USDA-ARS?s Scientific Manuscript database
Increasing atmospheric CO2 will have significant effects on belowground processes which will affect forest structure and function. A model regenerating longleaf pine-wiregrass community [consisting of longleaf pine (Pinus palustris), wiregrass (Aristida stricta), sand post oak (Quescus margaretta),...
Site index model for naturally regenerated even-aged longleaf pine
Dwight K. Lauer; John S. Kush
2013-01-01
Data from the Regional Longleaf Growth Study (339 permanent sample plots) were used to develop a site index model for naturally regenerated, even-aged longleaf pine (Pinus palustris Mill.). The site index equation was derived using the generalized algebraic difference approach and is base-age invariant. Using height as a measure of site productivity...
A biologically-based individual tree model for managing the longleaf pine ecosystem
Rick Smith; Greg Somers
1998-01-01
Duration: 1995-present Objective: Develop a longleaf pine dynamics model and simulation system to define desirable ecosystem management practices in existing and future longleaf pine stands. Methods: Naturally-regenerated longleaf pine trees are being destructively sampled to measure their recent growth and dynamics. Soils and climate data will be combined with the...
Longleaf pine (Pinus palustris ) Stand Dynamics: A Regional Longleaf Growth Study
Ralph S. Meldahl; John S. Kush; William D. Boyer
1998-01-01
Objective: Describe and model temporal changes in longleaf pine stand structure. From 1964-1967, the U.S. Forest Service established a regional longleaf pine growth study (RLGS) in the Gulf States. The original objective was to obtain a database for the development of growth and mortality predictions of naturally regenerated, even- aged longleaf pine stands. The...
Artificial regeneration: An essential component of longleaf pine ecosystem restoration
James P. Barnett
2000-01-01
Regenerating longleaf pine by artificial means is an essential component of restoring the ecosystem across most of its range because there are limited acres of longleaf stands remaining. Establishing longleaf pine is an early step in the ecosystem restoration process. An overview discussion of artificial regeneration techniques and related issues are presented this...
Longleaf pine seedling production
James P. Barnett
2000-01-01
Longleaf pine is a highly desirable species, resisting fire, insects and pathogens, and produces quality solid-wood products, but regeneration of the species has been difficult. Natural regeneration is feasible only on a small portion of the area considered to be longleaf pine type. Therefore, artificial regeneration must become a reliable means of regenerating the...
Natural Regeneration of Longleaf Pine
William D. Boyer
1979-01-01
Natural regeneration is now a reliable alternative for existing longleaf pine forests. The shelterwood system, or modifications of it, has been used experimentally to regenerate longleaf pine for over 20 years, and regional tests have confirmed its value for a wide range of site conditions. Natural regeneration, because of its low cost when compared to other...
Regional Longleaf Pine (Pinus palustris) Natural Regeneration
William D. Boyer
1998-01-01
Duration: 1968-present Objective: Test the shelterwood system of longleaf pine natural regeneration. Methods: Longleaf pine natural regeneration tests were established from 1966 through 1970 at ten locations in seven states from North Carolina to Louisiana. One of these was established on a 50-acre flatwoods site on Eglin AFB in 1968. Regeneration was initially...
Longleaf Pine: Natural Regeneration and Management
William D. Boyer
1999-01-01
Longleaf pine has long been recognized as a high-quality timber tree providing a number of valuable products. It is a versatile species with characteristics allowing the use of several silvicultural options. Both natural and artificial regeneration of longleaf pine are now practical management options. Natural regeneration is a lowcost alternative whenever sufficient...
Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker
2006-01-01
Drastic reductions in longleaf pine (Pinus palustris Mill.) acreage have led to an increased focus on regeneration of the longleaf pine ecosystem. Many areas require artificial regeneration for establishment, and site preparation techniques may be implemented to increase regeneration success. The objectives of this study were to determine differences...
Inclusion of climatic variables in longleaf pine growth models
Jyoti N. Rayamajhi; John S. Kush
2006-01-01
The Regional Longleaf Growth Study was established by the USDA Forest Service to study the dynamics of naturally regenerated, even-aged longleaf pine (Pinus palustris Mill.) stands. The study accounts for growth change over time by adding new sets of plots in the youngest age class every 10 years. To detect possible changes in productivity with time...
Longleaf pine dynamics on a flatwood site: A study on the croatan national forest
Susan Cohen; John S. Kush; Kim Ludovici
2000-01-01
Natural regeneration of longleaf pine is one of the most important management tools natural resource managers have at their disposal to perpetuate existing longleaf pine stands in the Southern United States. Some studies indicate a tendency for longleaf to regenerate in gaps within the already open park-like stand structure. However, high variation and unpredictability...
Longleaf Pine Regeneration and Management: An Overstory Overview
William D. Boyer
1997-01-01
Longleaf pine is the key tree in fire-dependent ecosystems long native to the southeastern United States. Once the most extensive forest ecosystem in North America dominated by a single species, it now occupies only a small fraction of its former range. Longleaf has the reputation of being a slow-growing species that is nearly impossible to regenerate and so...
An Updated Site Index Equation for Naturally Regenerated Longleaf Pine Stands
Jyoti N. Rayamajhi; John S. Kush; Ralph S. Meldahl
1999-01-01
From 1964 to 1967. the U.S. Forest Service established the Regional Longleaf Growth Study (RLGS) in the Gulf States with the objective of obtaining a database for the development of prediction systems for naturally regenerated, even-aged. longleaf pine stands. The database has been used for numerous quantitative studies. One of these efforts was a site index equation...
Regenerating Longleaf Pine with Natural Seeding
William D. Boyer
1993-01-01
Natural regeneration is a practical and inexpensive option for existing longleaf pine (Pinus palustris Mill.) forests if all requirements for regeneration can be met. These requirements include an adequate seed supply, a seedbed of exposed mineral soil, timely control of competition, and protection of the established seedling stand. The shelterwood...
Longleaf pine regeneration ecology and methods
Dale G. Brockway; Kenneth W. Outcalt; William D. Boyer
2006-01-01
Regenerating longleaf pine (Pinus palustris) is key to its long-term sustainable production of forest resources and its perpetuation as the dominant tree species in a variety of important ecosystems ranging from xeric to mesic to hydric site conditions. Early regeneration to problems and the subsequent efforts to overcome these are significant...
Anticipating Good Longleaf Pine Cone Crops: The Key to Successful Natural Regeneration
William D. Boyer
1997-01-01
Unlike other southern pines, or most intolerant pioneer species, longleaf pine is a poor seed producer. Cone crops are highly variable from year to-year, and also from place to place in the same year. Crops large enough to assure adequate regeneration are few and far between, especially in the longleaf pine belt of the southern Coastal Plains. Not only is this species...
Are we over-managing longleaf pine?
John S. Kush; Rebecca J. Barlow; John C. Gilbert
2012-01-01
Longleaf pine (Pinus palustris Mill.) is not loblolly (Pinus taeda L.) or slash pine (Pinus elliottii L.). There is the need for a paradigmatic shift in our thinking about longleaf pine. All too often we think of longleaf as an intolerant species, slow-grower, difficult to regenerate, and yet it dominated the pre...
Robert M. Farrar
1985-01-01
Encouraged by the high quality and marketability of longleaf pine (Pinus palustris Mill.), many landowners are taking advantage of recent improvements in longleaf regeneration techniques (Mann 1969, 197O; Croker and Boyer 1975; Farrar and White 1983; Dennington and Farrar 1983) and are growing longleaf pine today. Successful longleaf timber management demands...
Regenerating Longleaf Pine Naturally
Thomas C. Croker; William D. Boyer
1975-01-01
Research has developed guides for consistent natural regeneration of longleaf pine by a shelterwood system. Key measures include hardwood control by fire and other means, timely preparatory and seed cuts, seed crop monitoring, seedbed preparation, protection of established seedlings, prompt removal of parent trees when reproduction is adequate, and control of...
Ferhat Kara; Edward Francis Loewenstein
2015-01-01
The longleaf pine (Pinus palustris Mill.) ecosystem has historically been very important in the southeastern United States due to its extensive area and high biodiversity. Successful regeneration of longleaf pine forests requires an adequate number of well distributed seedlings. Thus, mortality of longleaf pine seedlings during logging operations...
Regenerating the Natural Longleaf Pine Forest
William D. Boyer
1979-01-01
Natural regeneration by the shldterwood system is a reliable, low-cost alternative for existing longleaf pine (Pine palustris Mill.) forests. The system is well suited to the nautral attributes and requirements of the species. It may be attractive to landownders wishing to retain a natural forest and aboid high costs of site preparation and...
William D. Boyer; Donald W. Patterson
1983-01-01
Abstract:This report describes the longleaf pine forest type and the characteristics of both tree and forest that can affect management decisions.Longleaf pine is highly adaptable to a range of management goals and silvicultural systems.Management options and appropriate silvicultural methods for the regeneration and management of this species are...
Field Planting Containerized Longleaf Pine Seedlings
Dale R. Larson
2002-01-01
The difficulty in establishing stands of longleaf pine (Pinus palustris Mill.) by artificial regeneration techniques has been a major factor in the decline of the number of acres occupied by this species in the Southeast. Many landowners and managers have been reluctant to plant longleaf because of its history of poor survival. Loblolly pine (
James D. Haywood
2015-01-01
There is an interest in restoring longleaf pine (Pinus palustris Mill.) across its native range in the southeastern United States, and establishment of longleaf pine on much of its original range requires artificial regeneration and management of competing vegetation after planting. In Louisiana, two fertilization levels (No or Yes [36 kg/ha...
Chadwick R. Avery; Susan Cohen; Kathleen C. Parker; John S. Kush
2004-01-01
Ecological research aimed at determining optimal conditions for longleaf pine regeneration has become increasingly important in efforts @ restore the longleaf pine ecosystem. Numerous authors have concluded that a negative relationship exists between the occurrence of seedlings and the occurrence of mature trees; however, observed field conditions in several North...
Overhead shading and growth of young longleaf pine
John C. Gilbert; John S. Kush; Ralph S. Meldahl; William D. Boyer; Dean H. Gjerstad
2014-01-01
A study to determine the effects of environmental conditions on the growth of longleaf pine (Pinus palustris Mill.) was initiated in 1969 on the Escambia Experimental Forest near Brewton, Alabama, USA. This study sample consisted of forty young naturally regenerated, even aged longleaf pine seedlings evenly divided between two soil types. At the beginning of the study...
Stand dynamics of a longleaf pine restoration project
John S. Kush; Ralph S. Meldahl
2006-01-01
Ecological restoration in a longleaf pine (Pinus palustris Mill.) stand is being studied in the Flomaton Natural Area (FNA) in Escambia County, AL. The FNA had been protected from fire for over 45 years. The absence of fire permitted a hardwood midstory and litter layer to develop at the expense of longleaf pine regeneration and an herbaceous...
Seedbed Preparation Aids Natural Regeneration Of Longleaf Pine
Thomas C. Croker
1975-01-01
In south-Alabama, establishment, survival, and growth of longleaf pine were improved by winter or fall burning before seedfall. Mechanical seedbed preparation was helpful after a fire and imperative when no burn was made.
Correlating climate and longleaf pine cone crops: Is there a connection?
Neil Pederson; John S. Kush; Ralph S. Meldahl
1998-01-01
The physiological development of longleaf pine seed from flower through cone to seed is a lengthy process, extending over three calendar years. The duration of this process may be the main reason why longleaf pine produces infrequent seed crops with which to regenerate itself. Adequate crops occur every 5-7 years, on average, causing problems for those interested in...
Vegetative response to 37 years of seasonal burning on a Louisiana longleaf pine site
James D. Haywood; Finis L. Harris; Harold E. Grelen; Henry A. Pearson
2001-01-01
From 1962 through 1998, 20 prescribed bums were applied in a natural stand of longleaf pine(Pinus palustris Mill.) to determine the effects of various fire regimes on the forest plant community. The original longleaf seedlings regenerated from the 1955 seed crop and were growing in a grass-dominated cover when the study began. By 1999, prescribed...
Dale G. Brockway; Kenneth W. Outcalt
2017-01-01
Though longleaf pine (Pinus palustris Mill.) forests have been primarily managed with even-aged methods, interest is increasing in uneven-aged systems, as a means of achieving a wider range of stewardship goals. Selection silviculture has been practiced on a limited scale in longleaf pine, but difficulty with using traditional approaches and...
Root-zone temperature and water availability affect early root growth of planted longleaf pine
M.A. Sword
1995-01-01
Longleaf pine seedlings from three seed sources were exposed to three root-zone temperatures and three levels of water availability for 28 days. Root growth declined as temperature and water availability decreased. Root growth differed by seed source. Results suggest that subtle changes in the regeneration environment may influence early root growth of longleaf pine...
Dale G. Brockway; Clifford E. Lewis
2003-01-01
Despite a recent slowing in the negative historical trend, losses of naturally-regenerated longleaf pine forests currently continue, largely as a result of conversion to plantations of faster growing pine species. Comparing the impacts of type conversion with silvicultural approaches that maintain longleaf pine and ascertaining their interaction with the influence of...
Entropy dynamics in cone production of longleaf pine forests in the southeastern United States
Xiongwen Chen; Dale G. Brockway; Qinfeng Guo
2016-01-01
Sporadic temporal patterns of seed production are a challenge for the regeneration and restoration of longleaf pine, which is a keystone component of an endangered ecosystem in the southeastern United States. In this study, long-term data for longleaf pine cone production, collected at six sites across the southeastern region, was examined from the perspective of...
James D. Haywood
2006-01-01
Recovery of longleaf pine (Pinus palutris. Mill.) is necessary to arrest the decline of many associated plants and animals, and the establishment of longleaf pine on much of its original range requires artificial regeneration and diligence. In central Louisiana, USA, two fertilization levels (No [NF] or Yes [F-36 kg/ha N and 40 kg/ha PI) in...
Ben Knapp; Wang Geoff; Huifeng Hu; Joan Walker; Carsyn Tennant
2011-01-01
Historical land use and management practices in the southeastern United States have resulted in the dominance of loblolly pine on many upland sites that historically were occupied by longleaf pine. There is currently much interest in restoring high quality longleaf pine habitats to such areas, but managers may also desire the retention of some existing canopy trees to...
Runion, G B; Davis, M A; Pritchard, S G; Prior, S A; Mitchell, R J; Torbert, H A; Rogers, H H; Dute, R R
2006-01-01
Plant species vary in response to atmospheric CO2 concentration due to differences in physiology, morphology, phenology, and symbiotic relationships. These differences make it very difficult to predict how plant communities will respond to elevated CO2. Such information is critical to furthering our understanding of community and ecosystem responses to global climate change. To determine how a simple plant community might respond to elevated CO2, a model regenerating longleaf pine community composed of five species was exposed to two CO2 regimes (ambient, 365 micromol mol(-1) and elevated, 720 micromol mol(-1)) for 3 yr. Total above- and belowground biomass was 70 and 49% greater, respectively, in CO2-enriched plots. Carbon (C) content followed a response pattern similar to biomass, resulting in a significant increase of 13.8 Mg C ha(-1) under elevated CO2. Responses of individual species, however, varied. Longleaf pine (Pinus palustris Mill.) was primarily responsible for the positive response to CO2 enrichment. Wiregrass (Aristida stricta Michx.), rattlebox (Crotalaria rotundifolia Walt. Ex Gmel.), and butterfly weed (Asclepias tuberosa L.) exhibited negative above- and belowground biomass responses to elevated CO2, while sand post oak (Quercus margaretta Ashe) did not differ significantly between CO2 treatments. As with pine, C content followed patterns similar to biomass. Elevated CO2 resulted in alterations in community structure. Longleaf pine comprised 88% of total biomass in CO2-enriched plots, but only 76% in ambient plots. In contrast, wiregrass, rattlebox, and butterfly weed comprised 19% in ambient CO2 plots, but only 8% under high CO2. Therefore, while longleaf pine may perform well in a high CO2 world, other members of this community may not compete as well, which could alter community function. Effects of elevated CO2 on plant communities are complex, dynamic, and difficult to predict, clearly demonstrating the need for more research in this important area of global change science.
Guidelines for Producing Longleaf Pine Seedlings in Containers
James P. Barnett; John M. McGilvray
1999-01-01
Although longleaf pine (Pinus palustris Mill.) is a highly desirable species, resisting fire, insects, and disease, and producing high quality solid wood products, it now occupies only about 5 percent of its original range. Regeneration of the species either by natural or artificial methods or by planting of bareroot nursery stock has been difficult...
Kimberly Bohn; Christel Chancy; Dale Brockway
2015-01-01
In recent decades, considerable attention has been placed on restoring and managing longleaf pine (Pinus palustris Mill.) ecosystems across the southeastern United States. Although, historically, these forests have been successfully regenerated following even-aged shelterwood reproduction methods, uneven-aged silviculture has received increasing...
Characteristics of gaps and natural regeneration in mature longleaf pine flatwoods ecosystems
Jennifer L. Gagnon; Eric J. Jokela; W.K. Moser; Dudley A. Huber
2004-01-01
Developing uneven-aged structure in mature stands of longleaf pine requires scientifically based silvicultural systems that are reliable, productive and sustainable. Understanding seedling responses to varying levels of site resource availability within forest gaps is essential for effectively converting even-aged stands to uneven-aged stands. A project was initiated...
Natural stand dynamics in longleaf pine: How climatic disturbances shape the community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Outcalt, Kenneth, W.
2001-06-01
Longleaf pine (Pinus palustris) once dominated the overstory of a wide range of southern plant communities from the Atlantic to Texas. Although periodic fires shaped the longleaf pine communities, climatic caused disturbances, significantly impacted them as well, changing stand structure and providing open sites for regeneration. Tornadoes, which usually operate at the partial stand scale are mimicked by even age management of longleaf pine. Seed-tree and shelterwood systems create conditions similar to less severe hurricanes that remove only some of the overstory. Lightening strikes, are continuously impacting longleaf stands creating small scale gaps of 2 to 4 trees where regenerationmore » is not uniform. Managers using the selection system should be aware of this, and create gaps in dry sandhills sites accordingly.« less
Power laws in cone production of longleaf pine across its native range in the United States
Xiongwen Chen; Qinfeng Guo; Dale G. Brockway
2017-01-01
Longleaf pine (Pinus palustris Mill.) forests in the southeastern United States are considered endangered ecosystems, because of their dramatic decrease in area since European colonization and poor rates of recovery related to episodic natural regeneration. Sporadic seed production constrains restoration efforts and complicates sustainable management of this species....
Practical guidelines for producing longleaf pine seedlings in containers
James P. Barnett; John M. McGilvray
1997-01-01
Longleaf pine, although widely distributed in the presettlement forests of the southern Coastal Plain, now occupies less than 10 percent of its original range. It is a highly desirable species because it resists fire, insects, and disease and produces excellent quality solid-wood products. Regeneration of the species either by natural methods or by planting of bare-...
Longleaf Pine Cone Crops and Climate: A Possible Link
Neil Pederson; John S. Kush; Ralph S. Meldahl; William D. Bayer
1999-01-01
The physiological development of longieaf pine seed extends over three calendar years. The duration of this process may explain the reason for infrequent seed crops. Infrequent crops cause problems for those interested in natural regeneration. Longleaf pine cone crops have been monitored on the Escambia Experimental Forest (EEF) in Brewton, AL since 1958. Weather data...
Scrub-successional bird community dynamics in young and mature longleaf pine-wiregrass savannahs
Krementz, D.G.; Christie, J.S.
1999-01-01
Public agencies are required to manage for threatened and endangered species and for biodiversity. However, at times, management for threatened and endangered species precludes consideration of other species. We investigated how managing for red-cockaded woodpeckers (Picoides borealis) and biodiversity at the Savannah River Site (SRS), South Carolina, affected communities of bird species that use early-successional scrub habitat (hereafter, scrub-successional species). Management for red-cockaded woodpeckers at the SRS involved both (1) manipulating mature longleaf pine (Pinus palustris)-wiregrass (Andropogon spp.) stands via canopy thinning, removal of midstory trees, and prescribed burning; and (2) even-aged timber harvesting. The former management practice encouraged red-cockaded woodpeckers to establish new colonies in previously unoccupied stands (hereafter, 'recruitment' stands). The latter management practice is used to remove off-site planted pines and replant with preferred longleaf pines. We conducted a constant-effort mist net study in recruitment and regenerating stands (stands clearcut and planted with longleaf pine) during the breeding seasons of 1995-96. We hypothesized that the scrub-successional bird community in recruitment stands would have greater species richness and higher survival and reproductive rates per species than in regenerating stands. However, recruitment stands always had fewer scrub-successional species (1995:36 species; 1996:31 species) than regenerating stands (1995:54 species; 1996:55 species), and all species that occurred in recruitment stands also occurred in regenerating stands. Species which commonly occurred in both recruitment and regenerating stands had similar adult:juvenile ratios (P > 0.15) and relative proportion of adults in breeding condition (P > 0.05). We detected no difference in survival rates of Bachman's sparrows (Aimophila aestivalis), indigo buntings (Passerina cyanea), and of 'combined' scrub-successional birds between stand types (P > 0.05). We found that even-aged forestry is an important management practice for maintaining and increasing avian biodiversity on public lands, as well as an acceptable management practice for red-cockaded woodpeckers.
Spatial analysis of longleaf pine stand dynamics after 60 years of management
John C. Gilbert; John S. Kush; Rebecca J. Barlow
2012-01-01
There are still many questions and misconceptions about the stand dynamics of naturally-regenerated longleaf pine (Pinus palustris Mill.). Since 1948, the âFarm Forty,â a forty-acre tract located on the USDA Forest Service Escambia Experimental Forest near Brewton, Alabama, has been managed to create high quality wood products, to successfully...
Long-term changes in flowering and cone production by longleaf pine
William D. Boyer
1998-01-01
Abstract.Cone production by longleaf pine has been followed for up to 30 years in regeneration areas at five to nine coastal plain sites from North Carolina to Louisiana. A rapid increase in the size and frequency of cone crops has occured since 1986 following 20 years of relative stability. Cone production for the last 10 years averaged 36 cones per...
Dale G. Brockway; Clifford E. Lewis
1997-01-01
A flatwoods longleaf pine wiregrass ecosystem, which regenerated naturally following wildfire in 1942, on the Coastal Plain of southern Georgia was treated over a period of four decades with prescribed fire at annual, biennial and triennial intervals during the winter dormant season. Burning caused substantial changes in the understory plant community, with significant...
Gap-phase regeneration inlongleaf pine wiregrass ecosystems
D.G. Brockway; K.W. Outcalt
1998-01-01
Naturally regenerated seedlings of longleaf pine are typically observed to cluster in the center of tree fall canopy gaps and be encircled by a wide zone from which they are generally excluded. Twelve representative canopy gaps distributed across 600 ha of a naturally regenerated uneven-agedlongleaf pine forest in the sandhills of north central Florida were examined to...
Long-term development of regeneration under longleaf pine seedtree and shelterwood stands
William D. Boyer
1993-01-01
Well-stocked mature longleaf pine (Pinus palustris Mill.) stands were cut tofive residual basal areas in 1957, namely 9,18,2 7.36, and 45 ft2 per ac, to observe the effect of stand density on seed production and seedling establishment. Seedlings, mainly from the 195.5 or 1961 seed crops, were established in treated stands. All pines on net 0.9 ac...
Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker
2013-01-01
Longleaf pine restoration is a common management objective in the southeastern United States and requires artificial regeneration of longleaf pines on sites currently dominated by loblolly pine. In many cases, retention of canopy trees during stand conversion may be desirable to promote ecological function and meet conservation objectives. We tested the effects of...
Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker
2010-01-01
Our study, conducted over two years on poorly drained, sandy sites in Onslow County, NC, compared the effects of eight common site preparation treatments on early survival and growth of planted longleaf pine seedlings. Through two growing seasons, we found survival to be similar across all treatments (p = 0.8806), but root collar diameter was greatest with combinations...
Longleaf pine regeneration following Hurricane Ivan utilizing the RLGS plots
John C. Gilbert; John S. Kush
2013-01-01
On September 16, 2004, Hurricane Ivan hit the Alabama coast and severely impacted numerous plots in the U.S. Forest Serviceâs Regional Longleaf Growth Study (RLGS). The Escambia Experimental Forest (EEF) has 201 of the 325 RLGS plots. Nearly one-third of the EEF was impacted. Nine plots with pole-sized trees were entirely lost. Another 54 plots had some type of damage...
Ronald C. Schmidtling
1999-01-01
There has been a movement of late toward the use of natural regeneration for iongieaf pine (Pinus palustris Mill.) as well as for other forest tree species. If you have a good natural stand, and have plenty of time, natural regeneration will result in a suitable stand, and genetics is not relevant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenberg, Cathryn H.; Levey, Douglas J.; Kwit, Charles
ABSTRACT Fleshy fruit is a key food resource for many vertebrates and may be particularly important energy source to birds during fall migration and winter. Hence, land managers should know how fruit availability varies among forest types, seasons, and years. We quantified fleshy fruit abundance monthly for 9 years (1995-2003) in 56 0.1-ha plots in 5 forest types of South Carolina's upper Coastal Plain, USA. Forest types were mature upland hardwood and bottomland hardwood forest, mature closed-canopy loblolly (Pinus taeda) and longleaf pine (P. palustris) plantation, and recent clearcut regeneration harvests planted with longleaf pine seedlings. Mean annual number ofmore » fruits and dry fruit pulp mass were highest in regeneration harvests (264,592 _ 37,444 fruits; 12,009 _ 2,392 g/ha), upland hardwoods (60,769 _ 7,667 fruits; 5,079 _ 529 g/ha), and bottomland hardwoods (65,614 _ 8,351 fruits; 4,621 _ 677 g/ha), and lowest in longleaf pine (44,104 _ 8,301 fruits; 4,102 _ 877 g/ha) and loblolly (39,532 _ 5,034 fruits; 3,261 _ 492 g/ha) plantations. Fruit production was initially high in regeneration harvests and declined with stand development and canopy closure (1995-2003). Fruit availability was highest June-September and lowest in April. More species of fruit-producing plants occurred in upland hardwoods, bottomland hardwoods, and regeneration harvests than in loblolly and longleaf pine plantations. Several species produced fruit only in 1 or 2 forest types. In sum, fruit availability varied temporally and spatially because of differences in species composition among forest types and age classes, patchy distributions of fruiting plants both within and among forest types, fruiting phenology, high inter-annual variation in fruit crop size by some dominant fruit-producing species, and the dynamic process of disturbance-adapted species colonization and decline, or recovery in recently harvested stands. Land managers could enhance fruit availability for wildlife by creating and maintaining diverse forest types and age classes. .« less
Proceedings of the 14th biennial southern silvicultural research conference
John A. Stanturf
2010-01-01
A range of issues affecting southern forests are addressed in 113 papers. Papers are grouped into 12 sessions that include carbon; pine silviculture; invasive species; site preparation; hardwood artificial regeneration; longleaf pine; forest health and fire; growth and yield; hardwood intermediate treatments; hardwood natural regeneration; wildlife; and posters.
Predicting Stand and Stock Tables from a Spacing Study in Naturally Regenerated Longleaf Pine
Robert M. Farrar
1985-01-01
A prediction system is presented whereby stand and stock tables are calculated for young natural longleaf pine stands of varying initial density. Tables can be output for stand conditions of 10 to 20 years of age, 300 to 1,500 initial trees per acre (at age lo), and 70 to 80 feet in site index (index age 50). The system also allows one to translate from density...
James D. Haywood
2011-01-01
Restoring longleaf pine (Pinus palustris Mill.) over much of its original range requires artificial regeneration. In central Louisiana, USA, two fertilization levels - No (NF) or Yes (F-36 kg/ha N and 40 kg/ha P) in combination with three vegetation treatments - Check, four prescribed fires (PF), or multi-year vegetation control by herbicidal and mechanical means (IVM...
Thomas L. Powell; Gregory Starr; Kenneth L. Clark; Timothy A. Martin; Henry L. Gholz
2005-01-01
Eddy covariance was used to measure energy fluxes from July 2000 - June 2002 above the tree canopy and above the understory in a mature, naturally regenerated slash pine (Pinus elliottii Engelm. var. elliottii) - longleaf pine (Pinus palustris Mill.) flatwoods forest. Understory latent energy (eE) and sensible...
Greenberg, Cathryn H.; Levey, Douglas J.; Kwit, Charles; ...
2012-02-06
Fleshy fruit is a key food resource for many vertebrates and may be particularly important energy source to birds during fall migration and winter. Hence, land managers should know how fruit availability varies among forest types, seasons, and years. We quantified fleshy fruit abundance monthly for 9 years (1995–2003) in 56 0.1-ha plots in 5 forest types of South Carolina's upper Coastal Plain, USA. Forest types were mature upland hardwood and bottomland hardwood forest, mature closed-canopy loblolly ( Pinus taeda) and longleaf pine ( P. palustris) plantation, and recent clearcut regeneration harvests planted with longleaf pine seedlings. Mean annual numbermore » of fruits and dry fruit pulp mass were highest in regeneration harvests (264,592 ± 37,444 fruits; 12,009 ± 2,392 g/ha), upland hardwoods (60,769 ± 7,667 fruits; 5,079 ± 529 g/ha), and bottomland hardwoods (65,614 ± 8,351 fruits; 4,621 ± 677 g/ha), and lowest in longleaf pine (44,104 ± 8,301 fruits; 4,102 ± 877 g/ha) and loblolly (39,532 ± 5,034 fruits; 3,261 ± 492 g/ha) plantations. Fruit production was initially high in regeneration harvests and declined with stand development and canopy closure (1995–2003). Fruit availability was highest June–September and lowest in April. More species of fruit-producing plants occurred in upland hardwoods, bottomland hardwoods, and regeneration harvests than in loblolly and longleaf pine plantations. Several species produced fruit only in 1 or 2 forest types. In sum, fruit availability varied temporally and spatially because of differences in species composition among forest types and age classes, patchy distributions of fruiting plants both within and among forest types, fruiting phenology, high inter-annual variation in fruit crop size by some dominant fruit-producing species, and the dynamic process of disturbance-adapted species colonization and decline, or recovery in recently harvested stands. As a result, land managers could enhance fruit availability for wildlife by creating and maintaining diverse forest types and age classes.« less
Proceedings of the 13th Biennial Southern Silvicultural Research Conference
Kristina F. Connor; [Editor
2006-01-01
A range of issues affecting southern forests are addressed in 109 papers and 39 poster summaries. Papers are grouped in 14 sessions that include wildlife ecology; pine silviculture; longleaf pine; nutritional amendments; vegetation management; site preparation; hardwoods: artificial regeneration; hardwoods: midstory competition control; growth and yield; water quality...
Proceedings of the 12th biennial southern silvicultural research conference
Kristina F. Connor; [Editor
2004-01-01
Ninety-two papers and thirty-six poster summaries address a range of issues affecting southern forests. Papers are grouped in 15 sessions that include wildlife ecology; fire ecology; natural pine management; forest health; growth and yield; upland hardwoods - natural regeneration; hardwood intermediate treatments; longleaf pine; pine plantation silviculture; site...
Proceedings of the 15th biennial southern silvicultural research conference
James M. Guldin
2013-01-01
Sixty-eight papers and seventeen posters address a range of issues affecting southern forests. Papers are grouped in 12 sessions that include pine silviculture session I, hardwood silviculture - intermediate treatment and stand development, longleaf pine; quantitative silviculture and economics, pine silviculture session II, hardwood regeneration, carbon and bioenergy...
Mortality among Seed Trees in Longleaf Pine Shelterwood Stands
William D. Boyer
1970-01-01
Mortality of longieaf pine (Pinus palustris Mill.) seed trees was recorded in 27 regeneration areas ranging from North Carolina to Louisiana. Annual mortality averaged 0.7 percent before, and 1.9 percent after a seed cut reduced stand density to about 30 square feet of basal area per acre. On a per-acre basis, however, annual losses averaged 0....
Longleaf pine plantations: Growth and yield modeling in an ecosystem restoration context
J.C.G. Goelz
2001-01-01
Restoration of longleaf pine within its historical range is actively conducted by private individuals and public agencies due to the inherent beauty of the ecosystem and the suitability as habitat for red cockaded woodpeckers and other wildlife. Managers of land restored to longleaf pine desire models that will allow long-term projections to facilitate management...
Hedman, C.W.; Grace, S.L.; King, S.E.
2000-01-01
Longleaf pine (Pinus palustris) ecosystems are characterized by a diverse community of native groundcover species. Critics of plantation forestry claim that loblolly (Pinus taeda) and slash pine (Pinus elliottii) forests are devoid of native groundcover due to associated management practices. As a result of these practices, some believe that ecosystem functions characteristic of longleaf pine are lost under loblolly and slash pine plantation management. Our objective was to quantify and compare vegetation composition and structure of longleaf, loblolly, and slash pine forests of differing ages, management strategies, and land-use histories. Information from this study will further our understanding and lead to inferences about functional differences among pine cover types. Vegetation and environmental data were collected in 49 overstory plots across Southlands Experiment Forest in Bainbridge, GA. Nested plots, i.e. midstory, understory, and herbaceous, were replicated four times within each overstory plot. Over 400 species were identified. Herbaceous species richness was variable for all three pine cover types. Herbaceous richness for longleaf, slash, and loblolly pine averaged 15, 13, and 12 species per m2, respectively. Longleaf pine plots had significantly more (p < 0.029) herbaceous species and greater herbaceous cover (p < 0.001) than loblolly or slash pine plots. Longleaf and slash pine plots were otherwise similar in species richness and stand structure, both having lower overstory density, midstory density, and midstory cover than loblolly pine plots. Multivariate analyses provided additional perspectives on vegetation patterns. Ordination and classification procedures consistently placed herbaceous plots into two groups which we refer to as longleaf pine benchmark (34 plots) and non-benchmark (15 plots). Benchmark plots typically contained numerous herbaceous species characteristic of relic longleaf pine/wiregrass communities found in the area. Conversely, non-benchmark plots contained fewer species characteristic of relic longleaf pine/wiregrass communities and more ruderal species common to highly disturbed sites. The benchmark group included 12 naturally regenerated longleaf plots and 22 loblolly, slash, and longleaf pine plantation plots encompassing a broad range of silvicultural disturbances. Non-benchmark plots included eight afforested old-field plantation plots and seven cutover plantation plots. Regardless of overstory species, all afforested old fields were low either in native species richness or in abundance. Varying degrees of this groundcover condition were also found in some cutover plantation plots that were classified as non-benchmark. Environmental variables strongly influencing vegetation patterns included agricultural history and fire frequency. Results suggest that land-use history, particularly related to agriculture, has a greater influence on groundcover composition and structure in southern pine forests than more recent forest management activities or pine cover type. Additional research is needed to identify the potential for afforested old fields to recover native herbaceous species. In the interim, high-yield plantation management should initially target old-field sites which already support reduced numbers of groundcover species. Sites which have not been farmed in the past 50-60 years should be considered for longleaf pine restoration and multiple-use objectives, since they have the greatest potential for supporting diverse native vegetation. (C) 2000 Elsevier Science B.V.
