in the quality level guarantees can result in the formation of sub-optimal service provision contracts. Emblematic consequences include loss of revenue, inefficient resource utilization and erosion of reputation and consumer trust. We propose a utility model for contract-based service provision to provide a systematic approach to optimal service provision contract formation under uncertainty. Performance prediction methods to enable the derivation of statistical estimators for quality level are introduced, with analysis of their resultant accuracy and cost.
Geographic potential of disease caused by Ebola and Marburg viruses in Africa.
Peterson, A Townsend; Samy, Abdallah M
2016-10-01
Filoviruses represent a significant public health threat worldwide. West Africa recently experienced the largest-scale and most complex filovirus outbreak yet known, which underlines the need for a predictive understanding of the geographic distribution and potential for transmission to humans of these viruses. Here, we used ecological niche modeling techniques to understand the relationship between known filovirus occurrences and environmental characteristics. Our study derived a picture of the potential transmission geography of Ebola virus species and Marburg, paired with views of the spatial uncertainty associated with model-to-model variation in our predictions. We found that filovirus species have diverged ecologically, but only three species are sufficiently well known that models could be developed with significant predictive power. We quantified uncertainty in predictions, assessed potential for outbreaks outside of known transmission areas, and highlighted the Ethiopian Highlands and scattered areas across East Africa as additional potentially unrecognized transmission areas. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mogaji, Kehinde Anthony; Lim, Hwee San
2018-06-01
The application of a GIS - based Dempster - Shafer data driven model named as evidential belief function EBF- methodology to groundwater potential conditioning factors (GPCFs) derived from geophysical and hydrogeological data sets for assessing groundwater potentiality was presented in this study. The proposed method's efficacy in managing degree of uncertainty in spatial predictive models motivated this research. The method procedural approaches entail firstly, the database containing groundwater data records (bore wells location inventory, hydrogeological data record, etc.) and geophysical measurement data construction. From the database, different influencing groundwater occurrence factors, namely aquifer layer thickness, aquifer layer resistivity, overburden material resistivity, overburden material thickness, aquifer hydraulic conductivity and aquifer transmissivity were extracted and prepared. Further, the bore well location inventories were partitioned randomly into a ratio of 70% (19 wells) for model training and 30% (9 wells) for model testing. The synthesized of the GPCFs via applying the DS - EBF model algorithms produced the groundwater productivity potential index (GPPI) map which demarcated the area into low - medium, medium, medium - high and high potential zones. The analyzed percentage degree of uncertainty for the predicted lows potential zones classes and mediums/highs potential zones classes are >10% and <10%, respectively. The DS theory model-based GPPI map's validation through ROC approach established prediction rate accuracy of 88.8%. Successively, the determined transverse resistance (TR) values in the range of 1280 and 30,000 Ω my for the area geoelectrically delineated aquifer units of the predicted potential zones through Dar - Zarrouk Parameter analysis quantitatively confirm the DS theory modeling prediction results. This research results have expand the capability of DS - EBF model in predictive modeling by effective uncertainty management. Thus, the produced map could form part of decision support system reliable to be used by local authorities for groundwater exploitation and management in the area.
Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha; Thompson, Jill; Zimmerman, Jess K; Murphy, Lora
2018-01-01
Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here, we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured interannual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including aboveground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate. © 2017 John Wiley & Sons Ltd.
Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha C.; Thompson, Jill; Zimmerman, Jess K.; Murphy, Lora
2018-01-01
Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured inter-annual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including above-ground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.
Validation of Heat Transfer Thermal Decomposition and Container Pressurization of Polyurethane Foam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Sarah Nicole; Dodd, Amanda B.; Larsen, Marvin E.
