Sample records for model response variables

  1. Multi-Wheat-Model Ensemble Responses to Interannual Climate Variability

    NASA Technical Reports Server (NTRS)

    Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos

    2016-01-01

    We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981e2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-termwarming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.

  2. Population activity statistics dissect subthreshold and spiking variability in V1.

    PubMed

    Bányai, Mihály; Koman, Zsombor; Orbán, Gergő

    2017-07-01

    Response variability, as measured by fluctuating responses upon repeated performance of trials, is a major component of neural responses, and its characterization is key to interpret high dimensional population recordings. Response variability and covariability display predictable changes upon changes in stimulus and cognitive or behavioral state, providing an opportunity to test the predictive power of models of neural variability. Still, there is little agreement on which model to use as a building block for population-level analyses, and models of variability are often treated as a subject of choice. We investigate two competing models, the doubly stochastic Poisson (DSP) model assuming stochasticity at spike generation, and the rectified Gaussian (RG) model tracing variability back to membrane potential variance, to analyze stimulus-dependent modulation of both single-neuron and pairwise response statistics. Using a pair of model neurons, we demonstrate that the two models predict similar single-cell statistics. However, DSP and RG models have contradicting predictions on the joint statistics of spiking responses. To test the models against data, we build a population model to simulate stimulus change-related modulations in pairwise response statistics. We use single-unit data from the primary visual cortex (V1) of monkeys to show that while model predictions for variance are qualitatively similar to experimental data, only the RG model's predictions are compatible with joint statistics. These results suggest that models using Poisson-like variability might fail to capture important properties of response statistics. We argue that membrane potential-level modeling of stochasticity provides an efficient strategy to model correlations. NEW & NOTEWORTHY Neural variability and covariability are puzzling aspects of cortical computations. For efficient decoding and prediction, models of information encoding in neural populations hinge on an appropriate model of variability. Our work shows that stimulus-dependent changes in pairwise but not in single-cell statistics can differentiate between two widely used models of neuronal variability. Contrasting model predictions with neuronal data provides hints on the noise sources in spiking and provides constraints on statistical models of population activity. Copyright © 2017 the American Physiological Society.

  3. Multilevel and Latent Variable Modeling with Composite Links and Exploded Likelihoods

    ERIC Educational Resources Information Center

    Rabe-Hesketh, Sophia; Skrondal, Anders

    2007-01-01

    Composite links and exploded likelihoods are powerful yet simple tools for specifying a wide range of latent variable models. Applications considered include survival or duration models, models for rankings, small area estimation with census information, models for ordinal responses, item response models with guessing, randomized response models,…

  4. A Bayesian Semiparametric Latent Variable Model for Mixed Responses

    ERIC Educational Resources Information Center

    Fahrmeir, Ludwig; Raach, Alexander

    2007-01-01

    In this paper we introduce a latent variable model (LVM) for mixed ordinal and continuous responses, where covariate effects on the continuous latent variables are modelled through a flexible semiparametric Gaussian regression model. We extend existing LVMs with the usual linear covariate effects by including nonparametric components for nonlinear…

  5. Variable Complexity Optimization of Composite Structures

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.

    2002-01-01

    The use of several levels of modeling in design has been dubbed variable complexity modeling. The work under the grant focused on developing variable complexity modeling strategies with emphasis on response surface techniques. Applications included design of stiffened composite plates for improved damage tolerance, the use of response surfaces for fitting weights obtained by structural optimization, and design against uncertainty using response surface techniques.

  6. A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses

    ERIC Educational Resources Information Center

    Vasdekis, Vassilis G. S.; Cagnone, Silvia; Moustaki, Irini

    2012-01-01

    The paper proposes a composite likelihood estimation approach that uses bivariate instead of multivariate marginal probabilities for ordinal longitudinal responses using a latent variable model. The model considers time-dependent latent variables and item-specific random effects to be accountable for the interdependencies of the multivariate…

  7. Estimating multivariate response surface model with data outliers, case study in enhancing surface layer properties of an aircraft aluminium alloy

    NASA Astrophysics Data System (ADS)

    Widodo, Edy; Kariyam

    2017-03-01

    To determine the input variable settings that create the optimal compromise in response variable used Response Surface Methodology (RSM). There are three primary steps in the RSM problem, namely data collection, modelling, and optimization. In this study focused on the establishment of response surface models, using the assumption that the data produced is correct. Usually the response surface model parameters are estimated by OLS. However, this method is highly sensitive to outliers. Outliers can generate substantial residual and often affect the estimator models. Estimator models produced can be biased and could lead to errors in the determination of the optimal point of fact, that the main purpose of RSM is not reached. Meanwhile, in real life, the collected data often contain some response variable and a set of independent variables. Treat each response separately and apply a single response procedures can result in the wrong interpretation. So we need a development model for the multi-response case. Therefore, it takes a multivariate model of the response surface that is resistant to outliers. As an alternative, in this study discussed on M-estimation as a parameter estimator in multivariate response surface models containing outliers. As an illustration presented a case study on the experimental results to the enhancement of the surface layer of aluminium alloy air by shot peening.

  8. Ordinal probability effect measures for group comparisons in multinomial cumulative link models.

    PubMed

    Agresti, Alan; Kateri, Maria

    2017-03-01

    We consider simple ordinal model-based probability effect measures for comparing distributions of two groups, adjusted for explanatory variables. An "ordinal superiority" measure summarizes the probability that an observation from one distribution falls above an independent observation from the other distribution, adjusted for explanatory variables in a model. The measure applies directly to normal linear models and to a normal latent variable model for ordinal response variables. It equals Φ(β/2) for the corresponding ordinal model that applies a probit link function to cumulative multinomial probabilities, for standard normal cdf Φ and effect β that is the coefficient of the group indicator variable. For the more general latent variable model for ordinal responses that corresponds to a linear model with other possible error distributions and corresponding link functions for cumulative multinomial probabilities, the ordinal superiority measure equals exp(β)/[1+exp(β)] with the log-log link and equals approximately exp(β/2)/[1+exp(β/2)] with the logit link, where β is the group effect. Another ordinal superiority measure generalizes the difference of proportions from binary to ordinal responses. We also present related measures directly for ordinal models for the observed response that need not assume corresponding latent response models. We present confidence intervals for the measures and illustrate with an example. © 2016, The International Biometric Society.

  9. Measuring Variability and Change with an Item Response Model for Polytomous Variables.

    ERIC Educational Resources Information Center

    Eid, Michael; Hoffman, Lore

    1998-01-01

    An extension of the graded-response model of F. Samejima (1969) is presented for the measurement of variability and change. The model is illustrated with a longitudinal study of student interest in radioactivity conducted with about 1,200 German students in elementary school when the study began. (SLD)

  10. Modelling fourier regression for time series data- a case study: modelling inflation in foods sector in Indonesia

    NASA Astrophysics Data System (ADS)

    Prahutama, Alan; Suparti; Wahyu Utami, Tiani

    2018-03-01

    Regression analysis is an analysis to model the relationship between response variables and predictor variables. The parametric approach to the regression model is very strict with the assumption, but nonparametric regression model isn’t need assumption of model. Time series data is the data of a variable that is observed based on a certain time, so if the time series data wanted to be modeled by regression, then we should determined the response and predictor variables first. Determination of the response variable in time series is variable in t-th (yt), while the predictor variable is a significant lag. In nonparametric regression modeling, one developing approach is to use the Fourier series approach. One of the advantages of nonparametric regression approach using Fourier series is able to overcome data having trigonometric distribution. In modeling using Fourier series needs parameter of K. To determine the number of K can be used Generalized Cross Validation method. In inflation modeling for the transportation sector, communication and financial services using Fourier series yields an optimal K of 120 parameters with R-square 99%. Whereas if it was modeled by multiple linear regression yield R-square 90%.

  11. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability

    PubMed Central

    Reyer, C.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R. P.; Bonfante, A.; de Lorenzi, F.; Dury, M.; Gloning, P.; Abou Jaoudé, R.; Klein, T.; Kuster, T. M.; Martins, M.; Niedrist, G.; Riccardi, M.; Wohlfahrt, G.; de Angelis, P.; de Dato, G.; François, L.; Menzel, A.; Pereira, M.

    2013-01-01

    We review observational, experimental and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied but potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational and /or modeling studies have the potential to overcome important caveats of the respective individual approaches. PMID:23504722

  12. Cognitive Psychology Meets Psychometric Theory: On the Relation between Process Models for Decision Making and Latent Variable Models for Individual Differences

    ERIC Educational Resources Information Center

    van der Maas, Han L. J.; Molenaar, Dylan; Maris, Gunter; Kievit, Rogier A.; Borsboom, Denny

    2011-01-01

    This article analyzes latent variable models from a cognitive psychology perspective. We start by discussing work by Tuerlinckx and De Boeck (2005), who proved that a diffusion model for 2-choice response processes entails a 2-parameter logistic item response theory (IRT) model for individual differences in the response data. Following this line…

  13. An outline of graphical Markov models in dentistry.

    PubMed

    Helfenstein, U; Steiner, M; Menghini, G

    1999-12-01

    In the usual multiple regression model there is one response variable and one block of several explanatory variables. In contrast, in reality there may be a block of several possibly interacting response variables one would like to explain. In addition, the explanatory variables may split into a sequence of several blocks, each block containing several interacting variables. The variables in the second block are explained by those in the first block; the variables in the third block by those in the first and the second block etc. During recent years methods have been developed allowing analysis of problems where the data set has the above complex structure. The models involved are called graphical models or graphical Markov models. The main result of an analysis is a picture, a conditional independence graph with precise statistical meaning, consisting of circles representing variables and lines or arrows representing significant conditional associations. The absence of a line between two circles signifies that the corresponding two variables are independent conditional on the presence of other variables in the model. An example from epidemiology is presented in order to demonstrate application and use of the models. The data set in the example has a complex structure consisting of successive blocks: the variable in the first block is year of investigation; the variables in the second block are age and gender; the variables in the third block are indices of calculus, gingivitis and mutans streptococci and the final response variables in the fourth block are different indices of caries. Since the statistical methods may not be easily accessible to dentists, this article presents them in an introductory form. Graphical models may be of great value to dentists in allowing analysis and visualisation of complex structured multivariate data sets consisting of a sequence of blocks of interacting variables and, in particular, several possibly interacting responses in the final block.

  14. Short-term to seasonal variability in factors driving primary productivity in a shallow estuary: Implications for modeling production

    NASA Astrophysics Data System (ADS)

    Canion, Andy; MacIntyre, Hugh L.; Phipps, Scott

    2013-10-01

    The inputs of primary productivity models may be highly variable on short timescales (hourly to daily) in turbid estuaries, but modeling of productivity in these environments is often implemented with data collected over longer timescales. Daily, seasonal, and spatial variability in primary productivity model parameters: chlorophyll a concentration (Chla), the downwelling light attenuation coefficient (kd), and photosynthesis-irradiance response parameters (Pmchl, αChl) were characterized in Weeks Bay, a nitrogen-impacted shallow estuary in the northern Gulf of Mexico. Variability in primary productivity model parameters in response to environmental forcing, nutrients, and microalgal taxonomic marker pigments were analysed in monthly and short-term datasets. Microalgal biomass (as Chla) was strongly related to total phosphorus concentration on seasonal scales. Hourly data support wind-driven resuspension as a major source of short-term variability in Chla and light attenuation (kd). The empirical relationship between areal primary productivity and a combined variable of biomass and light attenuation showed that variability in the photosynthesis-irradiance response contributed little to the overall variability in primary productivity, and Chla alone could account for 53-86% of the variability in primary productivity. Efforts to model productivity in similar shallow systems with highly variable microalgal biomass may benefit the most by investing resources in improving spatial and temporal resolution of chlorophyll a measurements before increasing the complexity of models used in productivity modeling.

  15. Constrained and Unconstrained Partial Adjacent Category Logit Models for Ordinal Response Variables

    ERIC Educational Resources Information Center

    Fullerton, Andrew S.; Xu, Jun

    2018-01-01

    Adjacent category logit models are ordered regression models that focus on comparisons of adjacent categories. These models are particularly useful for ordinal response variables with categories that are of substantive interest. In this article, we consider unconstrained and constrained versions of the partial adjacent category logit model, which…

  16. Collaborative Research: Process-resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Ming; Deng, Yi

    2015-02-06

    El Niño-Southern Oscillation (ENSO) and Annular Modes (AMs) represent respectively the most important modes of low frequency variability in the tropical and extratropical circulations. The future projection of the ENSO and AM variability, however, remains highly uncertain with the state-of-the-art coupled general circulation models. A comprehensive understanding of the factors responsible for the inter-model discrepancies in projecting future changes in the ENSO and AM variability, in terms of multiple feedback processes involved, has yet to be achieved. The proposed research aims to identify sources of such uncertainty and establish a set of process-resolving quantitative evaluations of the existing predictions ofmore » the future ENSO and AM variability. The proposed process-resolving evaluations are based on a feedback analysis method formulated in Lu and Cai (2009), which is capable of partitioning 3D temperature anomalies/perturbations into components linked to 1) radiation-related thermodynamic processes such as cloud and water vapor feedbacks, 2) local dynamical processes including convection and turbulent/diffusive energy transfer and 3) non-local dynamical processes such as the horizontal energy transport in the oceans and atmosphere. Taking advantage of the high-resolution, multi-model ensemble products from the Coupled Model Intercomparison Project Phase 5 (CMIP5) soon to be available at the Lawrence Livermore National Lab, we will conduct a process-resolving decomposition of the global three-dimensional (3D) temperature (including SST) response to the ENSO and AM variability in the preindustrial, historical and future climate simulated by these models. Specific research tasks include 1) identifying the model-observation discrepancies in the global temperature response to ENSO and AM variability and attributing such discrepancies to specific feedback processes, 2) delineating the influence of anthropogenic radiative forcing on the key feedback processes operating on ENSO and AM variability and quantifying their relative contributions to the changes in the temperature anomalies associated with different phases of ENSO and AMs, and 3) investigating the linkages between model feedback processes that lead to inter-model differences in time-mean temperature projection and model feedback processes that cause inter-model differences in the simulated ENSO and AM temperature response. Through a thorough model-observation and inter-model comparison of the multiple energetic processes associated with ENSO and AM variability, the proposed research serves to identify key uncertainties in model representation of ENSO and AM variability, and investigate how the model uncertainty in predicting time-mean response is related to the uncertainty in predicting response of the low-frequency modes. The proposal is thus a direct response to the first topical area of the solicitation: Interaction of Climate Change and Low Frequency Modes of Natural Climate Variability. It ultimately supports the accomplishment of the BER climate science activity Long Term Measure (LTM): "Deliver improved scientific data and models about the potential response of the Earth's climate and terrestrial biosphere to increased greenhouse gas levels for policy makers to determine safe levels of greenhouse gases in the atmosphere."« less

  17. Dynamic Alignment Models for Neural Coding

    PubMed Central

    Kollmorgen, Sepp; Hahnloser, Richard H. R.

    2014-01-01

    Recently, there have been remarkable advances in modeling the relationships between the sensory environment, neuronal responses, and behavior. However, most models cannot encompass variable stimulus-response relationships such as varying response latencies and state or context dependence of the neural code. Here, we consider response modeling as a dynamic alignment problem and model stimulus and response jointly by a mixed pair hidden Markov model (MPH). In MPHs, multiple stimulus-response relationships (e.g., receptive fields) are represented by different states or groups of states in a Markov chain. Each stimulus-response relationship features temporal flexibility, allowing modeling of variable response latencies, including noisy ones. We derive algorithms for learning of MPH parameters and for inference of spike response probabilities. We show that some linear-nonlinear Poisson cascade (LNP) models are a special case of MPHs. We demonstrate the efficiency and usefulness of MPHs in simulations of both jittered and switching spike responses to white noise and natural stimuli. Furthermore, we apply MPHs to extracellular single and multi-unit data recorded in cortical brain areas of singing birds to showcase a novel method for estimating response lag distributions. MPHs allow simultaneous estimation of receptive fields, latency statistics, and hidden state dynamics and so can help to uncover complex stimulus response relationships that are subject to variable timing and involve diverse neural codes. PMID:24625448

  18. Multiresponse semiparametric regression for modelling the effect of regional socio-economic variables on the use of information technology

    NASA Astrophysics Data System (ADS)

    Wibowo, Wahyu; Wene, Chatrien; Budiantara, I. Nyoman; Permatasari, Erma Oktania

    2017-03-01

    Multiresponse semiparametric regression is simultaneous equation regression model and fusion of parametric and nonparametric model. The regression model comprise several models and each model has two components, parametric and nonparametric. The used model has linear function as parametric and polynomial truncated spline as nonparametric component. The model can handle both linearity and nonlinearity relationship between response and the sets of predictor variables. The aim of this paper is to demonstrate the application of the regression model for modeling of effect of regional socio-economic on use of information technology. More specific, the response variables are percentage of households has access to internet and percentage of households has personal computer. Then, predictor variables are percentage of literacy people, percentage of electrification and percentage of economic growth. Based on identification of the relationship between response and predictor variable, economic growth is treated as nonparametric predictor and the others are parametric predictors. The result shows that the multiresponse semiparametric regression can be applied well as indicate by the high coefficient determination, 90 percent.

  19. A gentle introduction to quantile regression for ecologists

    USGS Publications Warehouse

    Cade, B.S.; Noon, B.R.

    2003-01-01

    Quantile regression is a way to estimate the conditional quantiles of a response variable distribution in the linear model that provides a more complete view of possible causal relationships between variables in ecological processes. Typically, all the factors that affect ecological processes are not measured and included in the statistical models used to investigate relationships between variables associated with those processes. As a consequence, there may be a weak or no predictive relationship between the mean of the response variable (y) distribution and the measured predictive factors (X). Yet there may be stronger, useful predictive relationships with other parts of the response variable distribution. This primer relates quantile regression estimates to prediction intervals in parametric error distribution regression models (eg least squares), and discusses the ordering characteristics, interval nature, sampling variation, weighting, and interpretation of the estimates for homogeneous and heterogeneous regression models.

  20. Plasticity models of material variability based on uncertainty quantification techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Reese E.; Rizzi, Francesco; Boyce, Brad

    The advent of fabrication techniques like additive manufacturing has focused attention on the considerable variability of material response due to defects and other micro-structural aspects. This variability motivates the development of an enhanced design methodology that incorporates inherent material variability to provide robust predictions of performance. In this work, we develop plasticity models capable of representing the distribution of mechanical responses observed in experiments using traditional plasticity models of the mean response and recently developed uncertainty quantification (UQ) techniques. Lastly, we demonstrate that the new method provides predictive realizations that are superior to more traditional ones, and how these UQmore » techniques can be used in model selection and assessing the quality of calibrated physical parameters.« less

  1. Generalized Processing Tree Models: Jointly Modeling Discrete and Continuous Variables.

    PubMed

    Heck, Daniel W; Erdfelder, Edgar; Kieslich, Pascal J

    2018-05-24

    Multinomial processing tree models assume that discrete cognitive states determine observed response frequencies. Generalized processing tree (GPT) models extend this conceptual framework to continuous variables such as response times, process-tracing measures, or neurophysiological variables. GPT models assume finite-mixture distributions, with weights determined by a processing tree structure, and continuous components modeled by parameterized distributions such as Gaussians with separate or shared parameters across states. We discuss identifiability, parameter estimation, model testing, a modeling syntax, and the improved precision of GPT estimates. Finally, a GPT version of the feature comparison model of semantic categorization is applied to computer-mouse trajectories.

  2. Improvement in latent variable indirect response modeling of multiple categorical clinical endpoints: application to modeling of guselkumab treatment effects in psoriatic patients.

    PubMed

    Hu, Chuanpu; Randazzo, Bruce; Sharma, Amarnath; Zhou, Honghui

    2017-10-01

    Exposure-response modeling plays an important role in optimizing dose and dosing regimens during clinical drug development. The modeling of multiple endpoints is made possible in part by recent progress in latent variable indirect response (IDR) modeling for ordered categorical endpoints. This manuscript aims to investigate the level of improvement achievable by jointly modeling two such endpoints in the latent variable IDR modeling framework through the sharing of model parameters. This is illustrated with an application to the exposure-response of guselkumab, a human IgG1 monoclonal antibody in clinical development that blocks IL-23. A Phase 2b study was conducted in 238 patients with psoriasis for which disease severity was assessed using Psoriasis Area and Severity Index (PASI) and Physician's Global Assessment (PGA) scores. A latent variable Type I IDR model was developed to evaluate the therapeutic effect of guselkumab dosing on 75, 90 and 100% improvement of PASI scores from baseline and PGA scores, with placebo effect empirically modeled. The results showed that the joint model is able to describe the observed data better with fewer parameters compared with the common approach of separately modeling the endpoints.

  3. A latent class distance association model for cross-classified data with a categorical response variable.

    PubMed

    Vera, José Fernando; de Rooij, Mark; Heiser, Willem J

    2014-11-01

    In this paper we propose a latent class distance association model for clustering in the predictor space of large contingency tables with a categorical response variable. The rows of such a table are characterized as profiles of a set of explanatory variables, while the columns represent a single outcome variable. In many cases such tables are sparse, with many zero entries, which makes traditional models problematic. By clustering the row profiles into a few specific classes and representing these together with the categories of the response variable in a low-dimensional Euclidean space using a distance association model, a parsimonious prediction model can be obtained. A generalized EM algorithm is proposed to estimate the model parameters and the adjusted Bayesian information criterion statistic is employed to test the number of mixture components and the dimensionality of the representation. An empirical example highlighting the advantages of the new approach and comparing it with traditional approaches is presented. © 2014 The British Psychological Society.

  4. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  5. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2014-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  6. Modeling the human development index and the percentage of poor people using quantile smoothing splines

    NASA Astrophysics Data System (ADS)

    Mulyani, Sri; Andriyana, Yudhie; Sudartianto

    2017-03-01

    Mean regression is a statistical method to explain the relationship between the response variable and the predictor variable based on the central tendency of the data (mean) of the response variable. The parameter estimation in mean regression (with Ordinary Least Square or OLS) generates a problem if we apply it to the data with a symmetric, fat-tailed, or containing outlier. Hence, an alternative method is necessary to be used to that kind of data, for example quantile regression method. The quantile regression is a robust technique to the outlier. This model can explain the relationship between the response variable and the predictor variable, not only on the central tendency of the data (median) but also on various quantile, in order to obtain complete information about that relationship. In this study, a quantile regression is developed with a nonparametric approach such as smoothing spline. Nonparametric approach is used if the prespecification model is difficult to determine, the relation between two variables follow the unknown function. We will apply that proposed method to poverty data. Here, we want to estimate the Percentage of Poor People as the response variable involving the Human Development Index (HDI) as the predictor variable.

  7. Dose-Response Calculator for ArcGIS

    USGS Publications Warehouse

    Hanser, Steven E.; Aldridge, Cameron L.; Leu, Matthias; Nielsen, Scott E.

    2011-01-01

    The Dose-Response Calculator for ArcGIS is a tool that extends the Environmental Systems Research Institute (ESRI) ArcGIS 10 Desktop application to aid with the visualization of relationships between two raster GIS datasets. A dose-response curve is a line graph commonly used in medical research to examine the effects of different dosage rates of a drug or chemical (for example, carcinogen) on an outcome of interest (for example, cell mutations) (Russell and others, 1982). Dose-response curves have recently been used in ecological studies to examine the influence of an explanatory dose variable (for example, percentage of habitat cover, distance to disturbance) on a predicted response (for example, survival, probability of occurrence, abundance) (Aldridge and others, 2008). These dose curves have been created by calculating the predicted response value from a statistical model at different levels of the explanatory dose variable while holding values of other explanatory variables constant. Curves (plots) developed using the Dose-Response Calculator overcome the need to hold variables constant by using values extracted from the predicted response surface of a spatially explicit statistical model fit in a GIS, which include the variation of all explanatory variables, to visualize the univariate response to the dose variable. Application of the Dose-Response Calculator can be extended beyond the assessment of statistical model predictions and may be used to visualize the relationship between any two raster GIS datasets (see example in tool instructions). This tool generates tabular data for use in further exploration of dose-response relationships and a graph of the dose-response curve.

  8. Changing precipitation in western Europe, climate change or natural variability?

    NASA Astrophysics Data System (ADS)

    Aalbers, Emma; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart

    2017-04-01

    Multi-model RCM-GCM ensembles provide high resolution climate projections, valuable for among others climate impact assessment studies. While the application of multiple models (both GCMs and RCMs) provides a certain robustness with respect to model uncertainty, the interpretation of differences between ensemble members - the combined result of model uncertainty and natural variability of the climate system - is not straightforward. Natural variability is intrinsic to the climate system, and a potentially large source of uncertainty in climate change projections, especially for projections on the local to regional scale. To quantify the natural variability and get a robust estimate of the forced climate change response (given a certain model and forcing scenario), large ensembles of climate model simulations of the same model provide essential information. While for global climate models (GCMs) a number of such large single model ensembles exists and have been analyzed, for regional climate models (RCMs) the number and size of single model ensembles is limited, and the predictability of the forced climate response at the local to regional scale is still rather uncertain. We present a regional downscaling of a 16-member single model ensemble over western Europe and the Alps at a resolution of 0.11 degrees (˜12km), similar to the highest resolution EURO-CORDEX simulations. This 16-member ensemble was generated by the GCM EC-EARTH, which was downscaled with the RCM RACMO for the period 1951-2100. This single model ensemble has been investigated in terms of the ensemble mean response (our estimate of the forced climate response), as well as the difference between the ensemble members, which measures natural variability. We focus on the response in seasonal mean and extreme precipitation (seasonal maxima and extremes with a return period up to 20 years) for the near to far future. For most precipitation indices we can reliably determine the climate change signal, given the applied model chain and forcing scenario. However, the analysis also shows how limited the information in single ensemble members is on the local scale forced climate response, even for high levels of global warming when the forced response has emerged from natural variability. Analysis and application of multi-model ensembles like EURO-CORDEX should go hand-in-hand with single model ensembles, like the one presented here, to be able to correctly interpret the fine-scale information in terms of a forced signal and random noise due to natural variability.

  9. Multinomial logistic regression modelling of obesity and overweight among primary school students in a rural area of Negeri Sembilan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghazali, Amirul Syafiq Mohd; Ali, Zalila; Noor, Norlida Mohd

    Multinomial logistic regression is widely used to model the outcomes of a polytomous response variable, a categorical dependent variable with more than two categories. The model assumes that the conditional mean of the dependent categorical variables is the logistic function of an affine combination of predictor variables. Its procedure gives a number of logistic regression models that make specific comparisons of the response categories. When there are q categories of the response variable, the model consists of q-1 logit equations which are fitted simultaneously. The model is validated by variable selection procedures, tests of regression coefficients, a significant test ofmore » the overall model, goodness-of-fit measures, and validation of predicted probabilities using odds ratio. This study used the multinomial logistic regression model to investigate obesity and overweight among primary school students in a rural area on the basis of their demographic profiles, lifestyles and on the diet and food intake. The results indicated that obesity and overweight of students are related to gender, religion, sleep duration, time spent on electronic games, breakfast intake in a week, with whom meals are taken, protein intake, and also, the interaction between breakfast intake in a week with sleep duration, and the interaction between gender and protein intake.« less

  10. Multinomial logistic regression modelling of obesity and overweight among primary school students in a rural area of Negeri Sembilan

    NASA Astrophysics Data System (ADS)

    Ghazali, Amirul Syafiq Mohd; Ali, Zalila; Noor, Norlida Mohd; Baharum, Adam

    2015-10-01

    Multinomial logistic regression is widely used to model the outcomes of a polytomous response variable, a categorical dependent variable with more than two categories. The model assumes that the conditional mean of the dependent categorical variables is the logistic function of an affine combination of predictor variables. Its procedure gives a number of logistic regression models that make specific comparisons of the response categories. When there are q categories of the response variable, the model consists of q-1 logit equations which are fitted simultaneously. The model is validated by variable selection procedures, tests of regression coefficients, a significant test of the overall model, goodness-of-fit measures, and validation of predicted probabilities using odds ratio. This study used the multinomial logistic regression model to investigate obesity and overweight among primary school students in a rural area on the basis of their demographic profiles, lifestyles and on the diet and food intake. The results indicated that obesity and overweight of students are related to gender, religion, sleep duration, time spent on electronic games, breakfast intake in a week, with whom meals are taken, protein intake, and also, the interaction between breakfast intake in a week with sleep duration, and the interaction between gender and protein intake.

  11. Linking Inflammation, Cardiorespiratory Variability, and Neural Control in Acute Inflammation via Computational Modeling

    PubMed Central

    Dick, Thomas E.; Molkov, Yaroslav I.; Nieman, Gary; Hsieh, Yee-Hsee; Jacono, Frank J.; Doyle, John; Scheff, Jeremy D.; Calvano, Steve E.; Androulakis, Ioannis P.; An, Gary; Vodovotz, Yoram

    2012-01-01

    Acute inflammation leads to organ failure by engaging catastrophic feedback loops in which stressed tissue evokes an inflammatory response and, in turn, inflammation damages tissue. Manifestations of this maladaptive inflammatory response include cardio-respiratory dysfunction that may be reflected in reduced heart rate and ventilatory pattern variabilities. We have developed signal-processing algorithms that quantify non-linear deterministic characteristics of variability in biologic signals. Now, coalescing under the aegis of the NIH Computational Biology Program and the Society for Complexity in Acute Illness, two research teams performed iterative experiments and computational modeling on inflammation and cardio-pulmonary dysfunction in sepsis as well as on neural control of respiration and ventilatory pattern variability. These teams, with additional collaborators, have recently formed a multi-institutional, interdisciplinary consortium, whose goal is to delineate the fundamental interrelationship between the inflammatory response and physiologic variability. Multi-scale mathematical modeling and complementary physiological experiments will provide insight into autonomic neural mechanisms that may modulate the inflammatory response to sepsis and simultaneously reduce heart rate and ventilatory pattern variabilities associated with sepsis. This approach integrates computational models of neural control of breathing and cardio-respiratory coupling with models that combine inflammation, cardiovascular function, and heart rate variability. The resulting integrated model will provide mechanistic explanations for the phenomena of respiratory sinus-arrhythmia and cardio-ventilatory coupling observed under normal conditions, and the loss of these properties during sepsis. This approach holds the potential of modeling cross-scale physiological interactions to improve both basic knowledge and clinical management of acute inflammatory diseases such as sepsis and trauma. PMID:22783197

  12. Linking Inflammation, Cardiorespiratory Variability, and Neural Control in Acute Inflammation via Computational Modeling.

    PubMed

    Dick, Thomas E; Molkov, Yaroslav I; Nieman, Gary; Hsieh, Yee-Hsee; Jacono, Frank J; Doyle, John; Scheff, Jeremy D; Calvano, Steve E; Androulakis, Ioannis P; An, Gary; Vodovotz, Yoram

    2012-01-01

    Acute inflammation leads to organ failure by engaging catastrophic feedback loops in which stressed tissue evokes an inflammatory response and, in turn, inflammation damages tissue. Manifestations of this maladaptive inflammatory response include cardio-respiratory dysfunction that may be reflected in reduced heart rate and ventilatory pattern variabilities. We have developed signal-processing algorithms that quantify non-linear deterministic characteristics of variability in biologic signals. Now, coalescing under the aegis of the NIH Computational Biology Program and the Society for Complexity in Acute Illness, two research teams performed iterative experiments and computational modeling on inflammation and cardio-pulmonary dysfunction in sepsis as well as on neural control of respiration and ventilatory pattern variability. These teams, with additional collaborators, have recently formed a multi-institutional, interdisciplinary consortium, whose goal is to delineate the fundamental interrelationship between the inflammatory response and physiologic variability. Multi-scale mathematical modeling and complementary physiological experiments will provide insight into autonomic neural mechanisms that may modulate the inflammatory response to sepsis and simultaneously reduce heart rate and ventilatory pattern variabilities associated with sepsis. This approach integrates computational models of neural control of breathing and cardio-respiratory coupling with models that combine inflammation, cardiovascular function, and heart rate variability. The resulting integrated model will provide mechanistic explanations for the phenomena of respiratory sinus-arrhythmia and cardio-ventilatory coupling observed under normal conditions, and the loss of these properties during sepsis. This approach holds the potential of modeling cross-scale physiological interactions to improve both basic knowledge and clinical management of acute inflammatory diseases such as sepsis and trauma.

  13. Optimum extrusion-cooking conditions for improving physical properties of fish-cereal based snacks by response surface methodology.

    PubMed

    Singh, R K Ratankumar; Majumdar, Ranendra K; Venkateshwarlu, G

    2014-09-01

    To establish the effect of barrel temperature, screw speed, total moisture and fish flour content on the expansion ratio and bulk density of the fish based extrudates, response surface methodology was adopted in this study. The experiments were optimized using five-levels, four factors central composite design. Analysis of Variance was carried to study the effects of main factors and interaction effects of various factors and regression analysis was carried out to explain the variability. The fitting was done to a second order model with the coded variables for each response. The response surface plots were developed as a function of two independent variables while keeping the other two independent variables at optimal values. Based on the ANOVA, the fitted model confirmed the model fitness for both the dependent variables. Organoleptically highest score was obtained with the combination of temperature-110(0) C, screw speed-480 rpm, moisture-18 % and fish flour-20 %.

  14. Unitary Response Regression Models

    ERIC Educational Resources Information Center

    Lipovetsky, S.

    2007-01-01

    The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…

  15. Evaluating the Contribution of Natural Variability and Climate Model Response to Uncertainty in Projections of Climate Change Impacts on U.S. Air Quality

    EPA Science Inventory

    We examine the effects of internal variability and model response in projections of climate impacts on U.S. ground-level ozone across the 21st century using integrated global system modeling and global atmospheric chemistry simulations. The impact of climate change on air polluti...

  16. Agricultural disturbance response models for invertebrate and algal metrics from streams at two spatial scales within the U.S.

    USGS Publications Warehouse

    Waite, Ian R.

    2014-01-01

    As part of the USGS study of nutrient enrichment of streams in agricultural regions throughout the United States, about 30 sites within each of eight study areas were selected to capture a gradient of nutrient conditions. The objective was to develop watershed disturbance predictive models for macroinvertebrate and algal metrics at national and three regional landscape scales to obtain a better understanding of important explanatory variables. Explanatory variables in models were generated from landscape data, habitat, and chemistry. Instream nutrient concentration and variables assessing the amount of disturbance to the riparian zone (e.g., percent row crops or percent agriculture) were selected as most important explanatory variable in almost all boosted regression tree models regardless of landscape scale or assemblage. Frequently, TN and TP concentration and riparian agricultural land use variables showed a threshold type response at relatively low values to biotic metrics modeled. Some measure of habitat condition was also commonly selected in the final invertebrate models, though the variable(s) varied across regions. Results suggest national models tended to account for more general landscape/climate differences, while regional models incorporated both broad landscape scale and more specific local-scale variables.

  17. Selecting an Informative/Discriminating Multivariate Response for Inverse Prediction

    DOE PAGES

    Thomas, Edward V.; Lewis, John R.; Anderson-Cook, Christine M.; ...

    2017-11-21

    nverse prediction is important in a wide variety of scientific and engineering contexts. One might use inverse prediction to predict fundamental properties/characteristics of an object using measurements obtained from it. This can be accomplished by “inverting” parameterized forward models that relate the measurements (responses) to the properties/characteristics of interest. Sometimes forward models are science based; but often, forward models are empirically based, using the results of experimentation. For empirically-based forward models, it is important that the experiments provide a sound basis to develop accurate forward models in terms of the properties/characteristics (factors). While nature dictates the causal relationship between factorsmore » and responses, experimenters can influence control of the type, accuracy, and precision of forward models that can be constructed via selection of factors, factor levels, and the set of trials that are performed. Whether the forward models are based on science, experiments or both, researchers can influence the ability to perform inverse prediction by selecting informative response variables. By using an errors-in-variables framework for inverse prediction, this paper shows via simple analysis and examples how the capability of a multivariate response (with respect to being informative and discriminating) can vary depending on how well the various responses complement one another over the range of the factor-space of interest. Insights derived from this analysis could be useful for selecting a set of response variables among candidates in cases where the number of response variables that can be acquired is limited by difficulty, expense, and/or availability of material.« less

  18. Selecting an Informative/Discriminating Multivariate Response for Inverse Prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Edward V.; Lewis, John R.; Anderson-Cook, Christine M.

    nverse prediction is important in a wide variety of scientific and engineering contexts. One might use inverse prediction to predict fundamental properties/characteristics of an object using measurements obtained from it. This can be accomplished by “inverting” parameterized forward models that relate the measurements (responses) to the properties/characteristics of interest. Sometimes forward models are science based; but often, forward models are empirically based, using the results of experimentation. For empirically-based forward models, it is important that the experiments provide a sound basis to develop accurate forward models in terms of the properties/characteristics (factors). While nature dictates the causal relationship between factorsmore » and responses, experimenters can influence control of the type, accuracy, and precision of forward models that can be constructed via selection of factors, factor levels, and the set of trials that are performed. Whether the forward models are based on science, experiments or both, researchers can influence the ability to perform inverse prediction by selecting informative response variables. By using an errors-in-variables framework for inverse prediction, this paper shows via simple analysis and examples how the capability of a multivariate response (with respect to being informative and discriminating) can vary depending on how well the various responses complement one another over the range of the factor-space of interest. Insights derived from this analysis could be useful for selecting a set of response variables among candidates in cases where the number of response variables that can be acquired is limited by difficulty, expense, and/or availability of material.« less

  19. Bayesian Adaptive Lasso for Ordinal Regression with Latent Variables

    ERIC Educational Resources Information Center

    Feng, Xiang-Nan; Wu, Hao-Tian; Song, Xin-Yuan

    2017-01-01

    We consider an ordinal regression model with latent variables to investigate the effects of observable and latent explanatory variables on the ordinal responses of interest. Each latent variable is characterized by correlated observed variables through a confirmatory factor analysis model. We develop a Bayesian adaptive lasso procedure to conduct…

  20. Variability of annoyance response due to aircraft noise

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Cawthorn, J. M.

    1979-01-01

    An investigation was conducted to study the variability in the response of subjects participating in noise experiments. This paper presents a description of a model developed to include this variability which incorporates an aircraft-noise adaptation level or an annoyance calibration for each individual. The results indicate that the use of an aircraft-noise adaption level improved prediction accuracy of annoyance responses (and simultaneously reduced response variation).

  1. Partitioning neuronal variability

    PubMed Central

    Goris, Robbe L.T.; Movshon, J. Anthony; Simoncelli, Eero P.

    2014-01-01

    Responses of sensory neurons differ across repeated measurements. This variability is usually treated as stochasticity arising within neurons or neural circuits. However, some portion of the variability arises from fluctuations in excitability due to factors that are not purely sensory, such as arousal, attention, and adaptation. To isolate these fluctuations, we developed a model in which spikes are generated by a Poisson process whose rate is the product of a drive that is sensory in origin, and a gain summarizing stimulus-independent modulatory influences on excitability. This model provides an accurate account of response distributions of visual neurons in macaque LGN, V1, V2, and MT, revealing that variability originates in large part from excitability fluctuations which are correlated over time and between neurons, and which increase in strength along the visual pathway. The model provides a parsimonious explanation for observed systematic dependencies of response variability and covariability on firing rate. PMID:24777419

  2. Modeling biogeochemical responses of vegetation to ENSO: comparison and analysis on subgrid PFT patches

    NASA Astrophysics Data System (ADS)

    Xu, M.; Hoffman, F. M.

    2016-12-01

    The El Niño Southern Oscillation (ENSO) is an important interannual climate variability and has significant consequences and impacts on the global biosphere. The responses of vegetation to ENSO are highly heterogeneous and generally depend on the biophysical and biochemical characteristics associated with model plant functional types (PFTs). The modeled biogeochemical variables from Earth System Models (ESMs) are generally grid averages consisting of several PFTs within a gridcell, which will lead to difficulties in directly comparing them with site observations and large uncertainties in studying their responses to large scale climate variability. In this study, we conducted a transient ENSO simulation for the previoustwo decades from 1995 to 2020 using the DOE ACME v0.3 model. It has a comprehensive terrestrial biogeochemistry model that is fully coupled with a sophisticated atmospheric model with an advanced spectral element dynamical core. The model was driven by the NOAA optimum interpolation sea surface temperature (SST) for contemporary years and CFS v2 nine-month seasonal predicted and reconstructed SST for future years till to 2020. We saved the key biogeochemical variables in the subgrid PFT patches and compared them with site observations directly. Furthermore, we studied the biogeochemical responses of terrestrial vegetation to two largest ENSO events (1997-1998 and 2015-2016) for different PFTs. Our results show that it is useful and meaningful to compare and analyze model simulations in subgrid patches. The comparison and analysis not only gave us the details of responses of terrestrial ecosystem to global climate variability under changing climate, but also the insightful view on the model performance on the PFT level.

  3. Sensitivity of Antarctic sea ice to the Southern Annular Mode in coupled climate models

    NASA Astrophysics Data System (ADS)

    Holland, Marika M.; Landrum, Laura; Kostov, Yavor; Marshall, John

    2017-09-01

    We assess the sea ice response to Southern Annular Mode (SAM) anomalies for pre-industrial control simulations from the Coupled Model Intercomparison Project (CMIP5). Consistent with work by Ferreira et al. (J Clim 28:1206-1226, 2015. doi: 10.1175/JCLI-D-14-00313.1), the models generally simulate a two-timescale response to positive SAM anomalies, with an initial increase in ice followed by an eventual sea ice decline. However, the models differ in the cross-over time at which the change in ice response occurs, in the overall magnitude of the response, and in the spatial distribution of the response. Late twentieth century Antarctic sea ice trends in CMIP5 simulations are related in part to different modeled responses to SAM variability acting on different time-varying transient SAM conditions. This explains a significant fraction of the spread in simulated late twentieth century southern hemisphere sea ice extent trends across the model simulations. Applying the modeled sea ice response to SAM variability but driven by the observed record of SAM suggests that variations in the austral summer SAM, which has exhibited a significant positive trend, have driven a modest sea ice decrease. However, additional work is needed to narrow the considerable model uncertainty in the climate response to SAM variability and its implications for 20th-21st century trends.

  4. Bayesian Estimation of Panel Data Fractional Response Models with Endogeneity: An Application to Standardized Test Rates

    ERIC Educational Resources Information Center

    Kessler, Lawrence M.

    2013-01-01

    In this paper I propose Bayesian estimation of a nonlinear panel data model with a fractional dependent variable (bounded between 0 and 1). Specifically, I estimate a panel data fractional probit model which takes into account the bounded nature of the fractional response variable. I outline estimation under the assumption of strict exogeneity as…

  5. The impact of short term synaptic depression and stochastic vesicle dynamics on neuronal variability

    PubMed Central

    Reich, Steven

    2014-01-01

    Neuronal variability plays a central role in neural coding and impacts the dynamics of neuronal networks. Unreliability of synaptic transmission is a major source of neural variability: synaptic neurotransmitter vesicles are released probabilistically in response to presynaptic action potentials and are recovered stochastically in time. The dynamics of this process of vesicle release and recovery interacts with variability in the arrival times of presynaptic spikes to shape the variability of the postsynaptic response. We use continuous time Markov chain methods to analyze a model of short term synaptic depression with stochastic vesicle dynamics coupled with three different models of presynaptic spiking: one model in which the timing of presynaptic action potentials are modeled as a Poisson process, one in which action potentials occur more regularly than a Poisson process (sub-Poisson) and one in which action potentials occur more irregularly (super-Poisson). We use this analysis to investigate how variability in a presynaptic spike train is transformed by short term depression and stochastic vesicle dynamics to determine the variability of the postsynaptic response. We find that sub-Poisson presynaptic spiking increases the average rate at which vesicles are released, that the number of vesicles released over a time window is more variable for smaller time windows than larger time windows and that fast presynaptic spiking gives rise to Poisson-like variability of the postsynaptic response even when presynaptic spike times are non-Poisson. Our results complement and extend previously reported theoretical results and provide possible explanations for some trends observed in recorded data. PMID:23354693

  6. Models of subjective response to in-flight motion data

    NASA Technical Reports Server (NTRS)

    Rudrapatna, A. N.; Jacobson, I. D.

    1973-01-01

    Mathematical relationships between subjective comfort and environmental variables in an air transportation system are investigated. As a first step in model building, only the motion variables are incorporated and sensitivities are obtained using stepwise multiple regression analysis. The data for these models have been collected from commercial passenger flights. Two models are considered. In the first, subjective comfort is assumed to depend on rms values of the six-degrees-of-freedom accelerations. The second assumes a Rustenburg type human response function in obtaining frequency weighted rms accelerations, which are used in a linear model. The form of the human response function is examined and the results yield a human response weighting function for different degrees of freedom.

  7. On the explaining-away phenomenon in multivariate latent variable models.

    PubMed

    van Rijn, Peter; Rijmen, Frank

    2015-02-01

    Many probabilistic models for psychological and educational measurements contain latent variables. Well-known examples are factor analysis, item response theory, and latent class model families. We discuss what is referred to as the 'explaining-away' phenomenon in the context of such latent variable models. This phenomenon can occur when multiple latent variables are related to the same observed variable, and can elicit seemingly counterintuitive conditional dependencies between latent variables given observed variables. We illustrate the implications of explaining away for a number of well-known latent variable models by using both theoretical and real data examples. © 2014 The British Psychological Society.

  8. Modelling and Simulation of the Dynamics of the Antigen-Specific T Cell Response Using Variable Structure Control Theory.

    PubMed

    Anelone, Anet J N; Spurgeon, Sarah K

    2016-01-01

    Experimental and mathematical studies in immunology have revealed that the dynamics of the programmed T cell response to vigorous infection can be conveniently modelled using a sigmoidal or a discontinuous immune response function. This paper hypothesizes strong synergies between this existing work and the dynamical behaviour of engineering systems with a variable structure control (VSC) law. These findings motivate the interpretation of the immune system as a variable structure control system. It is shown that dynamical properties as well as conditions to analytically assess the transition from health to disease can be developed for the specific T cell response from the theory of variable structure control. In particular, it is shown that the robustness properties of the specific T cell response as observed in experiments can be explained analytically using a VSC perspective. Further, the predictive capacity of the VSC framework to determine the T cell help required to overcome chronic Lymphocytic Choriomeningitis Virus (LCMV) infection is demonstrated. The findings demonstrate that studying the immune system using variable structure control theory provides a new framework for evaluating immunological dynamics and experimental observations. A modelling and simulation tool results with predictive capacity to determine how to modify the immune response to achieve healthy outcomes which may have application in drug development and vaccine design.

  9. Some Statistics for Assessing Person-Fit Based on Continuous-Response Models

    ERIC Educational Resources Information Center

    Ferrando, Pere Joan

    2010-01-01

    This article proposes several statistics for assessing individual fit based on two unidimensional models for continuous responses: linear factor analysis and Samejima's continuous response model. Both models are approached using a common framework based on underlying response variables and are formulated at the individual level as fixed regression…

  10. Stochastic Approximation Methods for Latent Regression Item Response Models

    ERIC Educational Resources Information Center

    von Davier, Matthias; Sinharay, Sandip

    2010-01-01

    This article presents an application of a stochastic approximation expectation maximization (EM) algorithm using a Metropolis-Hastings (MH) sampler to estimate the parameters of an item response latent regression model. Latent regression item response models are extensions of item response theory (IRT) to a latent variable model with covariates…

  11. Relating Neuronal to Behavioral Performance: Variability of Optomotor Responses in the Blowfly

    PubMed Central

    Rosner, Ronny; Warzecha, Anne-Kathrin

    2011-01-01

    Behavioral responses of an animal vary even when they are elicited by the same stimulus. This variability is due to stochastic processes within the nervous system and to the changing internal states of the animal. To what extent does the variability of neuronal responses account for the overall variability at the behavioral level? To address this question we evaluate the neuronal variability at the output stage of the blowfly's (Calliphora vicina) visual system by recording from motion-sensitive interneurons mediating head optomotor responses. By means of a simple modelling approach representing the sensory-motor transformation, we predict head movements on the basis of the recorded responses of motion-sensitive neurons and compare the variability of the predicted head movements with that of the observed ones. Large gain changes of optomotor head movements have previously been shown to go along with changes in the animals' activity state. Our modelling approach substantiates that these gain changes are imposed downstream of the motion-sensitive neurons of the visual system. Moreover, since predicted head movements are clearly more reliable than those actually observed, we conclude that substantial variability is introduced downstream of the visual system. PMID:22066014

  12. Partitioning the impacts of spatial and climatological rainfall variability in urban drainage modeling

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo

    2017-03-01

    The performance of urban drainage systems is typically examined using hydrological and hydrodynamic models where rainfall input is uniformly distributed, i.e., derived from a single or very few rain gauges. When models are fed with a single uniformly distributed rainfall realization, the response of the urban drainage system to the rainfall variability remains unexplored. The goal of this study was to understand how climate variability and spatial rainfall variability, jointly or individually considered, affect the response of a calibrated hydrodynamic urban drainage model. A stochastic spatially distributed rainfall generator (STREAP - Space-Time Realizations of Areal Precipitation) was used to simulate many realizations of rainfall for a 30-year period, accounting for both climate variability and spatial rainfall variability. The generated rainfall ensemble was used as input into a calibrated hydrodynamic model (EPA SWMM - the US EPA's Storm Water Management Model) to simulate surface runoff and channel flow in a small urban catchment in the city of Lucerne, Switzerland. The variability of peak flows in response to rainfall of different return periods was evaluated at three different locations in the urban drainage network and partitioned among its sources. The main contribution to the total flow variability was found to originate from the natural climate variability (on average over 74 %). In addition, the relative contribution of the spatial rainfall variability to the total flow variability was found to increase with longer return periods. This suggests that while the use of spatially distributed rainfall data can supply valuable information for sewer network design (typically based on rainfall with return periods from 5 to 15 years), there is a more pronounced relevance when conducting flood risk assessments for larger return periods. The results show the importance of using multiple distributed rainfall realizations in urban hydrology studies to capture the total flow variability in the response of the urban drainage systems to heavy rainfall events.

  13. Variable Behavior and Repeated Learning in Two Mouse Strains: Developmental and Genetic Contributions.

    PubMed

    Arnold, Megan A; Newland, M Christopher

    2018-06-16

    Behavioral inflexibility is often assessed using reversal learning tasks, which require a relatively low degree of response variability. No studies have assessed sensitivity to reinforcement contingencies that specifically select highly variable response patterns in mice, let alone in models of neurodevelopmental disorders involving limited response variation. Operant variability and incremental repeated acquisition (IRA) were used to assess unique aspects of behavioral variability of two mouse strains: BALB/c, a model of some deficits in ASD, and C57Bl/6. On the operant variability task, BALB/c mice responded more repetitively during adolescence than C57Bl/6 mice when reinforcement did not require variability but responded more variably when reinforcement required variability. During IRA testing in adulthood, both strains acquired an unchanging, performance sequence equally well. Strain differences emerged, however, after novel learning sequences began alternating with the performance sequence: BALB/c mice substantially outperformed C57Bl/6 mice. Using litter-mate controls, it was found that adolescent experience with variability did not affect either learning or performance on the IRA task in adulthood. These findings constrain the use of BALB/c mice as a model of ASD, but once again reveal this strain is highly sensitive to reinforcement contingencies and they are fast and robust learners. Copyright © 2018. Published by Elsevier B.V.

  14. The antigenic evolution of influenza: drift or thrift?

    PubMed Central

    Wikramaratna, Paul S.; Sandeman, Michi; Recker, Mario; Gupta, Sunetra

    2013-01-01

    It is commonly assumed that antibody responses against the influenza virus are polarized in the following manner: strong antibody responses are directed at highly variable antigenic epitopes, which consequently undergo ‘antigenic drift’, while weak antibody responses develop against conserved epitopes. As the highly variable epitopes are in a constant state of flux, current antibody-based vaccine strategies are focused on the conserved epitopes in the expectation that they will provide some level of clinical protection after appropriate boosting. Here, we use a theoretical model to suggest the existence of epitopes of low variability, which elicit a high degree of both clinical and transmission-blocking immunity. We show that several epidemiological features of influenza and its serological and molecular profiles are consistent with this model of ‘antigenic thrift’, and that identifying the protective epitopes of low variability predicted by this model could offer a more viable alternative to regularly update the influenza vaccine than exploiting responses to weakly immunogenic conserved regions. PMID:23382423

  15. Modeling the hysteretic moisture and temperature responses of soil carbon decomposition resulting from organo-mineral interactions

    NASA Astrophysics Data System (ADS)

    Tang, J.; Riley, W. J.

    2017-12-01

    Most existing soil carbon cycle models have modeled the moisture and temperature dependence of soil respiration using deterministic response functions. However, empirical data suggest abundant variability in both of these dependencies. We here use the recently developed SUPECA (Synthesizing Unit and Equilibrium Chemistry Approximation) theory and a published dynamic energy budget based microbial model to investigate how soil carbon decomposition responds to changes in soil moisture and temperature under the influence of organo-mineral interactions. We found that both the temperature and moisture responses are hysteretic and cannot be represented by deterministic functions. We then evaluate how the multi-scale variability in temperature and moisture forcing affect soil carbon decomposition. Our results indicate that when the model is run in scenarios mimicking laboratory incubation experiments, the often-observed temperature and moisture response functions can be well reproduced. However, when such response functions are used for model extrapolation involving more transient variability in temperature and moisture forcing (as found in real ecosystems), the dynamic model that explicitly accounts for hysteresis in temperature and moisture dependency produces significantly different estimations of soil carbon decomposition, suggesting there are large biases in models that do not resolve such hysteresis. We call for more studies on organo-mineral interactions to improve modeling of such hysteresis.

  16. A Linear Variable-[theta] Model for Measuring Individual Differences in Response Precision

    ERIC Educational Resources Information Center

    Ferrando, Pere J.

    2011-01-01

    Models for measuring individual response precision have been proposed for binary and graded responses. However, more continuous formats are quite common in personality measurement and are usually analyzed with the linear factor analysis model. This study extends the general Gaussian person-fluctuation model to the continuous-response case and…

  17. Probabilistic Thermal Analysis During Mars Reconnaissance Orbiter Aerobraking

    NASA Technical Reports Server (NTRS)

    Dec, John A.