J.C.G. Goelz; Daniel J. Leduc
2002-01-01
As longleaf pine (Pinus palustris Mill.) may currently represent as little as 1/30th of its former acreage, restoration within its former range in the southern coastal plain is active. Although the focus of these new plantings is aimed at ecosystem restoration, knowledge of the growth and development of longleaf plantations is essential to...
2009-06-16
trees required for red - cockaded woodpecker foraging. On landscapes where foraging habitat is extremely limited, site preparation choices that...inkberry) and Persea borbonia ( red bay) are evergreen with somewhat waxy green leaves and the potential to grow taller than 3 m. Of the deciduous taxa...shrub abundance in a pine savanna. Ecology 87:1331-1337. U.S. Fish and Wildlife Service. 2004. Red -cockaded woodpecker recovery plan. Washington , DC
Carlos A. Gonzalez-Benecke; Salvador A. Gezan; Daniel J. Leduc; Timothy A. Martin; Wendell P. Cropper Jr; Lisa J Samuelson
2012-01-01
Longleaf pine (Pinus palustris Mill.) is an important tree species of the southeast U.S. Currently there is no comprehensive stand-level growth and yield model for the species. The model system described here estimates site index (SI) if dominant height (Hdom) and stand age are known (inversely, the model can project H
Dennis J. Shaw; Ralph S. Meldahl; John S. Kush; Greg L. Somers
2003-01-01
We used data from 322 natural longleaf pine (Pinus palustris Mill.) trees to include crown ratio as a continuous variable in taper equations. The data were divided into 10 crown-ratio classes and fitted taper equations into each class to detect trends in the coefficients. For application to longleaf pine, we replaced coefficients that exhibited a...
PPSITE - A New Method of Site Evaluation for Longleaf Pine: Model Development and User's Guide
Constance A. Harrington
1990-01-01
A model was developed to predict site index (base age 50 years) for longleaf pine (Pinus palustris Mill.). The model, named PPSITE, was based on soil characteristics, site location on the landscape, and land history. The model was constrained so that the relationship between site index and each soil-site variable was consistent with what was known...
Modeling the effects of forest management on in situ and ex situ longleaf pine forest carbon stocks
C.A. Gonzalez-Benecke; L.J. Samuelson; T.A. Martin; W.P. Cropper Jr; Kurt Johnsen; T.A. Stokes; John Butnor; P.H. Anderson
2015-01-01
Assessment of forest carbon storage dynamics requires a variety of techniques including simulation models. We developed a hybrid model to assess the effects of silvicultural management systems on carbon (C) budgets in longleaf pine (Pinus palustris Mill.) plantations in the southeastern U.S. To simulate in situ C pools, the model integrates a growth and yield model...
Brian J. Palik; Robert J. Mitchell; J. Kevin Hiers
2002-01-01
Modeling silviculture after natural disturbance to maintain biodiversity is a popular concept, yet its application remains elusive. We discuss difficulties inherent to this idea, and suggest approaches to facilitate implementation, using longleaf pine (Pinus palustris) as an example. Natural disturbance regimes are spatially and temporally variable. Variability...
Compatible taper and volume equations for young longleaf pine plantations in southwest Georgia
Lichun Jiang; John R. Brooks; Alexander Clark
2010-01-01
Inside and outside bark taper equations as well as compatible cubic foot volume equations were developed from felled tree data selected from young longleaf pine plantations that are part of an existing growth and yield study located in the Flint River drainage of southwest Georgia. A Max-Burkhart taper model was selected as the basic model form due to the accuracy...
Marketing and Seedling Distribution of Longleaf Pine Seedlings
Mark J. Hainds
2002-01-01
The Longleaf Alliance, a partnership of people and organizations interested in longleaf pine, started tracking longleaf pine (Pinus palustris Mill.) seedling production in 1996. Total Longleaf seedling production has increased annually from 1996 to 2000. Bareroot seedling production decreased from 1996 to 1997, and decreased again from 1997 to 1998....
Diameter Distributions of Longleaf Pine Plantations-A Neural Network Approach
Daniel J. Leduc; Thomas G. Matney; V. Clark Baldwin
1999-01-01
The distribution of trees into diameter classes in longleaf pine (Pinus palustris Mill.) plantations does not tend to produce the smooth distributions common to other southern pines. While these distributions are sometimes unimodal, they are frequently bi- or even tri-modal and for this reason may not be easily modeled with traditional diameter...
Fuel loading and fire intensity-effects on longleaf pine seedling survival
Steven B. Jack; J. Kevin Hiers; Robert J. Mitchell; Jennifer L. Gagnon
2010-01-01
Modeling silvicultural practices after natural disturbance, with a particular focus on the use of fire and small canopy openings, may be particularly appropriate in longleaf pine (Pinus palustris Mill.) woodlands managed for multiple age classes and over long time scales. However, information about the effects of litter accumulation and fire...
Individual tree diameter, height, and volume functions for longleaf pine
Carlos A. Gonzalez-Benecke; Salvador A. Gezan; Timothy A. Martin; Wendell P. Cropper; Lisa J. Samuelson; Daniel J. Leduc
2014-01-01
Currently, little information is available to estimate individual tree attributes for longleaf pine (Pinus palustris Mill.), an important tree species of the southeastern United States. The majority of available models are local, relying on stem diameter outside bark at breast height (dbh, cm) and not including stand-level parameters. We developed...
Zhen Sui; Zhaofei Fan; Michael K. Crosby; Xingang Fan
2015-01-01
Longleaf pine (Pinus palustris Mill.) has irreplaceable ecological value in the southeastern United States. However, longleaf pine-grassland ecosystems have been dramatically declining since European settlement. From the aspect of longleaf pine restoration and management, this study calculated longleaf pine importance values in each southern county and then conducted...
Is the footprint of longleaf pine in the Southeastern United States still shrinking?
Christopher M. Oswalt; Christopher W. Woodall; Horace W. Brooks
2015-01-01
Longleaf pine (Pinus palustris Mill.) was once one of the most ecologically important tree species in the southern United States. Longleaf pine and the accompanying longleaf forest ecosystems covered vast swaths of the South. Longleaf forests covered an estimated 92 million acres at their peak distribution and represented one of the most extensive forest ecosystems in...
Vanessa R. Lane; Robert P. Simmons; Kristina J. Brunjes; John C. Kilgo; Timothy B. Harrington; Richard F. Daniels; W. Mark Ford; Karl V. Miller
2015-01-01
Restoring longleaf pine (Pinus palustris Mill.) savanna is a goal of many southern land managers, and longleaf plantations may provide a mechanism for savanna restoration. However, the effects of silvicultural treatments used in the management of longleaf pine plantations on wildlife communities are relatively unknown. Beginning in 1994, we examined effects of longleaf...
Site Index Curves for Direct-Seeded Loblolly and Longleaf Pines in Louisiana
Quang V. Cao; V. Clark Baldwin; Richard E. Lohrey
1995-01-01
Site index equations were developed for direct-seeded loblollypine (Pinus taeda L.) and longleaf pine (Pinus palustris Mill.) based on data from 148 and 75 permanent plots, respectively. These plots varied from 0.053 to 0.119 ac in size, and were established in broadcast, row, and spot seeded stands throughout Louisiana. The Bailey and Clutter (1974) model was...
Louis Provencher; Krista E. M. Galley; Andrea R. Litt; Doria R. Gordon; Leonard A. Brennan; George W. Tanner; Jeffrey L. Hardesty
2002-01-01
Experimentally evaluating the success of hardwood reduction techniques against a "model" reference condition of longleaf pine sandhill communities is not directly possible because reference sites are not randomized or replicated. We addressed this issue by measuring the similarity of arthropods in treatment (fire, herbicide, felling/girdling, and control) and...
A Height–Diameter Curve for Longleaf Pine Plantations in the Gulf Coastal Plain
Daniel Leduc; Jeffery Goelz
2009-01-01
Tree height is a critical component of a complete growth-and-yield model because it is one of the primary components used in volume calculation. To develop an equation to predict total height from dbh for longleaf pine (Pinus palustris Mill.) plantations in the West Gulf region, many different sigmoidal curve forms, weighting functions, and ways of...
Local calibration of the Forest Vegetation simulator (FVS) using custom inventory data
J. D. Shaw; G. Vacchiano; R. J. DeRose; A. Brough; A. Kusbach; J. N. Long
2006-01-01
Fort Bragg, North Carolina includes over 65,000 acres of longleaf pine forest, which is primary habitat for the endangered red-cockaded woodpecker (RCW). Effective management of the RCW depends on effective management of the longleaf pine forest. However, growth and yield models available in the geographic area that includes Fort Bragg over-predict stand growth and...
Costanza, Jennifer; Terando, Adam J.; McKerrow, Alexa; Collazo, Jaime A.
2015-01-01
Managing ecosystems for resilience and sustainability requires understanding how they will respond to future anthropogenic drivers such as climate change and urbanization. In fire-dependent ecosystems, predicting this response requires a focus on how these drivers will impact fire regimes. Here, we use scenarios of climate change, urbanization and management to simulate the future dynamics of the critically endangered and fire-dependent longleaf pine (Pinus palustris) ecosystem. We investigated how climate change and urbanization will affect the ecosystem, and whether the two conservation goals of a 135% increase in total longleaf area and a doubling of fire-maintained open-canopy habitat can be achieved in the face of these drivers. Our results show that while climatic warming had little effect on the wildfire regime, and thus on longleaf pine dynamics, urban growth led to an 8% reduction in annual wildfire area. The management scenarios we tested increase the ecosystem's total extent by up to 62% and result in expansion of open-canopy longleaf by as much as 216%, meeting one of the two conservation goals for the ecosystem. We find that both conservation goals for this ecosystem, which is climate-resilient but vulnerable to urbanization, are only attainable if a greater focus is placed on restoration of non-longleaf areas as opposed to maintaining existing longleaf stands. Our approach demonstrates the importance of accounting for multiple relevant anthropogenic threats in an ecosystem-specific context in order to facilitate more effective management actions.
Container-grown longleaf pine seedling quality
Mark J. Hainds; James P. Barnett
2006-01-01
The Longleaf Alliance, in cooperation with the USDA Forest Service, the Georgia Forestry Commission, and the Clemson Extension Service, has installed numerous longleaf pine (Pinus palustris Mill.) seedling quality studies across the Southeastern United States. This paper reviews survival and growth for different classes of container-grown longleaf...
Fire and longleaf pine physiology - Does timing affect response? In: Proc
Mary Anne Sword Sayer; James D. Haywood
2009-01-01
Southern pines vary in their response to the loss of leaf area by crown scorch. We hypothesize that they tolerate crown scorch by at least three recovery mechanisms, but the function of these mechanisms is season-dependent. Using sapling longleaf pine as a model and experimental results from central Louisiana, U.S.A., our objective is to present examples recovery from...
Longleaf Pine Forests...in the Mountains?
Morgan Varner
1999-01-01
While most people familiar with Alabama's forests associate longleaf pine with the gently rolling hills of lower Alabama, longleaf pine forests extend up into the hills, ridges and mountains of north Alabama. These forests, termed "montane" or "mountain longleaf," still thrive in several spots, but are becoming increasingly rare. These rare...
Determining the Correct Planting Depth For Container-Grown Longleaf Pine Seedlings
Mark J. Hainds
2004-01-01
The Longleaf Alliance installed four planting-depth studies from 1998 to 2002 to determine the optimal depth for container-grown longleaf pine (Pinus palustris Mill.) seedlings. Results indicate that deep planting significantly reduced seedling survival and growth. Results also indicate that longleaf is very tolerant of shallow planting whereby the...
William D. Boyer
1997-01-01
One of the principal southern pines, longleaf (Pinus palustris Mill.) is the key tree species in a fire-dependent ecosystem. In pm-settlement times, longleaf pine forests covered much of the southeastern United States.Once the most extensive forest ecosystem in North America dominated by a single species longleaf pine now occupies only about 3...
Nursery culture impacts cold hardiness in longleaf pine (Pinus palustris) seedlings
Anthony S. Davis; Amy L. Ross-Davis; R. Kasten Dumroese
2011-01-01
Success in restoring longleaf pine ecosystems depends on outplanting high-quality longleaf pine seedlings. One important and relatively understudied attribute of seedling quality is cold hardiness. A suite of trials was conducted to investigate the influence of common nursery cultural practices on longleaf pine cold hardiness. Cold hardiness was increased with higher...
Early longleaf pine seedling survivorship on hydric soils
Susan Cohen; Joan Walker
2006-01-01
We established a study to evaluate site preparation in restoring longleaf pine on poorly drained sites. Most existing longleaf pine stands occur on drier sites, and traditional approaches to restoring longleaf pine on wetter sites may rely on intensive practices that compromise the integrity of the ground layer vegetation. We applied silvicultural treatments to improve...
Restoring the longleaf pine ecosystem: The role of container seedling technology
James P. Barnett
2004-01-01
Longleaf pine (Pinus palustris Mill.) ecosystems once occupied 90 million acres in the southern United Statesâ coastal plain. Restoration of longleaf pine ecosystems has been difficult because reestablishment of the species by either natural or artificial means has been problematic. The application of container seedling technology to longleaf pine...
Carbon sequestration and natural longleaf pine ecosystems
Ralph S. Meldahl; John S. Kush
2006-01-01
A fire-maintained longleaf pine (Pinus palustris Mill.) ecosystem may offer the best option for carbon (C) sequestration among the southern pines. Longleaf is the longest living of the southern pines, and products from longleaf pine will sequester C longer than most since they are likely to be solid wood products such as structural lumber and poles....
Michael A. Battaglia; Pu Mou; Brian Palik; Robert J. Mitchell
2002-01-01
Spatial aggregation of forest structure strongly regulates understory light and its spatial variation in longleaf pine (Pinus palustris Mill.) forest ecosystems. Previous studies have demonstrated that light availability strongly influences longleaf pine seedling growth. In this study, the relationship between spatial structure of a longleaf pine...
The Longleaf Pine Ecosystem of the South
Kenneth W. Outcalt
2000-01-01
Longleaf pine (Pinus palustris P. Mill. [Pinaceae]) was the most prevalent pine type in the southern US Stands of longleaf were also habitat for a vast array of plant species. Decades of timber harvest followed by conversion to agriculture, urban development, or to other pine species, have reduced longleaf dominated areas to less than 5% of its...
John F. Kelly; William A. Bechtold
1989-01-01
Area of longleaf pine (Pinus palustris Mill.) in the Southern United States has declined from 12.2 to 3.8 million acres over the past 30 years. Longleaf pine, which once dominated vast portions of the region, now accounts for only 3 percent of the total timberland acreage in the 8 States where the species is found.Longleaf growing-stock volume has decreased by 12...
Proceedings: Workshops on Growing Longleaf Pine in Containers--1999 and 2001
James P. Barnett; R. Kasten Dumroese; D.J. Moorhead; [Editors
2002-01-01
This publication, a compilation of 20 papers concerning nursery production of longleaf pine seedlings in containers for reforestation, is a summary of longleaf pine workshops held in 1999 and 2001. The Longleaf Alliance and the USDA Southern Research Station and Southern Region Cooperative Forestry organized the first workshop in 1999. It was held in Jesup, Georgia, on...
The Longleaf Alliance: A Regional Longleaf Pine Recovery Effort
Dean Gjerstad; Rhett Johnson
2002-01-01
Longleaf pine was once the dominate forest over nearly 70 percent of Alabama, ranging from just south of the Tennessee Valley to the Gulf Coast. Today longleaf represents less than 3 percent of Alabama's forest acreage. However, a dramatic recovery of this most important southern ecosystem is underway with interest and support at an all time high among landowners...
Impact of fire in two old-growth montane longleaf pine stands
John S. Kush; John C. Gilbert; Crystal Lupo; Na Zhou; Becky Barlow
2013-01-01
The structure of longleaf pine (Pinus palustris Mill.) forests of the Southeastern United States Coastal Plains has been the focus of numerous studies. By comparison, the forests in the mountains of Alabama and Georgia are not well understood. Less than 1 percent of longleaf pine stands found in the montane portion of longleafâs range are considered...
Status of the Longleaf Pine Forests of the West Gulf Coastal Plain
Kenneth W. Outcalt
1997-01-01
Datafrom the USDA Forest Service, forest inventory and analyses permanent field plot were used to track changes in longleaf pine (Pinuspalustris Mill.) communities in Texas and Louisiana between 1985 and 1995. The decline of longleaf forest has continued in Louisiana. Texas had much less longleaf type in 1985, but unlike Louisiana there has been a small increase in the...
Mary Anne Sword Sayer
2007-01-01
Repeated prescribed fire is a valuable tool for the management of longleaf and loblolly pine. When applied every two to ten years, for example, prescribed fire perpetuates existing longleaf pine ecosystems (Outcalt 1997). Furthermore, the acceptance of fire as a management tool, together with recent improvements in longleaf pine...
Longleaf pine stumpwood supply in four southeastern survey units
E.L. Demmon
1936-01-01
This release presents advanc3 ·information on the amount of longleaf pine stumpviOod in four Forest Survey Units. The wood referred to is that in the seasoned stumps resulting from the cutting of the longleaf pine of the original forest. These stumps, together with other highly rosinimpregnated wood in the tops and limbs of fallen old-growth longleaf pine, are used in...
Thomas L. Eberhardt; Philip M. Sheridan; Karen G. Reed
2009-01-01
Measurements of pith and second growth ring diameters were used by Koehler in 1932 to separate longleaf pine (Pinus palustris Mill.) timbers from those of several southern pines (e.g., loblolly, shortleaf). In the current study, measurements were taken from plantation-grown longleaf, loblolly and shortleaf pine trees, as well as old growth longleaf pine, lightwood, and...
Growth of longleaf and loblolly pine planted on South Carolina Sandhill sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cram, Michelle, M.; Outcalt, Kenneth, W.; Zarnoch, Stanley, J.
2010-07-01
Performance of longleaf (Pinus palustris Mill.) and loblolly pine (P. taeda L.) were compared 15–19 years after outplanting on 10 different sites in the sandhillsof South Carolina. The study was established from 1988 to 1992 with bareroot seedlings artificially inoculated with Pisolithus tinctorius (Pt) or naturally inoculated with mycorrhizae in the nursery. A containerized longleaf pine treatment with and without Pt inoculation was added to two sites in 1992. Effects of the Pt nursery treatment were mixed, with a decrease in survival of bareroot longleaf pine on two sites and an increase in survival on another site. The containerized longleafmore » pine treatment substantially increased survival, which led to greater volume compared with bareroot longleaf pine. Loblolly pine yielded more volume than longleaf pine on all sites but one, where survival was negatively affected by fire. Depth of sandy surface horizon affected mean annual height growth of both loblolly and longleaf pine. Height growth per year decreased with an increase in sand depth for both species. Multiple regression analysis of volume growth(ft3/ac per year) for both species indicated a strong relationship to depth of sandy soil and survival. After 15–19 years, loblolly pine has been more productive than longleaf pine, although longleaf pine productivity may be equal to or greater than that of loblolly pine on the soils with the deepest sandy surface layers over longer rotations.« less
Longleaf pine adaptation to fire: is early height growth pattern critical to fire survival?
G. Geoff Wang; Lauren S. Pile; Benjamin O. Knapp; Huifeng Hu
2016-01-01
Longleaf pine (Pinus palustris Mill.) forests are fire-dependent ecosystems because frequent surface fires prevent other species from being recruited into the canopy. The successful recruitment of longleaf pine has been attributed mainly to its unique fire adaptation â the grass stage. It is commonly believed that, while in the grass stage, longleaf pine seedlings...
Restoration of longleaf pine--the status of our knowledge
Jim Guldin; James F. Rosson; C. Dana Nelson
2016-01-01
By the fifth anniversary of the Americaâs Longleaf Restoration Initiative in 2014, the decline in longleaf pine (Pinus palustris L.) appears to have been reversed. The area in longleaf pine-dominated stands currently exceeds 4 million acres, up from a low of about 3 million acres two decades ago. A major contribution to this reversal has been the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brudvig, Lars A.; Orrock, John L.; Damschen, Ellen I.
Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plainmore » based on relationships between understory plant community composition, soils lol(which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together. and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility of quantifying degraded states and provides a series of hypotheses for future experimental restoration work. More broadly, our work provides a framework for developing and evaluating reference models that incorporate multiple, interactive anthropogenic drivers of ecosystem degradation.« less
John S. Kush; Ralph S. Meldahl; Charles K. McMahon
2003-01-01
The FNA is a microcosm of the recent history and many threats facing fire adapted longleaf pine ecosystems. Many of the remanant old-gowth longleaf pine stands which remain have been reduced to isolated, often degraded patches in the southern landscape. The FNA was one of these stands before restoration efforts began in 1995. In an effort to restore this longleaf pine...
Longleaf pine growth and yield
John S. Kush; J.C.G. Goelz; Richard A. Williams; Douglas R. Carter; Peter E. Linehan
2006-01-01
Across the historical range of longleaf pine (Pinus palustris Mill.), less than 10% of lands previously occupied by longleaf ecosystems are currently in public ownership (Johnson and Gjerstad 1999; Alavalapati et al., this volume). The remainder is owned by private entities ranging from the forest industry, to timberland investment organizations,...
Longleaf Pine: Why Plant It? Why Use Containers?
James P. Barnett
2002-01-01
Longleaf pine (Pinus palustris Mill.), although widely distributed in the presettlement forests of the southern Coastal Plain, now occupies less that 5 percent of its original range. A highly desirable species, it resists fire, insects, and disease, while producing excellent quality solid-wood products. Longleaf forests also represent an important...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imm, Donald; Blake, John I
2006-07-01
The Longleaf Pine Ecosystem - Ecology, Silviculture, and Restoration. Shibu Jose, Eric J. Jokela, and Deborah L. Miller, (eds.) Springer Series on Environmental Management. Springer Science and Business Media publisher. Box 10.2 Pp 330-333. An insert on overstory-understory interactions in longleaf pine ecosystems.
Establishing Longleaf Pine Seedlings on Agricultural Fields and Pastures
Mark J. Hainds
2004-01-01
Acres planted to longleaf pine (Pinus palustris) increased annually through the 1990s until 2000 with peak plantings exceeding 110 million seedlings annually. Many of these longleaf seedlings were planted on agricultural crop fields and pastures. Agricultural areas have unique characteristics that can make them more challenging to successfully plant...
Restoration of Longleaf Pine Ecosystems
Dale G. Brockway; Kenneth W. Outcalt; Donald J. Tomczak; Everett E. Johnson
2005-01-01
Longleaf pine (Pinus palustris) ecosystems once occupied 38 million ha in the Southeastern United States, occurring as forests, woodlands, and savannas on a variety of sites ranging from wet flatwoods to xeric sandhills and rocky mountainous ridges. Characterized by an open parklike structure, longleaf pine ecosystems are a product of frequent fires...
Effects of Crown Scorch on Longleaf Pine Fine Roots
Mary Anne Sword; James D. Haywood
1999-01-01
Photosynthate production is reduced by foliage loss. Thus, scorch-induced decreases in the leaf area of longleaf pine (Pinus palustris Mill.) may reduce photosynthate allocation to roots. In this investigation the root carbohydrate concentrations and dynamics of longleaf pine after two intensities of prescribed burning were monitored. In...
Seed Bank Viability in Disturbed Longleaf Pine Sites
Susan Cohen; Richard Braham; Felipe Sanchez
2004-01-01
Some of the most species-rich areas and highest concentrations of threatened and endangered species in the southeastern United States are found in wet savanna and flatwood longleaf pine (Pinus palustris Mill.) communities. Where intensive forestry practices have eliminated much of the natural understory of the longleaf ecosystem, the potential for...
Fire Monitoring: Effects of Scorch in Louisiana's Pine Forests
James D. Haywood; Mary Anne Sword; Finis L. Harris
2004-01-01
Frequent growing-season burning is essential for restoring longleaf pine (Pinus palustris Mill.) plant communities to open parklike landscapes. However, fire can be a destructive force, reducing productivity and causing mortality among overstory longleaf pine trees. On two central Louisiana sites, severe crown scorch reduced longleaf pine diameter...
Mark J. Hainds
2002-01-01
Demand for longleaf pine (Pinus palustris Mill.) seedlings continues to increase throughout the Southeast. Overall production of longleaf pine seedlings has increased annually for at least the last 3 years (51 percent increase over the past 3 years), while demand for seedlings has continued to exceed the supply. There are several reasons for the...
Container-Grown Longleaf Pine Seedling Quality
Mark J. Hainds; James P. Barnett
2004-01-01
This study examines the comparative hardiness of various classes or grades of container-grown longleaf pine (Pinus palustris Mill.) seedlings. Most container longleaf seedlings are grown in small ribbed containers averaging 5 to 7 cubic inches in volume and 3 to 6 inches in depth. Great variability is often exhibited in typical lots of container-...
Basic growth relationships in thinned and unthinned longleaf pine plantations
V. Clark Baldwin; Daniel J. Leduc; K. O. Peterson; Bernard R. Parresol
1998-01-01
Compilation, editing, and formatting of seven long-term longleaf pine (Pinus palustris Mill.) growth and yield studies has "been completed"and development of a growth and yield prediction system for longleaf pine plantations is underway. The studies are located in Central Louisiana, East Texas, Southern Mississippi, Southern Alabama, and Northern Florida...
Remnant fire disturbed montane longleaf pine forest in west central georgia
Robert Carter; Andrew J. Londo
2006-01-01
Fire disturbed ecosystems are characteristic of the Southeastern Coastal Plain of the United States. Less well known are fire disturbed mountainous regions of the Piedmont and Appalachian region that support longleaf pine (Pinus palustris P. Mill.) ecosystems. The Pine Mountain Range in the Piedmont of west central Georgia has remnant longleaf pine...
Longleaf Pine Ecosystem Restoration on Small and Mid-Sized Tracts
Joan L. Walker
1999-01-01
Speaking of restoring the longleaf pine ecosystem, conservationists may present images of open stands I trees, prescribed burning, grassy ground layers, and of providing habitat for red-cockaded woodpeckers. Unfortunately, planting a longleaf pine forest, using fire, and recovering an endangered woodpecker all seem require lands larger than a backyard. To many,...
Financial performance of loblolly and longleaf pine plantations
Steven D. Mills; Charles T. Stiff
2013-01-01
The financial performance of selected management regimes for loblolly (Pinus taeda L.) and longleaf pine (P. palustris Mill.) plantations were compared for four cases, each with low- and high-site productivity levels and each evaluated using 5 and 7 percent real discount rates. In all cases, longleaf pine was considered both with...
James D. Haywood; Finis L. Harris
1999-01-01
Abstract - In January 1993, the Kisatchie National Forest and Southern Research Station began a cooperative project on two Ranger Districts to monitor how prescribed burning affects tree, shrub, and herbaceous vegetation in upland longleaf pine (Pinus palustris Mill.) forests in Louisiana. Longleaf pine is the dominant species on...
Analyzing the complexity of cone production in longleaf pine by multiscale entropy
Xiongwen Chen; Qinfeng Guo; Dale G. Brockway
2016-01-01
The longleaf pine (Pinus palustris Mill.) forests are important ecosystems in the southeastern USA because of their ecological and economic value. Since European settlement, longleaf pine ecosystems have dramatically declined in extent, to the degree that they are now listed as endangered ecosystems. Its sporadic seed production, which...
Uneven-aged management of longleaf pine forests: a scientist and manager dialogue
Dale G. Brockway; Kenneth W. Outcalt; James M. Guldin; William D. Boyer; Joan L. Walker; D. Craig Rudolph; Robert B. Rummer; James P. Barnett; Shibu Jose; Jarek Nowak
2005-01-01
Interest in appropriate management approaches for sustaining longleaf pine (Pinus palustris Mill.) forests has increased substantially during the recent decade. Although long-leaf pine can be managed using even-aged techniques, interest in uneven-aged methods has grown significantly as a result of concern for sustaining the wide range of ecological...
Prevention of Cold Damage to Container-Grown Longleaf Pine Roots
Richard W. Tinus; Mary Anne Sword; James P. Barnett
2002-01-01
When longleaf pine (Pinus palustris Mill.) seedlings are container-grown in open fields, their roots may be exposed to damaging, cold temperatures. Major losses in some nurseries have occurred. Between November 1996 and February 1997, we measured the cold hardiness of container-grown longleaf pine roots by measuring electrolyte leakage (a) of...
Influence of light and moisture on longleaf pine seedling growth in selection silviculture
David S. Dyson; Edward F. Loewenstein; Steven B. Jack; Dale G. Brockway
2012-01-01
Selection silviculture has become increasingly common for longleaf pine management, yet questions remain regarding residual canopy effects on seedling survival and growth. To determine what levels of residual overstory promote adequate seedling recruitment, 600 containerized longleaf pine seedlings were planted on two sites during the 2007-2008 dormant season. To...
Pleistocene Refugia for Longleaf and Loblolly Pines
Ronald C. Schmidtling; V. Hipkins; E. Carroll
2000-01-01
Longleaf pine (P. palustris Mill.) and loblolly pine (P. taeda L.) are two species that are common to the coastal plain of the southeastern United States. The current natural range of the two species is largely overlapping. Loblolly pine occurs in 13 southeastern states. Longleaf pine is the more austral of the two species,...
Robert N. Addington; Benjamin O. Knapp; Geoffrey G. Sorrell; Michele L. Elmore; G. Geoff Wang; Joan L. Walker
2015-01-01
Controlling broadleaf woody plant abundance is one of the greatest challenges in longleaf pine (Pinus palustris Mill.) ecosystem restoration. Numerous factors have been associated with broadleaf woody plant abundance in longleaf pine ecosystems, including site quality, stand structure, and fire frequency and intensity, yet the way in which these...
Huifeng Hu; G.Geoff Wang; Joan L. Walker; Benjamin O. Knapp
2012-01-01
A field study was installed to test silvicultural treatments for establishing longleaf pine (Pinus palustris Mill) in loblolly pine (P. taeda L.) stands. Harvesting was used to create seven canopy treatments, four with uniformly distributed canopies at different residual basal areas [Control (16.2 m2/ha),...
Separating live from dead longleaf pine seeds: good and bad news
James P. Barnett; R. Kasten Dumroese
2006-01-01
Of all southern pine seeds, longleaf pine (Pinus palutris Mill.) are the most difficult to collect, process, treat, and store while maintaining good seed quality. As a result, interest in techniques for separating filled dead from live longleaf pine seeds has developed. The good news is that new technologies are becoming available to evaluate seed...
Effects of fire season on vegetation in longleaf pine (Pinus palustris) forests
Bryan T. Mudder; G. Geoff Wang; Joan L. Walker; J. Drew Lanham; Ralph Costa
2010-01-01
Forest managers in the Southeastern United States are interested in the restoration of not only longleaf pine (Pinus palustris) trees, but also the characteristic forest structure and ground-layer vegetation of the longleaf pine ecosystem. Season of burn, fire intensity, and fire frequency are critical components of a fire regime that supports...
Proceedings of the Symposium on the Management of Longleaf Pine
Robert S. Farrar; [Editor
1989-01-01
The symposium on the management of longleaf pine leading to these proceedings was held on April 4 through 6, 1989, in Long Beach, MS, at the Gulf Park Conference Center of the University of Southern Mississippi. This conference was attended by approximately 170 land managers, wildlife managers, researchers, educators, students, and others interested in longleaf pine...
Needs and Opportunities for Longleaf Pine Ecosystem Restoration in Florida
Kenneth W. Outcalt
1997-01-01
Data from permanent plots measured periodically by Forest Inventory and Analyses of the Southern Research Station, USDA Forest Service shows a continuing decline in the longleaf pine (Pinus pulustris Mill,) ecosystem in Florida from 1987 to 1995. Conversion to some other forest type resulted in a net loss of 58,000 ha natural stands of longleaf pine...
Factors Affecting Survival of Longleaf Pine Seedlings
John S. Kush; Ralph S. Meldahl; William D. Boyer
2004-01-01
Longleaf pine may be managed most efficiently in large even-aged stands. Past research has shown that the effect of trees surrounding the openings (gaps) or the use of fire is a complicating factor, especially with small openings. Longleaf seedlings are considered more susceptible to fire under and nearer to standing trees, and seedling size, kind of fire, soil type,...
Measuring moisture dynamics to predict fire severity in longleaf pine forests.
Sue A. Ferguson; Julia E. Ruthford; Steven J. McKay; David Wright; Clint Wright; Roger Ottmar
2002-01-01
To understand the combustion limit of biomass fuels in a longleaf pine (Pinus palustris) forest, an experiment was conducted to monitor the moisture content of potentially flammable forest floor materials (litter and duff) at Eglin Air Force Base in the Florida Panhandle. While longleaf pine forests are fire dependent ecosystems, a long history of...