Polymer foam encapsulants provide mechanical, electrical, and thermal isolation in engineered systems. In fire environments, gas pressure from thermal decomposition of polymers can cause mechanical failure of sealed systems. In this work, a detailed uncertainty quantification study of PMDI-based polyurethane foam is presented to assess the validity of the computational model. Both experimental measurement uncertainty and model prediction uncertainty are examined and compared. Both the mean value method and Latin hypercube sampling approach are used to propagate the uncertainty through the model. In addition to comparing computational and experimental results, the importance of each input parameter on the simulation resultmore » is also investigated. These results show that further development in the physics model of the foam and appropriate associated material testing are necessary to improve model accuracy.« less
USDA-ARS?s Scientific Manuscript database
Few studies have attempted to quantify mass balances of both pesticides and degradates in multiple agricultural settings of the United States. We used inverse modeling to calibrate the Root Zone Water Quality Model (RZWQM) for predicting the unsaturated-zone transport and fate of metolachlor, metola...
Mohammad Safeeq; Guillaume S. Mauger; Gordon E. Grant; Ivan Arismendi; Alan F. Hamlet; Se-Yeun Lee
2014-01-01
Assessing uncertainties in hydrologic models can improve accuracy in predicting future streamflow. Here, simulated streamflows using the Variable Infiltration Capacity (VIC) model at coarse (1/16°) and fine (1/120°) spatial resolutions were evaluated against observed streamflows from 217 watersheds. In...
NASA Technical Reports Server (NTRS)
Lind, Richard C. (Inventor); Brenner, Martin J.
2001-01-01
A structured singular value (mu) analysis method of computing flutter margins has robust stability of a linear aeroelastic model with uncertainty operators (Delta). Flight data is used to update the uncertainty operators to accurately account for errors in the computed model and the observed range of aircraft dynamics of the aircraft under test caused by time-varying aircraft parameters, nonlinearities, and flight anomalies, such as test nonrepeatability. This mu-based approach computes predict flutter margins that are worst case with respect to the modeling uncertainty for use in determining when the aircraft is approaching a flutter condition and defining an expanded safe flight envelope for the aircraft that is accepted with more confidence than traditional methods that do not update the analysis algorithm with flight data by introducing mu as a flutter margin parameter that presents several advantages over tracking damping trends as a measure of a tendency to instability from available flight data.
NASA Astrophysics Data System (ADS)
Zheng, Fei; Zhu, Jiang
2017-04-01
How to design a reliable ensemble prediction strategy with considering the major uncertainties of a forecasting system is a crucial issue for performing an ensemble forecast. In this study, a new stochastic perturbation technique is developed to improve the prediction skills of El Niño-Southern Oscillation (ENSO) through using an intermediate coupled model. We first estimate and analyze the model uncertainties from the ensemble Kalman filter analysis results through assimilating the observed sea surface temperatures. Then, based on the pre-analyzed properties of model errors, we develop a zero-mean stochastic model-error model to characterize the model uncertainties mainly induced by the missed physical processes of the original model (e.g., stochastic atmospheric forcing, extra-tropical effects, Indian Ocean Dipole). Finally, we perturb each member of an ensemble forecast at each step by the developed stochastic model-error model during the 12-month forecasting process, and add the zero-mean perturbations into the physical fields to mimic the presence of missing processes and high-frequency stochastic noises. The impacts of stochastic model-error perturbations on ENSO deterministic predictions are examined by performing two sets of 21-yr hindcast experiments, which are initialized from the same initial conditions and differentiated by whether they consider the stochastic perturbations. The comparison results show that the stochastic perturbations have a significant effect on improving the ensemble-mean prediction skills during the entire 12-month forecasting process. This improvement occurs mainly because the nonlinear terms in the model can form a positive ensemble-mean from a series of zero-mean perturbations, which reduces the forecasting biases and then corrects the forecast through this nonlinear heating mechanism.