    2007-01-01

    A method for performing a probabilistic thermal analysis during aerobraking has been developed. The analysis is performed on the Mars Reconnaissance Orbiter solar array during aerobraking. The methodology makes use of a response surface model derived from a more complex finite element thermal model of the solar array. The response surface is a quadratic equation which calculates the peak temperature for a given orbit drag pass at a specific location on the solar panel. Five different response surface equations are used, one of which predicts the overall maximum solar panel temperature, and the remaining four predict the temperatures of the solar panel thermal sensors. The variables used to define the response surface can be characterized as either environmental, material property, or modeling variables. Response surface variables are statistically varied in a Monte Carlo simulation. The Monte Carlo simulation produces mean temperatures and 3 sigma bounds as well as the probability of exceeding the designated flight allowable temperature for a given orbit. Response surface temperature predictions are compared with the Mars Reconnaissance Orbiter flight temperature data.

  18. Application of a Physiologically Based Pharmacokinetic Model to Predict OATP1B1-Related Variability in Pharmacodynamics of Rosuvastatin

    PubMed Central

    Rose, R H; Neuhoff, S; Abduljalil, K; Chetty, M; Rostami-Hodjegan, A; Jamei, M

    2014-01-01

    Typically, pharmacokinetic–pharmacodynamic (PK/PD) models use plasma concentration as the input that drives the PD model. However, interindividual variability in uptake transporter activity can lead to variable drug concentrations in plasma without discernible impact on the effect site organ concentration. A physiologically based PK/PD model for rosuvastatin was developed that linked the predicted liver concentration to the PD response model. The model was then applied to predict the effect of genotype-dependent uptake by the organic anion-transporting polypeptide 1B1 (OATP1B1) transporter on the pharmacological response. The area under the plasma concentration–time curve (AUC0–∞) was increased by 63 and 111% for the c.521TC and c.521CC genotypes vs. the c.521TT genotype, while the PD response remained relatively unchanged (3.1 and 5.8% reduction). Using local concentration at the effect site to drive the PD response enabled us to explain the observed disconnect between the effect of the OATP1B1 c521T>C polymorphism on rosuvastatin plasma concentration and the cholesterol synthesis response. PMID:25006781

  19. Cognitive psychology meets psychometric theory: on the relation between process models for decision making and latent variable models for individual differences.

    PubMed

    van der Maas, Han L J; Molenaar, Dylan; Maris, Gunter; Kievit, Rogier A; Borsboom, Denny

    2011-04-01

    This article analyzes latent variable models from a cognitive psychology perspective. We start by discussing work by Tuerlinckx and De Boeck (2005), who proved that a diffusion model for 2-choice response processes entails a 2-parameter logistic item response theory (IRT) model for individual differences in the response data. Following this line of reasoning, we discuss the appropriateness of IRT for measuring abilities and bipolar traits, such as pro versus contra attitudes. Surprisingly, if a diffusion model underlies the response processes, IRT models are appropriate for bipolar traits but not for ability tests. A reconsideration of the concept of ability that is appropriate for such situations leads to a new item response model for accuracy and speed based on the idea that ability has a natural zero point. The model implies fundamentally new ways to think about guessing, response speed, and person fit in IRT. We discuss the relation between this model and existing models as well as implications for psychology and psychometrics. 2011 APA, all rights reserved

  20. Combined effects of short-term rainfall patterns and soil texture on nitrogen cycling -- A Modeling Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, C.; Riley, W.J.

    2009-11-01

    Precipitation variability and magnitude are expected to change in many parts of the world over the 21st century. We examined the potential effects of intra-annual rainfall patterns on soil nitrogen (N) transport and transformation in the unsaturated soil zone using a deterministic dynamic modeling approach. The model (TOUGHREACT-N), which has been tested and applied in several experimental and observational systems, mechanistically accounts for microbial activity, soil-moisture dynamics that respond to precipitation variability, and gaseous and aqueous tracer transport in the soil. Here, we further tested and calibrated the model against data from a precipitation variability experiment in a tropical systemmore » in Costa Rica. The model was then used to simulate responses of soil moisture, microbial dynamics, nitrogen (N) aqueous and gaseous species, N leaching, and N trace-gas emissions to changes in rainfall patterns; the effect of soil texture was also examined. The temporal variability of nitrate leaching and NO, N{sub 2}, and N{sub 2}O effluxes were significantly influenced by rainfall dynamics. Soil texture combined with rainfall dynamics altered soil moisture dynamics, and consequently regulated soil N responses to precipitation changes. The clay loam soil more effectively buffered water stress during relatively long intervals between precipitation events, particularly after a large rainfall event. Subsequent soil N aqueous and gaseous losses showed either increases or decreases in response to increasing precipitation variability due to complex soil moisture dynamics. For a high rainfall scenario, high precipitation variability resulted in as high as 2.4-, 2.4-, 1.2-, and 13-fold increases in NH{sub 3}, NO, N{sub 2}O and NO{sub 3}{sup -} fluxes, respectively, in clay loam soil. In sandy loam soil, however, NO and N{sub 2}O fluxes decreased by 15% and 28%, respectively, in response to high precipitation variability. Our results demonstrate that soil N cycling responses to increasing precipitation variability depends on precipitation amount and soil texture, and that accurate prediction of future N cycling and gas effluxes requires models with relatively sophisticated representation of the relevant processes.« less

  1. A motivational model for environmentally responsible behavior.

    PubMed

    Tabernero, Carmen; Hernández, Bernardo

    2012-07-01

    This paper presents a study examining whether self-efficacy and intrinsic motivation are related to environmentally responsible behavior (ERB). The study analysed past environmental behavior, self-regulatory mechanisms (self-efficacy, satisfaction, goals), and intrinsic and extrinsic motivation in relation to ERBs in a sample of 156 university students. Results show that all the motivational variables studied are linked to ERB. The effects of self-efficacy on ERB are mediated by the intrinsic motivation responses of the participants. A theoretical model was created by means of path analysis, revealing the power of motivational variables to predict ERB. Structural equation modeling was used to test and fit the research model. The role of motivational variables is discussed with a view to creating adequate learning contexts and experiences to generate interest and new sensations in which self-efficacy and affective reactions play an important role.

  2. Modeling non-linear growth responses to temperature and hydrology in wetland trees

    NASA Astrophysics Data System (ADS)

    Keim, R.; Allen, S. T.

    2016-12-01

    Growth responses of wetland trees to flooding and climate variations are difficult to model because they depend on multiple, apparently interacting factors, but are a critical link in hydrological control of wetland carbon budgets. To more generally understand tree growth to hydrological forcing, we modeled non-linear responses of tree ring growth to flooding and climate at sub-annual time steps, using Vaganov-Shashkin response functions. We calibrated the model to six baldcypress tree-ring chronologies from two hydrologically distinct sites in southern Louisiana, and tested several hypotheses of plasticity in wetlands tree responses to interacting environmental variables. The model outperformed traditional multiple linear regression. More importantly, optimized response parameters were generally similar among sites with varying hydrological conditions, suggesting generality to the functions. Model forms that included interacting responses to multiple forcing factors were more effective than were single response functions, indicating the principle of a single limiting factor is not correct in wetlands and both climatic and hydrological variables must be considered in predicting responses to hydrological or climate change.

  3. Ramsay-Curve Item Response Theory for the Three-Parameter Logistic Item Response Model

    ERIC Educational Resources Information Center

    Woods, Carol M.

    2008-01-01

    In Ramsay-curve item response theory (RC-IRT), the latent variable distribution is estimated simultaneously with the item parameters of a unidimensional item response model using marginal maximum likelihood estimation. This study evaluates RC-IRT for the three-parameter logistic (3PL) model with comparisons to the normal model and to the empirical…

  4. Evaluation of a Two-Stage Neural Model of Glaucomatous Defect: An Approach to Reduce Test-Retest Variability

    PubMed Central

    PAN, FEI; SWANSON, WILLIAM H.; DUL, MITCHELL W.

    2006-01-01

    Purpose. The purpose of this study is to model perimetric defect and variability and identify stimulus conditions that can reduce variability while retaining good ability to detect glaucomatous defects. Methods. The two-stage neural model of Swanson et al.1 was extended to explore relations among perimetric defect, response variability, and heterogeneous glaucomatous ganglion cell damage. Predictions of the model were evaluated by testing patients with glaucoma using a standard luminance increment 0.43° in diameter and two innovative stimuli designed to tap cortical mechanisms tuned to low spatial frequencies. The innovative stimuli were a luminance-modulated Gabor stimulus (0.5 c/deg) and circular equiluminant red-green chromatic stimuli whose sizes were close to normal Ricco’s areas for the chromatic mechanism. Seventeen patients with glaucoma were each tested twice within a 2-week period. Sensitivities were measured at eight locations at eccentricities from 10° to 21° selected in terms of the retinal nerve fiber bundle patterns. Defect depth and response (test-retest) variability were compared for the innovative stimuli and the standard stimulus. Results. The model predicted that response variability in defective areas would be lower for our innovative stimuli than for the conventional perimetric stimulus with similar defect depths if detection of the chromatic and Gabor stimuli was mediated by spatial mechanisms tuned to low spatial frequencies. Experimental data were consistent with these predictions. Depth of defect was similar for all three stimuli (F = 1.67, p > 0.19). Mean response variability was lower for the chromatic stimulus than for the other stimuli (F = 5.58, p < 0.005) and was lower for the Gabor stimulus than for the standard stimulus in areas with more severe defects (t = 2.68, p < 0.005). Variability increased with defect depth for the standard and Gabor stimuli (p < 0.005) but not for the chromatic stimulus (slope less than zero). Conclusions. Use of large perimetric stimuli detected by cortical mechanisms tuned to low spatial frequencies can make it possible to lower response variability without comprising the ability to detect glaucomatous defect. PMID:16840874

  5. Evaluation of a two-stage neural model of glaucomatous defect: an approach to reduce test-retest variability.

    PubMed

    Pan, Fei; Swanson, William H; Dul, Mitchell W

    2006-07-01

    The purpose of this study is to model perimetric defect and variability and identify stimulus conditions that can reduce variability while retaining good ability to detect glaucomatous defects. The two-stage neural model of Swanson et al. was extended to explore relations among perimetric defect, response variability, and heterogeneous glaucomatous ganglion cell damage. Predictions of the model were evaluated by testing patients with glaucoma using a standard luminance increment 0.43 degrees in diameter and two innovative stimuli designed to tap cortical mechanisms tuned to low spatial frequencies. The innovative stimuli were a luminance-modulated Gabor stimulus (0.5 c/deg) and circular equiluminant red-green chromatic stimuli whose sizes were close to normal Ricco's areas for the chromatic mechanism. Seventeen patients with glaucoma were each tested twice within a 2-week period. Sensitivities were measured at eight locations at eccentricities from 10 degrees to 21 degrees selected in terms of the retinal nerve fiber bundle patterns. Defect depth and response (test-retest) variability were compared for the innovative stimuli and the standard stimulus. The model predicted that response variability in defective areas would be lower for our innovative stimuli than for the conventional perimetric stimulus with similar defect depths if detection of the chromatic and Gabor stimuli was mediated by spatial mechanisms tuned to low spatial frequencies. Experimental data were consistent with these predictions. Depth of defect was similar for all three stimuli (F = 1.67, p > 0.19). Mean response variability was lower for the chromatic stimulus than for the other stimuli (F = 5.58, p < 0.005) and was lower for the Gabor stimulus than for the standard stimulus in areas with more severe defects (t = 2.68, p < 0.005). Variability increased with defect depth for the standard and Gabor stimuli (p < 0.005) but not for the chromatic stimulus (slope less than zero). Use of large perimetric stimuli detected by cortical mechanisms tuned to low spatial frequencies can make it possible to lower response variability without comprising the ability to detect glaucomatous defect.

  6. Identifying Variability in Mental Models Within and Between Disciplines Caring for the Cardiac Surgical Patient.

    PubMed

    Brown, Evans K H; Harder, Kathleen A; Apostolidou, Ioanna; Wahr, Joyce A; Shook, Douglas C; Farivar, R Saeid; Perry, Tjorvi E; Konia, Mojca R

    2017-07-01

    The cardiac operating room is a complex environment requiring efficient and effective communication between multiple disciplines. The objectives of this study were to identify and rank critical time points during the perioperative care of cardiac surgical patients, and to assess variability in responses, as a correlate of a shared mental model, regarding the importance of these time points between and within disciplines. Using Delphi technique methodology, panelists from 3 institutions were tasked with developing a list of critical time points, which were subsequently assigned to pause point (PP) categories. Panelists then rated these PPs on a 100-point visual analog scale. Descriptive statistics were expressed as percentages, medians, and interquartile ranges (IQRs). We defined low response variability between panelists as an IQR ≤ 20, moderate response variability as an IQR > 20 and ≤ 40, and high response variability as an IQR > 40. Panelists identified a total of 12 PPs. The PPs identified by the highest number of panelists were (1) before surgical incision, (2) before aortic cannulation, (3) before cardiopulmonary bypass (CPB) initiation, (4) before CPB separation, and (5) at time of transfer of care from operating room (OR) to intensive care unit (ICU) staff. There was low variability among panelists' ratings of the PP "before surgical incision," moderate response variability for the PPs "before separation from CPB," "before transfer from OR table to bed," and "at time of transfer of care from OR to ICU staff," and high response variability for the remaining 8 PPs. In addition, the perceived importance of each of these PPs varies between disciplines and between institutions. Cardiac surgical providers recognize distinct critical time points during cardiac surgery. However, there is a high degree of variability within and between disciplines as to the importance of these times, suggesting an absence of a shared mental model among disciplines caring for cardiac surgical patients during the perioperative period. A lack of a shared mental model could be one of the factors contributing to preventable errors in cardiac operating rooms.

  7. Model of aircraft noise adaptation

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Coates, G. D.; Cawthorn, J. M.

    1977-01-01

    Development of an aircraft noise adaptation model, which would account for much of the variability in the responses of subjects participating in human response to noise experiments, was studied. A description of the model development is presented. The principal concept of the model, was the determination of an aircraft adaptation level which represents an annoyance calibration for each individual. Results showed a direct correlation between noise level of the stimuli and annoyance reactions. Attitude-personality variables were found to account for varying annoyance judgements.

  8. Formulation of topical bioadhesive gel of aceclofenac using 3-level factorial design.

    PubMed

    Singh, Sanjay; Parhi, Rabinarayan; Garg, Anuj

    2011-01-01

    The objective of this work was to develop bioadhesive topical gel of Aceclofenac with the help of response-surface approach. Experiments were performed according to a 3-level factorial design to evaluate the effects of two independent variables [amount of Poloxamer 407 (PL-407 = X1) and hydroxypropylmethyl cellulose K100 M (HPMC = X2)] on the bioadhesive character of gel, rheological property of gel (consistency index), and in-vitro drug release. The best model was selected to fit the data. Mathematical equation was generated by Design Expert® software for the model which assists in determining the effect of independent variables. Response surface plots were also generated by the software for analyzing effect of the independent variables on the response. Quadratic model was found to be the best for all the responses. Both independent variable (X1 and X2) were found to have synergistic effect on bioadhesion (Y1) but the effect of HPMC was more pronounced than PL-407. Consistency index was enhanced by increasing the level of both independent variables. An antagonistic effect of both independent variables was found on cumulative percentage release of drug in 2 (Y3) and 8 h (Y4). Both independent variables approximately equally contributed the antagonistic effect on Y3 whereas antagonistic effect of HPMC was more pronounced than PL-407. The effect of formulation variables on the product characteristics can be easily predicted and precisely interpreted by using a 3-level factorial experimental design and generated quadratic mathematical equations.

  9. Experimental design and response surface modelling for optimization of vat dye from water by nano zero valent iron (NZVI).

    PubMed

    Arabi, Simin; Sohrabi, Mahmoud Reza

    2013-01-01

    In this study, NZVI particles was prepared and studied for the removal of vat green 1 dye from aqueous solution. A four-factor central composite design (CCD) combined with response surface modeling (RSM) to evaluate the combined effects of variables as well as optimization was employed for maximizing the dye removal by prepared NZVI based on 30 different experimental data obtained in a batch study. Four independent variables, viz. NZVI dose (0.1-0.9 g/L), pH (1.5-9.5), contact time (20-100 s), and initial dye concentration (10-50 mg/L) were transform to coded values and quadratic model was built to predict the responses. The significant of independent variables and their interactions were tested by the analysis of variance (ANOVA). Adequacy of the model was tested by the correlation between experimental and predicted values of the response and enumeration of prediction errors. The ANOVA results indicated that the proposed model can be used to navigate the design space. Optimization of the variables for maximum adsorption of dye by NZVI particles was performed using quadratic model. The predicted maximum adsorption efficiency (96.97%) under the optimum conditions of the process variables (NZVI dose 0.5 g/L, pH 4, contact time 60 s, and initial dye concentration 30 mg/L) was very close to the experimental value (96.16%) determined in batch experiment. In the optimization, R2 and R2adj correlation coefficients for the model were evaluated as 0.95 and 0.90, respectively.

  10. Comment on "Scaling regimes and linear/nonlinear responses of last millennium climate to volcanic and solar forcing" by S. Lovejoy and C. Varotsos (2016)

    NASA Astrophysics Data System (ADS)

    Rypdal, Kristoffer; Rypdal, Martin

    2016-07-01

    Lovejoy and Varotsos (2016) (L&V) analyse the temperature response to solar, volcanic, and solar plus volcanic forcing in the Zebiak-Cane (ZC) model, and to solar and solar plus volcanic forcing in the Goddard Institute for Space Studies (GISS) E2-R model. By using a simple wavelet filtering technique they conclude that the responses in the ZC model combine subadditively on timescales from 50 to 1000 years. Nonlinear response on shorter timescales is claimed by analysis of intermittencies in the forcing and the temperature signal for both models. The analysis of additivity in the ZC model suffers from a confusing presentation of results based on an invalid approximation, and from ignoring the effect of internal variability. We present tests without this approximation which are not able to detect nonlinearity in the response, even without accounting for internal variability. We also demonstrate that internal variability will appear as subadditivity if it is not accounted for. L&V's analysis of intermittencies is based on a mathematical result stating that the intermittencies of forcing and response are the same if the response is linear. We argue that there are at least three different factors that may invalidate the application of this result for these data. It is valid only for a power-law response function; it assumes power-law scaling of structure functions of forcing as well as temperature signal; and the internal variability, which is strong at least on the short timescales, will exert an influence on temperature intermittence which is independent of the forcing. We demonstrate by a synthetic example that the differences in intermittencies observed by L&V easily can be accounted for by these effects under the assumption of a linear response. Our conclusion is that the analysis performed by L&V does not present valid evidence for a detectable nonlinear response in the global temperature in these climate models.

  11. Effects of model spatial resolution on ecohydrologic predictions and their sensitivity to inter-annual climate variability

    Treesearch

    Kyongho Son; Christina Tague; Carolyn Hunsaker

    2016-01-01

    The effect of fine-scale topographic variability on model estimates of ecohydrologic responses to climate variability in California’s Sierra Nevada watersheds has not been adequately quantified and may be important for supporting reliable climate-impact assessments. This study tested the effect of digital elevation model (DEM) resolution on model accuracy and estimates...

  12. Optimal traits of plant hydraulic capacitance as an adaptation to hydroclimatic variability

    NASA Astrophysics Data System (ADS)

    Hartzell, S. R.; Bartlett, M. S., Jr.; Porporato, A. M.

    2016-12-01

    Hydraulic capacitance allows plants to uptake and store water when it is abundant. This stored water is utilized during periods of water stress, decreasing tissue damage and increasing carbon assimilation. By providing a more consistent and readily accessible water supply, it buffers water stress variability across daily and seasonal timescales. The rate of plant water storage and withdrawal varies widely between plant species and is principally governed by several plant hydraulic parameters, principally the hydraulic capacitance, the total water storage capacity, and the conductance between xylem and water storage tissue. The timescale of the plant response to changes in environmental conditions may be related to the timescale of relevant environmental variability. For example, the Baobab tree (Adansonia), which grows in an environment with very strong seasonal rainfall variability, has a relatively long timescale of hydraulic response, while an evergreen tree such as Pinus taeda, which mainly contends with daily and inter-rainfall moisture variability, has a much shorter timescale of hydraulic response. Here a model of hydraulic capacitance is coupled to a resistance model of soil-plant-atmosphere continuum. We force this model with stochastic rainfall and examine plant responses to moisture variability at various timescales. Optimal plant hydraulic properties are examined as a function of mean soil moisture (daily variability), mean period between rainfall events (inter-rainfall variability), and seasonal rainfall variability, and the relative importance of each type of variability in shaping plant water use strategies is assessed. Results are compared to typical hydraulic parameters of plants growing under specific environmental conditions. Values of hydraulic traits which optimize carbon assimilation and water use efficiency are found; these values are dependent on mean environmental conditions as well as the timescale of environmental variability.

  13. User-experience surveys with maternity services: a randomized comparison of two data collection models.

    PubMed

    Bjertnaes, Oyvind Andresen; Iversen, Hilde Hestad

    2012-08-01

    To compare two ways of combining postal and electronic data collection for a maternity services user-experience survey. Cross-sectional survey. Maternity services in Norway. All women who gave birth at a university hospital in Norway between 1 June and 27 July 2010. Patients were randomized into the following groups (n= 752): Group A, who were posted questionnaires with both electronic and paper response options for both the initial and reminder postal requests; and Group B, who were posted questionnaires with an electronic response option for the initial request, and both electronic and paper response options for the reminder postal request. Response rate, the amount of difference in background variables between respondents and non-respondents, main study results and estimated cost-effectiveness. The final response rate was significantly higher in Group A (51.9%) than Group B (41.1%). None of the background variables differed significantly between the respondents and non-respondents in Group A, while two variables differed significantly between the respondents and non-respondents in Group B. None of the 11 user-experience scales differed significantly between Groups A and B. The estimated costs per response for the forthcoming national survey was €11.7 for data collection Model A and €9.0 for Model B. The model with electronic-only response option in the first request had lowest response rate. However, this model performed equal to the other model on non-response bias and better on estimated cost-effectiveness, and is the better of the two models in large-scale user experiences surveys with maternity services.

  14. Binary recursive partitioning: background, methods, and application to psychology.

    PubMed

    Merkle, Edgar C; Shaffer, Victoria A

    2011-02-01

    Binary recursive partitioning (BRP) is a computationally intensive statistical method that can be used in situations where linear models are often used. Instead of imposing many assumptions to arrive at a tractable statistical model, BRP simply seeks to accurately predict a response variable based on values of predictor variables. The method outputs a decision tree depicting the predictor variables that were related to the response variable, along with the nature of the variables' relationships. No significance tests are involved, and the tree's 'goodness' is judged based on its predictive accuracy. In this paper, we describe BRP methods in a detailed manner and illustrate their use in psychological research. We also provide R code for carrying out the methods.

  15. Identifying environmental variables explaining genotype-by-environment interaction for body weight of rainbow trout (Onchorynchus mykiss): reaction norm and factor analytic models.

    PubMed

    Sae-Lim, Panya; Komen, Hans; Kause, Antti; Mulder, Han A

    2014-02-26

    Identifying the relevant environmental variables that cause GxE interaction is often difficult when they cannot be experimentally manipulated. Two statistical approaches can be applied to address this question. When data on candidate environmental variables are available, GxE interaction can be quantified as a function of specific environmental variables using a reaction norm model. Alternatively, a factor analytic model can be used to identify the latent common factor that explains GxE interaction. This factor can be correlated with known environmental variables to identify those that are relevant. Previously, we reported a significant GxE interaction for body weight at harvest in rainbow trout reared on three continents. Here we explore their possible causes. Reaction norm and factor analytic models were used to identify which environmental variables (age at harvest, water temperature, oxygen, and photoperiod) may have caused the observed GxE interaction. Data on body weight at harvest was recorded on 8976 offspring reared in various locations: (1) a breeding environment in the USA (nucleus), (2) a recirculating aquaculture system in the Freshwater Institute in West Virginia, USA, (3) a high-altitude farm in Peru, and (4) a low-water temperature farm in Germany. Akaike and Bayesian information criteria were used to compare models. The combination of days to harvest multiplied with daily temperature (Day*Degree) and photoperiod were identified by the reaction norm model as the environmental variables responsible for the GxE interaction. The latent common factor that was identified by the factor analytic model showed the highest correlation with Day*Degree. Day*Degree and photoperiod were the environmental variables that differed most between Peru and other environments. Akaike and Bayesian information criteria indicated that the factor analytical model was more parsimonious than the reaction norm model. Day*Degree and photoperiod were identified as environmental variables responsible for the strong GxE interaction for body weight at harvest in rainbow trout across four environments. Both the reaction norm and the factor analytic models can help identify the environmental variables responsible for GxE interaction. A factor analytic model is preferred over a reaction norm model when limited information on differences in environmental variables between farms is available.

  16. Identifying environmental variables explaining genotype-by-environment interaction for body weight of rainbow trout (Onchorynchus mykiss): reaction norm and factor analytic models

    PubMed Central

    2014-01-01

    Background Identifying the relevant environmental variables that cause GxE interaction is often difficult when they cannot be experimentally manipulated. Two statistical approaches can be applied to address this question. When data on candidate environmental variables are available, GxE interaction can be quantified as a function of specific environmental variables using a reaction norm model. Alternatively, a factor analytic model can be used to identify the latent common factor that explains GxE interaction. This factor can be correlated with known environmental variables to identify those that are relevant. Previously, we reported a significant GxE interaction for body weight at harvest in rainbow trout reared on three continents. Here we explore their possible causes. Methods Reaction norm and factor analytic models were used to identify which environmental variables (age at harvest, water temperature, oxygen, and photoperiod) may have caused the observed GxE interaction. Data on body weight at harvest was recorded on 8976 offspring reared in various locations: (1) a breeding environment in the USA (nucleus), (2) a recirculating aquaculture system in the Freshwater Institute in West Virginia, USA, (3) a high-altitude farm in Peru, and (4) a low-water temperature farm in Germany. Akaike and Bayesian information criteria were used to compare models. Results The combination of days to harvest multiplied with daily temperature (Day*Degree) and photoperiod were identified by the reaction norm model as the environmental variables responsible for the GxE interaction. The latent common factor that was identified by the factor analytic model showed the highest correlation with Day*Degree. Day*Degree and photoperiod were the environmental variables that differed most between Peru and other environments. Akaike and Bayesian information criteria indicated that the factor analytical model was more parsimonious than the reaction norm model. Conclusions Day*Degree and photoperiod were identified as environmental variables responsible for the strong GxE interaction for body weight at harvest in rainbow trout across four environments. Both the reaction norm and the factor analytic models can help identify the environmental variables responsible for GxE interaction. A factor analytic model is preferred over a reaction norm model when limited information on differences in environmental variables between farms is available. PMID:24571451

  17. Ecosystem response to climatic variables - air temperature and precipitation: How can these variables alter plant productions in C4-grass dominant ecosystem?

    NASA Astrophysics Data System (ADS)

    Jung, C. G.; Jiang, L.; Luo, Y.

    2017-12-01

    Understanding net primary production (NPP) response to the key climatic variables, temperature and precipitation, is essential since the response could be represented by one of future consequences from ecosystem responses. Under future climatic warming, fluctuating precipitation is expected. In addition, NPP solely could not explain whole ecosystem response; therefore, not only NPP, but also above- and below-ground NPP (ANPP and BNPP, respectively) need to be examined. This examination needs to include how the plant productions response along temperature and precipitation gradients. Several studies have examined the response of NPP against each of single climatic variable, but understanding the response of ANPP and BNPP to the multiple variables is notably poor. In this study, we used the plant productions data (NPP, ANPP, and BNPP) with climatic variables, i.e., air temperature and precipitation, from 1999 to 2015 under warming and clipping treatments (mimicking hay-harvesting) in C4-grass dominant ecosystem located in central Oklahoma, United States. Firstly, we examined the nonlinear relationships with the climatic variables for NPP, ANPP and BNPP; and then predicted possible responses in the temperature - precipitation space by using a linear mixed effect model. Nonlinearities of NPP, ANPP and BNPP to the climatic variables have been found to show unimodal curves, and nonlinear models have better goodness of fit as shown lower Akaike information criterion (AIC) than linear models. Optimum condition for NPP is represented at high temperature and precipitation level whereas BNPP is maximized at moderate precipitation levels while ANPP has same range of NPP's optimum condition. Clipping significantly reduced ANPP while there was no clipping effect on NPP and BNPP. Furthermore, inclining NPP and ANPP have shown in a range from moderate to high precipitation level with increasing temperature while inclining pattern for BNPP was observed in moderate precipitation level. Overall, the C4-grass dominant ecosystem has a potential for considerable increases in NPP in hotter and wetter conditions as shown a range from moderate to high temperature and precipitation levels; ANPP has peaked at the high temperature and precipitation level, but maximum BNPP needs moderate precipitation level and high temperature.

  18. Applying ethnic equivalence and cultural values models to African-American teens' perceptions of parents.

    PubMed

    Lamborn, Susie D; Felbab, Amanda J

    2003-10-01

    This study evaluated both the parenting styles and family ecologies models with interview responses from 93 14- and 15-year-old African-American adolescents. The parenting styles model was more strongly represented in both open-ended and structured interview responses. Using variables from the structured interview as independent variables, regression analyses contrasted each model with a joint model for predicting self-esteem, self-reliance, work orientation, and ethnic identity. Overall, the findings suggest that a joint model that combines elements from both models provides a richer understanding of African-American families.

  19. Use of generalized regression tree models to characterize vegetation favoring Anopheles albimanus breeding.

    PubMed

    Hernandez, J E; Epstein, L D; Rodriguez, M H; Rodriguez, A D; Rejmankova, E; Roberts, D R

    1997-03-01

    We propose the use of generalized tree models (GTMs) to analyze data from entomological field studies. Generalized tree models can be used to characterize environments with different mosquito breeding capacity. A GTM simultaneously analyzes a set of predictor variables (e.g., vegetation coverage) in relation to a response variable (e.g., counts of Anopheles albimanus larvae), and how it varies with respect to a set of criterion variables (e.g., presence of predators). The algorithm produces a treelike graphical display with its root at the top and 2 branches stemming down from each node. At each node, conditions on the value of predictors partition the observations into subgroups (environments) in which the relation between response and criterion variables is most homogeneous.

  20. Multi-scale streamflow variability responses to precipitation over the headwater catchments in southern China

    NASA Astrophysics Data System (ADS)

    Niu, Jun; Chen, Ji; Wang, Keyi; Sivakumar, Bellie

    2017-08-01

    This paper examines the multi-scale streamflow variability responses to precipitation over 16 headwater catchments in the Pearl River basin, South China. The long-term daily streamflow data (1952-2000), obtained using a macro-scale hydrological model, the Variable Infiltration Capacity (VIC) model, and a routing scheme, are studied. Temporal features of streamflow variability at 10 different timescales, ranging from 6 days to 8.4 years, are revealed with the Haar wavelet transform. The principal component analysis (PCA) is performed to categorize the headwater catchments with the coherent modes of multi-scale wavelet spectra. The results indicate that three distinct modes, with different variability distributions at small timescales and seasonal scales, can explain 95% of the streamflow variability. A large majority of the catchments (i.e. 12 out of 16) exhibit consistent mode feature on multi-scale variability throughout three sub-periods (1952-1968, 1969-1984, and 1985-2000). The multi-scale streamflow variability responses to precipitation are identified to be associated with the regional flood and drought tendency over the headwater catchments in southern China.

  1. Randomized Item Response Theory Models

    ERIC Educational Resources Information Center

    Fox, Jean-Paul

    2005-01-01

    The randomized response (RR) technique is often used to obtain answers on sensitive questions. A new method is developed to measure latent variables using the RR technique because direct questioning leads to biased results. Within the RR technique is the probability of the true response modeled by an item response theory (IRT) model. The RR…

  2. Data-driven Modeling of Metal-oxide Sensors with Dynamic Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Gosangi, Rakesh; Gutierrez-Osuna, Ricardo

    2011-09-01

    We present a data-driven probabilistic framework to model the transient response of MOX sensors modulated with a sequence of voltage steps. Analytical models of MOX sensors are usually built based on the physico-chemical properties of the sensing materials. Although building these models provides an insight into the sensor behavior, they also require a thorough understanding of the underlying operating principles. Here we propose a data-driven approach to characterize the dynamical relationship between sensor inputs and outputs. Namely, we use dynamic Bayesian networks (DBNs), probabilistic models that represent temporal relations between a set of random variables. We identify a set of control variables that influence the sensor responses, create a graphical representation that captures the causal relations between these variables, and finally train the model with experimental data. We validated the approach on experimental data in terms of predictive accuracy and classification performance. Our results show that DBNs can accurately predict the dynamic response of MOX sensors, as well as capture the discriminatory information present in the sensor transients.

  3. Impacts of rainfall spatial variability on hydrogeological response

    NASA Astrophysics Data System (ADS)

    Sapriza-Azuri, Gonzalo; Jódar, Jorge; Navarro, Vicente; Slooten, Luit Jan; Carrera, Jesús; Gupta, Hoshin V.

    2015-02-01

    There is currently no general consensus on how the spatial variability of rainfall impacts and propagates through complex hydrogeological systems. Most studies to date have focused on the effects of rainfall spatial variability (RSV) on river discharge, while paying little attention to other important aspects of system response. Here, we study the impacts of RSV on several responses of a hydrological model of an overexploited system. To this end, we drive a spatially distributed hydrogeological model for the semiarid Upper Guadiana basin in central Spain with stochastic daily rainfall fields defined at three different spatial resolutions (fine → 2.5 km × 2.5 km, medium → 50 km × 50 km, large → lumped). This enables us to investigate how (i) RSV at different spatial resolutions, and (ii) rainfall uncertainty, are propagated through the hydrogeological model of the system. Our results demonstrate that RSV has a significant impact on the modeled response of the system, by specifically affecting groundwater recharge and runoff generation, and thereby propagating through to various other related hydrological responses (river discharge, river-aquifer exchange, groundwater levels). These results call into question the validity of management decisions made using hydrological models calibrated or forced with spatially lumped rainfall.

  4. Evaluation of alternative model selection criteria in the analysis of unimodal response curves using CART

    USGS Publications Warehouse

    Ribic, C.A.; Miller, T.W.

    1998-01-01

    We investigated CART performance with a unimodal response curve for one continuous response and four continuous explanatory variables, where two variables were important (ie directly related to the response) and the other two were not. We explored performance under three relationship strengths and two explanatory variable conditions: equal importance and one variable four times as important as the other. We compared CART variable selection performance using three tree-selection rules ('minimum risk', 'minimum risk complexity', 'one standard error') to stepwise polynomial ordinary least squares (OLS) under four sample size conditions. The one-standard-error and minimum-risk-complexity methods performed about as well as stepwise OLS with large sample sizes when the relationship was strong. With weaker relationships, equally important explanatory variables and larger sample sizes, the one-standard-error and minimum-risk-complexity rules performed better than stepwise OLS. With weaker relationships and explanatory variables of unequal importance, tree-structured methods did not perform as well as stepwise OLS. Comparing performance within tree-structured methods, with a strong relationship and equally important explanatory variables, the one-standard-error-rule was more likely to choose the correct model than were the other tree-selection rules 1) with weaker relationships and equally important explanatory variables; and 2) under all relationship strengths when explanatory variables were of unequal importance and sample sizes were lower.

  5. Dynamic Sensorimotor Planning during Long-Term Sequence Learning: The Role of Variability, Response Chunking and Planning Errors

    PubMed Central

    Verstynen, Timothy; Phillips, Jeff; Braun, Emily; Workman, Brett; Schunn, Christian; Schneider, Walter

    2012-01-01

    Many everyday skills are learned by binding otherwise independent actions into a unified sequence of responses across days or weeks of practice. Here we looked at how the dynamics of action planning and response binding change across such long timescales. Subjects (N = 23) were trained on a bimanual version of the serial reaction time task (32-item sequence) for two weeks (10 days total). Response times and accuracy both showed improvement with time, but appeared to be learned at different rates. Changes in response speed across training were associated with dynamic changes in response time variability, with faster learners expanding their variability during the early training days and then contracting response variability late in training. Using a novel measure of response chunking, we found that individual responses became temporally correlated across trials and asymptoted to set sizes of approximately 7 bound responses at the end of the first week of training. Finally, we used a state-space model of the response planning process to look at how predictive (i.e., response anticipation) and error-corrective (i.e., post-error slowing) processes correlated with learning rates for speed, accuracy and chunking. This analysis yielded non-monotonic association patterns between the state-space model parameters and learning rates, suggesting that different parts of the response planning process are relevant at different stages of long-term learning. These findings highlight the dynamic modulation of response speed, variability, accuracy and chunking as multiple movements become bound together into a larger set of responses during sequence learning. PMID:23056630

  6. Two-Part and Related Regression Models for Longitudinal Data

    PubMed Central

    Farewell, V.T.; Long, D.L.; Tom, B.D.M.; Yiu, S.; Su, L.

    2017-01-01

    Statistical models that involve a two-part mixture distribution are applicable in a variety of situations. Frequently, the two parts are a model for the binary response variable and a model for the outcome variable that is conditioned on the binary response. Two common examples are zero-inflated or hurdle models for count data and two-part models for semicontinuous data. Recently, there has been particular interest in the use of these models for the analysis of repeated measures of an outcome variable over time. The aim of this review is to consider motivations for the use of such models in this context and to highlight the central issues that arise with their use. We examine two-part models for semicontinuous and zero-heavy count data, and we also consider models for count data with a two-part random effects distribution. PMID:28890906

  7. Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas - a review

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick

    2017-07-01

    In urban areas, hydrological processes are characterized by high variability in space and time, making them sensitive to small-scale temporal and spatial rainfall variability. In the last decades new instruments, techniques, and methods have been developed to capture rainfall and hydrological processes at high resolution. Weather radars have been introduced to estimate high spatial and temporal rainfall variability. At the same time, new models have been proposed to reproduce hydrological response, based on small-scale representation of urban catchment spatial variability. Despite these efforts, interactions between rainfall variability, catchment heterogeneity, and hydrological response remain poorly understood. This paper presents a review of our current understanding of hydrological processes in urban environments as reported in the literature, focusing on their spatial and temporal variability aspects. We review recent findings on the effects of rainfall variability on hydrological response and identify gaps where knowledge needs to be further developed to improve our understanding of and capability to predict urban hydrological response.

  8. Self-Concept and Response Variability as Predictors of Leadership Effectiveness in Cooperative Extension.

    ERIC Educational Resources Information Center

    Dvorak, Charles F.

    The research aimed at determining the extent to which two variables, self-concept and response variability, are related to one of the principal components of Fiedler's Contingency Model of leadership, the Esteem for the Least Preferred Coworker (LPC) instrument. Sixty extension workers in the Expanded Food and Nutrition Education Program in New…

  9. A systematic approach to parameter selection for CAD-virtual reality data translation using response surface methodology and MOGA-II.

    PubMed

    Abidi, Mustufa Haider; Al-Ahmari, Abdulrahman; Ahmad, Ali

    2018-01-01

    Advanced graphics capabilities have enabled the use of virtual reality as an efficient design technique. The integration of virtual reality in the design phase still faces impediment because of issues linked to the integration of CAD and virtual reality software. A set of empirical tests using the selected conversion parameters was found to yield properly represented virtual reality models. The reduced model yields an R-sq (pred) value of 72.71% and an R-sq (adjusted) value of 86.64%, indicating that 86.64% of the response variability can be explained by the model. The R-sq (pred) is 67.45%, which is not very high, indicating that the model should be further reduced by eliminating insignificant terms. The reduced model yields an R-sq (pred) value of 73.32% and an R-sq (adjusted) value of 79.49%, indicating that 79.49% of the response variability can be explained by the model. Using the optimization software MODE Frontier (Optimization, MOGA-II, 2014), four types of response surfaces for the three considered response variables were tested for the data of DOE. The parameter values obtained using the proposed experimental design methodology result in better graphics quality, and other necessary design attributes.

  10. The contrasting response of Hadley circulation to different meridional structure of sea surface temperature in CMIP5

    NASA Astrophysics Data System (ADS)

    Feng, Juan; Li, Jianping; Zhu, Jianlei; Li, Yang; Li, Fei

    2018-02-01

    The response of the Hadley circulation (HC) to the sea surface temperature (SST) is determined by the meridional structure of SST and varies according to the changing nature of this meridional structure. The capability of the models from the phase 5 of the Coupled Model Intercomparison Project (CMIP5) is utilized to represent the contrast response of the HC to different meridional SST structures. To evaluate the responses, the variations of HC and SST were linearly decomposed into two components: the equatorially asymmetric (HEA for HC, and SEA for SST) and equatorially symmetric (HES for HC, and SES for SST) components. The result shows that the climatological features of HC and tropical SST (including the spatial structures and amplitude) are reasonably simulated in all the models. However, the response contrast of HC to different SST meridional structures shows uncertainties among models. This may be due to the fact that the long-term temporal variabilities of HEA, HES, and SEA are limited reproduced in the models, although the spatial structures of their long-term variabilities are relatively reasonably simulated. These results indicate that the performance of the CMIP5 models to simulate long-term temporal variability of different meridional SST structures and related HC variations plays a fundamental role in the successful reproduction of the response of HC to different meridional SST structures.

  11. The stochastic dance of early HIV infection

    NASA Astrophysics Data System (ADS)

    Merrill, Stephen J.

    2005-12-01

    The stochastic nature of early HIV infection is described in a series of models, each of which captures aspects of the dance of HIV during the early stages of infection. It is to this highly variable target that the immune response must respond. The adaptability of the various components of the immune response is an important aspect of the system's operation, as the nature of the pathogens that the response will be required to respond to and the order in which those responses must be made cannot be known beforehand. As HIV infection has direct influence over cells responsible for the immune response, the dance predicts that the immune response will be also in a variable state of readiness and capability for this task of adaptation. The description of the stochastic dance of HIV here will use the tools of stochastic models, and for the most part, simulation. The justification for this approach is that the early stages and the development of HIV diversity require that the model to be able to describe both individual sample path and patient-to-patient variability. In addition, as early viral dynamics are best described using branching processes, the explosive growth of these models both predicts high variability and rapid response of HIV to changes in system parameters.In this paper, a basic viral growth model based on a time dependent continuous-time branching process is used to describe the growth of HIV infected cells in the macrophage and lymphocyte populations. Immigration from the reservoir population is added to the basic model to describe the incubation time distribution. This distribution is deduced directly from the modeling assumptions and the model of viral growth. A system of two branching processes, one in the infected macrophage population and one in the infected lymphocyte population is used to provide a description of the relationship between the development of HIV diversity as it relates to tropism (host cell preference). The role of the immune response to HIV and HIV infected cells is used to describe the movement of the infection from a few infected macrophages to a disease of infected CD4+ T lymphocytes.

  12. Latent structure modeling underlying theophylline tablet formulations using a Bayesian network based on a self-organizing map clustering.

    PubMed

    Yasuda, Akihito; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2015-01-01

    The "quality by design" concept in pharmaceutical formulation development requires the establishment of a science-based rationale and design space. In this article, we integrate thin-plate spline (TPS) interpolation, Kohonen's self-organizing map (SOM) and a Bayesian network (BN) to visualize the latent structure underlying causal factors and pharmaceutical responses. As a model pharmaceutical product, theophylline tablets were prepared using a standard formulation. We measured the tensile strength and disintegration time as response variables and the compressibility, cohesion and dispersibility of the pretableting blend as latent variables. We predicted these variables quantitatively using nonlinear TPS, generated a large amount of data on pretableting blends and tablets and clustered these data into several clusters using a SOM. Our results show that we are able to predict the experimental values of the latent and response variables with a high degree of accuracy and are able to classify the tablet data into several distinct clusters. In addition, to visualize the latent structure between the causal and latent factors and the response variables, we applied a BN method to the SOM clustering results. We found that despite having inserted latent variables between the causal factors and response variables, their relation is equivalent to the results for the SOM clustering, and thus we are able to explain the underlying latent structure. Consequently, this technique provides a better understanding of the relationships between causal factors and pharmaceutical responses in theophylline tablet formulation.

  13. Smooth conditional distribution function and quantiles under random censorship.

    PubMed

    Leconte, Eve; Poiraud-Casanova, Sandrine; Thomas-Agnan, Christine

    2002-09-01

    We consider a nonparametric random design regression model in which the response variable is possibly right censored. The aim of this paper is to estimate the conditional distribution function and the conditional alpha-quantile of the response variable. We restrict attention to the case where the response variable as well as the explanatory variable are unidimensional and continuous. We propose and discuss two classes of estimators which are smooth with respect to the response variable as well as to the covariate. Some simulations demonstrate that the new methods have better mean square error performances than the generalized Kaplan-Meier estimator introduced by Beran (1981) and considered in the literature by Dabrowska (1989, 1992) and Gonzalez-Manteiga and Cadarso-Suarez (1994).

  14. Comparison of stream invertebrate response models for bioassessment metric

    USGS Publications Warehouse

    Waite, Ian R.; Kennen, Jonathan G.; May, Jason T.; Brown, Larry R.; Cuffney, Thomas F.; Jones, Kimberly A.; Orlando, James L.

    2012-01-01

    We aggregated invertebrate data from various sources to assemble data for modeling in two ecoregions in Oregon and one in California. Our goal was to compare the performance of models developed using multiple linear regression (MLR) techniques with models developed using three relatively new techniques: classification and regression trees (CART), random forest (RF), and boosted regression trees (BRT). We used tolerance of taxa based on richness (RICHTOL) and ratio of observed to expected taxa (O/E) as response variables and land use/land cover as explanatory variables. Responses were generally linear; therefore, there was little improvement to the MLR models when compared to models using CART and RF. In general, the four modeling techniques (MLR, CART, RF, and BRT) consistently selected the same primary explanatory variables for each region. However, results from the BRT models showed significant improvement over the MLR models for each region; increases in R2 from 0.09 to 0.20. The O/E metric that was derived from models specifically calibrated for Oregon consistently had lower R2 values than RICHTOL for the two regions tested. Modeled O/E R2 values were between 0.06 and 0.10 lower for each of the four modeling methods applied in the Willamette Valley and were between 0.19 and 0.36 points lower for the Blue Mountains. As a result, BRT models may indeed represent a good alternative to MLR for modeling species distribution relative to environmental variables.

  15. Spatial stochastic modelling of the Hes1 gene regulatory network: intrinsic noise can explain heterogeneity in embryonic stem cell differentiation.

    PubMed

    Sturrock, Marc; Hellander, Andreas; Matzavinos, Anastasios; Chaplain, Mark A J

    2013-03-06

    Individual mouse embryonic stem cells have been found to exhibit highly variable differentiation responses under the same environmental conditions. The noisy cyclic expression of Hes1 and its downstream genes are known to be responsible for this, but the mechanism underlying this variability in expression is not well understood. In this paper, we show that the observed experimental data and diverse differentiation responses can be explained by a spatial stochastic model of the Hes1 gene regulatory network. We also propose experiments to control the precise differentiation response using drug treatment.

  16. Using Instructive Feedback to Increase Response Variability During Intraverbal Training for Children with Autism Spectrum Disorder.

    PubMed

    Carroll, Regina A; Kodak, Tiffany

    2015-10-01

    We evaluated the effects of instructive feedback on the variability of intraverbal responses for two children with autism spectrum disorder. Specifically, we used an adapted alternating treatments design to compare participants' novel responses and response combinations during an intraverbal category program across conditions with and without instructive feedback. During instructive feedback, secondary targets were presented during the consequence event of the learning trial and consisted of a therapist's model of response variability. The results showed that participants engaged in more novel response combinations during instructive feedback conditions. We discussed the clinical implications of these results as well as areas for future research.

  17. Analytic uncertainty and sensitivity analysis of models with input correlations

    NASA Astrophysics Data System (ADS)

    Zhu, Yueying; Wang, Qiuping A.; Li, Wei; Cai, Xu

    2018-03-01

    Probabilistic uncertainty analysis is a common means of evaluating mathematical models. In mathematical modeling, the uncertainty in input variables is specified through distribution laws. Its contribution to the uncertainty in model response is usually analyzed by assuming that input variables are independent of each other. However, correlated parameters are often happened in practical applications. In the present paper, an analytic method is built for the uncertainty and sensitivity analysis of models in the presence of input correlations. With the method, it is straightforward to identify the importance of the independence and correlations of input variables in determining the model response. This allows one to decide whether or not the input correlations should be considered in practice. Numerical examples suggest the effectiveness and validation of our analytic method in the analysis of general models. A practical application of the method is also proposed to the uncertainty and sensitivity analysis of a deterministic HIV model.

  18. [Optimal extraction of effective constituents from Aralia elata by central composite design and response surface methodology].

    PubMed

    Lv, Shao-Wa; Liu, Dong; Hu, Pan-Pan; Ye, Xu-Yan; Xiao, Hong-Bin; Kuang, Hai-Xue

    2010-03-01

    To optimize the process of extracting effective constituents from Aralia elata by response surface methodology. The independent variables were ethanol concentration, reflux time and solvent fold, the dependent variable was extraction rate of total saponins in Aralia elata. Linear or no-linear mathematic models were used to estimate the relationship between independent and dependent variables. Response surface methodology was used to optimize the process of extraction. The prediction was carried out through comparing the observed and predicted values. Regression coefficient of binomial fitting complex model was as high as 0.9617, the optimum conditions of extraction process were 70% ethanol, 2.5 hours for reflux, 20-fold solvent and 3 times for extraction. The bias between observed and predicted values was -2.41%. It shows the optimum model is highly predictive.

  19. Item Response Theory with Covariates (IRT-C): Assessing Item Recovery and Differential Item Functioning for the Three-Parameter Logistic Model

    ERIC Educational Resources Information Center

    Tay, Louis; Huang, Qiming; Vermunt, Jeroen K.

    2016-01-01

    In large-scale testing, the use of multigroup approaches is limited for assessing differential item functioning (DIF) across multiple variables as DIF is examined for each variable separately. In contrast, the item response theory with covariate (IRT-C) procedure can be used to examine DIF across multiple variables (covariates) simultaneously. To…

  20. Intraclass Correlation Coefficients in Hierarchical Design Studies with Discrete Response Variables: A Note on a Direct Interval Estimation Procedure

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2015-01-01

    A latent variable modeling procedure that can be used to evaluate intraclass correlation coefficients in two-level settings with discrete response variables is discussed. The approach is readily applied when the purpose is to furnish confidence intervals at prespecified confidence levels for these coefficients in setups with binary or ordinal…

  1. Prediction, time variance, and classification of hydraulic response to recharge in two karst aquifers

    USGS Publications Warehouse

    Long, Andrew J.; Mahler, Barbara J.

    2013-01-01

    Many karst aquifers are rapidly filled and depleted and therefore are likely to be susceptible to changes in short-term climate variability. Here we explore methods that could be applied to model site-specific hydraulic responses, with the intent of simulating these responses to different climate scenarios from high-resolution climate models. We compare hydraulic responses (spring flow, groundwater level, stream base flow, and cave drip) at several sites in two karst aquifers: the Edwards aquifer (Texas, USA) and the Madison aquifer (South Dakota, USA). A lumped-parameter model simulates nonlinear soil moisture changes for estimation of recharge, and a time-variant convolution model simulates the aquifer response to this recharge. Model fit to data is 2.4% better for calibration periods than for validation periods according to the Nash–Sutcliffe coefficient of efficiency, which ranges from 0.53 to 0.94 for validation periods. We use metrics that describe the shapes of the impulse-response functions (IRFs) obtained from convolution modeling to make comparisons in the distribution of response times among sites and between aquifers. Time-variant IRFs were applied to 62% of the sites. Principal component analysis (PCA) of metrics describing the shapes of the IRFs indicates three principal components that together account for 84% of the variability in IRF shape: the first is related to IRF skewness and temporal spread and accounts for 51% of the variability; the second and third largely are related to time-variant properties and together account for 33% of the variability. Sites with IRFs that dominantly comprise exponential curves are separated geographically from those dominantly comprising lognormal curves in both aquifers as a result of spatial heterogeneity. The use of multiple IRF metrics in PCA is a novel method to characterize, compare, and classify the way in which different sites and aquifers respond to recharge. As convolution models are developed for additional aquifers, they could contribute to an IRF database and a general classification system for karst aquifers.

  2. Stochastic Approximation Methods for Latent Regression Item Response Models. Research Report. ETS RR-09-09

    ERIC Educational Resources Information Center

    von Davier, Matthias; Sinharay, Sandip

    2009-01-01

    This paper presents an application of a stochastic approximation EM-algorithm using a Metropolis-Hastings sampler to estimate the parameters of an item response latent regression model. Latent regression models are extensions of item response theory (IRT) to a 2-level latent variable model in which covariates serve as predictors of the…

  3. Linear Modeling and Evaluation of Controls on Flow Response in Western Post-Fire Watersheds

    NASA Astrophysics Data System (ADS)

    Saxe, S.; Hogue, T. S.; Hay, L.

    2015-12-01

    This research investigates the impact of wildfires on watershed flow regimes throughout the western United States, specifically focusing on evaluation of fire events within specified subregions and determination of the impact of climate and geophysical variables in post-fire flow response. Fire events were collected through federal and state-level databases and streamflow data were collected from U.S. Geological Survey stream gages. 263 watersheds were identified with at least 10 years of continuous pre-fire daily streamflow records and 5 years of continuous post-fire daily flow records. For each watershed, percent changes in runoff ratio (RO), annual seven day low-flows (7Q2) and annual seven day high-flows (7Q10) were calculated from pre- to post-fire. Numerous independent variables were identified for each watershed and fire event, including topographic, land cover, climate, burn severity, and soils data. The national watersheds were divided into five regions through K-clustering and a lasso linear regression model, applying the Leave-One-Out calibration method, was calculated for each region. Nash-Sutcliffe Efficiency (NSE) was used to determine the accuracy of the resulting models. The regions encompassing the United States along and west of the Rocky Mountains, excluding the coastal watersheds, produced the most accurate linear models. The Pacific coast region models produced poor and inconsistent results, indicating that the regions need to be further subdivided. Presently, RO and HF response variables appear to be more easily modeled than LF. Results of linear regression modeling showed varying importance of watershed and fire event variables, with conflicting correlation between land cover types and soil types by region. The addition of further independent variables and constriction of current variables based on correlation indicators is ongoing and should allow for more accurate linear regression modeling.