J. Moragan Varner; John S. Kush
2004-01-01
Old-growth savannas and forests dominated by longleaf pine (Pinus palustris Mill.) are of great conservation and research interest. Comprehensive inventories of old-growth communities, however, are lacking for most of longleaf pine's natural range. We searched the literature, interviewed regional experts, queried email discussion lists and...
James D. Haywood; William D. Boyer; Finis L. Harris
1998-01-01
In Grant Parish, Louisiana, increases in overstory basal area, canopy cover, and development of understory woody plants reduced productivity of herbaceous plants in longleaf pine (Pinus palustris Mill.) stands that were managed with fire. Still, the herbaceous plant community can reestablish itself on properly managed upland longleaf pine sites in...
Ecological restoration of an old-growth longleaf pine stand utilizing prescribed fire
J. Morgan Varner; John S. Kush; Ralph S. Meldahl
2000-01-01
Ecological restoration using prescribed fire has been underway for 3 years in an uncut, old-growth longleaf pine (Pinus palustris) stand located in south Alabama. The longleaf pine ecosystem requires frequent (once every 1-10 years) surface fire to prevent succesion to later several stages. Before this study began, this stand had not burned in >...
Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker; Huifeng Hu
2015-01-01
Historical land-use and management practices in the southeastern United States have resulted in the widespread conversion of many upland sites from dominance of longleaf pine (Pinus palustris Mill.) to loblolly pine (P. taeda L.) in the time following European settlement. Given the ecological, economic, and cultural...
Longleaf pine ecosystem restoration: the role of the USDA Forest Service
Charles K. McMahon; D.J. Tomczak; R.M. Jeffers
1998-01-01
The greater longleaf pine ecosystem once occupied over 90 million acres from southeastern Virginia, south to central Florida, and west to eastern Texas. Today less than 3 million acres remain, with much of the remaining understory communities in an unhealthy state. A number of public and private conservation organizations are conducting collaborative longleaf pine...
D. Paul Jackson; R. Kasten Dumroese; James P. Barnett
2012-01-01
Container longleaf pine (Pinus palustris) seedlings often survive and grow better after outplanting than bareroot seedlings. Because of this, most longleaf pine are now produced in containers. Little is known about nursery fertilization effects on the quality of container longleaf pine seedlings and how that influences outplanting performance. We compared various...
Food Reserves In Mountain Longleaf Pine Roots During Shoot Elongation
Charles H. Walkinshaw; William J. Otrosina
2002-01-01
Abstract - Survival and growth of longleaf pine seedlings depends upon a well-developed root system. Soil moisture is also critical for the seedling to emerge from the grass-stage. When longleaf pine seedlings emerge from the grass stage, they grow rapidly in height and diameter. Branches are often few in number and, if present, may have low...
James D. Haywood
2009-01-01
This research was initiated in a 34-year-old, direct-seeded stand of longleaf pine (Pinus palustris Mill.) to study how pine straw management practices (harvesting, fire, and fertilization) affected the longleaf pine overstory and pine straw yields. A randomized complete block split-plot design was installed with two main plot treatments...
Steven B. Jack; Robert J. Mitchell; Stephen D. Pecot
2006-01-01
Management of longleaf pine woodlands and savannas in areas that have multiple objectives including conservation of biodiversity is increasingly common on public and private lands, and various silvicultural approaches have been proposed to meet the diverse objectives. While considerable work has investigated how alternative silvicultural systems influence longleaf pine...
D. Andrew Scott; James A. Burger
2014-01-01
Aims Longleaf pine (Pinus palustris Mill.) is being restored across the U.S. South for a multitude of ecological and economic reasons, but our understanding of longleaf pineâs response to soil physical conditions is poor. On the contrary, our understanding of loblolly pine (Pinus taeda L.) root and...
Jeff S. Glitzenstein; Donna R. Streng; Dale D. Wade; John Brubaker
2001-01-01
Southeastern United States habitats dominated by longleaf pine (Pinus palustris Miller) and associated plant species have declined dangerously. Conservation of rare and common plants of longleaf pine habitats may be aided by starting new populations in the field. We review methods for initiating plant populations and integrate information from our...
John S. Kush; Ralph S. Meldahl; Charles K. McMahon; William D. Boyer
2004-01-01
Natural communities dominated by longleaf pine (Pinus palustris Mill.) once covered an estimated two thirds of the forested area in the southeastern United States. Today, less than 1.2 million ha remain. However, over the past 10-15 years, public land managers have begun to restore many longleaf pine forests. More recently incentive programs have...
A whole stand growth and yield system for young longleaf pine plantations in Southwest Georgia
John R. Brooks; Steven B. Jack
2006-01-01
A whole stand growth and yield system for planted longleaf pine (Pinus palustris Mill.) was developed from permanent plot data collected annually over an 8 year period. The dataset consists of 12 intensively-managed longleaf pine plantations that are located in Lee, Worth, Mitchell, and Baker counties in southwest Georgia. Stand survival, dominant...
What 45 years of RLGS data has to say about longleaf pine mortality - not much
John S. Kush; John C. Gilbert; Rebecca J. Barlow
2015-01-01
The original longleaf pine (Pinus palustris Mill.) forest was self-perpetuating where seedlings always had to be present. It reproduced itself in openings in the overstory where dense young stands developed. These openings would range from a few tenths of an acre to large openings of several thousand acres. Regardless of the event size, longleaf...
Peter H Anderson; Kurt H. Johnsen
2009-01-01
Evidence is mixed on how well longleaf pine (Pinus palustris Mill.) responds to increased soil nitrogen via fertilization. We examined growth and physiological responses of volunteer longleaf pine trees within an intensive loblolly pine (Pinus taeda L.) fertilization experiment. Fertilizer was applied annually following thinning at age 8 years (late 1992) at rates...
Restoring longleaf pine forest ecosystems in the southern U.S
Dale G. Brockway; Kenneth W. Outcalt; Donald J. Tomczak; Everett E. Johnson
2005-01-01
Longleaf pine (Pinus palustris) ecosystems are native to nine states of the southern region of the U.S. Longleaf pine can grow on a variety of site types including wet flatwoods and savannas along the Atlantic and Gulf coastal plain, higher droughty sand deposits from the fall line sandhills to the central ridge of Florida (Stout and Marion 1993),...
Merits of using mechanical treatments to stimulate cone production of slash and longleaf pine
James P. Barnett
1993-01-01
four mechanical treatments (untreated, partial girdling in the spring, partial girdling in summer, and banding in spring) stimulated cone production of pole-sized slash and longleaf pines. A 2- to 3-fold increase in slash pine seed production was limited to the first crop originating after the treatments were applied. However, the treatments killed half the longleaf...
Nitric Acid and Benomyl Stimulate Rapid Height Growth of Longleaf Pine
A.G. Kais; R.C. Hare; J.P. Barnett
1984-01-01
Rapid height growth of longleaf pine seedlings, important to production of uniform, even-aged stands, can be promoted by controlling brown-spot needle blight and weed competition, and by increasing soil fertility. Root systems of container-grown longleaf pine seedlings were dip-treated in either benomyl/clay mix (10 percent a.i. benomyl) or clay control and planted...
Effects of herbaceous and woody plant control on longleaf pine growth and understory plant cover
James D. Haywood
2013-01-01
To determine if either herbaceous or woody plants are more competitive with longleaf pine (Pinus palustris Mill.) trees, four vegetation management treatmentsâ check, herbaceous plant control (HPC), woody plant control (WPC), and HPC+WPCâwere applied in newly established longleaf pine plantings in a randomized complete block design in two studies....
Longleaf pine forests and woodlands: old growth under fire!
Joan L. Walker
1999-01-01
The author discusses a once widespread forest type of the Southeast â longleaf pine dominated forests and woodlands. This system depends on fire â more or less frequent, and often of low intensity. Because human-mediated landscape fragmentation has drastically changed the behavior of fire on longleaf pine dominated landscapes, these forests and woodlands will never be...
History and current condition of longleaf pine in the Southern United States
Christopher M. Oswalt; Jason A. Cooper; Dale G. Brockway; Horace W. Brooks; Joan L. Walker; Kristina F. Connor; Sonja N. Oswalt; Roger C. Conner
2012-01-01
Longleaf pine (Pinus palustris Mill.) was once one of the most ecologically important tree species in the Southern United States. Longleaf pine and its accompanying forest ecosystems covered vast swaths of the Southern United States, spanning an estimated 92 million acres. Although once one of the most extensive forest ecosystems in North America, only a fraction of...
Ecological forestry, old growth, and birds in the longleaf pine (Pinus palustris) ecosystem
R. Todd Engstrom; Richard N. Conner
2006-01-01
Renewed awareness of the longleaf-pine ecosystem and a legal mandate to provide suitable habitat for the endangered red-cockaded woodpecker (Picoides borealis) have generated interest in alternative forms of silviculture in the southeastern United States. Of 110-120 species of birds that occur in longleaf pine woodlands, 26 species (including three that are federally...
Mary Anne Sword Sayer; Eric A. Kuehler
2010-01-01
Photosynthate from mature foliage provides the energy source necessary for longleaf pine (Pinus palustris Mill.) root system expansion. Crown scorch caused by repeated prescribed fire could decrease this energy and, in turn, reduce new root production. We conducted a study to assess the root biomass of restored longleaf pine saplings in response to...
Seasonal Sucrose Metabolism in Longleaf Pine Tree Stem Cambial Tissues
Shi-Jean S. Sung; William J. Otrosina; Stanley J. Zarnoch
2004-01-01
This study was a part of a long-term study on factors contributing to the decline of a 40+-year-old longleaf pine stand where prescribed burning has occurred. Burn treatments were implemented between January and March 1997. From April 2002 through February 2003, stem cambial tissues were sampled periodically from healthy longleaf pine trees preselected from each...
Prescribed fire effects in a longleaf pine ecosystem--are winter fires working?
Rebecca J. Barlow; John S. Kush; John C. Gilbert; Sharon M. Hermann
2015-01-01
Longleaf pine (Pinus palustris Mill.) ecosystems once dominated 60 to 90 million acres and supported one of the most diverse floras in North America. It is well-known that longleaf pine ecosystems must burn frequently to maintain natural structure and function. This vegetation type ranks as one of the most fire-dependent in the country and must...
Thirty years of management on a small longleaf pine forest
William D. Boyer
1981-01-01
Results from 30 years of management of this demonstration farm forty should interest any landowner with a small tract of longleaf pine forest.In this case, the starting point for management was a poorly-stocked stand of second-growth longleaf pine on an average Coastal Plain site.Despite no capital outlays and relativcly small expenses, principally for prescribed...
J.-P. Berrill; C.M. Dagley
2010-01-01
A compact experimental design and analysis is presented of longleaf pine (Pinus palustris) survival and growth in a restoration project in the Piedmont region of Georgia, USA. Longleaf pine seedlings were planted after salvage logging and broadcast burning in areas of catastrophic southern pine beetle (Dendroctonus frontalis) attacks on even-aged mixed pine-hardwood...
Old-growth Montane Longleaf Pine Forest Age Structure: A Preliminary Assessment
J. Morgan Varner; John S. Kush; Ralph S. Meldahl
1998-01-01
Presettlement longleaf pine forests of the Southeast have been described as uneven-aged forests comprised of even-aged patches. Less than 4000 ha of old-growth longleaf forest remains. From these few sites remaining, a limited volume of age related literature has evolved, and these studies have been limited to the Lower Coastal Plain physiographic province. This study...
Scar markers in a longleaf pine x slash pine F1 family
C. Weng; Thomas L. Kubisiak; M. Stine
1998-01-01
Sequence characterized amplified region (SCAR) markers were derived from random amplified polymorphic DNAs (RAPDs) that segregate in a longleaf pine x slash pine F1 family. Nine RAPD fragments, five from longleaf pine and four from slash pine, were cloned and end sequenced. A total of 13 SCAR primer pairs, with lengths between 17 and 24...
Evelyn S. Wenk; G. Geoff Wang; Joan L. Walker
2011-01-01
The frequent fires typical of the longleaf pine ecosystem in the south-eastern USA are carried by live understorey vegetation and pine litter. Mature longleaf pine stands in the xeric sandhills region have a variable understory vegetation layer, creating several fuel complexes at the within-stand scale (20 m2). We identified three fuel complexes...
James D. Haywood; Mary Anne S. Sayer; Shi-Jean Susana Sung
2015-01-01
Two studies were established in central Louisiana to compare development of planted loblolly (Pinus taeda L.), longleaf (P. palustris Mill.), and slash (P. elliottii Engelm.) pine. Study 1 was on a Beauregard silt loam, and Study 2 was on Ruston and McKamie fine sandy loams. After 10 growing seasons,...
Flomaton Natural Area: A Living Museum for Longleaf Pine
John S. Kush
1999-01-01
Roland Harper, Alabama state geographer in the first half of this century, wrote in his Economic Botany of Alabama (1928). "Longleaf pine might have once been the most abundant tree in the United States and was certainly the most abundant tree in Alabama." He went on to say, "longleaf had more uses than any other tree in North America...
Effects of thinning and herbicide application on vertebrate communities in longleaf pine plantations
Kristina J. Brunjes; Karl V. Miller; W. Mark Ford; Timothy B. Harrington; M. Boyd Edwards
2003-01-01
Currently, nearly 98% of the land area once dominated by longleaf pine ecosystems has been converted to other uses. The U.S. Forest Service is replanting logged areas with longleaf pine at the Savannah River Site, New Ellenton, South Carolina, in an effort to restore these ecosystems. To ascertain the effects of various silvicultural management techniques on the...
James D. Haywood
2007-01-01
Prescribed burning research on the Kisatchie National Forest, Louisiana spanned the last five decades and led to a greater understanding of fire behavior and the importance of burning in longleaf pine (Pinus palustris P. Mill.) forests. Early research found that biennial burning in May favored the growth of longleaf pine seedlings. However, burning...
Uneven-aged management for longleaf pine: freedom to choose
David Dyson
2012-01-01
Longleaf pine once was present on 90 million acres of the southern landscape, ranging from coastal Virginia to east Texas and from central Florida to the mountains of Alabama. On nearly two-thirds of that area, longleaf pine grew in nearly pure (single-species) stands maintained by frequent, low-intensity surface fires of both natural and human origin. The remaining...
Huifeng Hu; G.Geoff Wang; Joan L. Walker; Benjamin O. Knapp
2012-01-01
Throughout the southeastern United States, land managers are currently interested in converting loblolly pine (Pinus taeda L.) plantations to species rich longleaf pine (Pinus palustris Mill.) ecosystems. In a 3-year study on moderately well- to well-drained soils of the Lower Coastal Plain in North Carolina, we examined the...
John D. Shaw; James N. Long
2007-01-01
We developed a density management diagram (DMD) for longleaf pine (Pinus palustris P. Mill.) using data from Forest Inventory and Analysis plots. Selection criteria were for purity, defined as longleaf pine basal area (BA) that is 90% or more of plot BA, and even-agedness, as defined by a ratio between two calculations of stand density index. The...
Above- and below-ground growth of longleaf pine in response to three prescribed burning regimes
Mary Ann Sword Sayer; Eric Kuehler
2000-01-01
Maintenance of longleaf pine ecosystems requires repeated fire. Past research has indicated that in some situations, regular burning decreases longleaf pine productivity. Growth reductions may be attributed to fire-induced loss of leaf area. It is possible that the loss of leaf area is a function of both fire intensity and the stage of flush development at the time of...
Eric J. Holzmueller; Johanna E. Freeman; Shibu Jose; Diomides S. Zamora; Jason Liddle
2010-01-01
The longleaf pine (Pinus palustris) ecosystem is one of the most threatened ecosystems in North America. Restoration of this ecosystem on flatwoods sites is difficult because of the thick shrub layer and limited nutrient availability of phosphorus (P) that can cause longleaf pine seedlings to remain in the grass stage for a number of years. We...
Delayed prescribed burning in a seedling and sapling Longleaf Pine plantation in Louisiana
James D. Haywood
2002-01-01
To examine the effects of delaying prescribed burning for several years, I initiated five treatments in a 5- to 6-year-old longleaf pine stand: a check of no control; biennial hardwood control by directed chemical application; and biennial burning in either early March, May, or July. After the initial burns, longleaf pine survival decreased from 82 percent in February...
The longleaf pine forests of the southeast: requiem or renaissance?
J. Larry Landers; David H. van Lear; William D. Boyer
1995-01-01
Longleaf pine once may have occupied as much as 92 million acres throughout the southeastern United States, making it the most extensive forest ecosystem in North America dominated by a single species. Probably less than 3 million acres now remain, and the survival of this once vast ecosystem is in doubt.Longleaf pine has many favorable attributes that suit it to a...
James L. Hanula; Michael D. Ulyshen; Dale D. Wade
2012-01-01
Abstract: Longleaf pine (Pinus palustris) ecosystems have been reduced dramatically throughout their range. Prescribed burning is considered the best way to restore and maintain plant communities associated with longleaf pine, but little is known about its effects on coarse woody debris and associated organisms. We conducted a 5-year study on the...
Dale G. Brockway; Kenneth W. Outcalt
2015-01-01
Although longleaf pine (Pinus palustris Mill.) forests have mostly been managed with even-aged methods, interest has been rising in uneven-aged systems, as a means of achieving a broader range of stewardship objectives. Selection silviculture has been practiced on a limited scale in longleaf pine, but difficulty of using traditional approaches and...
James L. Hanula; R. Todd Engstrom
2000-01-01
Automatic cameras were used to record adult red-cockaded woodpecker (Picoides borealis) nest visits with food for nestlings. Diet of nestlings on or near an old-growth longleaf pine (Pinus palustris) remnant in southern Georgia was compared to that in longleaf pine stands established on old farm fields in western South Carolina....
Mary Anne Sword Sayer
2007-01-01
Prescribed fire every 2 to 4 years is an important component of longleaf pine ecosystem restoration. Under some circumstances, repeated fire could change soil physical properties on the Western Gulf Coastal Plain. The objective of this study was to evaluate the soil bulk density, porosity fractions, and plant-available water holding capacity of restored longleaf pine...
Recent advances in understanding duff consumption and post-fire longleaf pine mortality
J. Morgan Varner; Jesse K. Kreye; Joseph O' Brien
2016-01-01
Many longleaf pine stands across the range have suffered decades of fire exclusion, leading to declines in plant and animal biodiversity and complicating restoration and management efforts. Recent research on this topic has focused on the physiological response of overstory longleaf pines and the fuel characteristics of the surrounding forest floor. In small-scale and...
Longleaf pine wood and straw yields from two old-field planted sites in Georgia
E. David Dickens; David J. Moorhead; Bryan C. McElvany; Ray Hicks
2012-01-01
Little is known or published concerning longleaf pineâs growth rate, or wood and pine straw yields on old-field sites. Two study areas were installed in unthinned longleaf plantations established on former old-fields in Screven and Tift Counties, Georgia to address pine growth and straw yields. Soil series were delineated and replicated plots with three levels of...
John R. Brooks; Stacey Martin; Jeff Jordan; Chris Sewell
2002-01-01
Outside bark diameter measurements were taken at 0, 0.5, 2.0, 4.5, 6.0, 16.6 and 4 foot height intervals above 6 foot to a 2 inch dob top diameter on 42 longleaf pine trees selected from intensively managed longleaf pine (Pinus palustris Mill.) plantations in Dougherty and Worth Counties in southwest Georgia. Trees were sampled from unthinned,...
Sharon M. Hermann; John S. Kush
2010-01-01
In 2006, after more than fifty years with no burns, the National Park Service reintroduced fire in montane longleaf pine stands at Horseshoe Bend National Military Park in central AL. Residual longleaf pine stands indicates that this tree once dominated many slopes. The prolonged period of fire exclusion resulted in accumulation of duff and litter that exceeds 4 to 5...
James D. Haywood
2009-01-01
To study how fire or herbicide use influences longleaf pine (Pinus palustris Mill.) overstory and understory vegetation, five treatments were initiated in a 5â6-year-old longleaf pine stand: check, biennial arborescent plant control by directed herbicide application, and biennial burning in March, May, or July. The herbicide or prescribed fire...
An updated whole stand growth and yield system for planted longleaf pine in southwest Georgia
John R. Brooks; Steven B. Jack
2016-01-01
An updated whole stand growth and yield system for planted longleaf pine (Pinus palustris) was developed from permanent plot data collected annually over a 13 to 16 year period. The data set consists of 15 intensively managed longleaf pine plantations that are located in Lee, Worth, Mitchell, and Baker counties in southwest Georgia. Stand survival, dominant height,...
Michelle M. Cram; Dan Shea; Ken Forbus
2010-01-01
A case study of a growing-season burn in a longleaf pine (Pinus palustris) stand affected by annosum root disease was conducted at Savannah River Site, SC. The project utilized a longleaf pine stand from a 1995 evaluation of a stump applicator system. The Tim-bor® (disodium octaborate tetrahydrate) and no stump treatment blocks (NST) were...
Thomas L. Eberhardt; Philip M. Sheridan; Arvind A.R. Bhuta
2011-01-01
Abstract: Longleaf pine (Pinus palustris Mill.) cannot be distinguished from the other southern pines based on wood anatomy alone. A method that involves measuring pith and second annual ring diameters, reported by Arthur Koehler in 1932 (The Southern Lumberman, 145: 36â37), was revisited as an option for identifying longleaf pine timbers and stumps. Cross-section...
Establishing Longleaf Pine Seedlings Under a Loblolly Pine Canopy (User’s Guide)
2017-02-01
converting loblolly pine stands to longleaf pine dominance ..................... 5 3. WHERE DO THE GUIDELINES APPLY? GEOGRAPHIC, EDAPHIC, AND STAND STRUCTURE ...watching, hunting, and off-road vehicle use, and yield valuable products including quality saw- timber and pine needles for landscaping. Longleaf pines...U.S. Fish and Wildlife Service 2003). The foraging habitat guidelines specify characteristics of the pine canopy structure , the abundance of
An Old-Growth Longleaf Standing South Alabama: Study of an Endangered Ecosystem
John S. Kush; Ralph S. Meldahl
1998-01-01
Roland Harper, The State Geographer for Alabama in the first half of this century, wrote in his Economic Botany of Alabama (1928) "longleaf pine might have once been the most abundant tree in the United States and was certainly the most abundant tree in Alabama." He went on to say "longleaf had more uses than any other tree in North America, if not the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, Vanessa R; Kilgo, John C
Abstract - Restoring longleaf pine (Pinus palustris Mill.) savanna is a goal of many southern land managers, and longleaf plantations may provide a mechanism for savanna restoration. However, the effects of silvicultural treatments used in the management of longleaf pine plantations on wildlife communities are relatively unknown. Beginning in 1994, we examined effects of longleaf pine restoration with plantation silviculture on avian and small mammal communities using four treatments in four 8- to 11- year-old plantations within the Savannah River Site in South Carolina. Treatments included prescribed burning every 3 to 5 years, plus: (1) no additional treatment (burn-only control);more » (2) precommercial thinning; (3) non-pine woody control with herbicides; and (4) combined thinning and woody control. We surveyed birds (1996-2003) using 50-m point counts and small mammals with removal trapping. Thinning and woody control alone had short-lived effects on avian communities, and the combination treatment increased avian parameters over the burn-only control in all years. Small mammal abundance showed similar trends as avian abundance for all three treatments when compared with the burn-only control, but only for 2 years post-treatment. Both avian and small mammal communities were temporarily enhanced by controlling woody vegetation with chemicals in addition to prescribed fire and thinning. Therefore, precommercial thinning in longleaf plantations, particularly when combined with woody control and prescribed fire, may benefit early-successional avian and small mammal communities by developing stand conditions more typical of natural longleaf stands maintained by periodic fire.« less
Mary Anne Sword Sayer; James D. Haywood
2005-01-01
The historical range of longleaf pine (Pinus palustris P. Mill) has been greatly reduced, in part, by lack of fire. Recently, the application of fire has become an accepted practice for the restoration of longleaf pine to former parts of its natural range. This study was designed to evaluate the effects of season of prescribed fire on the root growth...
Gregory P. Smith; Victor B. Shelburne; Joan L. Walker
2002-01-01
Fifty-four plots in 33-43 year old longleaf pine plantations were compared to 30 remnant plots in longleaf stands on the Savannah River Site in South Carolina. Within these stands, the structure and composition of primarily the herb layer relative to a presumed soil moisture or soil texture gradient was studied using the North Carolina Vegetation Survey methodology....
Benjamin O. Knapp; Joan L. Walker; G. Geoff Wang; Huifeng Hu; Robert N. Addington
2014-01-01
The desirable structure of longleaf pine forests, which generally includes a relatively open canopy of pines, very few woody stems in the mid-story, and a well-developed, herbaceous ground layer, provides critical habitat for flora and fauna and contributes to ecosystem function. Current efforts to restore longleaf pine to upland sites dominated by second-growth...
Biogeography: An interweave of climate, fire, and humans
Stambaugh, Michael C.; Varner, J. Morgan; Jackson, Stephen T.
2017-01-01
Longleaf pine (Pinus palustris) is an icon of the southeastern United States and has been considered a foundation species in forests, woodlands, and savannas of the region (Schwarz 1907; Platt 1999). Longleaf pine is an avatar for the extensive pine-dominated, fire-dependent ecosystems (Figure 2.1) that provide habitats for thousands of species and have largely vanished from the landscape. Longleaf pine is one of the world's most resilient and fire-adapted trees (Keeley and Zedler 1998), widely perceived as the sole dominant in forests across a large area of the Southeast (Sargent 1884; Mohr 1896; Wahlenberg 1946). Longleaf pine was once a primary natural resource, providing high-quality timber, resins, and naval stores that fueled social changes and economic growth through the 19th and early 20th centuries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glitzenstein, J.; Streng, D.; Wade, D.
2001-01-01
Study represents significant progress in understanding of compositional gradients in longleaf pine plant communities of Central South Carolina. Study shows the importance of water table depths as a controlling variable with vegetation patterns in the field and similar effects in a garden experiment. Grass planting study suggests that observed field distributions of dormant pine savannah grasses derive from complex interactive effects of fire history, hydrology and light environments. Use of regional longleaf data set to identify candidate species for introduction also appears to be a pioneering effort.
ESTATE ROAD WITH LONGLEAF PINE AND WIREGRASS HABITAT, NORTH OF ...
ESTATE ROAD WITH LONGLEAF PINE AND WIREGRASS HABITAT, NORTH OF NURSERY ROAD AND WEST OF HIGHWAY 87, FACING SOUTHEAST - Overhills, Fort Bragg Military Reservation, Approximately 15 miles NW of Fayetteville, Overhills, Harnett County, NC
Cone Storage and Seed Quality in Longleaf Pine
F.T. Bonner
1987-01-01
Immature cones of longleaf pine (Pinus palustris Mill.) can be stored for at least 5 weeks without adversely affecting extraction or seed quality. Cone moisture should be below 50 percent before using heat to open cones.
The vertebrate fauna of Ichauway, Baker County, GA
Smith, L.L.; Steen, D.A.; Stober, J.M.; Freeman, Mary C.; Golladay, S.W.; Conner, L.M.; Cochrane, J.
2006-01-01
Less than 4% of the once extensive Pinus palustris (longleaf pine) ecosystem remains today. Although longleaf pine habitats are recognized for their high species diversity, few published accounts document the vertebrate faunas of remaining tracts. Here we report on the vertebrate species richness of lchauway, an 11,300-ha property in Baker County, GA. The property includes ca. 7300 ha of longleaf pine with native ground cover, along with more than 30 seasonal wetlands and ca. 45 km of riparian habitat associated with Ichawaynochaway Creek, Big Cypress Creek, and the Flint River. The fauna includes 61 species of fish, 31 amphibians, 53 reptiles, 191 birds, and 41 mammals. Despite the relative isolation of the property from other natural ecosystems, the vertebrate fauna of lchauway is remarkably diverse and may offer an example of reference conditions to guide restoration of longleaf pine forests, associated seasonal wetlands, and riparian areas elsewhere in the southeastern U S.
Genetic transformation of Pinus palustris (longleaf pine)
Alex M. Diner
1999-01-01
Longleaf pine (Pinus palustris Mill.) is an important softwood species in the Southeast United States. In presettlement times, this species occupied extensive, pure stands throughout the Atlantic and Gulf Coastal Plains from southeastern Virginia to eastern Texas, as well as south...
Kristina Connor; Rebecca Barlow; Luben Dimov; Mark Smith
2012-01-01
While ecosystem restoration of longleaf pine (Pinus palustris Mill.) forests represents a worthy ideal, it is not always a practical alternative for landowners. Agroforestry systems, which can be developed in existing agricultural land, natural forest stands, plantations, or pasturelands, offer the opportunity to provide multiple benefits: high value...
Allen, J.C.; Krieger, S.M.; Walters, J.R.; Collazo, J.A.
2006-01-01
We determined the effects of fire history and a riparian-upland gradient on the breeding bird community at Fort Bragg Military Installation in North Carolina, one of the largest remnant areas of the endangered longleaf pine (Pinus palustris) ecosystem. Study sites were classified into two treatments: fire-intense (areas experiencing growing-season burns) and fire-suppressed (areas lacking fires). Within each treatment, bird and vegetation data were recorded at point-count stations positioned at three distances from streamhead pocosins to characterize the riparian-upland habitat gradient: 0, 75, and ≥150 m. Total bird abundance and species richness varied significantly along the riparian-upland gradient, with pocosins contributing greatly to avian biodiversity. Our data revealed strong effects of fire history and riparian-upland gradient on bird species, which we described in terms of breeding-bird assemblages. Members of the open longleaf assemblage (e.g., Red- cockaded Woodpecker [Picoides borealis], Bachman's Sparrow [Aimophila aestivalis]) were most common in fire-intense areas and at upland locations. Members of the fire-suppressed assemblage (e.g., Wood Thrush [Hylocichla mustelina], Ovenbird [Seiurus aurocapilla]) were confined to pocosins in fire-intense areas, but became more abundant in fire-suppressed areas. Members of the pocosin assemblage (e.g., Eastern Towhee [Pipilo erythropthalamus], Common Yellowthroat [Geothlypis trichas]) were largely confined to pocosins and, in some cases, were most abundant in fire-intense pocosins. Fire suppression increased structural diversity of vegetation and promoted one breeding-bird assemblage (fire-suppressed), but at the expense of two others (open longleaf, pocosin). Continued management of Fort Bragg to promote longleaf pine restoration is essential for supporting conservation of the open-longleaf bird assemblage; in addition, it will benefit the pocosin assemblage.
Bird assemblage response to restoration of fire-suppressed longleaf pine sandhills.
Steen, David A; Conner, L M; Smith, Lora L; Provencher, Louis; Hiers, J Kevin; Pokswinski, Scott; Helms, Brian S; Guyer, Craig
2013-01-01
The ecological restoration of fire-suppressed habitats may require a multifaceted approach. Removal of hardwood trees together with reintroduction of fire has been suggested as a method of restoring fire-suppressed longleaf pine (Pinus palustris) forests; however, this strategy, although widespread, has not been evaluated on large spatial and temporal scales. We used a landscape-scale experimental design to examine how bird assemblages in fire-suppressed longleaf pine sandhills responded to fire alone or fire following mechanical removal or herbicide application to reduce hardwood levels. Individual treatments were compared to fire-suppressed controls and reference sites. After initial treatment, all sites were managed with prescribed fire, on an approximately two- to three-year interval, for over a decade. Nonmetric multidimensional scaling ordinations suggested that avian assemblages on sites that experienced any form of hardwood removal differed from assemblages on both fire-suppressed sites and reference sites 3-4 years after treatment (i.e., early posttreatment). After >10 years of prescribed burning on all sites (i.e., late posttreatment), only assemblages at sites treated with herbicide were indistinguishable from assemblages at reference sites. By the end of the study, individual species that were once indicators of reference sites no longer contributed to making reference sites unique. Occupancy modeling of these indicator species also demonstrated increasing similarity across treatments over time. Overall, although we documented long-term and variable assemblage-level change, our results indicate occupancy for birds considered longleaf pine specialists was similar at treatment and reference sites after over a decade of prescribed burning, regardless of initial method of hardwood removal. In other words, based on the response of species highly associated with the habitat, we found no justification for the added cost and effort of fire surrogates; fire alone was sufficient to restore these species.
Ecosystem carbon density and allocation across a chronosequence of longleaf pine forests
Lisa J. Samuelson; Thomas A. Stokes; John R. Butnor; Kurt H. Johnsen; Carlos A. Gonzalez-Benecke; Timothy A. Martin; Wendell P. Cropper; Pete H. Anderson; Michael R. Ramirez; John C. Lewis
2017-01-01
Forests can partially offset greenhouse gas emissions and contribute to climate change mitigation, mainly through increases in live biomass. We quantified carbon (C) density in 20 managed longleaf pine (Pinus palustris Mill.) forests ranging in age from 5...
Lars A. Brudvig; John L. Orrock; Ellen I. Damschen; Cathy D. Collins; Philip G. Hahn; W. Brett Mattingly; Joseph W. Veldman; Joan L. Walker
2014-01-01
Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions...
Copper-Treated Containers Influence Root Development of Longleaf Pine Seedlings
James P. Barnett; John M. McGilvray
2002-01-01
Development of longleaf pine (Pinus palustris Mill.) seedlings grown in CopperblockTM containers and BC/ CFC First ChoiceTM Styrofoam blocks, with applications of Spin Out® root growth regulator, were compared to control seedlings. The copper treatments significantly changed seedling morphology; at...
Interim Guidelines Growing Longleaf Seedlings in Containers
James P. Barnett; Mark J. Hainds; George A. Hernandez
2002-01-01
These interim guidelines are designed for producers and users of longleaf pine container stock. They are not meant to exclude any container product. The seedling specifications listed in the preferred category are attainable by the grower and will result in excellent field sur vival and early height growth.