Tominaga, Koji; Aherne, Julian; Watmough, Shaun A; Alveteg, Mattias; Cosby, Bernard J; Driscoll, Charles T; Posch, Maximilian; Pourmokhtarian, Afshin
2010-12-01
The performance and prediction uncertainty (owing to parameter and structural uncertainties) of four dynamic watershed acidification models (MAGIC, PnET-BGC, SAFE, and VSD) were assessed by systematically applying them to data from the Hubbard Brook Experimental Forest (HBEF), New Hampshire, where long-term records of precipitation and stream chemistry were available. In order to facilitate systematic evaluation, Monte Carlo simulation was used to randomly generate common model input data sets (n = 10,000) from parameter distributions; input data were subsequently translated among models to retain consistency. The model simulations were objectively calibrated against observed data (streamwater: 1963-2004, soil: 1983). The ensemble of calibrated models was used to assess future response of soil and stream chemistry to reduced sulfur deposition at the HBEF. Although both hindcast (1850-1962) and forecast (2005-2100) predictions were qualitatively similar across the four models, the temporal pattern of key indicators of acidification recovery (stream acid neutralizing capacity and soil base saturation) differed substantially. The range in predictions resulted from differences in model structure and their associated posterior parameter distributions. These differences can be accommodated by employing multiple models (ensemble analysis) but have implications for individual model applications.
Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed
NASA Astrophysics Data System (ADS)
Chen, Jie; Brissette, FrançOis P.; Poulin, Annie; Leconte, Robert
2011-12-01
General circulation models (GCMs) and greenhouse gas emissions scenarios (GGES) are generally considered to be the two major sources of uncertainty in quantifying the climate change impacts on hydrology. Other sources of uncertainty have been given less attention. This study considers overall uncertainty by combining results from an ensemble of two GGES, six GCMs, five GCM initial conditions, four downscaling techniques, three hydrological model structures, and 10 sets of hydrological model parameters. Each climate projection is equally weighted to predict the hydrology on a Canadian watershed for the 2081-2100 horizon. The results show that the choice of GCM is consistently a major contributor to uncertainty. However, other sources of uncertainty, such as the choice of a downscaling method and the GCM initial conditions, also have a comparable or even larger uncertainty for some hydrological variables. Uncertainties linked to GGES and the hydrological model structure are somewhat less than those related to GCMs and downscaling techniques. Uncertainty due to the hydrological model parameter selection has the least important contribution among all the variables considered. Overall, this research underlines the importance of adequately covering all sources of uncertainty. A failure to do so may result in moderately to severely biased climate change impact studies. Results further indicate that the major contributors to uncertainty vary depending on the hydrological variables selected, and that the methodology presented in this paper is successful at identifying the key sources of uncertainty to consider for a climate change impact study.
NASA Astrophysics Data System (ADS)
Fletcher, S.; Strzepek, K.
2017-12-01
Many urban water planners face increased pressure on water supply systems from increasing demands from population and economic growth in combination with uncertain water supply, driven by short-term climate variability and long-term climate change. These uncertainties are often exacerbated in groundwater-dependent water systems due to the extra difficulty in measuring groundwater storage, recharge, and sustainable yield. Groundwater models are typically under-parameterized due to the high data requirements for calibration and limited data availability, leading to uncertainty in the models' predictions. We develop an integrated approach to urban water supply planning that combines predictive groundwater uncertainty analysis with adaptive water supply planning using multi-stage decision analysis. This allows us to compare the value of collecting additional groundwater data and reducing predictive uncertainty with the value of using water infrastructure planning that is flexible, modular, and can react quickly in response to unexpected changes in groundwater availability. We apply this approach to a case from Riyadh, Saudi Arabia. Riyadh relies on fossil groundwater aquifers and desalination for urban use. The main fossil aquifers incur minimal recharge and face depletion as a result of intense withdrawals for urban and agricultural use. As the water table declines and pumping becomes uneconomical, Riyadh will have to build new supply infrastructure, decrease demand, or increase the efficiency of its distribution system. However, poor groundwater characterization has led to severe uncertainty in aquifer parameters such as hydraulic conductivity, and therefore severe uncertainty in how the water table will respond to pumping over time and when these transitions will be necessary: the potential depletion time varies from approximately five years to 100 years. This case is an excellent candidate for flexible planning both because of its severity and the potential for learning: additional information can be collected over time and flexible options exercised in response. Stochastic dynamic programming is used to find optimal policies for using flexibility under different information scenarios. The performance of each strategy is then assessed using a simulation model of Riyadh's water system.