  4. On the Structure of Neuronal Population Activity under Fluctuations in Attentional State

    PubMed Central

    Denfield, George H.; Bethge, Matthias; Tolias, Andreas S.

    2016-01-01

    Attention is commonly thought to improve behavioral performance by increasing response gain and suppressing shared variability in neuronal populations. However, both the focus and the strength of attention are likely to vary from one experimental trial to the next, thereby inducing response variability unknown to the experimenter. Here we study analytically how fluctuations in attentional state affect the structure of population responses in a simple model of spatial and feature attention. In our model, attention acts on the neural response exclusively by modulating each neuron's gain. Neurons are conditionally independent given the stimulus and the attentional gain, and correlated activity arises only from trial-to-trial fluctuations of the attentional state, which are unknown to the experimenter. We find that this simple model can readily explain many aspects of neural response modulation under attention, such as increased response gain, reduced individual and shared variability, increased correlations with firing rates, limited range correlations, and differential correlations. We therefore suggest that attention may act primarily by increasing response gain of individual neurons without affecting their correlation structure. The experimentally observed reduction in correlations may instead result from reduced variability of the attentional gain when a stimulus is attended. Moreover, we show that attentional gain fluctuations, even if unknown to a downstream readout, do not impair the readout accuracy despite inducing limited-range correlations, whereas fluctuations of the attended feature can in principle limit behavioral performance. SIGNIFICANCE STATEMENT Covert attention is one of the most widely studied examples of top-down modulation of neural activity in the visual system. Recent studies argue that attention improves behavioral performance by shaping of the noise distribution to suppress shared variability rather than by increasing response gain. Our work shows, however, that latent, trial-to-trial fluctuations of the focus and strength of attention lead to shared variability that is highly consistent with known experimental observations. Interestingly, fluctuations in the strength of attention do not affect coding performance. As a consequence, the experimentally observed changes in response variability may not be a mechanism of attention, but rather a side effect of attentional allocation strategies in different behavioral contexts. PMID:26843656

  5. Competency criteria and the class inclusion task: modeling judgments and justifications.

    PubMed

    Thomas, H; Horton, J J

    1997-11-01

    Preschool age children's class inclusion task responses were modeled as mixtures of different probability distributions. The main idea: Different response strategies are equivalent to different probability distributions. A child displays cognitive strategy s if P (child uses strategy s, given the child's observed score X = x) = p(s) is the most probable strategy. The general approach is widely applicable to many settings. Both judgment and justification questions were asked. Judgment response strategies identified were subclass comparison, guessing, and inclusion logic. Children's justifications lagged their judgments in development. Although justification responses may be useful, C. J. Brainerd was largely correct: If a single response variable is to be selected, a judgments variable is likely the preferable one. But the process must be modeled to identify cognitive strategies, as B. Hodkin has demonstrated.

  6. Prediction of road accidents: A Bayesian hierarchical approach.

    PubMed

    Deublein, Markus; Schubert, Matthias; Adey, Bryan T; Köhler, Jochen; Faber, Michael H

    2013-03-01

    In this paper a novel methodology for the prediction of the occurrence of road accidents is presented. The methodology utilizes a combination of three statistical methods: (1) gamma-updating of the occurrence rates of injury accidents and injured road users, (2) hierarchical multivariate Poisson-lognormal regression analysis taking into account correlations amongst multiple dependent model response variables and effects of discrete accident count data e.g. over-dispersion, and (3) Bayesian inference algorithms, which are applied by means of data mining techniques supported by Bayesian Probabilistic Networks in order to represent non-linearity between risk indicating and model response variables, as well as different types of uncertainties which might be present in the development of the specific models. Prior Bayesian Probabilistic Networks are first established by means of multivariate regression analysis of the observed frequencies of the model response variables, e.g. the occurrence of an accident, and observed values of the risk indicating variables, e.g. degree of road curvature. Subsequently, parameter learning is done using updating algorithms, to determine the posterior predictive probability distributions of the model response variables, conditional on the values of the risk indicating variables. The methodology is illustrated through a case study using data of the Austrian rural motorway network. In the case study, on randomly selected road segments the methodology is used to produce a model to predict the expected number of accidents in which an injury has occurred and the expected number of light, severe and fatally injured road users. Additionally, the methodology is used for geo-referenced identification of road sections with increased occurrence probabilities of injury accident events on a road link between two Austrian cities. It is shown that the proposed methodology can be used to develop models to estimate the occurrence of road accidents for any road network provided that the required data are available. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. New Perspectives on the Role of Internal Variability in Regional Climate Change and Climate Model Evaluation

    NASA Astrophysics Data System (ADS)

    Deser, C.

    2017-12-01

    Natural climate variability occurs over a wide range of time and space scales as a result of processes intrinsic to the atmosphere, the ocean, and their coupled interactions. Such internally generated climate fluctuations pose significant challenges for the identification of externally forced climate signals such as those driven by volcanic eruptions or anthropogenic increases in greenhouse gases. This challenge is exacerbated for regional climate responses evaluated from short (< 50 years) data records. The limited duration of the observations also places strong constraints on how well the spatial and temporal characteristics of natural climate variability are known, especially on multi-decadal time scales. The observational constraints, in turn, pose challenges for evaluation of climate models, including their representation of internal variability and assessing the accuracy of their responses to natural and anthropogenic radiative forcings. A promising new approach to climate model assessment is the advent of large (10-100 member) "initial-condition" ensembles of climate change simulations with individual models. Such ensembles allow for accurate determination, and straightforward separation, of externally forced climate signals and internal climate variability on regional scales. The range of climate trajectories in a given model ensemble results from the fact that each simulation represents a particular sequence of internal variability superimposed upon a common forced response. This makes clear that nature's single realization is only one of many that could have unfolded. This perspective leads to a rethinking of approaches to climate model evaluation that incorporate observational uncertainty due to limited sampling of internal variability. Illustrative examples across a range of well-known climate phenomena including ENSO, volcanic eruptions, and anthropogenic climate change will be discussed.

  8. The Rasch Rating Model and the Disordered Threshold Controversy

    ERIC Educational Resources Information Center

    Adams, Raymond J.; Wu, Margaret L.; Wilson, Mark

    2012-01-01

    The Rasch rating (or partial credit) model is a widely applied item response model that is used to model ordinal observed variables that are assumed to collectively reflect a common latent variable. In the application of the model there is considerable controversy surrounding the assessment of fit. This controversy is most notable when the set of…

  9. Latent Transition Analysis with a Mixture Item Response Theory Measurement Model

    ERIC Educational Resources Information Center

    Cho, Sun-Joo; Cohen, Allan S.; Kim, Seock-Ho; Bottge, Brian

    2010-01-01

    A latent transition analysis (LTA) model was described with a mixture Rasch model (MRM) as the measurement model. Unlike the LTA, which was developed with a latent class measurement model, the LTA-MRM permits within-class variability on the latent variable, making it more useful for measuring treatment effects within latent classes. A simulation…

  10. The Diffusion Model Is Not a Deterministic Growth Model: Comment on Jones and Dzhafarov (2014)

    PubMed Central

    Smith, Philip L.; Ratcliff, Roger; McKoon, Gail

    2015-01-01

    Jones and Dzhafarov (2014) claim that several current models of speeded decision making in cognitive tasks, including the diffusion model, can be viewed as special cases of other general models or model classes. The general models can be made to match any set of response time (RT) distribution and accuracy data exactly by a suitable choice of parameters and so are unfalsifiable. The implication of their claim is that models like the diffusion model are empirically testable only by artificially restricting them to exclude unfalsifiable instances of the general model. We show that Jones and Dzhafarov’s argument depends on enlarging the class of “diffusion” models to include models in which there is little or no diffusion. The unfalsifiable models are deterministic or near-deterministic growth models, from which the effects of within-trial variability have been removed or in which they are constrained to be negligible. These models attribute most or all of the variability in RT and accuracy to across-trial variability in the rate of evidence growth, which is permitted to be distributed arbitrarily and to vary freely across experimental conditions. In contrast, in the standard diffusion model, within-trial variability in evidence is the primary determinant of variability in RT. Across-trial variability, which determines the relative speed of correct responses and errors, is theoretically and empirically constrained. Jones and Dzhafarov’s attempt to include the diffusion model in a class of models that also includes deterministic growth models misrepresents and trivializes it and conveys a misleading picture of cognitive decision-making research. PMID:25347314

  11. Assessing climate impacts

    PubMed Central

    Wohl, Ellen E.; Pulwarty, Roger S.; Zhang, Jian Yun

    2000-01-01

    Assessing climate impacts involves identifying sources and characteristics of climate variability, and mitigating potential negative impacts of that variability. Associated research focuses on climate driving mechanisms, biosphere–hydrosphere responses and mediation, and human responses. Examples of climate impacts come from 1998 flooding in the Yangtze River Basin and hurricanes in the Caribbean and Central America. Although we have limited understanding of the fundamental driving-response interactions associated with climate variability, increasingly powerful measurement and modeling techniques make assessing climate impacts a rapidly developing frontier of science. PMID:11027321

  12. Stressor-response modeling using the 2D water quality model and regression trees to predict chlorophyll-a in a reservoir system

    USDA-ARS?s Scientific Manuscript database

    In order to control algal blooms, stressor-response relationships between water quality metrics, environmental variables, and algal growth should be understood and modeled. Machine-learning methods were suggested to express stressor-response relationships found by application of mechanistic water qu...

  13. Log-Multiplicative Association Models as Item Response Models

    ERIC Educational Resources Information Center

    Anderson, Carolyn J.; Yu, Hsiu-Ting

    2007-01-01

    Log-multiplicative association (LMA) models, which are special cases of log-linear models, have interpretations in terms of latent continuous variables. Two theoretical derivations of LMA models based on item response theory (IRT) arguments are presented. First, we show that Anderson and colleagues (Anderson & Vermunt, 2000; Anderson & Bockenholt,…

  14. Response of Solar Irradiance to Sunspot-area Variations

    NASA Astrophysics Data System (ADS)

    Dudok de Wit, T.; Kopp, G.; Shapiro, A.; Witzke, V.; Kretzschmar, M.

    2018-02-01

    One of the important open questions in solar irradiance studies is whether long-term variability (i.e., on timescales of years and beyond) can be reconstructed by means of models that describe short-term variability (i.e., days) using solar proxies as inputs. Preminger & Walton showed that the relationship between spectral solar irradiance and proxies of magnetic-flux emergence, such as the daily sunspot area, can be described in the framework of linear system theory by means of the impulse response. We significantly refine that empirical model by removing spurious solar-rotational effects and by including an additional term that captures long-term variations. Our results show that long-term variability cannot be reconstructed from the short-term response of the spectral irradiance, which questions the extension of solar proxy models to these timescales. In addition, we find that the solar response is nonlinear in a way that cannot be corrected simply by applying a rescaling to a sunspot area.

  15. A bivariate model for analyzing recurrent multi-type automobile failures

    NASA Astrophysics Data System (ADS)

    Sunethra, A. A.; Sooriyarachchi, M. R.

    2017-09-01

    The failure mechanism in an automobile can be defined as a system of multi-type recurrent failures where failures can occur due to various multi-type failure modes and these failures are repetitive such that more than one failure can occur from each failure mode. In analysing such automobile failures, both the time and type of the failure serve as response variables. However, these two response variables are highly correlated with each other since the timing of failures has an association with the mode of the failure. When there are more than one correlated response variables, the fitting of a multivariate model is more preferable than separate univariate models. Therefore, a bivariate model of time and type of failure becomes appealing for such automobile failure data. When there are multiple failure observations pertaining to a single automobile, such data cannot be treated as independent data because failure instances of a single automobile are correlated with each other while failures among different automobiles can be treated as independent. Therefore, this study proposes a bivariate model consisting time and type of failure as responses adjusted for correlated data. The proposed model was formulated following the approaches of shared parameter models and random effects models for joining the responses and for representing the correlated data respectively. The proposed model is applied to a sample of automobile failures with three types of failure modes and up to five failure recurrences. The parametric distributions that were suitable for the two responses of time to failure and type of failure were Weibull distribution and multinomial distribution respectively. The proposed bivariate model was programmed in SAS Procedure Proc NLMIXED by user programming appropriate likelihood functions. The performance of the bivariate model was compared with separate univariate models fitted for the two responses and it was identified that better performance is secured by the bivariate model. The proposed model can be used to determine the time and type of failure that would occur in the automobiles considered here.

  16. Report of the Defense Science Board Task Force on Defense Biometrics

    DTIC Science & Technology

    2007-03-01

    certificates, crypto variables, and encoded biometric indices. The Department of Defense has invested prestige and resources in its Common Access Card (CAC...in turn, could be used to unlock an otherwise secret key or crypto variable which would support the remote authentication. A new key variable...The PSA for biometrics should commission development of appropriate threat model(s) and assign responsibility for maintaining currency of the model

  17. Factor Models for Ordinal Variables With Covariate Effects on the Manifest and Latent Variables: A Comparison of LISREL and IRT Approaches

    ERIC Educational Resources Information Center

    Moustaki, Irini; Joreskog, Karl G.; Mavridis, Dimitris

    2004-01-01

    We consider a general type of model for analyzing ordinal variables with covariate effects and 2 approaches for analyzing data for such models, the item response theory (IRT) approach and the PRELIS-LISREL (PLA) approach. We compare these 2 approaches on the basis of 2 examples, 1 involving only covariate effects directly on the ordinal variables…

  18. Infrastructure features outperform environmental variables explaining rabbit abundance around motorways.

    PubMed

    Planillo, Aimara; Malo, Juan E

    2018-01-01

    Human disturbance is widespread across landscapes in the form of roads that alter wildlife populations. Knowing which road features are responsible for the species response and their relevance in comparison with environmental variables will provide useful information for effective conservation measures. We sampled relative abundance of European rabbits, a very widespread species, in motorway verges at regional scale, in an area with large variability in environmental and infrastructure conditions. Environmental variables included vegetation structure, plant productivity, distance to water sources, and altitude. Infrastructure characteristics were the type of vegetation in verges, verge width, traffic volume, and the presence of embankments. We performed a variance partitioning analysis to determine the relative importance of two sets of variables on rabbit abundance. Additionally, we identified the most important variables and their effects model averaging after model selection by AICc on hypothesis-based models. As a group, infrastructure features explained four times more variability in rabbit abundance than environmental variables, being the effects of the former critical in motorway stretches located in altered landscapes with no available habitat for rabbits, such as agricultural fields. Model selection and Akaike weights showed that verge width and traffic volume are the most important variables explaining rabbit abundance index, with positive and negative effects, respectively. In the light of these results, the response of species to the infrastructure can be modulated through the modification of motorway features, being some of them manageable in the design phase. The identification of such features leads to suggestions for improvement through low-cost corrective measures and conservation plans. As a general indication, keeping motorway verges less than 10 m wide will prevent high densities of rabbits and avoid the unwanted effects that rabbit populations can generate in some areas.

  19. Modeling circulation patterns induced by spatial cross-shore wind variability in a small-size coastal embayment

    NASA Astrophysics Data System (ADS)

    Cerralbo, Pablo; Espino, Manuel; Grifoll, Manel

    2016-08-01

    This contribution shows the importance of the cross-shore spatial wind variability in the water circulation in a small-sized micro-tidal bay. The hydrodynamic wind response at Alfacs Bay (Ebro River delta, NW Mediterranean Sea) is investigated with a numerical model (ROMS) supported by in situ observations. The wind variability observed in meteorological measurements is characterized with meteorological model (WRF) outputs. From the hydrodynamic simulations of the bay, the water circulation response is affected by the cross-shore wind variability, leading to water current structures not observed in the homogeneous-wind case. If the wind heterogeneity response is considered, the water exchange in the longitudinal direction increases significantly, reducing the water exchange time by around 20%. Wind resolutions half the size of the bay (in our case around 9 km) inhibit cross-shore wind variability, which significantly affects the resultant circulation pattern. The characteristic response is also investigated using idealized test cases. These results show how the wind curl contributes to the hydrodynamic response in shallow areas and promotes the exchange between the bay and the open sea. Negative wind curl is related to the formation of an anti-cyclonic gyre at the bay's mouth. Our results highlight the importance of considering appropriate wind resolution even in small-scale domains (such as bays or harbors) to characterize the hydrodynamics, with relevant implications in the water exchange time and the consequent water quality and ecological parameters.

  20. Multi-step rhodopsin inactivation schemes can account for the size variability of single photon responses in Limulus ventral photoreceptors

    PubMed Central

    1994-01-01

    Limulus ventral photoreceptors generate highly variable responses to the absorption of single photons. We have obtained data on the size distribution of these responses, derived the distribution predicted from simple transduction cascade models and compared the theory and data. In the simplest of models, the active state of the visual pigment (defined by its ability to activate G protein) is turned off in a single reaction. The output of such a cascade is predicted to be highly variable, largely because of stochastic variation in the number of G proteins activated. The exact distribution predicted is exponential, but we find that an exponential does not adequately account for the data. The data agree much better with the predictions of a cascade model in which the active state of the visual pigment is turned off by a multi-step process. PMID:8057085

  1. Introduction to the use of regression models in epidemiology.

    PubMed

    Bender, Ralf

    2009-01-01

    Regression modeling is one of the most important statistical techniques used in analytical epidemiology. By means of regression models the effect of one or several explanatory variables (e.g., exposures, subject characteristics, risk factors) on a response variable such as mortality or cancer can be investigated. From multiple regression models, adjusted effect estimates can be obtained that take the effect of potential confounders into account. Regression methods can be applied in all epidemiologic study designs so that they represent a universal tool for data analysis in epidemiology. Different kinds of regression models have been developed in dependence on the measurement scale of the response variable and the study design. The most important methods are linear regression for continuous outcomes, logistic regression for binary outcomes, Cox regression for time-to-event data, and Poisson regression for frequencies and rates. This chapter provides a nontechnical introduction to these regression models with illustrating examples from cancer research.

  2. Spatial stochastic modelling of the Hes1 gene regulatory network: intrinsic noise can explain heterogeneity in embryonic stem cell differentiation

    PubMed Central

    Sturrock, Marc; Hellander, Andreas; Matzavinos, Anastasios; Chaplain, Mark A. J.

    2013-01-01

    Individual mouse embryonic stem cells have been found to exhibit highly variable differentiation responses under the same environmental conditions. The noisy cyclic expression of Hes1 and its downstream genes are known to be responsible for this, but the mechanism underlying this variability in expression is not well understood. In this paper, we show that the observed experimental data and diverse differentiation responses can be explained by a spatial stochastic model of the Hes1 gene regulatory network. We also propose experiments to control the precise differentiation response using drug treatment. PMID:23325756

  3. The role of clinical variables, neuropsychological performance and SLC6A4 and COMT gene polymorphisms on the prediction of early response to fluoxetine in major depressive disorder.

    PubMed

    Gudayol-Ferré, Esteve; Herrera-Guzmán, Ixchel; Camarena, Beatriz; Cortés-Penagos, Carlos; Herrera-Abarca, Jorge E; Martínez-Medina, Patricia; Cruz, David; Hernández, Sandra; Genis, Alma; Carrillo-Guerrero, Mariana Y; Avilés Reyes, Rubén; Guàrdia-Olmos, Joan

    2010-12-01

    Major depressive disorder (MDD) is treated with antidepressants, but only between 50% and 70% of the patients respond to the initial treatment. Several authors suggested different factors that could predict antidepressant response, including clinical, psychophysiological, neuropsychological, neuroimaging, and genetic variables. However, these different predictors present poor prognostic sensitivity and specificity by themselves. The aim of our work is to study the possible role of clinical variables, neuropsychological performance, and the 5HTTLPR, rs25531, and val108/58Met COMT polymorphisms in the prediction of the response to fluoxetine after 4weeks of treatment in a sample of patient with MDD. 64 patients with MDD were genotyped according to the above-mentioned polymorphisms, and were clinically and neuropsychologically assessed before a 4-week fluoxetine treatment. Fluoxetine response was assessed by using the Hamilton Depression Rating Scale. We carried out a binary logistic regression model for the potential predictive variables. Out of the clinical variables studied, only the number of anxiety disorders comorbid with MDD have predicted a poor response to the treatment. A combination of a good performance in variables of attention and low performance in planning could predict a good response to fluoxetine in patients with MDD. None of the genetic variables studied had predictive value in our model. The possible placebo effect has not been controlled. Our study is focused on response prediction but not in remission prediction. Our work suggests that the combination of the number of comorbid anxiety disorders, an attentional variable, and two planning variables makes it possible to correctly classify 82% of the depressed patients who responded to the treatment with fluoxetine, and 74% of the patients who did not respond to that treatment. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Inter-Individual Variability in Human Response to Low-Dose Ionizing Radiation, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocke, David

    2016-08-01

    In order to investigate inter-individual variability in response to low-dose ionizing radiation, we are working with three models, 1) in-vivo irradiated human skin, for which we have a realistic model, but with few subjects, all from a previous project, 2) ex-vivo irradiated human skin, for which we also have a realistic model, though with the limitations involved in keeping skin pieces alive in media, and 3) MatTek EpiDermFT skin plugs, which provides a more realistic model than cell lines, which is more controllable than human samples.

  5. Semi-arid vegetation response to antecedent climate and water balance windows

    USGS Publications Warehouse

    Thoma, David P.; Munson, Seth M.; Irvine, Kathryn M.; Witwicki, Dana L.; Bunting, Erin

    2016-01-01

    Questions Can we improve understanding of vegetation response to water availability on monthly time scales in semi-arid environments using remote sensing methods? What climatic or water balance variables and antecedent windows of time associated with these variables best relate to the condition of vegetation? Can we develop credible near-term forecasts from climate data that can be used to prepare for future climate change effects on vegetation? Location Semi-arid grasslands in Capitol Reef National Park, Utah, USA. Methods We built vegetation response models by relating the normalized difference vegetation index (NDVI) from MODIS imagery in Mar–Nov 2000–2013 to antecedent climate and water balance variables preceding the monthly NDVI observations. We compared how climate and water balance variables explained vegetation greenness and then used a multi-model ensemble of climate and water balance models to forecast monthly NDVI for three holdout years. Results Water balance variables explained vegetation greenness to a greater degree than climate variables for most growing season months. Seasonally important variables included measures of antecedent water input and storage in spring, switching to indicators of drought, input or use in summer, followed by antecedent moisture availability in autumn. In spite of similar climates, there was evidence the grazed grassland showed a response to drying conditions 1 mo sooner than the ungrazed grassland. Lead times were generally short early in the growing season and antecedent window durations increased from 3 mo early in the growing season to 1 yr or more as the growing season progressed. Forecast accuracy for three holdout years using a multi-model ensemble of climate and water balance variables outperformed forecasts made with a naïve NDVI climatology. Conclusions We determined the influence of climate and water balance on vegetation at a fine temporal scale, which presents an opportunity to forecast vegetation response with short lead times. This understanding was obtained through high-frequency vegetation monitoring using remote sensing, which reduces the costs and time necessary for field measurements and can lead to more rapid detection of vegetation changes that could help managers take appropriate actions.

  6. Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO2 and a Gradient of Experimental Warming

    NASA Astrophysics Data System (ADS)

    Jiang, Jiang; Huang, Yuanyuan; Ma, Shuang; Stacy, Mark; Shi, Zheng; Ricciuto, Daniel M.; Hanson, Paul J.; Luo, Yiqi

    2018-03-01

    The ability to forecast ecological carbon cycling is imperative to land management in a world where past carbon fluxes are no longer a clear guide in the Anthropocene. However, carbon-flux forecasting has not been practiced routinely like numerical weather prediction. This study explored (1) the relative contributions of model forcing data and parameters to uncertainty in forecasting flux- versus pool-based carbon cycle variables and (2) the time points when temperature and CO2 treatments may cause statistically detectable differences in those variables. We developed an online forecasting workflow (Ecological Platform for Assimilation of Data (EcoPAD)), which facilitates iterative data-model integration. EcoPAD automates data transfer from sensor networks, data assimilation, and ecological forecasting. We used the Spruce and Peatland Responses Under Changing Experiments data collected from 2011 to 2014 to constrain the parameters in the Terrestrial Ecosystem Model, forecast carbon cycle responses to elevated CO2 and a gradient of warming from 2015 to 2024, and specify uncertainties in the model output. Our results showed that data assimilation substantially reduces forecasting uncertainties. Interestingly, we found that the stochasticity of future external forcing contributed more to the uncertainty of forecasting future dynamics of C flux-related variables than model parameters. However, the parameter uncertainty primarily contributes to the uncertainty in forecasting C pool-related response variables. Given the uncertainties in forecasting carbon fluxes and pools, our analysis showed that statistically different responses of fast-turnover pools to various CO2 and warming treatments were observed sooner than slow-turnover pools. Our study has identified the sources of uncertainties in model prediction and thus leads to improve ecological carbon cycling forecasts in the future.

  7. Convergence of Dynamic Vegetation Net Productivity Responses to Precipitation Variability from 10 Years of MODIS EVI

    USDA-ARS?s Scientific Manuscript database

    According to Global Climate Models (GCMs) the occurrence of extreme events of precipitation will be more frequent in the future. Therefore, important challenges arise regarding climate variability, which are mainly related to the understanding of ecosystem responses to changes in precipitation patte...

  8. Transient Response of a PEM Fuel Cell Representing Variable Load for a Moving Vehicle on Urban Roads

    DOT National Transportation Integrated Search

    2001-01-01

    Three-dimensional numerical simulation of transient response of a Polymer Electrolyte Membrane (PEM) fuel cell subjected to a variable load is developed. The model parameters are typical of experimental cell for a 10-cm2 reactive area with serpentine...

  9. Comparison of Model and Observations of Middle Atmospheric HOx Response to Solar 27-day Cycles: Quantifying Model Uncertainties due to Photochemistry

    NASA Astrophysics Data System (ADS)

    Wang, S.; Li, K. F.; Shia, R. L.; Yung, Y. L.; Sander, S. P.

    2016-12-01

    HO2 and OH (known as odd oxygen HOx), play an important role in middle atmospheric chemistry, in particular, O3 destruction through catalytic HOx reaction cycles. Due to their photochemical production and short chemical lifetimes, HOx species response rapidly to solar UV irradiance changes during solar cycles, resulting in variability in the corresponding O3 chemistry. Observational evidences for both OH and HO2 variability due to solar cycles have been reported. However, puzzling discrepancies remain. In particular, the large discrepancy between model and observations of solar 11-year cycle signal in OH and the significantly different model results when adopting different solar spectral irradiance (SSI) [Wang et al., 2013] suggest that both uncertainties in SSI variability and uncertainties in our current understanding of HOx-O3 chemistry could contribute to the discrepancy. Since the short-term SSI variability (e.g. changes during solar 27-day cycles) has little uncertainty, investigating 27-day solar cycle signals in HOx allows us to simplify the complex problem and to focus on the uncertainties in chemistry alone. We use the Caltech-JPL photochemical model to simulate observed HOx variability during 27-day cycles. The comparison between Aura Microwave Limb Sounder (MLS) observations and our model results (using standard chemistry and "adjusted chemistry", respectively) will be discussed. A better understanding of uncertainties in chemistry will eventually help us separate the contribution of chemistry from contributions of SSI uncertainties to the complex discrepancy between model and observations of OH responses to solar 11-year cycles.

  10. Wintertime atmospheric response to decadal SST anomalies in the North Pacific frontal zone and its relationship to dominant atmospheric internal variability

    NASA Astrophysics Data System (ADS)

    Okajima, S.; Nakamura, H.; Nishii, K.; Miyasaka, T.; Kuwano-Yoshida, A.; Taguchi, B.

    2016-02-01

    A decadal-scale warm SST anomaly observed in the North Pacific subarctic frontal zone (SAFZ) tends to accompany a basin-scale anticyclonic anomaly in the troposphere that peaks in January. A set of sensitivity experiments conducted with an AGCM simulates an anticyclonic ensemble response over the North Pacific in January. As observed, the simulated anticyclonic response is in equivalent barotropic structure and maintained mainly through energy conversion from the ensemble mean circulation realized under the climatological SST, suggesting that the anomaly may have a characteristic of a dynamical mode. Conversion of both available potential energy (APE) and kinetic energy (KE) from the mean flow is important for the observed anomaly, while only the former is important for the model response. This is because the model response is located to the north of the jet core region whereas the observed anomaly is straddling the jet exit region, which appears to be in correspondence to the northwestward displacement of the center of the dominant atmospheric internal variability in our model relative to the observed center. Transient eddy feedback forcing also acts to maintain the observed anomaly rather efficiently, while its efficiency is much lower for the simulated response, which seems to be consistent with the poleward displacement of the anticyclonic response from the jet and stormtrack axes. A multi-decadal integration of our coupled GCM also suggests that atmospheric internal variability may be important for determining atmospheric response to the decadal SST variability of the SAFZ.

  11. Divergent patterns of experimental and model derived variables of tundra ecosystem carbon exchange in response to arctic warming

    NASA Astrophysics Data System (ADS)

    Schaedel, C.; Koven, C.; Celis, G.; Hutchings, J.; Lawrence, D. M.; Mauritz, M.; Pegoraro, E.; Salmon, V. G.; Taylor, M.; Wieder, W. R.; Schuur, E.

    2017-12-01

    Warming over the Arctic in the last decades has been twice as high as for the rest of the globe and has exposed large amounts of organic carbon to microbial decomposition in permafrost ecosystems. Continued warming and associated changes in soil moisture conditions not only lead to enhanced microbial decomposition from permafrost soil but also enhanced plant carbon uptake. Both processes impact the overall contribution of permafrost carbon dynamics to the global carbon cycle, yet field and modeling studies show large uncertainties in regard to both uptake and release mechanisms. Here, we compare variables associated with ecosystem carbon exchange (GPP: gross primary production; Reco: ecosystem respiration; and NEE: net ecosystem exchange) from eight years of experimental soil warming in moist acidic tundra with the same variables derived from an experimental model (Community Land Model version 4.5: CLM4.5) that simulates the same degree of arctic warming. While soil temperatures and thaw depths exhibited comparable increases with warming between field and model variables, carbon exchange related parameters showed divergent patterns. In the field non-linear responses to experimentally induced permafrost thaw were observed in GPP, Reco, and NEE. Indirect effects of continued soil warming and thaw created changes in soil moisture conditions causing ground surface subsidence and suppressing ecosystem carbon exchange over time. In contrast, the model predicted linear increases in GPP, Reco, and NEE with every year of warming turning the ecosystem into a net annual carbon sink. The field experiment revealed the importance of hydrology in carbon flux responses to permafrost thaw, a complexity that the model may fail to predict. Further parameterization of variables that drive GPP, Reco, and NEE in the model will help to inform and refine future model development.

  12. Grid Modeling Tools | Grid Modernization | NREL

    Science.gov Websites

    integrates primary frequency response (turbine governor control) with secondary frequency response (automatic generation control). It simulates the power system dynamic response in full time spectrum with variable time control model places special emphasis on electric power systems with high penetrations of renewable

  13. Modelling the breeding of Aedes Albopictus species in an urban area in Pulau Pinang using polynomial regression

    NASA Astrophysics Data System (ADS)

    Salleh, Nur Hanim Mohd; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Saad, Ahmad Ramli; Sulaiman, Husna Mahirah; Ahmad, Wan Muhamad Amir W.

    2014-07-01

    Polynomial regression is used to model a curvilinear relationship between a response variable and one or more predictor variables. It is a form of a least squares linear regression model that predicts a single response variable by decomposing the predictor variables into an nth order polynomial. In a curvilinear relationship, each curve has a number of extreme points equal to the highest order term in the polynomial. A quadratic model will have either a single maximum or minimum, whereas a cubic model has both a relative maximum and a minimum. This study used quadratic modeling techniques to analyze the effects of environmental factors: temperature, relative humidity, and rainfall distribution on the breeding of Aedes albopictus, a type of Aedes mosquito. Data were collected at an urban area in south-west Penang from September 2010 until January 2011. The results indicated that the breeding of Aedes albopictus in the urban area is influenced by all three environmental characteristics. The number of mosquito eggs is estimated to reach a maximum value at a medium temperature, a medium relative humidity and a high rainfall distribution.

  14. CORRELATION PURSUIT: FORWARD STEPWISE VARIABLE SELECTION FOR INDEX MODELS

    PubMed Central

    Zhong, Wenxuan; Zhang, Tingting; Zhu, Yu; Liu, Jun S.

    2012-01-01

    In this article, a stepwise procedure, correlation pursuit (COP), is developed for variable selection under the sufficient dimension reduction framework, in which the response variable Y is influenced by the predictors X1, X2, …, Xp through an unknown function of a few linear combinations of them. Unlike linear stepwise regression, COP does not impose a special form of relationship (such as linear) between the response variable and the predictor variables. The COP procedure selects variables that attain the maximum correlation between the transformed response and the linear combination of the variables. Various asymptotic properties of the COP procedure are established, and in particular, its variable selection performance under diverging number of predictors and sample size has been investigated. The excellent empirical performance of the COP procedure in comparison with existing methods are demonstrated by both extensive simulation studies and a real example in functional genomics. PMID:23243388

  15. Dynamics of melanoma tumor therapy with vesicular stomatitis virus: explaining the variability in outcomes using mathematical modeling.

    PubMed

    Rommelfanger, D M; Offord, C P; Dev, J; Bajzer, Z; Vile, R G; Dingli, D

    2012-05-01

    Tumor selective, replication competent viruses are being tested for cancer gene therapy. This approach introduces a new therapeutic paradigm due to potential replication of the therapeutic agent and induction of a tumor-specific immune response. However, the experimental outcomes are quite variable, even when studies utilize highly inbred strains of mice and the same cell line and virus. Recognizing that virotherapy is an exercise in population dynamics, we utilize mathematical modeling to understand the variable outcomes observed when B16ova malignant melanoma tumors are treated with vesicular stomatitis virus in syngeneic, fully immunocompetent mice. We show how variability in the initial tumor size and the actual amount of virus delivered to the tumor have critical roles on the outcome of therapy. Virotherapy works best when tumors are small, and a robust innate immune response can lead to superior tumor control. Strategies that reduce tumor burden without suppressing the immune response and methods that maximize the amount of virus delivered to the tumor should optimize tumor control in this model system.

  16. Fine-scale habitat modeling of a top marine predator: do prey data improve predictive capacity?

    PubMed

    Torres, Leigh G; Read, Andrew J; Halpin, Patrick

    2008-10-01

    Predators and prey assort themselves relative to each other, the availability of resources and refuges, and the temporal and spatial scale of their interaction. Predictive models of predator distributions often rely on these relationships by incorporating data on environmental variability and prey availability to determine predator habitat selection patterns. This approach to predictive modeling holds true in marine systems where observations of predators are logistically difficult, emphasizing the need for accurate models. In this paper, we ask whether including prey distribution data in fine-scale predictive models of bottlenose dolphin (Tursiops truncatus) habitat selection in Florida Bay, Florida, U.S.A., improves predictive capacity. Environmental characteristics are often used as predictor variables in habitat models of top marine predators with the assumption that they act as proxies of prey distribution. We examine the validity of this assumption by comparing the response of dolphin distribution and fish catch rates to the same environmental variables. Next, the predictive capacities of four models, with and without prey distribution data, are tested to determine whether dolphin habitat selection can be predicted without recourse to describing the distribution of their prey. The final analysis determines the accuracy of predictive maps of dolphin distribution produced by modeling areas of high fish catch based on significant environmental characteristics. We use spatial analysis and independent data sets to train and test the models. Our results indicate that, due to high habitat heterogeneity and the spatial variability of prey patches, fine-scale models of dolphin habitat selection in coastal habitats will be more successful if environmental variables are used as predictor variables of predator distributions rather than relying on prey data as explanatory variables. However, predictive modeling of prey distribution as the response variable based on environmental variability did produce high predictive performance of dolphin habitat selection, particularly foraging habitat.

  17. Variable selection with stepwise and best subset approaches

    PubMed Central

    2016-01-01

    While purposeful selection is performed partly by software and partly by hand, the stepwise and best subset approaches are automatically performed by software. Two R functions stepAIC() and bestglm() are well designed for stepwise and best subset regression, respectively. The stepAIC() function begins with a full or null model, and methods for stepwise regression can be specified in the direction argument with character values “forward”, “backward” and “both”. The bestglm() function begins with a data frame containing explanatory variables and response variables. The response variable should be in the last column. Varieties of goodness-of-fit criteria can be specified in the IC argument. The Bayesian information criterion (BIC) usually results in more parsimonious model than the Akaike information criterion. PMID:27162786

  18. Testing a land model in ecosystem functional space via a comparison of observed and modeled ecosystem flux responses to precipitation regimes and associated stresses in a Central U.S. forest: Test Model in Ecosystem Functional Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Lianhong; Pallardy, Stephen G.; Yang, Bai

    Testing complex land surface models has often proceeded by asking the question: does the model prediction agree with the observation? This approach has yet led to high-performance terrestrial models that meet the challenges of climate and ecological studies. Here we test the Community Land Model (CLM) by asking the question: does the model behave like an ecosystem? We pursue its answer by testing CLM in the ecosystem functional space (EFS) at the Missouri Ozark AmeriFlux (MOFLUX) forest site in the Central U.S., focusing on carbon and water flux responses to precipitation regimes and associated stresses. In the observed EFS, precipitationmore » regimes and associated water and heat stresses controlled seasonal and interannual variations of net ecosystem exchange (NEE) of CO 2 and evapotranspiration in this deciduous forest ecosystem. Such controls were exerted more strongly by precipitation variability than by the total precipitation amount per se. A few simply constructed climate variability indices captured these controls, suggesting a high degree of potential predictability. While the interannual fluctuation in NEE was large, a net carbon sink was maintained even during an extreme drought year. Although CLM predicted seasonal and interanual variations in evapotranspiration reasonably well, its predictions of net carbon uptake were too small across the observed range of climate variability. Also, the model systematically underestimated the sensitivities of NEE and evapotranspiration to climate variability and overestimated the coupling strength between carbon and water fluxes. Its suspected that the modeled and observed trajectories of ecosystem fluxes did not overlap in the EFS and the model did not behave like the ecosystem it attempted to simulate. A definitive conclusion will require comprehensive parameter and structural sensitivity tests in a rigorous mathematical framework. We also suggest that future model improvements should focus on better representation and parameterization of process responses to environmental stresses and on more complete and robust representations of carbon-specific processes so that adequate responses to climate variability and a proper degree of coupling between carbon and water exchanges are captured.« less

  19. Testing a land model in ecosystem functional space via a comparison of observed and modeled ecosystem flux responses to precipitation regimes and associated stresses in a Central U.S. forest: Test Model in Ecosystem Functional Space

    DOE PAGES

    Gu, Lianhong; Pallardy, Stephen G.; Yang, Bai; ...

    2016-07-14

    Testing complex land surface models has often proceeded by asking the question: does the model prediction agree with the observation? This approach has yet led to high-performance terrestrial models that meet the challenges of climate and ecological studies. Here we test the Community Land Model (CLM) by asking the question: does the model behave like an ecosystem? We pursue its answer by testing CLM in the ecosystem functional space (EFS) at the Missouri Ozark AmeriFlux (MOFLUX) forest site in the Central U.S., focusing on carbon and water flux responses to precipitation regimes and associated stresses. In the observed EFS, precipitationmore » regimes and associated water and heat stresses controlled seasonal and interannual variations of net ecosystem exchange (NEE) of CO 2 and evapotranspiration in this deciduous forest ecosystem. Such controls were exerted more strongly by precipitation variability than by the total precipitation amount per se. A few simply constructed climate variability indices captured these controls, suggesting a high degree of potential predictability. While the interannual fluctuation in NEE was large, a net carbon sink was maintained even during an extreme drought year. Although CLM predicted seasonal and interanual variations in evapotranspiration reasonably well, its predictions of net carbon uptake were too small across the observed range of climate variability. Also, the model systematically underestimated the sensitivities of NEE and evapotranspiration to climate variability and overestimated the coupling strength between carbon and water fluxes. Its suspected that the modeled and observed trajectories of ecosystem fluxes did not overlap in the EFS and the model did not behave like the ecosystem it attempted to simulate. A definitive conclusion will require comprehensive parameter and structural sensitivity tests in a rigorous mathematical framework. We also suggest that future model improvements should focus on better representation and parameterization of process responses to environmental stresses and on more complete and robust representations of carbon-specific processes so that adequate responses to climate variability and a proper degree of coupling between carbon and water exchanges are captured.« less

  20. Whole tree xylem sap flow responses to multiple environmental variables in a wet tropical forest

    Treesearch

    J.J. O' Brien; S.F. Oberbauer; D.B. Clark

    2004-01-01

    In order to quantify and characterize the variance in rain-forest tree physiology, whole tree sap flow responses to local environmental conditions were investigated in 10 species of trees with diverse traits at La Selva Biological Station, Costa Rica. A simple model was developed to predict tree sap flow responses to a synthetic environmental variable generated by a...

  1. Population pharmacodynamic modelling of midazolam induced sedation in terminally ill adult patients

    PubMed Central

    de Winter, Brenda C. M.; Masman, Anniek D.; van Dijk, Monique; Baar, Frans P. M.; Tibboel, Dick; Koch, Birgit C. P.; van Gelder, Teun; Mathot, Ron A. A.

    2017-01-01

    Aims Midazolam is the drug of choice for palliative sedation and is titrated to achieve the desired level of sedation. A previous pharmacokinetic (PK) study showed that variability between patients could be partly explained by renal function and inflammatory status. The goal of this study was to combine this PK information with pharmacodynamic (PD) data, to evaluate the variability in response to midazolam and to find clinically relevant covariates that may predict PD response. Method A population PD analysis using nonlinear mixed effect models was performed with data from 43 terminally ill patients. PK profiles were predicted by a previously described PK model and depth of sedation was measured using the Ramsay sedation score. Patient and disease characteristics were evaluated as possible covariates. The final model was evaluated using a visual predictive check. Results The effect of midazolam on the sedation level was best described by a differential odds model including a baseline probability, Emax model and interindividual variability on the overall effect. The EC50 value was 68.7 μg l–1 for a Ramsay score of 3–5 and 117.1 μg l–1 for a Ramsay score of 6. Comedication with haloperidol was the only significant covariate. The visual predictive check of the final model showed good model predictability. Conclusion We were able to describe the clinical response to midazolam accurately. As expected, there was large variability in response to midazolam. The use of haloperidol was associated with a lower probability of sedation. This may be a result of confounding by indication, as haloperidol was used to treat delirium, and deliria has been linked to a more difficult sedation procedure. PMID:28960387

  2. The need to consider temporal variability when modelling exchange at the sediment-water interface

    USGS Publications Warehouse

    Rosenberry, Donald O.

    2011-01-01

    Most conceptual or numerical models of flows and processes at the sediment-water interface assume steady-state conditions and do not consider temporal variability. The steady-state assumption is required because temporal variability, if quantified at all, is usually determined on a seasonal or inter-annual scale. In order to design models that can incorporate finer-scale temporal resolution we first need to measure variability at a finer scale. Automated seepage meters that can measure flow across the sediment-water interface with temporal resolution of seconds to minutes were used in a variety of settings to characterize seepage response to rainfall, wind, and evapotranspiration. Results indicate that instantaneous seepage fluxes can be much larger than values commonly reported in the literature, although seepage does not always respond to hydrological processes. Additional study is needed to understand the reasons for the wide range and types of responses to these hydrologic and atmospheric events.

  3. Measuring individual differences in responses to date-rape vignettes using latent variable models.

    PubMed

    Tuliao, Antover P; Hoffman, Lesa; McChargue, Dennis E

    2017-01-01

    Vignette methodology can be a flexible and powerful way to examine individual differences in response to dangerous real-life scenarios. However, most studies underutilize the usefulness of such methodology by analyzing only one outcome, which limits the ability to track event-related changes (e.g., vacillation in risk perception). The current study was designed to illustrate the dynamic influence of risk perception on exit point from a date-rape vignette. Our primary goal was to provide an illustrative example of how to use latent variable models for vignette methodology, including latent growth curve modeling with piecewise slopes, as well as latent variable measurement models. Through the combination of a step-by-step exposition in this text and corresponding model syntax available electronically, we detail an alternative statistical "blueprint" to enhance future violence research efforts using vignette methodology. Aggr. Behav. 43:60-73, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Effects of environmental variables on invasive amphibian activity: Using model selection on quantiles for counts

    USGS Publications Warehouse

    Muller, Benjamin J.; Cade, Brian S.; Schwarzkoph, Lin

    2018-01-01

    Many different factors influence animal activity. Often, the value of an environmental variable may influence significantly the upper or lower tails of the activity distribution. For describing relationships with heterogeneous boundaries, quantile regressions predict a quantile of the conditional distribution of the dependent variable. A quantile count model extends linear quantile regression methods to discrete response variables, and is useful if activity is quantified by trapping, where there may be many tied (equal) values in the activity distribution, over a small range of discrete values. Additionally, different environmental variables in combination may have synergistic or antagonistic effects on activity, so examining their effects together, in a modeling framework, is a useful approach. Thus, model selection on quantile counts can be used to determine the relative importance of different variables in determining activity, across the entire distribution of capture results. We conducted model selection on quantile count models to describe the factors affecting activity (numbers of captures) of cane toads (Rhinella marina) in response to several environmental variables (humidity, temperature, rainfall, wind speed, and moon luminosity) over eleven months of trapping. Environmental effects on activity are understudied in this pest animal. In the dry season, model selection on quantile count models suggested that rainfall positively affected activity, especially near the lower tails of the activity distribution. In the wet season, wind speed limited activity near the maximum of the distribution, while minimum activity increased with minimum temperature. This statistical methodology allowed us to explore, in depth, how environmental factors influenced activity across the entire distribution, and is applicable to any survey or trapping regime, in which environmental variables affect activity.

  5. Novel Modeling Tools for Propagating Climate Change Variability and Uncertainty into Hydrodynamic Forecasts

    EPA Science Inventory

    Understanding impacts of climate change on hydrodynamic processes and ecosystem response within the Great Lakes is an important and challenging task. Variability in future climate conditions, uncertainty in rainfall-runoff model forecasts, the potential for land use change, and t...

  6. An Integrated Optimization Design Method Based on Surrogate Modeling Applied to Diverging Duct Design

    NASA Astrophysics Data System (ADS)

    Hanan, Lu; Qiushi, Li; Shaobin, Li

    2016-12-01

    This paper presents an integrated optimization design method in which uniform design, response surface methodology and genetic algorithm are used in combination. In detail, uniform design is used to select the experimental sampling points in the experimental domain and the system performance is evaluated by means of computational fluid dynamics to construct a database. After that, response surface methodology is employed to generate a surrogate mathematical model relating the optimization objective and the design variables. Subsequently, genetic algorithm is adopted and applied to the surrogate model to acquire the optimal solution in the case of satisfying some constraints. The method has been applied to the optimization design of an axisymmetric diverging duct, dealing with three design variables including one qualitative variable and two quantitative variables. The method of modeling and optimization design performs well in improving the duct aerodynamic performance and can be also applied to wider fields of mechanical design and seen as a useful tool for engineering designers, by reducing the design time and computation consumption.

  7. LIMO EEG: a toolbox for hierarchical LInear MOdeling of ElectroEncephaloGraphic data.

    PubMed

    Pernet, Cyril R; Chauveau, Nicolas; Gaspar, Carl; Rousselet, Guillaume A

    2011-01-01

    Magnetic- and electric-evoked brain responses have traditionally been analyzed by comparing the peaks or mean amplitudes of signals from selected channels and averaged across trials. More recently, tools have been developed to investigate single trial response variability (e.g., EEGLAB) and to test differences between averaged evoked responses over the entire scalp and time dimensions (e.g., SPM, Fieldtrip). LIMO EEG is a Matlab toolbox (EEGLAB compatible) to analyse evoked responses over all space and time dimensions, while accounting for single trial variability using a simple hierarchical linear modelling of the data. In addition, LIMO EEG provides robust parametric tests, therefore providing a new and complementary tool in the analysis of neural evoked responses.

  8. LIMO EEG: A Toolbox for Hierarchical LInear MOdeling of ElectroEncephaloGraphic Data

    PubMed Central

    Pernet, Cyril R.; Chauveau, Nicolas; Gaspar, Carl; Rousselet, Guillaume A.

    2011-01-01

    Magnetic- and electric-evoked brain responses have traditionally been analyzed by comparing the peaks or mean amplitudes of signals from selected channels and averaged across trials. More recently, tools have been developed to investigate single trial response variability (e.g., EEGLAB) and to test differences between averaged evoked responses over the entire scalp and time dimensions (e.g., SPM, Fieldtrip). LIMO EEG is a Matlab toolbox (EEGLAB compatible) to analyse evoked responses over all space and time dimensions, while accounting for single trial variability using a simple hierarchical linear modelling of the data. In addition, LIMO EEG provides robust parametric tests, therefore providing a new and complementary tool in the analysis of neural evoked responses. PMID:21403915

  9. Modeling of the effect of freezer conditions on the principal constituent parameters of ice cream by using response surface methodology.

    PubMed

    Inoue, K; Ochi, H; Taketsuka, M; Saito, H; Sakurai, K; Ichihashi, N; Iwatsuki, K; Kokubo, S

    2008-05-01

    A systematic analysis was carried out by using response surface methodology to create a quantitative model of the synergistic effects of conditions in a continuous freezer [mix flow rate (L/h), overrun (%), cylinder pressure (kPa), drawing temperature ( degrees C), and dasher speed (rpm)] on the principal constituent parameters of ice cream [rate of fat destabilization (%), mean air cell diameter (mum), and mean ice crystal diameter (mum)]. A central composite face-centered design was used for this study. Thirty-one combinations of the 5 above-mentioned freezer conditions were designed (including replicates at the center point), and ice cream samples were manufactured and examined in a continuous freezer under the selected conditions. The responses were the 3 variables given above. A quadratic model was constructed, with the freezer conditions as the independent variables and the ice cream characteristics as the dependent variables. The coefficients of determination (R(2)) were greater than 0.9 for all 3 responses, but Q(2), the index used here for the capability of the model for predicting future observed values of the responses, was negative for both the mean ice crystal diameter and the mean air cell diameter. Therefore, pruned models were constructed by removing terms that had contributed little to the prediction in the original model and by refitting the regression model. It was demonstrated that these pruned models provided good fits to the data in terms of R(2), Q(2), and ANOVA. The effects of freezer conditions were expressed quantitatively in terms of the 3 responses. The drawing temperature ( degrees C) was found to have a greater effect on ice cream characteristics than any of the other factors.

  10. Responses to single photons in visual cells of Limulus

    PubMed Central

    Borsellino, A.; Fuortes, M. G. F.

    1968-01-01

    1. A system proposed in a previous article as a model of responses of visual cells has been analysed with the purpose of predicting the features of responses to single absorbed photons. 2. As a result of this analysis, the stochastic variability of responses has been expressed as a function of the amplification of the system. 3. The theoretical predictions have been compared to the results obtained by recording electrical responses of visual cells of Limulus to flashes delivering only few photons. 4. Experimental responses to single photons have been tentatively identified and it was shown that the stochastic variability of these responses is similar to that predicted for a model with a multiplication factor of at least twenty-five. 5. These results lead to the conclusion that the processes responsible for visual responses incorporate some form of amplification. This conclusion may prove useful for identifying the physical mechanisms underlying the transducer action of visual cells. PMID:5664231

  11. Probabilistic dose-response modeling: case study using dichloromethane PBPK model results.

    PubMed

    Marino, Dale J; Starr, Thomas B

    2007-12-01

    A revised assessment of dichloromethane (DCM) has recently been reported that examines the influence of human genetic polymorphisms on cancer risks using deterministic PBPK and dose-response modeling in the mouse combined with probabilistic PBPK modeling in humans. This assessment utilized Bayesian techniques to optimize kinetic variables in mice and humans with mean values from posterior distributions used in the deterministic modeling in the mouse. To supplement this research, a case study was undertaken to examine the potential impact of probabilistic rather than deterministic PBPK and dose-response modeling in mice on subsequent unit risk factor (URF) determinations. Four separate PBPK cases were examined based on the exposure regimen of the NTP DCM bioassay. These were (a) Same Mouse (single draw of all PBPK inputs for both treatment groups); (b) Correlated BW-Same Inputs (single draw of all PBPK inputs for both treatment groups except for bodyweights (BWs), which were entered as correlated variables); (c) Correlated BW-Different Inputs (separate draws of all PBPK inputs for both treatment groups except that BWs were entered as correlated variables); and (d) Different Mouse (separate draws of all PBPK inputs for both treatment groups). Monte Carlo PBPK inputs reflect posterior distributions from Bayesian calibration in the mouse that had been previously reported. A minimum of 12,500 PBPK iterations were undertaken, in which dose metrics, i.e., mg DCM metabolized by the GST pathway/L tissue/day for lung and liver were determined. For dose-response modeling, these metrics were combined with NTP tumor incidence data that were randomly selected from binomial distributions. Resultant potency factors (0.1/ED(10)) were coupled with probabilistic PBPK modeling in humans that incorporated genetic polymorphisms to derive URFs. Results show that there was relatively little difference, i.e., <10% in central tendency and upper percentile URFs, regardless of the case evaluated. Independent draws of PBPK inputs resulted in the slightly higher URFs. Results were also comparable to corresponding values from the previously reported deterministic mouse PBPK and dose-response modeling approach that used LED(10)s to derive potency factors. This finding indicated that the adjustment from ED(10) to LED(10) in the deterministic approach for DCM compensated for variability resulting from probabilistic PBPK and dose-response modeling in the mouse. Finally, results show a similar degree of variability in DCM risk estimates from a number of different sources including the current effort even though these estimates were developed using very different techniques. Given the variety of different approaches involved, 95th percentile-to-mean risk estimate ratios of 2.1-4.1 represent reasonable bounds on variability estimates regarding probabilistic assessments of DCM.

  12. Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions

    USGS Publications Warehouse

    Jackson, Stephen T.; Betancourt, Julio L.; Booth, Robert K.; Gray, Stephen T.