Sells, Sallie M; Held, David W; Enloe, Stephen F; Loewenstein, Nancy J; Eckhardt, Lori G
2015-03-01
Cogongrass (Imperata cylindrica Beav.) is an aggressive, invasive weed with a global distribution. In North America, it threatens the integrity of southeastern pine agroecosystems, including longleaf pine (Pinus palustris Mill.). While studies have examined the impacts of cogongrass and various vegetation management strategies on longleaf pine understory plant communities, little is known about how they impact associated insect communities. To understand the effect of cogongrass management strategies on arthropod natural enemies and bark beetles, a split-plot design was used to test fire (whole-plot) and four subplot treatments (control, herbicide, seeding and herbicide plus seeding). Arthropods were sampled using pitfall traps and sweep samples. After 2 years of sampling, total natural enemies were not significantly affected by subplot treatment but were affected by burn treatment. Upon subdividing natural enemies into groups, only spiders were significantly affected by subplot treatment, but predatory beetles and ants were significantly affected by burn treatment. The abundance of root-feeding bark beetles (Hylastes spp.) was not significant by subplot or whole-plot treatments. Multiple applications of herbicide remain the most effective way to manage cogongrass in longleaf pine. In this study, we found limited evidence that cogongrass management with herbicides would negatively impact arthropod natural enemies associated with longleaf pine or locally increase root-feeding bark beetles. © 2014 Society of Chemical Industry.
Hurricane Katrina winds damaged longleaf pine less than loblolly pine
Kurt H. Johnsen; John R. Butnor; John S. Kush; Ronald C. Schmidtling; C. Dana Nelson
2009-01-01
Some evidence suggests that longleaf pine might be more tolerant of high winds than either slash pine (Pinus elliotii Englem.) or loblolly pine (Pinus taeda L.). We studied wind damage to these three pine species in a common garden experiment in southeast Mississippi following Hurricane Katrina,...
Guidelines for producing quality longleaf pine seeds
James P. Barnett; John M. McGilvray
2002-01-01
Longleaf pine (Pinus palustris Mill.) seeds are sensitive to damage during collection, processing, treatment, and storage. High-quality seeds are essential for successfully producing nursery crops that meet management goals and perform well in the field. Uniformity in the production of pine seedlings primarily depends on prompt and uniform seed...
Moisture stress affects germination of longleaf and slash pine seeds
James P. Barnett
1969-01-01
Osmotic stresses greater than 8 atm markedly reduced germination of both Pinus palustris Mill. P. elliotii Engelm. seeds. At stresses of 18 or more atm, no germination occurred. Moisture content at the onset of germination was twice as high in longleaf as in slash pine seeds.
Germination temperatures for container culture of southern pines
James P. Barnett
1979-01-01
Peak germination of unstratified longleaf, shortleaf, loblolly, and slash pine seeds occurred at 75° F. Longleaf seeds germinated better at lower temperatures and less successfully at higher temperatures than those of slash, loblolly, and shortleaf pine. Stratification broadened the range at which slash, loblolly, and shortleaf germinated satisfactorily. Improvement...
Longleaf Pine: An Updated Bibliography
John S. Kush; Ralph S. Meldahl; William D. Boyer; Charles K. McMahon
1996-01-01
The longleaf pine (Pinus palustris Mill.) forest figured prominently in the cultural and economic development of the South. What was once one of the most extensive forest ecosystems in North America has now become critically endangered (6). At the time of European settlement, this ecosystem dominated as much as 92 million acres throughout the...
Interim Guidelines for Growing Longleaf Seedlings in Containers
James P. Barnett; Mark J. Hainds; George A. Hernandez
2002-01-01
The demand for container longleaf pine (Pinus palustris Mill.) planting stock continues to increase each year. A problem facing both producers and users of container seedlings is the lack of target seedling specifications. Outplanting and evaluating performance of seedlings with a range of physiological and morphological characteristics, over a...
Longleaf Pine Ecosystem Restoration: The Role of Fire
James P. Barnett
1999-01-01
Longleaf pine (Pinus pulustris Mill.) ecosystems once occupied over 36 million hectares in the southeastern United States lower coastal plain. These fire-dependent ecosystems dominated a wide range of coastal plain sites, including dry uplands and low, wet flatlands. Today, less than 1.3 million hectares remain, but these ecosystems represent...
2008 interim guidelines for growing longleaf pine seedlings in container nurseries
R. Kasten Dumroese; James P. Barnett; D. Paul Jackson; Mark J. Hainds
2013-01-01
Production of container longleaf pine (Pinus palustris Mill.) seedlings for reforestation and restoration exceeds that of bare-root production, but information on container production techniques has been slow to develop. Because outplanting success requires quality seedlings, interim guidelines were proposed in 2002 to assist nursery managers and...
Overstory mortality and canopy disturbances in longleaf pine ecosystems
Brian J. Palik; Neil Pederson
1996-01-01
We studied longleaf pine (Pinus palustris Mill.) ecosystems to determine causes and rates of overstory mortality, size of canopy disturbances, and the effects of disturbance on canopy structure. Further, we used redundancy analysis to relate variation in characteristics of mortality across a landscape to site and stand variables. We analyzed...
Phillip J. Craul; John S. Kush; William D. Boyer
2005-01-01
The authors delineate six major climatic areas of the longleaf pine (Pinus palustris Mill.) region. They subdivide these areas into 21 site zones, each of which is deemed homogenous with respect to climate, physiography, and soils. The site zones are mapped and their climate, physiography, and soils described. The authors recommend that plantings of...
Soil nitrogen dynamics as an indicator for longleaf pine restoration
George L. McCaskill; Shibu Jose; Ashvini Chauhan; Andrew V. Ogram
2017-01-01
Assessing the status of soil nutrients with their corresponding microbial communities provides important information about degraded soils during the restoration of coastal wet pine forests. Net nitrogen mineralization, nitrogen-oxidizing bacteria (NOB), and soil microbial biomass were compared with patch-derived volume along a 110-year longleaf pine (Pinus...
William D. Boyer
1963-01-01
Production and dispersal of longleaf pine (Pinus palustris Mill.) seeds were sampled in 1955, 1957, and 1958 on the Escambia Experimental Forest in southwest Alabama.Two transects of seed traps were established at right angles to each of four forest walls enclosing a rectangular 80-acre clearing. Walls were oriented in the cardinal...
2008 interim guidelines for growing longleaf pine seedlings in container nurseries
R. Kasten Dumroese; James P. Barnett; D. Paul Jackson; Mark J. Hainds
2009-01-01
Production of container longleaf pine (Pinus palustris) seedlings for reforestation and restoration plantings exceeds that of bareroot production, but information on container production techniques has been slow to develop. Because success of those outplantings requires quality seedlings, interim guidelines were proposed in 2002 to assist nursery...
Mark J. Hainds; Robert J. Mitchell; Brian J. Palik; Lindsay R. Boring; Dean H. Gjerstad
1999-01-01
Legume species distribution and abundance and selected environmental variables were quantified across a complex gradient (varying in both water-holding capacity and fertility) for frequently burned longleaf pine (Pinus palustris)-wiregrass (Aristida stricta) ecosystems. Legumes were present in all months; however, abundance...
Restoring Aristida stricta to Pinus palustris ecosystems on the Atlantic Coastal Plain, U.S.A.
Kenneth W. Outcalt; Marcus E. Williams; Oghenekome Onokpise
1999-01-01
Aristida stricta (wiregrass), a perennial bunchgrass, quickly accumulates dead leaves, which along with the shed needles of Pinus palustris (longleaf pine) provide the fuel for frequent surface fires. Thus, historically, wiregrass played a key role in many longleaf communities where it significantly...
Ecosystem carbon stocks in Pinus palustris forests
Lisa Samuelson; Tom Stokes; John R. Butnor; Kurt H. Johnsen; Carlos A. Gonzalez-Benecke; Pete Anderson; Jason Jackson; Lorenzo Ferrari; Tim A. Martin; Wendell P. Cropper
2014-01-01
Longleaf pine (Pinus palustris Mill.) restoration in the southeastern United States offers opportunities for carbon (C) sequestration. Ecosystem C stocks are not well understood in longleaf pine forests, which are typically of low density and maintained by prescribed fire. The objectives of this research were to develop allometric equations for...
Stocking Percent And Seedlings Per Acre In Naturally Established Longleaf Pine
William D. Boyer
1977-01-01
A relationship between milacre stocking and number of longleaf pine seedlings (Pinus palustris Mill.) per acre was derived from observations of 128 populations naturally established under a wide range of site conditions. The nonlinear regression obtained from the data was Y = 100 [1-(0.561)X], in which Y is the percentage...
Common Plants of Longleaf Pine-Bluestem Range
Harold E. Grelen; Vinson L. Duvall
1966-01-01
This publication describes many grasses, grasslike plants, forbs, and shrubs that inhabit longleaf pine-bluestem range. The species vary widely in importance; most produce forage palatable to cattle, some are noxious weeds, and others are valuable indicators of trends in range condition. All are abundant enough on certain sites, however, to require identification for...
Canopy disturbance and tree recruitment over two centuries in a managed longleaf pine landscape
Neil Pederson; J. Morgan Varner; Brian J. Palik
2008-01-01
Disturbance history was reconstructed across an 11300 ha managed longleaf pine (Pinus palustris Mill.) landscape in southwestern Georgia, USA. Our specific objectives were to: (i) determine forest age structure; (ii) reconstruct disturbance history through the relationship between canopy disturbance, tree recruitment and growth; and (iii) explore the...
Responses of groundcover under longleaf pine to biennial seasonal burning and hardwood control
William D. Boyer
1995-01-01
Abstract.Responses of understory vegetation to season of bum were followed in young, naturally established, stands of longleaf pine (Pinus palustris Mill.). Treatments included biennial burns in winter, spring, and summer, plus a no-bum check. Groundcover biomass was measured before treatment and again 7 and 9 years later. Total...
R. Kasten Dumroese
2002-01-01
Nursery managers in the Pacific Northwest have decades of experience growing pine seedlings in containers. This wealth of information may benefit the South's newly emerging longleaf pine (Pinus palustris Mill.) container nursery industry. Container seedling root morphology, seedling nutrition, and integrated pest management (sanitation, chemical...
Growing Longleaf Pine Seedlings in Containers
James P. Barnett; John M. McGilvray
2000-01-01
We provide basic guidelines for nursery production of longleaf pine ( Pinus palustris P. Mill. [Pinaceae]) seedlings in containers. The best seedlings are spring sown, grown outdoors in full sun in cavities with a 100-ml (6 in3) volume, 11-cm (4.5 in) depth, and a density around 535 seedlings per m2 (...
Steven T. Brantley; James M. Vose; David N. Wear; Larry Band
2018-01-01
The desired future conditions of longleaf pine (Pinus palustris) can be described by ecosystem structural characteristics as well as by the provision of ecosystem services. Although the desired structural characteristics of restored longleaf pine ecosystems have been described at length, these characteristics deserve a brief review here because...
Fire in longleaf pine stand management: an economic analysis
Rodney L. Busby; Donald G. Hodges
1999-01-01
A simulation analysis of the economics of using prescribed fire as a forest management tool in the management of longleaf pine (Pinus palustris Mill.) plantations was conducted. A management regime using frequent prescribed fire was compared to management regimes involving fertilization and chemical release, chemical control, and mechanical control. Determining the...
Update on Longleaf Pine Seed Supply Meeting
Mark J. Hainds
2002-01-01
This is an update of the activities following the September 1999 meeting concerning measures that were discussed to address the longleaf pine seed supply shortage. The people in attendance were Dr. Dean Gjerstad, Mark Haines, Robert Gandy, Larry Bishop, Dr. Ron Carey, Dr. Carey's graduate student Steve Oak, Dr. Jim Barnett, and Jill Barbour
John R. Butnor; Kurt H. Johnsen; C. Dana Nelson
2012-01-01
In 1960, an experiment was established on the Harrison Experimental Forest in southeast Mississippi to compare productivity and wood properties of planted longleaf (Pinus palustris), loblolly (Pinus taeda), and slash (Pinus elliotii) pines under different management intensities: cultivation, cultivation plus...
The social and economic drivers of the southeastern forest landscape
R. Kevin McIntyre; Barrett B. McCall; David N. Wear
2018-01-01
The last quarter century has witnessed an unprecedented resurgence of interest in the management of longleaf pine (Pinus palustris) forests, a phenomenon that has been coupled with increased understanding of the ecology, management, and restoration of these ecosystems. As interest in longleaf pine becomes more mainstream among landowners and the...
C.D. Nelson; Thomas L. Kubisiak; M. Stine; W.L. Nance
1994-01-01
Eight megagametophyte DNA samples from a single longleaf pine (Pinus palustris Mill.) tree were used to screen 576 oligonucleotide primers for random amplified polymorphic DNA (RAPD) fragments. Primers amplifying repeatable polymorphic fragments were further characterized within a sample of 72 megagametophytes from the same tree. Fragments...
Annual and Geographic variations in cone production by longleaf pine
William D. Boyer
1987-01-01
Abstract.Cone production by longleaf pine (Pinus palustris Mill.) has been monitored on sample trees in shelterwood stands since 1966. Eleven locations, three each-in Alabama and Florida and one in Louisiana, Mississippi, Georgia, South Carolina, and North Carolina were included in the study. Each location had two test areas, with...
R.C. Hare; E.B. Snyder; R.C. Schmidtling
1977-01-01
Biweekly applications of 400 µg GA4/7 plus 25 µg NAA per bud from June 1 to August 10 promoted male and female flowering in longleaf pine (Pinus palustris Mill.), especially when combined with partial branch girdling and NH4N03 fertilization. Fertilization was the...
Root Disease, Longleaf Pine Mortality, and Prescribed Burning
William J. Otrosina; Charles H. Walkinshaw; Stanley J. Zarnoch; Shi-Jean S. Sung; Brian T. Sullivan
2002-01-01
Abstract - A study was initiated at the Savannah River Site, New Ellenton, SC, to determine factors involved in decline of longleaf pine associated with prescribed burning. Pretreatment and post-treatment surveys were conducted on all treatment plots. Symptomatic trees were recorded by means of a crown rating system based upon symptom severity. Three...
Timothy B. Harrington; Christa M. Dagley; M. Boyd Edwards
2002-01-01
Although overstory trees limit the abundance and species richness of herbaceous vegetation in longleaf pine (Pinus palustris Mill.) plantations, the responsible mechanisms are poorly understood because of confounding among limiting factors. In fall 1998, research was initiated to determine the separate effects of above- and belowground competition...
Understory Restoration in Longleaf Pine Plantations: Overstory Effects of Competition and Needlefall
Christa M. Dagley; Timothy B. Harrington; M. Boyd Edwards
2002-01-01
Overstory and midstory vegetation layers strongly limit abundance and species richness of understory herbaceous plants in longleaf pine (Pinus palustris Mill.) plantations. However, the separate effects of overstory competition and needlefall remain unknown and are the subject of this study. Four levels of overstory thinning were applied to 0.10-...
Longleaf Pine Seed Quality and Preparation For Sowing
Robert P. Karrfalt
2002-01-01
The ability to run a highly efficient container nursery is heavily dependent on having excellent seed quality. Longleaf (Pines palustris Mill.) seed quality, although frequently poor, can just as easily be high if care is taken to meet the biological requirements of this species at all steps from seed collection through preparation of seeds for...
The efficacy of breeding for brown spot disease resistance in longleaf pine
D.P. Gwaze; Larry H. Lott; C. Dana Nelson
2003-01-01
The study objective was to determine whether selection for brown spot disease (caused by Scirrhia acicola (Dearn.) Siggers) resistance in longleaf pine (Pinus palustris Mill.) is beneficial for areas where brown spot is not present. Two groups of selections, comprising those that performed (survival and growth) well in the presence...
Predicting plant species diversity in a longleaf pine landscape
L. Katherine Kirkman; P. Charles Goebel; Brian J. Palik; Larry T. West
2004-01-01
In this study, we used a hierarchical, multifactor ecological classification system to examine how spatial patterns of biodiversity develop in one of the most species-rich ecosystems in North America, the fire-maintained longleaf pine-wiregrass ecosystem and associated depressional wetlands and riparian forests. Our goal was to determine which landscape features are...
Shading reduces growth of longleaf and loblolly pine seedlings in containers
James P. Barnett
1989-01-01
Development of longleaf (Pinus palustris Mill.) and loblolly (P. taeda L.) pine seediings growing under three light conditions--full sunlight, 30% shade, and 50% shade--was evaluated. Although there was little difference between development of seedlings in 30% and 50% shade, those grown is full sunlight were signiticantly larger...
Genetic fingerprinting of longleaf pine seed orchard clones following Hurricane Hugo
K. D. Jermstad; P.A. Guge; E.R. Carroll; S.T. Friedman; D.B. Neale
1993-01-01
Isozyme and restriction fragment length polymorphism (RFLP) markers were used to determine the genetic identities of 12 longleaf pine (Pinus palustrus Mill.) ramets whose identities came into question after Hurricane Hugo. Isozyme assays were performed for 12 enzyme systems representing 15 loci. Variation at 6 loci revealed unique identities for 6...
Thomas L. Kubisiak; C.Dana Nelson; W.L. Name; M. Stine
1996-01-01
Considerable concern has been voiced regarding the reproducibility/transferability of RAPD markers across different genetic backgrounds in genetic mapping experiments. Therefore, separate gametic subsets (mapping populations) were used to construct individual random amplified polymorphic DNA (RAPD) linkage maps for a single longleaf pine (Pinus palustris...
Frequency and season of prescribed fire affect understory plant communities in longleaf pine stands
James D. Haywood
2012-01-01
Prescribed fire research on the Kisatchie National Forest in Louisiana spanned the last 7 decades and led to a greater understanding of fire behavior and the importance of fire in longleaf pine (Pinus palustris Mill.) stands. Early research focused on management of the bluestem (Andropogon spp. and Schizachyrium...
Interim Site-index Curves for Longleaf Pine Plantations
William D. Boyer
1980-01-01
No single set of site-index curves can be uniformly applied to young longleaf pine plantations without a sacrifice in reliability. A recent study using plantation remeasurement data indicated that planting-site condition (old fields and mechanically prepared or unprepared cutover forest sites) has a major impact on early plantation height growth. Stand density (...
Intensive longleaf pine management for hurricane recovery: fourth-year results
David S. Dyson; Dale G. Brockway
2015-01-01
The frequency and intensity of hurricanes affecting the United States has been projected to increase during coming decades, and this rising level of cyclonic storm activity is expected to substantially damage southeastern forests. Although hurricane damage to forests in this region is not new, recent emphasis on longleaf pine (Pinus palustris Mill...
Activities That Increase Germination and Establishment of Longleaf Pine Seedlings in Containers
James P. Barnett
2002-01-01
Critical to the successful production of longleaf pine (Pinus palustris Mill.) container stock is use of high quality seeds that are properly prepared and sown. Uniformity in germination and establishment in containers makes nursery production easier and more profitable for the grower. Activities that affect seedling performance include: time of seed...
Structure and composition of historical longleaf pine ccosystems in Mississippi, USA
Brice B. Hanberry; Keith Coursey; John S. Kush
2018-01-01
Longleaf pine (Pinus palustris) historically was a widespread ecosystem composed of a simple tree canopy and grasslands ground layer. After widespread loss of this ecosystem due to logging and fire exclusion, little quantitative information exists about historical structure for restoration goals. We identified composition in De Soto National Forest and Pearl River...
Pest Control For Container-Grown Longleaf Pine
Scott Enebak; Bill Carey
2002-01-01
Several insect, weed, and disease pests are discussed that have been observed affecting container-grown longleaf pine (Pinus palustris Mill.) seedlings. The available tools to minimize the effects of these pests are limited to a few select insecticides, herbicides, and fungicides. Extreme care should be taken to ensure that the chemical chosen is...
Restoring longleaf pine forest ecosystems in the southern United States
Dale G. Brockway; Kenneth W. Outcalt; Donald J. Tomczak; E. E. Johnson
2002-01-01
Longleafpine (Pinus palustris) forests were historically one of the most extensive ecosystems in North America, covering 38 million ha along the coastal plain from Texas to Virginia and extending into central Florida and the Piedmont and mountains of Alabama and Georgia. Throughout its domain. longleaf pine occurred in forests, woodlands and savannas...
Restoring the longleaf pine ecosystem: The role of fire
James P. Barnett
2002-01-01
Longleaf pine (Pinus palustris Mill.) ecosystems once occupied 90 million acres in the southern United States coastal plain. These firedependent ecosystems dominated a wide range of coastal plain sites, including dry uplands and low, wet flatlands. Today, less than 4 million acres remain, but these ecosystems represent significant components of the...
Improving Longleaf Pine Seedling Production By Controlling Seed and Seedling Pathogens
James P. Barnett; John M. McGilvray
2002-01-01
The demand for container longleaf pine (Pinus palustris Mill.) planting stock is increasing across the Lower Gulf Coastal Plain. Poor-quality seeds and seedling losses during nursery culture further constrain a limited seed supply. Improved seed efficiency will be necessary to meet the need for increased seedling production. Seed presowing treatments...
Reducing Seed and Seedlings Pathogens Improves Longleaf Pine Seedlings Production
James P. Barnett; John M. McGilvray
2002-01-01
The demand for container longleaf pine (Pinus palustris Mill.) planting stock is increasing across the Lower Gulf Coastal Plain. Poor-quality seeds and seedling losses during nursery culture further constrain a limited seed supply. Improved seed efficiency will be necessary to meet the need for increased seedling production. We evaluated seed...
The longleaf pine forest: trends and current conditions
Kenneth W. Outcalt; Raymond M. Sheffield
1996-01-01
Longleaf pine (Pinus palustris Mill.) ecosystems once occupied perhaps as much as 60 million acres in the Southeastern United States (fig. l), stretching from southeastern Virginia south to central Florida and west into eastern Texas (Stout and Marion 1993). These fire-dependent ecosystems covered a wide range of site conditions, from low, wet...
James D. Haywood
2000-01-01
Herbaceous plant control with mulch or hexazinone herbicide influenced planted longleaf pine (Pinus palustris Mill.) seedling total height on a silt loam site in central Louisiana. The site had been sheared and windrowed in 1991, and rotary mowed before three treatments were...
A Hydraulically Operated Pine Cone Cutter
Carl W. Fatzinger; M.T. Proveaux
1971-01-01
Mature cones of slash pine (Pinus elliottii Engelm. var. elliottii) and longleaf pine (P. palustris Mill.) can be easily bisected along their longitudinal axes with the hydraulic pine cone cutter described. This cutter eliminates the two major problems of earlier models--undue operator fatigue and the...
Effects of thinning and herbicide application on vertebrate communities in longleaf pine plantations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunjes, Kristina J.; Miller, Karl V.; Ford, Mark W.
Currently, nearly 98% of the land area once dominated by longleaf pine ecosystems has been converted to other uses. The U.S. Forest Service is replanting logged areas with longleaf pine at the Savannah River Site, New Ellenton, South Carolina, in an effort to restore these ecosystems. To ascertain the effects of various silvicultural management techniques on the vertebrate communities, we surveyed small mammal, herpetofaunal, and avian communities in six 10- to 13-year-old longleaf pine plantations subjected to various thinning and herbicide regimes. Areas within each plantation were randomly assigned one of four treatments: thinning, herbicide spraying, thinning and herbicide, andmore » an untreated control. For all vertebrate groups, abundance and species diversity tended to be less in the controls than treated areas. Birds and small mammals were most abundant and diverse in thinned treatments versus spray only and control. Herpetofauna capture rates were low and, thus, we were unable to detect treatment-related differences. Silvicultural treatments that reduce hardwood stem density and pine basal area can enhance habitat conditions for numerous vertebrate species.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Robert.
2007-05-01
I examined the effects of longleaf pine (Pinus palustris) restoration using plantation silviculture on the avian, small mammal, and herpetofauna communities on the Savannah River Site, a National Environmental Research Park near Aiken, South Carolina. Vertebrate populations were surveyed from 1995 through 2003 on a series of plantations that had been precommercially thinned and/or received midstory-control via herbicides between 1994 and 1996. Understory and overstory vegetation was surveyed from 1994 through 2004. Thinning and midstory vegetation reduction treatments had greater herbaceous cover than the control through 2004 after a 1-2 year decline on midstory-control plots. Initially, thinned plots had themore » greatest herbaceous cover. However from 1998 through 2004, the combined treatment had the most herbaceous cover. Without midstory-control, thinning released midstory hardwoods. The effect of thinning or midstory-control alone on bird abundance was positive but short-lived. The positive effects were larger and persisted longer on combined treatment plots. My results indicate that precommercial thinning longleaf plantations, particularly when combined with midstory-control and prescribed fire, had a modest beneficial impact on avian communities by developing stand conditions more typical of natural longleaf stands maintained by periodic fire. All treatments resulted in short-term increases in small mammal abundance, but effects were minimal by 5-7 years after treatment. By 2001, pine basal area had returned to pre-treatment levels on thinned plots suggesting that frequent thinning may be required to maintain abundant and diverse small mammal communities in longleaf pine plantations. I did not detect any treatment related differences in herpetofauna abundance. These results suggest that restoring longleaf with a combination of precommercial thinning, midstory-control with herbicides, and prescribed fire can have a short-term positive effect on the avian and small mammal communities without affecting the herpetofauna community. However, periodic thinnings may be necessary to extend the positive effects.« less
Restoring the ground layer of longleaf pine ecosystems
Joan L. Walker; Andrea M. Silletti
2006-01-01
The longleaf pine ecosystem includes some of the most species-rich plant communities outside of the tropics, and most of that diversity resides in the ground layer vegetation. In addition to harboring many locally endemic and otherwise rare plant species (Peet this volume) and enhancing habitat for the resident fauna (Costa and DeLotelle this volume), the ground layer...
Insect Pollinators of Three Rare Plants in a Florida Longleaf Pine Forest
Theresa Pitts-Singer; James L. Hanula; Joan L. Walker
2002-01-01
As a result of human activity, longleaf pine (Pinus palustris Miller) forests in the southern United States have been lost or drastically altered. Many of the plant species that historically occupied those forests now persist only as remnants and are classified as threatened or endangered. In order to safeguard such species, a better understanding of...
W.G. Ross; D.L. Kulhavy; R.N. Conner
1997-01-01
We measured resin flow of longleaf (Pinus palustris Mill.) pines in red-cockaded woodpecker (Picoides borealis Vieillot) clusters in the Angelina National Forest in Texas, and the Apalachicola National Forest in Florida. Sample trees were categorized as active cavity trees, inactive cavity trees and control trees. Sample trees were further...
Protecting and restoring longleaf pine forests on the Kisatchie National Forest in Louisiana
James D. Haywood; Michael Elliot-Smith; Finis Harris; Alton Martin
2000-01-01
Longleaf pine (Pinus palustris Mill.) forests once constituted a major ecosystem in the Southern United States stretching from southeastern Virginia south to central Florida and west into East Texas. These forests covered a wide range of site conditions, from wet pine flatwoods to dry mountain slopes. Intensive exploitation reduced the extent of old-...
James D. Haywood; Alton Martin; Finis L. Harris; Michael L. Elliott-Smith
1998-01-01
In January 1993, the Kisatchie National Forest and Southern Research Station began monitoring the effects of various management practices on overstory and midstory trees, shrubs, and understory woody and herbaceous vegetation in several longleaf pine (Pinus palustris Mill.) stands. The monitoring of these stands is part of several Ecosystem...
Improving Longleaf Pine Seedling Establishment in the Nursery by Reducing Seedcoat Microorganisms
James Barnett; Bill Pickens; Robert Karrfalt
1999-01-01
Longleaf pine (Pinus palustris Mill.) seeds are sensitive to damage during collection, processing, and storage. Highquality seeds are essential for successful production of nursery crops that meet management goals and perform well in the field. We conducted a series of tests under laboratory and nursery conditions to evaluate what effect a number of...
D. Paul Jackson; Scott A. Enebak; James West; Drew Hinnant
2015-01-01
Renewed efforts in longleaf pine (Pinus palustris Mill.) ecosystem restoration has increased interest in the commercial production of understory herbaceous species. Successful establishment of understory herbaceous species is enhanced when using quality nursery-grown plants that have a better chance of survival after outplanting. Nursery growing practices have not been...
Kim Ludovici; Robert Eaton; Stanley Zarnoch
2018-01-01
Removal of forest floor litter by pine needle raking and prescribed burning is a common practice in longleaf pine (Pinus palustris Mill.) stands on Coastal Plain sites in the Southeastern United States. Repeated removal of litter by raking and the loss of surface organic matter from controlled burns can affect the...
W.B. Patterson; M.A. Sword-Sayer; J.D. Haywood; S. Brooker
2004-01-01
The intensity and frequency of prescribed fire affects soil properties that control its quality. This project evaluates how six vegetation management treatments, four of which include biennial prescribed fire, affect the soil physical properties in two stands of longleaf pine (Pinus palustris Mill.) located on the Kisatchie National Forest, Rapides...
Nutrition challenges of longleaf pine in the southeast
M.A. Sword Sayer; L.G. Eckhardt; E.A. Carter
2009-01-01
Low vigor of longleaf pine has been reported at Fort Benning in Georgia, and Eglin Air Force Base in Florida. In an effort to determine the cause of this problem, foliar nutrition was assessed. Results indicated that macro- and micronutrients were generally sufficient regardless of vigor status. Foliar Mn, however, was elevated at both locations. Excess Mn has the...
Longleaf Pine Seed Presowing Treatements: Effects on Germination and Nursery Establishment
James P. Barnett; Bill Pickens; Robert Karrfalt
1999-01-01
Longleaf pine (Pinus patustris Mill.) seeds are sensitive to damage during collection, processing, and storage. High-quality seeds are essential for successful production of nursery crops that meet management goals and perform well in the field. A series of tests was conducted to evaluate the effect of a number of presowing treatments, e.g.,...
James D. Haywood; Tessa A. Bauman; Richard A. Goyer; Finis L. Harris
2004-01-01
Without fire in the Southeastern United States, loblolly pine (Pinus taeda L.) often becomes the overstory dominant on sites historically dominated by longleaf pine (P. palustris Mill.). Beneath the loblolly pine canopy a mature midstory and understory develops of woody vegetation supporting draped fuels. The resulting deep shade...
Controlled release fertilizer improves quality of container longleaf pine seedlings
R. Kasten Dumroese; Jeff Parkhurst; James P. Barnett
2005-01-01
In an operational trial, increasing the amount of nitrogen (N) applied to container longleaf pine seedlings by incorporating controlled release fertilizer (CRF) into the media improved seedling growth and quality. Compared with control seedlings that received 40 mg N, seedlings receiving 66 mg N through CRF supplemented with liquid fertilizer had needles that were 4 in...
James D. Haywood
2010-01-01
Three longleaf pine (Pinus palustris Mill.) sites in the bluestem (Andropogon spp. and Schizachyrium spp.) range were selected in Louisiana for a 40-month study: a shelterwood, a small pole stand, and a newly planted clearcut. On each site, two treatments were applied: check and prescribed fires (PF). Prescribed...
Carbon sequestration and natural longleaf pine ecosystem
Ram Thapa; Dean Gjerstad; John Kush; Bruce Zutter
2010-01-01
The Southeastern United States was once dominated by a longleaf pine ecosystem which ranged from Virginia to Texas and covered approximately 22 to 36 million ha. The unique fire tolerant species provided the necessary habitat for numerous plant and animal species. Different seasons of prescribed fire have various results on the ecosystem and the carbon which is stored...
Season of burn and hardwood development in young longleaf pine stands
William D. Boyer
1993-01-01
Abstract.Four treatmems--bienniaI burns in winter, spring, and summer, and a no-bum control-were applied in plots in naturally established stands of longleaf pine (Pinus palustris) Mill.). Treatments commenced in 1974, when the pines were 15 years old, and the most recent observations were made in 1992. Midstory hardwood density...
Effects of atmospheric CO2 enrichment on soil CO2 efflux in a young longleaf pine system
G. Brett Runion; John R. Butnor; S. A. Prior; R. J. Mitchell; H. H. Rogers
2012-01-01
The southeastern landscape is composed of agricultural and forest systems that can store carbon (C) in standing biomass and soil. Research is needed to quantify the effects of elevated atmospheric carbon dioxide (CO2) on terrestrial C dynamics including CO2 release back to the atmosphere and soil sequestration. Longleaf...
Longleaf pine characteristics associated with arthropods available for red-cockaded woodpeckers
James L. Hanula; Kathleen E. Franzreb; William D Pepper
2000-01-01
Red-cockaded woodpeckers (Picoides borealis) forage on the boles of living pine trees for a variety of arthropods. To assess the availability of prey under differing stand conditions, the authors sampled arthropods that crawled up the boles of 300 living longleaf pine trees (Pinus palustris) ranging in age from 20 to 100 years with...
A repellent to reduce mouse damage to longleaf pine seed
Dale L. Nolte; James P. Barnett
2000-01-01
Direct seeding is a potential method for reforestation of pines on many southern sites. The success of direct seeding, however, depends, at least in part, in reducing seed predation by birds and rodents. We conducted a series of tests to assess the efficacy of capsicum and thiram in reducing mouse damage to longleaf pine (Pinus palustris) seeds....
Natural longleaf pine: An overview of stand dynamics
Ralph S. Meldahl; John S. Kush; William D. Boyer; Charles K. McMahon
2002-01-01
Prior to the arrival of settlers to the United States. natural communities dominated by longleaf pine occurred throughout most of the southern Atlantic and Gulf coastal plains. These communities once covered an estimated ninety million acres, or two-thirds of the area in the Southeast. It covered more acreage than any other North American ecosystem dominated by a...