NASA Astrophysics Data System (ADS)
Kushner, Paul J.; Mudryk, Lawrence R.; Merryfield, William; Ambadan, Jaison T.; Berg, Aaron; Bichet, Adéline; Brown, Ross; Derksen, Chris; Déry, Stephen J.; Dirkson, Arlan; Flato, Greg; Fletcher, Christopher G.; Fyfe, John C.; Gillett, Nathan; Haas, Christian; Howell, Stephen; Laliberté, Frédéric; McCusker, Kelly; Sigmond, Michael; Sospedra-Alfonso, Reinel; Tandon, Neil F.; Thackeray, Chad; Tremblay, Bruno; Zwiers, Francis W.
2018-04-01
The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state-of-the-art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. This study presents an assessment from the CanSISE Network of the ability of the second-generation Canadian Earth System Model (CanESM2) and the Canadian Seasonal to Interannual Prediction System (CanSIPS) to simulate and predict snow and sea ice from seasonal to multi-decadal timescales, with a focus on the Canadian sector. To account for observational uncertainty, model structural uncertainty, and internal climate variability, the analysis uses multi-source observations, multiple Earth system models (ESMs) in Phase 5 of the Coupled Model Intercomparison Project (CMIP5), and large initial-condition ensembles of CanESM2 and other models. It is found that the ability of the CanESM2 simulation to capture snow-related climate parameters, such as cold-region surface temperature and precipitation, lies within the range of currently available international models. Accounting for the considerable disagreement among satellite-era observational datasets on the distribution of snow water equivalent, CanESM2 has too much springtime snow mass over Canada, reflecting a broader northern hemispheric positive bias. Biases in seasonal snow cover extent are generally less pronounced. CanESM2 also exhibits retreat of springtime snow generally greater than observational estimates, after accounting for observational uncertainty and internal variability. Sea ice is biased low in the Canadian Arctic, which makes it difficult to assess the realism of long-term sea ice trends there. The strengths and weaknesses of the modelling system need to be understood as a practical tradeoff: the Canadian models are relatively inexpensive computationally because of their moderate resolution, thus enabling their use in operational seasonal prediction and for generating large ensembles of multidecadal simulations. Improvements in climate-prediction systems like CanSIPS rely not just on simulation quality but also on using novel observational constraints and the ready transfer of research to an operational setting. Improvements in seasonal forecasting practice arising from recent research include accurate initialization of snow and frozen soil, accounting for observational uncertainty in forecast verification, and sea ice thickness initialization using statistical predictors available in real time.
Using beta binomials to estimate classification uncertainty for ensemble models.
Clark, Robert D; Liang, Wenkel; Lee, Adam C; Lawless, Michael S; Fraczkiewicz, Robert; Waldman, Marvin
2014-01-01
Quantitative structure-activity (QSAR) models have enormous potential for reducing drug discovery and development costs as well as the need for animal testing. Great strides have been made in estimating their overall reliability, but to fully realize that potential, researchers and regulators need to know how confident they can be in individual predictions. Submodels in an ensemble model which have been trained on different subsets of a shared training pool represent multiple samples of the model space, and the degree of agreement among them contains information on the reliability of ensemble predictions. For artificial neural network ensembles (ANNEs) using two different methods for determining ensemble classification - one using vote tallies and the other averaging individual network outputs - we have found that the distribution of predictions across positive vote tallies can be reasonably well-modeled as a beta binomial distribution, as can the distribution of errors. Together, these two distributions can be used to estimate the probability that a given predictive classification will be in error. Large data sets comprised of logP, Ames mutagenicity, and CYP2D6 inhibition data are used to illustrate and validate the method. The distributions of predictions and errors for the training pool accurately predicted the distribution of predictions and errors for large external validation sets, even when the number of positive and negative examples in the training pool were not balanced. Moreover, the likelihood of a given compound being prospectively misclassified as a function of the degree of consensus between networks in the ensemble could in most cases be estimated accurately from the fitted beta binomial distributions for the training pool. Confidence in an individual predictive classification by an ensemble model can be accurately assessed by examining the distributions of predictions and errors as a function of the degree of agreement among the constituent submodels. Further, ensemble uncertainty estimation can often be improved by adjusting the voting or classification threshold based on the parameters of the error distribution. Finally, the profiles for models whose predictive uncertainty estimates are not reliable provide clues to that effect without the need for comparison to an external test set.