    2009-01-01

    Climate change in the coming centuries will be characterized by interannual, decadal, and multidecadal fluctuations superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes constitutes an immense challenge for ecologists. Perspectives from climatic and ecological history indicate that responses will be laden with contingencies, resulting from episodic climatic events interacting with demographic and colonization events. This effect is compounded by the dependency of environmental sensitivity upon life-stage for many species. Climate variables often used in empirical niche models may become decoupled from the proximal variables that directly influence individuals and populations. Greater predictive capacity, and more-fundamental ecological and biogeographic understanding, will come from integration of correlational niche modeling with mechanistic niche modeling, dynamic ecological modeling, targeted experiments, and systematic observations of past and present patterns and dynamics.

  13. Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributions

    USGS Publications Warehouse

    Jackson, S.T.; Betancourt, J.L.; Booth, R.K.; Gray, S.T.

    2009-01-01

    Climate change in the coming centuries will be characterized by interannual, decadal, and multidecadal fluctuations superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes constitutes an immense challenge for ecologists. Perspectives from climatic and ecological history indicate that responses will be laden with contingencies, resulting from episodic climatic events interacting with demographic and colonization events. This effect is compounded by the dependency of environmental sensitivity upon life-stage for many species. Climate variables often used in empirical niche models may become decoupled from the proximal variables that directly influence individuals and populations. Greater predictive capacity, and morefundamental ecological and biogeographic understanding, will come from integration of correlational niche modeling with mechanistic niche modeling, dynamic ecological modeling, targeted experiments, and systematic observations of past and present patterns and dynamics.

  14. Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributions

    PubMed Central

    Jackson, Stephen T.; Betancourt, Julio L.; Booth, Robert K.; Gray, Stephen T.

    2009-01-01

    Climate change in the coming centuries will be characterized by interannual, decadal, and multidecadal fluctuations superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes constitutes an immense challenge for ecologists. Perspectives from climatic and ecological history indicate that responses will be laden with contingencies, resulting from episodic climatic events interacting with demographic and colonization events. This effect is compounded by the dependency of environmental sensitivity upon life-stage for many species. Climate variables often used in empirical niche models may become decoupled from the proximal variables that directly influence individuals and populations. Greater predictive capacity, and more-fundamental ecological and biogeographic understanding, will come from integration of correlational niche modeling with mechanistic niche modeling, dynamic ecological modeling, targeted experiments, and systematic observations of past and present patterns and dynamics. PMID:19805104

  15. Dynamic Modeling of the Main Blow in Basic Oxygen Steelmaking Using Measured Step Responses

    NASA Astrophysics Data System (ADS)

    Kattenbelt, Carolien; Roffel, B.

    2008-10-01

    In the control and optimization of basic oxygen steelmaking, it is important to have an understanding of the influence of control variables on the process. However, important process variables such as the composition of the steel and slag cannot be measured continuously. The decarburization rate and the accumulation rate of oxygen, which can be derived from the generally measured waste gas flow and composition, are an indication of changes in steel and slag composition. The influence of the control variables on the decarburization rate and the accumulation rate of oxygen can best be determined in the main blow period. In this article, the measured step responses of the decarburization rate and the accumulation rate of oxygen to step changes in the oxygen blowing rate, lance height, and the addition rate of iron ore during the main blow are presented. These measured step responses are subsequently used to develop a dynamic model for the main blow. The model consists of an iron oxide and a carbon balance and an additional equation describing the influence of the lance height and the oxygen blowing rate on the decarburization rate. With this simple dynamic model, the measured step responses can be explained satisfactorily.

  16. The construction of categorization judgments: using subjective confidence and response latency to test a distributed model.

    PubMed

    Koriat, Asher; Sorka, Hila

    2015-01-01

    The classification of objects to natural categories exhibits cross-person consensus and within-person consistency, but also some degree of between-person variability and within-person instability. What is more, the variability in categorization is also not entirely random but discloses systematic patterns. In this study, we applied the Self-Consistency Model (SCM, Koriat, 2012) to category membership decisions, examining the possibility that confidence judgments and decision latency track the stable and variable components of categorization responses. The model assumes that category membership decisions are constructed on the fly depending on a small set of clues that are sampled from a commonly shared population of pertinent clues. The decision and confidence are based on the balance of evidence in favor of a positive or a negative response. The results confirmed several predictions derived from SCM. For each participant, consensual responses to items were more confident than non-consensual responses, and for each item, participants who made the consensual response tended to be more confident than those who made the nonconsensual response. The difference in confidence between consensual and nonconsensual responses increased with the proportion of participants who made the majority response for the item. A similar pattern was observed for response speed. The pattern of results obtained for cross-person consensus was replicated by the results for response consistency when the responses were classified in terms of within-person agreement across repeated presentations. These results accord with the sampling assumption of SCM, that confidence and response speed should be higher when the decision is consistent with what follows from the entire population of clues than when it deviates from it. Results also suggested that the context for classification can bias the sample of clues underlying the decision, and that confidence judgments mirror the effects of context on categorization decisions. The model and results offer a principled account of the stable and variable contributions to categorization behavior within a decision-making framework. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Factors influencing readiness to deploy in disaster response: findings from a cross-sectional survey of the Department of Veterans Affairs Disaster Emergency Medical Personnel System

    PubMed Central

    2014-01-01

    Background The Disaster Emergency Medical Personnel System (DEMPS) program provides a system of volunteers whereby active or retired Department of Veterans Affairs (VA) personnel can register to be deployed to support other VA facilities or the nation during national emergencies or disasters. Both early and ongoing volunteer training is required to participate. Methods This study aims to identify factors that impact willingness to deploy in the event of an emergency. This analysis was based on responses from 2,385 survey respondents (response rate, 29%). Latent variable path models were developed and tested using the EQS structural equations modeling program. Background demographic variables of education, age, minority ethnicity, and female gender were used as predictors of intervening latent variables of DEMPS Volunteer Experience, Positive Attitude about Training, and Stress. The model had acceptable fit statistics, and all three intermediate latent variables significantly predicted the outcome latent variable Readiness to Deploy. Results DEMPS Volunteer Experience and a Positive Attitude about Training were associated with Readiness to Deploy. Stress was associated with decreased Readiness to Deploy. Female gender was negatively correlated with Readiness to Deploy; however, there was an indirect relationship between female gender and Readiness to Deploy through Positive Attitude about Training. Conclusions These findings suggest that volunteer emergency management response programs such as DEMPS should consider how best to address the factors that may make women less ready to deploy than men in order to ensure adequate gender representation among emergency responders. The findings underscore the importance of training opportunities to ensure that gender-sensitive support is a strong component of emergency response, and may apply to other emergency response programs such as the Medical Reserve Corps and the American Red Cross. PMID:25038628

  18. Factors influencing readiness to deploy in disaster response: findings from a cross-sectional survey of the Department of Veterans Affairs Disaster Emergency Medical Personnel System.

    PubMed

    Zagelbaum, Nicole K; Heslin, Kevin C; Stein, Judith A; Ruzek, Josef; Smith, Robert E; Nyugen, Tam; Dobalian, Aram

    2014-07-19

    The Disaster Emergency Medical Personnel System (DEMPS) program provides a system of volunteers whereby active or retired Department of Veterans Affairs (VA) personnel can register to be deployed to support other VA facilities or the nation during national emergencies or disasters. Both early and ongoing volunteer training is required to participate. This study aims to identify factors that impact willingness to deploy in the event of an emergency. This analysis was based on responses from 2,385 survey respondents (response rate, 29%). Latent variable path models were developed and tested using the EQS structural equations modeling program. Background demographic variables of education, age, minority ethnicity, and female gender were used as predictors of intervening latent variables of DEMPS Volunteer Experience, Positive Attitude about Training, and Stress. The model had acceptable fit statistics, and all three intermediate latent variables significantly predicted the outcome latent variable Readiness to Deploy. DEMPS Volunteer Experience and a Positive Attitude about Training were associated with Readiness to Deploy. Stress was associated with decreased Readiness to Deploy. Female gender was negatively correlated with Readiness to Deploy; however, there was an indirect relationship between female gender and Readiness to Deploy through Positive Attitude about Training. These findings suggest that volunteer emergency management response programs such as DEMPS should consider how best to address the factors that may make women less ready to deploy than men in order to ensure adequate gender representation among emergency responders. The findings underscore the importance of training opportunities to ensure that gender-sensitive support is a strong component of emergency response, and may apply to other emergency response programs such as the Medical Reserve Corps and the American Red Cross.

  19. Asymptotic Properties of Induced Maximum Likelihood Estimates of Nonlinear Models for Item Response Variables: The Finite-Generic-Item-Pool Case.

    ERIC Educational Resources Information Center

    Jones, Douglas H.

    The progress of modern mental test theory depends very much on the techniques of maximum likelihood estimation, and many popular applications make use of likelihoods induced by logistic item response models. While, in reality, item responses are nonreplicate within a single examinee and the logistic models are only ideal, practitioners make…

  20. Modeling of electrohydrodynamic drying process using response surface methodology

    PubMed Central

    Dalvand, Mohammad Jafar; Mohtasebi, Seyed Saeid; Rafiee, Shahin

    2014-01-01

    Energy consumption index is one of the most important criteria for judging about new, and emerging drying technologies. One of such novel and promising alternative of drying process is called electrohydrodynamic (EHD) drying. In this work, a solar energy was used to maintain required energy of EHD drying process. Moreover, response surface methodology (RSM) was used to build a predictive model in order to investigate the combined effects of independent variables such as applied voltage, field strength, number of discharge electrode (needle), and air velocity on moisture ratio, energy efficiency, and energy consumption as responses of EHD drying process. Three-levels and four-factor Box–Behnken design was employed to evaluate the effects of independent variables on system responses. A stepwise approach was followed to build up a model that can map the entire response surface. The interior relationships between parameters were well defined by RSM. PMID:24936289

  1. Individual differences in attention influence perceptual decision making.

    PubMed

    Nunez, Michael D; Srinivasan, Ramesh; Vandekerckhove, Joachim

    2015-01-01

    Sequential sampling decision-making models have been successful in accounting for reaction time (RT) and accuracy data in two-alternative forced choice tasks. These models have been used to describe the behavior of populations of participants, and explanatory structures have been proposed to account for between individual variability in model parameters. In this study we show that individual differences in behavior from a novel perceptual decision making task can be attributed to (1) differences in evidence accumulation rates, (2) differences in variability of evidence accumulation within trials, and (3) differences in non-decision times across individuals. Using electroencephalography (EEG), we demonstrate that these differences in cognitive variables, in turn, can be explained by attentional differences as measured by phase-locking of steady-state visual evoked potential (SSVEP) responses to the signal and noise components of the visual stimulus. Parameters of a cognitive model (a diffusion model) were obtained from accuracy and RT distributions and related to phase-locking indices (PLIs) of SSVEPs with a single step in a hierarchical Bayesian framework. Participants who were able to suppress the SSVEP response to visual noise in high frequency bands were able to accumulate correct evidence faster and had shorter non-decision times (preprocessing or motor response times), leading to more accurate responses and faster response times. We show that the combination of cognitive modeling and neural data in a hierarchical Bayesian framework relates physiological processes to the cognitive processes of participants, and that a model with a new (out-of-sample) participant's neural data can predict that participant's behavior more accurately than models without physiological data.

  2. Modeling Polytomous Item Responses Using Simultaneously Estimated Multinomial Logistic Regression Models

    ERIC Educational Resources Information Center

    Anderson, Carolyn J.; Verkuilen, Jay; Peyton, Buddy L.

    2010-01-01

    Survey items with multiple response categories and multiple-choice test questions are ubiquitous in psychological and educational research. We illustrate the use of log-multiplicative association (LMA) models that are extensions of the well-known multinomial logistic regression model for multiple dependent outcome variables to reanalyze a set of…

  3. Dynamics of vehicles in variable velocity runs over non-homogeneous flexible track and foundation with two point input models

    NASA Astrophysics Data System (ADS)

    Yadav, D.; Upadhyay, H. C.

    1992-07-01

    Vehicles obtain track-induced input through the wheels, which commonly number more than one. Analysis available for the vehicle response in a variable velocity run on a non-homogeneously profiled flexible track supported by compliant inertial foundation is for a linear heave model having a single ground input. This analysis is being extended to two point input models with heave-pitch and heave-roll degrees of freedom. Closed form expressions have been developed for the system response statistics. Results are presented for a railway coach and track/foundation problem, and the performances of heave, heave-pitch and heave-roll models have been compared. The three models are found to agree in describing the track response. However, the vehicle sprung mass behaviour is predicted to be different by these models, indicating the strong effect of coupling on the vehicle vibration.

  4. Improvement in latent variable indirect response joint modeling of a continuous and a categorical clinical endpoint in rheumatoid arthritis.

    PubMed

    Hu, Chuanpu; Zhou, Honghui

    2016-02-01

    Improving the quality of exposure-response modeling is important in clinical drug development. The general joint modeling of multiple endpoints is made possible in part by recent progress on the latent variable indirect response (IDR) modeling for ordered categorical endpoints. This manuscript aims to investigate, when modeling a continuous and a categorical clinical endpoint, the level of improvement achievable by joint modeling in the latent variable IDR modeling framework through the sharing of model parameters for the individual endpoints, guided by the appropriate representation of drug and placebo mechanism. This was illustrated with data from two phase III clinical trials of intravenously administered mAb X for the treatment of rheumatoid arthritis, with the 28-joint disease activity score (DAS28) and 20, 50, and 70% improvement in the American College of Rheumatology (ACR20, ACR50, and ACR70) disease severity criteria were used as efficacy endpoints. The joint modeling framework led to a parsimonious final model with reasonable performance, evaluated by visual predictive check. The results showed that, compared with the more common approach of separately modeling the endpoints, it is possible for the joint model to be more parsimonious and yet better describe the individual endpoints. In particular, the joint model may better describe one endpoint through subject-specific random effects that would not have been estimable from data of this endpoint alone.

  5. Simultaneous Optimization of Multiple Response Variables for the Gelatin-chitosan Microcapsules Containing Angelica Essential Oil.

    PubMed

    Li, Qiang; Sun, Li-Jian; Gong, Xian-Feng; Wang, Yang; Zhao, Xue-Ling

    2017-01-01

    Angelica essential oil (AO), a major pharmacologically active component of Angelica sinensis (Oliv.) Diels, possesses hemogenesis, analgesic activities, and sedative effect. The application of AO in pharmaceutical systems had been limited because of its low oxidative stability. The AO-loaded gelatin-chitosan microcapsules with prevention from oxidation were developed and optimized using response surface methodology. The effects of formulation variables (pH at complex coacervation, gelatin concentration, and core/wall ratio) on multiple response variables (yield, encapsulation efficiency, antioxidation rate, percent of drug released in 1 h, and time to 85% drug release) were systemically investigated. A desirability function that combined these five response variables was constructed. All response variables investigated were found to be highly dependent on the formulation variables, with strong interactions observed between the formulation variables. It was found that optimum overall desirability of AO microcapsules could be obtained at pH 6.20, gelatin concentration 25.00%, and core/wall ratio 40.40%. The experimental values of the response variables highly agreed with the predicted values. The antioxidation rate of optimum formulation was approximately 8 times higher than that of AO. The in-vitro drug release from microcapsules was followed Higuchi model with super case-II transport mechanism.

  6. Modeling Framework and Validation of a Smart Grid and Demand Response System for Wind Power Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.

    2014-01-31

    Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generatormore » and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.« less

  7. Inter-model Diversity of ENSO simulation and its relation to basic states

    NASA Astrophysics Data System (ADS)

    Kug, J. S.; Ham, Y. G.

    2016-12-01

    In this study, a new methodology is developed to improve the climate simulation of state-of-the-art coupledglobal climate models (GCMs), by a postprocessing based on the intermodel diversity. Based on the closeconnection between the interannual variability and climatological states, the distinctive relation between theintermodel diversity of the interannual variability and that of the basic state is found. Based on this relation,the simulated interannual variabilities can be improved, by correcting their climatological bias. To test thismethodology, the dominant intermodel difference in precipitation responses during El Niño-SouthernOscillation (ENSO) is investigated, and its relationship with climatological state. It is found that the dominantintermodel diversity of the ENSO precipitation in phase 5 of the Coupled Model Intercomparison Project(CMIP5) is associated with the zonal shift of the positive precipitation center during El Niño. This dominantintermodel difference is significantly correlated with the basic states. The models with wetter (dryer) climatologythan the climatology of the multimodel ensemble (MME) over the central Pacific tend to shift positiveENSO precipitation anomalies to the east (west). Based on the model's systematic errors in atmosphericENSO response and bias, the models with better climatological state tend to simulate more realistic atmosphericENSO responses.Therefore, the statistical method to correct the ENSO response mostly improves the ENSO response. Afterthe statistical correction, simulating quality of theMMEENSO precipitation is distinctively improved. Theseresults provide a possibility that the present methodology can be also applied to improving climate projectionand seasonal climate prediction.

  8. A Second-Order Conditionally Linear Mixed Effects Model with Observed and Latent Variable Covariates

    ERIC Educational Resources Information Center

    Harring, Jeffrey R.; Kohli, Nidhi; Silverman, Rebecca D.; Speece, Deborah L.

    2012-01-01

    A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a…

  9. Relative Contributions of Mean-State Shifts and ENSO-Driven Variability to Precipitation Changes in a Warming Climate

    NASA Technical Reports Server (NTRS)

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta

    2015-01-01

    El Niño-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.

  10. Relative Contributions of Mean-State Shifts and ENSO-Driven Variability to Precipitation Changes in a Warming Climate

    NASA Technical Reports Server (NTRS)

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta

    2015-01-01

    The El Nino-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with Coupled General Circulation Models (CGCMs) to investigate how regional precipitation in the 21st century may be affected by changes in both ENSO-driven precipitation variability and slowly-evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of 20th century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in 21st century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with 20th century observations and more stationary during the 21st century. Finally, the model-predicted 21st century rainfall response to cENSO is decomposed into the sum of three terms: 1) the 21st century change in the mean state of precipitation; 2) the historical precipitation response to the cENSO pattern; and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.

  11. A mouse model of high trait anxiety shows reduced heart rate variability that can be reversed by anxiolytic drug treatment.

    PubMed

    Gaburro, Stefano; Stiedl, Oliver; Giusti, Pietro; Sartori, Simone B; Landgraf, Rainer; Singewald, Nicolas

    2011-11-01

    Increasing evidence suggests that specific physiological measures may serve as biomarkers for successful treatment to alleviate symptoms of pathological anxiety. Studies of autonomic function investigating parameters such as heart rate (HR), HR variability and blood pressure (BP) indicated that HR variability is consistently reduced in anxious patients, whereas HR and BP data show inconsistent results. Therefore, HR and HR variability were measured under various emotionally challenging conditions in a mouse model of high innate anxiety (high anxiety behaviour; HAB) vs. control normal anxiety-like behaviour (NAB) mice. Baseline HR, HR variability and activity did not differ between mouse lines. However, after cued Pavlovian fear conditioning, both elevated tachycardia and increased fear responses were observed in HAB mice compared to NAB mice upon re-exposure to the conditioning stimulus serving as the emotional stressor. When retention of conditioned fear was tested in the home cage, HAB mice again displayed higher fear responses than NAB mice, while the HR responses were similar. Conversely, in both experimental settings HAB mice consistently exhibited reduced HR variability. Repeated administration of the anxiolytic NK1 receptor antagonist L-822429 lowered the conditioned fear response and shifted HR dynamics in HAB mice to a more regular pattern, similar to that in NAB mice. Additional receiver-operating characteristic (ROC) analysis demonstrated the high specificity and sensitivity of HR variability to distinguish between normal and high anxiety trait. These findings indicate that assessment of autonomic response in addition to freezing might be a useful indicator of the efficacy of novel anxiolytic treatments.

  12. VARIABLE SELECTION FOR REGRESSION MODELS WITH MISSING DATA

    PubMed Central

    Garcia, Ramon I.; Ibrahim, Joseph G.; Zhu, Hongtu

    2009-01-01

    We consider the variable selection problem for a class of statistical models with missing data, including missing covariate and/or response data. We investigate the smoothly clipped absolute deviation penalty (SCAD) and adaptive LASSO and propose a unified model selection and estimation procedure for use in the presence of missing data. We develop a computationally attractive algorithm for simultaneously optimizing the penalized likelihood function and estimating the penalty parameters. Particularly, we propose to use a model selection criterion, called the ICQ statistic, for selecting the penalty parameters. We show that the variable selection procedure based on ICQ automatically and consistently selects the important covariates and leads to efficient estimates with oracle properties. The methodology is very general and can be applied to numerous situations involving missing data, from covariates missing at random in arbitrary regression models to nonignorably missing longitudinal responses and/or covariates. Simulations are given to demonstrate the methodology and examine the finite sample performance of the variable selection procedures. Melanoma data from a cancer clinical trial is presented to illustrate the proposed methodology. PMID:20336190

  13. Model reference, sliding mode adaptive control for flexible structures

    NASA Technical Reports Server (NTRS)

    Yurkovich, S.; Ozguner, U.; Al-Abbass, F.

    1988-01-01

    A decentralized model reference adaptive approach using a variable-structure sliding model control has been developed for the vibration suppression of large flexible structures. Local models are derived based upon the desired damping and response time in a model-following scheme, and variable structure controllers are then designed which employ colocated angular rate and position feedback. Numerical simulations have been performed using NASA's flexible grid experimental apparatus.

  14. Uncertainty Analysis of Decomposing Polyurethane Foam

    NASA Technical Reports Server (NTRS)

    Hobbs, Michael L.; Romero, Vicente J.

    2000-01-01

    Sensitivity/uncertainty analyses are necessary to determine where to allocate resources for improved predictions in support of our nation's nuclear safety mission. Yet, sensitivity/uncertainty analyses are not commonly performed on complex combustion models because the calculations are time consuming, CPU intensive, nontrivial exercises that can lead to deceptive results. To illustrate these ideas, a variety of sensitivity/uncertainty analyses were used to determine the uncertainty associated with thermal decomposition of polyurethane foam exposed to high radiative flux boundary conditions. The polyurethane used in this study is a rigid closed-cell foam used as an encapsulant. Related polyurethane binders such as Estane are used in many energetic materials of interest to the JANNAF community. The complex, finite element foam decomposition model used in this study has 25 input parameters that include chemistry, polymer structure, and thermophysical properties. The response variable was selected as the steady-state decomposition front velocity calculated as the derivative of the decomposition front location versus time. An analytical mean value sensitivity/uncertainty (MV) analysis was used to determine the standard deviation by taking numerical derivatives of the response variable with respect to each of the 25 input parameters. Since the response variable is also a derivative, the standard deviation was essentially determined from a second derivative that was extremely sensitive to numerical noise. To minimize the numerical noise, 50-micrometer element dimensions and approximately 1-msec time steps were required to obtain stable uncertainty results. As an alternative method to determine the uncertainty and sensitivity in the decomposition front velocity, surrogate response surfaces were generated for use with a constrained Latin Hypercube Sampling (LHS) technique. Two surrogate response surfaces were investigated: 1) a linear surrogate response surface (LIN) and 2) a quadratic response surface (QUAD). The LHS techniques do not require derivatives of the response variable and are subsequently relatively insensitive to numerical noise. To compare the LIN and QUAD methods to the MV method, a direct LHS analysis (DLHS) was performed using the full grid and timestep resolved finite element model. The surrogate response models (LIN and QUAD) are shown to give acceptable values of the mean and standard deviation when compared to the fully converged DLHS model.

  15. Autonomous Aerobraking: Thermal Analysis and Response Surface Development

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Thornblom, Mark N.

    2011-01-01

    A high-fidelity thermal model of the Mars Reconnaissance Orbiter was developed for use in an autonomous aerobraking simulation study. Response surface equations were derived from the high-fidelity thermal model and integrated into the autonomous aerobraking simulation software. The high-fidelity thermal model was developed using the Thermal Desktop software and used in all phases of the analysis. The use of Thermal Desktop exclusively, represented a change from previously developed aerobraking thermal analysis methodologies. Comparisons were made between the Thermal Desktop solutions and those developed for the previous aerobraking thermal analyses performed on the Mars Reconnaissance Orbiter during aerobraking operations. A variable sensitivity screening study was performed to reduce the number of variables carried in the response surface equations. Thermal analysis and response surface equation development were performed for autonomous aerobraking missions at Mars and Venus.

  16. Population variability in animal health: Influence on dose-exposure-response relationships: Part II: Modelling and simulation.

    PubMed

    Martinez, Marilyn N; Gehring, Ronette; Mochel, Jonathan P; Pade, Devendra; Pelligand, Ludovic

    2018-05-28

    During the 2017 Biennial meeting, the American Academy of Veterinary Pharmacology and Therapeutics hosted a 1-day session on the influence of population variability on dose-exposure-response relationships. In Part I, we highlighted some of the sources of population variability. Part II provides a summary of discussions on modelling and simulation tools that utilize existing pharmacokinetic data, can integrate drug physicochemical characteristics with species physiological characteristics and dosing information or that combine observed with predicted and in vitro information to explore and describe sources of variability that may influence the safe and effective use of veterinary pharmaceuticals. © 2018 John Wiley & Sons Ltd. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  17. Phase-Locked Optical Generation of mmW/THz Signals

    DTIC Science & Technology

    2009-11-01

    22 6.2. TIA (Trans-Impedance Amplifier ...24 6.3. Variable gain Amplifier ...loop architectures. Generate models including detector impulse response, feedback amplifier impulse response and laser current tuning response

  18. RESEARCH: Conceptualizing Environmental Stress: A Stress-Response Model of Coastal Sandy Barriers.

    PubMed

    Gabriel; Kreutzwiser

    2000-01-01

    / The purpose of this paper is to develop and apply a conceptual framework of environmental stress-response for a geomorphic system. Constructs and methods generated from the literature were applied in the development of an integrative stress-response framework using existing environmental assessment techniques: interaction matrices and a systems diagram. Emphasis is on the interaction between environmental stress and the geomorphic environment of a sandy barrier system. The model illustrates a number of stress concepts pertinent to modeling environmental stress-response, including those related to stress-dependency, frequency-recovery relationships, environmental heterogeneity, spatial hierarchies and linkages, and temporal change. Sandy barrier stress-response and recovery are greatly impacted by fluctuating water levels, stress intensity and frequency, as well as environmental gradients such as differences in sediment storage and supply. Aspects of these stress-response variables are articulated in terms of three main challenges to management: dynamic stability, spatial integrity, and temporal variability. These in turn form the framework for evaluative principles that may be applied to assess how policies and management practices reflect key biophysical processes and human stresses identified by the model.

  19. A joint modeling and estimation method for multivariate longitudinal data with mixed types of responses to analyze physical activity data generated by accelerometers.

    PubMed

    Li, Haocheng; Zhang, Yukun; Carroll, Raymond J; Keadle, Sarah Kozey; Sampson, Joshua N; Matthews, Charles E

    2017-11-10

    A mixed effect model is proposed to jointly analyze multivariate longitudinal data with continuous, proportion, count, and binary responses. The association of the variables is modeled through the correlation of random effects. We use a quasi-likelihood type approximation for nonlinear variables and transform the proposed model into a multivariate linear mixed model framework for estimation and inference. Via an extension to the EM approach, an efficient algorithm is developed to fit the model. The method is applied to physical activity data, which uses a wearable accelerometer device to measure daily movement and energy expenditure information. Our approach is also evaluated by a simulation study. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Using structural equation modeling to detect response shifts and true change in discrete variables: an application to the items of the SF-36.

    PubMed

    Verdam, Mathilde G E; Oort, Frans J; Sprangers, Mirjam A G

    2016-06-01

    The structural equation modeling (SEM) approach for detection of response shift (Oort in Qual Life Res 14:587-598, 2005. doi: 10.1007/s11136-004-0830-y ) is especially suited for continuous data, e.g., questionnaire scales. The present objective is to explain how the SEM approach can be applied to discrete data and to illustrate response shift detection in items measuring health-related quality of life (HRQL) of cancer patients. The SEM approach for discrete data includes two stages: (1) establishing a model of underlying continuous variables that represent the observed discrete variables, (2) using these underlying continuous variables to establish a common factor model for the detection of response shift and to assess true change. The proposed SEM approach was illustrated with data of 485 cancer patients whose HRQL was measured with the SF-36, before and after start of antineoplastic treatment. Response shift effects were detected in items of the subscales mental health, physical functioning, role limitations due to physical health, and bodily pain. Recalibration response shifts indicated that patients experienced relatively fewer limitations with "bathing or dressing yourself" (effect size d = 0.51) and less "nervousness" (d = 0.30), but more "pain" (d = -0.23) and less "happiness" (d = -0.16) after antineoplastic treatment as compared to the other symptoms of the same subscale. Overall, patients' mental health improved, while their physical health, vitality, and social functioning deteriorated. No change was found for the other subscales of the SF-36. The proposed SEM approach to discrete data enables response shift detection at the item level. This will lead to a better understanding of the response shift phenomena at the item level and therefore enhances interpretation of change in the area of HRQL.

  1. Variability in Ozone-Induced Pulmonary Injury and Inflammation in Healthy and Cardiovascular Compromised Rat Models

    EPA Science Inventory

    The molecular bases for variability in air pollutant-induced pulmonary injury due to underlying cardiovascular (CVD) and/or metabolic diseases are unknown. We hypothesized that healthy and genetic CVD-prone rat models will exhibit exacerbated response to acute ozone exposure depe...

  2. Investigation of the Process Conditions for Hydrogen Production by Steam Reforming of Glycerol over Ni/Al₂O₃ Catalyst Using Response Surface Methodology (RSM).

    PubMed

    Ebshish, Ali; Yaakob, Zahira; Taufiq-Yap, Yun Hin; Bshish, Ahmed

    2014-03-19

    In this work; a response surface methodology (RSM) was implemented to investigate the process variables in a hydrogen production system. The effects of five independent variables; namely the temperature (X₁); the flow rate (X₂); the catalyst weight (X₃); the catalyst loading (X₄) and the glycerol-water molar ratio (X₅) on the H₂ yield (Y₁) and the conversion of glycerol to gaseous products (Y₂) were explored. Using multiple regression analysis; the experimental results of the H₂ yield and the glycerol conversion to gases were fit to quadratic polynomial models. The proposed mathematical models have correlated the dependent factors well within the limits that were being examined. The best values of the process variables were a temperature of approximately 600 °C; a feed flow rate of 0.05 mL/min; a catalyst weight of 0.2 g; a catalyst loading of 20% and a glycerol-water molar ratio of approximately 12; where the H₂ yield was predicted to be 57.6% and the conversion of glycerol was predicted to be 75%. To validate the proposed models; statistical analysis using a two-sample t -test was performed; and the results showed that the models could predict the responses satisfactorily within the limits of the variables that were studied.

  3. Evaluation of solar irradiance models for climate studies

    NASA Astrophysics Data System (ADS)

    Ball, William; Yeo, Kok-Leng; Krivova, Natalie; Solanki, Sami; Unruh, Yvonne; Morrill, Jeff

    2015-04-01

    Instruments on satellites have been observing both Total Solar Irradiance (TSI) and Spectral Solar Irradiance (SSI), mainly in the ultraviolet (UV), since 1978. Models were developed to reproduce the observed variability and to compute the variability at wavelengths that were not observed or had an uncertainty too high to determine an accurate rotational or solar cycle variability. However, various models and measurements show different solar cycle SSI variability that lead to different modelled responses of ozone and temperature in the stratosphere, mainly due to the different UV variability in each model, and the global energy balance. The NRLSSI and SATIRE-S models are the most comprehensive reconstructions of solar irradiance variability for the period from 1978 to the present day. But while NRLSSI and SATIRE-S show similar solar cycle variability below 250 nm, between 250 and 400 nm SATIRE-S typically displays 50% larger variability, which is however, still significantly less then suggested by recent SORCE data. Due to large uncertainties and inconsistencies in some observational datasets, it is difficult to determine in a simple way which model is likely to be closer to the true solar variability. We review solar irradiance variability measurements and modelling and employ new analysis that sheds light on the causes of the discrepancies between the two models and with the observations.

  4. Response surface modeling of acid activation of raw diatomite using in sunflower oil bleaching by: Box-Behnken experimental design.

    PubMed

    Larouci, M; Safa, M; Meddah, B; Aoues, A; Sonnet, P

    2015-03-01

    The optimum conditions for acid activation of diatomite for maximizing bleaching efficiency of the diatomite in sun flower oil treatment were studied. Box-Behnken experimental design combining with response surface modeling (RSM) and quadratic programming (QP) was employed to obtain the optimum conditions of three independent variables (acid concentration, activation time and solid to liquid) for acid activation of diatomite. The significance of independent variables and their interactions were tested by means of the analysis of variance (ANOVA) with 95 % confidence limits (α = 0.05). The optimum values of the selected variables were obtained by solving the quadratic regression model, as well as by analyzing the response surface contour plots. The experimental conditions at this global point were determined to be acid concentration = 8.963 N, activation time = 11.9878 h, and solid to liquid ratio = 221.2113 g/l, the corresponding bleaching efficiency was found to be about 99 %.

  5. Forced and Free Intra-Seasonal Variability Over the South Asian Monsoon Region Simulated by 10 AGCMs

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Kang, In-Sik; Waliser, Duane; Atlas, Robert (Technical Monitor)

    2001-01-01

    This study examines intra-seasonal (20-70 day) variability in the South Asian monsoon region during 1997/98 in ensembles of 10 simulations with 10 different atmospheric general circulation models. The 10 ensemble members for each model are forced with the same observed weekly sea surface temperature (SST) but differ from each other in that they are started from different initial atmospheric conditions. The results show considerable differences between the models in the simulated 20-70 day variability, ranging from much weaker to much stronger than the observed. A key result is that the models do produce, to varying degrees, a response to the imposed weekly SST. The forced variability tends to be largest in the Indian and western Pacific Oceans where, for some models, it accounts for more than 1/4 of the 20-70 day intra-seasonal variability in the upper level velocity potential during these two years. A case study of a strong observed MJO (intraseasonal oscillation) event shows that the models produce an ensemble mean eastward propagating signal in the tropical precipitation field over the Indian Ocean and western Pacific, similar to that found in the observations. The associated forced 200 mb velocity potential anomalies are strongly phase locked with the precipitation anomalies, propagating slowly to the east (about 5 m/s) with a local zonal wave number two pattern that is generally consistent with the developing observed MJO. The simulated and observed events are, however, approximately in quadrature, with the simulated response 2 leading by 5-10 days. The phase lag occurs because, in the observations, the positive SST anomalies develop upstream of the main convective center in the subsidence region of the MJO, while in the simulations, the forced component is in phase with the SST. For all the models examined here, the intraseasonal variability is dominated by the free (intra-ensemble) component. The results of our case study show that the free variability has a predominately zonal wave number one pattern, and has propagation speeds (10 - 15 m/s) that are more typical of observed MJO behavior away from the convectively active regions. The free variability appears to be synchronized with the forced response, at least, during the strong event examined here. The results of this study support the idea that coupling with SSTs plays an important, though probably not dominant, role in the MJO. The magnitude of the atmospheric response to the SST appears to be in the range of 15% - 30% of the 20-70 day variability over much of the tropical eastern Indian and western Pacific Oceans. The results also highlight the need to use caution when interpreting atmospheric model simulations in which the prescribed SST resolve MJO time scales.

  6. A Study on the Effects of Spatial Scale on Snow Process in Hyper-Resolution Hydrological Modelling over Mountainous Areas

    NASA Astrophysics Data System (ADS)

    Garousi Nejad, I.; He, S.; Tang, Q.; Ogden, F. L.; Steinke, R. C.; Frazier, N.; Tarboton, D. G.; Ohara, N.; Lin, H.

    2017-12-01

    Spatial scale is one of the main considerations in hydrological modeling of snowmelt in mountainous areas. The size of model elements controls the degree to which variability can be explicitly represented versus what needs to be parameterized using effective properties such as averages or other subgrid variability parameterizations that may degrade the quality of model simulations. For snowmelt modeling terrain parameters such as slope, aspect, vegetation and elevation play an important role in the timing and quantity of snowmelt that serves as an input to hydrologic runoff generation processes. In general, higher resolution enhances the accuracy of the simulation since fine meshes represent and preserve the spatial variability of atmospheric and surface characteristics better than coarse resolution. However, this increases computational cost and there may be a scale beyond which the model response does not improve due to diminishing sensitivity to variability and irreducible uncertainty associated with the spatial interpolation of inputs. This paper examines the influence of spatial resolution on the snowmelt process using simulations of and data from the Animas River watershed, an alpine mountainous area in Colorado, USA, using an unstructured distributed physically based hydrological model developed for a parallel computing environment, ADHydro. Five spatial resolutions (30 m, 100 m, 250 m, 500 m, and 1 km) were used to investigate the variations in hydrologic response. This study demonstrated the importance of choosing the appropriate spatial scale in the implementation of ADHydro to obtain a balance between representing spatial variability and the computational cost. According to the results, variation in the input variables and parameters due to using different spatial resolution resulted in changes in the obtained hydrological variables, especially snowmelt, both at the basin-scale and distributed across the model mesh.

  7. A hypothesized model of Korean women's responses to abuse.

    PubMed

    Choi, Myunghan; Harwood, Jake

    2004-07-01

    Many abused married Korean women have a strong desire to leave their abusive husbands but remain in the abusive situations because of the strong influence of their sociocultural context. The article discusses Korean women's responses to spousal abuse in the context of patriarchal, cultural, and social exchange theory. Age, education, and income as component elements share common effects on the emergent variable, sociostructural power. Gender role attitudes, traditional family ideology, individualism/collectivism, marital satisfaction, and marital conflict predict psychological-relational power as a latent variable. Sociostructural, patriarchal, cultural, and social exchange theories are reconceptualized to generate the model of Korean women's responses to abuse.

  8. Preference as a Function of Active Interresponse Times: A Test of the Active Time Model

    ERIC Educational Resources Information Center

    Misak, Paul; Cleaveland, J. Mark

    2011-01-01

    In this article, we describe a test of the active time model for concurrent variable interval (VI) choice. The active time model (ATM) suggests that the time since the most recent response is one of the variables controlling choice in concurrent VI VI schedules of reinforcement. In our experiment, pigeons were trained in a multiple concurrent…

  9. Analysis of sensitivity and uncertainty in an individual-based model of a threatened wildlife species

    Treesearch

    Bruce G. Marcot; Peter H. Singleton; Nathan H. Schumaker

    2015-01-01

    Sensitivity analysis—determination of how prediction variables affect response variables—of individual-based models (IBMs) are few but important to the interpretation of model output. We present sensitivity analysis of a spatially explicit IBM (HexSim) of a threatened species, the Northern Spotted Owl (NSO; Strix occidentalis caurina) in Washington...

  10. Small area estimation for semicontinuous data.

    PubMed

    Chandra, Hukum; Chambers, Ray

    2016-03-01

    Survey data often contain measurements for variables that are semicontinuous in nature, i.e. they either take a single fixed value (we assume this is zero) or they have a continuous, often skewed, distribution on the positive real line. Standard methods for small area estimation (SAE) based on the use of linear mixed models can be inefficient for such variables. We discuss SAE techniques for semicontinuous variables under a two part random effects model that allows for the presence of excess zeros as well as the skewed nature of the nonzero values of the response variable. In particular, we first model the excess zeros via a generalized linear mixed model fitted to the probability of a nonzero, i.e. strictly positive, value being observed, and then model the response, given that it is strictly positive, using a linear mixed model fitted on the logarithmic scale. Empirical results suggest that the proposed method leads to efficient small area estimates for semicontinuous data of this type. We also propose a parametric bootstrap method to estimate the MSE of the proposed small area estimator. These bootstrap estimates of the MSE are compared to the true MSE in a simulation study. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Item Response Theory Modeling of the Philadelphia Naming Test.

    PubMed

    Fergadiotis, Gerasimos; Kellough, Stacey; Hula, William D

    2015-06-01

    In this study, we investigated the fit of the Philadelphia Naming Test (PNT; Roach, Schwartz, Martin, Grewal, & Brecher, 1996) to an item-response-theory measurement model, estimated the precision of the resulting scores and item parameters, and provided a theoretical rationale for the interpretation of PNT overall scores by relating explanatory variables to item difficulty. This article describes the statistical model underlying the computer adaptive PNT presented in a companion article (Hula, Kellough, & Fergadiotis, 2015). Using archival data, we evaluated the fit of the PNT to 1- and 2-parameter logistic models and examined the precision of the resulting parameter estimates. We regressed the item difficulty estimates on three predictor variables: word length, age of acquisition, and contextual diversity. The 2-parameter logistic model demonstrated marginally better fit, but the fit of the 1-parameter logistic model was adequate. Precision was excellent for both person ability and item difficulty estimates. Word length, age of acquisition, and contextual diversity all independently contributed to variance in item difficulty. Item-response-theory methods can be productively used to analyze and quantify anomia severity in aphasia. Regression of item difficulty on lexical variables supported the validity of the PNT and interpretation of anomia severity scores in the context of current word-finding models.

  12. Model tropical Atlantic biases underpin diminished Pacific decadal variability

    NASA Astrophysics Data System (ADS)

    McGregor, Shayne; Stuecker, Malte F.; Kajtar, Jules B.; England, Matthew H.; Collins, Mat

    2018-06-01

    Pacific trade winds have displayed unprecedented strengthening in recent decades1. This strengthening has been associated with east Pacific sea surface cooling2 and the early twenty-first-century slowdown in global surface warming2,3, amongst a host of other substantial impacts4-9. Although some climate models produce the timing of these recently observed trends10, they all fail to produce the trend magnitude2,11,12. This may in part be related to the apparent model underrepresentation of low-frequency Pacific Ocean variability and decadal wind trends2,11-13 or be due to a misrepresentation of a forced response1,14-16 or a combination of both. An increasingly prominent connection between the Pacific and Atlantic basins has been identified as a key driver of this strengthening of the Pacific trade winds12,17-20. Here we use targeted climate model experiments to show that combining the recent Atlantic warming trend with the typical climate model bias leads to a substantially underestimated response for the Pacific Ocean wind and surface temperature. The underestimation largely stems from a reduction and eastward shift of the atmospheric heating response to the tropical Atlantic warming trend. This result suggests that the recent Pacific trends and model decadal variability may be better captured by models with improved mean-state climatologies.

  13. Nonlinear dynamics of the CAM circadian rhythm in response to environmental forcing.

    PubMed

    Hartzell, Samantha; Bartlett, Mark S; Virgin, Lawrence; Porporato, Amilcare

    2015-03-07

    Crassulacean acid metabolism (CAM) photosynthesis functions as an endogenous circadian rhythm coupled to external environmental forcings of energy and water availability. This paper explores the nonlinear dynamics of a new CAM photosynthesis model (Bartlett et al., 2014) and investigates the responses of CAM plant carbon assimilation to different combinations of environmental conditions. The CAM model (Bartlett et al., 2014) consists of a Calvin cycle typical of C3 plants coupled to an oscillator of the type employed in the Van der Pol and FitzHugh-Nagumo systems. This coupled system is a function of environmental variables including leaf temperature, leaf moisture potential, and irradiance. Here, we explore the qualitative response of the system and the expected carbon assimilation under constant and periodically forced environmental conditions. The model results show how the diurnal evolution of these variables entrains the CAM cycle with prevailing environmental conditions. While constant environmental conditions generate either steady-state or periodically oscillating responses in malic acid uptake and release, forcing the CAM system with periodic daily fluctuations in light exposure and leaf temperature results in quasi-periodicity and possible chaos for certain ranges of these variables. This analysis is a first step in quantifying changes in CAM plant productivity with variables such as the mean temperature, daily temperature range, irradiance, and leaf moisture potential. Results may also be used to inform model parametrization based on the observed fluctuating regime. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Intraseasonal variability of sea level and circulation in the Gulf of Thailand: the role of the Madden-Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Oliver, Eric C. J.

    2014-01-01

    Intraseasonal variability of the tropical Indo-Pacific ocean is strongly related to the Madden-Julian Oscillation (MJO). Shallow seas in this region, such as the Gulf of Thailand, act as amplifiers of the direct ocean response to surface wind forcing by efficient setup of sea level. Intraseasonal ocean variability in the Gulf of Thailand region is examined using statistical analysis of local tide gauge observations and surface winds. The tide gauges detect variability on intraseasonal time scales that is related to the MJO through its effect on local wind. The relationship between the MJO and the surface wind is strongly seasonal, being most vigorous during the monsoon, and direction-dependent. The observations are then supplemented with simulations of sea level and circulation from a fully nonlinear barotropic numerical ocean model (Princeton Ocean Model). The numerical model reproduces well the intraseasonal sea level variability in the Gulf of Thailand and its seasonal modulations. The model is then used to map the wind-driven response of sea level and circulation in the entire Gulf of Thailand. Finally, the predictability of the setup and setdown signal is discussed by relating it to the, potentially predictable, MJO index.

  15. Response of ENSO amplitude to global warming in CESM large ensemble: uncertainty due to internal variability

    NASA Astrophysics Data System (ADS)

    Zheng, Xiao-Tong; Hui, Chang; Yeh, Sang-Wook

    2018-06-01

    El Niño-Southern Oscillation (ENSO) is the dominant mode of variability in the coupled ocean-atmospheric system. Future projections of ENSO change under global warming are highly uncertain among models. In this study, the effect of internal variability on ENSO amplitude change in future climate projections is investigated based on a 40-member ensemble from the Community Earth System Model Large Ensemble (CESM-LE) project. A large uncertainty is identified among ensemble members due to internal variability. The inter-member diversity is associated with a zonal dipole pattern of sea surface temperature (SST) change in the mean along the equator, which is similar to the second empirical orthogonal function (EOF) mode of tropical Pacific decadal variability (TPDV) in the unforced control simulation. The uncertainty in CESM-LE is comparable in magnitude to that among models of the Coupled Model Intercomparison Project phase 5 (CMIP5), suggesting the contribution of internal variability to the intermodel uncertainty in ENSO amplitude change. However, the causations between changes in ENSO amplitude and the mean state are distinct between CESM-LE and CMIP5 ensemble. The CESM-LE results indicate that a large ensemble of 15 members is needed to separate the relative contributions to ENSO amplitude change over the twenty-first century between forced response and internal variability.

  16. Vegetable parenting practices scale: Item response modeling analyses

    USDA-ARS?s Scientific Manuscript database

    Our objective was to evaluate the psychometric properties of a vegetable parenting practices scale using multidimensional polytomous item response modeling which enables assessing item fit to latent variables and the distributional characteristics of the items in comparison to the respondents. We al...

  17. Modeling longitudinal data, I: principles of multivariate analysis.

    PubMed

    Ravani, Pietro; Barrett, Brendan; Parfrey, Patrick

    2009-01-01

    Statistical models are used to study the relationship between exposure and disease while accounting for the potential role of other factors' impact on outcomes. This adjustment is useful to obtain unbiased estimates of true effects or to predict future outcomes. Statistical models include a systematic component and an error component. The systematic component explains the variability of the response variable as a function of the predictors and is summarized in the effect estimates (model coefficients). The error element of the model represents the variability in the data unexplained by the model and is used to build measures of precision around the point estimates (confidence intervals).

  18. Predictors of Virological Response in 3,235 Chronic HCV Egyptian Patients Treated with Peginterferon Alpha-2a Compared with Peginterferon Alpha-2b Using Statistical Methods and Data Mining Techniques.

    PubMed

    El Raziky, Maissa; Fathalah, Waleed Fouad; Zakaria, Zeinab; Eldeen, Hadeel Gamal; Abul-Fotouh, Amr; Salama, Ahmed; Awad, Abubakr; Esmat, Gamal; Mabrouk, Mahasen

    2016-05-01

    Despite the appearance of new oral antiviral drugs, pegylated interferon (PEG-IFN)/RBV may remain the standard of care therapy for some time, and several viral and host factors are reported to be correlated with therapeutic effects. This study aimed to reveal the independent variables associated with failure of sustained virological response (SVR) to PEG-IFN alpha-2a versus PEG-IFN alpha-2b in treatment of naive chronic hepatitis C virus (HCV) Egyptian patients using both statistical methods and data mining techniques. This retrospective cohort study included 3,235 chronic hepatitis C patients enrolled in a large Egyptian medical center: 1,728 patients had been treated with PEG-IFN alpha-2a plus ribavirin (RBV) and 1,507 patients with PEG-IFN alpha-2b plus RBV between 2007 and 2011. Both multivariate analysis and Reduced Error Pruning Tree (REPTree)-based model were used to reveal the independent variables associated with treatment response. In both treatment types, alpha-fetoprotein (AFP) >10 ng/mL and HCV viremia >600 × 10(3) IU/mL were the independent baseline variables associated with failure of SVR, while male gender, decreased hemoglobin, and thyroid-stimulating hormone were the independent variables associated with good response (P < 0.05). Using REPTree-based model showed that low AFP was the factor of initial split (best predictor) of response for either PEG-IFN alpha-2a or PEG-IFN alpha-2b (cutoff value 8.53, 4.89 ng/mL, AUROC = 0.68 and 0.61, P = 0.05). Serum AFP >10 ng/mL and viral load >600 × 10(3) IU/mL are variables associated with failure of response in both treatment types. REPTree-based model could be used to assess predictors of response.

  19. The use of generalised additive models (GAM) in dentistry.

    PubMed

    Helfenstein, U; Steiner, M; Menghini, G

    1997-12-01

    Ordinary multiple regression and logistic multiple regression are widely applied statistical methods which allow a researcher to 'explain' or 'predict' a response variable from a set of explanatory variables or predictors. In these models it is usually assumed that quantitative predictors such as age enter linearly into the model. During recent years these methods have been further developed to allow more flexibility in the way explanatory variables 'act' on a response variable. The methods are called 'generalised additive models' (GAM). The rigid linear terms characterising the association between response and predictors are replaced in an optimal way by flexible curved functions of the predictors (the 'profiles'). Plotting the 'profiles' allows the researcher to visualise easily the shape by which predictors 'act' over the whole range of values. The method facilitates detection of particular shapes such as 'bumps', 'U-shapes', 'J-shapes, 'threshold values' etc. Information about the shape of the association is not revealed by traditional methods. The shapes of the profiles may be checked by performing a Monte Carlo simulation ('bootstrapping'). After the presentation of the GAM a relevant case study is presented in order to demonstrate application and use of the method. The dependence of caries in primary teeth on a set of explanatory variables is investigated. Since GAMs may not be easily accessible to dentists, this article presents them in an introductory condensed form. It was thought that a nonmathematical summary and a worked example might encourage readers to consider the methods described. GAMs may be of great value to dentists in allowing visualisation of the shape by which predictors 'act' and obtaining a better understanding of the complex relationships between predictors and response.

  20. Characteristics and Impact of Imperviousness From a GIS-based Hydrological Perspective

    NASA Astrophysics Data System (ADS)

    Moglen, G. E.; Kim, S.

    2005-12-01

    With the concern that imperviousness can be differently quantified depending on data sources and methods, this study assessed imperviousness estimates using two different data sources: land use and land cover. Year 2000 land use developed by the Maryland Department of Planning was utilized to estimate imperviousness by assigning imperviousness coefficients to unique land use categories. These estimates were compared with imperviousness estimates based on satellite-derived land cover from the 2001 National Land Cover Dataset. Our study developed the relationships between these two estimates in the form of regression equations to convert imperviousness derived from one data source to the other. The regression equations are considered reliable, based on goodness-of-fit measures. Furthermore, this study examined how quantitatively different imperviousness estimates affect the prediction of hydrological response both in the flow regime and in the thermal regime. We assessed the relationships between indicators of hydrological response and imperviousness-descriptors. As indicators of flow variability, coefficient of variance, lag-one autocorrelation, and mean daily flow change were calculated based on measured mean daily stream flow from the water year 1997 to 2003. For thermal variability, indicators such as percent-days of surge, degree-day, and mean daily temperature difference were calculated base on measured stream temperature over several basins in Maryland. To describe imperviousness through the hydrological process, GIS-based spatially distributed hydrological models were developed based on a water-balance method and the SCS-CN method. Imperviousness estimates from land use and land cover were used as predictors in these models to examine the effect of imperviousness using different data sources on the prediction of hydrological response. Indicators of hydrological response were also regressed on aggregate imperviousness. This allowed for identifying if hydrological response is more sensitive to spatially distributed imperviousness or aggregate (lumped) imperviousness. The regressions between indicators of hydrological response and imperviousness-descriptors were evaluated by examining goodness-of-fit measures such as explained variance or relative standard error. The results show that imperviousness estimates using land use are better predictors of flow variability and thermal variability than imperviousness estimates using land cover. Also, this study reveals that flow variability is more sensitive to spatially distributed models than lumped models, while thermal variability is equally responsive to both models. The findings from this study can be further examined from a policy perspective with regard to policies that are based on a threshold concept for imperviousness impacts on the ecological and hydrological system.

  1. Pacific-North American teleconnection and North Pacific Oscillation: historical simulation and future projection in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Chen, Zheng; Gan, Bolan; Wu, Lixin; Jia, Fan

    2017-09-01

    Based on reanalysis datasets and as many as 35 CMIP5 models, this study evaluates the capability of climate models to simulate the spatiotemporal features of Pacific-North American teleconnection (PNA) and North Pacific Oscillation (NPO) in the twentieth century wintertime, and further investigates their responses to greenhouse warming in the twenty-first century. Analysis reveals that while the majority (80%) of models reasonably simulate either the geographical distribution or the amplitude of PNA/NPO pattern, only half of models can well capture both features in space. As for the temporal features, variabilities of PNA and NPO in most models are biased toward higher amplitude. Additionally, most models simulate the interannual variabilities of PNA and NPO, qualitatively consistent with the observation, whereas models generally lack the capability to reproduce the decadal (20-25 years) variability of PNA. As the climate warms under the strongest future warming scenario, the PNA intensity is found to be strengthened, whereas there is no consensus on the direction of change in the NPO intensity among models. The intensification of positive PNA is primarily manifested in the large deepening of the North Pacific trough, which is robust as it is 2.3 times the unforced internal variability. By focusing on the tropical Pacific Ocean, we find that the multidecadal evolution of the North Pacific trough intensity (dominating the PNA intensity evolution) is closely related to that of the analogous trough in the PNA-like teleconnection forced by sea surface temperature anomalies (SSTa) in the tropical central Pacific (CP) rather than the tropical eastern Pacific (EP). Such association is also found to act under greenhouse warming: that is, the strengthening of the PNA-like teleconnection induced by the CP SSTa rather than the EP SSTa is a driving force for the intensification of PNA. This is in part owing to the robust enhancement of the tropical precipitation response to the CP SST variation. Indeed, further inspection suggests that models with stronger intensification of the CP SST variability and its related tropical precipitation response tend to have larger deepening magnitude of the North Pacific trough associated with the PNA variability.