The quest for methods to identify longleaf pine stump relicts in Southeastern Virginia
Thomas L. Eberhardt; Philip M. Sheridan; Chi-Leung So; Arvind A.R. Bhuta; Karen G. Reed
2015-01-01
The discovery of lightwood and turpentine stumps in southeastern Virginia raised questions about the true historical range for longleaf pine (Pinus palustris Mill.). Several investigative studies were therefore carried out to develop a method to determine the taxa of these relicts. Chemical approaches included the use of near infrared (NIR) spectroscopy coupled with...
Fungi associated with longleaf pine containers before and after cleaning
Michelle M. Cram
2002-01-01
Soil was collected from used containers before and after they were cleaned at four nurseries that produce longleaf pine seedlings. The nurseries were located in Florida (FL), Georgia (GA), North Carolina (NC), and Mississippi (MS). The GA and MS nurseries used 5% and 10% bleach (sodium hypochlorite), respectively to clean containers, while the NC nursery used chlorine...
Developing management options for longleaf communities of the gulf coastal plain
Kenneth W. Outcalt
2003-01-01
Choosing treatments to reduce fuel loads and readjust structure and composition in longleaf communities of the Gulf Coastal Plains region is difficult because benefits and costs of possible treatment combinations are not fully known. The objective of this research project is to develop management options to reduce fuels and restore the ecosystem that are economically...
Variations in height-over-age curves for young longleaf pine plantations
William D. Boyer
1983-01-01
Abstract.Some environmental factors related to height growth of longleaf pine (Pinus palustris Mill.) plantations were identified by analyses of data from remeasured plots. A total of 660 plots, mostly from the Southwide Pine Seed Source Study, provided 2,737 height-over-age observations from age 3 through ages 15 or 20 to 22. A...
Brown-Spot Needle Blight of Pines
W.R. Phelps; A.G. Kais; T.H. Nicholls
1978-01-01
Brown-spot needle blight, caused by Scirrhia acicola (Dearn.) Siggers, delays growth and causes mortality of longleaf pine (Pinus palustris Mill.). Brown spot reduces total annual growth of southern pines by more than 16 million cubic feet (0.453 million cubic meters) of timber. Damage is most severe on longleaf seedlings in the grass stage; i.e., those that have not...
Managing Longleaf Pine Under The Selection System - Promises and Problems
Robert M. Farrar; William D. Boyer
1991-01-01
Abstract.Six- and ten-year results are reported on group-selection management of two small tracts of longleaf pine (Pinus palustris) in south Alabama. One stand is managed via volume control in the sawtimber component, the other is managed via a structure target, and both are prescription burned on a 3-year cycle. Information is...
Primary wood-products industries in the lower south
H.F. Smith
1940-01-01
The region' covered by the Forest Survey in the lower South embraces the commercially timbered areas of the Gulf States, Georgia, and parts of Arkansas, Oklahoma, Nissouri, Tennessee, and Kentucky. 17 This region is divided into four subregions, the longleaf-slash pine, the delta-hardwoods, "and two pine-hardwood areas, 'east and west. The longleaf-slash...
Root disease and other unforeseen variables that confound restoration efforts
William J. Otrosina; Shi-Jean S. Sung; Stanley J. Zarnoch; Brian T. Sullivan; Charles H. Walkinshaw
2002-01-01
Unanticipated disease problems thwarting restoration efforts can emerge in forest ecosystems. An example is the longleaf pine (Pinus palustris Mill.) ecosystem. This species once occupied nearly 30 million ha but now its range is reduced to approximately 1.5 million ha. Restoring longleaf pine to many sites in its former range is an important goal...
Effects of prescribed fire on production of foliage by sapling longleaf pine
Mary Anne Sword Sayer; J.C.G. Goelz; James D. Haywood
2006-01-01
We conducted an experiment that was designed to show how interaction between prescribed fire and branch phenology affects the growth of planted longleaf pine (Pinus palustris P. Mill.). Treatments were no control of vegetation, vegetation control by burning, and vegetation control by application of herbicides. In the plots burned in May 2003, > 50...
Developmental dynamics of longleaf pine seedling flushes and needles
Shi-Jean Susana Sung; Stanley J. Zarnoch; James D. Haywood; Daniel Leduc; Mary A. Sword-Sayer
2013-01-01
Longleaf pine (Pinus palustris Mill.) seedlings were grown for 27 weeks in containers of three cavity sizes and two cavity types (with and without copper coating) and then outplanted in central Louisiana in November 2004. Three seedlings from each plot were assessed repeatedly for shoot flush and needle development in 2007 and 2008. Cavity type had...
Site and stand factors affecting height growth curves of longleaf pine plantations
William D. Boyer
1981-01-01
Abstract Some factors related to the form of height-over- age curves in longleaf pine plantations were identified from analyses of 660 periodically remeasured plots.Seventy percent of the variation among 32 plantations in form the growth curve was accounted for by stratifying planting sites into old fields, mechanically prepared and unprepared cut-...
Root-infecting fungi associated with a decline of longleaf pine in the southeastern United States
William J. Otrosina; Diane Bannwart; Ronald W. Roncadori
1999-01-01
A 35-year-old longleaf pine stand exhibited trees in various stages of decline. A study was conducted to determine root-infecting fungi and other abnormalities associated with varying degrees of crown symptoms. A four-class crown symptom rating system was devised according to ascending symptom severity. Leptographium procerum and L....
Comparing Planting Tools for Container Longleaf Pine
Daniel J. Leduc; James D. Haywood; Shi-Jean Susana Sung
2011-01-01
We examined if compressing the soil to make a planting hole with a custom-built, solid round dibble versus coring the soil with a commercially available tube dibble influenced container-grown longleaf pine seedling development differently. Seven teen months after planting, the planting tool did not significantly affect root collar diameter, shoot or root mass, root-to-...
Restoring a disappearing ecosystem: the longleaf pine savanna
Tim Harrington; Karl Miller; Noreen Parks
2013-01-01
Longleaf pine (Pinus palustris) savannas of the southeastern United States contain some of the worldâs most diverse plant communities, along with a unique complement of wildlife. Their traditionally open canopy structure and rich understory of grasses and herbs were critical to their vigor. However, a long history of land-use practices such as...
Spring Burn Aids Longleaf Pine Seedling Height Growth
William R. Maple
1977-01-01
Prescribed burning in midspring may stimulate height growth of longleaf pine seedlings. Seedlings were planted on sandy and clayey sites that were prescribed burned 2 years later. Treatments were cool, moderate, and hot burns and an unburned control. The hot, May burn significantly increased height growth of seedlings on the sandy site. The number of seedlings with 50...
Cathryn H. Greenberg
1998-01-01
Several species of southeastern amphibians completely or facultatively depend upon small, ephemeral isolated ponds for reproduction, and inhabit surrounding uplands for much of their adult lives. However, spatio-temporal dynamics of pond use is little known. Since 1994, eight ephemeral ponds embedded within frequently (n=4) or infrequently (n=4) burned longleaf pine...
Jeff S. Glitzenstein; Donna R. Streng; Dale D. Wade
2003-01-01
Southeastern United States habitats dominated by longleaf pine (Pinus pulutris P. Miller) have declined precipitously in area and extent. Conservation of diverse ground-layer vegetation in these endangered habitats depends on prescribed fire. While the need for prescribed fire is now generally accepted, there is disagreement concerning the most...
Scott Horn; James L. Hanula
2002-01-01
Red-cockaded woodpeckers (Picoides borealis) forage on the boles of most southern pines. Woodpeckers may select trees based on arthropod availability, yet no published studies have evaluated differences in arthropod abundance on different species of pines. We used knockdown insecticides to sample arthropods on longleaf (Pinus palustris...
RAPD linkage mapping in a longleaf pine × slash pine F1 family
Thomas L. Kubisiak; C. Dana. Nelson; W.L. Nance; M. Stine
1995-01-01
Random amplified polymorphic DNAs (RAPDs) were used to construct linkage maps of the parents of a longleaf pine (Pinus palustris Mill.) slash pine (Pinus elliottii Englm.) F1 family. A total of 247 segregating loci [233 (1:1), 14 (3:1)] and 87 polymorphic (between-parents), but non-segregating, loci were...
Timothy B. Harrington
2006-01-01
Many of the stand structural characteristics of longleaf pine (Pinus palustris Mill.) forests that existed prior to European colonization have been altered or lost from past disturbance histories (Frost this volume). For example, often missing are the widely spaced, large-diameter trees, the all-aged stand structure that included a vigorous cohort...
R. Justin DeRose; John D. Shaw; Giorgio Vacchiano; James N. Long
2008-01-01
The Southern Variant of the Forest Vegetation Simulator (FVS-SN) is made up of individual submodels that predict tree growth, recruitment and mortality. Forest managers on Ft. Bragg, North Carolina, discovered biologically unrealistic longleaf pine (Pinus palustris) size-density predictions at large diameters when using FVS-SN to project red-cockaded...
Quantitative Trait Inheritance in a Forty-Year-Old Longleaf Pine Partial Diallel Test
Michael Stine; Jim Roberds; C. Dana Nelson; David P. Gwaze; Todd Shupe; Les Groom
2002-01-01
A longleaf pine (Pinus palustris Mill.) 13 parent partial diallel field experiment was established at two locations on the Harrison Experimental Forest in 1960. Parent trees were randomly selected from a natural population growing on the Harrison Experimental Forest, near Gulfport, Miss. Distance between trees chosen as parents ranged from 13 to 357...
Prescribed burning for understory restoration
Kenneth W. Outcalt
2006-01-01
Because the longleaf ecosystem evolved with and is adapted to frequent fire, every 2 to 8 years, prescribed burning is often useful for restoring understory communities to a diverse ground layer of grasses, herbs, and small shrubs. This restoration provides habitat for a number of plant and animal species that are restricted to or found mostly in longleaf pine...
On the number of genes controlling the grass stage in longleaf pine
C. Dana Nelson; C. Weng; Thomas L. Kubisiak; M. Stine; C.L. Brown
2003-01-01
The grass stage is an inherent and distinctive developmental trait of longleaf pine (Pinus palustris), in which height growth in the first few years after germination is suppressed. In operational forestry practice the grass stage extends for nvo to several years and often plays a role in planting failures and decisions to plant alternative species....
Brian K. Via; chi L. So; Leslie H. Groom; Todd F. Shupe; michael Stine; Jan Wikaira
2007-01-01
A theoretical model was built predicting the relationship between microfibril angle and lignin content at the Angstrom (A) level. Both theoretical and statistical examination of experimental data supports a square root transformation of lignin to predict microfibril angle. The experimental material used came from 10 longleaf pine (Pinus palustris)...
Understory plant biomass dynamics of prescribed burned Pinus palustris stands
C.A. Gonzalez-Benecke; L.J. Samuelson; T.A. Stokes; W.P. Cropper Jr; T.A. Martin; K.H. Johnsen
2015-01-01
Longleaf pine (Pinus palustris Mill.) forests are characterized by unusually high understory plant species diversity, but models describing understory ground cover biomass, and hence fuel load dynamics, are scarce for this ï¬re-dependent ecosystem. Only coarse scale estimates, being restricted on accuracy and geographical extrapolation,...
Modeling the Differential Sensitivity of Loblolly Pine to Climatic Change Using Tree Rings
Edward R. Cook; Warren L. Nance; Paul J. Krusic; James Grissom
1998-01-01
The Southwide Pine Seed Source Study (SPSSS) was undertaken in 1951 to determine to what extent inherent geographic variation in four southern pine species (loblolly pine, Pinus taeda L.; slash pine, P. elliottii Engelm. var. elliottii; longleaf pine, P. palutris Mill.; and shortleaf pine,
Early density management of longleaf pine reduces susceptibility to ice storm damage
Timothy B. Harrington; Thaddeus A. Harrington
2016-01-01
The Pax winter storm of February 2014 caused widespread damage to forest stands throughout the southeastern U.S. In a long-term study of savanna plant community restoration at the Savannah River Site, Aiken, SC, precommercial thinning (PCT) of 8- to 11-year-old plantations of longleaf pine (Pinus palustris) in 1994 reduced...
Long term studies on development of longleaf pine plantations
Jeffery C. Goelz; Daniel J. Leduc
2000-01-01
The U.S. Forest Service's Laboratory at Pineville, LA has established and maintained over 250 permanent plots in longleaf pine plantations. This database represents a range of sites in south-central United States. Some of these plots represent over 50 years of stand development in plantations currently over 65 years old. All of the plots have recorded 20 years or...
Composition a Virgin Stand of Longleaf in South Alabama
John S. Kush; Ralph S. Meldahl
2000-01-01
The Flomaton Natural Area is a virgin stand of longleaf pine located in Escambia County, Alabama. Fire has been absent for at least the past 45 years from the stand. Efforts are underway to restore this fire-dependent ecosystem through the re-introduction of fire. This paper presents data collected in advance of the re-introduction of fire. A substantial hardwood...
Timing of longleaf seedling release from over topping hardwoods: A look 30 years later
William D. Boyer
1985-01-01
Significant differences in longleaf pine (Pinus palustris) growth among early and delayed seedling release treatments were recorded at age 10, but these differences had disappeared upon reexamination at age 31.A study begun in 1949 included six release treatments: complete seedling release from overtopping hardwoods at ages 1, 2, 3, 4, and 8 years,...
How does fire affect longleaf pine roots carbohydrates, foliar nutrients, and sapling growth?
Eric A. Kuehler; Marry Anne Sword Sayer; C. Dan Andries
2006-01-01
In central Louisiana, we conducted a prescribed-fire study in a 5-year-old longleaf pine (Pinus palustris P. Mill.) stand to evaluate the effects of fire on fine-root (2- to 5-mm diameter) carbohydrates, dormant season foliar nutrients, and sapling growth. Control, burn, and nonburned vegetation control treatments were studied using a randomized...
Comparing seven planting tools for container-grown longleaf pine seedlings
James D. Haywood; Daniel J. Leduc; Shi-Jean S. Sung
2013-01-01
We compared seven tools for planting container-grown longleaf pine seedlings in fine sandy loam in Louisiana and in fine sand in Alabama. The tools were (1) JIM-GEM® KBC dibble bar, (2) JIM-GEM® OST Dibble Bar, (3) Terra Tech Styro 8 Dibble Stick, (4) container seedling tube dibble, (5) hoedad, (6) auger, and (7) shovel....
John K. Jackson; Dylan N. Dillaway; Michael C. Tyree; Mary Anne Sword Sayer
2015-01-01
Fire is a natural and important environmental disturbance influencing the structure, function, and composition of longleaf pine (Pinus palustris Mill.) ecosystems. However, recovery of young pines to leaf scorch may involve changes in leaf physiology, which could influence leaf water-use efficiency (WUE). This work is part of a larger seasonal...
Shi-Jean S. Sung; James D. Haywood; Mary Anne S. Sayer
2015-01-01
A longleaf pine (Pinus palustris Mill.) field performance study was established in central Louisiana in 2004. The study has received three prescribed burns (February 2006, May 2009, and February 2012) since establishment. In late April 2012, 35 saplings were selected and classified based on ocular estimates of needle mass scorch percentages. Mean...
Understory Plant Community Response to Season of Burn in Natural Longleaf Pine Forests
John S. Kush; Ralph S. Meldahl; William D. Boyer
2000-01-01
A season of burn study was initiated in 1973 on the Escambia Experimental Forest, near Brewton, Alabama. All study plots were established in the 14-year-old longleaf pine (Pinus palustris) stands. Treatments consisted of biennial burns in winter, spring, and summer, plus a no-burn check. Objectives of the current study were to determine...
Slow down, don't burn too fast... Got to make that old-growth last!
John S. Kush; J. Morgan Varner; Ralph S. Meldahl
1998-01-01
Remaining old-growth longleaf pine acreage (1996): 3902 ha (9755 ac) Longleaf pine forests have been termed critically endangered, with less than three percent of its former area remaining. The remaining forest exists in a variety of conditions, ranging from pristine to highly degraded. For the degraded stands, ecokgiil restoration has,been employed to improve the...
E. Louise Loudermilk; J. Kevin Hiers; Scott Pokswinski; Joseph J. O' Brien; Analie Barnett; Robert J. Mitchell
2016-01-01
Understanding plantâplant facilitation is critical for predicting how plant community function will respond to changing disturbance and climate. In longleaf pine (Pinus palustris Mill.) ecosystems of the southeastern United States, understanding processes that affect pine reproduction is imperative for conservation efforts that aim to maintain...
ERIC Educational Resources Information Center
Dentzau, Michael W.; Martínez, Alejandro José Gallard
2016-01-01
A drawing assessment to gauge changes in fourth grade students' understanding of the essential components of the longleaf pine ecosystem was developed to support an out-of-school environmental education program. Pre- and post-attendance drawings were scored with a rubric that was determined to have content validity and reliability among users. In…
Eighteen years of seasonal burning in longleaf pine:effects on overstory the growth [Abstract
William D. Boyer
1993-01-01
The effects of several hardwood control treatments on understory succession and overstory growth have been followed for 19 years on a Coastal Plain site in southwest Alabama. The study began in 1973, with 12 treatment combinations in 14-year-old naturally established longleaf pine (Pinus palustris Mill.) thinned to about 500 stems/acre. Four burning...
Occurrence of fire in longleaf pine stands in the Southeastern United States
Kenneth W. Outcalt
2000-01-01
A healthy understory commmunity is a key factor in maintaining the biodiversity of longleaf pine (Pinus palustris) stands, and there appears to be a strong relationship between the occurrence of fire and the condition of the understory vegetauon. Generally, the understory is healthier in burned areas than in those not burned. TO assess the USC of...
Air lateral root pruning affects longleaf pine seedling root system morphology
Shi-Jean Susana Sung; Dave Haywood
2016-01-01
Longleaf pine (Pinus palustris) seedlings were cultured with air lateral root pruning (side-vented containers, VT) or without (solid-walled containers, SW). Seedling root system morphology and growth were assessed before planting and 8 and 14 months after planting. Although VT seedlings had greater root collar diameter than the SW before planting,...
Long-Term Container Effects on Root System Architecture of Longleaf Pine
Shi-Jean S. Sung; James D. Haywood; Stanley J. Zarnoch; Mary Anne Sword Sayer
2009-01-01
Longleaf pine (Pinus palustris Mill.) seedlings cultured in three container cavity volumes and two cavity types (regular or copper oxychloride coating for root pruning) were excavated three years after planting in 2007 in Louisiana, U.S.A. Copper root pruning did not affect seedling growth. Seedlings from small cavities (60 ml) were smaller than those from medium (93...
John R. Brooks
2004-01-01
A stand dominant height prediction technique, based solely on diameter distribution and total height data from standard inventory procedures, was investigated. The data consist of 15 managed longleaf pine (Pinus palustris Mill.) plantations that are part of a growth and yield study located in Worth, Mitchell, and Baker counties in southwest Georgia....
Air Temperature, Heat Sums, and Pollen Shedding Phenology of Longleaf Pine
William D. Boyer
1972-01-01
Between 1957 and 1966, pollen shedding by longleaf pine (Pinus palustris Mill.) in southwestern Alabama peaked at dates ranging from February 23 to April 3. January 1 and 50°F was the combination of starting date and threshold air temperature that minimized annual variations in heat sums before the trees flowered. The heat sum required for peak...
Brian T. Sullivan; Christopher J. Fettig; William J. Otrosina; Mark J. Dalusky; C. Wayne Berisford
2003-01-01
A randomized complete block experiment was performed to measure the effect of prescribed, dormant-season burns of three different levels of severity (measured as fuel consumption and soil surface heating) on subsequent insect infestation and mortality of mature longleaf pine (Pinus palustris Mill.). Multiple-funnel traps baited with a low release...
Transient expression of GUS in bombarded embryogenic longleaf, loblolly, and eastern white pine
Alex M. Diner; Allan Zipf; Rufina Ward; Yinghua Huang; George Brown
1999-01-01
Embryogenic tissue cultures derived from immature zygotic embryos of longleaf, loblolly, and eastern white pine were maintained in culture for up to 2 years, then bombarded with gold particles coated with a gene construct containing the GUS reporter gene fused to an adenine methyltransferase promoter from an algal virus. Physiological expression of GUS was observed in...
Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker; Susan Cohen
2006-01-01
We tested the effects of eight site preparation treatments on early growth and survival of container-grown longleaf pine (Pinus palustris Mill.) seedlings. Treatments included an untreated check, six combinations of two initial vegetation control treatments (chopping or herbicide) with three planting site conditions (flat [no additional treatment],...
E. David Dickens; Bryan C. McElvany; David J. Moorhead; Philip R. Torrance; P. Mark Crosby
2010-01-01
A study area in Emanuel County, GA installed to discern the effectiveness of various herbicides over newly planted (December 1999) longleaf pine (Pinus palustris Mill.) seedlings on an old-field site. Survival and height growth data after herbicide treatment indicate that the early (April 7, 2000) Oust+Velpar L herbicide treatment gave greater...
Timothy B. Harrington
2011-01-01
To develop silvicultural strategies for restoring longleaf pine (Pinus palustris Mill.) savannas, mortality and growth of overstory pines and midstory hardwoods and abundance and species richness of herbs were studied for 14 years after pine thinning and nonpine woody control. Pine cover in thinned stands was about half of that in nonthinned stands...
Herbaceous weed control in an old-field planted longleaf pine stand
Bryan C. McElvany; E. David Dickens; Philip R. Torrance
2006-01-01
AbstractâOver 110,000 acres of longleaf pine (Pinus palustris Mill.) have been planted on old fields in Georgia since 1998 in the Conservation Reserve Program (CRP). Part of the CRP guidelines mandate that no more than 500 trees acre-1 are planted. This relatively low planting density, coupled with shade intolerance and high cost of containerized...
J.M. Varner; J.K. Hiers; R.D. Ottmar; D.R. Gordon; F.E. Putz; D.D. Wade
2007-01-01
In forests historically maintained by frequent fire, reintroducing fire after decades of exclusion often causes widespread overstory mortality. To better understand this phenomenon. we subjected 16 fire-excluded (ca. 40 years since fire) 10-ha longleaf pine (Pinus palustris Mill.) stands to one of four replicated burning treatments based on...
Longleaf pine inner bark and outer bark thicknesses: Measurement and relevance
Thomas Eberhardt
2013-01-01
Measurements of bark thickness generally ignore the fact that bark is comprised of both living inner bark (phloem) and essentially dead outer bark (rhytidome).Discerning between them has ramifications for the utility of bark as a byproduct of timber harvesting and its functionality on a living tree. Inner bark and outer bark thicknesses for longleaf pine (Pinus...
Long-term effects of biennial prescribed fires on the growth of longleaf pine
William D. Boyer
2000-01-01
The effects of several hardwood control treatments on understory succession and overstory growth have been followed for 22 years on a Coastal Plain site in southwest Alabama. The study began in 1973, with 12 treatment combinations in 14-year-old naturally established longleaf pine (Pinus palustris) thinned to about 1,236 stems per hectare (500 stems...
Ronald C. Schmidtling; V. Hipkins
1998-01-01
Genetic diversity of allozymes at 24 loci was studied in 23 populations of longleaf pine (Pinus palustris Mill.), including three seed orchard populations and an old-growth stand. Overall, the mean number of alleles per polymorphic locus was 2.9, the percentage of polymorphic loci was 92 percent, and the mean expected heterozygosity was 0.105. These...
Timothy B. Harrington; M. Boyd Edwards
1999-01-01
In six 8- to 11-year-old plantations of longleaf pine (Pinus palustris Mill.) near Aiken, S.C., responses of understory vegetation, light, and soil water availability and litterfall were studied in relation to pine thinning (May 1994), herbicidal treatment of nonpine woody vegetation (1995-1996), or the combined treatments (treatment responses...
Vertical distribution and persistence of soil organic carbon in fire-adapted longleaf pine forests
John R. Butnor; Lisa J. Samuelson; Kurt H. Johnsen; Peter H. Anderson; Carlos A. Gonzalez Benecke; Claudia M. Boot; M. Francesca Cotrufo; Katherine A. Heckman; Jason A. Jackson; Thomas A. Stokes; Stanley J. Zarnoch
2017-01-01
Longleaf pine (Pinus palustris Miller) forests in the southern United States are being restored and actively managed for a variety of goals including: forest products, biodiversity, C sequestration and forest resilience in the face of repeated isturbances from hurricanes and climate change. Managed southern pine forests can be sinks for atmospheric...
Analysis of seasonal, diurnal, and noctural growth patterns of young longleaf pine
John C. Gilbert; Ralph S. Meldahl; John S. Kush; William D. Boyer
2006-01-01
Forty longleaf pine (Pinus palustris Mill.) trees initially ranging from 1 to 1.5 m in height were measured on the Escambia Experimental Forest from 1969 through 1980. The trees were evenly divided between two soil types. From 1969 through 1970, height and diameter measurements were recorded one to four times weekly during the growing seasons and...
Thickness and roughness measurements for air-dried longleaf pine bark
Thomas L. Eberhardt
2015-01-01
Bark thicknesses for longleaf pine (Pinus palustris Mill.) were investigated using disks collected from trees harvested on a 70-year-old plantation. Maximum inner bark thickness was relatively constant along the tree bole whereas maximum outer bark thickness showed a definite decrease from the base of the tree to the top. The minimum whole bark thickness followed the...
Brown-spot resistance in natural stands of longleaf pine seedlings
William D. Boyer
1972-01-01
An average of 10 percent of longleaf pine (Pinus palustris Mill.) seedlings in several natural populations remained nearly free of brown-spot needle blight (Scirrhia acicola (Dearn.) Siggers) year after year, despite high injection levels in the population as a whole. In one study, these individuals averaged 8 feet taller at age 24 than surviving trees that were less...
E. David Dickens; Bryan C. McElvany; David J. Moorhead
2010-01-01
This project was initiated on the Sand Hills State Forest in Chesterfield County, SC in May 1995 to determine the benefits of inorganic fertilizer (NPK) and lime stabilized biosolids applications in a twice-thinned longleaf pine (Pinus palustris Mill.) stand planted in 1963 on an excessively well drained deep sand (Alpin soil series). Major...
Precommercial thinning intensity in longleaf pine: effect on product volume and value
John S. Kush; William D. Boyer; Ralph S. Meldahl; George A. Ward
1998-01-01
The possible benefit of precommercial thinning in longleaf pine was evaluated from a spacing study initiated in 1967 on the Escambia Experimental Forest in Brewton, AL. The study was established in dense, naturally established, seedling stands 9 years from seed. Plots were thinned to densities of 300, 600, 900, 1200, and 1500 trees/acre. Later, the initial range of...
Arthropod density and biomass in longleaf pines: effects of pine age and hardwood midstory
Richard N. Conner; Christopher S. Collins; Daniel Saenz; Toni Trees; Richard R. Schaefer; D. Craig Rudolph
2004-01-01
During a 2-year study we examined arthropod communities (density and biomass) on longleaf pines (Pinus palustris) in eastern Texas during spring, summer, and winter on trees in 3 age classes: 40-50, 60-70, and 130-1 50 years, as a potential food source for the red-cockaded woodpecker (Picoides borealis). We also examined arthropod...
Dale G. Brockway; Kenneth W. Outcalt
2000-01-01
A longleaf pine wiregrass ecosystem in the sandhills of north central Florida, upon which turkey oak gained dominance following a wildfire, was treated with applications of hexazinone (1.1 or 2.2 kg/ha) in May 1991. All applications successfully reduced competition from oaks in the overstory and understory (mortality >80%), resulting in progressive increases in...
J. O' Brien; L. Dyer; R. Mitchell; A. Hudak
2013-01-01
Longleaf pine (Pinus palustris) ecosystems are remarkably rich in plant species and represent the dominant upland forest type in several southeastern military installations. Management of these forests on installations is critical both to fulfill the military mission and to conserve this unique natural resource. The researchers will couple a series of field experiments...
The influence of canopy, sky condition, and solar angle on light quality in a longleaf pine woodland
Stephen D. Pecot; Stephen B. Horsley; Michael A. Battaglia; Robert J. Mitchell
2005-01-01
Light transmittance estimates under open, heterogeneous woodland canopies such as those of longleaf pine (Pinus palustris Mill.) forests report high spatial and temporal variation in the quantity of the light environment. In addition, light quality, that is, the ratio of red to far-red light (R:FR), regulates important aspects of plant...
Jane E. Dell; Lora A. Richards; Joseph J. O’Brien; E. Louise Loudermilk; Andrew T. Hudak; Scott M. Pokswinski; Benjamin C. Bright; J. Kevin Hiers; Brett W. Williams; Lee A. Dyer
2017-01-01
Frequently burned low-latitude coniferous forests maintain a high-diversity understory. Longleaf pine (Pinus palustris Mill.) forests and woodlands have exceptionally high diversity at fine scales and very frequent fire return intervals (1â3 yr). Furthermore, the positive association between high-frequency, low-intensity surface fires and high species richness in...
James D. Haywood
2012-01-01
Pine straw harvesting can provide an economic benefit to landowners, but the practice may also change the composition of plant communities. This research was initiated in a 34-year-old stand of longleaf pine (Pinus palustris Mill.) established in 1956 to study how pine straw management practices (fertilization, prescribed fire, and straw harvesting) affected plant...
Measuring crown dynamics of longleaf pine in the sandhills of Eglin Air Force Base
Matt Anderson; Greg L. Somers; W. Rick Smith; Mickey Freeland; Donna Ruth
1998-01-01
The USDA Forest Service SRS, in cooperation with Auburn University, is developing an individual tree, spatially explicit, and btoiogicaily based growth model for natural iongieaf pine sands at Eglin Air Force Base in Florida. The goal of the growth model is to provide a tool for the land managers to compare silvicultural practices effects on the light and water...
Richard R. Schaefer; Robert R. Fleet; D. Craig Rudolph; Nancy E. Koerth
2016-01-01
We examined habitat use by Anolis carolinensis (Green Anole) at perch heights â¤5 m, particularly in relation to woody shrub-level vegetation, in fire-maintained Pinus palustris (Longleaf Pine) forest stands on the Angelina National Forest in eastern Texas. We surveyed Green Anoles in 2 stands, within 20 established plots per...
Growing season burns for control of hardwoods in longleaf pine stands
William D. Boyer
1990-01-01
Summer fires in existing longleaf pine stands carry undue risk of pine mortality. One summer fire caused as much mortality among pines in the l- through 4-inch d.b.h. classes as two successive summer fires among hardwoods of the same size. Mortality among mature pines was also excessive. Hardwood top-kill following a spring fire seemed affected more by fire intensity...
James D. Haywood; Harold E. Grelen
2000-01-01
Prescribed burning treatments were applied over a 20 yr period in a commonly randomized field study to determine the effects of various fire regimes on vegetation in a direct seeded standof longleaf pine (Pinus palustris Mill.). Seeding was done in November 1968. The study area was broadcast-burned about 16 months after seeding. The initial...
Thomas L. Eberhardt; Philip M. Sheridan; Jolie M. Mahfouz
2009-01-01
Monoterpenes in exudates, phloem and sapwood have received considerable attention relative to the active defenses of pine trees. However, little is known about the composition and function of the heartwood monoterpenes. To address this deficiency, monoterpene contents and relative compositions were determined for sapwood and heartwood samples from longleaf pine (Pinus...
Glyndon E. Hatchell; H. David Muse
1990-01-01
Longleaf pine seedlings performed satisfactorily after planting on deep sands in South Carolina in dry years when: (1) They were vertically root-pruned in the nursery. (2) They had 14 or more first-order lateral roots and nonfibrous root systems. (3) They had six or more first-order lateral roots and highly fibrous root systems.
Growth and Yield Predictions for Thinned Stands of Even-aged Natural Longleaf Pine
Robert M. Farrar
1979-01-01
This paper presents a system of equations and resulting tables that can predict stand volumes for thinned natural longleaf pine. The system can predict current and future total stand volume in cubic feet and merchantable stand volume in cubic feet, cords, and board feet. The system also provides for estimating dry-weight production of wood. The system uses input data...
Thomas L. Eberhardt; Philip M. Sheridan; Jolie M. Mahfouz; Chi-Leung So
2006-01-01
Wood anatomy cannot be used to differentiate between the southern yellow pine species. Wood samples collected from old resinous turpentine stumps in coastal Virginia were subjected to chemical and spectroscopic analyses in an effort to determine if they could be identified as longleaf pine. The age and resinous nature of the samples were manifested in high specific...
Changes in Woodland Use from Longleaf Pine to Loblolly Pine
Yaoqi Zhang; Indrajit Majumdar; John Schelhas
2010-01-01
Abstract: There is growing evidence suggesting that the United Statesâ roots are not in a state of pristine nature but rather in a human-modified landscape over which Native people have since long exerted vast control and use. The longleaf pine is a typical woodland use largely shaped by fires, lightning and by Native Americans. The frequent fires, which were used to...
Brian P. Oswald; Ike McWhorter; Penny. Whisenant
2011-01-01
The 13,250-acre Upland Island Wilderness (UIW) in Texas was established in 1984 and is managed by the United States Forest Service (USFS). Historically, portions of it consisted of open and diverse longleaf pine (Pinus palustris) ecosystems which depend on frequent, low-intensity surface fires. As in many other relatively small wilderness areas, the...
Root system architecture: The invisible trait in container longleaf pine seedlings
Shi-Jean Susana Sung; R. Kasten Dumroese
2013-01-01
Longleaf pine (Pinus palustris Mill.) seedlings cultured in four cavity volumes (60 to 336 ml [3.7 to 20.5 cubic inches]), two root pruning treatments (with or without copper coating), and 3 nitrogen levels (low to high) were grown for 29 weeks before they were outplanted into an open area in central Louisiana. Twenty-two months after outplanting, 3 seedlings were...
J. Larry Landers; William D. Boyer
1999-01-01
Upland longleaf pine forests, woodlands, and savannas once occupied most of the Atlantic and Gulf Coastal Plains from southeastern Virginia south through the northern two-thirds of Florida and west to east Texas, with extensions into the Piedmont and mountains of Alabama and northwest Georgia. South Florida slash pine is native to the southern half of peninsular...