NASA Astrophysics Data System (ADS)
Mannina, Giorgio; Cosenza, Alida; Viviani, Gaspare
In the last few years, the use of mathematical models in WasteWater Treatment Plant (WWTP) processes has become a common way to predict WWTP behaviour. However, mathematical models generally demand advanced input for their implementation that must be evaluated by an extensive data-gathering campaign, which cannot always be carried out. This fact, together with the intrinsic complexity of the model structure, leads to model results that may be very uncertain. Quantification of the uncertainty is imperative. However, despite the importance of uncertainty quantification, only few studies have been carried out in the wastewater treatment field, and those studies only included a few of the sources of model uncertainty. Seeking the development of the area, the paper presents the uncertainty assessment of a mathematical model simulating biological nitrogen and phosphorus removal. The uncertainty assessment was conducted according to the Generalised Likelihood Uncertainty Estimation (GLUE) methodology that has been scarcely applied in wastewater field. The model was based on activated-sludge models 1 (ASM) and 2 (ASM2). Different approaches can be used for uncertainty analysis. The GLUE methodology requires a large number of Monte Carlo simulations in which a random sampling of individual parameters drawn from probability distributions is used to determine a set of parameter values. Using this approach, model reliability was evaluated based on its capacity to globally limit the uncertainty. The method was applied to a large full-scale WWTP for which quantity and quality data was gathered. The analysis enabled to gain useful insights for WWTP modelling identifying the crucial aspects where higher uncertainty rely and where therefore, more efforts should be provided in terms of both data gathering and modelling practises.
[Modeling in value-based medicine].
Neubauer, A S; Hirneiss, C; Kampik, A
2010-03-01
Modeling plays an important role in value-based medicine (VBM). It allows decision support by predicting potential clinical and economic consequences, frequently combining different sources of evidence. Based on relevant publications and examples focusing on ophthalmology the key economic modeling methods are explained and definitions are given. The most frequently applied model types are decision trees, Markov models, and discrete event simulation (DES) models. Model validation includes besides verifying internal validity comparison with other models (external validity) and ideally validation of its predictive properties. The existing uncertainty with any modeling should be clearly stated. This is true for economic modeling in VBM as well as when using disease risk models to support clinical decisions. In economic modeling uni- and multivariate sensitivity analyses are usually applied; the key concepts here are tornado plots and cost-effectiveness acceptability curves. Given the existing uncertainty, modeling helps to make better informed decisions than without this additional information.