  2. Pacific-North American teleconnection and North Pacific Oscillation: historical simulation and future projection in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Chen, Zheng; Gan, Bolan; Wu, Lixin; Jia, Fan

    2018-06-01

    Based on reanalysis datasets and as many as 35 CMIP5 models, this study evaluates the capability of climate models to simulate the spatiotemporal features of Pacific-North American teleconnection (PNA) and North Pacific Oscillation (NPO) in the twentieth century wintertime, and further investigates their responses to greenhouse warming in the twenty-first century. Analysis reveals that while the majority (80%) of models reasonably simulate either the geographical distribution or the amplitude of PNA/NPO pattern, only half of models can well capture both features in space. As for the temporal features, variabilities of PNA and NPO in most models are biased toward higher amplitude. Additionally, most models simulate the interannual variabilities of PNA and NPO, qualitatively consistent with the observation, whereas models generally lack the capability to reproduce the decadal (20-25 years) variability of PNA. As the climate warms under the strongest future warming scenario, the PNA intensity is found to be strengthened, whereas there is no consensus on the direction of change in the NPO intensity among models. The intensification of positive PNA is primarily manifested in the large deepening of the North Pacific trough, which is robust as it is 2.3 times the unforced internal variability. By focusing on the tropical Pacific Ocean, we find that the multidecadal evolution of the North Pacific trough intensity (dominating the PNA intensity evolution) is closely related to that of the analogous trough in the PNA-like teleconnection forced by sea surface temperature anomalies (SSTa) in the tropical central Pacific (CP) rather than the tropical eastern Pacific (EP). Such association is also found to act under greenhouse warming: that is, the strengthening of the PNA-like teleconnection induced by the CP SSTa rather than the EP SSTa is a driving force for the intensification of PNA. This is in part owing to the robust enhancement of the tropical precipitation response to the CP SST variation. Indeed, further inspection suggests that models with stronger intensification of the CP SST variability and its related tropical precipitation response tend to have larger deepening magnitude of the North Pacific trough associated with the PNA variability.

  3. Active subspace uncertainty quantification for a polydomain ferroelectric phase-field model

    NASA Astrophysics Data System (ADS)

    Leon, Lider S.; Smith, Ralph C.; Miles, Paul; Oates, William S.

    2018-03-01

    Quantum-informed ferroelectric phase field models capable of predicting material behavior, are necessary for facilitating the development and production of many adaptive structures and intelligent systems. Uncertainty is present in these models, given the quantum scale at which calculations take place. A necessary analysis is to determine how the uncertainty in the response can be attributed to the uncertainty in the model inputs or parameters. A second analysis is to identify active subspaces within the original parameter space, which quantify directions in which the model response varies most dominantly, thus reducing sampling effort and computational cost. In this investigation, we identify an active subspace for a poly-domain ferroelectric phase-field model. Using the active variables as our independent variables, we then construct a surrogate model and perform Bayesian inference. Once we quantify the uncertainties in the active variables, we obtain uncertainties for the original parameters via an inverse mapping. The analysis provides insight into how active subspace methodologies can be used to reduce computational power needed to perform Bayesian inference on model parameters informed by experimental or simulated data.

  4. Modeling demand for public transit services in rural areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attaluri, P.; Seneviratne, P.N.; Javid, M.

    1997-05-01

    Accurate estimates of demand are critical for planning, designing, and operating public transit systems. Previous research has demonstrated that the expected demand in rural areas is a function of both demographic and transit system variables. Numerous models have been proposed to describe the relationship between the aforementioned variables. However, most of them are site specific and their validity over time and space is not reported or perhaps has not been tested. Moreover, input variables in some cases are extremely difficult to quantify. In this article, the estimation of demand using the generalized linear modeling technique is discussed. Two separate models,more » one for fixed-route and another for demand-responsive services, are presented. These models, calibrated with data from systems in nine different states, are used to demonstrate the appropriateness and validity of generalized linear models compared to the regression models. They explain over 70% of the variation in expected demand for fixed-route services and 60% of the variation in expected demand for demand-responsive services. It was found that the models are spatially transferable and that data for calibration are easily obtainable.« less

  5. Discerning strain effects in microbial dose-response data.

    PubMed

    Coleman, Margaret E; Marks, Harry M; Golden, Neal J; Latimer, Heejeong K

    In order to estimate the risk or probability of adverse events in risk assessment, it is necessary to identify the important variables that contribute to the risk and provide descriptions of distributions of these variables for well-defined populations. One component of modeling dose response that can create uncertainty is the inherent genetic variability among pathogenic bacteria. For many microbial risk assessments, the "default" assumption used for dose response does not account for strain or serotype variability in pathogenicity and virulence, other than perhaps, recognizing the existence of avirulent strains. However, an examination of data sets from human clinical trials in which Salmonella spp. and Campylobacter jejuni strains were administered reveals significant strain differences. This article discusses the evidence for strain variability and concludes that more biologically based alternatives are necessary to replace the default assumptions commonly used in microbial risk assessment, specifically regarding strain variability.

  6. Alcohol use among university students: Considering a positive deviance approach.

    PubMed

    Tucker, Maryanne; Harris, Gregory E

    2016-09-01

    Harmful alcohol consumption among university students continues to be a significant issue. This study examined whether variables identified in the positive deviance literature would predict responsible alcohol consumption among university students. Surveyed students were categorized into three groups: abstainers, responsible drinkers and binge drinkers. Multinomial logistic regression modelling was significant (χ(2) = 274.49, degrees of freedom = 24, p < .001), with several variables predicting group membership. While the model classification accuracy rate (i.e. 71.2%) exceeded the proportional by chance accuracy rate (i.e. 38.4%), providing further support for the model, the model itself best predicted binge drinker membership over the other two groups. © The Author(s) 2015.

  7. Variability of the Martian thermospheric temperatures during the last 7 Martian Years

    NASA Astrophysics Data System (ADS)

    Gonzalez-Galindo, Francisco; Lopez-Valverde, Miguel Angel; Millour, Ehouarn; Forget, François

    2014-05-01

    The temperatures and densities in the Martian upper atmosphere have a significant influence over the different processes producing atmospheric escape. A good knowledge of the thermosphere and its variability is thus necessary in order to better understand and quantify the atmospheric loss to space and the evolution of the planet. Different global models have been used to study the seasonal and interannual variability of the Martian thermosphere, usually considering three solar scenarios (solar minimum, solar medium and solar maximum conditions) to take into account the solar cycle variability. However, the variability of the solar activity within the simulated period of time is not usually considered in these models. We have improved the description of the UV solar flux included on the General Circulation Model for Mars developed at the Laboratoire de Météorologie Dynamique (LMD-MGCM) in order to include its observed day-to-day variability. We have used the model to simulate the thermospheric variability during Martian Years 24 to 30, using realistic UV solar fluxes and dust opacities. The model predicts and interannual variability of the temperatures in the upper thermosphere that ranges from about 50 K during the aphelion to up to 150 K during perihelion. The seasonal variability of temperatures due to the eccentricity of the Martian orbit is modified by the variability of the solar flux within a given Martian year. The solar rotation cycle produces temperature oscillations of up to 30 K. We have also studied the response of the modeled thermosphere to the global dust storms in Martian Year 25 and Martian Year 28. The atmospheric dynamics are significantly modified by the global dust storms, which induces significant changes in the thermospheric temperatures. The response of the model to the presence of both global dust storms is in good agreement with previous modeling results (Medvedev et al., Journal of Geophysical Research, 2013). As expected, the simulated ionosphere is also sensitive to the variability of the solar activity. Acknowledgemnt: Francisco González-Galindo is funded by a CSIC JAE-Doc contract financed by the European Social Fund

  8. A Comparison of Limited-Information and Full-Information Methods in M"plus" for Estimating Item Response Theory Parameters for Nonnormal Populations

    ERIC Educational Resources Information Center

    DeMars, Christine E.

    2012-01-01

    In structural equation modeling software, either limited-information (bivariate proportions) or full-information item parameter estimation routines could be used for the 2-parameter item response theory (IRT) model. Limited-information methods assume the continuous variable underlying an item response is normally distributed. For skewed and…

  9. Testing the Race Model Inequality in Redundant Stimuli with Variable Onset Asynchrony

    ERIC Educational Resources Information Center

    Gondan, Matthias

    2009-01-01

    In speeded response tasks with redundant signals, parallel processing of the signals is tested by the race model inequality. This inequality states that given a race of two signals, the cumulative distribution of response times for redundant stimuli never exceeds the sum of the cumulative distributions of response times for the single-modality…

  10. Cardio-Respiratory Responses to Maximal Work During Arm and Bicycle Ergometry.

    ERIC Educational Resources Information Center

    Israel, Richard G.; Hardison, George T.

    This study compared cardio-respiratory responses during maximal arm work using a Monarch Model 880 Rehab Trainer to cardio-respiratory responses during maximal leg work on a Monarch Model 850 Bicycle Ergometer. Subjects for the investigation were 17 male university students ranging from 18 to 28 years of age. The specific variables compared…

  11. Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO2

    PubMed Central

    Keppel-Aleks, Gretchen; Wolf, Aaron S; Mu, Mingquan; Doney, Scott C; Morton, Douglas C; Kasibhatla, Prasad S; Miller, John B; Dlugokencky, Edward J; Randerson, James T

    2014-01-01

    The response of the carbon cycle in prognostic Earth system models (ESMs) contributes significant uncertainty to projections of global climate change. Quantifying contributions of known drivers of interannual variability in the growth rate of atmospheric carbon dioxide (CO2) is important for improving the representation of terrestrial ecosystem processes in these ESMs. Several recent studies have identified the temperature dependence of tropical net ecosystem exchange (NEE) as a primary driver of this variability by analyzing a single, globally averaged time series of CO2 anomalies. Here we examined how the temporal evolution of CO2 in different latitude bands may be used to separate contributions from temperature stress, drought stress, and fire emissions to CO2 variability. We developed atmospheric CO2 patterns from each of these mechanisms during 1997–2011 using an atmospheric transport model. NEE responses to temperature, NEE responses to drought, and fire emissions all contributed significantly to CO2 variability in each latitude band, suggesting that no single mechanism was the dominant driver. We found that the sum of drought and fire contributions to CO2 variability exceeded direct NEE responses to temperature in both the Northern and Southern Hemispheres. Additional sensitivity tests revealed that these contributions are masked by temporal and spatial smoothing of CO2 observations. Accounting for fires, the sensitivity of tropical NEE to temperature stress decreased by 25% to 2.9 ± 0.4 Pg C yr−1 K−1. These results underscore the need for accurate attribution of the drivers of CO2 variability prior to using contemporary observations to constrain long-term ESM responses. PMID:26074665

  12. Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO2.

    PubMed

    Keppel-Aleks, Gretchen; Wolf, Aaron S; Mu, Mingquan; Doney, Scott C; Morton, Douglas C; Kasibhatla, Prasad S; Miller, John B; Dlugokencky, Edward J; Randerson, James T

    2014-11-01

    The response of the carbon cycle in prognostic Earth system models (ESMs) contributes significant uncertainty to projections of global climate change. Quantifying contributions of known drivers of interannual variability in the growth rate of atmospheric carbon dioxide (CO 2 ) is important for improving the representation of terrestrial ecosystem processes in these ESMs. Several recent studies have identified the temperature dependence of tropical net ecosystem exchange (NEE) as a primary driver of this variability by analyzing a single, globally averaged time series of CO 2 anomalies. Here we examined how the temporal evolution of CO 2 in different latitude bands may be used to separate contributions from temperature stress, drought stress, and fire emissions to CO 2 variability. We developed atmospheric CO 2 patterns from each of these mechanisms during 1997-2011 using an atmospheric transport model. NEE responses to temperature, NEE responses to drought, and fire emissions all contributed significantly to CO 2 variability in each latitude band, suggesting that no single mechanism was the dominant driver. We found that the sum of drought and fire contributions to CO 2 variability exceeded direct NEE responses to temperature in both the Northern and Southern Hemispheres. Additional sensitivity tests revealed that these contributions are masked by temporal and spatial smoothing of CO 2 observations. Accounting for fires, the sensitivity of tropical NEE to temperature stress decreased by 25% to 2.9 ± 0.4 Pg C yr -1  K -1 . These results underscore the need for accurate attribution of the drivers of CO 2 variability prior to using contemporary observations to constrain long-term ESM responses.

  13. Inter-individual variability in the patterns of responses for electromyography and mechanomyography during cycle ergometry using an RPE-clamp model.

    PubMed

    Cochrane-Snyman, Kristen C; Housh, Terry J; Smith, Cory M; Hill, Ethan C; Jenkins, Nathaniel D M; Schmidt, Richard J; Johnson, Glen O

    2016-09-01

    To examine inter-individual variability versus composite models for the patterns of responses for electromyography (EMG) and mechanomyography (MMG) versus time relationships during moderate and heavy cycle ergometry using a rating of perceived exertion (RPE) clamp model. EMG amplitude (amplitude root-mean-square, RMS), EMG mean power frequency (MPF), MMG-RMS, and MMG-MPF were collected during two, 60-min rides at a moderate (RPE at the gas exchange threshold; RPEGET) and heavy (RPE at 15 % above the GET; RPEGET+15 %) intensity when RPE was held constant (clamped). Composite (mean) and individual responses for EMG and MMG parameters were compared during each 60-min ride. There was great inter-individual variability for each EMG and MMG parameters at RPEGET and RPEGET+15 %. Composite models showed decreases in EMG-RMS (r (2) = -0.92 and R (2) = 0.96), increases in EMG-MPF (R (2) = 0.90), increases in MMG-RMS (r (2) = 0.81 and 0.55), and either no change or a decrease (r (2) = 0.34) in MMG-MPF at RPEGET and RPEGET+15 %, respectively. The results of the present study indicated that there were differences between composite and individual patterns of responses for EMG and MMG parameters during moderate and heavy cycle ergometry at a constant RPE. Thus, composite models did not represent the unique muscle activation strategies exhibited by individual responses when cycling in the moderate and heavy intensity domains when using an RPE-clamp model.

  14. Relative contributions of mean-state shifts and ENSO-driven variability to precipitation changes in a warming climate

    DOE PAGES

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; ...

    2015-12-18

    The El Niño–Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change.more » Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. Lastly, by examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.« less

  15. An instrumental variable random-coefficients model for binary outcomes

    PubMed Central

    Chesher, Andrew; Rosen, Adam M

    2014-01-01

    In this paper, we study a random-coefficients model for a binary outcome. We allow for the possibility that some or even all of the explanatory variables are arbitrarily correlated with the random coefficients, thus permitting endogeneity. We assume the existence of observed instrumental variables Z that are jointly independent with the random coefficients, although we place no structure on the joint determination of the endogenous variable X and instruments Z, as would be required for a control function approach. The model fits within the spectrum of generalized instrumental variable models, and we thus apply identification results from our previous studies of such models to the present context, demonstrating their use. Specifically, we characterize the identified set for the distribution of random coefficients in the binary response model with endogeneity via a collection of conditional moment inequalities, and we investigate the structure of these sets by way of numerical illustration. PMID:25798048

  16. Hydrothermal assessment of temporal variability in seedbed microclimate

    Treesearch

    Stuart P. Hardegree; Corey A. Moffet; Gerald N. Flerchinger; Jaepil Cho; Bruce A. Roundy; Thomas A. Jones; Jeremy J. James; Patrick E. Clark; Frederick B. Pierson

    2013-01-01

    The microclimatic requirements for successful seedling establishment are much more restrictive than those required for adult plant survival. The purpose of the current study was to use hydrothermal germination models and a soil energy and water flux model to evaluate intra- and interannual variability in seedbed microclimate relative to potential germination response...

  17. An uncertainty model of acoustic metamaterials with random parameters

    NASA Astrophysics Data System (ADS)

    He, Z. C.; Hu, J. Y.; Li, Eric

    2018-01-01

    Acoustic metamaterials (AMs) are man-made composite materials. However, the random uncertainties are unavoidable in the application of AMs due to manufacturing and material errors which lead to the variance of the physical responses of AMs. In this paper, an uncertainty model based on the change of variable perturbation stochastic finite element method (CVPS-FEM) is formulated to predict the probability density functions of physical responses of AMs with random parameters. Three types of physical responses including the band structure, mode shapes and frequency response function of AMs are studied in the uncertainty model, which is of great interest in the design of AMs. In this computation, the physical responses of stochastic AMs are expressed as linear functions of the pre-defined random parameters by using the first-order Taylor series expansion and perturbation technique. Then, based on the linear function relationships of parameters and responses, the probability density functions of the responses can be calculated by the change-of-variable technique. Three numerical examples are employed to demonstrate the effectiveness of the CVPS-FEM for stochastic AMs, and the results are validated by Monte Carlo method successfully.

  18. Uncertainty in Arctic climate projections traced to variability of downwelling longwave radiation

    NASA Astrophysics Data System (ADS)

    Krikken, Folmer; Bintanja, Richard; Hazeleger, WIlco; van Heerwaarden, Chiel

    2017-04-01

    The Arctic region has warmed rapidly over the last decades, and this warming is projected to increase. The uncertainty in these projections, i.e. intermodel spread, is however very large and a clear understanding of the sources behind the spread is so far still lacking. Here we use 31 state-of-the-art global climate models to show that variability of May downwelling radiation (DLR) in the models' control climate, primarily located at the land surrounding the Arctic ocean, explains 2/3 of the intermodel spread in projected Arctic warming under the RPC85 scenario. This variability is related to the combined radiative effect of the cloud radiative forcing (CRF) and the albedo response due to snowfall, which varies strongly between the models in these regions. This mechanism dampens or enhances yearly variability of DLR in the control climate but also dampens or enhances the climate response of DLR, sea ice cover and near surface temperature.

  19. Characterization and evaluation of controls on post-fire streamflow response across western US watersheds

    NASA Astrophysics Data System (ADS)

    Saxe, Samuel; Hogue, Terri S.; Hay, Lauren

    2018-02-01

    This research investigates the impact of wildfires on watershed flow regimes, specifically focusing on evaluation of fire events within specified hydroclimatic regions in the western United States, and evaluating the impact of climate and geophysical variables on response. Eighty-two watersheds were identified with at least 10 years of continuous pre-fire daily streamflow records and 5 years of continuous post-fire daily flow records. Percent change in annual runoff ratio, low flows, high flows, peak flows, number of zero flow days, baseflow index, and Richards-Baker flashiness index were calculated for each watershed using pre- and post-fire periods. Independent variables were identified for each watershed and fire event, including topographic, vegetation, climate, burn severity, percent area burned, and soils data. Results show that low flows, high flows, and peak flows increase in the first 2 years following a wildfire and decrease over time. Relative response was used to scale response variables with the respective percent area of watershed burned in order to compare regional differences in watershed response. To account for variability in precipitation events, runoff ratio was used to compare runoff directly to PRISM precipitation estimates. To account for regional differences in climate patterns, watersheds were divided into nine regions, or clusters, through k-means clustering using climate data, and regression models were produced for watersheds grouped by total area burned. Watersheds in Cluster 9 (eastern California, western Nevada, Oregon) demonstrate a small negative response to observed flow regimes after fire. Cluster 8 watersheds (coastal California) display the greatest flow responses, typically within the first year following wildfire. Most other watersheds show a positive mean relative response. In addition, simple regression models show low correlation between percent watershed burned and streamflow response, implying that other watershed factors strongly influence response. Spearman correlation identified NDVI, aridity index, percent of a watershed's precipitation that falls as rain, and slope as being positively correlated with post-fire streamflow response. This metric also suggested a negative correlation between response and the soil erodibility factor, watershed area, and percent low burn severity. Regression models identified only moderate burn severity and watershed area as being consistently positively/negatively correlated, respectively, with response. The random forest model identified only slope and percent area burned as significant watershed parameters controlling response. Results will help inform post-fire runoff management decisions by helping to identify expected changes to flow regimes, as well as facilitate parameterization for model application in burned watersheds.

  20. Cortisol and salivary alpha-amylase trajectories following a group social-evaluative stressor with adolescents.

    PubMed

    Katz, Deirdre A; Peckins, Melissa K

    2017-12-01

    Intraindividual variability in stress responsivity and the interrelationship of multiple neuroendocrine systems make a multisystem analytic approach to examining the human stress response challenging. The present study makes use of an efficient social-evaluative stress paradigm - the Group Public Speaking Task for Adolescents (GPST-A) - to examine the hypothalamic-pituitary-adrenocortical (HPA)-axis and Autonomic Nervous System (ANS) reactivity profiles of 54 adolescents with salivary cortisol and salivary alpha-amylase (sAA). First, we account for individuals' time latency of hormone concentrations between individuals. Second, we use a two-piece multilevel growth curve model with landmark registration to examine the reactivity and recovery periods of the stress response separately. This analytic approach increases the models' sensitivity to detecting trajectory differences in the reactivity and recovery phases of the stress response and allows for interindividual variation in the timing of participants' peak response following a social-evaluative stressor. The GPST-A evoked typical cortisol and sAA responses in both males and females. Males' cortisol concentrations were significantly higher than females' during each phase of the response. We found no gender difference in the sAA response. However, the rate of increase in sAA as well as overall sAA secretion across the study were associated with steeper rates of cortisol reactivity and recovery. This study demonstrates a way to model the response trajectories of salivary biomarkers of the HPA-axis and ANS when taking a multisystem approach to neuroendocrine research that enables researchers to make conclusions about the reactivity and recovery phases of the HPA-axis and ANS responses. As the study of the human stress response progresses toward a multisystem analytic approach, it is critical that individual variability in peak latency be taken into consideration and that accurate modeling techniques capture individual variability in the stress response so that accurate conclusions can be made about separate phases of the response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Hazard evaluation of ten organophosphorous insecticides against the midge, Chironomus riparius via QSAR

    USGS Publications Warehouse

    Landrum, Peter F.; Fisher, Susan W.; Hwang, Haejo; Hickey, James P.

    1999-01-01

    Toxicities of ten organophosphorus (OP) insecticides were measured against midge larvae (Chironomus riparius) under varying temperature (11, 18, and 25°C) and pH (6, 7, and 8) conditions and with and without sediment. Toxicity usually increased with increasing temperature and was greater in the absence of sediment. No trend was found with varying pH. A series of unidimensional parameters and multidimensional models were used to describe the changes in toxicity. Log Kow was able to explain about 40–60% of the variability in response data for aqueous exposures while molecular volume and aqueous solubility were less predictive. Likewise, the linear solvation energy relationship (LSER) model only explained 40–70% of the response variability, suggesting that factors other than solubility were most important for producing the observed response. Molecular connectivity was the most useful for describing the variability in the response. In the absence of sediment, 1χv and 3κ were best able to describe the variation in response among all compounds at each pH (70–90%). In the presence of sediment, even molecular connectivity could not describe the variability until the partitioning potential to sediment was accounted for by assuming equilibrium partitioning. After correcting for partitioning, the same molecular connectivity terms as in the aqueous exposures described most of the variability, 61–87%, except for the 11°C data where correlations were not significant. Molecular connectivity was a better tool than LSER or the unidimensional variables to explain the steric fitness of OP insecticides which was crucial to the toxicity.

  2. Multivariate analysis of sludge disintegration by microwave-hydrogen peroxide pretreatment process.

    PubMed

    Ya-Wei, Wang; Cheng-Min, Gui; Xiao-Tang, Ni; Mei-Xue, Chen; Yuan-Song, Wei

    2015-01-01

    Microwave irradiation (with H2O2) has been shown to offer considerable advantages owing to its flexible control, low overall cost, and resulting higher soluble chemical oxygen demand (SCOD); accordingly, the method has been proposed recently as a means of improving sludge disintegration. However, the key factor controlling this sludge pretreatment process, pH, has received insufficient attention to date. To address this, the response surface approach (central composite design) was applied to evaluate the effects of total suspended solids (TSS, 2-20 g/L), pH (4-10), and H2O2 dosage (0-2 w/w) and their interactions on 16 response variables (e.g., SCODreleased, pH, H2O2remaining). The results demonstrated that all three factors affect sludge disintegration significantly, and no pronounced interactions between response variables were observed during disintegration, except for three variables (TCOD, TSSremaining, and H2O2 remaining). Quadratic predictive models were constructed for all 16 response variables (R(2): 0.871-0.991). Taking soluble chemical oxygen demand (SCOD) as an example, the model and coefficients derived above were able to predict the performance of microwave pretreatment (enhanced by H2O2 and pH adjustment) from previously published studies. The predictive models developed were able to optimize the treatment process for multiple disintegration objectives. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Multiple Use One-Sided Hypotheses Testing in Univariate Linear Calibration

    NASA Technical Reports Server (NTRS)

    Krishnamoorthy, K.; Kulkarni, Pandurang M.; Mathew, Thomas

    1996-01-01

    Consider a normally distributed response variable, related to an explanatory variable through the simple linear regression model. Data obtained on the response variable, corresponding to known values of the explanatory variable (i.e., calibration data), are to be used for testing hypotheses concerning unknown values of the explanatory variable. We consider the problem of testing an unlimited sequence of one sided hypotheses concerning the explanatory variable, using the corresponding sequence of values of the response variable and the same set of calibration data. This is the situation of multiple use of the calibration data. The tests derived in this context are characterized by two types of uncertainties: one uncertainty associated with the sequence of values of the response variable, and a second uncertainty associated with the calibration data. We derive tests based on a condition that incorporates both of these uncertainties. The solution has practical applications in the decision limit problem. We illustrate our results using an example dealing with the estimation of blood alcohol concentration based on breath estimates of the alcohol concentration. In the example, the problem is to test if the unknown blood alcohol concentration of an individual exceeds a threshold that is safe for driving.

  4. Modelling Facebook Usage among University Students in Thailand: The Role of Emotional Attachment in an Extended Technology Acceptance Model

    ERIC Educational Resources Information Center

    Teo, Timothy

    2016-01-01

    The aim of this study is to examine the factors that influenced the use of Facebook among university students. Using an extended technology acceptance model (TAM) with emotional attachment (EA) as an external variable, a sample of 498 students from a public-funded Thailand university were surveyed on their responses to five variables hypothesized…

  5. Creation of Synthetic Surface Temperature and Precipitation Ensembles Through A Computationally Efficient, Mixed Method Approach

    NASA Astrophysics Data System (ADS)

    Hartin, C.; Lynch, C.; Kravitz, B.; Link, R. P.; Bond-Lamberty, B. P.

    2017-12-01

    Typically, uncertainty quantification of internal variability relies on large ensembles of climate model runs under multiple forcing scenarios or perturbations in a parameter space. Computationally efficient, standard pattern scaling techniques only generate one realization and do not capture the complicated dynamics of the climate system (i.e., stochastic variations with a frequency-domain structure). In this study, we generate large ensembles of climate data with spatially and temporally coherent variability across a subselection of Coupled Model Intercomparison Project Phase 5 (CMIP5) models. First, for each CMIP5 model we apply a pattern emulation approach to derive the model response to external forcing. We take all the spatial and temporal variability that isn't explained by the emulator and decompose it into non-physically based structures through use of empirical orthogonal functions (EOFs). Then, we perform a Fourier decomposition of the EOF projection coefficients to capture the input fields' temporal autocorrelation so that our new emulated patterns reproduce the proper timescales of climate response and "memory" in the climate system. Through this 3-step process, we derive computationally efficient climate projections consistent with CMIP5 model trends and modes of variability, which address a number of deficiencies inherent in the ability of pattern scaling to reproduce complex climate model behavior.

  6. Variable selection for distribution-free models for longitudinal zero-inflated count responses.

    PubMed

    Chen, Tian; Wu, Pan; Tang, Wan; Zhang, Hui; Feng, Changyong; Kowalski, Jeanne; Tu, Xin M

    2016-07-20

    Zero-inflated count outcomes arise quite often in research and practice. Parametric models such as the zero-inflated Poisson and zero-inflated negative binomial are widely used to model such responses. Like most parametric models, they are quite sensitive to departures from assumed distributions. Recently, new approaches have been proposed to provide distribution-free, or semi-parametric, alternatives. These methods extend the generalized estimating equations to provide robust inference for population mixtures defined by zero-inflated count outcomes. In this paper, we propose methods to extend smoothly clipped absolute deviation (SCAD)-based variable selection methods to these new models. Variable selection has been gaining popularity in modern clinical research studies, as determining differential treatment effects of interventions for different subgroups has become the norm, rather the exception, in the era of patent-centered outcome research. Such moderation analysis in general creates many explanatory variables in regression analysis, and the advantages of SCAD-based methods over their traditional counterparts render them a great choice for addressing this important and timely issues in clinical research. We illustrate the proposed approach with both simulated and real study data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Effects of short-term variability of meteorological variables on soil temperature in permafrost regions

    NASA Astrophysics Data System (ADS)

    Beer, Christian; Porada, Philipp; Ekici, Altug; Brakebusch, Matthias

    2018-03-01

    Effects of the short-term temporal variability of meteorological variables on soil temperature in northern high-latitude regions have been investigated. For this, a process-oriented land surface model has been driven using an artificially manipulated climate dataset. Short-term climate variability mainly impacts snow depth, and the thermal diffusivity of lichens and bryophytes. These impacts of climate variability on insulating surface layers together substantially alter the heat exchange between atmosphere and soil. As a result, soil temperature is 0.1 to 0.8 °C higher when climate variability is reduced. Earth system models project warming of the Arctic region but also increasing variability of meteorological variables and more often extreme meteorological events. Therefore, our results show that projected future increases in permafrost temperature and active-layer thickness in response to climate change will be lower (i) when taking into account future changes in short-term variability of meteorological variables and (ii) when representing dynamic snow and lichen and bryophyte functions in land surface models.

  8. Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability?

    NASA Astrophysics Data System (ADS)

    Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.

    2018-06-01

    High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.

  9. Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability?

    NASA Astrophysics Data System (ADS)

    Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.

    2017-09-01

    High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.

  10. Investigation of grain-scale microstructural variability in tantalum using crystal plasticity-finite element simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Hojun; Dingreville, Rémi; Deibler, Lisa A.

    In this research, a crystal plasticity-finite element (CP-FE) model is used to investigate the effects of microstructural variability at a notch tip in tantalum single crystals and polycrystals. It is shown that at the macroscopic scale, the mechanical response of single crystals is sensitive to the crystallographic orientation while the response of polycrystals shows relatively small susceptibility to it. However, at the microscopic scale, the local stress and strain fields in the vicinity of the crack tip are completely determined by the local crystallographic orientation at the crack tip for both single and polycrystalline specimens with similar mechanical field distributions.more » Variability in the local metrics used (maximum von Mises stress and equivalent plastic strain at 3% deformation) for 100 different realizations of polycrystals fluctuates by up to a factor of 2–7 depending on the local crystallographic texture. Comparison with experimental data shows that the CP model captures variability in stress–strain response of polycrystals that can be attributed to the grain-scale microstructural variability. In conclusion, this work provides a convenient approach to investigate fluctuations in the mechanical behavior of polycrystalline materials induced by grain morphology and crystallographic orientations.« less

  11. Investigation of grain-scale microstructural variability in tantalum using crystal plasticity-finite element simulations

    DOE PAGES

    Lim, Hojun; Dingreville, Rémi; Deibler, Lisa A.; ...

    2016-02-27

    In this research, a crystal plasticity-finite element (CP-FE) model is used to investigate the effects of microstructural variability at a notch tip in tantalum single crystals and polycrystals. It is shown that at the macroscopic scale, the mechanical response of single crystals is sensitive to the crystallographic orientation while the response of polycrystals shows relatively small susceptibility to it. However, at the microscopic scale, the local stress and strain fields in the vicinity of the crack tip are completely determined by the local crystallographic orientation at the crack tip for both single and polycrystalline specimens with similar mechanical field distributions.more » Variability in the local metrics used (maximum von Mises stress and equivalent plastic strain at 3% deformation) for 100 different realizations of polycrystals fluctuates by up to a factor of 2–7 depending on the local crystallographic texture. Comparison with experimental data shows that the CP model captures variability in stress–strain response of polycrystals that can be attributed to the grain-scale microstructural variability. In conclusion, this work provides a convenient approach to investigate fluctuations in the mechanical behavior of polycrystalline materials induced by grain morphology and crystallographic orientations.« less

  12. Generalized Path Analysis and Generalized Simultaneous Equations Model for Recursive Systems with Responses of Mixed Types

    ERIC Educational Resources Information Center

    Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang

    2006-01-01

    This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…

  13. Covariates of the Rating Process in Hierarchical Models for Multiple Ratings of Test Items

    ERIC Educational Resources Information Center

    Mariano, Louis T.; Junker, Brian W.

    2007-01-01

    When constructed response test items are scored by more than one rater, the repeated ratings allow for the consideration of individual rater bias and variability in estimating student proficiency. Several hierarchical models based on item response theory have been introduced to model such effects. In this article, the authors demonstrate how these…

  14. Propagation of uncertainty in nasal spray in vitro performance models using Monte Carlo simulation: Part II. Error propagation during product performance modeling.

    PubMed

    Guo, Changning; Doub, William H; Kauffman, John F

    2010-08-01

    Monte Carlo simulations were applied to investigate the propagation of uncertainty in both input variables and response measurements on model prediction for nasal spray product performance design of experiment (DOE) models in the first part of this study, with an initial assumption that the models perfectly represent the relationship between input variables and the measured responses. In this article, we discard the initial assumption, and extended the Monte Carlo simulation study to examine the influence of both input variable variation and product performance measurement variation on the uncertainty in DOE model coefficients. The Monte Carlo simulations presented in this article illustrate the importance of careful error propagation during product performance modeling. Our results show that the error estimates based on Monte Carlo simulation result in smaller model coefficient standard deviations than those from regression methods. This suggests that the estimated standard deviations from regression may overestimate the uncertainties in the model coefficients. Monte Carlo simulations provide a simple software solution to understand the propagation of uncertainty in complex DOE models so that design space can be specified with statistically meaningful confidence levels. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  15. Wind tunnel test of a variable-diameter tiltrotor (VDTR) model

    NASA Technical Reports Server (NTRS)

    Matuska, David; Dale, Allen; Lorber, Peter

    1994-01-01

    This report documents the results from a wind tunnel test of a 1/6th scale Variable Diameter Tiltrotor (VDTR). This test was a joint effort of NASA Ames and Sikorsky Aircraft. The objective was to evaluate the aeroelastic and performance characteristics of the VDTR in conversion, hover, and cruise. The rotor diameter and nacelle angle of the model were remotely changed to represent tiltrotor operating conditions. Data is presented showing the propulsive force required in conversion, blade loads, angle of attack stability and simulated gust response, and hover and cruise performance. This test represents the first wind tunnel test of a variable diameter rotor applied to a tiltrotor concept. The results confirm some of the potential advantages of the VDTR and establish the variable diameter rotor a viable candidate for an advanced tiltrotor. This wind tunnel test successfully demonstrated the feasibility of the Variable Diameter rotor for tilt rotor aircraft. A wide range of test points were taken in hover, conversion, and cruise modes. The concept was shown to have a number of advantages over conventional tiltrotors such as reduced hover downwash with lower disk loading and significantly reduced longitudinal gust response in cruise. In the conversion regime, a high propulsive force was demonstrated for sustained flight with acceptable blade loads. The VDTR demonstrated excellent gust response capabilities. The horizontal gust response correlated well with predictions revealing only half the response to turbulence of the conventional civil tiltrotor.

  16. Human Responses to Climate Variability: The Case of South Africa

    NASA Astrophysics Data System (ADS)

    Oppenheimer, M.; Licker, R.; Mastrorillo, M.; Bohra-Mishra, P.; Estes, L. D.; Cai, R.

    2014-12-01

    Climate variability has been associated with a range of societal and individual outcomes including migration, violent conflict, changes in labor productivity, and health impacts. Some of these may be direct responses to changes in mean temperature or precipitation or extreme events, such as displacement of human populations by tropical cyclones. Others may be mediated by a variety of biological, social, or ecological factors such as migration in response to long-term changes in crops yields. Research is beginning to elucidate and distinguish the many channels through which climate variability may influence human behavior (ranging from the individual to the collective, societal level) in order to better understand how to improve resilience in the face of current variability as well as future climate change. Using a variety of data sets from South Africa, we show how climate variability has influenced internal (within country) migration in recent history. We focus on South Africa as it is a country with high levels of internal migration and dramatic temperature and precipitation changes projected for the 21st century. High poverty rates and significant levels of rain-fed, smallholder agriculture leave large portions of South Africa's population base vulnerable to future climate change. In this study, we utilize two complementary statistical models - one micro-level model, driven by individual and household level survey data, and one macro-level model, driven by national census statistics. In both models, we consider the effect of climate on migration both directly (with gridded climate reanalysis data) and indirectly (with agricultural production statistics). With our historical analyses of climate variability, we gain insights into how the migration decisions of South Africans may be influenced by future climate change. We also offer perspective on the utility of micro and macro level approaches in the study of climate change and human migration.

  17. Landscape structure and climate influences on hydrologic response

    NASA Astrophysics Data System (ADS)

    Nippgen, Fabian; McGlynn, Brian L.; Marshall, Lucy A.; Emanuel, Ryan E.

    2011-12-01

    Climate variability and catchment structure (topography, geology, vegetation) have a significant influence on the timing and quantity of water discharged from mountainous catchments. How these factors combine to influence runoff dynamics is poorly understood. In this study we linked differences in hydrologic response across catchments and across years to metrics of landscape structure and climate using a simple transfer function rainfall-runoff modeling approach. A transfer function represents the internal catchment properties that convert a measured input (rainfall/snowmelt) into an output (streamflow). We examined modeled mean response time, defined as the average time that it takes for a water input to leave the catchment outlet from the moment it reaches the ground surface. We combined 12 years of precipitation and streamflow data from seven catchments in the Tenderfoot Creek Experimental Forest (Little Belt Mountains, southwestern Montana) with landscape analyses to quantify the first-order controls on mean response times. Differences between responses across the seven catchments were related to the spatial variability in catchment structure (e.g., slope, flowpath lengths, tree height). Annual variability was largely a function of maximum snow water equivalent. Catchment averaged runoff ratios exhibited strong correlations with mean response time while annually averaged runoff ratios were not related to climatic metrics. These results suggest that runoff ratios in snowmelt dominated systems are mainly controlled by topography and not by climatic variability. This approach provides a simple tool for assessing differences in hydrologic response across diverse watersheds and climate conditions.

  18. Modeling aging effects on two-choice tasks: response signal and response time data.

    PubMed

    Ratcliff, Roger

    2008-12-01

    In the response signal paradigm, a test stimulus is presented, and then at one of a number of experimenter-determined times, a signal to respond is presented. Response signal, standard response time (RT), and accuracy data were collected from 19 college-age and 19 60- to 75-year-old participants in a numerosity discrimination task. The data were fit with 2 versions of the diffusion model. Response signal data were modeled by assuming a mixture of processes, those that have terminated before the signal and those that have not terminated; in the latter case, decisions are based on either partial information or guessing. The effects of aging on performance in the regular RT task were explained the same way in the models, with a 70- to 100-ms increase in the nondecision component of processing, more conservative decision criteria, and more variability across trials in drift and the nondecision component of processing, but little difference in drift rate (evidence). In the response signal task, the primary reason for a slower rise in the response signal functions for older participants was variability in the nondecision component of processing. Overall, the results were consistent with earlier fits of the diffusion model to the standard RT task for college-age participants and to the data from aging studies using this task in the standard RT procedure. Copyright (c) 2009 APA, all rights reserved.

  19. Modeling Aging Effects on Two-Choice Tasks: Response Signal and Response Time Data

    PubMed Central

    Ratcliff, Roger

    2009-01-01

    In the response signal paradigm, a test stimulus is presented, and then at one of a number of experimenter-determined times, a signal to respond is presented. Response signal, standard response time (RT), and accuracy data were collected from 19 college-age and 19 60- to 75-year-old participants in a numerosity discrimination task. The data were fit with 2 versions of the diffusion model. Response signal data were modeled by assuming a mixture of processes, those that have terminated before the signal and those that have not terminated; in the latter case, decisions are based on either partial information or guessing. The effects of aging on performance in the regular RT task were explained the same way in the models, with a 70- to 100-ms increase in the nondecision component of processing, more conservative decision criteria, and more variability across trials in drift and the nondecision component of processing, but little difference in drift rate (evidence). In the response signal task, the primary reason for a slower rise in the response signal functions for older participants was variability in the nondecision component of processing. Overall, the results were consistent with earlier fits of the diffusion model to the standard RT task for college-age participants and to the data from aging studies using this task in the standard RT procedure. PMID:19140659

  20. A Scaling Model for the Anthropocene Climate Variability with Projections to 2100

    NASA Astrophysics Data System (ADS)

    Hébert, Raphael; Lovejoy, Shaun

    2017-04-01

    The determination of the climate sensitivity to radiative forcing is a fundamental climate science problem with important policy implications. We use a scaling model, with a limited set of parameters, which can directly calculate the forced globally-average surface air temperature response to anthropogenic and natural forcings. At timescales larger than an inner scale τ, which we determine as the ocean-atmosphere coupling scale at around 2 years, the global system responds, approximately, linearly, so that the variability may be decomposed into additive forced and internal components. The Ruelle response theory extends the classical linear response theory for small perturbations to systems far from equilibrium. Our model thus relates radiative forcings to a forced temperature response by convolution with a suitable Green's function, or climate response function. Motivated by scaling symmetries which allow for long range dependence, we assume a general scaling form, a scaling climate response function (SCRF) which is able to produce a wide range of responses: a power-law truncated at τ. This allows us to analytically calculate the climate sensitivity at different time scales, yielding a one-to-one relation from the transient climate response to the equilibrium climate sensitivity which are estimated, respectively, as 1.6+0.3-0.2K and 2.4+1.3-0.6K at the 90 % confidence level. The model parameters are estimated within a Bayesian framework, with a fractional Gaussian noise error model as the internal variability, from forcing series, instrumental surface temperature datasets and CMIP5 GCMs Representative Concentration Pathways (RCP) scenario runs. This observation based model is robust and projections for the coming century are made following the RCP scenario 2.6, 4.5 and 8.5, yielding in the year 2100, respectively : 1.5 +0.3)_{-0.2K, 2.3 ± 0.4 K and 4.0 ± 0.6 K at the 90 % confidence level. For comparison, the associated projections from a CMIP5 multi-model ensemble(MME) (32 models) are: 1.7 ± 0.8 K, 2.6 ± 0.8 K and 4.8 ± 1.3 K. Therefore, our projection uncertainty is less than half the structural uncertainty of this CMIP5 MME.

  1. Vertical dynamics of a single-span beam subjected to moving mass-suspended payload system with variable speeds

    NASA Astrophysics Data System (ADS)

    He, Wei

    2018-03-01

    This paper presents the vertical dynamics of a simply supported Euler-Bernoulli beam subjected to a moving mass-suspended payload system of variable velocities. A planar theoretical model of the moving mass-suspended payload system of variable speeds is developed based on several assumptions: the rope is massless and rigid, and its length keeps constant; the stiffness of the gantry beam is much greater than the supporting beam, and the gantry beam can be treated as a mass particle traveling along the supporting beam; the supporting beam is assumed as a simply supported Bernoulli-Euler beam. The model can be degenerated to consider two classical cases-the moving mass case and the moving payload case. The proposed model is verified using both numerical and experimental methods. To further investigate the effect of possible influential factors, numerical examples are conducted covering a range of parameters, such as variable speeds (acceleration or deceleration), mass ratios of the payload to the total moving load, and the pendulum lengths. The effect of beam flexibility on swing response of the payload is also investigated. It is shown that the effect of a variable speed is significant for the deflections of the beam. The accelerating movement tends to induce larger beam deflections, while the decelerating movement smaller ones. For accelerating or decelerating movements, the moving mass model may underestimate the deflections of the beam compared with the presented model; while for uniform motion, both the moving mass model and the moving mass-payload model lead to same beam responses. Furthermore, it is observed that the swing response of the payload is not sensitive to the stiffness of the beam for operational cases of a moving crane, thus a simple moving payload model can be employed in the swing control of the payload.

  2. Application of a baseflow filter for evaluating model structure suitability of the IHACRES CMD

    NASA Astrophysics Data System (ADS)

    Kim, H. S.

    2015-02-01

    The main objective of this study was to assess the predictive uncertainty from the rainfall-runoff model structure coupling a conceptual module (non-linear module) with a metric transfer function module (linear module). The methodology was primarily based on the comparison between the outputs of the rainfall-runoff model and those from an alternative model approach. An alternative model approach was used to minimise uncertainties arising from data and the model structure. A baseflow filter was adopted to better understand deficiencies in the forms of the rainfall-runoff model by avoiding the uncertainties related to data and the model structure. The predictive uncertainty from the model structure was investigated for representative groups of catchments having similar hydrological response characteristics in the upper Murrumbidgee Catchment. In the assessment of model structure suitability, the consistency (or variability) of catchment response over time and space in model performance and parameter values has been investigated to detect problems related to the temporal and spatial variability of the model accuracy. The predictive error caused by model uncertainty was evaluated through analysis of the variability of the model performance and parameters. A graphical comparison of model residuals, effective rainfall estimates and hydrographs was used to determine a model's ability related to systematic model deviation between simulated and observed behaviours and general behavioural differences in the timing and magnitude of peak flows. The model's predictability was very sensitive to catchment response characteristics. The linear module performs reasonably well in the wetter catchments but has considerable difficulties when applied to the drier catchments where a hydrologic response is dominated by quick flow. The non-linear module has a potential limitation in its capacity to capture non-linear processes for converting observed rainfall into effective rainfall in both the wetter and drier catchments. The comparative study based on a better quantification of the accuracy and precision of hydrological modelling predictions yields a better understanding for the potential improvement of model deficiencies.

  3. A conceptual model of plant responses to climate with implications for monitoring ecosystem change

    Treesearch

    C. David Bertelsen

    2013-01-01

    Climate change is affecting natural systems on a global scale and is particularly rapid in the Southwest. It is important to identify impacts of a changing climate before ecosystems become unstable. Recognizing plant responses to climate change requires knowledge of both species present and plant responses to variable climatic conditions. A conceptual model derived...

  4. Investigation of the Process Conditions for Hydrogen Production by Steam Reforming of Glycerol over Ni/Al2O3 Catalyst Using Response Surface Methodology (RSM)

    PubMed Central

    Ebshish, Ali; Yaakob, Zahira; Taufiq-Yap, Yun Hin; Bshish, Ahmed

    2014-01-01

    In this work; a response surface methodology (RSM) was implemented to investigate the process variables in a hydrogen production system. The effects of five independent variables; namely the temperature (X1); the flow rate (X2); the catalyst weight (X3); the catalyst loading (X4) and the glycerol-water molar ratio (X5) on the H2 yield (Y1) and the conversion of glycerol to gaseous products (Y2) were explored. Using multiple regression analysis; the experimental results of the H2 yield and the glycerol conversion to gases were fit to quadratic polynomial models. The proposed mathematical models have correlated the dependent factors well within the limits that were being examined. The best values of the process variables were a temperature of approximately 600 °C; a feed flow rate of 0.05 mL/min; a catalyst weight of 0.2 g; a catalyst loading of 20% and a glycerol-water molar ratio of approximately 12; where the H2 yield was predicted to be 57.6% and the conversion of glycerol was predicted to be 75%. To validate the proposed models; statistical analysis using a two-sample t-test was performed; and the results showed that the models could predict the responses satisfactorily within the limits of the variables that were studied. PMID:28788567

  5. A finite-strain homogenization model for viscoplastic porous single crystals: I - Theory

    NASA Astrophysics Data System (ADS)

    Song, Dawei; Ponte Castañeda, P.

    2017-10-01

    This paper presents a homogenization-based constitutive model for the finite-strain, macroscopic response of porous viscoplastic single crystals. The model accounts explicitly for the evolution of the average lattice orientation, as well as the porosity, average shape and orientation of the voids (and their distribution), by means of appropriate microstructural variables playing the role of internal variables and serving to characterize the evolution of both the "crystallographic" and "morphological" anisotropy of the porous single crystals. The model makes use of the fully optimized second-order variational method of Ponte Castañeda (2015), together with the iterated homogenization approach of Agoras and Ponte Castañeda (2013), to characterize the instantaneous effective response of the porous single crystals with fixed values of the microstructural variables. Consistent homogenization estimates for the average strain rate and vorticity fields in the phases are then used to derive evolution equations for the associated microstructural variables. The model is 100% predictive, requiring no fitting parameters, and applies for porous viscoplastic single crystals with general crystal anisotropy and average void shape and orientation, which are subjected to general loading conditions. In Part II of this work (Song and Ponte Castañeda, 2017a), results for both the instantaneous response and the evolution of the microstructure will be presented for porous FCC and HCP single crystals under a wide range of loading conditions, and good agreement with available FEM results will be shown.

  6. Framing 100-year overflowing and overtopping marine submersion hazard resulting from the propagation of 100-year joint hydrodynamic conditions

    NASA Astrophysics Data System (ADS)

    Nicolae Lerma, A.; Bulteau, T.; Elineau, S.; Paris, F.; Pedreros, R.

    2016-12-01

    Marine submersion is an increasing concern for coastal cities as urban development reinforces their vulnerabilities while climate change is likely to foster the frequency and magnitude of submersions. Characterising the coastal flooding hazard is therefore of paramount importance to ensure the security of people living in such places and for coastal planning. A hazard is commonly defined as an adverse phenomenon, often represented by a magnitude of a variable of interest (e.g. flooded area), hereafter called response variable, associated with a probability of exceedance or, alternatively, a return period. Characterising the coastal flooding hazard consists in finding the correspondence between the magnitude and the return period. The difficulty lies in the fact that the assessment is usually performed using physical numerical models taking as inputs scenarios composed by multiple forcing conditions that are most of the time interdependent. Indeed, a time series of the response variable is usually not available so we have to deal instead with time series of forcing variables (e.g. water level, waves). Thus, the problem is twofold: on the one hand, the definition of scenarios is a multivariate matter; on the other hand, it is tricky and approximate to associate the resulting response, being the output of the physical numerical model, to the return period defined for the scenarios. In this study, we illustrate the problem on the district of Leucate, located in the French Mediterranean coast. A multivariate extreme value analysis of waves and water levels is performed offshore using a conditional extreme model, then two different methods are used to define and select 100-year scenarios of forcing variables: one based on joint exceedance probability contours, a method classically used in coastal risks studies, the other based on environmental contours, which are commonly used in the field of structure design engineering. We show that these two methods enable one to frame the true 100-year response variable. The selected scenarios are propagated to the shore through a high resolution flood modelling coupling overflowing and overtopping processes. Results in terms of inundated areas and inland water volumes are finally compared for the two methods, giving upper and lower bounds for the true response variables.

  7. Combined mixture-process variable approach: a suitable statistical tool for nanovesicular systems optimization.

    PubMed

    Habib, Basant A; AbouGhaly, Mohamed H H

    2016-06-01

    This study aims to illustrate the applicability of combined mixture-process variable (MPV) design and modeling for optimization of nanovesicular systems. The D-optimal experimental plan studied the influence of three mixture components (MCs) and two process variables (PVs) on lercanidipine transfersomes. The MCs were phosphatidylcholine (A), sodium glycocholate (B) and lercanidipine hydrochloride (C), while the PVs were glycerol amount in the hydration mixture (D) and sonication time (E). The studied responses were Y1: particle size, Y2: zeta potential and Y3: entrapment efficiency percent (EE%). Polynomial equations were used to study the influence of MCs and PVs on each response. Response surface methodology and multiple response optimization were applied to optimize the formulation with the goals of minimizing Y1 and maximizing Y2 and Y3. The obtained polynomial models had prediction R(2) values of 0.645, 0.947 and 0.795 for Y1, Y2 and Y3, respectively. Contour, Piepel's response trace, perturbation, and interaction plots were drawn for responses representation. The optimized formulation, A: 265 mg, B: 10 mg, C: 40 mg, D: zero g and E: 120 s, had desirability of 0.9526. The actual response values for the optimized formulation were within the two-sided 95% prediction intervals and were close to the predicted values with maximum percent deviation of 6.2%. This indicates the validity of combined MPV design and modeling for optimization of transfersomal formulations as an example of nanovesicular systems.

  8. Intensified Indian Ocean climate variability during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Thirumalai, K.; DiNezro, P.; Tierney, J. E.; Puy, M.; Mohtadi, M.

    2017-12-01

    Climate models project increased year-to-year climate variability in the equatorial Indian Ocean in response to greenhouse gas warming. This response has been attributed to changes in the mean climate of the Indian Ocean associated with the zonal sea-surface temperature (SST) gradient. According to these studies, air-sea coupling is enhanced due to a stronger SST gradient driving anomalous easterlies that shoal the thermocline in the eastern Indian Ocean. We propose that this relationship between the variability and the zonal SST gradient is consistent across different mean climate states. We test this hypothesis using simulations of past and future climate performed with the Community Earth System Model Version 1 (CESM1). We constrain the realism of the model for the Last Glacial Maximum (LGM) where CESM1 simulates a mean climate consistent with a stronger SST gradient, agreeing with proxy reconstructions. CESM1 also simulates a pronounced increase in seasonal and interannual variability. We develop new estimates of climate variability on these timescales during the LGM using δ18O analysis of individual foraminifera (IFA). IFA data generated from four different cores located in the eastern Indian Ocean indicate a marked increase in δ18O-variance during the LGM as compared to the late Holocene. Such a significant increase in the IFA-δ18O variance strongly supports the modeling simulations. This agreement further supports the dynamics linking year-to-year variability and an altered SST gradient, increasing our confidence in model projections.