John S. Kush; Ralph S. Meldahl; William D. Boyer
1999-01-01
In 1973, a study was established in south-central Alabama, U.S.A., to determine the effects of hardwood control treatments on understory succession and overstory growth in natural stands of longleaf pine (Pinus palustris Mill.). The treatments were seasonal biennial burns and a no-burn check, each combined with three supplemental hardwood control...
J.L. Hanula; D.D. Wade; J. O' Brien; S.C. Loeb
2009-01-01
A 5·year study of long· term (40 years) study plots was conducted on the Osceola National·Forest in northern Florida to determine how dormant-season fire frequency (annual, biennial,quadrennial, or unburned) affects ground-dwelling macroarthropod use of coarsewoody debris in longleaf pine (Pinus...
Developing Tools for Ecological Forestry and Carbon Management in Longleaf Pine
2016-08-01
22 Table 5.2. Carbon concentrations of plants in the ground cover layer by growth form and carbon concentrations in longleaf...harvest. The stand is connected at the edges to form periodic boundary conditions (toroidal) ...............................................241...coarse root mass. Table 5.2. Carbon concentrations (%) of plants in the ground cover layer (< 1 m in height) by growth form and C
Andrew T. Hudak; Roger D. Ottmar; Robert E. Vihnanek; Clint S. Wright
2014-01-01
The RxCADRE research team collected multi-scale measurements of pre-, during, and post-fire variables on operational prescribed fires conducted in 2008, 2011, and 2012 in longleaf pine ecosystems in the southeastern USA. Pre- and post-fire surface fuel loads were characterized in alternating pre- and post-fire clip plots systematically established within burn units....
Stephen D. Pecot; Robert J. Mitchell; Brian J. Palik; Barry Moser; J. Kevin Hiers
2007-01-01
A trenching study was used to investigate above- and below-ground competition in a longleaf pine (Pinus palustris P. Mill.) woodland. Trenched and nontrenched plots were replicated in the woodland matrix, at gap edges, and in gap centers representing a range of overstory stocking. One-half of each plot received a herbicide treatment to remove the...
Huifeng Hu; Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker
2013-01-01
We installed a field experiment to support the development of protocols to restore longleaf pine (Pinus palustris Mill.) to existing mature loblolly pine (P. taeda L.) stands at Camp Lejeune, NC. Seven canopy treatments included four uniform and three gap treatments. The four uniform treatments were defined by target residual basal...
Shi-Jean S. Sung; Daniel J. Leduc; James D. Haywood; Thomas L. Eberhardt; Mary Anne Sword Sayer; Stanley J. Zarnoch
2012-01-01
A field experiment of the effects of container cavity size and root pruning type on longleaf pine was established in November, 2004, in central Louisiana. Sapling stems were first observed to be leaning after hurricane Gustav (September, 2008) and again in August, 2009. To examine the relationship between stem displacement and root system architecture, a stem-displaced...
Effects of basal area on survival and growth of longleaf pine when practicing selection silviculture
Ferhat Kara; Edward F. Loewenstein; Dale G. Brockway
2017-01-01
Aim of study: Uneven-aged (UEA) management systems can achieve multiple-use objectives, however, use of UEA techniques to manage longleaf pine (Pinus palustris Mill.) forests are still open to question, because of the speciesâ intolerance of competition. It was our aim to examine the influence of different levels (9.2, 13.8 and...
Weather effects on the success of longleaf pine cone crops
Daniel J. Leduc; Shi-Jean Susana Sung; Dale G. Brockway; Mary Anne Sword Sayer
2016-01-01
We used National Oceanic and Atmospheric Administration weather data and historical records of cone crops from across the South to relate weather conditions to the yield of cones in 10 longleaf pine (Pinus palustris Mill.) stands. Seed development in this species occurs over a three-year time period and weather conditions during any part of this...
Sixty years of management on a small longleaf pine forest: a technical note
R.J. Barlow; J.S. Kush; William D. Boyer
2011-01-01
In 1948, the US Forest Service set aside a 40-ac tract on the Escambia Experimental Forest in South Alabama to demonstrate longleaf pine (Pinus palustris Mill.) management for the small landowner. At that time, the management goal for this "Farm 40" was to produce high-quality poles and logs on a 60-year rotation. The goal was to be accomplished entirely...
Chelcy R. Ford; Emily S. Minor; Gordon A. Fox
2010-01-01
We investigated the effect of fire and fire frequency on stand structure and longleaf pine (Pinus palustris P. Mill.) growth and population demography in an experimental research area in a southwest Florida sandhill community. Data were collected from replicated plots that had prescribed fire-return intervals of 1, 2, 5, or 7 years or were left...
Destroyed virgin longleaf pine stand lives-on digitally
John C. Gilbert; S. Kush; Rebecca J. Barlow
2015-01-01
The Flomaton Natural Area (FNA) once stood as one of the few remnant fragments of virgin, old-growth longleaf pine stands (Pinus palustris Mill.) in the Southeast. This 80-acre stand contained trees over 200 years old. A restoration effort began in 1994 to remove off-site trees and to reintroduce fire to the site after over 40 years of fire suppression. A geographic...
James D. Haywood
2005-01-01
To determine if either herbaceous or woody plants are more competitive with longleaf pine (Pinuspalustris P. Mill.) seedlings, two vegetation management treatments-herbaceous plant control (HPC, No or Yes) and woody plant control (WPC, No or Yes) were applied in newly established longleaf pine plantings in a randomized complete block 2 x 2 factorial...
Sixty years of management on a small longleaf pine forest
Rebecca J. Barlow; John S. Kush; William D. Boyer
2013-01-01
A management demonstration in a 40-acre tract of second-growth longleaf pine (Pinus palustris Mill.) had its 60th anniversary in 2008. A demonstration was initiated by the U.S. Forest Service in 1948 on the Escambia Experimental Forest in south Alabama. At the time, the management goal for this Farm Forty was to produce high-quality poles and logs on...
Ferhat Kara; Edward F. Loewenstein
2015-01-01
Even-aged silvicultural methods have been successfully used to manage longleaf pine (Pinus palustris Mill.) forests for wood production; however, successful use of uneven-aged methods to manage this ecosystem is less well documented. In this study, the effects of varying levels of residual basal area (RBA) (9.2, 13.8, and 18.4 m2...
C. Weng; Thomas L. Kubisiak; C. Dana Nelson; M. Stine
2002-01-01
Random amplified polymorphic DNA (RAPD) markers were employed to map the genome and quantitative trait loci controlling the early growth of a pine hybrid F1 tree (Pinus palustris Mill. à P. elliottii Engl.) and a recurrent slash pine tree (P. ellottii Engl.) in a (longleaf pine à slash pine...
Changren Weng; Thomas L. Kubisiak; C. Dana Nelson; James P. Geaghan; Michael Stine
1999-01-01
Single marker regression and single marker maximum likelihood estimation were tied to detect quantitative trait loci (QTLs) controlling the early height growth of longleaf pine and slash pine using a ((longleaf pine x slash pine) x slash pine) BC, population consisting of 83 progeny. Maximum likelihood estimation was found to be more power than regression and could...
Dale G. Brockway; Edward F. Loewenstein; Kenneth W. Outcalt
2014-01-01
Proportional basal area (Pro-B) was developed as an accurate, easy-to-use method for making uneven-aged silviculture a practical management option. Following less than 3 h of training, forest staff from a range of professional backgrounds used Pro-B in an operational-scale field study to apply single-tree selection and group selection systems in longleaf pine (Pinus...
William D. Boyer
2001-01-01
Research on longleaf pine (Pinus palustris Mill.) has been carried out for over 50 yr on a coastal plain site in south Alabama. Studies havie included the original second-growth stands and also naturally established third-growth stands. Site index data revealed that estimated site index values for third growth generally exceeded those for second...
William D. Boyer
2001-01-01
Research on longleaf pine (Pinus palustris Mill.) has been carried out for over 50 yr on a Coastal Plain site in south Alabama. Studies have included the original second-growth stands and also naturally established third-growth stands. Site index data revealed that estimated site index values for third growth generally exceeded those for second...
Mary Anne Sword Sayer; Shi-Jean Susana Sung; James D. Haywood
2011-01-01
Cultural practices that modify root system structure in the plug of container-grown seedlings have the potential to improve root system function after planting. Our objective was to assess how copper root pruning affects the quality and root system development of longleaf pine seedlings grown in three cavity sizes in a greenhouse. Copper root pruning increased seedling...
James D. Haywood; Shi-Jean Susana Sung; Mary Anne Sword Sayer
2012-01-01
However, type and size of container can influence field performance. In this study, longleaf pine seedlings were grown in Beaver Plastics Styroblocks either without a copper treatment (Superblock) or with a copper oxychloride coating (Copperblock) and with three sizes of cavities that were 60, 108, and 164 ml. Seedlings from the six container types (two types of...
Longleaf pine cone collection on the Sabine National Forest during October 2014
George F. Weick; Earlene Bracy Jackson; Robert Smith; James Crooks; Barbara Crane; James M. Guldin
2017-01-01
Longleaf pine is known as an unpredictable seed producer, with adequate or better seed crops occurring once every 5 years or longer. However, in the spring before seed fall, good cone crops can be predicted by visually counting green cones in the canopy, which by then are large enough to be seen, especially when binoculars of suitable power are used. During the spring...
Soil physical effects on longleaf pine performance in the West Gulf Coastal Plain
Mary Anne S. Sayer; James D. Haywood; Shi-Jean Susana Sung
2015-01-01
We summarize 8 years of soil physical property responses to herbicide manipulation of the understory in two young longleaf pine stands growing on either Ruston fine sandy loam or Beauregard silt loam soils. We also describe relationships between pine sapling vigor and the soil physical environment across a 3-year period on the Ruston soil and a 2-year period on the...
Ecophysiological comparison of 50-year-old longleaf pine, slash pine and loblolly pine.
Lisa Samuelson; Tom Stokes; Kurt Johnsen
2012-01-01
Longleaf pine (Pinus palustris Mill.), a species that once dominated the southeastern USA, is considered to be more drought tolerant than the principle plantation species in the South, loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii Engelm.), and so is predicted to better cope with increases in drought frequency associated with climate change. To...
Chi-Leung So; Thomas L. Eberhardt; Daniel J. Leduc; Leslie H. Groom; Jeffery C. G. Goelz
2010-01-01
Twenty 70-year-old longleaf pine (Pinus palustris Mill.) trees were harvested from a spacing, thinning, and pruning study on the Kisatchie National Forest, LA. Tree property mapping was used to show the property variation within and between three of the trees. The construction of such maps is both time consuming and cost prohibitive using traditional...
May Burns Stimulate Growth in Longleaf Pine Seedlings
Harold E. Grelen
1978-01-01
Annual and biennial fires applied around May 1 are more beneficial to the growth of young longleaf pines than March 1 fires. Four years of testing on a poorly drained silt loam soil in central Louisiana showed that more grass-stage seedlings survived. began height growth, and grew taller on plots burned in May than on March-burned plots. A biennial May burn was best...
Application of ground-based LIDAR for fine-scale forest fuel modeling
E. Louise Loudermilk; Abhinav Singhania; Juan C. Fernandez; J. Kevin Hiers; Joseph J. O' Brien; Wendell P. Cropper Jr.; K. Clint Slatton; Robert J. Mitchell
2007-01-01
Frequent (1 to 5 year) low intensity fire regimes of longleaf pine (Pinus palustris) savannas of the Southeastern United States create a continuous fuelbed of understory grasses, forbs, flammable pine needle litter, with interstitial hardwood shrubs. Measuring the spatial heterogeneity of these fine-fuels can be difficult, requiring intensive field...
Modeling the Carbon Implications of Ecologically Based Forest Management
2015-08-20
richness across an environmental gradient in a fire-dependent ecosystem. American Journal of Botany 88, 2119-2128. Kolb, T.E., and J.E. Stone. 2000...litter. Canadian Journal of Botany 61(3):872-879 Loudermilk, E.L., Cropper, W.P., Mitchell, R.J., Lee, H., 2011. Longleaf pine (Pinus palustris) and
Modeling the Carbon Implications of Ecologically-Based Forest Management
2015-08-01
richness across an environmental gradient in a fire-dependent ecosystem. American Journal of Botany 88, 2119-2128. Kolb, T.E., and J.E. Stone. 2000...litter. Canadian Journal of Botany 61(3):872-879 Loudermilk, E.L., Cropper, W.P., Mitchell, R.J., Lee, H., 2011. Longleaf pine (Pinus palustris) and
Coates, T Adam; Chow, Alex T; Hagan, Donald L; Wang, G Geoff; Bridges, William C; Dozier, James H
2017-09-01
The O horizon, or detrital layer, of forest soils is linked to long-term forest productivity and health. Fuel reduction techniques, such as prescribed fire, can alter the thickness and composition of this essential ecosystem component. Developing an understanding of the changes in the chemical composition of forest detritus due to prescribed fire is essential for forest managers and stakeholders seeking sustainable, resilient, and productive ecosystems. In this study, we evaluated fuel quantity, fuel structure, and detrital chemical composition in longleaf pine ( Miller) forests that have been frequently burned for the last 40 yr at the Tom Yawkey Wildlife Center in Georgetown, SC. Our results suggest that frequent prescribed fire reduces forest fuel quantity ( < 0.01) and vertical structure ( = 0.01). Using pyrolysis-gas chromatography/mass spectrometry as a molecular technique to analyze detrital chemical composition, including aromatic compounds and polycyclic aromatic hydrocarbons, we found that the chemical composition of forest detritus was nearly uniform for both unburned and burned detritus. Our burning activities varied in the short term, consisting of annual dormant, annual growing, and biennial dormant season burns. Seasonal distinctions were present for fuel quantity and vertical fuel structure, but these differences were not noted for the benzene/phenol ratio. These results are significant as more managers consider burning existing longleaf stands while determining effective management practices for longleaf stands yet to be established. Managers of such stands can be confident that frequent, low-intensity, low-severity prescribed burns in longleaf pine forests do little to affect the long-term chemical composition of forest detritus. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Chi-Leung So; Thomas L. Eberhardt
2013-01-01
Twenty 70-year-old longleaf pine trees from a spacing, thinning, and pruning study were harvested, from which samples were analyzed for gross calorific value (GCV). A strong correlation was found between GCV and extractive contents for the unextracted wood samples. Although lignin content should impact GCV, no correlation was found between the variation in GCV with...
R.J. Mitchell; J.K. Hiers; J.J. O' Brien; S.B. Jack; R.T. Engstrom
2006-01-01
The longleaf pine (Pinus palustris Mill.) forest ecosystem of the US southeastern Coastal Plain, among the most biologically diverse ecosystems in North America, originally covered over 24 x 106 ha but now occupy less than 5% of their original extent. The key factor for sustaining their high levels of diversity is the frequent...
Shi-Jean Susana Sung; James D. Haywood; Mary A. Sword-Sayer; Kristina F. Connor; D. Andrew Scott
2010-01-01
Longleaf pine (Pinus palustris Mill.) seedlings were grown for 27 weeks in 3 container cavity sizes [small (S), medium (M), and large (L)], and half the containers were coated with copper (Cu). In November 2004, we planted 144 seedlings from each of 6 container treatments in each of 4 replications in central LA. All plots were burned in February 2006...
Long-term impact of aerial application of 2,4,5-T to longleaf pine (Pinus palustris)
J.L. Michael
1980-01-01
Twenty years after aerial application of 2.24 kg ae/ha of the butoxy ethanol ester of 2,4,5-T [(2,4,5-trichlorophenoxy) acetic acid] to release grass stage longleaf pine (Pinus palustris Mill.) seedlings, stocking was the same for each of the three treated and control 4-ha plots. Treated plots, however, had significantly greater tree diameter (10%),...
Mary Anne Sword Sayer
2013-01-01
Interaction between soil bulk density and low soil water content may create root growth-limiting soil strengths. In a Louisiana longleaf pine (Pinus palustris Mill.) stand, soil strength at the zero- to 20.0-cm depth was assessed in response to no fire or biennial fires in May. At the 5.0- to 20.0-cm depth, one-half of the measurements were...
Marry Anne Sword Sayer; James D. Haywood; Shi-Jean Susana Sung
2009-01-01
With six container types, we tested the effects of cavity size (i.e., 60, 93, and 170 ml) and copper root pruning on the root system development of longleaf pine (Pinus palustris Mill.) seedlings grown in a greenhouse. We then evaluated root egress during a root growth potential test and assessed seedling morphology and root system development 1 year after planting in...
James L Hanula; Dale Wade; Joseph O' Brien; Susan Loeb
2009-01-01
A 5-year study of long-term (40 years) study plots was conducted on the Osceola National Forest in northern Florida to determine how dormant-season fire frequency (annual, biennial, quadrennial, or unburned) affects ground-dwelling macroarthropod use of coarse woody debris in longleaf pine (Pinus palustris Mill.) forests. Pitfall traps were used to sample arthropods...
Fungicides improve field performance of stored loblolly and longleaf pine seedlings
John C. Brissette
1996-01-01
Seedlings of loblolly and longleaf pine lifted in December, January, and February were treated with either benomyl or ridomil before cold storage. Along with an untreated control, they were planted after cold storage of less than 1 wk, 3 wk, and 6 wk. Survival was measured in mid-June after planting, and after 1 and 4 yr in the field. Total height was measured after 4...
First look at smoke emissions from prescribed burns in long-unburned longleaf pine forests
Sheryl K. Akagi; Robert J. Yokelson; Ian R. Burling; David R. Weise; James Reardon; Shawn Urbanski; Timothy J. Johnson
2014-01-01
While fire has long played a role in the longleaf pine ecosystem, there are still some stands in the southeastern United States where fire has not been reintroduced and fuels have accumulated for 50 years or more. As part of a larger study examining fuel loading and smoke emissions on Department of Defense installations in the southeastern U.S., fuels and trace...
K.W. Outcalt; D.G. Brockway
2010-01-01
Longleaf pine (Pinus palustris Mill.) forests of the Gulf Coastal Plain historically burned every 2â4 years with low intensity fires, which maintained open stands with herbaceous dominated understories. During the early and mid 20th century however, reduced fire frequency allowed fuel to accumulate and hardwoods to increase in the midstory and overstory layers, while...
James L. Hanula; Dale D. Wade
2003-01-01
Frequent dormant-season prescribed burns were applied at 1-, 2- and 4-year intervals to longleaf pine stands, Pinus palustris, for over 40 years on the Osceola National Forest in Baker County, Florida. Control plots were unburned for the same period of time. Pitfall traps were operated from November 1994 to October 1999 to measure the short- and long...
Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker; Robert N. Addington
2016-01-01
Over the past few decades, reports of forest health problems have concerned scientists and forest managers in loblolly pine forests of the southeastern United States. Several interacting factors likely contribute to observed reductions in loblolly pine health, including low resource availability on many upland sites that were once dominated by longleaf pine. Currently...
Brain J. Palik; William K. Michener; Robert J. Mitchell; Joseph W. Jones
1999-01-01
Unlike annual floods, large floods affect plant species outside of bottomland ecosystems. We know little about the effects of catastrophic floods on upland plants because of the rarity of this type of disturbance. Here we report on mortality and vegetative recovery of upland longleaf pines (Pinus palustris) after a large flood. The flood top-killed most seedlings...
George L. McCaskill; Jose. Shibu
2012-01-01
Tropical storms, fire, and urbanization have produced a heavily fragmented forested landscape along Floridaâs Gulf coast. The longleaf pine forest, one of the most threatened ecosystems in the US, makes up a major part of this fragmented landscape. These three disturbance regimes have produced a mosaic of differently-aged pine patches of single or two cohort structures...
Dale G. Brockway; Kenneth W. Outcalt; R. Neal Wilkins
1998-01-01
A longleaf pine wiregrass ecosystem in the sandhills of north central Florida, upon which turkey oak gained dominance following a wildfire, was treated with low rate (1.1 or 2.2 kg/ha) applications of the herbicide hexazinone during the 1991 growing season. All applications successfully reduced oak in the overstory and understory, mortality ranging from 83 to 93...
Jennifer L. Gagnon; Steven B. Jack
2004-01-01
Prescribed fire may be removed as a forest management tool by regulatory agencies concerned about air quality issues. Herbicides have been proposed as substitutes for prescribed fires in southern pine forests, but we are aware of no studies that examine the effects of herbicide application in mature, fire maintained longleaf pine (Pinus palustris...
Thermal biology of eastern box turtles in a longleaf pine system managed with prescribed fire.
Roe, John H; Wild, Kristoffer H; Hall, Carlisha A
2017-10-01
Fire can influence the microclimate of forest habitats by removing understory vegetation and surface debris. Temperature is often higher in recently burned forests owing to increased light penetration through the open understory. Because physiological processes are sensitive to temperature in ectotherms, we expected fire-maintained forests to improve the suitability of the thermal environment for turtles, and for turtles to seasonally associate with the most thermally-optimal habitats. Using a laboratory thermal gradient, we determined the thermal preference range (T set ) of eastern box turtles, Terrapene carolina, to be 27-31°C. Physical models simulating the body temperatures experienced by turtles in the field revealed that surface environments in a fire-maintained longleaf pine forest were 3°C warmer than adjacent unburned mixed hardwood/pine forests, but the fire-maintained forest was never of superior thermal quality owing to wider T e fluctuations above T set and exposure to extreme and potentially lethal temperatures. Radiotracked turtles using fire-managed longleaf pine forests maintained shell temperatures (T s ) approximately 2°C above those at a nearby unburned forest, but we observed only moderate seasonal changes in habitat use which were inconsistent with thermoregulatory behavior. We conclude that turtles were not responding strongly to the thermal heterogeneity generated by fire in our system, and that other aspects of the environment are likely more important in shaping habitat associations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Brian K. Via; Todd F. Shupe; Leslie H. Groom; Michael Stine; Chi-Leung So
2003-01-01
In manufacturing, monitoring the mechanical properties of wood with near infrared spectroscopy (NIR) is an attractive alternative to more conventional methods. However, no attention has been given to see if models differ between juvenile and mature wood. Additionally, it would be convenient if multiple linear regression (MLR) could perform well in the place of more...
John R. Butnor; Kurt H. Johnsen; C. Dana Nelson
2016-01-01
Prescribed fire is used to reduce hardwood competition, enhance herbaceous biodiversity, and improve forage quality in longleaf pine stands. These are primarily low intensity, dormant season burns, during which a portion of the biomass in shrub, herb, and the forest floor layers are combusted. Burning releases elemental nutrients bound in biomass, and there are several...
Kirsten C. New; James L. Hanula
1998-01-01
The effects of dormant and growing season prescribed burns on the potential arthropod prey of the red-cockaded woodpecker (Picoides borealis) were studied in longleaf pine (Pinus palustris Mill.) stands on the upper Coastal Plain of South Carolina. Sampling was conducted 0, 1, 2, or 3 years post burn. Stands were burned once during the winters of 1991, 1992, 1993, and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glyndon E. Hatchell, Research Forester, Retired Institute for Mycorrhizal Research and Development Athens, Georgia and H. David Muse, Professor Department of Mathematics University of North Alabama Florence, Alabama
1990-02-01
A large study of morphological attributes of longleaf pine nursery stock at the Savannah River site of the various attributes measured, only number of lateral roots and seedling diameters were related to performance. Lateral root pruning in the nursery also improved performance. Both survival and growth during the first two years were strongly correlated with larger stem diameter and larger root system development.
Restoring a legacy: longleaf pine research at the Forest Service Escambia Experimental Forest
Kristina F. Connor; Dale G. Brockway; William D. Boyer
2014-01-01
Longleaf pine ecosystems are a distinct part of the forest landscape in the southeastern USA. These biologically diverse ecosystems, the native habitat of numerous federally listed species, once dominated more than 36.4 million ha but now occupy only 1.4 million ha of forested land in the region. The Escambia Experimental Forest was established in 1947 through a 99-...
William D. Boyer; George A. Ward; John S. Kush
1997-01-01
The Escambia Experimental Forest was formally established on April 1,1947, when the T.R. Miller Mill Company of Brewton, AL, provided land, at no cost, to the USDA Forest Service through a 99 yr lease. This 3000 ac tract in southwest Alabama was selected as typical of second-growth longleaf pine forests that, at the time, covered about 6.2 million ac in south Alabama...
Mechanical Properties of Longleaf Pine Treated with Waterborne Salt Preservatives.
1983-08-01
were measured on small clear bending specimens of longleaf pine sapwood treated with three wateroorne salt preservative systems. Preservative...wood, but the results of past research in this area (appendix I: Literature) are inconsistent and inconclusive, particularly at high loadings of...pine sapwood either air or kiln dried after treatment to retentions from 0.25 to 2.5 lb/ft3. ACA has no effect on MOR. but CCA-type preservatives
R. Kasten Dumroese; Shi-Jean Susana Sung; Jeremiah R. Pinto; Amy Ross-Davis; D. Andrew Scott
2013-01-01
Few pine species develop a seedling grass stage; this growth phase, characterized by strong, carrot-like taproots and a stem-less nature, poses unique challenges during nursery production. Fertilization levels beyond optimum could result in excessive diameter growth that reduces seedling quality as measured by the root bound index (RBI). We grew longleaf pine (Pinus...
N2-fixation dynamics during ecosystem recovery in longleaf pine savannas
NASA Astrophysics Data System (ADS)
Tierney, J. A.
2016-12-01
Biological nitrogen fixation (BNF) can alleviate nitrogen (N) deficiencies that inhibit ecosystem recovery. BNF may be particularly important in ecosystems recovering from land-use change and perturbations from fire, as these disturbances can exacerbate N limitation. Here, we investigated how BNF dynamics change throughout ecosystem development in restored longleaf pine savannas, and how BNF responds to fire. We conducted this study in 59 1-ha plots of longleaf pine distributed across gradients of stand age and fire frequency at two sites in the southeastern US. We determined BNF contributions by three functional groups of N2-fixers (herbaceous legumes, biological soil crusts, and asymbiotic N2-fixing bacteria) by quantifying their abundances, assessing nitrogenase activity, and scaling these estimates up to the plot-level. To determine aboveground N demands, we measured tree growth using diameter increments and allometric equations paired with tissue-specific N concentrations. We fit linear models to evaluate the effects of stand age and time since fire on BNF and N demands throughout stand development, and performed separate analyses on mature stands to determine how fire return interval affects BNF. We observed distinct temporal patterns of N2-fixation across stand development among the three groups of N2 fixers. N2-fixation by legumes and asymbiotic bacteria remained low until stands reached maturity, while N2-fixation by biological soil crusts (BSCs) was high in juvenile stands and decreased with stand age. These patterns suggest a compensatory shift in the importance of these functional groups throughout stand development such that contributions from BSCs are critical for meeting N demands when disturbances may hinder the establishment of legumes and asymbiotic bacteria. N2-fixation by BSCs and asymbiotic bacteria throughout stand development was not affected by time since fire, but legume abundance increased the year following fire, suggesting a recovery mechanism provided by this group. Our findings suggest that BSCs are the most important source of new N in the early phases of ecosystem restoration. In contrast, legumes appear to be critical in mature longleaf pine stands that burn frequently, and particularly for supplying new N in the year following a fire event.
Ecosystem carbon density and allocation across a chronosequence of longleaf pine forests.
Samuelson, Lisa J; Stokes, Thomas A; Butnor, John R; Johnsen, Kurt H; Gonzalez-Benecke, Carlos A; Martin, Timothy A; Cropper, Wendell P; Anderson, Pete H; Ramirez, Michael R; Lewis, John C
2017-01-01
Forests can partially offset greenhouse gas emissions and contribute to climate change mitigation, mainly through increases in live biomass. We quantified carbon (C) density in 20 managed longleaf pine (Pinus palustris Mill.) forests ranging in age from 5 to 118 years located across the southeastern United States and estimated above- and belowground C trajectories. Ecosystem C stock (all pools including soil C) and aboveground live tree C increased nonlinearly with stand age and the modeled asymptotic maxima were 168 Mg C/ha and 80 Mg C/ha, respectively. Accumulation of ecosystem C with stand age was driven mainly by increases in aboveground live tree C, which ranged from <1 Mg C/ha to 74 Mg C/ha and comprised <1% to 39% of ecosystem C. Live root C (sum of below-stump C, ground penetrating radar measurement of lateral root C, and live fine root C) increased with stand age and represented 4-22% of ecosystem C. Soil C was related to site index, but not to stand age, and made up 39-92% of ecosystem C. Live understory C, forest floor C, downed dead wood C, and standing dead wood C were small fractions of ecosystem C in these frequently burned stands. Stand age and site index accounted for 76% of the variation in ecosystem C among stands. The mean root-to-shoot ratio calculated as the average across all stands (excluding the grass-stage stand) was 0.54 (standard deviation of 0.19) and higher than reports for other conifers. Long-term accumulation of live tree C, combined with the larger role of belowground accumulation of lateral root C than in other forest types, indicates a role of longleaf pine forests in providing disturbance-resistant C storage that can balance the more rapid C accumulation and C removal associated with more intensively managed forests. Although other managed southern pine systems sequester more C over the short-term, we suggest that longleaf pine forests can play a meaningful role in regional forest C management. © 2016 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagley, C.M.
2001-07-03
Research to determine the separate effects of above-ground and below-ground competition and needlefall of over-story pines on under-story plant performance. Periodic monitoring of over-story crown closure, soil water content, temperature, and nutrients were conducted. Results indicate competition for light had a more determental effect on performance of herbaceous species in longleaf pine plantations than that resulting from competition for below-ground resources.
D. Paul Jackson; R. Kasten Dumroese; James P. Barnett; William B. Patterson
2007-01-01
A fertilization rate of 2 or 3 mg nitrogen (N) per week for 20 weeks yielded longleaf pine (Pinus palustris) seedlings grown inside a greenhouse that survived well and produced good root collar diameter (RCD) growth the first year after outplanting. Of a range of fertilization rates (0.5 to 4 mg N/week), the 2 mg rate yielded seedlings that did not...
John S. Kush; John C. Gilbert
2010-01-01
The US Forest Service Regional Longleaf Pine Growth Study (RLGS) began its eighth re-measurement (40th year) during 2004 autumn. The study has 305 plots of which 171 plots are located on the Escambia Experimental Forest (EEF) in Brewton AL. EEF is operated by the U.S. Forest Service in cooperation with the T.R. Miller Mill Company. The RLGS has plots distributed across...
Ant community change across a ground vegetation gradient in north Florida's longleaf pine flatwoods
Lubertazzi, David; Tschinkel, Walter R.
2003-01-01
Ant communities in longleaf pine habitats are poorly known and hence the naturally occurring ant assemblages of a large portion of southeastern North America are not well understood. This study examined the diverse ant community found in the longleaf pine flatwoods of north Florida and tested how ant diversity changes along a herbaceous ground cover gradient. Restoring the ground cover to its original floral composition is an important focus of longleaf pine conservation and hence it is important to understand how native faunal communities vary with ground cover variation. Using 4 sampling methods, we characterized the ant community and analyzed its within-habitat variation among 12 study sites. We found the highest plot species richness (55 species) and within-habitat species richness (72 species) ever recorded for North American ants. The ants formed three distinct communities. The low-diversity arboreal and subterranean assemblages varied little across forest stands while the diversity of the species-rich ground foraging ant community was negatively correlated with percent herbaceous cover. The imported fire ant, Solenopsis invicta (monogyne form), was unexpectedly found to be abundant in high herbaceous cover sites. Floral restoration of the pine flatwoods, which is increasing the proportion of herbaceous cover, is likely to cause an increase in the abundance of the imported fire ant. Abbreviation: ANF Apalachicola National Forest PMID:15841237
2015-05-01
Model averaging for species richness on post-agricultural sites (1000 m2) with a landscape radius of 150 m. Table 3.4.8. Model selection for species ... richness on post-agricultural sites (1000 m2) with a landscape radius of 150 m. Table 3.4.9. Model averaging for proportion of reference species on...Direct, indirect, and total standardized effects on species richness . Table 4.1.1. Species and number of seeds added to the experimental plots at
Benjamin O. Knapp; Joan L. Walker
2013-01-01
Land managers throughout the Southeast are interested in restoring the longleaf pine (Pinus palustris Mill.) ecosystem, due in part to its value as habitat for the endangered red-cockaded woodpecker (Picoides borealis). In 2003, we established a study at Camp Lejeune, NC, to determine the effects of common site preparation...
The influence of fuelbed properties on moisture drying rates and timelags of longleaf pine litter
Ralph M. Nelson; J. Kevin Hiers
2008-01-01
Fire managers often model pine needles as 1 h timelag fuels, but fuelbed properties may significantly change the rate at which needles exchange moisture with the atmosphere. The problem of determining whether moisture loss from fine fuels is being controlled by individual particles or by the fuelbed remains unresolved. Results from this laboratory experiment indicate...
Predicting longleaf pine coarse root decomposition in the southeastern US
Peter H. Anderson; Kurt H. Johnsen; John R. Butnor; Carlos A. Gonzalez-Benecke; Lisa J. Samuelson
2018-01-01
Storage of belowground carbon (C) is an important component of total forest C. However, belowground C changes temporally due to forest growth and tree mortality (natural and via harvesting) and these fluctuations are critical for modeling C in forests under varying management regimes. To date, little progress has been made in quantifying the rate of decay of southern...
Joshua W. Campbell; James L. Hanula; Kenneth W. Outcalt
2008-01-01
Treatments to restore understory plant communities of mature (50-80-year old) longleaf pine (Pinus palustris Mill.) and reduce risks of wildfire were applied to 10 ha plots that had a substantial shrub layer due to lack of fire. Plots were located in the Coastal Plain of Alabama and treatments consisted of: (1) untreated control, (2) growing season...