A Simplified Model of Choice Behavior under Uncertainty
Lin, Ching-Hung; Lin, Yu-Kai; Song, Tzu-Jiun; Huang, Jong-Tsun; Chiu, Yao-Chu
2016-01-01
The Iowa Gambling Task (IGT) has been standardized as a clinical assessment tool (Bechara, 2007). Nonetheless, numerous research groups have attempted to modify IGT models to optimize parameters for predicting the choice behavior of normal controls and patients. A decade ago, most researchers considered the expected utility (EU) model (Busemeyer and Stout, 2002) to be the optimal model for predicting choice behavior under uncertainty. However, in recent years, studies have demonstrated that models with the prospect utility (PU) function are more effective than the EU models in the IGT (Ahn et al., 2008). Nevertheless, after some preliminary tests based on our behavioral dataset and modeling, it was determined that the Ahn et al. (2008) PU model is not optimal due to some incompatible results. This study aims to modify the Ahn et al. (2008) PU model to a simplified model and used the IGT performance of 145 subjects as the benchmark data for comparison. In our simplified PU model, the best goodness-of-fit was found mostly as the value of α approached zero. More specifically, we retested the key parameters α, λ, and A in the PU model. Notably, the influence of the parameters α, λ, and A has a hierarchical power structure in terms of manipulating the goodness-of-fit in the PU model. Additionally, we found that the parameters λ and A may be ineffective when the parameter α is close to zero in the PU model. The present simplified model demonstrated that decision makers mostly adopted the strategy of gain-stay loss-shift rather than foreseeing the long-term outcome. However, there are other behavioral variables that are not well revealed under these dynamic-uncertainty situations. Therefore, the optimal behavioral models may not have been found yet. In short, the best model for predicting choice behavior under dynamic-uncertainty situations should be further evaluated. PMID:27582715
Mergers in ΛCDM: Uncertainties in Theoretical Predictions and Interpretations of the Merger Rate
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.; Croton, Darren; Bundy, Kevin; Khochfar, Sadegh; van den Bosch, Frank; Somerville, Rachel S.; Wetzel, Andrew; Keres, Dusan; Hernquist, Lars; Stewart, Kyle; Younger, Joshua D.; Genel, Shy; Ma, Chung-Pei
2010-12-01
Different theoretical methodologies lead to order-of-magnitude variations in predicted galaxy-galaxy merger rates. We examine how this arises and quantify the dominant uncertainties. Modeling of dark matter and galaxy inspiral/merger times contribute factor of ~2 uncertainties. Different estimates of the halo-halo merger rate, the subhalo "destruction" rate, and the halo merger rate with some dynamical friction time delay for galaxy-galaxy mergers, agree to within this factor of ~2, provided proper care is taken to define mergers consistently. There are some caveats: if halo/subhalo masses are not appropriately defined the major-merger rate can be dramatically suppressed, and in models with "orphan" galaxies and under-resolved subhalos the merger timescale can be severely over-estimated. The dominant differences in galaxy-galaxy merger rates between models owe to the treatment of the baryonic physics. Cosmological hydrodynamic simulations without strong feedback and some older semi-analytic models (SAMs), with known discrepancies in mass functions, can be biased by large factors (~5) in predicted merger rates. However, provided that models yield a reasonable match to the total galaxy mass function, the differences in properties of central galaxies are sufficiently small to alone contribute small (factor of ~1.5) additional systematics to merger rate predictions. But variations in the baryonic physics of satellite galaxies in models can also have a dramatic effect on merger rates. The well-known problem of satellite "over-quenching" in most current SAMs—whereby SAM satellite populations are too efficiently stripped of their gas—could lead to order-of-magnitude under-estimates of merger rates for low-mass, gas-rich galaxies. Models in which the masses of satellites are fixed by observations (or SAMs adjusted to resolve this "over-quenching") tend to predict higher merger rates, but with factor of ~2 uncertainties stemming from the uncertainty in those observations. The choice of mass used to define "major" and "minor" mergers also matters: stellar-stellar major mergers can be more or less abundant than halo-halo major mergers by an order of magnitude. At low masses, most true major mergers (mass ratio defined in terms of their baryonic or dynamical mass) will appear to be minor mergers in their stellar mass ratio—observations and models using just stellar criteria could underestimate major-merger rates by factors of ~3-5. We discuss the uncertainties in relating any merger rate to spheroid formation (in observations or theory): in order to achieve better than factor of ~3 accuracy, it is necessary to account for the distribution of merger orbital parameters, gas fractions, and the full efficiency of merger-induced effects as a function of mass ratio.