  9. Uncertainty in Indian Ocean Dipole response to global warming: the role of internal variability

    NASA Astrophysics Data System (ADS)

    Hui, Chang; Zheng, Xiao-Tong

    2018-01-01

    The Indian Ocean Dipole (IOD) is one of the leading modes of interannual sea surface temperature (SST) variability in the tropical Indian Ocean (TIO). The response of IOD to global warming is quite uncertain in climate model projections. In this study, the uncertainty in IOD change under global warming, especially that resulting from internal variability, is investigated based on the community earth system model large ensemble (CESM-LE). For the IOD amplitude change, the inter-member uncertainty in CESM-LE is about 50% of the intermodel uncertainty in the phase 5 of the coupled model intercomparison project (CMIP5) multimodel ensemble, indicating the important role of internal variability in IOD future projection. In CESM-LE, both the ensemble mean and spread in mean SST warming show a zonal positive IOD-like (pIOD-like) pattern in the TIO. This pIOD-like mean warming regulates ocean-atmospheric feedbacks of the interannual IOD mode, and weakens the skewness of the interannual variability. However, as the changes in oceanic and atmospheric feedbacks counteract each other, the inter-member variability in IOD amplitude change is not correlated with that of the mean state change. Instead, the ensemble spread in IOD amplitude change is correlated with that in ENSO amplitude change in CESM-LE, reflecting the close inter-basin relationship between the tropical Pacific and Indian Ocean in this model.

  10. AMOC decadal variability in Earth system models: Mechanisms and climate impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorov, Alexey

    This is the final report for the project titled "AMOC decadal variability in Earth system models: Mechanisms and climate impacts". The central goal of this one-year research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) within a hierarchy of climate models ranging from realistic ocean GCMs to Earth system models. The AMOC is a key element of ocean circulation responsible for oceanic transport of heat from low to high latitudes and controlling, to a large extent, climate variations in the North Atlantic. The questions of the AMOC stability, variability andmore » predictability, directly relevant to the questions of climate predictability, were at the center of the research work.« less

  11. Effect of Stimulation of Neurotransmitter Systems on Heart Rate Variability and β-Adrenergic Responsiveness of Erythrocytes in Outbred Rats.

    PubMed

    Kur'yanova, E V; Tryasuchev, A V; Stupin, V O; Teplyi, D L

    2017-05-01

    We studied heart rate variability and β-adrenergic responsiveness of erythrocytes and changes in these parameters in response to single administration of β-adrenoblocker propranolol (2 mg/kg) in outbred male rats against the background of activation of the noradrenergic, serotonergic, and dopaminergic neurotransmitter systems achieved by 4-fold injections maprotiline (10 mg/kg), 5-hydroxytryptophan (50 mg/kg) combined with fluoxetine (3 mg/kg), and L-DOPA (20 mg/kg) with amantadine (20 mg/kg), respectively. Stimulation of the noradrenergic system moderately enhanced the heart rhythm rigidity and β-adrenergic responsiveness of erythrocytes. In addition, it markedly augmented the moderating effect of subsequently administered propranolol on LF and VLF components in the heart rate variability and reversed the effect of propranolol on β-adrenergic responsiveness of erythrocytes. Stimulation of the serotonergic system dramatically decreased all components in the heart rate variability and pronouncedly enhanced β-adrenergic responsiveness of erythrocytes. Subsequent injection of propranolol slightly restored all components in the heart rate variability and decreased β-adrenergic responsiveness of erythrocytes to the control level. Stimulation of the dopaminergic system made the heart rate more rigid due to decrease of all components in the heart rate variability; in addition, it slightly but significantly enhanced β-adrenergic responsiveness of erythrocytes. Subsequent injection of propranolol produced no significant effects on all components in the heart rate variability and on β-adrenergic responsiveness of erythrocytes. Stimulation of noradrenergic, serotonergic, and dopaminergic neurotransmitter systems produced unidirectional and consorted effects on heart rate variability and β-adrenergic responsiveness of erythrocytes, although the magnitudes of these effects were different. Probably, the changes in the heart rate variability in rats with stimulated neurotransmitter systems results from modification of the cellular sensitivity in peripheral organs to adrenergic influences. However, the differences in the reactions to β-adrenoblocker attest to specificity of the mechanisms underlying the changes in membrane reception and adrenergic pathways in every experimental model employed in this study.

  12. GWM-a ground-water management process for the U.S. Geological Survey modular ground-water model (MODFLOW-2000)

    USGS Publications Warehouse

    Ahlfeld, David P.; Barlow, Paul M.; Mulligan, Anne E.

    2005-01-01

    GWM is a Ground?Water Management Process for the U.S. Geological Survey modular three?dimensional ground?water model, MODFLOW?2000. GWM uses a response?matrix approach to solve several types of linear, nonlinear, and mixed?binary linear ground?water management formulations. Each management formulation consists of a set of decision variables, an objective function, and a set of constraints. Three types of decision variables are supported by GWM: flow?rate decision variables, which are withdrawal or injection rates at well sites; external decision variables, which are sources or sinks of water that are external to the flow model and do not directly affect the state variables of the simulated ground?water system (heads, streamflows, and so forth); and binary variables, which have values of 0 or 1 and are used to define the status of flow?rate or external decision variables. Flow?rate decision variables can represent wells that extend over one or more model cells and be active during one or more model stress periods; external variables also can be active during one or more stress periods. A single objective function is supported by GWM, which can be specified to either minimize or maximize the weighted sum of the three types of decision variables. Four types of constraints can be specified in a GWM formulation: upper and lower bounds on the flow?rate and external decision variables; linear summations of the three types of decision variables; hydraulic?head based constraints, including drawdowns, head differences, and head gradients; and streamflow and streamflow?depletion constraints. The Response Matrix Solution (RMS) Package of GWM uses the Ground?Water Flow Process of MODFLOW to calculate the change in head at each constraint location that results from a perturbation of a flow?rate variable; these changes are used to calculate the response coefficients. For linear management formulations, the resulting matrix of response coefficients is then combined with other components of the linear management formulation to form a complete linear formulation; the formulation is then solved by use of the simplex algorithm, which is incorporated into the RMS Package. Nonlinear formulations arise for simulated conditions that include water?table (unconfined) aquifers or head?dependent boundary conditions (such as streams, drains, or evapotranspiration from the water table). Nonlinear formulations are solved by sequential linear programming; that is, repeated linearization of the nonlinear features of the management problem. In this approach, response coefficients are recalculated for each iteration of the solution process. Mixed?binary linear (or mildly nonlinear) formulations are solved by use of the branch and bound algorithm, which is also incorporated into the RMS Package. Three sample problems are provided to demonstrate the use of GWM for typical ground?water flow management problems. These sample problems provide examples of how GWM input files are constructed to specify the decision variables, objective function, constraints, and solution process for a GWM run. The GWM Process runs with the MODFLOW?2000 Global and Ground?Water Flow Processes, but in its current form GWM cannot be used with the Observation, Sensitivity, Parameter?Estimation, or Ground?Water Transport Processes. The GWM Process is written with a modular structure so that new objective functions, constraint types, and solution algorithms can be added.

  13. Practical Applications of Response-to-Intervention Research

    ERIC Educational Resources Information Center

    Griffiths, Amy-Jane; VanDerHeyden, Amanda M.; Parson, Lorien B.; Burns, Matthew K.

    2006-01-01

    Several approaches to response to intervention (RTI) described in the literature could be blended into an RTI model that would be effective in the schools. An effective RTI model should employ three fundamental variables: (a) systematic data collection to identify students in need, (b) effective implementation of interventions for adequate…

  14. Modelling spatio-temporal variability of Mytilus edulis (L.) growth by forcing a dynamic energy budget model with satellite-derived environmental data

    NASA Astrophysics Data System (ADS)

    Thomas, Yoann; Mazurié, Joseph; Alunno-Bruscia, Marianne; Bacher, Cédric; Bouget, Jean-François; Gohin, Francis; Pouvreau, Stéphane; Struski, Caroline

    2011-11-01

    In order to assess the potential of various marine ecosystems for shellfish aquaculture and to evaluate their carrying capacities, there is a need to clarify the response of exploited species to environmental variations using robust ecophysiological models and available environmental data. For a large range of applications and comparison purposes, a non-specific approach based on 'generic' individual growth models offers many advantages. In this context, we simulated the response of blue mussel ( Mytilus edulis L.) to the spatio-temporal fluctuations of the environment in Mont Saint-Michel Bay (North Brittany) by forcing a generic growth model based on Dynamic Energy Budgets with satellite-derived environmental data (i.e. temperature and food). After a calibration step based on data from mussel growth surveys, the model was applied over nine years on a large area covering the entire bay. These simulations provide an evaluation of the spatio-temporal variability in mussel growth and also show the ability of the DEB model to integrate satellite-derived data and to predict spatial and temporal growth variability of mussels. Observed seasonal, inter-annual and spatial growth variations are well simulated. The large-scale application highlights the strong link between food and mussel growth. The methodology described in this study may be considered as a suitable approach to account for environmental effects (food and temperature variations) on physiological responses (growth and reproduction) of filter feeders in varying environments. Such physiological responses may then be useful for evaluating the suitability of coastal ecosystems for shellfish aquaculture.

  15. Co-variation of Temperature and Precipitation in CMIP5 Models and Satellite Observations

    NASA Technical Reports Server (NTRS)

    Liu, Chunlei; Allan, Richard P.; Huffman, George J.

    2013-01-01

    Current variability of precipitation (P) and its response to surface temperature (T) are analysed using coupled (CMIP5) and atmosphere-only (AMIP5) climate model simulations and compared with observational estimates.There is striking agreement between Global Precipitation Climatology Project (GPCP) observed and AMIP5)simulated P anomalies over land both globally and in the tropics suggesting that prescribed sea surface temperature and realistic radiative forcings are sufficient for simulating the interannual variability in continental P. Differences between the observed and simulated P variability over the ocean, originate primarily from the wet tropical regions, in particular the western Pacific, but are reduced slightly after 1995. All datasets show positive responses of P to T globally of around 2 % K for simulations and 3-4 % K in GPCP observations but model responses over the tropical oceans are around 3 times smaller than GPCP over the period 1988-2005. The observed anticorrelation between land and ocean P, linked with El Nio Southern Oscillation, is captured by the simulations. All data sets over the tropical ocean show a tendency for wet regions to become wetter and dry regions drier with warming. Over the wet region (greater than or equal to 75 precipitation percentile), the precipitation response is 13-15%K for GPCP and 5%K for models while trends in P are 2.4% decade for GPCP, 0.6% decade for CMIP5 and 0.9decade for AMIP5 suggesting that models are underestimating the precipitation responses or a deficiency exists in the satellite datasets.

  16. Estimating the impact of internal climate variability on ice sheet model simulations

    NASA Astrophysics Data System (ADS)

    Tsai, C. Y.; Forest, C. E.; Pollard, D.

    2016-12-01

    Rising sea level threatens human societies and coastal habitats and melting ice sheets are a major contributor to sea level rise (SLR). Thus, understanding uncertainty of both forcing and variability within the climate system is essential for assessing long-term risk of SLR given their impact on ice sheet evolution. The predictability of polar climate is limited by uncertainties from the given forcing, the climate model response to this forcing, and the internal variability from feedbacks within the fully coupled climate system. Among those sources of uncertainty, the impact of internal climate variability on ice sheet changes has not yet been robustly assessed. Here we investigate how internal variability affects ice sheet projections using climate fields from two Community Earth System Model (CESM) large-ensemble (LE) experiments to force a three-dimensional ice sheet model. Each ensemble member in an LE experiment undergoes the same external forcings but with unique initial conditions. We find that for both LEs, 2m air temperature variability over Greenland ice sheet (GrIS) can lead to significantly different ice sheet responses. Our results show that the internal variability from two fully coupled CESM LEs can cause about 25 35 mm differences of GrIS's contribution to SLR in 2100 compared to present day (about 20% of the total change), and 100m differences of SLR in 2300. Moreover, only using ensemble-mean climate fields as the forcing in ice sheet model can significantly underestimate the melt of GrIS. As the Arctic region becomes warmer, the role of internal variability is critical given the complex nonlinear interactions between surface temperature and ice sheet. Our results demonstrate that internal variability from coupled atmosphere-ocean general circulation model can affect ice sheet simulations and the resulting sea-level projections. This study highlights an urgent need to reassess associated uncertainties of projecting ice sheet loss over the next few centuries to obtain robust estimates of the contribution of ice sheet melt to SLR.

  17. Computational Implementation of a Thermodynamically Based Work Potential Model For Progressive Microdamage and Transverse Cracking in Fiber-Reinforced Laminates

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Waas, Anthony M.; Bednarcyk, Brett A.; Collier, Craig S.

    2012-01-01

    A continuum-level, dual internal state variable, thermodynamically based, work potential model, Schapery Theory, is used capture the effects of two matrix damage mechanisms in a fiber-reinforced laminated composite: microdamage and transverse cracking. Matrix microdamage accrues primarily in the form of shear microcracks between the fibers of the composite. Whereas, larger transverse matrix cracks typically span the thickness of a lamina and run parallel to the fibers. Schapery Theory uses the energy potential required to advance structural changes, associated with the damage mechanisms, to govern damage growth through a set of internal state variables. These state variables are used to quantify the stiffness degradation resulting from damage growth. The transverse and shear stiffness of the lamina are related to the internal state variables through a set of measurable damage functions. Additionally, the damage variables for a given strain state can be calculated from a set of evolution equations. These evolution equations and damage functions are implemented into the finite element method and used to govern the constitutive response of the material points in the model. Additionally, an axial failure criterion is included in the model. The response of a center-notched, buffer strip-stiffened panel subjected to uniaxial tension is investigated and results are compared to experiment.

  18. User's instructions for the cardiovascular Walters model

    NASA Technical Reports Server (NTRS)

    Croston, R. C.

    1973-01-01

    The model is a combined, steady-state cardiovascular and thermal model. It was originally developed for interactive use, but was converted to batch mode simulation for the Sigma 3 computer. The model has the purpose to compute steady-state circulatory and thermal variables in response to exercise work loads and environmental factors. During a computer simulation run, several selected variables are printed at each time step. End conditions are also printed at the completion of the run.

  19. Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Yi

    2014-11-24

    DOE-GTRC-05596 11/24/2104 Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate PI: Dr. Yi Deng (PI) School of Earth and Atmospheric Sciences Georgia Institute of Technology 404-385-1821, yi.deng@eas.gatech.edu El Niño-Southern Oscillation (ENSO) and Annular Modes (AMs) represent respectively the most important modes of low frequency variability in the tropical and extratropical circulations. The projection of future changes in the ENSO and AM variability, however, remains highly uncertain with the state-of-the-science climate models. This project conducted a process-resolving, quantitative evaluations of the ENSO and AM variability in the modern reanalysis observationsmore » and in climate model simulations. The goal is to identify and understand the sources of uncertainty and biases in models’ representation of ENSO and AM variability. Using a feedback analysis method originally formulated by one of the collaborative PIs, we partitioned the 3D atmospheric temperature anomalies and surface temperature anomalies associated with ENSO and AM variability into components linked to 1) radiation-related thermodynamic processes such as cloud and water vapor feedbacks, 2) local dynamical processes including convection and turbulent/diffusive energy transfer and 3) non-local dynamical processes such as the horizontal energy transport in the oceans and atmosphere. In the past 4 years, the research conducted at Georgia Tech under the support of this project has led to 15 peer-reviewed publications and 9 conference/workshop presentations. Two graduate students and one postdoctoral fellow also received research training through participating the project activities. This final technical report summarizes key scientific discoveries we made and provides also a list of all publications and conference presentations resulted from research activities at Georgia Tech. The main findings include: 1) the distinctly different roles played by atmospheric dynamical processes in establishing surface temperature response to ENSO at tropics and extratropics (i.e., atmospheric dynamics disperses energy out of tropics during ENSO warm events and modulate surface temperature at mid-, high-latitudes through controlling downward longwave radiation); 2) the representations of ENSO-related temperature response in climate models fail to converge at the process-level particularly over extratropics (i.e., models produce the right temperature responses to ENSO but with wrong reasons); 3) water vapor feedback contributes substantially to the temperature anomalies found over U.S. during different phases of the Northern Annular Mode (NAM), which adds new insight to the traditional picture that cold/warm advective processes are the main drivers of local temperature responses to the NAM; 4) the overall land surface temperature biases in the latest NCAR model (CESM1) are caused by biases in surface albedo while the surface temperature biases over ocean are related to multiple factors including biases in model albedo, cloud and oceanic dynamics, and the temperature biases over different ocean basins are also induced by different process biases. These results provide a detailed guidance for process-level model turning and improvement, and thus contribute directly to the overall goal of reducing model uncertainty in projecting future changes in the Earth’s climate system, especially in the ENSO and AM variability.« less

  20. Greening of the Sahara suppressed ENSO activity during the mid-Holocene

    PubMed Central

    Pausata, Francesco S. R.; Zhang, Qiong; Muschitiello, Francesco; Lu, Zhengyao; Chafik, Léon; Niedermeyer, Eva M.; Stager, J. Curt; Cobb, Kim M.; Liu, Zhengyu

    2017-01-01

    The evolution of the El Niño-Southern Oscillation (ENSO) during the Holocene remains uncertain. In particular, a host of new paleoclimate records suggest that ENSO internal variability or other external forcings may have dwarfed the fairly modest ENSO response to precessional insolation changes simulated in climate models. Here, using fully coupled ocean-atmosphere model simulations, we show that accounting for a vegetated and less dusty Sahara during the mid-Holocene relative to preindustrial climate can reduce ENSO variability by 25%, more than twice the decrease obtained using orbital forcing alone. We identify changes in tropical Atlantic mean state and variability caused by the momentous strengthening of the West Africa Monsoon (WAM) as critical factors in amplifying ENSO’s response to insolation forcing through changes in the Walker circulation. Our results thus suggest that potential changes in the WAM due to anthropogenic warming may influence ENSO variability in the future as well. PMID:28685758

  1. Greening of the Sahara suppressed ENSO activity during the mid-Holocene.

    PubMed

    Pausata, Francesco S R; Zhang, Qiong; Muschitiello, Francesco; Lu, Zhengyao; Chafik, Léon; Niedermeyer, Eva M; Stager, J Curt; Cobb, Kim M; Liu, Zhengyu

    2017-07-07

    The evolution of the El Niño-Southern Oscillation (ENSO) during the Holocene remains uncertain. In particular, a host of new paleoclimate records suggest that ENSO internal variability or other external forcings may have dwarfed the fairly modest ENSO response to precessional insolation changes simulated in climate models. Here, using fully coupled ocean-atmosphere model simulations, we show that accounting for a vegetated and less dusty Sahara during the mid-Holocene relative to preindustrial climate can reduce ENSO variability by 25%, more than twice the decrease obtained using orbital forcing alone. We identify changes in tropical Atlantic mean state and variability caused by the momentous strengthening of the West Africa Monsoon (WAM) as critical factors in amplifying ENSO's response to insolation forcing through changes in the Walker circulation. Our results thus suggest that potential changes in the WAM due to anthropogenic warming may influence ENSO variability in the future as well.

  2. Variability and Order in Cytoskeletal Dynamics of Motile Amoeboid Cells

    NASA Astrophysics Data System (ADS)

    Hsu, Hsin-Fang; Bodenschatz, Eberhard; Westendorf, Christian; Gholami, Azam; Pumir, Alain; Tarantola, Marco; Beta, Carsten

    2017-10-01

    The chemotactic motion of eukaryotic cells such as leukocytes or metastatic cancer cells relies on membrane protrusions driven by the polymerization and depolymerization of actin. Here we show that the response of the actin system to a receptor stimulus is subject to a threshold value that varies strongly from cell to cell. Above the threshold, we observe pronounced cell-to-cell variability in the response amplitude. The polymerization time, however, is almost constant over the entire range of response amplitudes, while the depolymerization time increases with increasing amplitude. We show that cell-to-cell variability in the response amplitude correlates with the amount of Arp2 /3 , a protein that enhances actin polymerization. A time-delayed feedback model for the cortical actin concentration is consistent with all our observations and confirms the role of Arp2 /3 in the observed cell-to-cell variability. Taken together, our observations highlight robust regulation of the actin response that enables a reliable timing of cell movement.

  3. Contrasting growth forecasts across the geographical range of Scots pine due to altitudinal and latitudinal differences in climatic sensitivity.

    PubMed

    Matías, Luis; Linares, Juan C; Sánchez-Miranda, Ángela; Jump, Alistair S

    2017-10-01

    Ongoing changes in global climate are altering ecological conditions for many species. The consequences of such changes are typically most evident at the edge of a species' geographical distribution, where differences in growth or population dynamics may result in range expansions or contractions. Understanding population responses to different climatic drivers along wide latitudinal and altitudinal gradients is necessary in order to gain a better understanding of plant responses to ongoing increases in global temperature and drought severity. We selected Scots pine (Pinus sylvestris L.) as a model species to explore growth responses to climatic variability (seasonal temperature and precipitation) over the last century through dendrochronological methods. We developed linear models based on age, climate and previous growth to forecast growth trends up to year 2100 using climatic predictions. Populations were located at the treeline across a latitudinal gradient covering the northern, central and southernmost populations and across an altitudinal gradient at the southern edge of the distribution (treeline, medium and lower elevations). Radial growth was maximal at medium altitude and treeline of the southernmost populations. Temperature was the main factor controlling growth variability along the gradients, although the timing and strength of climatic variables affecting growth shifted with latitude and altitude. Predictive models forecast a general increase in Scots pine growth at treeline across the latitudinal distribution, with southern populations increasing growth up to year 2050, when it stabilizes. The highest responsiveness appeared at central latitude, and moderate growth increase is projected at the northern limit. Contrastingly, the model forecasted growth declines at lowland-southern populations, suggesting an upslope range displacement over the coming decades. Our results give insight into the geographical responses of tree species to climate change and demonstrate the importance of incorporating biogeographical variability into predictive models for an accurate prediction of species dynamics as climate changes. © 2017 John Wiley & Sons Ltd.

  4. Model building strategy for logistic regression: purposeful selection.

    PubMed

    Zhang, Zhongheng

    2016-03-01

    Logistic regression is one of the most commonly used models to account for confounders in medical literature. The article introduces how to perform purposeful selection model building strategy with R. I stress on the use of likelihood ratio test to see whether deleting a variable will have significant impact on model fit. A deleted variable should also be checked for whether it is an important adjustment of remaining covariates. Interaction should be checked to disentangle complex relationship between covariates and their synergistic effect on response variable. Model should be checked for the goodness-of-fit (GOF). In other words, how the fitted model reflects the real data. Hosmer-Lemeshow GOF test is the most widely used for logistic regression model.

  5. Predicting sun protection behaviors using protection motivation variables.

    PubMed

    Ch'ng, Joanne W M; Glendon, A Ian

    2014-04-01

    Protection motivation theory components were used to predict sun protection behaviors (SPBs) using four outcome measures: typical reported behaviors, previous reported behaviors, current sunscreen use as determined by interview, and current observed behaviors (clothing worn) to control for common method bias. Sampled from two SE Queensland public beaches during summer, 199 participants aged 18-29 years completed a questionnaire measuring perceived severity, perceived vulnerability, response efficacy, response costs, and protection motivation (PM). Personal perceived risk (similar to threat appraisal) and response likelihood (similar to coping appraisal) were derived from their respective PM components. Protection motivation predicted all four SPB criterion variables. Personal perceived risk and response likelihood predicted protection motivation. Protection motivation completely mediated the effect of response likelihood on all four criterion variables. Alternative models are considered. Strengths and limitations of the study are outlined and suggestions made for future research.

  6. Sensitivity Analysis Tailored to Constrain 21st Century Terrestrial Carbon-Uptake

    NASA Astrophysics Data System (ADS)

    Muller, S. J.; Gerber, S.

    2013-12-01

    The long-term fate of terrestrial carbon (C) in response to climate change remains a dominant source of uncertainty in Earth-system model projections. Increasing atmospheric CO2 could be mitigated by long-term net uptake of C, through processes such as increased plant productivity due to "CO2-fertilization". Conversely, atmospheric conditions could be exacerbated by long-term net release of C, through processes such as increased decomposition due to higher temperatures. This balance is an important area of study, and a major source of uncertainty in long-term (>year 2050) projections of planetary response to climate change. We present results from an innovative application of sensitivity analysis to LM3V, a dynamic global vegetation model (DGVM), intended to identify observed/observable variables that are useful for constraining long-term projections of C-uptake. We analyzed the sensitivity of cumulative C-uptake by 2100, as modeled by LM3V in response to IPCC AR4 scenario climate data (1860-2100), to perturbations in over 50 model parameters. We concurrently analyzed the sensitivity of over 100 observable model variables, during the extant record period (1970-2010), to the same parameter changes. By correlating the sensitivities of observable variables with the sensitivity of long-term C-uptake we identified model calibration variables that would also constrain long-term C-uptake projections. LM3V employs a coupled carbon-nitrogen cycle to account for N-limitation, and we find that N-related variables have an important role to play in constraining long-term C-uptake. This work has implications for prioritizing field campaigns to collect global data that can help reduce uncertainties in the long-term land-atmosphere C-balance. Though results of this study are specific to LM3V, the processes that characterize this model are not completely divorced from other DGVMs (or reality), and our approach provides valuable insights into how data can be leveraged to be better constrain projections for the land carbon sink.

  7. Measuring Latent Quantities

    ERIC Educational Resources Information Center

    McDonald, Roderick P.

    2011-01-01

    A distinction is proposed between measures and predictors of latent variables. The discussion addresses the consequences of the distinction for the true-score model, the linear factor model, Structural Equation Models, longitudinal and multilevel models, and item-response models. A distribution-free treatment of calibration and…

  8. Maximizing the Information and Validity of a Linear Composite in the Factor Analysis Model for Continuous Item Responses

    ERIC Educational Resources Information Center

    Ferrando, Pere J.

    2008-01-01

    This paper develops results and procedures for obtaining linear composites of factor scores that maximize: (a) test information, and (b) validity with respect to external variables in the multiple factor analysis (FA) model. I treat FA as a multidimensional item response theory model, and use Ackerman's multidimensional information approach based…

  9. Enabling School Structure, Collective Responsibility, and a Culture of Academic Optimism: Toward a Robust Model of School Performance in Taiwan

    ERIC Educational Resources Information Center

    Wu, Jason H.; Hoy, Wayne K.; Tarter, C. John

    2013-01-01

    Purpose: The purpose of this research is twofold: to test a theory of academic optimism in Taiwan elementary schools and to expand the theory by adding new variables, collective responsibility and enabling school structure, to the model. Design/methodology/approach: Structural equation modeling was used to test, refine, and expand an…

  10. Modeling the role of environmental variables on the population dynamics of the malaria vector Anopheles gambiae sensu stricto

    PubMed Central

    2012-01-01

    Background The impact of weather and climate on malaria transmission has attracted considerable attention in recent years, yet uncertainties around future disease trends under climate change remain. Mathematical models provide powerful tools for addressing such questions and understanding the implications for interventions and eradication strategies, but these require realistic modeling of the vector population dynamics and its response to environmental variables. Methods Published and unpublished field and experimental data are used to develop new formulations for modeling the relationships between key aspects of vector ecology and environmental variables. These relationships are integrated within a validated deterministic model of Anopheles gambiae s.s. population dynamics to provide a valuable tool for understanding vector response to biotic and abiotic variables. Results A novel, parsimonious framework for assessing the effects of rainfall, cloudiness, wind speed, desiccation, temperature, relative humidity and density-dependence on vector abundance is developed, allowing ease of construction, analysis, and integration into malaria transmission models. Model validation shows good agreement with longitudinal vector abundance data from Tanzania, suggesting that recent malaria reductions in certain areas of Africa could be due to changing environmental conditions affecting vector populations. Conclusions Mathematical models provide a powerful, explanatory means of understanding the role of environmental variables on mosquito populations and hence for predicting future malaria transmission under global change. The framework developed provides a valuable advance in this respect, but also highlights key research gaps that need to be resolved if we are to better understand future malaria risk in vulnerable communities. PMID:22877154

  11. Variable Stiffness Panel Structural Analyses With Material Nonlinearity and Correlation With Tests

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Gurdal, Zafer

    2006-01-01

    Results from structural analyses of three tow-placed AS4/977-3 composite panels with both geometric and material nonlinearities are presented. Two of the panels have variable stiffness layups where the fiber orientation angle varies as a continuous function of location on the panel planform. One variable stiffness panel has overlapping tow bands of varying thickness, while the other has a theoretically uniform thickness. The third panel has a conventional uniform-thickness [plus or minus 45](sub 5s) layup with straight fibers, providing a baseline for comparing the performance of the variable stiffness panels. Parametric finite element analyses including nonlinear material shear are first compared with material characterization test results for two orthotropic layups. This nonlinear material model is incorporated into structural analysis models of the variable stiffness and baseline panels with applied end shortenings. Measured geometric imperfections and mechanical prestresses, generated by forcing the variable stiffness panels from their cured anticlastic shapes into their flatter test configurations, are also modeled. Results of these structural analyses are then compared to the measured panel structural response. Good correlation is observed between the analysis results and displacement test data throughout deep postbuckling up to global failure, suggesting that nonlinear material behavior is an important component of the actual panel structural response.

  12. Leveraging organismal biology to forecast the effects of climate change.

    PubMed

    Buckley, Lauren B; Cannistra, Anthony F; John, Aji

    2018-04-26

    Despite the pressing need for accurate forecasts of ecological and evolutionary responses to environmental change, commonly used modelling approaches exhibit mixed performance because they omit many important aspects of how organisms respond to spatially and temporally variable environments. Integrating models based on organismal phenotypes at the physiological, performance and fitness levels can improve model performance. We summarize current limitations of environmental data and models and discuss potential remedies. The paper reviews emerging techniques for sensing environments at fine spatial and temporal scales, accounting for environmental extremes, and capturing how organisms experience the environment. Intertidal mussel data illustrate biologically important aspects of environmental variability. We then discuss key challenges in translating environmental conditions into organismal performance including accounting for the varied timescales of physiological processes, for responses to environmental fluctuations including the onset of stress and other thresholds, and for how environmental sensitivities vary across lifecycles. We call for the creation of phenotypic databases to parameterize forecasting models and advocate for improved sharing of model code and data for model testing. We conclude with challenges in organismal biology that must be solved to improve forecasts over the next decade.acclimation, biophysical models, ecological forecasting, extremes, microclimate, spatial and temporal variability.

  13. Factoring vs linear modeling in rate estimation: a simulation study of relative accuracy.

    PubMed

    Maldonado, G; Greenland, S

    1998-07-01

    A common strategy for modeling dose-response in epidemiology is to transform ordered exposures and covariates into sets of dichotomous indicator variables (that is, to factor the variables). Factoring tends to increase estimation variance, but it also tends to decrease bias and thus may increase or decrease total accuracy. We conducted a simulation study to examine the impact of factoring on the accuracy of rate estimation. Factored and unfactored Poisson regression models were fit to follow-up study datasets that were randomly generated from 37,500 population model forms that ranged from subadditive to supramultiplicative. In the situations we examined, factoring sometimes substantially improved accuracy relative to fitting the corresponding unfactored model, sometimes substantially decreased accuracy, and sometimes made little difference. The difference in accuracy between factored and unfactored models depended in a complicated fashion on the difference between the true and fitted model forms, the strength of exposure and covariate effects in the population, and the study size. It may be difficult in practice to predict when factoring is increasing or decreasing accuracy. We recommend, therefore, that the strategy of factoring variables be supplemented with other strategies for modeling dose-response.

  14. Behavioral variability in SHR and WKY rats as a function of rearing environment and reinforcement contingency.

    PubMed Central

    Hunziker, M H; Saldana, R L; Neuringer, A

    1996-01-01

    The spontaneously hypertensive rat (SHR) may model aspects of human attention deficit hyperactivity disorder (ADHD). For example, just as responses by children with ADHD tend to be variable, so too SHRs often respond more variably than do Wistar-Kyoto (WKY) control rats. The present study asked whether behavioral variability in the SHR strain is influenced by rearing environment, a question related to hypotheses concerning the etiology of human ADHD. Some rats from each strain were reared in an enriched environment (housed socially), and others were reared in an impoverished environment (housed in isolation). Four groups--enriched SHR, impoverished SHR, enriched WKY, and impoverished WKY--were studied under two reinforcement contingencies, one in which reinforcement was independent of response variability and the other in which reinforcement depended upon high variability. The main finding was that rearing environment did not influence response variability (enriched and impoverished subjects responded similarly throughout). However, rearing environment affected body weight (enriched subjects weighted more than impoverished subjects) and response rate (impoverished subjects generally responded faster than enriched subjects). In addition, SHRs tended to respond variably throughout the experiment, whereas WKYs were more sensitive to the variability contingencies. Thus, behavioral variability was affected by genetic strain and by reinforcement contingency but not by the environment in which the subjects were reared. PMID:8583193

  15. Harmonize input selection for sediment transport prediction

    NASA Astrophysics Data System (ADS)

    Afan, Haitham Abdulmohsin; Keshtegar, Behrooz; Mohtar, Wan Hanna Melini Wan; El-Shafie, Ahmed

    2017-09-01

    In this paper, three modeling approaches using a Neural Network (NN), Response Surface Method (RSM) and response surface method basis Global Harmony Search (GHS) are applied to predict the daily time series suspended sediment load. Generally, the input variables for forecasting the suspended sediment load are manually selected based on the maximum correlations of input variables in the modeling approaches based on NN and RSM. The RSM is improved to select the input variables by using the errors terms of training data based on the GHS, namely as response surface method and global harmony search (RSM-GHS) modeling method. The second-order polynomial function with cross terms is applied to calibrate the time series suspended sediment load with three, four and five input variables in the proposed RSM-GHS. The linear, square and cross corrections of twenty input variables of antecedent values of suspended sediment load and water discharge are investigated to achieve the best predictions of the RSM based on the GHS method. The performances of the NN, RSM and proposed RSM-GHS including both accuracy and simplicity are compared through several comparative predicted and error statistics. The results illustrated that the proposed RSM-GHS is as uncomplicated as the RSM but performed better, where fewer errors and better correlation was observed (R = 0.95, MAE = 18.09 (ton/day), RMSE = 25.16 (ton/day)) compared to the ANN (R = 0.91, MAE = 20.17 (ton/day), RMSE = 33.09 (ton/day)) and RSM (R = 0.91, MAE = 20.06 (ton/day), RMSE = 31.92 (ton/day)) for all types of input variables.

  16. Not accounting for interindividual variability can mask habitat selection patterns: a case study on black bears.

    PubMed

    Lesmerises, Rémi; St-Laurent, Martin-Hugues

    2017-11-01

    Habitat selection studies conducted at the population scale commonly aim to describe general patterns that could improve our understanding of the limiting factors in species-habitat relationships. Researchers often consider interindividual variation in selection patterns to control for its effects and avoid pseudoreplication by using mixed-effect models that include individuals as random factors. Here, we highlight common pitfalls and possible misinterpretations of this strategy by describing habitat selection of 21 black bears Ursus americanus. We used Bayesian mixed-effect models and compared results obtained when using random intercept (i.e., population level) versus calculating individual coefficients for each independent variable (i.e., individual level). We then related interindividual variability to individual characteristics (i.e., age, sex, reproductive status, body condition) in a multivariate analysis. The assumption of comparable behavior among individuals was verified only in 40% of the cases in our seasonal best models. Indeed, we found strong and opposite responses among sampled bears and individual coefficients were linked to individual characteristics. For some covariates, contrasted responses canceled each other out at the population level. In other cases, interindividual variability was concealed by the composition of our sample, with the majority of the bears (e.g., old individuals and bears in good physical condition) driving the population response (e.g., selection of young forest cuts). Our results stress the need to consider interindividual variability to avoid misinterpretation and uninformative results, especially for a flexible and opportunistic species. This study helps to identify some ecological drivers of interindividual variability in bear habitat selection patterns.

  17. Simple linear and multivariate regression models.

    PubMed

    Rodríguez del Águila, M M; Benítez-Parejo, N

    2011-01-01

    In biomedical research it is common to find problems in which we wish to relate a response variable to one or more variables capable of describing the behaviour of the former variable by means of mathematical models. Regression techniques are used to this effect, in which an equation is determined relating the two variables. While such equations can have different forms, linear equations are the most widely used form and are easy to interpret. The present article describes simple and multiple linear regression models, how they are calculated, and how their applicability assumptions are checked. Illustrative examples are provided, based on the use of the freely accessible R program. Copyright © 2011 SEICAP. Published by Elsevier Espana. All rights reserved.

  18. Approximate simulation model for analysis and optimization in engineering system design

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1989-01-01

    Computational support of the engineering design process routinely requires mathematical models of behavior to inform designers of the system response to external stimuli. However, designers also need to know the effect of the changes in design variable values on the system behavior. For large engineering systems, the conventional way of evaluating these effects by repetitive simulation of behavior for perturbed variables is impractical because of excessive cost and inadequate accuracy. An alternative is described based on recently developed system sensitivity analysis that is combined with extrapolation to form a model of design. This design model is complementary to the model of behavior and capable of direct simulation of the effects of design variable changes.

  19. The Heteroscedastic Graded Response Model with a Skewed Latent Trait: Testing Statistical and Substantive Hypotheses Related to Skewed Item Category Functions

    ERIC Educational Resources Information Center

    Molenaar, Dylan; Dolan, Conor V.; de Boeck, Paul

    2012-01-01

    The Graded Response Model (GRM; Samejima, "Estimation of ability using a response pattern of graded scores," Psychometric Monograph No. 17, Richmond, VA: The Psychometric Society, 1969) can be derived by assuming a linear regression of a continuous variable, Z, on the trait, [theta], to underlie the ordinal item scores (Takane & de Leeuw in…

  20. Probabilistic models, learning algorithms, and response variability: sampling in cognitive development.

    PubMed

    Bonawitz, Elizabeth; Denison, Stephanie; Griffiths, Thomas L; Gopnik, Alison

    2014-10-01

    Although probabilistic models of cognitive development have become increasingly prevalent, one challenge is to account for how children might cope with a potentially vast number of possible hypotheses. We propose that children might address this problem by 'sampling' hypotheses from a probability distribution. We discuss empirical results demonstrating signatures of sampling, which offer an explanation for the variability of children's responses. The sampling hypothesis provides an algorithmic account of how children might address computationally intractable problems and suggests a way to make sense of their 'noisy' behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Improving estuary models by reducing uncertainties associated with river flows

    NASA Astrophysics Data System (ADS)

    Robins, Peter E.; Lewis, Matt J.; Freer, Jim; Cooper, David M.; Skinner, Christopher J.; Coulthard, Tom J.

    2018-07-01

    To mitigate against future changes to estuaries such as water quality, catchment and estuary models can be coupled to simulate the transport of harmful pathogenic viruses, pollutants and nutrients from their terrestrial sources, through the estuary and to the coast. To predict future changes to estuaries, daily mean river flow projections are typically used. We show that this approach cannot resolve higher frequency discharge events that have large impacts to estuarine dilution, contamination and recovery for two contrasting estuaries. We therefore characterise sub-daily scale flow variability and propagate this through an estuary model to provide robust estimates of impacts for the future. River flow data (35-year records at 15-min sampling) were used to characterise variabilities in storm hydrograph shapes and simulate the estuarine response. In particular, we modelled a fast-responding catchment-estuary system (Conwy, UK), where the natural variability in hydrograph shapes generated large variability in estuarine circulation that was not captured when using daily-averaged river forcing. In the extreme, the freshwater plume from a 'flash' flood (lasting <12 h) was underestimated by up to 100% - and the response to nutrient loading was underestimated further still. A model of a slower-responding system (Humber, UK), where hydrographs typically last 2-4 days, showed less variability in estuarine circulation and good approximation with daily-averaged flow forcing. Our result has implications for entire system impact modelling; when we determine future changes to estuaries, some systems will need higher resolution future river flow estimates.

  2. Alfentanil and placebo analgesia: no sex differences detected in models of experimental pain.

    PubMed

    Olofsen, Erik; Romberg, Raymonda; Bijl, Hans; Mooren, René; Engbers, Frank; Kest, Benjamin; Dahan, Albert

    2005-07-01

    To assess whether patient sex contributes to the interindividual variability in alfentanil analgesic sensitivity, the authors compared male and female subjects for pain sensitivity after alfentanil using a pharmacokinetic-pharmacodynamic modeling approach. Healthy volunteers received a 30-min alfentanil or placebo infusion on two occasions. Analgesia was measured during the subsequent 6 h by assaying tolerance to transcutaneous electrical stimulation (eight men and eight women) of increasing intensity or using visual analog scale scores during treatment with noxious thermal heat (five men and five women). Sedation was concomitantly measured. Population pharmacokinetic-pharmacodynamic models were applied to the analgesia and sedation data using NONMEM. For electrical pain, the placebo and alfentanil models were combined post hoc. Alfentanil and placebo analgesic responses did not differ between sexes. The placebo effect was successfully incorporated into the alfentanil pharmacokinetic-pharmacodynamic model and was responsible for 20% of the potency of alfentanil. However, the placebo effect did not contribute to the analgesic response variability. The pharmacokinetic-pharmacodynamic analysis of the electrical and heat pain data yielded similar values for the potency parameter, but the blood-effect site equilibration half-life was significantly longer for electrical pain (7-9 min) than for heat pain (0.2 min) or sedation (2 min). In contrast to the ample literature demonstrating sex differences in morphine analgesia, neither sex nor subject expectation (i.e., placebo) contributes to the large between-subject response variability with alfentanil analgesia. The difference in alfentanil analgesia onset and offset between pain tests is discussed.

  3. Parsing interindividual drug variability: an emerging role for systems pharmacology

    PubMed Central

    Turner, Richard M; Park, B Kevin; Pirmohamed, Munir

    2015-01-01

    There is notable interindividual heterogeneity in drug response, affecting both drug efficacy and toxicity, resulting in patient harm and the inefficient utilization of limited healthcare resources. Pharmacogenomics is at the forefront of research to understand interindividual drug response variability, but although many genotype-drug response associations have been identified, translation of pharmacogenomic associations into clinical practice has been hampered by inconsistent findings and inadequate predictive values. These limitations are in part due to the complex interplay between drug-specific, human body and environmental factors influencing drug response and therefore pharmacogenomics, whilst intrinsically necessary, is by itself unlikely to adequately parse drug variability. The emergent, interdisciplinary and rapidly developing field of systems pharmacology, which incorporates but goes beyond pharmacogenomics, holds significant potential to further parse interindividual drug variability. Systems pharmacology broadly encompasses two distinct research efforts, pharmacologically-orientated systems biology and pharmacometrics. Pharmacologically-orientated systems biology utilizes high throughput omics technologies, including next-generation sequencing, transcriptomics and proteomics, to identify factors associated with differential drug response within the different levels of biological organization in the hierarchical human body. Increasingly complex pharmacometric models are being developed that quantitatively integrate factors associated with drug response. Although distinct, these research areas complement one another and continual development can be facilitated by iterating between dynamic experimental and computational findings. Ultimately, quantitative data-derived models of sufficient detail will be required to help realize the goal of precision medicine. WIREs Syst Biol Med 2015, 7:221–241. doi: 10.1002/wsbm.1302 PMID:25950758

  4. Outcome Prediction in Mathematical Models of Immune Response to Infection.

    PubMed

    Mai, Manuel; Wang, Kun; Huber, Greg; Kirby, Michael; Shattuck, Mark D; O'Hern, Corey S

    2015-01-01

    Clinicians need to predict patient outcomes with high accuracy as early as possible after disease inception. In this manuscript, we show that patient-to-patient variability sets a fundamental limit on outcome prediction accuracy for a general class of mathematical models for the immune response to infection. However, accuracy can be increased at the expense of delayed prognosis. We investigate several systems of ordinary differential equations (ODEs) that model the host immune response to a pathogen load. Advantages of systems of ODEs for investigating the immune response to infection include the ability to collect data on large numbers of 'virtual patients', each with a given set of model parameters, and obtain many time points during the course of the infection. We implement patient-to-patient variability v in the ODE models by randomly selecting the model parameters from distributions with coefficients of variation v that are centered on physiological values. We use logistic regression with one-versus-all classification to predict the discrete steady-state outcomes of the system. We find that the prediction algorithm achieves near 100% accuracy for v = 0, and the accuracy decreases with increasing v for all ODE models studied. The fact that multiple steady-state outcomes can be obtained for a given initial condition, i.e. the basins of attraction overlap in the space of initial conditions, limits the prediction accuracy for v > 0. Increasing the elapsed time of the variables used to train and test the classifier, increases the prediction accuracy, while adding explicit external noise to the ODE models decreases the prediction accuracy. Our results quantify the competition between early prognosis and high prediction accuracy that is frequently encountered by clinicians.

  5. The NASA Marshall Space Flight Center Earth Global Reference Atmospheric Model-2010 Version

    NASA Technical Reports Server (NTRS)

    Leslie, F. W.; Justus, C. G.

    2011-01-01

    Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA Marshall Space Flight Center Global Reference Atmospheric Model was developed in response to the need for a design reference atmosphere that provides complete global geographical variability and complete altitude coverage (surface to orbital altitudes), as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. In addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations.

  6. A Probabilistic Model for Students' Errors and Misconceptions on the Structure of Matter in Relation to Three Cognitive Variables

    ERIC Educational Resources Information Center

    Tsitsipis, Georgios; Stamovlasis, Dimitrios; Papageorgiou, George

    2012-01-01

    In this study, the effect of 3 cognitive variables such as logical thinking, field dependence/field independence, and convergent/divergent thinking on some specific students' answers related to the particulate nature of matter was investigated by means of probabilistic models. Besides recording and tabulating the students' responses, a combination…

  7. Optimization of process variables for decolorization of Disperse Yellow 211 by Bacillus subtilis using Box-Behnken design.

    PubMed

    Sharma, Praveen; Singh, Lakhvinder; Dilbaghi, Neeraj

    2009-05-30

    Decolorization of textile azo dye Disperse Yellow 211 (DY 211) was carried out from simulated aqueous solution by bacterial strain Bacillus subtilis. Response surface methodology (RSM), involving Box-Behnken design matrix in three most important operating variables; temperature, pH and initial dye concentration was successfully employed for the study and optimization of decolorization process. The total 17 experiments were conducted in the study towards the construction of a quadratic model. According to analysis of variance (ANOVA) results, the proposed model can be used to navigate the design space. Under optimized conditions the bacterial strain was able to decolorize DY 211 up to 80%. Model indicated that initial dye concentration of 100 mgl(-1), pH 7 and a temperature of 32.5 degrees C were found optimum for maximum % decolorization. Very high regression coefficient between the variables and the response (R(2)=0.9930) indicated excellent evaluation of experimental data by polynomial regression model. The combination of the three variables predicted through RSM was confirmed through confirmatory experiments, hence the bacterial strain holds a great potential for the treatment of colored textile effluents.

  8. Understanding and Modeling Freight Stakeholder Behavior

    DOT National Transportation Integrated Search

    2012-04-01

    This project developed a conceptual model of private-sector freight stakeholder decisions and interactions for : forecasting freight demands in response to key policy variables. Using East Central Wisconsin as a study area, empirical : models were de...

  9. Global land carbon sink response to temperature and precipitation varies with ENSO phase

    DOE PAGES

    Fang, Yuanyuan; Michalak, Anna M.; Schwalm, Christopher R.; ...

    2017-06-01

    Climate variability associated with the El Niño-Southern Oscillation (ENSO) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to ENSO. We show that the dominant driver varies with ENSO phase. And whereas tropical temperature explains sink dynamics following El Niño conditions (r TG,P = 0.59, p

  10. Global land carbon sink response to temperature and precipitation varies with ENSO phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yuanyuan; Michalak, Anna M.; Schwalm, Christopher R.

    Climate variability associated with the El Niño-Southern Oscillation (ENSO) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to ENSO. Here, we show that the dominant driver varies with ENSO phase. Whereas tropical temperature explains sink dynamics following El Niño conditions (r TG,P=0.59, p<0.01), the post Lamore » Niña sink is driven largely by tropical precipitation (r PG,T=-0.46, p=0.04). This finding points to an ENSO-phase-dependent interplay between water availability and temperature in controlling the carbon uptake response to climate variations in tropical ecosystems. We further find that none of a suite of ten contemporary terrestrial biosphere models captures these ENSO-phase-dependent responses, highlighting a key uncertainty in modeling climate impacts on the future of the global land carbon sink.« less

  11. Global land carbon sink response to temperature and precipitation varies with ENSO phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yuanyuan; Michalak, Anna M.; Schwalm, Christopher R.

    Climate variability associated with the El Niño-Southern Oscillation (ENSO) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to ENSO. We show that the dominant driver varies with ENSO phase. And whereas tropical temperature explains sink dynamics following El Niño conditions (r TG,P = 0.59, p

  12. An Immuno-epidemiological Model of Paratuberculosis

    NASA Astrophysics Data System (ADS)

    Martcheva, M.

    2011-11-01

    The primary objective of this article is to introduce an immuno-epidemiological model of paratuberculosis (Johne's disease). To develop the immuno-epidemiological model, we first develop an immunological model and an epidemiological model. Then, we link the two models through time-since-infection structure and parameters of the epidemiological model. We use the nested approach to compose the immuno-epidemiological model. Our immunological model captures the switch between the T-cell immune response and the antibody response in Johne's disease. The epidemiological model is a time-since-infection model and captures the variability of transmission rate and the vertical transmission of the disease. We compute the immune-response-dependent epidemiological reproduction number. Our immuno-epidemiological model can be used for investigation of the impact of the immune response on the epidemiology of Johne's disease.

  13. Joint probabilities and quantum cognition

    NASA Astrophysics Data System (ADS)

    de Barros, J. Acacio

    2012-12-01

    In this paper we discuss the existence of joint probability distributions for quantumlike response computations in the brain. We do so by focusing on a contextual neural-oscillator model shown to reproduce the main features of behavioral stimulus-response theory. We then exhibit a simple example of contextual random variables not having a joint probability distribution, and describe how such variables can be obtained from neural oscillators, but not from a quantum observable algebra.

  14. The influence of physical and cognitive factors on reactive agility performance in men basketball players.

    PubMed

    Scanlan, Aaron; Humphries, Brendan; Tucker, Patrick S; Dalbo, Vincent

    2014-01-01

    This study explored the influence of physical and cognitive measures on reactive agility performance in basketball players. Twelve men basketball players performed multiple sprint, Change of Direction Speed Test, and Reactive Agility Test trials. Pearson's correlation analyses were used to determine relationships between the predictor variables (stature, mass, body composition, 5-m, 10-m and 20-m sprint times, peak speed, closed-skill agility time, response time and decision-making time) and reactive agility time (response variable). Simple and stepwise regression analyses determined the individual influence of each predictor variable and the best predictor model for reactive agility time. Morphological (r = -0.45 to 0.19), sprint (r = -0.40 to 0.41) and change-of-direction speed measures (r = 0.43) had small to moderate correlations with reactive agility time. Response time (r = 0.76, P = 0.004) and decision-making time (r = 0.58, P = 0.049) had large to very large relationships with reactive agility time. Response time was identified as the sole predictor variable for reactive agility time in the stepwise model (R(2) = 0.58, P = 0.004). In conclusion, cognitive measures had the greatest influence on reactive agility performance in men basketball players. These findings suggest reaction and decision-making drills should be incorporated in basketball training programmes.

  15. Solar Signals in CMIP-5 Simulations: The Stratospheric Pathway

    NASA Technical Reports Server (NTRS)

    Mitchell, D.M.; Misios, S.; Gray, L. J.; Tourpali, K.; Matthes, K.; Hood, L.; Schmidt, H.; Chiodo, G.; Thieblemont, R.; Rozanov, E.; hide

    2015-01-01

    The 11 year solar-cycle component of climate variability is assessed in historical simulations of models taken from the Coupled Model Intercomparison Project, phase 5 (CMIP-5). Multiple linear regression is applied to estimate the zonal temperature, wind and annular mode responses to a typical solar cycle, with a focus on both the stratosphere and the stratospheric influence on the surface over the period approximately 1850-2005. The analysis is performed on all CMIP-5 models but focuses on the 13 CMIP-5 models that resolve the stratosphere (high-top models) and compares the simulated solar cycle signature with reanalysis data. The 11 year solar cycle component of climate variability is found to be weaker in terms of magnitude and latitudinal gradient around the stratopause in the models than in the reanalysis. The peak in temperature in the lower equatorial stratosphere (approximately 70 hPa) reported in some studies is found in the models to depend on the length of the analysis period, with the last 30 years yielding the strongest response. A modification of the Polar Jet Oscillation (PJO) in response to the 11 year solar cycle is not robust across all models, but is more apparent in models with high spectral resolution in the short-wave region. The PJO evolution is slower in these models, leading to a stronger response during February, whereas observations indicate it to be weaker. In early winter, the magnitude of the modeled response is more consistent with observations when only data from 1979-2005 are considered. The observed North Pacific high-pressure surface response during the solar maximum is only simulated in some models, for which there are no distinguishing model characteristics. The lagged North Atlantic surface response is reproduced in both high- and low-top models, but is more prevalent in the former. In both cases, the magnitude of the response is generally lower than in observations.

  16. Linear response and correlation of a self-propelled particle in the presence of external fields

    NASA Astrophysics Data System (ADS)

    Caprini, Lorenzo; Marini Bettolo Marconi, Umberto; Vulpiani, Angelo

    2018-03-01

    We study the non-equilibrium properties of non interacting active Ornstein-Uhlenbeck particles (AOUP) subject to an external nonuniform field using a Fokker-Planck approach with a focus on the linear response and time-correlation functions. In particular, we compare different methods to compute these functions including the unified colored noise approximation (UCNA). The AOUP model, described by the position of the particle and the active force acting on it, is usually mapped into a Markovian process, describing the motion of a fictitious passive particle in terms of its position and velocity, where the effect of the activity is transferred into a position-dependent friction. We show that the form of the response function of the AOUP depends on whether we put the perturbation on the position and keep unperturbed the active force in the original variables or perturb the position and maintain unperturbed the velocity in the transformed variables. Indeed, as a result of the change of variables the perturbation on the position becomes a perturbation both on the position and on the fictitious velocity. We test these predictions by considering the response for three types of convex potentials: quadratic, quartic and double-well potential. Moreover, by comparing the response of the AOUP model with the corresponding response of the UCNA model we conclude that although the stationary properties are fairly well approximated by the UCNA, the non equilibrium properties are not, an effect which is not negligible when the persistence time is large.