Sources, sinks, and spatial ecology of cotton mice in longleaf pine stands undergoing restoration
Sharp, N.W.; Mitchell, M.S.; Grand, J.B.
2009-01-01
The Fire and Fire Surrogate studya replicated, manipulative experimentsought the most economically and ecologically efficient way to restore the nation's fire-maintained ecosystems. As part of this study, we conducted a 3-year markrecapture study, comprising 105,000 trap-nights, to assess demographic responses of cotton mice (Peromyscus gossypinus) to Fire and Fire Surrogate treatments at the Gulf Coastal Plain site, where longleaf pine was the ecosystem to be restored. We compared competing models to evaluate restoration effects on variation in apparent survival and recruitment over time, space, and treatment, and incorporated measures of available source habitat for cotton mice with reverse-time modeling to infer immigration from outside the study area. The top-ranked survival model contained only variation over time, but the closely ranked 2nd and 3rd models included variation over space and treatment, respectively. The top 4 recruitment models all included effects for availability of source habitat and treatments. Burning appeared to degrade habitat quality for cotton mice, showing demographic characteristics of a sink, but treatments combining fire with thinning of trees or application of herbicide to the understory appeared to improve habitat quality, possibly creating sources. Bottomland hardwoods outside the study also acted as sources by providing immigrants to experimental units. Models suggested that population dynamics operated over multiple spatial scales. Treatments applied to 15-ha stands probably only caused local variation in vital rates within the larger population. ?? 2009 American Society of Mammalogists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aschenbach, Todd, A; Foster, Bryan, L.; Imm, Donald, W.
2010-09-01
AbstractAbstract The significant loss of the longleaf pine-wiregrass ecosystem in the southeastern United States has serious implications for biodiversity and ecosystem functioning. In response to this loss, we have initiated a long-term and landscape-scale restoration experiment at the 80,125 ha (310 mi2) Department of Energy Savannah River Site (SRS) located near Aiken, South Carolina. Aristida beyrichiana (wiregrass), an important and dominant grass (i.e., a “matrix” species) of the longleaf pine savanna understory, and 31 other herbaceous “non-matrix” species were planted at six locations throughout SRS in 2002 and 2003. Of the 36,056 transplanted seedlings, 75% were still alive in Junemore » 2004, while mean 1–2 year survival across all planted species was 48%. Lespedeza hirta (hairy lespedeza) exhibited the greatest overall survival per 3 ×3 m cell at 95%, whereas Schizachyrium spp. (little bluestem) exhibited the greatest mean cover among individual species at 5.9%. Wiregrass survival and cover were significantly reduced when planted with non-matrix species. Aggregate cover of all planted species in restored cells averaged 25.9% in 2006. High rates of survival and growth of the planted species resulted in greater species richness (SR), diversity, and vegetative cover in restored cells. Results suggest that the loss of the longleaf pine-wiregrass ecosystem may be ameliorated through restoration efforts and illustrate the positive impact of restoration plantings on biodiversity and vegetative cover.« less
Eric R. Scholl; Thomas A. Waldrop
1999-01-01
Although prescribed burning is common in the Southeastern United States, most fuel models apply to only western forests. This paper documents a fuel classification system that was developed for plantations of loblolly and longleaf pines for the Upper Coastal Plain region. Multivariate analysis of variance and discriminant function analysis were used to confirm eight...
Daniel J. Leduc; Thomas G. Matney; Keith L. Belli; V. Clark Baldwin
2001-01-01
Artificial neural networks (NN) are becoming a popular estimation tool. Because they require no assumptions about the form of a fitting function, they can free the modeler from reliance on parametric approximating functions that may or may not satisfactorily fit the observed data. To date there have been few applications in forestry science, but as better NN software...
C.A. Gonzalez-Benecke; Salvador A. Gezan; Lisa J. Samuelson; Wendell P. Cropper; Daniel J. Leduc; Timothy A. Martin
2014-01-01
Accurate and efficient estimation of forest growth and live biomass is a critical element in assessing potential responses to forest management and environmental change. The objective of this study was to develop models to predict longleaf pine tree diameter at breast height (dbh) and merchantable stem volume (V) using data obtained from field measurements. We used...
DCERP Annual Technical Report 4: March 2010 - February 2011
2011-05-01
of monitoring may be necessary to fully characterize and model the impact of major climatic events (e.g., tropical cyclones, major droughts ) and...stressors (past, present, and future) at local and regional scales; take account of extreme climatic events (e.g., hurricanes, droughts ); and integrate...the longleaf pine ( Pinus palustris), savannas, and pocosins (shrub bog) that dominate MCBCL’s terrestrial environments. Variation in the biota and
Prioritizing landscapes for longleaf pine conservation
Grand, James B.; Kleiner, Kevin J.
2016-01-01
We developed a spatially explicit model and map, as a decision support tool (DST), to aid conservation agencies creating or maintaining open pine ecosystems. The tool identified areas that are likely to provide the greatest benefit to focal bird populations based on a comprehensive landscape analysis. We used NLCD 2011, SSURGO, and SEGAP data to map the density of desired resources for open pine ecosystems and six focal species of birds and 2 reptiles within the historic range of longleaf pine east of the Mississippi River. Binary rasters were created of sites with desired characteristics such as land form, hydrology, land use and land cover, soils, potential habitat for focal species, and putative source populations of focal species. Each raster was smoothed using a kernel density estimator. Rasters were combined and scaled to map priority locations for the management of each focal species. Species’ rasters were combined and scaled to provide maps of overall priority for birds and for birds and reptiles. The spatial data can be used to identify high priority areas for conservation or to compare areas under consideration for maintenance or creation of open pine ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarnoch, Stanley J.; Blake, John I.; Parresol, Bernard R.
Snags are standing dead trees that are an important component in the nesting habitat of birds and other species. Although snag availability is believed to limit populations in managed and non-managed forests, little data are available to evaluate the relative effect of stand conditions and management on snag occurrence. We analyzed point sample data from an intensive forest inventory within an 80,000 ha landscape for four major forest types to support the hypotheses that routine low-intensity prescribed fire would increase, and thinning would decrease, snag occurrence. We employed path analysis to define a priori causal relationships to determine the directmore » and indirect effects of site quality, age, relative stand density index and fire for all forest types and thinning effects for loblolly pine and longleaf pine. Stand age was an important direct effect for loblolly pine, mixed pine-hardwoods and hardwoods, but not for longleaf pine. Snag occurrence in loblolly pine was increased by prescribed fire and decreased by thinning which confirmed our initial hypotheses. Although fire was not important in mixed pine-hardwoods, it was for hardwoods but the relationship depended on site quality. For longleaf pine the relative stand density index was the dominant variable affecting snag occurrence, which increased as the density index decreased. Site quality, age and thinning had significant indirect effects on snag occurrence in longleaf pine through their effects on the density index. Although age is an important condition affecting snag occurrence for most forest types, path analysis revealed that fire and density management practices within certain forest types can also have major beneficial effects, particularly in stands less than 60 years old.« less
Reptile assemblage response to restoration of fire-suppressed longleaf pine sandhills.
Steen, David A; Smith, Lora L; Conner, L M; Litt, Andrea R; Provencher, Louis; Hiers, J Kevin; Pokswinski, Scott; Guyer, Craig
2013-01-01
Measuring the effects of ecological restoration on wildlife assemblages requires study on broad temporal and spatial scales. Longleaf pine (Pinus palustris) forests are imperiled due to fire suppression and subsequent invasion by hardwood trees. We employed a landscape-scale, randomized-block design to identify how reptile assemblages initially responded to restoration treatments including removal of hardwood trees via mechanical methods (felling and girdling), application of herbicides, or prescribed burning alone. Then, we examined reptile assemblages after all sites experienced more than a decade of prescribed burning at two- to thee-year return intervals. Data were collected concurrently at reference sites chosen to represent target conditions for restoration. Reptile assemblages changed most rapidly in response to prescribed burning, but reptile assemblages at all sites, including reference sites, were generally indistinguishable by the end of the study. Thus, we suggest that prescribed burning in longleaf pine forests over long time periods is an effective strategy for restoring reptile assemblages to the reference condition. Application of herbicides or mechanical removal of hardwood trees provided no apparent benefit to reptiles beyond what was achieved by prescribed fire alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanula, J.L.; Engstrom, R.T.
1999-10-01
Automatic cameras were used to record adult woodpecker diets in old-growth and old-field longleaf pine in the South. Roaches were the number one prey for the woodpeckers based on either biomass or numbers. The latter ranged from 37% to 57% of the prey numbers and 55%-73% of the biomass. Morisita's index of similarity between old-field and old growth varied from 0.89 to 0.95. The authors conclude that the prey base is similar in both conditions and that old-growth provides similar foraging habitat.
Longleaf Pine Characterists Associated with Arthropods Available for Red-Cockaded Woodpeckers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanula, J.L.; Franzreb, K.E.; Pepper, W.D.
1999-01-25
The authors sampled arthropods on 300 longleaf pine under varying stand conditions and ranging in age from 20 to 100 years. The most diverse orders were beetles, spiders, ants, wasps and bees. The most abundant were aphids and Hymenoptera with a large number of ants. Arthropod biomass per tree increased in age up to 65-70 years, but biomass was highest in the youngest stands. Arthropods were positively correlated to bark thickness and tree diameter, but negatively related to the stand basal area. No relationships were found between abundance and ground vegetation conditions.
2011-05-01
of monitoring may be necessary to fully characterize and model the impact of major climatic events (e.g., tropical cyclones, major droughts ) and...stressors (past, present, and future) at local and regional scales; take account of extreme climatic events (e.g., hurricanes, droughts ); and integrate...the longleaf pine ( Pinus palustris), savannas, and pocosins (shrub bog) that dominate MCBCL’s terrestrial environments. Variation in the biota and
Are prescribed fire and thinning dominant processes affecting snag occurrence at a landscape scale?
Zarnoch, Stanley J.; Blake, John I.; Parresol, Bernard R.
2014-11-01
Snags are standing dead trees that are an important component in the nesting habitat of birds and other species. Although snag availability is believed to limit populations in managed and non-managed forests, little data are available to evaluate the relative effect of stand conditions and management on snag occurrence. We analyzed point sample data from an intensive forest inventory within an 80,000 ha landscape for four major forest types to support the hypotheses that routine low-intensity prescribed fire would increase, and thinning would decrease, snag occurrence. We employed path analysis to define a priori causal relationships to determine the directmore » and indirect effects of site quality, age, relative stand density index and fire for all forest types and thinning effects for loblolly pine and longleaf pine. Stand age was an important direct effect for loblolly pine, mixed pine-hardwoods and hardwoods, but not for longleaf pine. Snag occurrence in loblolly pine was increased by prescribed fire and decreased by thinning which confirmed our initial hypotheses. Although fire was not important in mixed pine-hardwoods, it was for hardwoods but the relationship depended on site quality. For longleaf pine the relative stand density index was the dominant variable affecting snag occurrence, which increased as the density index decreased. Site quality, age and thinning had significant indirect effects on snag occurrence in longleaf pine through their effects on the density index. Although age is an important condition affecting snag occurrence for most forest types, path analysis revealed that fire and density management practices within certain forest types can also have major beneficial effects, particularly in stands less than 60 years old.« less
Tree planters notes. Volume 43, Number 3, Summer 1992. Quarterly report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangold, R.; Nisley, R.; Karrfalt, R.
Contents: survival and growth of planted alaska-cedar seedling in southeast southeast alaska; propagation of loblolly, slash, and longleaf pine from needle fascicles; moisture determination on seeds of honeylocust and mimosa; performance of himalayan blue pine in the northeastern united states; advantages of an effective weed control program for populus hybrids; pales weevil: a serious threat to longleaf pine production; costs and cost component trends of trends of hand and machine planting in the southern united states (1952 to 1990); comparison of a drill-type seeder and a vacuum-drum precision seeder in a virginia loblolly pine nursery; missoula technology and development center'smore » nursery and reforestation programs.« less
Restoring a disappearing ecosystem: the Longleaf Pine Savanna.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrington, Timothy B.; Miller, Karl V.; Park, Noreen
Longleaf pine (Pinus palustris) savannas of the southeastern United States contain some of the worlds most diverse plant communities, along with a unique complement of wildlife. Their traditionally open canopy structure and rich understory of grasses and herbs were critical to their vigor. However, a long history of land-use practices such as logging, farming, and fire exclusion have reduced this once-widespread ecosystem to only 3 percent of its original range. At six longleaf pine plantations in South Carolina, Tim Harrington with the Pacific Northwest Research Station and collaborators with the Southern Research Station used various treatments (including prescribed burns, treemore » thinning, and herbicide applications) to alter the forest structure and tracked how successful each one was in advancing savanna restoration over a 14-year period. They found that typical planting densities for wood production in plantations create dense understory shade that excludes many native herbaceous species important to savannas and associated wildlife. The scientists found that although tree thinning alone did not result in sustained gains, a combination of controlled burning, thinning, and herbicide treatments to reduce woody plants was an effective strategy for recovering the savanna ecosystem. The scientists also found that these efforts must be repeated periodically for enduring benefits.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
T.B. Harrington; C.M. Dagley; M.B. Edwards.
2003-10-01
Although overstory trees limit the abundance and species richness of herbaceous vegetation in longleaf pine (Pinus palustris Mill.) plantations, the responsible mechanisms are poorly understood because of confounding among limiting factors. In fall 1998, research was initiated to determine the separate effects of above- and belowground competition and needlefall from overstory pines on understory plant performance. Three 13- to 15-yr-old plantations near Aiken, SC, were thinned to 0, 25, 50, or 100% of nonthinned basal area (19.5 m2 ha-1). Combinations of trenching (to eliminate root competition) and needlefall were applied to areas within each plot, and containerized seedlings of 14more » perennial herbaceous species and longleaf pine were planted within each. Overstory crown closure ranged from 0 to 81%, and soil water and available nitrogen varied consistently with pine stocking, trenching, or their combination. Cover of planted species decreased an average of 16.5 and 14.1% as a result of above- and below-ground competition, respectively. Depending on species, needlefall effects were positive, negative, or negligible. Results indicate that understory restoration will be most successful when herbaceous species are established within canopy openings (0.1-0.2 ha) managed to minimize negative effects from above- and belowground competition and needlefall.« less
Barton Clinton; Chris Maier; Chelcy Ford; Robert Mitchell
2011-01-01
In 20-year-old longleaf pine, we examined short-term effects of reduced live leaf area (A L) via canopy scorching on sap flow (Q; kg H2O hâ1), transpiration per unit leaf area (E L; mm dayâ1), stem CO2 efflux (R stem; μmol mâ2 sâ1) and soil CO2 efflux (R soil; μmol mâ2 sâ1) over a 2-week period during early summer. R stem and Q were measured at two positions (1.3-m or...
Lance A. Vickers; Thomas R. Fox; David L. Loftis; David A. Boucugnani
2013-01-01
The difficulty of achieving reliable oak (Quercus spp.) regeneration is well documented. Application of silvicultural techniques to facilitate oak regeneration largely depends on current regeneration potential. A computer model to assess regeneration potential based on existing advanced reproduction in Appalachian hardwoods was developed by David...
Modeling regeneration responses of big sagebrush (Artemisia tridentata) to abiotic conditions
Schlaepfer, Daniel R.; Lauenroth, William K.; Bradford, John B.
2014-01-01
Ecosystems dominated by big sagebrush, Artemisia tridentata Nuttall (Asteraceae), which are the most widespread ecosystems in semiarid western North America, have been affected by land use practices and invasive species. Loss of big sagebrush and the decline of associated species, such as greater sage-grouse, are a concern to land managers and conservationists. However, big sagebrush regeneration remains difficult to achieve by restoration and reclamation efforts and there is no regeneration simulation model available. We present here the first process-based, daily time-step, simulation model to predict yearly big sagebrush regeneration including relevant germination and seedling responses to abiotic factors. We estimated values, uncertainty, and importance of 27 model parameters using a total of 1435 site-years of observation. Our model explained 74% of variability of number of years with successful regeneration at 46 sites. It also achieved 60% overall accuracy predicting yearly regeneration success/failure. Our results identify specific future research needed to improve our understanding of big sagebrush regeneration, including data at the subspecies level and improved parameter estimates for start of seed dispersal, modified wet thermal-time model of germination, and soil water potential influences. We found that relationships between big sagebrush regeneration and climate conditions were site specific, varying across the distribution of big sagebrush. This indicates that statistical models based on climate are unsuitable for understanding range-wide regeneration patterns or for assessing the potential consequences of changing climate on sagebrush regeneration and underscores the value of this process-based model. We used our model to predict potential regeneration across the range of sagebrush ecosystems in the western United States, which confirmed that seedling survival is a limiting factor, whereas germination is not. Our results also suggested that modeled regeneration suitability is necessary but not sufficient to explain sagebrush presence. We conclude that future assessment of big sagebrush responses to climate change will need to account for responses of regenerative stages using a process-based understanding, such as provided by our model.
The impact of cell regeneration on the dynamics of viral coinfection
NASA Astrophysics Data System (ADS)
Pinky, Lubna; Dobrovolny, Hana M.
2017-06-01
Many mathematical models of respiratory viral infections do not include regeneration of cells within the respiratory tract, arguing that the infection is resolved before there is significant cellular regeneration. However, recent studies have found that ˜40% of patients hospitalized with influenza-like illness are infected with at least two different viruses, which could potentially lead to longer-lasting infections. In these longer infections, cell regeneration might affect the infection dynamics, in particular, allowing for the possibility of chronic coinfections. Several mathematical models have been used to describe cell regeneration in infection models, though the effect of model choice on the predicted time course of viral coinfections is not clear. We investigate four mathematical models incorporating different mechanisms of cell regeneration during respiratory viral coinfection to determine the effect of cell regeneration on infection dynamics. We perform linear stability analysis for each of the models and find the steady states analytically. The analysis suggests that chronic illness is possible but only with one viral species; chronic coexistence of two different viral species is not possible with the regeneration models considered here.
An Initial Non-Equilibrium Porous-Media Model for CFD Simulation of Stirling Regenerators
NASA Technical Reports Server (NTRS)
Tew, Roy C.; Simon, Terry; Gedeon, David; Ibrahim, Mounir; Rong, Wei
2006-01-01
The objective of this paper is to define empirical parameters for an initial thermal non-equilibrium porous-media model for use in Computational Fluid Dynamics (CFD) codes for simulation of Stirling regenerators. The two codes currently used at Glenn Research Center for Stirling modeling are Fluent and CFD-ACE. The codes porous-media models are equilibrium models, which assume solid matrix and fluid are in thermal equilibrium. This is believed to be a poor assumption for Stirling regenerators; Stirling 1-D regenerator models, used in Stirling design, use non-equilibrium regenerator models and suggest regenerator matrix and gas average temperatures can differ by several degrees at a given axial location and time during the cycle. Experimentally based information was used to define: hydrodynamic dispersion, permeability, inertial coefficient, fluid effective thermal conductivity, and fluid-solid heat transfer coefficient. Solid effective thermal conductivity was also estimated. Determination of model parameters was based on planned use in a CFD model of Infinia's Stirling Technology Demonstration Converter (TDC), which uses a random-fiber regenerator matrix. Emphasis is on use of available data to define empirical parameters needed in a thermal non-equilibrium porous media model for Stirling regenerator simulation. Such a model has not yet been implemented by the authors or their associates.
Regenerator performance in a Vuilleumier refrigerator compared with a third-order numerical model
NASA Technical Reports Server (NTRS)
Bradley, P. E.; Radebaugh, Ray; Gary, John
1991-01-01
A three-stage Vuilleumier refrigerator was used to measure the performance of various third stage regenerators. The refrigerator operates between 2.5 and 5.0 Hz and, depending on the material used in the third stage regenerator, achieves temperatures of 8 to 20 K at the cold end of the third stage. This paper presents a comparison of regenerator performance for four regenerator materials: 229 micron diameter spheres of Pb(+)5 pct Sb, 229 micron diameter spheres of brass, 216 micron irregularly-shaped GdRh powder, and a mixture of 229 microns and 762 microns diameter spheres of Pb(+5) pct Sb. The experimental results are compared with a first-order model that neglects the void volume within the regenerator and with a third-order model that considers the effect of pressure oscillations in the regenerator void volume. Experimental results indicate that regenerator losses are dominated by the pressure oscillation in the void volume rather than the mass flow through the temperature gradient in the regenerator. These results are consistent with the third-order numerical model. This model shows that the heat capacity of the gas in the void space as well as the heat capacity of the matrix influences the regenerator performance.
Satoh, Akira; Hirata, Ayako; Makanae, Aki
2012-03-01
Amphibians can regenerate missing body parts, including limbs. The regulation of collagen has been considered to be important in limb regeneration. Collagen deposition is suppressed during limb regeneration, so we investigated collagen deposition and apical epithelial cap (AEC) formation during axolotl limb regeneration. The accessory limb model (ALM) has been developed as an alternative model for studying limb regeneration. Using this model, we investigated the relationship between nerves, epidermis, and collagen deposition. We found that Sp-9, an AEC marker gene, was upregulated by direct interaction between nerves and epidermis. However, collagen deposition hindered this interaction, and resulted in the failure of limb regeneration. During wound healing, an increase in deposition of collagen caused a decrease in the blastema induction rate in ALM. Wound healing and limb regeneration are alternate processes.
Feathers and fins: non-mammalian models for hair cell regeneration.
Brignull, Heather R; Raible, David W; Stone, Jennifer S
2009-06-24
Death of mechanosensory cells in the inner ear results in two profound disabilities: hearing loss and balance disorders. Although mammals lack the capacity to regenerate hair cells, recent studies in mice and other rodents have offered valuable insight into strategies for stimulating hair cell regeneration in mammals. Investigations of model organisms that retain the ability to form new hair cells after embryogenesis, such as fish and birds, are equally important and have provided clues as to the cellular and molecular mechanisms that may block hair cell regeneration in mammals. Here, we summarize studies on hair cell regeneration in the chicken and the zebrafish, discuss specific advantages of each model, and propose future directions for the use of non-mammalian models in understanding hair cell regeneration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrington, Timothy, B.
2011-09-09
To develop silvicultural strategies for restoring longleaf pine (Pinus palustris Mill.) savannas, mortality and growth of overstory pines and midstory hardwoods and abundance and species richness of herbs were studied for 14 years after pine thinning and nonpine woody control. Pine cover in thinned stands was about half of that in nonthinned stands through year 5, but it lagged by only 8% and 3% in years 9 and 14, respectively, because of vigorous crown responses. Despite a cumulative mortality of 64% of hardwood stems from prescribed fires in years 0, 4, and 9, hardwood basal area in thinned stands (2.1more » m2/ha) was three times that in nonthinned stands (0.7 m2/ha) in year 14. Thinning was associated with 13%-22% more cover and six to eight more species of herbs in years 3-8 but only 6% more cover and two more species in year 14 because of accelerated growth of pine cover and hardwood basal area. However, similar increases in cover and richness of herb species in the woody control treatment were retained through year 14 because it had sustained reductions in hardwood and shrub abundance. Silvicultural strategies that substantially delay encroachment by pines, hardwoods, and shrubs will be those most effective at retaining herb species in longleaf pine savannas, including planting pines at wide spacing, periodic thinning and woody control, and frequent burning.« less
Microhistological Techniques for Food Habits Analyses
Mark K. Johnson; Helen Wofford; Henry A. Pearson
1983-01-01
Techniques used to prepare and quantify herbivore diet samples for microhistological analyses are described. Plant fragments are illustrated for more than 50 selected plants common on longleaf-slash pine-bluestem range in the southeastern United States.
A Decision-Making Model For Managing or Regenerating Southern Upland Hardwoods
K. Kyle Cunningham; Andrew W. Ezell; Keith L. Belli; John D. Hodges
2004-01-01
A decision-making model for managing or regenerating southern upland hardwoods is being created for three physiographic provinces including the Cumberland Plateau, Western Highland Rim, and Upper Coastal Plain. The model performs a stand evaluation, from a silvicultural standpoint, and declares a stand as being either manageable or in need of regeneration. Model...
Estimating The Probability Of Achieving Shortleaf Pine Regeneration At Variable Specified Levels
Thomas B. Lynch; Jean Nkouka; Michael M. Huebschmann; James M. Guldin
2002-01-01
A model was developed that can be used to estimate the probability of achieving regeneration at a variety of specified stem density levels. The model was fitted to shortleaf pine (Pinus echinata Mill.) regeneration data, and can be used to estimate the probability of achieving desired levels of regeneration between 300 and 700 stems per acre 9-l 0...
Zellmer, Erik R; MacEwan, Matthew R; Moran, Daniel W
2018-04-01
Regenerated peripheral nervous tissue possesses different morphometric properties compared to undisrupted nerve. It is poorly understood how these morphometric differences alter the response of the regenerated nerve to electrical stimulation. In this work, we use computational modeling to explore the electrophysiological response of regenerated and undisrupted nerve axons to electrical stimulation delivered by macro-sieve electrodes (MSEs). A 3D finite element model of a peripheral nerve segment populated with mammalian myelinated axons and implanted with a macro-sieve electrode has been developed. Fiber diameters and morphometric characteristics representative of undisrupted or regenerated peripheral nervous tissue were assigned to core conductor models to simulate the two tissue types. Simulations were carried out to quantify differences in thresholds and chronaxie between undisrupted and regenerated fiber populations. The model was also used to determine the influence of axonal caliber on recruitment thresholds for the two tissue types. Model accuracy was assessed through comparisons with in vivo recruitment data from chronically implanted MSEs. Recruitment thresholds of individual regenerated fibers with diameters >2 µm were found to be lower compared to same caliber undisrupted fibers at electrode to fiber distances of less than about 90-140 µm but roughly equal or higher for larger distances. Caliber redistributions observed in regenerated nerve resulted in an overall increase in average recruitment thresholds and chronaxie during whole nerve stimulation. Modeling results also suggest that large diameter undisrupted fibers located close to a longitudinally restricted current source such as the MSE have higher average recruitment thresholds compared to small diameter fibers. In contrast, large diameter regenerated nerve fibers located in close proximity of MSE sites have, on average, lower recruitment thresholds compared to small fibers. Utilizing regenerated fiber morphometry and caliber distributions resulted in accurate predictions of in vivo recruitment data. Our work uses computational modeling to show how morphometric differences between regenerated and undisrupted tissue results in recruitment threshold discrepancies, quantifies these differences, and illustrates how large undisrupted nerve fibers close to longitudinally restricted current sources have higher recruitment thresholds compared to adjacently positioned smaller fibers while the opposite is true for large regenerated fibers.
NASA Astrophysics Data System (ADS)
Zellmer, Erik R.; MacEwan, Matthew R.; Moran, Daniel W.
2018-04-01
Objective. Regenerated peripheral nervous tissue possesses different morphometric properties compared to undisrupted nerve. It is poorly understood how these morphometric differences alter the response of the regenerated nerve to electrical stimulation. In this work, we use computational modeling to explore the electrophysiological response of regenerated and undisrupted nerve axons to electrical stimulation delivered by macro-sieve electrodes (MSEs). Approach. A 3D finite element model of a peripheral nerve segment populated with mammalian myelinated axons and implanted with a macro-sieve electrode has been developed. Fiber diameters and morphometric characteristics representative of undisrupted or regenerated peripheral nervous tissue were assigned to core conductor models to simulate the two tissue types. Simulations were carried out to quantify differences in thresholds and chronaxie between undisrupted and regenerated fiber populations. The model was also used to determine the influence of axonal caliber on recruitment thresholds for the two tissue types. Model accuracy was assessed through comparisons with in vivo recruitment data from chronically implanted MSEs. Main results. Recruitment thresholds of individual regenerated fibers with diameters >2 µm were found to be lower compared to same caliber undisrupted fibers at electrode to fiber distances of less than about 90-140 µm but roughly equal or higher for larger distances. Caliber redistributions observed in regenerated nerve resulted in an overall increase in average recruitment thresholds and chronaxie during whole nerve stimulation. Modeling results also suggest that large diameter undisrupted fibers located close to a longitudinally restricted current source such as the MSE have higher average recruitment thresholds compared to small diameter fibers. In contrast, large diameter regenerated nerve fibers located in close proximity of MSE sites have, on average, lower recruitment thresholds compared to small fibers. Utilizing regenerated fiber morphometry and caliber distributions resulted in accurate predictions of in vivo recruitment data. Significance. Our work uses computational modeling to show how morphometric differences between regenerated and undisrupted tissue results in recruitment threshold discrepancies, quantifies these differences, and illustrates how large undisrupted nerve fibers close to longitudinally restricted current sources have higher recruitment thresholds compared to adjacently positioned smaller fibers while the opposite is true for large regenerated fibers.
NASA Astrophysics Data System (ADS)
Qu, Guangzhou; Liang, Dongli; Qu, Dong; Huang, Yimei; Li, Jie
2014-06-01
In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (O3) regeneration) of saturated granular activated carbon (GAC) with pentachlorophenol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with O3 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after O3 regeneration. O3 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cycles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after O3 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that O3 regeneration has a lower weight loss than DBD plasma regeneration.
User's guide to Version 2 of the Regeneration Establishment Model: Part of the Prognosis Model
Dennis E. Ferguson; Nicholas L. Crookston
1991-01-01
This publication describes how to use version 2 of the Regeneration Establishment Model, a computer-based simulator that is part of the Prognosis Model for Stand Development. Conifer regeneration is predicted following harvest and site preparation for forests in western Montana, central Idaho, and northern Idaho. The influence of western spruce budworm (Choristoneura...
Learning to swim, again: Axon regeneration in fish.
Rasmussen, Jeffrey P; Sagasti, Alvaro
2017-01-01
Damage to the central nervous system (CNS) of fish can often be repaired to restore function, but in mammals recovery from CNS injuries usually fails due to a lack of axon regeneration. The relatively growth-permissive environment of the fish CNS may reflect both the absence of axon inhibitors found in the mammalian CNS and the presence of pro-regenerative environmental factors. Despite their different capacities for axon regeneration, many of the physiological processes, intrinsic molecular pathways, and cellular behaviors that control an axon's ability to regrow are conserved between fish and mammals. Fish models have thus been useful both for identifying factors differing between mammals and fish that may account for differences in CNS regeneration and for characterizing conserved intrinsic pathways that regulate axon regeneration in all vertebrates. The majority of adult axon regeneration studies have focused on the optic nerve or spinal axons of the teleosts goldfish and zebrafish, which have been productive models for identifying genes associated with axon regeneration, cellular mechanisms of circuit reestablishment, and the basis of functional recovery. Lampreys, which are jawless fish lacking myelin, have provided an opportunity to study regeneration of well defined spinal cord circuits. Newer larval zebrafish models offer numerous genetic tools and the ability to monitor the dynamic behaviors of extrinsic cell types regulating axon regeneration in live animals. Recent advances in imaging and gene editing methods are making fish models yet more powerful for investigating the cellular and molecular underpinnings of axon regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, G.P.
The diversity and abundance of native grasses and herbaceous species characteristic of the longleaf savanna were compared between remnant stands that were not previously under agriculture and recent old-fields.The objective of the study was to establish a baseline for future restoration objectives and to compare the degree of degradation associated with agriculture. In most cases even the natural stands have suffered degradation as a result of fire exclusion and as such are not representative of pristine conditions. Community classification and ordination procedures were implemented to array the communities. Three distinct sub-units were identified and associated with xeric, sub-xeric, and medicmore » types associated with texture and soil moisture. Between plantations and natural stands, the xeric group demonstrated the most similarity. The presence of a B horizon was the most important discriminate variable in both groups.« less
Expression of nestin and chromogranin in regeneration zones of rat pancreas.
Ege, Bahadir; Dinc, Tolga; Kayilioglu, Selami Ilgaz; Tezel, Ekmel; Ersoy, Emin
2017-01-01
The particular signals that start and orchestrate the regeneration process in pancreas are not well understood yet. We aimed to investigate the expression of nestin and chromogranin A in pancreatic regeneration zones and a secondary objective, we assessed the efficiency of pancreatic duct ligation method in creation of a pancreatic regeneration model in rats. Partial (90%) pancreatectomy and pancreatic duct ligation were performed in Wistar rats, in order to create pancreatic regeneration models. Pancreatic tissues were examined histologically. Expression profiles were investigated by immunohistochemistry for nestin and chromogranin A. Nestin and chromogranin A expressions were observed in regeneration zones. Pancreatic regenerations zones were seen in pancreatic duct ligation group samples as well as partial pancreatectomy group. Nestin was expressed prominently in acinoductular metaplasia cells in regeneration zones. This was best demonstrated in the samples of pancreatic duct ligation group. In the subsequent sections of nestin positive sites, cytoplasmic positivity with chromogranin A was observed. This study confirms that nestin and chromogranin A can be detected in neogenesis-evoked pancreatic tissue, particularly in the acinoductular epithelium. Nestin and chromogranin A may be important markers to identify pancreatic stem cells. Pancreatic duct ligation can be used for creating pancreatic regeneration model in rats. Chromogranin A, Nestin, Pancreas, Regeneration, Stem cells.
Thomas B. Lynch; Jean Nkouka; Michael M. Huebschmann; James M. Guldin
2003-01-01
A logistic equation is the basis for a model that predicts the probability of obtaining regeneration at specified densities. The density of regeneration (trees/ha) for which an estimate of probability is desired can be specified by means of independent variables in the model. When estimating parameters, the dependent variable is set to 1 if the regeneration density (...
Hu, Yue; Boyer, Treavor H
2017-05-15
The application of bicarbonate-form anion exchange resin and sodium bicarbonate salt for resin regeneration was investigated in this research is to reduce chloride ion release during treatment and the disposal burden of sodium chloride regeneration solution when using traditional chloride-form ion exchange (IX). The target contaminant in this research was dissolved organic carbon (DOC). The performance evaluation was conducted in a completely mixed flow reactor (CMFR) IX configuration. A process model that integrated treatment and regeneration was investigated based on the characteristics of configuration. The kinetic and equilibrium experiments were performed to obtain required parameters for the process model. The pilot plant tests were conducted to validate the model as well as provide practical understanding on operation. The DOC concentration predicted by the process model responded to the change of salt concentration in the solution, and showed a good agreement with pilot plant data with less than 10% difference in terms of percentage removal. Both model predictions and pilot plant tests showed over 60% DOC removal by bicarbonate-form resin for treatment and sodium bicarbonate for regeneration, which was comparable to chloride-form resin for treatment and sodium chloride for regeneration. Lastly, the DOC removal was improved by using higher salt concentration for regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.
In vitro models for evaluation of periodontal wound healing/regeneration.
Weinreb, Miron; Nemcovsky, Carlos E
2015-06-01
Periodontal wound healing and regeneration are highly complex processes, involving cells, matrices, molecules and genes that must be properly choreographed and orchestrated. As we attempt to understand and influence these clinical entities, we need experimental models to mimic the various aspects of human wound healing and regeneration. In vivo animal models that simulate clinical situations of humans can be costly and cumbersome. In vitro models have been devised to dissect wound healing/regeneration processes into discrete, analyzable steps. For soft tissue (e.g. gingival) healing, in vitro models range from simple culture of cells grown in monolayers and exposed to biological modulators or physical effectors and materials, to models in which cells are 'injured' by scraping and subsequently the 'wound' is filled with new or migrating cells, to three-dimensional models of epithelial-mesenchymal recombination or tissue explants. The cells employed are gingival keratinocytes, fibroblasts or endothelial cells, and their proliferation, migration, attachment, differentiation, survival, gene expression, matrix production or capillary formation are measured. Studies of periodontal regeneration also include periodontal ligament fibroblasts or progenitors, osteoblasts or osteoprogenitors, and cementoblasts. Regeneration models measure cellular proliferation, attachment and migration, as well as gene expression, transfer and differentiation into a mineralizing phenotype and biomineralization. Only by integrating data from models on all levels (i.e. a single cell to the whole organism) can various critical aspects of periodontal wound healing/regeneration be fully evaluated. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Regeneration of limb joints in the axolotl (Ambystoma mexicanum).
Lee, Jangwoo; Gardiner, David M
2012-01-01
In spite of numerous investigations of regenerating salamander limbs, little attention has been paid to the details of how joints are reformed. An understanding of the process and mechanisms of joint regeneration in this model system for tetrapod limb regeneration would provide insights into developing novel therapies for inducing joint regeneration in humans. To this end, we have used the axolotl (Mexican Salamander) model of limb regeneration to describe the morphology and the expression patterns of marker genes during joint regeneration in response to limb amputation. These data are consistent with the hypothesis that the mechanisms of joint formation whether it be development or regeneration are conserved. We also have determined that defects in the epiphyseal region of both forelimbs and hind limbs in the axolotl are regenerated only when the defect is small. As is the case with defects in the diaphysis, there is a critical size above which the endogenous regenerative response is not sufficient to regenerate the joint. This non-regenerative response in an animal that has the ability to regenerate perfectly provides the opportunity to screen for the signaling pathways to induce regeneration of articular cartilage and joints.
Regeneration of Limb Joints in the Axolotl (Ambystoma mexicanum)
Lee, Jangwoo; Gardiner, David M.
2012-01-01
In spite of numerous investigations of regenerating salamander limbs, little attention has been paid to the details of how joints are reformed. An understanding of the process and mechanisms of joint regeneration in this model system for tetrapod limb regeneration would provide insights into developing novel therapies for inducing joint regeneration in humans. To this end, we have used the axolotl (Mexican Salamander) model of limb regeneration to describe the morphology and the expression patterns of marker genes during joint regeneration in response to limb amputation. These data are consistent with the hypothesis that the mechanisms of joint formation whether it be development or regeneration are conserved. We also have determined that defects in the epiphyseal region of both forelimbs and hind limbs in the axolotl are regenerated only when the defect is small. As is the case with defects in the diaphysis, there is a critical size above which the endogenous regenerative response is not sufficient to regenerate the joint. This non-regenerative response in an animal that has the ability to regenerate perfectly provides the opportunity to screen for the signaling pathways to induce regeneration of articular cartilage and joints. PMID:23185640
Macroscopic in vivo imaging of facial nerve regeneration in Thy1-GFP rats.
Placheta, Eva; Wood, Matthew D; Lafontaine, Christine; Frey, Manfred; Gordon, Tessa; Borschel, Gregory H
2015-01-01
Facial nerve injury leads to severe functional and aesthetic deficits. The transgenic Thy1-GFP rat is a new model for facial nerve injury and reconstruction research that will help improve clinical outcomes through translational facial nerve injury research. To determine whether serial in vivo imaging of nerve regeneration in the transgenic rat model is possible, facial nerve regeneration was imaged under the main paradigms of facial nerve injury and reconstruction. Fifteen male Thy1-GFP rats, which express green fluorescent protein (GFP) in their neural structures, were divided into 3 groups in the laboratory: crush-injury, direct repair, and cross-face nerve grafting (30-mm graft length). The distal nerve stump or nerve graft was predegenerated for 2 weeks. The facial nerve of the transgenic rats was serially imaged at the time of operation and after 2, 4, and 8 weeks of regeneration. The imaging was performed under a GFP-MDS-96/BN excitation stand (BLS Ltd). Facial nerve injury. Optical fluorescence of regenerating facial nerve axons. Serial in vivo imaging of the regeneration of GFP-positive axons in the Thy1-GFP rat model is possible. All animals survived the short imaging procedures well, and nerve regeneration was followed over clinically relevant distances. The predegeneration of the distal nerve stump or the cross-face nerve graft was, however, necessary to image the regeneration front at early time points. Crush injury was not suitable to sufficiently predegenerate the nerve (and to allow for degradation of the GFP through Wallerian degeneration). After direct repair, axons regenerated over the coaptation site in between 2 and 4 weeks. The GFP-positive nerve fibers reached the distal end of the 30-mm-long cross-face nervegrafts after 4 to 8 weeks of regeneration. The time course of facial nerve regeneration was studied by serial in vivo imaging in the transgenic rat model. Nerve regeneration was followed over clinically relevant distances in a small number of experimental animals, as they were subsequently imaged at multiple time points. The Thy1-GFP rat model will help improve clinical outcomes of facial reanimation surgery through improving the knowledge of facial nerve regeneration after surgical procedures. NA.
An Initial Non-Equilibrium Porous-Media Model for CFD Simulation of Stirling Regenerators
NASA Technical Reports Server (NTRS)
Tew, Roy; Simon, Terry; Gedeon, David; Ibrahim, Mounir; Rong, Wei
2006-01-01
The objective of this paper is to define empirical parameters (or closwre models) for an initial thermai non-equilibrium porous-media model for use in Computational Fluid Dynamics (CFD) codes for simulation of Stirling regenerators. The two CFD codes currently being used at Glenn Research Center (GRC) for Stirling engine modeling are Fluent and CFD-ACE. The porous-media models available in each of these codes are equilibrium models, which assmne that the solid matrix and the fluid are in thermal equilibrium at each spatial location within the porous medium. This is believed to be a poor assumption for the oscillating-flow environment within Stirling regenerators; Stirling 1-D regenerator models, used in Stirling design, we non-equilibrium regenerator models and suggest regenerator matrix and gas average temperatures can differ by several degrees at a given axial location end time during the cycle. A NASA regenerator research grant has been providing experimental and computational results to support definition of various empirical coefficients needed in defining a noa-equilibrium, macroscopic, porous-media model (i.e., to define "closure" relations). The grant effort is being led by Cleveland State University, with subcontractor assistance from the University of Minnesota, Gedeon Associates, and Sunpower, Inc. Friction-factor and heat-transfer correlations based on data taken with the NASAlSunpower oscillating-flow test rig also provide experimentally based correlations that are useful in defining parameters for the porous-media model; these correlations are documented in Gedeon Associates' Sage Stirling-Code Manuals. These sources of experimentally based information were used to define the following terms and parameters needed in the non-equilibrium porous-media model: hydrodynamic dispersion, permeability, inertial coefficient, fluid effective thermal conductivity (including themal dispersion and estimate of tortuosity effects}, and fluid-solid heat transfer coefficient. Solid effective thermal conductivity (including the effect of tortuosity) was also estimated. Determination of the porous-media model parameters was based on planned use in a CFD model of Infinia's Stirling Technology Demonstration Convertor (TDC), which uses a random-fiber regenerator matrix. The non-equilibrium porous-media model presented is considered to be an initial, or "draft," model for possible incorporation in commercial CFD codes, with the expectation that the empirical parameters will likely need to be updated once resulting Stirling CFD model regenerator and engine results have been analyzed. The emphasis of the paper is on use of available data to define empirical parameters (and closure models) needed in a thermal non-equilibrium porous-media model for Stirling regenerator simulation. Such a model has not yet been implemented by the authors or their associates. However, it is anticipated that a thermal non-equilibrium model such as that presented here, when iacorporated in the CFD codes, will improve our ability to accurately model Stirling regenerators with CFD relative to current thermal-equilibrium porous-media models.
Modeling the regeneration of northern hardwoods with FOREGEN
Dale S. Solomon; William B. Leak
2002-01-01
Describes the stochastic model FOREGEN that simulates regeneration in openings in northern hardwood stands that range in size from clearcuts of 2,000 by 2,000 feet to single-tree openings of 25 by 25 feet. The model incorporates the effects of seed development, dispersal, germination, seedbed conditions, advanced regeneration, and weather. Users can specify options on...
Song, Yuanquan; Ori-McKenney, Kassandra M.; Zheng, Yi; Han, Chun; Jan, Lily Yeh; Jan, Yuh Nung
2012-01-01
Both cell-intrinsic and extrinsic pathways govern axon regeneration, but only a limited number of factors have been identified and it is not clear to what extent axon regeneration is evolutionarily conserved. Whether dendrites also regenerate is unknown. Here we report that, like the axons of mammalian sensory neurons, the axons of certain Drosophila dendritic arborization (da) neurons are capable of substantial regeneration in the periphery but not in the CNS, and activating the Akt pathway enhances axon regeneration in the CNS. Moreover, those da neurons capable of axon regeneration also display dendrite regeneration, which is cell type-specific, developmentally regulated, and associated with microtubule polarity reversal. Dendrite regeneration is restrained via inhibition of the Akt pathway in da neurons by the epithelial cell-derived microRNA bantam but is facilitated by cell-autonomous activation of the Akt pathway. Our study begins to reveal mechanisms for dendrite regeneration, which depends on both extrinsic and intrinsic factors, including the PTEN–Akt pathway that is also important for axon regeneration. We thus established an important new model system—the fly da neuron regeneration model that resembles the mammalian injury model—with which to study and gain novel insights into the regeneration machinery. PMID:22759636
Experience of the Small Grower
Emmett Jordon
2002-01-01
The small grower cannot afford costly facilities, equipment, or containers. The grower usually does about everything by hand and gets help from family members and friends to get started. I describe the approach I use to produce longleaf pine container stock.
Restoring the Savanna to the Savannah River Site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrington, Timothy B.
2006-07-01
The Longleaf Pine Ecosystem - Ecology, Silviculture, and Restoration. Shibu Jose, Eric J. Jokela, and Deborah L. Miller, (eds.) Springer Series on Environmental Management. Springer Science and Business Media publisher. Chapter 5. Pp 135-156. Chapter 5 of the book.
Ronald C. Schmidtling
2001-01-01
The selection of an appropriate seed source is critical for successful southern pine plantations. Guidelines for selection of seed sources are presented for loblolly (Pinus taeda L.), slash (P. elliottii Engelm.), longleaf (P. palustris Mill.), Virginia (P. virginiana Mill.), shortleaf (P. echinata...
Grazing Potential of Louisiana Pine Forest-Ranges
Herbert S. Sternitzke
1975-01-01
Louisiana's 5 million acres of pine forest-range have an estimated forage potential for 135,776 yearlong cow-calf units. Two-thirds of the units can be sustained on loblolly-shortleaf pine ranges; the rest, on longleaf-slash pine ranges.
Axon Regeneration in C. elegans: worming our way to mechanisms of axon regeneration
Byrne, Alexandra B.; Hammarlund, Marc
2016-01-01
How axons repair themselves after injury is a fundamental question in neurobiology. With its conserved genome, relatively simple nervous system, and transparent body, C. elegans has recently emerged as a productive model to uncover the cellular mechanisms that regulate and execute axon regeneration. In this review, we discuss the strengths and weaknesses of the C. elegans model of regeneration. We explore the technical advances that enable the use of C. elegans for in vivo regeneration studies, review findings in C. elegans that have contributed to our understanding of the regeneration response across species, discuss the potential of C. elegans research to provide insight into mechanisms that function in the injured mammalian nervous system, and present potential future directions of axon regeneration research using C. elegans. PMID:27569538
Development of forest regeneration imputation models using permanent plots in Oregon and Washington
Karin Kralicek; Andrew Sánchez Meador; Leah Rathbun
2015-01-01
Imputation models were developed and tested to estimate tree regeneration on Forest Service land in Oregon and Washington. The models were based on Forest Inventory and Analysis and Pacific Northwest Regional NFS Monitoring data. The data was processed into sets of tables containing estimates of regeneration by broad plant associations and spanning a large variety in...
Bringing computational models of bone regeneration to the clinic.
Carlier, Aurélie; Geris, Liesbet; Lammens, Johan; Van Oosterwyck, Hans
2015-01-01
Although the field of bone regeneration has experienced great advancements in the last decades, integrating all the relevant, patient-specific information into a personalized diagnosis and optimal treatment remains a challenging task due to the large number of variables that affect bone regeneration. Computational models have the potential to cope with this complexity and to improve the fundamental understanding of the bone regeneration processes as well as to predict and optimize the patient-specific treatment strategies. However, the current use of computational models in daily orthopedic practice is very limited or inexistent. We have identified three key hurdles that limit the translation of computational models of bone regeneration from bench to bed side. First, there exists a clear mismatch between the scope of the existing and the clinically required models. Second, most computational models are confronted with limited quantitative information of insufficient quality thereby hampering the determination of patient-specific parameter values. Third, current computational models are only corroborated with animal models, whereas a thorough (retrospective and prospective) assessment of the computational model will be crucial to convince the health care providers of the capabilities thereof. These challenges must be addressed so that computational models of bone regeneration can reach their true potential, resulting in the advancement of individualized care and reduction of the associated health care costs. © 2015 Wiley Periodicals, Inc.
Cao, Yu; Liu, Zhenhai; Xie, Yilin; Hu, Jingchao; Wang, Hua; Fan, Zhipeng; Zhang, Chunmei; Wang, Jingsong; Wu, Chu-Tse; Wang, Songlin
2015-12-15
Periodontitis is one of the most widespread infectious diseases in humans. We previously promoted significant periodontal tissue regeneration in swine models with the transplantation of autologous periodontal ligament stem cells (PDLSCs) and PDLSC sheet. We also promoted periodontal tissue regeneration in a rat model with a local injection of allogeneic bone marrow mesenchymal stem cells. The purpose of the present study is to investigate the roles of the hepatocyte growth factor (HGF) and human dental pulp stem cells (DPSCs) in periodontal tissue regeneration in swine. In the present study, we transferred an adenovirus that carried HGF gene into human DPSCs (HGF-hDPSCs) under good manufacturing practice (GMP) conditions. These cells were then transplanted into a swine model for periodontal regeneration. Twenty miniature pigs were used to generate periodontitis with bone defect of 5 mm in width, 7 mm in length, and 3 mm in depth. After 12 weeks, clinical, radiological, quantitative and histological assessment of regenerated periodontal tissues was performed to compare periodontal regeneration in swine treated with cell implantation. Our study showed that injecting HGF-hDPSCs into this large animal model could significantly improve periodontal bone regeneration and soft tissue healing. A hDPSC or HGF-hDPSC sheet showed superior periodontal tissue regeneration compared to the injection of dissociated cells. However, the sheets required surgical placement; thus, they were suitable for surgically-managed periodontitis treatments. The adenovirus-mediated transfer of the HGF gene markedly decreased hDPSC apoptosis in a hypoxic environment or in serum-free medium, and it increased blood vessel regeneration. This study indicated that HGF-hDPSCs produced under GMP conditions significantly improved periodontal bone regeneration in swine; thus, this method represents a potential clinical application for periodontal regeneration.
Post-fire Tree Mortality: Heating Increases Vulnerability to Cavitation in Longleaf Pine Branches
NASA Astrophysics Data System (ADS)
Lodge, A.; Kavanagh, K.; Dickinson, M. B.
2016-12-01
Tree mortality following wild and prescribed fires is of interest to both researchers and land managers. While some models exist that can predict mortality following fires, process-based models that incorporate physiological mechanisms of mortality are still being developed and improved. Delayed post-fire tree mortality has recently received increased attention, in part due to an increased use of prescribed fire as a restoration and management tool. One hypothesized mechanism of delayed mortality in trees is disruption of water transport in xylem due to exposure to the heat plume of a fire. This heat plume rapidly increases the vapor pressure deficit in the tree canopy, quickly increasing the tension on the water held in the xylem and leaves, potentially leading to cavitation. Cavitated xylem conduits can no longer transport water, eventually leading to tree death. We conducted a laboratory experiment examining whether heating stems increases their vulnerability to cavitation. We placed longleaf pine (Pinus palustris) branches in a water bath at sub-lethal temperatures (<60°C) and applied pressure in a cavitation chamber to simulate a range of xylem tension levels that may occur during fire. Percent loss of conductivity was measured following cavitation induced by various levels of applied pressure. When we compared the resulting vulnerability curves of heated branches to those of branches pressurized at room temperature, we observed increased vulnerability to cavitation in the heated samples especially at lower pressures. P50, or the pressure at which 50% of conductivity has been lost, decreased by 18% on branches heated to approximately 54°C. This suggests that stems heated during fires may be more vulnerable to cavitation, and provides some support for hydraulic disruption as a mechanism for post-fire tree mortality. Continued advancement in understanding of the mechanisms leading to delayed mortality will improve models predicting tree mortality.
Wayne K. Clatterbuck
2015-01-01
The REGEN model (developed by USDA Forest Service, Southern Research Station, Bent Creek Experimental Forest) was used prior to harvest to predict species composition of hardwoods at crown closure. This study evaluates whether the predictive ability of the model was effective by using post-harvest information after 16 years. Regeneration data were collected prior to...
V-ATPase proton pumping activity is required for adult zebrafish appendage regeneration.
Monteiro, Joana; Aires, Rita; Becker, Jörg D; Jacinto, António; Certal, Ana C; Rodríguez-León, Joaquín
2014-01-01
The activity of ion channels and transporters generates ion-specific fluxes that encode electrical and/or chemical signals with biological significance. Even though it is long known that some of those signals are crucial for regeneration, only in recent years the corresponding molecular sources started to be identified using mainly invertebrate or larval vertebrate models. We used adult zebrafish caudal fin as a model to investigate which and how ion transporters affect regeneration in an adult vertebrate model. Through the combined use of biophysical and molecular approaches, we show that V-ATPase activity contributes to a regeneration-specific H+ ef`flux. The onset and intensity of both V-ATPase expression and H+ efflux correlate with the different regeneration rate along the proximal-distal axis. Moreover, we show that V-ATPase inhibition impairs regeneration in adult vertebrate. Notably, the activity of this H+ pump is necessary for aldh1a2 and mkp3 expression, blastema cell proliferation and fin innervation. To the best of our knowledge, this is the first report on the role of V-ATPase during adult vertebrate regeneration.
V-ATPase Proton Pumping Activity Is Required for Adult Zebrafish Appendage Regeneration
Monteiro, Joana; Aires, Rita; Becker, Jörg D.; Jacinto, António; Certal, Ana C.; Rodríguez-León, Joaquín
2014-01-01
The activity of ion channels and transporters generates ion-specific fluxes that encode electrical and/or chemical signals with biological significance. Even though it is long known that some of those signals are crucial for regeneration, only in recent years the corresponding molecular sources started to be identified using mainly invertebrate or larval vertebrate models. We used adult zebrafish caudal fin as a model to investigate which and how ion transporters affect regeneration in an adult vertebrate model. Through the combined use of biophysical and molecular approaches, we show that V-ATPase activity contributes to a regeneration-specific H+ ef`flux. The onset and intensity of both V-ATPase expression and H+ efflux correlate with the different regeneration rate along the proximal-distal axis. Moreover, we show that V-ATPase inhibition impairs regeneration in adult vertebrate. Notably, the activity of this H+ pump is necessary for aldh1a2 and mkp3 expression, blastema cell proliferation and fin innervation. To the best of our knowledge, this is the first report on the role of V-ATPase during adult vertebrate regeneration. PMID:24671205
NASA Astrophysics Data System (ADS)
Jahromi, Amir E.; Miller, Franklin K.
2016-03-01
A sub Kelvin Active Magnetic Regenerative Refrigerator (AMRR) is being developed at the University of Wisconsin - Madison. This AMRR consists of two circulators, two regenerators, one superleak, one cold heat exchanger, and two warm heat exchangers. The circulators are novel non-moving part pumps that reciprocate a superfluid mixture of 4He-3He in the system. Heat from the mixture is removed within the two regenerators of this tandem system. An accurate model of the regenerators in this AMRR is necessary in order to predict the performance of these components, which in turn helps predicting the overall performance of the AMRR system. This work presents modeling methodology along with results from a 1-D transient numerical model of the regenerators of an AMRR capable of removing 2.5 mW at 850 mK at cyclic steady state.
Evans, Deborah J.; Owlarn, Suthira; Tejada Romero, Belen; Chen, Chen; Aboobaker, A. Aziz
2011-01-01
The current model of planarian anterior regeneration evokes the establishment of low levels of Wnt signalling at anterior wounds, promoting anterior polarity and subsequent elaboration of anterior fate through the action of the TALE class homeodomain PREP. The classical observation that decapitations positioned anteriorly will regenerate heads more rapidly than posteriorly positioned decapitations was among the first to lead to the proposal of gradients along an anteroposterior (AP) axis in a developmental context. An explicit understanding of this phenomenon is not included in the current model of anterior regeneration. This raises the question what the underlying molecular and cellular basis of this temporal gradient is, whether it can be explained by current models and whether understanding the gradient will shed light on regenerative events. Differences in anterior regeneration rate are established very early after amputation and this gradient is dependent on the activity of Hedgehog (Hh) signalling. Animals induced to produce two tails by either Smed-APC-1(RNAi) or Smed-ptc(RNAi) lose anterior fate but form previously described ectopic anterior brain structures. Later these animals form peri-pharyngeal brain structures, which in Smed-ptc(RNAi) grow out of the body establishing a new A/P axis. Combining double amputation and hydroxyurea treatment with RNAi experiments indicates that early ectopic brain structures are formed by uncommitted stem cells that have progressed through S-phase of the cell cycle at the time of amputation. Our results elaborate on the current simplistic model of both AP axis and brain regeneration. We find evidence of a gradient of hedgehog signalling that promotes posterior fate and temporarily inhibits anterior regeneration. Our data supports a model for anterior brain regeneration with distinct early and later phases of regeneration. Together these insights start to delineate the interplay between discrete existing, new, and then later homeostatic signals in AP axis regeneration. PMID:22125640
Evans, Deborah J; Owlarn, Suthira; Tejada Romero, Belen; Chen, Chen; Aboobaker, A Aziz
2011-01-01
The current model of planarian anterior regeneration evokes the establishment of low levels of Wnt signalling at anterior wounds, promoting anterior polarity and subsequent elaboration of anterior fate through the action of the TALE class homeodomain PREP. The classical observation that decapitations positioned anteriorly will regenerate heads more rapidly than posteriorly positioned decapitations was among the first to lead to the proposal of gradients along an anteroposterior (AP) axis in a developmental context. An explicit understanding of this phenomenon is not included in the current model of anterior regeneration. This raises the question what the underlying molecular and cellular basis of this temporal gradient is, whether it can be explained by current models and whether understanding the gradient will shed light on regenerative events. Differences in anterior regeneration rate are established very early after amputation and this gradient is dependent on the activity of Hedgehog (Hh) signalling. Animals induced to produce two tails by either Smed-APC-1(RNAi) or Smed-ptc(RNAi) lose anterior fate but form previously described ectopic anterior brain structures. Later these animals form peri-pharyngeal brain structures, which in Smed-ptc(RNAi) grow out of the body establishing a new A/P axis. Combining double amputation and hydroxyurea treatment with RNAi experiments indicates that early ectopic brain structures are formed by uncommitted stem cells that have progressed through S-phase of the cell cycle at the time of amputation. Our results elaborate on the current simplistic model of both AP axis and brain regeneration. We find evidence of a gradient of hedgehog signalling that promotes posterior fate and temporarily inhibits anterior regeneration. Our data supports a model for anterior brain regeneration with distinct early and later phases of regeneration. Together these insights start to delineate the interplay between discrete existing, new, and then later homeostatic signals in AP axis regeneration.
Botanical composition and nutritive value of cattle diets on southern pine range
H.A. Pearson; H.E. Grelen; E.A. Epps; M.K. Johnson; B.W. Blakewood
1982-01-01
The botanical composition of the cattle diet and the nutritive value of about 50 herbaceous and woody diet components are sampled and reparted for the longleaf pine-bluestem range in Louisiana. Digestibility is also related to the diet.
A Guide to Southern Pine Seed Sources
Clark W. Lantz; John F. Kraus
1987-01-01
The selection of an appropriate seed source is critical for successful southern pine plantations. Guides for selection of seed sources are presented for loblolly, slash, longleaf, Virginia, shortleaf, and sand pines. Separate recommendations are given for areas where fusiform-rust hazard is high.
Ogai, Kazuhiro; Hisano, Suguru; Sugitani, Kayo; Koriyama, Yoshiki; Kato, Satoru
2016-01-01
Zebrafish can regenerate several organs such as the tail fin, heart, central nervous system, and photoreceptors. Very recently, a study has demonstrated the photoreceptor regeneration in the alkylating agent N-methyl-N-nitrosourea (MNU)-induced retinal degeneration (RD) zebrafish model, in which whole photoreceptors are lost within a week after MNU treatment and then regenerated within a month. The research has also shown massive proliferation of Müller cells within a week. To address the question of whether proliferating Müller cells are the source of regenerating photoreceptors, which remains unknown in the MNU-induced zebrafish RD model, we employed a BrdU pulse-chase technique to label the proliferating cells within a week after MNU treatment. As a result of the BrdU pulse-chase technique, a number of BrdU(+) cells were observed in the outer nuclear layer as well as the inner nuclear layer. This implies that regenerating photoreceptors are derived from proliferating Müller cells in the zebrafish MNU-induced RD model.
Jet Penetration into a Scaled Microfabricated Stirling Cycle Regenerator
NASA Technical Reports Server (NTRS)
Sun, Liyong; Simon, Terrence W.; Mantell, Susan; Ibrahim, Mournir; Gedeon, David; Tew, Roy
2008-01-01
The cooler and heater adjacent to the regenerator of a Stirling cycle engine have tubes or channels which form jets that pass into the regenerator while diffusing within the matrix. An inactive part of the matrix, beyond the cores of these jets, does not participate fully in the heat transfer between the flow of working fluid and the regenerator matrix material, weakening the regenerator s ability to exchange heat with the working fluid. The objective of the present program is to document this effect on the performance of the regenerator and to develop a model for generalizing the results. However, the small scales of actual Stirling regenerator matrices (on the order of tens of microns) make direct measurements of this effect very difficult. As a result, jet spreading within a regenerator matrix has not been characterized well and is poorly understood. Also, modeling is lacking experimental verification. To address this, a large-scale mockup of thirty times actual scale was constructed and operated under conditions that are dynamically similar to the engine operation. Jet penetration with round jets and slot jets into the microfabricated regenerator geometry are then measured by conventional means. The results are compared with those from a study of spreading of round jets within woven screen regenerator for further documentation of the comparative performance of the microfabricated regenerator geometry.
Flightless I Expression Enhances Murine Claw Regeneration Following Digit Amputation.
Strudwick, Xanthe L; Waters, James M; Cowin, Allison J
2017-01-01
The mammalian digit tip is capable of both reparative and regenerative wound healing dependent on the level of amputation injury. Removal of the distal third of the terminal phalange results in successful regeneration, whereas a more severe, proximal, amputation heals by tissue repair. Flightless I (Flii) is involved in both tissue repair and regeneration. It negatively regulates wound repair but elicits a positive effect in hair follicle regeneration, with Flii overexpression resulting in significantly longer hair fibers. Using a model of digit amputation in Flii overexpressing (FIT) mice, we investigated Flii in digit regeneration. Both wild-type and FIT digits regenerated after distal amputation with newly regenerated FIT claws being significantly longer than intact controls. No regeneration was observed in wild-type mice after severe proximal amputation; however, FIT mice showed significant regeneration of the missing digit. Using a three-dimensional model of nail formation, connective tissue fibroblasts isolated from the mesenchymal tissue surrounding the wild-type and FIT digit tips and cocultured with skin keratinocytes demonstrated aggregate structures resembling rudimentary nail buds only when Flii was overexpressed. Moreover, β-catenin and cyclin D1 expression was maintained in the FIT regenerating germinal matrix suggesting a potential interaction of Flii with Wnt signaling during regeneration. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Transcriptional Reversion of Cardiac Myocyte Fate During Mammalian Cardiac Regeneration
O’Meara, Caitlin C.; Wamstad, Joseph A.; Gladstone, Rachel; Fomovsky, Gregory M.; Butty, Vincent L.; Shrikumar, Avanti; Gannon, Joseph; Boyer, Laurie A.; Lee, Richard T.
2014-01-01
Rationale Neonatal mice have the capacity to regenerate their hearts in response to injury, but this potential is lost after the first week of life. The transcriptional changes that underpin mammalian cardiac regeneration have not been fully characterized at the molecular level. Objective The objectives of our study were to determine if myocytes revert the transcriptional phenotype to a less differentiated state during regeneration and to systematically interrogate the transcriptional data to identify and validate potential regulators of this process. Methods and Results We derived a core transcriptional signature of injury-induced cardiac myocyte regeneration in mouse by comparing global transcriptional programs in a dynamic model of in vitro and in vivo cardiac myocyte differentiation, in vitro cardiac myocyte explant model, as well as a neonatal heart resection model. The regenerating mouse heart revealed a transcriptional reversion of cardiac myocyte differentiation processes including reactivation of latent developmental programs similar to those observed during de-stabilization of a mature cardiac myocyte phenotype in the explant model. We identified potential upstream regulators of the core network, including interleukin 13 (IL13), which induced cardiac myocyte cell cycle entry and STAT6/STAT3 signaling in vitro. We demonstrate that STAT3/periostin and STAT6 signaling are critical mediators of IL13 signaling in cardiac myocytes. These downstream signaling molecules are also modulated in the regenerating mouse heart. Conclusions Our work reveals new insights into the transcriptional regulation of mammalian cardiac regeneration and provides the founding circuitry for identifying potential regulators for stimulating heart regeneration. PMID:25477501
Ant distribution in relation to ground water in north Florida pine flatwoods.
Tschinkel, Walter R; Murdock, Tyler; King, Joshua R; Kwapich, Christina
2012-01-01
Longleaf pine savannas are one of the most threatened ecosystems in the world, yet are understudied. Ants are a functionally important and diverse group of insects in these ecosystems. It is largely unknown how local patterns of species diversity and composition are determined through the interaction of this dominant animal group with abiotic features of longleaf pine ecosystems. Here we describe how an important abiotic variable, depth to water table, relates to ant species distributions at local scales. Pitfall trapping studies across habitat gradients in the Florida coastal plains longleaf pine flatwoods showed that the ant community changed with mild differences in habitat. In this undulating landscape, elevation differences were less than 2 m, and the depth to the water table ranged from < 20 cm to 1.2 m. The plant species composing the ground cover were zoned in response to depth to water, and shading by canopy trees increased over deeper water tables. Of the 27 ant species that were analyzed, depending on the statistical test, seven or eight were significantly more abundant over a deep water table, eight to ten over a shallow one, and nine to eleven were not significantly patterned with respect to depth to water. Ant species preferring sites with shallow groundwater also preferred the shadier parts of the sites, while those preferring sites with deeper groundwater preferred the sunnier parts of the sites. This suggests that one group of species prefers hot-dry conditions, and the other cooler-moist. Factor analysis and abundance-weighted mean site characteristics generally confirmed these results. These results show that ant communities in this region respond to subtle differences in habitat, but whether these differences arise from founding preferences, survival, competition, or some combination of these is not known.
CALCULATED REGENERATOR PERFORMANCE AT 4 K WITH HELIUM-4 AND HELIUM-3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radebaugh, Ray; Huang Yonghua; O'Gallagher, Agnes
2008-03-16
The helium-4 working fluid in regenerative cryocoolers operating with the cold end near 4 K deviates considerably from an ideal gas. As a result, losses in the regenerator, given by the time-averaged enthalpy flux, are increased and are strong functions of the operating pressure and temperature. Helium-3, with its lower boiling point, behaves somewhat closer to an ideal gas in this low temperature range and can reduce the losses in 4 K regenerators. An analytical model is used to find the fluid properties that strongly influence the regenerator losses as well as the gross refrigeration power. The thermodynamic and transportmore » properties of helium-3 were incorporated into the latest NIST regenerator numerical model, known as REGEN3.3, which was used to model regenerator performance with either helium-4 or helium-3. With this model we show how the use of helium-3 in place of helium-4 can improve the performance of 4 K regenerative cryocoolers. The effects of operating pressure, warm-end temperature, and frequency on regenerators with helium-4 and helium-3 are investigated and compared. The results are used to find optimum operating conditions. The frequency range investigated varies from 1 Hz to 30 Hz, with particular emphasis on higher frequencies.« less