  17. Accounting for Variability in Student Responses to Motion Questions

    ERIC Educational Resources Information Center

    Frank, Brian W.; Kanim, Stephen E.; Gomez, Luanna S.

    2008-01-01

    We describe the results of an experiment conducted to test predictions about student responses to questions about motion based on an explicit model of student thinking in terms of the cuing of a variety of different physical intuitions or conceptual resources. This particular model allows us to account for observed variations in patterns of…

  18. Decomposing Intra-Subject Variability in Children with Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Di Martino, Adriana; Ghaffari, Manely; Curchack, Jocelyn; Reiss, Philip; Hyde, Christopher; Vannucci, Marina; Petkova, Eva; Klein, Donald F.; Castellanos, F. Xavier

    2009-01-01

    Background Increased intra-subject response time standard deviations (RT-SD) discriminate children with Attention-Deficit/Hyperactivity Disorder (ADHD) from healthy controls. RT-SD is averaged over time, thus it does not provide information about the temporal structure of response time variability. We previously hypothesized that such increased variability may be related to slow spontaneous fluctuations in brain activity occurring with periods between 15s and 40s. Here, we investigated whether these slow response time fluctuations add unique differentiating information beyond the global increase in RT-SD. Methods We recorded RT at 3s intervals for 15 minutes during an Eriksen flanker task for 29 children with ADHD and 26 age-matched typically developing controls (TDC) (mean ages 12.5 ± 2.4 and 11.6 ± 2.5; 26 and 12 boys, respectively). The primary outcome was the magnitude of the spectral component in the frequency range between 0.027 and 0.073 Hz measured with continuous Morlet wavelet transform. Results The magnitude of the low frequency fluctuation was greater for children with ADHD compared to TDC (p=0.02, d= 0.69). After modeling ADHD diagnosis as a function of RT-SD, adding this specific frequency range significantly improved the model fit (p=0.03; odds ratio= 2.58). Conclusions Fluctuations in low frequency response time variability predict the diagnosis of ADHD beyond the effect associated with global differences in variability. Future studies will examine whether such spectrally specific fluctuations in behavioral responses are linked to intrinsic regional cerebral hemodynamic oscillations which occur at similar frequencies. PMID:18423424

  19. Using variance structure to quantify responses to perturbation in fish catches

    USGS Publications Warehouse

    Vidal, Tiffany E.; Irwin, Brian J.; Wagner, Tyler; Rudstam, Lars G.; Jackson, James R.; Bence, James R.

    2017-01-01

    We present a case study evaluation of gill-net catches of Walleye Sander vitreus to assess potential effects of large-scale changes in Oneida Lake, New York, including the disruption of trophic interactions by double-crested cormorants Phalacrocorax auritus and invasive dreissenid mussels. We used the empirical long-term gill-net time series and a negative binomial linear mixed model to partition the variability in catches into spatial and coherent temporal variance components, hypothesizing that variance partitioning can help quantify spatiotemporal variability and determine whether variance structure differs before and after large-scale perturbations. We found that the mean catch and the total variability of catches decreased following perturbation but that not all sampling locations responded in a consistent manner. There was also evidence of some spatial homogenization concurrent with a restructuring of the relative productivity of individual sites. Specifically, offshore sites generally became more productive following the estimated break point in the gill-net time series. These results provide support for the idea that variance structure is responsive to large-scale perturbations; therefore, variance components have potential utility as statistical indicators of response to a changing environment more broadly. The modeling approach described herein is flexible and would be transferable to other systems and metrics. For example, variance partitioning could be used to examine responses to alternative management regimes, to compare variability across physiographic regions, and to describe differences among climate zones. Understanding how individual variance components respond to perturbation may yield finer-scale insights into ecological shifts than focusing on patterns in the mean responses or total variability alone.

  20. State variable modeling of the integrated engine and aircraft dynamics

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Sprinţu, Iuliana

    2014-12-01

    This study explores the dynamic characteristics of the combined aircraft-engine system, based on the general theory of the state variables for linear and nonlinear systems, with details leading first to the separate formulation of the longitudinal and the lateral directional state variable models, followed by the merging of the aircraft and engine models into a single state variable model. The linearized equations were expressed in a matrix form and the engine dynamics was included in terms of variation of thrust following a deflection of the throttle. The linear model of the shaft dynamics for a two-spool jet engine was derived by extending the one-spool model. The results include the discussion of the thrust effect upon the aircraft response when the thrust force associated with the engine has a sizable moment arm with respect to the aircraft center of gravity for creating a compensating moment.

  1. A heteroscedastic generalized linear model with a non-normal speed factor for responses and response times.

    PubMed

    Molenaar, Dylan; Bolsinova, Maria

    2017-05-01

    In generalized linear modelling of responses and response times, the observed response time variables are commonly transformed to make their distribution approximately normal. A normal distribution for the transformed response times is desirable as it justifies the linearity and homoscedasticity assumptions in the underlying linear model. Past research has, however, shown that the transformed response times are not always normal. Models have been developed to accommodate this violation. In the present study, we propose a modelling approach for responses and response times to test and model non-normality in the transformed response times. Most importantly, we distinguish between non-normality due to heteroscedastic residual variances, and non-normality due to a skewed speed factor. In a simulation study, we establish parameter recovery and the power to separate both effects. In addition, we apply the model to a real data set. © 2017 The Authors. British Journal of Mathematical and Statistical Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.

  2. Local-scale models reveal ecological niche variability in amphibian and reptile communities from two contrasting biogeographic regions

    PubMed Central

    Santos, Xavier; Felicísimo, Ángel M.

    2016-01-01

    Ecological Niche Models (ENMs) are widely used to describe how environmental factors influence species distribution. Modelling at a local scale, compared to a large scale within a high environmental gradient, can improve our understanding of ecological species niches. The main goal of this study is to assess and compare the contribution of environmental variables to amphibian and reptile ENMs in two Spanish national parks located in contrasting biogeographic regions, i.e., the Mediterranean and the Atlantic area. The ENMs were built with maximum entropy modelling using 11 environmental variables in each territory. The contributions of these variables to the models were analysed and classified using various statistical procedures (Mann–Whitney U tests, Principal Components Analysis and General Linear Models). Distance to the hydrological network was consistently the most relevant variable for both parks and taxonomic classes. Topographic variables (i.e., slope and altitude) were the second most predictive variables, followed by climatic variables. Differences in variable contribution were observed between parks and taxonomic classes. Variables related to water availability had the larger contribution to the models in the Mediterranean park, while topography variables were decisive in the Atlantic park. Specific response curves to environmental variables were in accordance with the biogeographic affinity of species (Mediterranean and non-Mediterranean species) and taxonomy (amphibians and reptiles). Interestingly, these results were observed for species located in both parks, particularly those situated at their range limits. Our findings show that ecological niche models built at local scale reveal differences in habitat preferences within a wide environmental gradient. Therefore, modelling at local scales rather than assuming large-scale models could be preferable for the establishment of conservation strategies for herptile species in natural parks. PMID:27761304

  3. Decomposing ADHD-Related Effects in Response Speed and Variability

    PubMed Central

    Karalunas, Sarah L.; Huang-Pollock, Cynthia L.; Nigg, Joel T.

    2012-01-01

    Objective Slow and variable reaction times (RTs) on fast tasks are such a prominent feature of Attention Deficit Hyperactivity Disorder (ADHD) that any theory must account for them. However, this has proven difficult because the cognitive mechanisms responsible for this effect remain unexplained. Although speed and variability are typically correlated, it is unclear whether single or multiple mechanisms are responsible for group differences in each. RTs are a result of several semi-independent processes, including stimulus encoding, rate of information processing, speed-accuracy trade-offs, and motor response, which have not been previously well characterized. Method A diffusion model was applied to RTs from a forced-choice RT paradigm in two large, independent case-control samples (NCohort 1= 214 and N Cohort 2=172). The decomposition measured three validated parameters that account for the full RT distribution, and assessed reproducibility of ADHD effects. Results In both samples, group differences in traditional RT variables were explained by slow information processing speed, and unrelated to speed-accuracy trade-offs or non-decisional processes (e.g. encoding, motor response). Conclusions RT speed and variability in ADHD may be explained by a single information processing parameter, potentially simplifying explanations that assume different mechanisms are required to account for group differences in the mean and variability of RTs. PMID:23106115

  4. Compensation for Lithography Induced Process Variations during Physical Design

    NASA Astrophysics Data System (ADS)

    Chin, Eric Yiow-Bing

    This dissertation addresses the challenge of designing robust integrated circuits in the deep sub micron regime in the presence of lithography process variability. By extending and combining existing process and circuit analysis techniques, flexible software frameworks are developed to provide detailed studies of circuit performance in the presence of lithography variations such as focus and exposure. Applications of these software frameworks to select circuits demonstrate the electrical impact of these variations and provide insight into variability aware compact models that capture the process dependent circuit behavior. These variability aware timing models abstract lithography variability from the process level to the circuit level and are used to estimate path level circuit performance with high accuracy with very little overhead in runtime. The Interconnect Variability Characterization (IVC) framework maps lithography induced geometrical variations at the interconnect level to electrical delay variations. This framework is applied to one dimensional repeater circuits patterned with both 90nm single patterning and 32nm double patterning technologies, under the presence of focus, exposure, and overlay variability. Studies indicate that single and double patterning layouts generally exhibit small variations in delay (between 1--3%) due to self compensating RC effects associated with dense layouts and overlay errors for layouts without self-compensating RC effects. The delay response of each double patterned interconnect structure is fit with a second order polynomial model with focus, exposure, and misalignment parameters with 12 coefficients and residuals of less than 0.1ps. The IVC framework is also applied to a repeater circuit with cascaded interconnect structures to emulate more complex layout scenarios, and it is observed that the variations on each segment average out to reduce the overall delay variation. The Standard Cell Variability Characterization (SCVC) framework advances existing layout-level lithography aware circuit analysis by extending it to cell-level applications utilizing a physically accurate approach that integrates process simulation, compact transistor models, and circuit simulation to characterize electrical cell behavior. This framework is applied to combinational and sequential cells in the Nangate 45nm Open Cell Library, and the timing response of these cells to lithography focus and exposure variations demonstrate Bossung like behavior. This behavior permits the process parameter dependent response to be captured in a nine term variability aware compact model based on Bossung fitting equations. For a two input NAND gate, the variability aware compact model captures the simulated response to an accuracy of 0.3%. The SCVC framework is also applied to investigate advanced process effects including misalignment and layout proximity. The abstraction of process variability from the layout level to the cell level opens up an entire new realm of circuit analysis and optimization and provides a foundation for path level variability analysis without the computationally expensive costs associated with joint process and circuit simulation. The SCVC framework is used with slight modification to illustrate the speedup and accuracy tradeoffs of using compact models. With variability aware compact models, the process dependent performance of a three stage logic circuit can be estimated to an accuracy of 0.7% with a speedup of over 50,000. Path level variability analysis also provides an accurate estimate (within 1%) of ring oscillator period in well under a second. Another significant advantage of variability aware compact models is that they can be easily incorporated into existing design methodologies for design optimization. This is demonstrated by applying cell swapping on a logic circuit to reduce the overall delay variability along a circuit path. By including these variability aware compact models in cell characterization libraries, design metrics such as circuit timing, power, area, and delay variability can be quickly assessed to optimize for the correct balance of all design metrics, including delay variability. Deterministic lithography variations can be easily captured using the variability aware compact models described in this dissertation. However, another prominent source of variability is random dopant fluctuations, which affect transistor threshold voltage and in turn circuit performance. The SCVC framework is utilized to investigate the interactions between deterministic lithography variations and random dopant fluctuations. Monte Carlo studies show that the output delay distribution in the presence of random dopant fluctuations is dependent on lithography focus and exposure conditions, with a 3.6 ps change in standard deviation across the focus exposure process window. This indicates that the electrical impact of random variations is dependent on systematic lithography variations, and this dependency should be included for precise analysis.

  5. Detection of outliers in the response and explanatory variables of the simple circular regression model

    NASA Astrophysics Data System (ADS)

    Mahmood, Ehab A.; Rana, Sohel; Hussin, Abdul Ghapor; Midi, Habshah

    2016-06-01

    The circular regression model may contain one or more data points which appear to be peculiar or inconsistent with the main part of the model. This may be occur due to recording errors, sudden short events, sampling under abnormal conditions etc. The existence of these data points "outliers" in the data set cause lot of problems in the research results and the conclusions. Therefore, we should identify them before applying statistical analysis. In this article, we aim to propose a statistic to identify outliers in the both of the response and explanatory variables of the simple circular regression model. Our proposed statistic is robust circular distance RCDxy and it is justified by the three robust measurements such as proportion of detection outliers, masking and swamping rates.

  6. Refinement of regression models to estimate real-time concentrations of contaminants in the Menomonee River drainage basin, southeast Wisconsin, 2008-11

    USGS Publications Warehouse

    Baldwin, Austin K.; Robertson, Dale M.; Saad, David A.; Magruder, Christopher

    2013-01-01

    In 2008, the U.S. Geological Survey and the Milwaukee Metropolitan Sewerage District initiated a study to develop regression models to estimate real-time concentrations and loads of chloride, suspended solids, phosphorus, and bacteria in streams near Milwaukee, Wisconsin. To collect monitoring data for calibration of models, water-quality sensors and automated samplers were installed at six sites in the Menomonee River drainage basin. The sensors continuously measured four potential explanatory variables: water temperature, specific conductance, dissolved oxygen, and turbidity. Discrete water-quality samples were collected and analyzed for five response variables: chloride, total suspended solids, total phosphorus, Escherichia coli bacteria, and fecal coliform bacteria. Using the first year of data, regression models were developed to continuously estimate the response variables on the basis of the continuously measured explanatory variables. Those models were published in a previous report. In this report, those models are refined using 2 years of additional data, and the relative improvement in model predictability is discussed. In addition, a set of regression models is presented for a new site in the Menomonee River Basin, Underwood Creek at Wauwatosa. The refined models use the same explanatory variables as the original models. The chloride models all used specific conductance as the explanatory variable, except for the model for the Little Menomonee River near Freistadt, which used both specific conductance and turbidity. Total suspended solids and total phosphorus models used turbidity as the only explanatory variable, and bacteria models used water temperature and turbidity as explanatory variables. An analysis of covariance (ANCOVA), used to compare the coefficients in the original models to those in the refined models calibrated using all of the data, showed that only 3 of the 25 original models changed significantly. Root-mean-squared errors (RMSEs) calculated for both the original and refined models using the entire dataset showed a median improvement in RMSE of 2.1 percent, with a range of 0.0–13.9 percent. Therefore most of the original models did almost as well at estimating concentrations during the validation period (October 2009–September 2011) as the refined models, which were calibrated using those data. Application of these refined models can produce continuously estimated concentrations of chloride, total suspended solids, total phosphorus, E. coli bacteria, and fecal coliform bacteria that may assist managers in quantifying the effects of land-use changes and improvement projects, establish total maximum daily loads, and enable better informed decision making in the future.

  7. Are GRACE-era terrestrial water trends driven by anthropogenic climate change?

    DOE PAGES

    Fasullo, J. T.; Lawrence, D. M.; Swenson, S. C.

    2016-01-01

    To provide context for observed trends in terrestrial water storage (TWS) during GRACE (2003–2014), trends and variability in the CESM1-CAM5 Large Ensemble (LE) are examined. Motivated in part by the anomalous nature of climate variability during GRACE, the characteristics of both forced change and internal modes are quantified and their influences on observations are estimated. Trends during the GRACE era in the LE are dominated by internal variability rather than by the forced response, with TWS anomalies in much of the Americas, eastern Australia, Africa, and southwestern Eurasia largely attributable to the negative phases of the Pacific Decadal Oscillation (PDO)more » and Atlantic Multidecadal Oscillation (AMO). While similarities between observed trends and the model-inferred forced response also exist, it is inappropriate to attribute such trends mainly to anthropogenic forcing. For several key river basins, trends in the mean state and interannual variability and the time at which the forced response exceeds background variability are also estimated while aspects of global mean TWS, including changes in its annual amplitude and decadal trends, are quantified. Lastly, the findings highlight the challenge of detecting anthropogenic climate change in temporally finite satellite datasets and underscore the benefit of utilizing models in the interpretation of the observed record.« less

  8. Are GRACE-era terrestrial water trends driven by anthropogenic climate change?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasullo, J. T.; Lawrence, D. M.; Swenson, S. C.

    To provide context for observed trends in terrestrial water storage (TWS) during GRACE (2003–2014), trends and variability in the CESM1-CAM5 Large Ensemble (LE) are examined. Motivated in part by the anomalous nature of climate variability during GRACE, the characteristics of both forced change and internal modes are quantified and their influences on observations are estimated. Trends during the GRACE era in the LE are dominated by internal variability rather than by the forced response, with TWS anomalies in much of the Americas, eastern Australia, Africa, and southwestern Eurasia largely attributable to the negative phases of the Pacific Decadal Oscillation (PDO)more » and Atlantic Multidecadal Oscillation (AMO). While similarities between observed trends and the model-inferred forced response also exist, it is inappropriate to attribute such trends mainly to anthropogenic forcing. For several key river basins, trends in the mean state and interannual variability and the time at which the forced response exceeds background variability are also estimated while aspects of global mean TWS, including changes in its annual amplitude and decadal trends, are quantified. Lastly, the findings highlight the challenge of detecting anthropogenic climate change in temporally finite satellite datasets and underscore the benefit of utilizing models in the interpretation of the observed record.« less

  9. The Construction of a Long Variable of Conceptual Development in Social Education.

    ERIC Educational Resources Information Center

    Doig, Brian

    This paper demonstrates a method for constructing long variables using items that elicit partically correct responses across ages. Long variables may be defined by students at different ages (year levels) attempting common items within a test containing other items considered to be appropriate for each age or year level. A developmental model of…

  10. Prediction of Psilocybin Response in Healthy Volunteers

    PubMed Central

    Studerus, Erich; Gamma, Alex; Kometer, Michael; Vollenweider, Franz X.

    2012-01-01

    Responses to hallucinogenic drugs, such as psilocybin, are believed to be critically dependent on the user's personality, current mood state, drug pre-experiences, expectancies, and social and environmental variables. However, little is known about the order of importance of these variables and their effect sizes in comparison to drug dose. Hence, this study investigated the effects of 24 predictor variables, including age, sex, education, personality traits, drug pre-experience, mental state before drug intake, experimental setting, and drug dose on the acute response to psilocybin. The analysis was based on the pooled data of 23 controlled experimental studies involving 409 psilocybin administrations to 261 healthy volunteers. Multiple linear mixed effects models were fitted for each of 15 response variables. Although drug dose was clearly the most important predictor for all measured response variables, several non-pharmacological variables significantly contributed to the effects of psilocybin. Specifically, having a high score in the personality trait of Absorption, being in an emotionally excitable and active state immediately before drug intake, and having experienced few psychological problems in past weeks were most strongly associated with pleasant and mystical-type experiences, whereas high Emotional Excitability, low age, and an experimental setting involving positron emission tomography most strongly predicted unpleasant and/or anxious reactions to psilocybin. The results confirm that non-pharmacological variables play an important role in the effects of psilocybin. PMID:22363492

  11. Prediction of psilocybin response in healthy volunteers.

    PubMed

    Studerus, Erich; Gamma, Alex; Kometer, Michael; Vollenweider, Franz X

    2012-01-01

    Responses to hallucinogenic drugs, such as psilocybin, are believed to be critically dependent on the user's personality, current mood state, drug pre-experiences, expectancies, and social and environmental variables. However, little is known about the order of importance of these variables and their effect sizes in comparison to drug dose. Hence, this study investigated the effects of 24 predictor variables, including age, sex, education, personality traits, drug pre-experience, mental state before drug intake, experimental setting, and drug dose on the acute response to psilocybin. The analysis was based on the pooled data of 23 controlled experimental studies involving 409 psilocybin administrations to 261 healthy volunteers. Multiple linear mixed effects models were fitted for each of 15 response variables. Although drug dose was clearly the most important predictor for all measured response variables, several non-pharmacological variables significantly contributed to the effects of psilocybin. Specifically, having a high score in the personality trait of Absorption, being in an emotionally excitable and active state immediately before drug intake, and having experienced few psychological problems in past weeks were most strongly associated with pleasant and mystical-type experiences, whereas high Emotional Excitability, low age, and an experimental setting involving positron emission tomography most strongly predicted unpleasant and/or anxious reactions to psilocybin. The results confirm that non-pharmacological variables play an important role in the effects of psilocybin.

  12. Evaluation of response variables in computer-simulated virtual cataract surgery

    NASA Astrophysics Data System (ADS)

    Söderberg, Per G.; Laurell, Carl-Gustaf; Simawi, Wamidh; Nordqvist, Per; Skarman, Eva; Nordh, Leif

    2006-02-01

    We have developed a virtual reality (VR) simulator for phacoemulsification (phaco) surgery. The current work aimed at evaluating the precision in the estimation of response variables identified for measurement of the performance of VR phaco surgery. We identified 31 response variables measuring; the overall procedure, the foot pedal technique, the phacoemulsification technique, erroneous manipulation, and damage to ocular structures. Totally, 8 medical or optometry students with a good knowledge of ocular anatomy and physiology but naive to cataract surgery performed three sessions each of VR Phaco surgery. For measurement, the surgical procedure was divided into a sculpting phase and an evacuation phase. The 31 response variables were measured for each phase in all three sessions. The variance components for individuals and iterations of sessions within individuals were estimated with an analysis of variance assuming a hierarchal model. The consequences of estimated variabilities for sample size requirements were determined. It was found that generally there was more variability for iterated sessions within individuals for measurements of the sculpting phase than for measurements of the evacuation phase. This resulted in larger required sample sizes for detection of difference between independent groups or change within group, for the sculpting phase as compared to for the evacuation phase. It is concluded that several of the identified response variables can be measured with sufficient precision for evaluation of VR phaco surgery.

  13. The land-use legacy effect: Towards a mechanistic understanding of time-lagged water quality responses to land use/cover.

    PubMed

    Martin, Sherry L; Hayes, Daniel B; Kendall, Anthony D; Hyndman, David W

    2017-02-01

    Numerous studies have linked land use/land cover (LULC) to aquatic ecosystem responses, however only a few have included the dynamics of changing LULC in their analysis. In this study, we explicitly recognize changing LULC by linking mechanistic groundwater flow and travel time models to a historical time series of LULC, creating a land-use legacy map. We then illustrate the utility of legacy maps to explore relationships between dynamic LULC and lake water chemistry. We tested two main concepts about mechanisms linking LULC and lake water chemistry: groundwater pathways are an important mechanism driving legacy effects; and, LULC over multiple spatial scales is more closely related to lake chemistry than LULC over a single spatial scale. We applied statistical models to twelve water chemistry variables, ranging from nutrients to relatively conservative ions, to better understand the roles of biogeochemical reactivity and solubility on connections between LULC and aquatic ecosystem response. Our study illustrates how different areas can have long groundwater pathways that represent different LULC than what can be seen on the landscape today. These groundwater pathways delay the arrival of nutrients and other water quality constituents, thus creating a legacy of historic land uses that eventually reaches surface water. We find that: 1) several water chemistry variables are best fit by legacy LULC while others have a stronger link to current LULC, and 2) single spatial scales of LULC analysis performed worse for most variables. Our novel combination of temporal and spatial scales was the best overall model fit for most variables, including SRP where this model explained 54% of the variation. We show that it is important to explicitly account for temporal and spatial context when linking LULC to ecosystem response. Copyright © 2016. Published by Elsevier B.V.

  14. Selecting Populations for Non-Analogous Climate Conditions Using Universal Response Functions: The Case of Douglas-Fir in Central Europe.

    PubMed

    Chakraborty, Debojyoti; Wang, Tongli; Andre, Konrad; Konnert, Monika; Lexer, Manfred J; Matulla, Christoph; Schueler, Silvio

    2015-01-01

    Identifying populations within tree species potentially adapted to future climatic conditions is an important requirement for reforestation and assisted migration programmes. Such populations can be identified either by empirical response functions based on correlations of quantitative traits with climate variables or by climate envelope models that compare the climate of seed sources and potential growing areas. In the present study, we analyzed the intraspecific variation in climate growth response of Douglas-fir planted within the non-analogous climate conditions of Central and continental Europe. With data from 50 common garden trials, we developed Universal Response Functions (URF) for tree height and mean basal area and compared the growth performance of the selected best performing populations with that of populations identified through a climate envelope approach. Climate variables of the trial location were found to be stronger predictors of growth performance than climate variables of the population origin. Although the precipitation regime of the population sources varied strongly none of the precipitation related climate variables of population origin was found to be significant within the models. Overall, the URFs explained more than 88% of variation in growth performance. Populations identified by the URF models originate from western Cascades and coastal areas of Washington and Oregon and show significantly higher growth performance than populations identified by the climate envelope approach under both current and climate change scenarios. The URFs predict decreasing growth performance at low and middle elevations of the case study area, but increasing growth performance on high elevation sites. Our analysis suggests that population recommendations based on empirical approaches should be preferred and population selections by climate envelope models without considering climatic constrains of growth performance should be carefully appraised before transferring populations to planting locations with novel or dissimilar climate.

  15. Impacts of variability in geomechanical properties on hydrate bearing sediment responses

    NASA Astrophysics Data System (ADS)

    Lin, J. S.; Uchida, S.; Choi, J. H.; Seol, Y.

    2017-12-01

    Hydrate bearing sediments (HBS) may become unstable during the gas production operation, or from natural processes such as change in the landform or temperature. The geomechanical modeling is a rational way to assess HBS stability regardless of the process involved. At the present time, such modeling is laced with uncertainties. The uncertainties come from many sources that include the adequacy of a modeling framework to accurately project the response of HBS, the gap in the available field information, and the variability in the laboratory test results from limited samples. For a reasonable stability assessment, the impact of the various uncertainties have to be addressed. This study looks into one particular aspect of the uncertainty, namely, the uncertainty caused by the scatter in the laboratory tests and the ability of a constitutive model to adequately represent them. Specifically this study focuses on the scatter in the results from laboratory tests on high quality pressured core samples from a marine site, and use a critical state constitutive model to represent them. The study investigates how the HBS responses shift when the parameters of the constitutive model are varied to reflect the different aspects of experimental results. Also investigated are impacts on the responses by altering certain formulations of the constitutive model to suit particular sets of results.

  16. Profile-likelihood Confidence Intervals in Item Response Theory Models.

    PubMed

    Chalmers, R Philip; Pek, Jolynn; Liu, Yang

    2017-01-01

    Confidence intervals (CIs) are fundamental inferential devices which quantify the sampling variability of parameter estimates. In item response theory, CIs have been primarily obtained from large-sample Wald-type approaches based on standard error estimates, derived from the observed or expected information matrix, after parameters have been estimated via maximum likelihood. An alternative approach to constructing CIs is to quantify sampling variability directly from the likelihood function with a technique known as profile-likelihood confidence intervals (PL CIs). In this article, we introduce PL CIs for item response theory models, compare PL CIs to classical large-sample Wald-type CIs, and demonstrate important distinctions among these CIs. CIs are then constructed for parameters directly estimated in the specified model and for transformed parameters which are often obtained post-estimation. Monte Carlo simulation results suggest that PL CIs perform consistently better than Wald-type CIs for both non-transformed and transformed parameters.

  17. Modeling nearshore morphological evolution at seasonal scale

    USGS Publications Warehouse

    Walstra, D.-J.R.; Ruggiero, P.; Lesser, G.; Gelfenbaum, G.

    2006-01-01

    A process-based model is compared with field measurements to test and improve our ability to predict nearshore morphological change at seasonal time scales. The field experiment, along the dissipative beaches adjacent to Grays Harbor, Washington USA, successfully captured the transition between the high-energy erosive conditions of winter and the low-energy beach-building conditions typical of summer. The experiment documented shoreline progradation on the order of 20 m and as much as 175 m of onshore bar migration. Significant alongshore variability was observed in the morphological response of the sandbars over a 4 km reach of coast. A detailed sensitivity analysis suggests that the model results are more sensitive to adjusting the sediment transport associated with asymmetric oscillatory wave motions than to adjusting the transport due to mean currents. Initial results suggest that alongshore variations in the initial bathymetry are partially responsible for the observed alongshore variable morphological response during the experiment. Copyright ASCE 2006.

  18. Relating the variability of tone-burst otoacoustic emission and auditory brainstem response latencies to the underlying cochlear mechanics

    NASA Astrophysics Data System (ADS)

    Verhulst, Sarah; Shera, Christopher A.

    2015-12-01

    Forward and reverse cochlear latency and its relation to the frequency tuning of the auditory filters can be assessed using tone bursts (TBs). Otoacoustic emissions (TBOAEs) estimate the cochlear roundtrip time, while auditory brainstem responses (ABRs) to the same stimuli aim at measuring the auditory filter buildup time. Latency ratios are generally close to two and controversy exists about the relationship of this ratio to cochlear mechanics. We explored why the two methods provide different estimates of filter buildup time, and ratios with large inter-subject variability, using a time-domain model for OAEs and ABRs. We compared latencies for twenty models, in which all parameters but the cochlear irregularities responsible for reflection-source OAEs were identical, and found that TBOAE latencies were much more variable than ABR latencies. Multiple reflection-sources generated within the evoking stimulus bandwidth were found to shape the TBOAE envelope and complicate the interpretation of TBOAE latency and TBOAE/ABR ratios in terms of auditory filter tuning.

  19. Hydrocentric view of Agro-ecosystem Resiliency to Extreme Hydrometeorological and Climate Events in the High Plains, US.

    NASA Astrophysics Data System (ADS)

    Munoz-Arriola, Francisco; Sharma, Ashutosh; Werner, Katherine; Chacon, Juan-Carlos; Corzo, Gerald; Goyal, Manish-Kumar

    2017-04-01

    An increasing incidence of Hydrometeorological and Climate Extreme Events (EHCEs) is challenging food, water, and ecosystem services security at local to global contexts. This study aims to understand how a large-scale representation of agroecosystems and ecosystems respond to EHCE in the Northern Highplains, US. To track such responses the Variable Infiltration Capacity model (VIC) Land Surface Hydrology model was used and two experiments were implemented. The first experiment uses the LAI MODIS15A2 product to capture dynamic responses of vegetation with a time span from 2000 to 2013. The second experiment used a climatological fixed seasonal cycle calculated as the average from the 2000-2013 dynamic MODIS15A2 product to isolate vegetation from soil physical responses. Based on the analyses of multiple hydrological variables and state variables and high-level organization of agroecosystems and ecosystems, we evidence how the influence of droughts and anomalously wet conditions affect hydrological resilience at large scale.

  20. Feedback process responsible for intermodel diversity of ENSO variability

    NASA Astrophysics Data System (ADS)

    An, Soon-Il; Heo, Eun Sook; Kim, Seon Tae

    2017-05-01

    The origin of the intermodel diversity of the El Niño-Southern Oscillation (ENSO) variability is investigated by applying a singular value decomposition (SVD) analysis between the intermodel tropical Pacific sea surface temperature anomalies (SSTA) variance and the intermodel ENSO stability index (BJ index). The first SVD mode features an ENSO-like pattern for the intermodel SSTA variance (74% of total variance) and the dominant thermocline feedback (TH) for the BJ index (51%). Intermodel TH is mainly modified by the intermodel sensitivity of the zonal thermocline gradient response to zonal winds over the equatorial Pacific (βh), and the intermodel βh is correlated higher with the intermodel off-equatorial wind stress curl anomalies than the equatorial zonal wind stress anomalies. Finally, the intermodel off-equatorial wind stress curl is associated with the meridional shape and intensity of ENSO-related wind patterns, which may cause a model-to-model difference in ENSO variability by influencing the off-equatorial oceanic Rossby wave response.

  1. Effects of access to pasture on performance, carcass composition, and meat quality in broilers: a meta-analysis.

    PubMed

    Sales, J

    2014-06-01

    Consumer preference for poultry meat from free-range birds is not justified by scientific evidence. Inconsistency in results among studies on the effects of access to pasture on performance, carcass composition, and meat quality has led to a meta-analysis to quantify effects. After identification of studies where response variables were directly compared between birds with and without access to pasture, standardized effect sizes were used to calculate differences. The effect size for growth combined according to a fixed effect model did not present heterogeneity (P = 0.116). However, with feed intake and feed efficiency, variability among studies (heterogeneity with P-values of below 0.10) was influenced by more than sampling error. Carcass yield was the only carcass component that showed heterogeneity (P = 0.008), whereas numerous response variables related to meat quality were not homogenous. The use of subgroup analysis and meta-regression to evaluate the sources of heterogeneity was limited by ill-defined explanatory variables and few values available within response variables. Consequently, between-study variability was accounted for by use of random effects models to combine effect sizes. According to these, few response variables were influenced by pasture access. Fat concentrations in breast (mean effect size = -0.500; 95% CI = -0.825 to -0.175; 11 studies; 14 comparisons), thigh (mean effect size = -0.908; 95% CI = -1.710 to -0.105; 4 studies; 5 comparisons) and drum (mean effect size = -1.223; 95% CI = -2.210 to -0.237; 3 studies; 3 comparisons) muscles were decreased in free-range birds. Access to pasture increased (P < 0.05) or tended to increase (P < 0.10) protein concentrations in the respective commercial cuts. It is concluded that factors other than enhanced meat quality could be responsible for consumer preference for meat from free-range poultry. Poultry Science Association Inc.

  2. Spatial variability of the response to climate change in regional groundwater systems -- examples from simulations in the Deschutes Basin, Oregon

    USGS Publications Warehouse

    Waibel, Michael S.; Gannett, Marshall W.; Chang, Heejun; Hulbe, Christina L.

    2013-01-01

    We examine the spatial variability of the response of aquifer systems to climate change in and adjacent to the Cascade Range volcanic arc in the Deschutes Basin, Oregon using downscaled global climate model projections to drive surface hydrologic process and groundwater flow models. Projected warming over the 21st century is anticipated to shift the phase of precipitation toward more rain and less snow in mountainous areas in the Pacific Northwest, resulting in smaller winter snowpack and in a shift in the timing of runoff to earlier in the year. This will be accompanied by spatially variable changes in the timing of groundwater recharge. Analysis of historic climate and hydrologic data and modeling studies show that groundwater plays a key role in determining the response of stream systems to climate change. The spatial variability in the response of groundwater systems to climate change, particularly with regard to flow-system scale, however, has generally not been addressed in the literature. Here we simulate the hydrologic response to projected future climate to show that the response of groundwater systems can vary depending on the location and spatial scale of the flow systems and their aquifer characteristics. Mean annual recharge averaged over the basin does not change significantly between the 1980s and 2080s climate periods given the ensemble of global climate models and emission scenarios evaluated. There are, however, changes in the seasonality of groundwater recharge within the basin. Simulation results show that short-flow-path groundwater systems, such as those providing baseflow to many headwater streams, will likely have substantial changes in the timing of discharge in response changes in seasonality of recharge. Regional-scale aquifer systems with flow paths on the order of many tens of kilometers, in contrast, are much less affected by changes in seasonality of recharge. Flow systems at all spatial scales, however, are likely to reflect interannual changes in total recharge. These results provide insights into the possible impacts of climate change to other regional aquifer systems, and the streams they support, where discharge points represent a range of flow system scales.

  3. Evaluation of Offline Models Used to Simulate Components of the Permafrost Carbon Feedback: Experience from the Permafrost Carbon Network Model Integration Group

    NASA Astrophysics Data System (ADS)

    McGuire, A. D.

    2016-12-01

    The Model Integration Group of the Permafrost Carbon Network (see http://www.permafrostcarbon.org/) has conducted studies to evaluate the sensitivity of offline terrestrial permafrost and carbon models to both historical and projected climate change. These studies indicate that there is a wide range of (1) initial states permafrost extend and carbon stocks simulated by these models and (2) responses of permafrost extent and carbon stocks to both historical and projected climate change. In this study, we synthesize what has been learned about the variability in initial states among models and the driving factors that contribute to variability in the sensitivity of responses. We conclude the talk with a discussion of efforts needed by (1) the modeling community to standardize structural representation of permafrost and carbon dynamics among models that are used to evaluate the permafrost carbon feedback and (2) the modeling and observational communities to jointly develop data sets and methodologies to more effectively benchmark models.

  4. A Nonlinear Mixed Effects Approach for Modeling the Cell-To-Cell Variability of Mig1 Dynamics in Yeast

    PubMed Central

    Almquist, Joachim; Bendrioua, Loubna; Adiels, Caroline Beck; Goksör, Mattias; Hohmann, Stefan; Jirstrand, Mats

    2015-01-01

    The last decade has seen a rapid development of experimental techniques that allow data collection from individual cells. These techniques have enabled the discovery and characterization of variability within a population of genetically identical cells. Nonlinear mixed effects (NLME) modeling is an established framework for studying variability between individuals in a population, frequently used in pharmacokinetics and pharmacodynamics, but its potential for studies of cell-to-cell variability in molecular cell biology is yet to be exploited. Here we take advantage of this novel application of NLME modeling to study cell-to-cell variability in the dynamic behavior of the yeast transcription repressor Mig1. In particular, we investigate a recently discovered phenomenon where Mig1 during a short and transient period exits the nucleus when cells experience a shift from high to intermediate levels of extracellular glucose. A phenomenological model based on ordinary differential equations describing the transient dynamics of nuclear Mig1 is introduced, and according to the NLME methodology the parameters of this model are in turn modeled by a multivariate probability distribution. Using time-lapse microscopy data from nearly 200 cells, we estimate this parameter distribution according to the approach of maximizing the population likelihood. Based on the estimated distribution, parameter values for individual cells are furthermore characterized and the resulting Mig1 dynamics are compared to the single cell times-series data. The proposed NLME framework is also compared to the intuitive but limited standard two-stage (STS) approach. We demonstrate that the latter may overestimate variabilities by up to almost five fold. Finally, Monte Carlo simulations of the inferred population model are used to predict the distribution of key characteristics of the Mig1 transient response. We find that with decreasing levels of post-shift glucose, the transient response of Mig1 tend to be faster, more extended, and displays an increased cell-to-cell variability. PMID:25893847

  5. Development of a Probabilistic Dynamic Synthesis Method for the Analysis of Nondeterministic Structures

    NASA Technical Reports Server (NTRS)

    Brown, A. M.

    1998-01-01

    Accounting for the statistical geometric and material variability of structures in analysis has been a topic of considerable research for the last 30 years. The determination of quantifiable measures of statistical probability of a desired response variable, such as natural frequency, maximum displacement, or stress, to replace experience-based "safety factors" has been a primary goal of these studies. There are, however, several problems associated with their satisfactory application to realistic structures, such as bladed disks in turbomachinery. These include the accurate definition of the input random variables (rv's), the large size of the finite element models frequently used to simulate these structures, which makes even a single deterministic analysis expensive, and accurate generation of the cumulative distribution function (CDF) necessary to obtain the probability of the desired response variables. The research presented here applies a methodology called probabilistic dynamic synthesis (PDS) to solve these problems. The PDS method uses dynamic characteristics of substructures measured from modal test as the input rv's, rather than "primitive" rv's such as material or geometric uncertainties. These dynamic characteristics, which are the free-free eigenvalues, eigenvectors, and residual flexibility (RF), are readily measured and for many substructures, a reasonable sample set of these measurements can be obtained. The statistics for these rv's accurately account for the entire random character of the substructure. Using the RF method of component mode synthesis, these dynamic characteristics are used to generate reduced-size sample models of the substructures, which are then coupled to form system models. These sample models are used to obtain the CDF of the response variable by either applying Monte Carlo simulation or by generating data points for use in the response surface reliability method, which can perform the probabilistic analysis with an order of magnitude less computational effort. Both free- and forced-response analyses have been performed, and the results indicate that, while there is considerable room for improvement, the method produces usable and more representative solutions for the design of realistic structures with a substantial savings in computer time.

  6. Application of scenario-neutral methods to quantify impacts of climate change on water resources in East Africa

    NASA Astrophysics Data System (ADS)

    Ascott, M.; Macdonald, D.; Lapworth, D.; Tindimugaya, C.

    2017-12-01

    Quantification of the impact of climate change on water resources is essential for future resource planning. Unfortunately, climate change impact studies in African regions are often hindered by the extent in variability in future rainfall predictions, which also diverge from current drying trends. To overcome this limitation, "scenario-neutral" methods have been developed which stress a hydrological system using a wide range of climate futures to build a "climate response surface". We developed a hydrological model and scenario-neutral framework to quantify climate change impacts on river flows in the Katonga catchment, Uganda. Using the lumped catchment model GR4J, an acceptable calibration to historic daily flows (1966 - 2010, NSE = 0.69) was achieved. Using a delta change approach, we then systematically changed rainfall and PET inputs to develop response surfaces for key metrics, developed with Ugandan water resources planners (e.g. Q5, Q95). Scenarios from the CMIP5 models for 2030s and 2050s were then overlain on the response surface. The CMIP5 scenarios show consistent increases in temperature but large variability in rainfall increases, which results in substantial variability in increases in river flows. The developed response surface covers a wide range of climate futures beyond the CMIP5 projections, and can help water resources planners understand the sensitivity of water resource systems to future changes. When future climate scenarios are available, these can be directly overlain on the response surface without the need to re-run the hydrological model. Further work will consider using scenario-neutral approaches in more complex, semi-distributed models (e.g. SWAT), and will consider land use and socioeconomic change.

  7. Mechanosensing of stem bending and its interspecific variability in five neotropical rainforest species.

    PubMed

    Coutand, Catherine; Chevolot, Malia; Lacointe, André; Rowe, Nick; Scotti, Ivan

    2010-02-01

    In rain forests, sapling survival is highly dependent on the regulation of trunk slenderness (height/diameter ratio): shade-intolerant species have to grow in height as fast as possible to reach the canopy but also have to withstand mechanical loadings (wind and their own weight) to avoid buckling. Recent studies suggest that mechanosensing is essential to control tree dimensions and stability-related morphogenesis. Differences in species slenderness have been observed among rainforest trees; the present study thus investigates whether species with different slenderness and growth habits exhibit differences in mechanosensitivity. Recent studies have led to a model of mechanosensing (sum-of-strains model) that predicts a quantitative relationship between the applied sum of longitudinal strains and the plant's responses in the case of a single bending. Saplings of five different neotropical species (Eperua falcata, E. grandiflora, Tachigali melinonii, Symphonia globulifera and Bauhinia guianensis) were subjected to a regimen of controlled mechanical loading phases (bending) alternating with still phases over a period of 2 months. Mechanical loading was controlled in terms of strains and the five species were subjected to the same range of sum of strains. The application of the sum-of-strain model led to a dose-response curve for each species. Dose-response curves were then compared between tested species. The model of mechanosensing (sum-of-strain model) applied in the case of multiple bending as long as the bending frequency was low. A comparison of dose-response curves for each species demonstrated differences in the stimulus threshold, suggesting two groups of responses among the species. Interestingly, the liana species B. guianensis exhibited a higher threshold than other Leguminosae species tested. This study provides a conceptual framework to study variability in plant mechanosensing and demonstrated interspecific variability in mechanosensing.

  8. Effects of functional constraints and opportunism on the functional structure of a vertebrate predator assemblage.

    PubMed

    Farias, Ariel A; Jaksic, Fabian M

    2007-03-01

    1. Within mainstream ecological literature, functional structure has been viewed as resulting from the interplay of species interactions, resource levels and environmental variability. Classical models state that interspecific competition generates species segregation and guild formation in stable saturated environments, whereas opportunism causes species aggregation on abundant resources in variable unsaturated situations. 2. Nevertheless, intrinsic functional constraints may result in species-specific differences in resource-use capabilities. This could force some degree of functional structure without assuming other putative causes. However, the influence of such constraints has rarely been tested, and their relative contribution to observed patterns has not been quantified. 3. We used a multiple null-model approach to quantify the magnitude and direction (non-random aggregation or divergence) of the functional structure of a vertebrate predator assemblage exposed to variable prey abundance over an 18-year period. Observed trends were contrasted with predictions from null-models designed in an orthogonal fashion to account independently for the effects of functional constraints and opportunism. Subsequently, the unexplained variation was regressed against environmental variables to search for evidence of interspecific competition. 4. Overall, null-models accounting for functional constraints showed the best fit to the observed data, and suggested an effect of this factor in modulating predator opportunistic responses. However, regression models on residual variation indicated that such an effect was dependent on both total and relative abundance of principal (small mammals) and alternative (arthropods, birds, reptiles) prey categories. 5. In addition, no clear evidence for interspecific competition was found, but differential delays in predator functional responses could explain some of the unaccounted variation. Thus, we call for caution when interpreting empirical data in the context of classical models assuming synchronous responses of consumers to resource levels.

  9. How spatial and temporal rainfall variability affect runoff across basin scales: insights from field observations in the (semi-)urbanised Charlotte watershed

    NASA Astrophysics Data System (ADS)

    Ten Veldhuis, M. C.; Smith, J. A.; Zhou, Z.

    2017-12-01

    Impacts of rainfall variability on runoff response are highly scale-dependent. Sensitivity analyses based on hydrological model simulations have shown that impacts are likely to depend on combinations of storm type, basin versus storm scale, temporal versus spatial rainfall variability. So far, few of these conclusions have been confirmed on observational grounds, since high quality datasets of spatially variable rainfall and runoff over prolonged periods are rare. Here we investigate relationships between rainfall variability and runoff response based on 30 years of radar-rainfall datasets and flow measurements for 16 hydrological basins ranging from 7 to 111 km2. Basins vary not only in scale, but also in their degree of urbanisation. We investigated temporal and spatial variability characteristics of rainfall fields across a range of spatial and temporal scales to identify main drivers for variability in runoff response. We identified 3 ranges of basin size with different temporal versus spatial rainfall variability characteristics. Total rainfall volume proved to be the dominant agent determining runoff response at all basin scales, independent of their degree of urbanisation. Peak rainfall intensity and storm core volume are of secondary importance. This applies to all runoff parameters, including runoff volume, runoff peak, volume-to-peak and lag time. Position and movement of the storm with respect to the basin have a negligible influence on runoff response, with the exception of lag times in some of the larger basins. This highlights the importance of accuracy in rainfall estimation: getting the position right but the volume wrong will inevitably lead to large errors in runoff prediction. Our study helps to identify conditions where rainfall variability matters for correct estimation of the rainfall volume as well as the associated runoff response.

  10. Midlatitude atmospheric OH response to the most recent 11-y solar cycle.

    PubMed

    Wang, Shuhui; Li, King-Fai; Pongetti, Thomas J; Sander, Stanley P; Yung, Yuk L; Liang, Mao-Chang; Livesey, Nathaniel J; Santee, Michelle L; Harder, Jerald W; Snow, Martin; Mills, Franklin P

    2013-02-05

    The hydroxyl radical (OH) plays an important role in middle atmospheric photochemistry, particularly in ozone (O(3)) chemistry. Because it is mainly produced through photolysis and has a short chemical lifetime, OH is expected to show rapid responses to solar forcing [e.g., the 11-y solar cycle (SC)], resulting in variabilities in related middle atmospheric O(3) chemistry. Here, we present an effort to investigate such OH variability using long-term observations (from space and the surface) and model simulations. Ground-based measurements and data from the Microwave Limb Sounder on the National Aeronautics and Space Administration's Aura satellite suggest an ∼7-10% decrease in OH column abundance from solar maximum to solar minimum that is highly correlated with changes in total solar irradiance, solar Mg-II index, and Lyman-α index during SC 23. However, model simulations using a commonly accepted solar UV variability parameterization give much smaller OH variability (∼3%). Although this discrepancy could result partially from the limitations in our current understanding of middle atmospheric chemistry, recently published solar spectral irradiance data from the Solar Radiation and Climate Experiment suggest a solar UV variability that is much larger than previously believed. With a solar forcing derived from the Solar Radiation and Climate Experiment data, modeled OH variability (∼6-7%) agrees much better with observations. Model simulations reveal the detailed chemical mechanisms, suggesting that such OH variability and the corresponding catalytic chemistry may dominate the O(3) SC signal in the upper stratosphere. Continuing measurements through SC 24 are required to understand this OH variability and its impacts on O(3) further.

  11. Midlatitude atmospheric OH response to the most recent 11-y solar cycle

    PubMed Central

    Wang, Shuhui; Li, King-Fai; Pongetti, Thomas J.; Sander, Stanley P.; Yung, Yuk L.; Liang, Mao-Chang; Livesey, Nathaniel J.; Santee, Michelle L.; Harder, Jerald W.; Snow, Martin; Mills, Franklin P.

    2013-01-01

    The hydroxyl radical (OH) plays an important role in middle atmospheric photochemistry, particularly in ozone (O3) chemistry. Because it is mainly produced through photolysis and has a short chemical lifetime, OH is expected to show rapid responses to solar forcing [e.g., the 11-y solar cycle (SC)], resulting in variabilities in related middle atmospheric O3 chemistry. Here, we present an effort to investigate such OH variability using long-term observations (from space and the surface) and model simulations. Ground-based measurements and data from the Microwave Limb Sounder on the National Aeronautics and Space Administration’s Aura satellite suggest an ∼7–10% decrease in OH column abundance from solar maximum to solar minimum that is highly correlated with changes in total solar irradiance, solar Mg-II index, and Lyman-α index during SC 23. However, model simulations using a commonly accepted solar UV variability parameterization give much smaller OH variability (∼3%). Although this discrepancy could result partially from the limitations in our current understanding of middle atmospheric chemistry, recently published solar spectral irradiance data from the Solar Radiation and Climate Experiment suggest a solar UV variability that is much larger than previously believed. With a solar forcing derived from the Solar Radiation and Climate Experiment data, modeled OH variability (∼6–7%) agrees much better with observations. Model simulations reveal the detailed chemical mechanisms, suggesting that such OH variability and the corresponding catalytic chemistry may dominate the O3 SC signal in the upper stratosphere. Continuing measurements through SC 24 are required to understand this OH variability and its impacts on O3 further. PMID:23341617

  12. Modelling the Response of Energy, Water and CO2 Fluxes Over Forests to Climate Variability

    NASA Astrophysics Data System (ADS)

    Ju, W.; Chen, J.; Liu, J.; Chen, B.

    2004-05-01

    Understanding the response of energy, water and CO2 fluxes of terrestrial ecosystems to climate variability at various temporal scales is of interest to climate change research. To simulate carbon (C) and water dynamics and their interactions at the continental scale with high temporal and spatial resolutions, the remote sensing driven BEPS (Boreal Ecosystem Productivity Simulator) model was updated to couple with the soil model of CENTURY and a newly developed biophysical model. This coupled model separates the whole canopy into two layers. For the top layer, the leaf-level conductance is scaled up to canopy level using a sunlit and shaded leaf separation approach. Fluxes of water, and CO{2} are simulated as the sums of those from sunlit and shaded leaves separately. This new approach allows for close coupling in modeling these fluxes. The whole profile of soil under a seasonal snowpack is split into four layers for estimating soil moisture and temperature. Long-term means of the vegetation productivity and climate are employed to initialize the carbon pools for the computation of heterotrophic respiration. Validated against tower data at four forested sites, this model is able to describe these fluxes and their response to climate variability. The model captures over 55% of year-round half/one hourly variances of these fluxes. The highest agreement of model results with tower data was achieved for CO2 flux at Southern Old Aspen (SOA) (R2>0.85 and RMSE<2.37 μ mol C m-2 s-1, N=17520). However, the model slightly overestimates the diurnal amplitude of sensible heat flux in winter and sometimes underestimates that of CO2 flux in the growing season. Model simulations suggest that C uptakes of forests are controlled by climate variability and the response of C cycle to climate depends on forest type. For SOA, the annual NPP (Net Primary Productivity) is more sensitive to temperature than to precipitation. This forest usually has higher NPP in warm years than in cool years. Interannual variability of heterotrophic respiration, however, is strongly related to precipitation. The soil releases more CO2 in wet years than in dry years. Warm and relatively dry climate enhances the C uptake in this forest stand. Compared with SOA, a temperate deciduous forest in the southern part of the temperate deciduous forest biome in eastern United States responds to climate variability differently. High temperature and low precipitation in the growing season reduces NPP and consequently NEP (Net Ecosystem Productivity). In warm years, the Southern Old Jack Pine forest uptakes less C than in cool years. The modeled heterotrophic respiration and NEP are very sensitive to soil moisture and the empirical equation used to describe the effect of soil moisture on decomposition. This suggests that hydrological modelling is critical in C budget estimation. Next step, this model will be validated against more tower data and used for upscaling from site to region.

  13. Wind driven general circulation of the Mediterranean Sea simulated with a Spectral Element Ocean Model

    NASA Astrophysics Data System (ADS)

    Molcard, A.; Pinardi, N.; Iskandarani, M.; Haidvogel, D. B.

    2002-05-01

    This work is an attempt to simulate the Mediterranean Sea general circulation with a Spectral Finite Element Model. This numerical technique associates the geometrical flexibility of the finite elements for the proper coastline definition with the precision offered by spectral methods. The model is reduced gravity and we study the wind-driven ocean response in order to explain the large scale sub-basin gyres and their variability. The study period goes from January 1987 to December 1993 and two forcing data sets are used. The effect of wind variability in space and time is analyzed and the relationship between wind stress curl and ocean response is stressed. Some of the main permanent structures of the general circulation (Gulf of Lions cyclonic gyre, Rhodes gyre, Gulf of Syrte anticylone) are shown to be induced by permanent wind stress curl structures. The magnitude and spatial variability of the wind is important in determining the appearance or disappearance of some gyres (Tyrrhenian anticyclonic gyre, Balearic anticyclonic gyre, Ionian cyclonic gyre). An EOF analysis of the seasonal variability indicates that the weakening and strengthening of the Levantine basin boundary currents is a major component of the seasonal cycle in the basin. The important discovery is that seasonal and interannual variability peak at the same spatial scales in the ocean response and that the interannual variability includes the change in amplitude and phase of the seasonal cycle in the sub-basin scale gyres and boundary currents. The Coriolis term in the vorticity balance seems to be responsible for the weakening of anticyclonic structures and their total disappearance when they are close to a boundary. The process of adjustment to winds produces a train of coastally trapped gravity waves which travel around the eastern and western basins, respectively in approximately 6 months. This corresponds to a phase velocity for the wave of about 1 m/s, comparable to an average velocity of an internal Kelvin wave in the area.

  14. Deconstructing an Atmospheric Model: Variability and Response, Unstable Periodic Orbits, and the Fluctuation-Dissipation Theorem

    NASA Astrophysics Data System (ADS)

    Gritsun, Andrei; Lucarini, Valerio

    2016-04-01

    Unstable periodic orbits (UPOs) provide the so-called skeletal dynamics of a sufficiently well-behaved chaotic dynamical system and provide a powerful tool for relating the response of the system to its variability. In fact, UPOs constitute natural modes of variability of the system, and resonant behaviour of the response of the system to can be associated to good correspondence between the geometry of one UPO and of the forcing term and between their periodicities. We have here analyzed a simple barotropic model of the atmosphere and constructed and found algorithmically a large number of UPOs. We have then studied the change in the climate resulting from changes in the forcing, in the orography, and in the Eckman friction. The most interesting result is the presence of a strong resonance in the orographic response on time scales of the order of about 3 days, corresponding to forced waves. Interestingly, such a spectral feature is entirely absent from the natural variability of the system and correspond to the excitation of a specific group of UPOs. This clarifies the fact that, as opposed to the case of quasi-equilibrium systems, it is far from obvious to associate forced and free variability in the spirit of the fluctuation-dissipation theorem (FDT). Reassuringly, ysing the complementary point of view of covariant Lyapunov vectors, we discover that the forcing projects substantially in the stable direction of the flow, which is exactly the mathematical setting under which the FDT cannot be applied.

  15. Mind wandering at the fingertips: automatic parsing of subjective states based on response time variability

    PubMed Central

    Bastian, Mikaël; Sackur, Jérôme

    2013-01-01

    Research from the last decade has successfully used two kinds of thought reports in order to assess whether the mind is wandering: random thought-probes and spontaneous reports. However, none of these two methods allows any assessment of the subjective state of the participant between two reports. In this paper, we present a step by step elaboration and testing of a continuous index, based on response time variability within Sustained Attention to Response Tasks (N = 106, for a total of 10 conditions). We first show that increased response time variability predicts mind wandering. We then compute a continuous index of response time variability throughout full experiments and show that the temporal position of a probe relative to the nearest local peak of the continuous index is predictive of mind wandering. This suggests that our index carries information about the subjective state of the subject even when he or she is not probed, and opens the way for on-line tracking of mind wandering. Finally we proceed a step further and infer the internal attentional states on the basis of the variability of response times. To this end we use the Hidden Markov Model framework, which allows us to estimate the durations of on-task and off-task episodes. PMID:24046753

  16. Natural and Human-Induced Variability in Barrier-Island Response to Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Miselis, Jennifer L.; Lorenzo-Trueba, Jorge

    2017-12-01

    Storm-driven sediment fluxes onto and behind barrier islands help coastal barrier systems keep pace with sea level rise (SLR). Understanding what controls cross-shore sediment flux magnitudes is critical for making accurate forecasts of barrier response to increased SLR rates. Here, using an existing morphodynamic model for barrier island evolution, observations are used to constrain model parameters and explore potential variability in future barrier behavior. Using modeled drowning outcomes as a proxy for vulnerability to SLR, 0%, 28%, and 100% of the barrier is vulnerable to SLR rates of 4, 7, and 10 mm/yr, respectively. When only overwash fluxes are increased in the model, drowning vulnerability increases for the same rates of SLR, suggesting that future increases in storminess may increase island vulnerability particularly where sediment resources are limited. Developed sites are more vulnerable to SLR, indicating that anthropogenic changes to overwash fluxes and estuary depths could profoundly affect future barrier response to SLR.

  17. Natural and human-induced variability in barrier-island response to sea level rise

    USGS Publications Warehouse

    Miselis, Jennifer L.; Lorenzo-Trueba, Jorge

    2017-01-01

    Storm-driven sediment fluxes onto and behind barrier islands help coastal barrier systems keep pace with sea level rise (SLR). Understanding what controls cross-shore sediment flux magnitudes is critical for making accurate forecasts of barrier response to increased SLR rates. Here, using an existing morphodynamic model for barrier island evolution, observations are used to constrain model parameters and explore potential variability in future barrier behavior. Using modeled drowning outcomes as a proxy for vulnerability to SLR, 0%, 28%, and 100% of the barrier is vulnerable to SLR rates of 4, 7, and 10 mm/yr, respectively. When only overwash fluxes are increased in the model, drowning vulnerability increases for the same rates of SLR, suggesting that future increases in storminess may increase island vulnerability particularly where sediment resources are limited. Developed sites are more vulnerable to SLR, indicating that anthropogenic changes to overwash fluxes and estuary depths could profoundly affect future barrier response to SLR.

  18. Optimization of Paclitaxel Containing pH-Sensitive Liposomes By 3 Factor, 3 Level Box-Behnken Design.

    PubMed

    Rane, Smita; Prabhakar, Bala

    2013-07-01

    The aim of this study was to investigate the combined influence of 3 independent variables in the preparation of paclitaxel containing pH-sensitive liposomes. A 3 factor, 3 levels Box-Behnken design was used to derive a second order polynomial equation and construct contour plots to predict responses. The independent variables selected were molar ratio phosphatidylcholine:diolylphosphatidylethanolamine (X1), molar concentration of cholesterylhemisuccinate (X2), and amount of drug (X3). Fifteen batches were prepared by thin film hydration method and evaluated for percent drug entrapment, vesicle size, and pH sensitivity. The transformed values of the independent variables and the percent drug entrapment were subjected to multiple regression to establish full model second order polynomial equation. F was calculated to confirm the omission of insignificant terms from the full model equation to derive a reduced model polynomial equation to predict the dependent variables. Contour plots were constructed to show the effects of X1, X2, and X3 on the percent drug entrapment. A model was validated for accurate prediction of the percent drug entrapment by performing checkpoint analysis. The computer optimization process and contour plots predicted the levels of independent variables X1, X2, and X3 (0.99, -0.06, 0, respectively), for maximized response of percent drug entrapment with constraints on vesicle size and pH sensitivity.

  19. Easy Volcanic Aerosol

    NASA Astrophysics Data System (ADS)

    Toohey, Matthew; Stevens, Bjorn; Schmidt, Hauke; Timmreck, Claudia

    2016-04-01

    Radiative forcing by stratospheric sulfate aerosol of volcanic origin is one of the strongest drivers of natural climate variability. Transient model simulations attempting to match observed climate variability, such as the CMIP historical simulations, rely on volcanic forcing reconstructions based on observations of a small sample of recent eruptions and coarse proxy data for eruptions before the satellite era. Volcanic forcing data sets used in CMIP5 were provided either in terms of optical properties, or in terms of sulfate aerosol mass, leading to significant inter-model spread in the actual volcanic radiative forcing produced by models and in their resulting climate responses. It remains therefore unclear to what degree inter-model spread in response to volcanic forcing represents model differences or variations in the forcing. In order to isolate model differences, Easy Volcanic Aerosol (EVA) provides an analytic representation of volcanic stratospheric aerosol forcing, based on available observations and aerosol model results, prescribing the aerosol's radiative properties and primary modes of spatial and temporal variability. In contrast to regriddings of observational data, EVA allows for the production of physically consistent forcing for historic and hypothetical eruptions of varying magnitude, source latitude, and season. Within CMIP6, EVA will be used to reconstruct volcanic forcing over the past 2000 years for use in the Paleo-Modeling Intercomparison Project (PMIP), and will provide forcing sets for VolMIP experiments aiming to quantify model uncertainty in the response to volcanic forcing. Here, the functional form of EVA will be introduced, along with illustrative examples including the EVA-based reconstruction of volcanic forcing over the historical period, and that of the 1815 Tambora eruption.

  20. Parameter and model uncertainty in a life-table model for fine particles (PM2.5): a statistical modeling study

    PubMed Central

    Tainio, Marko; Tuomisto, Jouni T; Hänninen, Otto; Ruuskanen, Juhani; Jantunen, Matti J; Pekkanen, Juha

    2007-01-01

    Background The estimation of health impacts involves often uncertain input variables and assumptions which have to be incorporated into the model structure. These uncertainties may have significant effects on the results obtained with model, and, thus, on decision making. Fine particles (PM2.5) are believed to cause major health impacts, and, consequently, uncertainties in their health impact assessment have clear relevance to policy-making. We studied the effects of various uncertain input variables by building a life-table model for fine particles. Methods Life-expectancy of the Helsinki metropolitan area population and the change in life-expectancy due to fine particle exposures were predicted using a life-table model. A number of parameter and model uncertainties were estimated. Sensitivity analysis for input variables was performed by calculating rank-order correlations between input and output variables. The studied model uncertainties were (i) plausibility of mortality outcomes and (ii) lag, and parameter uncertainties (iii) exposure-response coefficients for different mortality outcomes, and (iv) exposure estimates for different age groups. The monetary value of the years-of-life-lost and the relative importance of the uncertainties related to monetary valuation were predicted to compare the relative importance of the monetary valuation on the health effect uncertainties. Results The magnitude of the health effects costs depended mostly on discount rate, exposure-response coefficient, and plausibility of the cardiopulmonary mortality. Other mortality outcomes (lung cancer, other non-accidental and infant mortality) and lag had only minor impact on the output. The results highlight the importance of the uncertainties associated with cardiopulmonary mortality in the fine particle impact assessment when compared with other uncertainties. Conclusion When estimating life-expectancy, the estimates used for cardiopulmonary exposure-response coefficient, discount rate, and plausibility require careful assessment, while complicated lag estimates can be omitted without this having any major effect on the results. PMID:17714598

  1. Parameter and model uncertainty in a life-table model for fine particles (PM2.5): a statistical modeling study.

    PubMed

    Tainio, Marko; Tuomisto, Jouni T; Hänninen, Otto; Ruuskanen, Juhani; Jantunen, Matti J; Pekkanen, Juha

    2007-08-23

    The estimation of health impacts involves often uncertain input variables and assumptions which have to be incorporated into the model structure. These uncertainties may have significant effects on the results obtained with model, and, thus, on decision making. Fine particles (PM2.5) are believed to cause major health impacts, and, consequently, uncertainties in their health impact assessment have clear relevance to policy-making. We studied the effects of various uncertain input variables by building a life-table model for fine particles. Life-expectancy of the Helsinki metropolitan area population and the change in life-expectancy due to fine particle exposures were predicted using a life-table model. A number of parameter and model uncertainties were estimated. Sensitivity analysis for input variables was performed by calculating rank-order correlations between input and output variables. The studied model uncertainties were (i) plausibility of mortality outcomes and (ii) lag, and parameter uncertainties (iii) exposure-response coefficients for different mortality outcomes, and (iv) exposure estimates for different age groups. The monetary value of the years-of-life-lost and the relative importance of the uncertainties related to monetary valuation were predicted to compare the relative importance of the monetary valuation on the health effect uncertainties. The magnitude of the health effects costs depended mostly on discount rate, exposure-response coefficient, and plausibility of the cardiopulmonary mortality. Other mortality outcomes (lung cancer, other non-accidental and infant mortality) and lag had only minor impact on the output. The results highlight the importance of the uncertainties associated with cardiopulmonary mortality in the fine particle impact assessment when compared with other uncertainties. When estimating life-expectancy, the estimates used for cardiopulmonary exposure-response coefficient, discount rate, and plausibility require careful assessment, while complicated lag estimates can be omitted without this having any major effect on the results.

  2. A case study of alternative site response explanatory variables in Parkfield, California

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.; Morgan, E.C.; Kaklamanos, J.

    2011-01-01

    The combination of densely-spaced strong-motion stations in Parkfield, California, and spectral analysis of surface waves (SASW) profiles provides an ideal dataset for assessing the accuracy of different site response explanatory variables. We judge accuracy in terms of spatial coverage and correlation with observations. The performance of the alternative models is period-dependent, but generally we observe that: (1) where a profile is available, the square-root-of-impedance method outperforms VS30 (average S-wave velocity to 30 m depth), and (2) where a profile is unavailable, the topographic-slope method outperforms surficial geology. The fundamental site frequency is a valuable site response explanatory variable, though less valuable than VS30. However, given the expense and difficulty of obtaining reliable estimates of VS30 and the relative ease with which the fundamental site frequency can be computed, the fundamental site frequency may prove to be a valuable site response explanatory variable for many applications. ?? 2011 ASCE.

  3. Dynamic rupture modeling with laboratory-derived constitutive relations

    USGS Publications Warehouse

    Okubo, P.G.

    1989-01-01

    A laboratory-derived state variable friction constitutive relation is used in the numerical simulation of the dynamic growth of an in-plane or mode II shear crack. According to this formulation, originally presented by J.H. Dieterich, frictional resistance varies with the logarithm of the slip rate and with the logarithm of the frictional state variable as identified by A.L. Ruina. Under conditions of steady sliding, the state variable is proportional to (slip rate)-1. Following suddenly introduced increases in slip rate, the rate and state dependencies combine to produce behavior which resembles slip weakening. When rupture nucleation is artificially forced at fixed rupture velocity, rupture models calculated with the state variable friction in a uniformly distributed initial stress field closely resemble earlier rupture models calculated with a slip weakening fault constitutive relation. Model calculations suggest that dynamic rupture following a state variable friction relation is similar to that following a simpler fault slip weakening law. However, when modeling the full cycle of fault motions, rate-dependent frictional responses included in the state variable formulation are important at low slip rates associated with rupture nucleation. -from Author

  4. Pharmacokinetic Modelling to Predict FVIII:C Response to Desmopressin and Its Reproducibility in Nonsevere Haemophilia A Patients.

    PubMed

    Schütte, Lisette M; van Hest, Reinier M; Stoof, Sara C M; Leebeek, Frank W G; Cnossen, Marjon H; Kruip, Marieke J H A; Mathôt, Ron A A

    2018-04-01

     Nonsevere haemophilia A (HA) patients can be treated with desmopressin. Response of factor VIII activity (FVIII:C) differs between patients and is difficult to predict.  Our aims were to describe FVIII:C response after desmopressin and its reproducibility by population pharmacokinetic (PK) modelling.  Retrospective data of 128 nonsevere HA patients (age 7-75 years) receiving an intravenous or intranasal dose of desmopressin were used. PK modelling of FVIII:C was performed by nonlinear mixed effect modelling. Reproducibility of FVIII:C response was defined as less than 25% difference in peak FVIII:C between administrations.  A total of 623 FVIII:C measurements from 142 desmopressin administrations were available; 14 patients had received two administrations at different occasions. The FVIII:C time profile was best described by a two-compartment model with first-order absorption and elimination. Interindividual variability of the estimated baseline FVIII:C, central volume of distribution and clearance were 37, 43 and 50%, respectively. The most recently measured FVIII:C (FVIII-recent) was significantly associated with FVIII:C response to desmopressin ( p  < 0.001). Desmopressin administration resulted in an absolute FVIII:C increase of 0.47 IU/mL (median, interquartile range: 0.32-0.65 IU/mL, n  = 142). C response was reproducible in 6 out of 14 patients receiving two desmopressin administrations.  FVIII:C response to desmopressin in nonsevere HA patients was adequately described by a population PK model. Large variability in FVIII:C response was observed, which could only partially be explained by FVIII-recent. C response was not reproducible in a small subset of patients. Therefore, monitoring FVIII:C around surgeries or bleeding might be considered. Research is needed to study this further. Schattauer Stuttgart.

  5. Asymmetric responses of primary productivity to altered precipitation simulated by ecosystem models across three long-term grassland sites

    NASA Astrophysics Data System (ADS)

    Wu, Donghai; Ciais, Philippe; Viovy, Nicolas; Knapp, Alan K.; Wilcox, Kevin; Bahn, Michael; Smith, Melinda D.; Vicca, Sara; Fatichi, Simone; Zscheischler, Jakob; He, Yue; Li, Xiangyi; Ito, Akihiko; Arneth, Almut; Harper, Anna; Ukkola, Anna; Paschalis, Athanasios; Poulter, Benjamin; Peng, Changhui; Ricciuto, Daniel; Reinthaler, David; Chen, Guangsheng; Tian, Hanqin; Genet, Hélène; Mao, Jiafu; Ingrisch, Johannes; Nabel, Julia E. S. M.; Pongratz, Julia; Boysen, Lena R.; Kautz, Markus; Schmitt, Michael; Meir, Patrick; Zhu, Qiuan; Hasibeder, Roland; Sippel, Sebastian; Dangal, Shree R. S.; Sitch, Stephen; Shi, Xiaoying; Wang, Yingping; Luo, Yiqi; Liu, Yongwen; Piao, Shilong

    2018-06-01

    Field measurements of aboveground net primary productivity (ANPP) in temperate grasslands suggest that both positive and negative asymmetric responses to changes in precipitation (P) may occur. Under normal range of precipitation variability, wet years typically result in ANPP gains being larger than ANPP declines in dry years (positive asymmetry), whereas increases in ANPP are lower in magnitude in extreme wet years compared to reductions during extreme drought (negative asymmetry). Whether the current generation of ecosystem models with a coupled carbon-water system in grasslands are capable of simulating these asymmetric ANPP responses is an unresolved question. In this study, we evaluated the simulated responses of temperate grassland primary productivity to scenarios of altered precipitation with 14 ecosystem models at three sites: Shortgrass steppe (SGS), Konza Prairie (KNZ) and Stubai Valley meadow (STU), spanning a rainfall gradient from dry to moist. We found that (1) the spatial slopes derived from modeled primary productivity and precipitation across sites were steeper than the temporal slopes obtained from inter-annual variations, which was consistent with empirical data; (2) the asymmetry of the responses of modeled primary productivity under normal inter-annual precipitation variability differed among models, and the mean of the model ensemble suggested a negative asymmetry across the three sites, which was contrary to empirical evidence based on filed observations; (3) the mean sensitivity of modeled productivity to rainfall suggested greater negative response with reduced precipitation than positive response to an increased precipitation under extreme conditions at the three sites; and (4) gross primary productivity (GPP), net primary productivity (NPP), aboveground NPP (ANPP) and belowground NPP (BNPP) all showed concave-down nonlinear responses to altered precipitation in all the models, but with different curvatures and mean values. Our results indicated that most models overestimate the negative drought effects and/or underestimate the positive effects of increased precipitation on primary productivity under normal climate conditions, highlighting the need for improving eco-hydrological processes in those models in the future.

  6. Assessing groundwater vulnerability to agrichemical contamination in the Midwest US

    USGS Publications Warehouse

    Burkart, M.R.; Kolpin, D.W.; James, D.E.

    1999-01-01

    Agrichemicals (herbicides and nitrate) are significant sources of diffuse pollution to groundwater. Indirect methods are needed to assess the potential for groundwater contamination by diffuse sources because groundwater monitoring is too costly to adequately define the geographic extent of contamination at a regional or national scale. This paper presents examples of the application of statistical, overlay and index, and process-based modeling methods for groundwater vulnerability assessments to a variety of data from the Midwest U.S. The principles for vulnerability assessment include both intrinsic (pedologic, climatologic, and hydrogeologic factors) and specific (contaminant and other anthropogenic factors) vulnerability of a location. Statistical methods use the frequency of contaminant occurrence, contaminant concentration, or contamination probability as a response variable. Statistical assessments are useful for defining the relations among explanatory and response variables whether they define intrinsic or specific vulnerability. Multivariate statistical analyses are useful for ranking variables critical to estimating water quality responses of interest. Overlay and index methods involve intersecting maps of intrinsic and specific vulnerability properties and indexing the variables by applying appropriate weights. Deterministic models use process-based equations to simulate contaminant transport and are distinguished from the other methods in their potential to predict contaminant transport in both space and time. An example of a one-dimensional leaching model linked to a geographic information system (GIS) to define a regional metamodel for contamination in the Midwest is included.

  7. Variable-Speed Simulation of a Dual-Clutch Gearbox Tiltrotor Driveline

    NASA Technical Reports Server (NTRS)

    DeSmidt, Hans; Wang, Kon-Well; Smith, Edward C.; Lewicki, David G.

    2012-01-01

    This investigation explores the variable-speed operation and shift response of a prototypical two-speed dual-clutch transmission tiltrotor driveline in forward flight. Here, a Comprehensive Variable-Speed Rotorcraft Propulsion System Modeling (CVSRPM) tool developed under a NASA funded NRA program is utilized to simulate the drive system dynamics. In this study, a sequential shifting control strategy is analyzed under a steady forward cruise condition. This investigation attempts to build upon previous variable-speed rotorcraft propulsion studies by 1) including a fully nonlinear transient gas-turbine engine model, 2) including clutch stick-slip friction effects, 3) including shaft flexibility, 4) incorporating a basic flight dynamics model to account for interactions with the flight control system. Through exploring the interactions between the various subsystems, this analysis provides important insights into the continuing development of variable-speed rotorcraft propulsion systems.

  8. Item Response Modeling: An Evaluation of the Children's Fruit and Vegetable Self-Efficacy Questionnaire

    ERIC Educational Resources Information Center

    Watson, Kathy; Baranowski, Tom; Thompson, Debbe

    2006-01-01

    Perceived self-efficacy (SE) for eating fruit and vegetables (FV) is a key variable mediating FV change in interventions. This study applies item response modeling (IRM) to a fruit, juice and vegetable self-efficacy questionnaire (FVSEQ) previously validated with classical test theory (CTT) procedures. The 24-item (five-point Likert scale) FVSEQ…

  9. A Ballistic Model of Choice Response Time

    ERIC Educational Resources Information Center

    Brown, Scott; Heathcote, Andrew

    2005-01-01

    Almost all models of response time (RT) use a stochastic accumulation process. To account for the benchmark RT phenomena, researchers have found it necessary to include between-trial variability in the starting point and/or the rate of accumulation, both in linear (R. Ratcliff & J. N. Rouder, 1998) and nonlinear (M. Usher & J. L. McClelland, 2001)…

  10. Bayesian Analysis and Design for Joint Modeling of Two Binary Responses with Misclassification

    ERIC Educational Resources Information Center

    Stamey, James D.; Beavers, Daniel P.; Sherr, Michael E.

    2017-01-01

    Survey data are often subject to various types of errors such as misclassification. In this article, we consider a model where interest is simultaneously in two correlated response variables and one is potentially subject to misclassification. A motivating example of a recent study of the impact of a sexual education course for adolescents is…

  11. p-adic stochastic hidden variable model

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrew

    1998-03-01

    We propose stochastic hidden variables model in which hidden variables have a p-adic probability distribution ρ(λ) and at the same time conditional probabilistic distributions P(U,λ), U=A,A',B,B', are ordinary probabilities defined on the basis of the Kolmogorov measure-theoretical axiomatics. A frequency definition of p-adic probability is quite similar to the ordinary frequency definition of probability. p-adic frequency probability is defined as the limit of relative frequencies νn but in the p-adic metric. We study a model with p-adic stochastics on the level of the hidden variables description. But, of course, responses of macroapparatuses have to be described by ordinary stochastics. Thus our model describes a mixture of p-adic stochastics of the microworld and ordinary stochastics of macroapparatuses. In this model probabilities for physical observables are the ordinary probabilities. At the same time Bell's inequality is violated.

  12. Multiple steps of phosphorylation of activated rhodopsin can account for the reproducibility of vertebrate rod single-photon responses.

    PubMed

    Hamer, R D; Nicholas, S C; Tranchina, D; Liebman, P A; Lamb, T D

    2003-10-01

    Single-photon responses (SPRs) in vertebrate rods are considerably less variable than expected if isomerized rhodopsin (R*) inactivated in a single, memoryless step, and no other variability-reducing mechanisms were available. We present a new stochastic model, the core of which is the successive ratcheting down of R* activity, and a concomitant increase in the probability of quenching of R* by arrestin (Arr), with each phosphorylation of R* (Gibson, S.K., J.H. Parkes, and P.A. Liebman. 2000. Biochemistry. 39:5738-5749.). We evaluated the model by means of Monte-Carlo simulations of dim-flash responses, and compared the response statistics derived from them with those obtained from empirical dim-flash data (Whitlock, G.G., and T.D. Lamb. 1999. Neuron. 23:337-351.). The model accounts for four quantitative measures of SPR reproducibility. It also reproduces qualitative features of rod responses obtained with altered nucleotide levels, and thus contradicts the conclusion that such responses imply that phosphorylation cannot dominate R* inactivation (Rieke, F., and D.A. Baylor. 1998a. Biophys. J. 75:1836-1857; Field, G.D., and F. Rieke. 2002. Neuron. 35:733-747.). Moreover, the model is able to reproduce the salient qualitative features of SPRs obtained from mouse rods that had been genetically modified with specific pathways of R* inactivation or Ca2+ feedback disabled. We present a theoretical analysis showing that the variability of the area under the SPR estimates the variability of integrated R* activity, and can provide a valid gauge of the number of R* inactivation steps. We show that there is a heretofore unappreciated tradeoff between variability of SPR amplitude and SPR duration that depends critically on the kinetics of inactivation of R* relative to the net kinetics of the downstream reactions in the cascade. Because of this dependence, neither the variability of SPR amplitude nor duration provides a reliable estimate of the underlying variability of integrated R* activity, and cannot be used to estimate the minimum number of R* inactivation steps. We conclude that multiple phosphorylation-dependent decrements in R* activity (with Arr-quench) can confer the observed reproducibility of rod SPRs; there is no compelling need to invoke a long series of non-phosphorylation dependent state changes in R* (as in Rieke, F., and D.A. Baylor. 1998a. Biophys. J. 75:1836-1857; Field, G.D., and F. Rieke. 2002. Neuron. 35:733-747.). Our analyses, plus data and modeling of others (Rieke, F., and D.A. Baylor. 1998a. Biophys. J. 75:1836-1857; Field, G.D., and F. Rieke. 2002. Neuron. 35:733-747.), also argue strongly against either feedback (including Ca2+-feedback) or depletion of any molecular species downstream to R* as the dominant cause of SPR reproducibility.

  13. The development of a model to predict BW gain of growing cattle fed grass silage-based diets.

    PubMed

    Huuskonen, A; Huhtanen, P

    2015-08-01

    The objective of this meta-analysis was to develop and validate empirical equations predicting BW gain (BWG) and carcass traits of growing cattle from intake and diet composition variables. The modelling was based on treatment mean data from feeding trials in growing cattle, in which the nutrient supply was manipulated by wide ranges of forage and concentrate factors. The final dataset comprised 527 diets in 116 studies. The diets were mainly based on grass silage or grass silage partly or completely replaced by whole-crop silages, hay or straw. The concentrate feeds consisted of cereal grains, fibrous by-products and protein supplements. Mixed model regression analysis with a random study effect was used to develop prediction equations for BWG and carcass traits. The best-fit models included linear and quadratic effects of metabolisable energy (ME) intake per metabolic BW (BW0.75), linear effects of BW0.75, and dietary concentrations of NDF, fat and feed metabolisable protein (MP) as significant variables. Although diet variables had significant effects on BWG, their contribution to improve the model predictions compared with ME intake models was small. Feed MP rather than total MP was included in the final model, since it is less correlated to dietary ME concentration than total MP. None of the quadratic terms of feed variables was significant (P>0.10) when included in the final models. Further, additional feed variables (e.g. silage fermentation products, forage digestibility) did not have significant effects on BWG. For carcass traits, increased ME intake (ME/BW0.75) improved both dressing proportion (P0.10) effect on dressing proportion or carcass conformation score, but it increased (P<0.01) carcass fat score. The current study demonstrated that ME intake per BW0.75 was clearly the most important variable explaining the BWG response in growing cattle. The effect of increased ME supply displayed diminishing responses that could be associated with increased energy concentration of BWG, reduced diet metabolisability (proportion of ME of gross energy) and/or decreased efficiency of ME utilisation for growth with increased intake. Negative effects of increased dietary NDF concentration on BWG were smaller compared to responses that energy evaluation systems predict for energy retention. The present results showed only marginal effects of protein supply on BWG in growing cattle.

  14. Attributing uncertainty in streamflow simulations due to variable inputs via the Quantile Flow Deviation metric

    NASA Astrophysics Data System (ADS)

    Shoaib, Syed Abu; Marshall, Lucy; Sharma, Ashish

    2018-06-01

    Every model to characterise a real world process is affected by uncertainty. Selecting a suitable model is a vital aspect of engineering planning and design. Observation or input errors make the prediction of modelled responses more uncertain. By way of a recently developed attribution metric, this study is aimed at developing a method for analysing variability in model inputs together with model structure variability to quantify their relative contributions in typical hydrological modelling applications. The Quantile Flow Deviation (QFD) metric is used to assess these alternate sources of uncertainty. The Australian Water Availability Project (AWAP) precipitation data for four different Australian catchments is used to analyse the impact of spatial rainfall variability on simulated streamflow variability via the QFD. The QFD metric attributes the variability in flow ensembles to uncertainty associated with the selection of a model structure and input time series. For the case study catchments, the relative contribution of input uncertainty due to rainfall is higher than that due to potential evapotranspiration, and overall input uncertainty is significant compared to model structure and parameter uncertainty. Overall, this study investigates the propagation of input uncertainty in a daily streamflow modelling scenario and demonstrates how input errors manifest across different streamflow magnitudes.

  15. Temperature Responses to Spectral Solar Variability on Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Wen, Guoyong; Harder, Jerald W.; Pilewskie, Peter

    2010-01-01

    Two scenarios of spectral solar forcing, namely Spectral Irradiance Monitor (SIM)-based out-of-phase variations and conventional in-phase variations, are input to a time-dependent radiative-convective model (RCM), and to the GISS modelE. Both scenarios and models give maximum temperature responses in the upper stratosphere, decreasing to the surface. Upper stratospheric peak-to-peak responses to out-of-phase forcing are approx.0.6 K and approx.0.9 K in RCM and modelE, approx.5 times larger than responses to in-phase forcing. Stratospheric responses are in-phase with TSI and UV variations, and resemble HALOE observed 11-year temperature variations. For in-phase forcing, ocean mixed layer response lags surface air response by approx.2 years, and is approx.0.06 K compared to approx.0.14 K for atmosphere. For out-of-phase forcing, lags are similar, but surface responses are significantly smaller. For both scenarios, modelE surface responses are less than 0.1 K in the tropics, and display similar patterns over oceanic regions, but complex responses over land.

  16. Soil erosion assessment - Mind the gap

    NASA Astrophysics Data System (ADS)

    Kim, Jongho; Ivanov, Valeriy Y.; Fatichi, Simone

    2016-12-01

    Accurate assessment of erosion rates remains an elusive problem because soil loss is strongly nonunique with respect to the main drivers. In addressing the mechanistic causes of erosion responses, we discriminate between macroscale effects of external factors - long studied and referred to as "geomorphic external variability", and microscale effects, introduced as "geomorphic internal variability." The latter source of erosion variations represents the knowledge gap, an overlooked but vital element of geomorphic response, significantly impacting the low predictability skill of deterministic models at field-catchment scales. This is corroborated with experiments using a comprehensive physical model that dynamically updates the soil mass and particle composition. As complete knowledge of microscale conditions for arbitrary location and time is infeasible, we propose that new predictive frameworks of soil erosion should embed stochastic components in deterministic assessments of external and internal types of geomorphic variability.

  17. Demographic trends of sick leave absenteeism among civil service employees at a federal agency from 2004 to 2012.

    PubMed

    Gajewski, Kim; Burris, Dara; Spears, D Ross; Sullivan, Kevin; Oyinloye, Oluremi; McNeil, Carrie; Meechan, Paul; Warnock, Eli; Trapp, Jonathan; Decker, K C; Chapman, Sandy

    2015-03-01

    To investigate the associations between demographic variables and sick leave use. We analyzed sick leave use among civil servants at a federal agency (FA) from 2004 to 2012 by demographic and FA-specific variables. We used a mixed methods approach and type III analysis to build a descriptive model of sick leave proportions and demographic variables. Sick absenteeism usage varied significantly (variation of greater than one sick day per year) by sex, Emergency Operations Center response tier, length of service at the FA, age, and general schedule pay grade level. Our final descriptive model contained age, sex, response tier and an interaction term between age and sex. Future studies should examine these associations on smaller time scales, perhaps breaking the data down by month or day of the week.

  18. Introduction to bifactor polytomous item response theory analysis.

    PubMed

    Toland, Michael D; Sulis, Isabella; Giambona, Francesca; Porcu, Mariano; Campbell, Jonathan M

    2017-02-01

    A bifactor item response theory model can be used to aid in the interpretation of the dimensionality of a multifaceted questionnaire that assumes continuous latent variables underlying the propensity to respond to items. This model can be used to describe the locations of people on a general continuous latent variable as well as on continuous orthogonal specific traits that characterize responses to groups of items. The bifactor graded response (bifac-GR) model is presented in contrast to a correlated traits (or multidimensional GR model) and unidimensional GR model. Bifac-GR model specification, assumptions, estimation, and interpretation are demonstrated with a reanalysis of data (Campbell, 2008) on the Shared Activities Questionnaire. We also show the importance of marginalizing the slopes for interpretation purposes and we extend the concept to the interpretation of the information function. To go along with the illustrative example analyses, we have made available supplementary files that include command file (syntax) examples and outputs from flexMIRT, IRTPRO, R, Mplus, and STATA. Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.jsp.2016.11.001. Data needed to reproduce analyses in this article are available as supplemental materials (online only) in the Appendix of this article. Copyright © 2016 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  19. Probabilistic Modeling of High-Temperature Material Properties of a 5-Harness 0/90 Sylramic Fiber/ CVI-SiC/ MI-SiC Woven Composite

    NASA Technical Reports Server (NTRS)

    Nagpal, Vinod K.; Tong, Michael; Murthy, P. L. N.; Mital, Subodh

    1998-01-01

    An integrated probabilistic approach has been developed to assess composites for high temperature applications. This approach was used to determine thermal and mechanical properties and their probabilistic distributions of a 5-harness 0/90 Sylramic fiber/CVI-SiC/Mi-SiC woven Ceramic Matrix Composite (CMC) at high temperatures. The purpose of developing this approach was to generate quantitative probabilistic information on this CMC to help complete the evaluation for its potential application for HSCT combustor liner. This approach quantified the influences of uncertainties inherent in constituent properties called primitive variables on selected key response variables of the CMC at 2200 F. The quantitative information is presented in the form of Cumulative Density Functions (CDFs). Probability Density Functions (PDFS) and primitive variable sensitivities on response. Results indicate that the scatters in response variables were reduced by 30-50% when the uncertainties in the primitive variables, which showed the most influence, were reduced by 50%.

  20. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godina-Nava, J. J.; Segura, M. A. Rodriguez; Cadena, S. Reyes

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  1. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    NASA Astrophysics Data System (ADS)

    Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán

    2008-08-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  2. A model for the pilot's use of motion cues in roll-axis tracking tasks

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Junker, A. M.

    1977-01-01

    Simulated target-following and disturbance-regulation tasks were explored with subjects using visual-only and combined visual and motion cues. The effects of motion cues on task performance and pilot response behavior were appreciably different for the two task configurations and were consistent with data reported in earlier studies for similar task configurations. The optimal-control model for pilot/vehicle systems provided a task-independent framework for accounting for the pilot's use of motion cues. Specifically, the availability of motion cues was modeled by augmenting the set of perceptual variables to include position, rate, acceleration, and accleration-rate of the motion simulator, and results were consistent with the hypothesis of attention-sharing between visual and motion variables. This straightforward informational model allowed accurate model predictions of the effects of motion cues on a variety of response measures for both the target-following and disturbance-regulation tasks.

  3. The seasonal response of the Held-Suarez climate model to prescribed ocean temperature anomalies. I - Results of decadal integrations

    NASA Technical Reports Server (NTRS)

    Phillips, T. J.; Semtner, A. J., Jr.

    1984-01-01

    Anomalies in ocean surface temperature have been identified as possible causes of variations in the climate of particular seasons or as a source of interannual climatic variability, and attempts have been made to forecast seasonal climate by using ocean temperatures as predictor variables. However, the seasonal atmospheric response to ocean temperature anomalies has not yet been systematically investigated with nonlinear models. The present investigation is concerned with ten-year integrations involving a model of intermediate complexity, the Held-Suarez climate model. The calculations have been performed to investigate the changes in seasonal climate which result from a fixed anomaly imposed on a seasonally varying, global ocean temperature field. Part I of the paper provides a report on the results of these decadal integrations. Attention is given to model properties, the experimental design, and the anomaly experiments.

  4. Modeling and optimization of fermentation variables for enhanced production of lactase by isolated Bacillus subtilis strain VUVD001 using artificial neural networking and response surface methodology.

    PubMed

    Venkateswarulu, T C; Prabhakar, K Vidya; Kumar, R Bharath; Krupanidhi, S

    2017-07-01

    Modeling and optimization were performed to enhance production of lactase through submerged fermentation by Bacillus subtilis VUVD001 using artificial neural networks (ANN) and response surface methodology (RSM). The effect of process parameters namely temperature (°C), pH, and incubation time (h) and their combinational interactions on production was studied in shake flask culture by Box-Behnken design. The model was validated by conducting an experiment at optimized process variables which gave the maximum lactase activity of 91.32 U/ml. Compared to traditional activity, 3.48-folds improved production was obtained after RSM optimization. This study clearly shows that both RSM and ANN models provided desired predictions. However, compared with RSM (R 2  = 0.9496), the ANN model (R 2  = 0.99456) gave a better prediction for the production of lactase.

  5. Correlated receptor transport processes buffer single-cell heterogeneity

    PubMed Central

    Kallenberger, Stefan M.; Unger, Anne L.; Legewie, Stefan; Lymperopoulos, Konstantinos; Eils, Roland

    2017-01-01

    Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR) trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system. PMID:28945754

  6. Analysis of Genome-Wide Association Studies with Multiple Outcomes Using Penalization

    PubMed Central

    Liu, Jin; Huang, Jian; Ma, Shuangge

    2012-01-01

    Genome-wide association studies have been extensively conducted, searching for markers for biologically meaningful outcomes and phenotypes. Penalization methods have been adopted in the analysis of the joint effects of a large number of SNPs (single nucleotide polymorphisms) and marker identification. This study is partly motivated by the analysis of heterogeneous stock mice dataset, in which multiple correlated phenotypes and a large number of SNPs are available. Existing penalization methods designed to analyze a single response variable cannot accommodate the correlation among multiple response variables. With multiple response variables sharing the same set of markers, joint modeling is first employed to accommodate the correlation. The group Lasso approach is adopted to select markers associated with all the outcome variables. An efficient computational algorithm is developed. Simulation study and analysis of the heterogeneous stock mice dataset show that the proposed method can outperform existing penalization methods. PMID:23272092

  7. Intercomparison of model response and internal variability across climate model ensembles

    NASA Astrophysics Data System (ADS)

    Kumar, Devashish; Ganguly, Auroop R.

    2017-10-01

    Characterization of climate uncertainty at regional scales over near-term planning horizons (0-30 years) is crucial for climate adaptation. Climate internal variability (CIV) dominates climate uncertainty over decadal prediction horizons at stakeholders' scales (regional to local). In the literature, CIV has been characterized indirectly using projections of climate change from multi-model ensembles (MME) instead of directly using projections from multiple initial condition ensembles (MICE), primarily because adequate number of initial condition (IC) runs were not available for any climate model. Nevertheless, the recent availability of significant number of IC runs from one climate model allows for the first time to characterize CIV directly from climate model projections and perform a sensitivity analysis to study the dominance of CIV compared to model response variability (MRV). Here, we measure relative agreement (a dimensionless number with values ranging between 0 and 1, inclusive; a high value indicates less variability and vice versa) among MME and MICE and find that CIV is lower than MRV for all projection time horizons and spatial resolutions for precipitation and temperature. However, CIV exhibits greater dominance over MRV for seasonal and annual mean precipitation at higher latitudes where signals of climate change are expected to emerge sooner. Furthermore, precipitation exhibits large uncertainties and a rapid decline in relative agreement from global to continental, regional, or local scales for MICE compared to MME. The fractional contribution of uncertainty due to CIV is invariant for precipitation and decreases for temperature as lead time progresses towards the end of the century.

  8. Study report on combining diagnostic and therapeutic considerations with subsystem and whole-body simulation

    NASA Technical Reports Server (NTRS)

    Furukawa, S.

    1975-01-01

    Current applications of simulation models for clinical research described included tilt model simulation of orthostatic intolerance with hemorrhage, and modeling long term circulatory circulation. Current capabilities include: (1) simulation of analogous pathological states and effects of abnormal environmental stressors by the manipulation of system variables and changing inputs in various sequences; (2) simulation of time courses of responses of controlled variables by the altered inputs and their relationships; (3) simulation of physiological responses of treatment such as isotonic saline transfusion; (4) simulation of the effectiveness of a treatment as well as the effects of complication superimposed on an existing pathological state; and (5) comparison of the effectiveness of various treatments/countermeasures for a given pathological state. The feasibility of applying simulation models to diagnostic and therapeutic research problems is assessed.

  9. Predictions of the pathological response to neoadjuvant chemotherapy in patients with primary breast cancer using a data mining technique.

    PubMed

    Takada, M; Sugimoto, M; Ohno, S; Kuroi, K; Sato, N; Bando, H; Masuda, N; Iwata, H; Kondo, M; Sasano, H; Chow, L W C; Inamoto, T; Naito, Y; Tomita, M; Toi, M

    2012-07-01

    Nomogram, a standard technique that utilizes multiple characteristics to predict efficacy of treatment and likelihood of a specific status of an individual patient, has been used for prediction of response to neoadjuvant chemotherapy (NAC) in breast cancer patients. The aim of this study was to develop a novel computational technique to predict the pathological complete response (pCR) to NAC in primary breast cancer patients. A mathematical model using alternating decision trees, an epigone of decision tree, was developed using 28 clinicopathological variables that were retrospectively collected from patients treated with NAC (n = 150), and validated using an independent dataset from a randomized controlled trial (n = 173). The model selected 15 variables to predict the pCR with yielding area under the receiver operating characteristics curve (AUC) values of 0.766 [95 % confidence interval (CI)], 0.671-0.861, P value < 0.0001) in cross-validation using training dataset and 0.787 (95 % CI 0.716-0.858, P value < 0.0001) in the validation dataset. Among three subtypes of breast cancer, the luminal subgroup showed the best discrimination (AUC = 0.779, 95 % CI 0.641-0.917, P value = 0.0059). The developed model (AUC = 0.805, 95 % CI 0.716-0.894, P value < 0.0001) outperformed multivariate logistic regression (AUC = 0.754, 95 % CI 0.651-0.858, P value = 0.00019) of validation datasets without missing values (n = 127). Several analyses, e.g. bootstrap analysis, revealed that the developed model was insensitive to missing values and also tolerant to distribution bias among the datasets. Our model based on clinicopathological variables showed high predictive ability for pCR. This model might improve the prediction of the response to NAC in primary breast cancer patients.

  10. On the Lack of Stratospheric Dynamical Variability in Low-top Versions of the CMIP5 Models

    NASA Technical Reports Server (NTRS)

    Charlton-Perez, Andrew J.; Baldwin, Mark P.; Birner, Thomas; Black, Robert X.; Butler, Amy H.; Calvo, Natalia; Davis, Nicholas A.; Gerber, Edwin P.; Gillett, Nathan; Hardiman, Steven; hide

    2013-01-01

    We describe the main differences in simulations of stratospheric climate and variability by models within the fifth Coupled Model Intercomparison Project (CMIP5) that have a model top above the stratopause and relatively fine stratospheric vertical resolution (high-top), and those that have a model top below the stratopause (low-top). Although the simulation of mean stratospheric climate by the two model ensembles is similar, the low-top model ensemble has very weak stratospheric variability on daily and interannual time scales. The frequency of major sudden stratospheric warming events is strongly underestimated by the low-top models with less than half the frequency of events observed in the reanalysis data and high-top models. The lack of stratospheric variability in the low-top models affects their stratosphere-troposphere coupling, resulting in short-lived anomalies in the Northern Annular Mode, which do not produce long-lasting tropospheric impacts, as seen in observations. The lack of stratospheric variability, however, does not appear to have any impact on the ability of the low-top models to reproduce past stratospheric temperature trends. We find little improvement in the simulation of decadal variability for the high-top models compared to the low-top, which is likely related to the fact that neither ensemble produces a realistic dynamical response to volcanic eruptions.

  11. Dose response explorer: an integrated open-source tool for exploring and modelling radiotherapy dose volume outcome relationships

    NASA Astrophysics Data System (ADS)

    El Naqa, I.; Suneja, G.; Lindsay, P. E.; Hope, A. J.; Alaly, J. R.; Vicic, M.; Bradley, J. D.; Apte, A.; Deasy, J. O.

    2006-11-01

    Radiotherapy treatment outcome models are a complicated function of treatment, clinical and biological factors. Our objective is to provide clinicians and scientists with an accurate, flexible and user-friendly software tool to explore radiotherapy outcomes data and build statistical tumour control or normal tissue complications models. The software tool, called the dose response explorer system (DREES), is based on Matlab, and uses a named-field structure array data type. DREES/Matlab in combination with another open-source tool (CERR) provides an environment for analysing treatment outcomes. DREES provides many radiotherapy outcome modelling features, including (1) fitting of analytical normal tissue complication probability (NTCP) and tumour control probability (TCP) models, (2) combined modelling of multiple dose-volume variables (e.g., mean dose, max dose, etc) and clinical factors (age, gender, stage, etc) using multi-term regression modelling, (3) manual or automated selection of logistic or actuarial model variables using bootstrap statistical resampling, (4) estimation of uncertainty in model parameters, (5) performance assessment of univariate and multivariate analyses using Spearman's rank correlation and chi-square statistics, boxplots, nomograms, Kaplan-Meier survival plots, and receiver operating characteristics curves, and (6) graphical capabilities to visualize NTCP or TCP prediction versus selected variable models using various plots. DREES provides clinical researchers with a tool customized for radiotherapy outcome modelling. DREES is freely distributed. We expect to continue developing DREES based on user feedback.

  12. Neural Network and Regression Methods Demonstrated in the Design Optimization of a Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Lavelle, Thomas M.; Patnaik, Surya

    2003-01-01

    The neural network and regression methods of NASA Glenn Research Center s COMETBOARDS design optimization testbed were used to generate approximate analysis and design models for a subsonic aircraft operating at Mach 0.85 cruise speed. The analytical model is defined by nine design variables: wing aspect ratio, engine thrust, wing area, sweep angle, chord-thickness ratio, turbine temperature, pressure ratio, bypass ratio, fan pressure; and eight response parameters: weight, landing velocity, takeoff and landing field lengths, approach thrust, overall efficiency, and compressor pressure and temperature. The variables were adjusted to optimally balance the engines to the airframe. The solution strategy included a sensitivity model and the soft analysis model. Researchers generated the sensitivity model by training the approximators to predict an optimum design. The trained neural network predicted all response variables, within 5-percent error. This was reduced to 1 percent by the regression method. The soft analysis model was developed to replace aircraft analysis as the reanalyzer in design optimization. Soft models have been generated for a neural network method, a regression method, and a hybrid method obtained by combining the approximators. The performance of the models is graphed for aircraft weight versus thrust as well as for wing area and turbine temperature. The regression method followed the analytical solution with little error. The neural network exhibited 5-percent maximum error over all parameters. Performance of the hybrid method was intermediate in comparison to the individual approximators. Error in the response variable is smaller than that shown in the figure because of a distortion scale factor. The overall performance of the approximators was considered to be satisfactory because aircraft analysis with NASA Langley Research Center s FLOPS (Flight Optimization System) code is a synthesis of diverse disciplines: weight estimation, aerodynamic analysis, engine cycle analysis, propulsion data interpolation, mission performance, airfield length for landing and takeoff, noise footprint, and others.

  13. Vaxar: A Web-Based Database of Laboratory Animal Responses to Vaccinations and Its Application in the Meta-Analysis of Different Animal Responses to Tuberculosis Vaccinations

    PubMed Central

    Todd, Thomas; Dunn, Natalie; Xiang, Zuoshuang; He, Yongqun

    2016-01-01

    Animal models are indispensable for vaccine research and development. However, choosing which species to use and designing a vaccine study that is optimized for that species is often challenging. Vaxar (http://www.violinet.org/vaxar/) is a web-based database and analysis system that stores manually curated data regarding vaccine-induced responses in animals. To date, Vaxar encompasses models from 35 animal species including rodents, rabbits, ferrets, primates, and birds. These 35 species have been used to study more than 1300 experimentally tested vaccines for 164 pathogens and diseases significant to humans and domestic animals. The responses to vaccines by animals in more than 1500 experimental studies are recorded in Vaxar; these data can be used for systematic meta-analysis of various animal responses to a particular vaccine. For example, several variables, including animal strain, animal age, and the dose or route of either vaccination or challenge, might affect host response outcomes. Vaxar can also be used to identify variables that affect responses to different vaccines in a specific animal model. All data stored in Vaxar are publically available for web-based queries and analyses. Overall Vaxar provides a unique systematic approach for understanding vaccine-induced host immunity. PMID:27053566

  14. Metamodeling and mapping of nitrate flux in the unsaturated zone and groundwater, Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Nolan, Bernard T.; Green, Christopher T.; Juckem, Paul F.; Liao, Lixia; Reddy, James E.

    2018-04-01

    Nitrate contamination of groundwater in agricultural areas poses a major challenge to the sustainability of water resources. Aquifer vulnerability models are useful tools that can help resource managers identify areas of concern, but quantifying nitrogen (N) inputs in such models is challenging, especially at large spatial scales. We sought to improve regional nitrate (NO3-) input functions by characterizing unsaturated zone NO3- transport to groundwater through use of surrogate, machine-learning metamodels of a process-based N flux model. The metamodels used boosted regression trees (BRTs) to relate mappable landscape variables to parameters and outputs of a previous "vertical flux method" (VFM) applied at sampled wells in the Fox, Wolf, and Peshtigo (FWP) river basins in northeastern Wisconsin. In this context, the metamodels upscaled the VFM results throughout the region, and the VFM parameters and outputs are the metamodel response variables. The study area encompassed the domain of a detailed numerical model that provided additional predictor variables, including groundwater recharge, to the metamodels. We used a statistical learning framework to test a range of model complexities to identify suitable hyperparameters of the six BRT metamodels corresponding to each response variable of interest: NO3- source concentration factor (which determines the local NO3- input concentration); unsaturated zone travel time; NO3- concentration at the water table in 1980, 2000, and 2020 (three separate metamodels); and NO3- "extinction depth", the eventual steady state depth of the NO3- front. The final metamodels were trained to 129 wells within the active numerical flow model area, and considered 58 mappable predictor variables compiled in a geographic information system (GIS). These metamodels had training and cross-validation testing R2 values of 0.52 - 0.86 and 0.22 - 0.38, respectively, and predictions were compiled as maps of the above response variables. Testing performance was reasonable, considering that we limited the metamodel predictor variables to mappable factors as opposed to using all available VFM input variables. Relationships between metamodel predictor variables and mapped outputs were generally consistent with expectations, e.g. with greater source concentrations and NO3- at the groundwater table in areas of intensive crop use and well drained soils. Shorter unsaturated zone travel times in poorly drained areas likely indicated preferential flow through clay soils, and a tendency for fine grained deposits to collocate with areas of shallower water table. Numerical estimates of groundwater recharge were important in the metamodels and may have been a proxy for N input and redox conditions in the northern FWP, which had shallow predicted NO3- extinction depth. The metamodel results provide proof-of-concept for regional characterization of unsaturated zone NO3- transport processes in a statistical framework based on readily mappable GIS input variables.

  15. Fatigue and crashes: the case of freight transport in Colombia.

    PubMed

    Torregroza-Vargas, Nathaly M; Bocarejo, Juan Pablo; Ramos-Bonilla, Juan P

    2014-11-01

    Truck drivers have been involved in a significant number of road fatalities in Colombia. To identify variables that could be associated with crashes in which truck drivers are involved, a logistic regression model was constructed. The model had as the response variable a dichotomous variable that included the presence or absence of a crash during a specific trip. As independent variables the model included information regarding a driver's work shift, with variables that could be associated with driver's fatigue. The model also included potential confounders related with road conditions. With the model, it was possible to determine the odds ratio of a crash in relation to several variables, adjusting for confounding. To collect the information about the trips included in the model, a survey among truck drivers was conducted. The results suggest strong associations between crashes (i.e., some of them statistically significant) with the number of stops made during the trip, and the average time of each stop. Survey analysis allowed us to identify the practices that contribute to generating fatigue and unhealthy conditions on the road among professional drivers. A review of national regulations confirmed the lack of legislation on this topic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Drivers of extinction risk in African mammals: the interplay of distribution state, human pressure, conservation response and species biology

    PubMed Central

    Di Marco, Moreno; Buchanan, Graeme M.; Szantoi, Zoltan; Holmgren, Milena; Grottolo Marasini, Gabriele; Gross, Dorit; Tranquilli, Sandra; Boitani, Luigi; Rondinini, Carlo

    2014-01-01

    Although conservation intervention has reversed the decline of some species, our success is outweighed by a much larger number of species moving towards extinction. Extinction risk modelling can identify correlates of risk and species not yet recognized to be threatened. Here, we use machine learning models to identify correlates of extinction risk in African terrestrial mammals using a set of variables belonging to four classes: species distribution state, human pressures, conservation response and species biology. We derived information on distribution state and human pressure from satellite-borne imagery. Variables in all four classes were identified as important predictors of extinction risk, and interactions were observed among variables in different classes (e.g. level of protection, human threats, species distribution ranges). Species biology had a key role in mediating the effect of external variables. The model was 90% accurate in classifying extinction risk status of species, but in a few cases the observed and modelled extinction risk mismatched. Species in this condition might suffer from an incorrect classification of extinction risk (hence require reassessment). An increased availability of satellite imagery combined with improved resolution and classification accuracy of the resulting maps will play a progressively greater role in conservation monitoring. PMID:24733953

  17. Drivers of extinction risk in African mammals: the interplay of distribution state, human pressure, conservation response and species biology.

    PubMed

    Di Marco, Moreno; Buchanan, Graeme M; Szantoi, Zoltan; Holmgren, Milena; Grottolo Marasini, Gabriele; Gross, Dorit; Tranquilli, Sandra; Boitani, Luigi; Rondinini, Carlo

    2014-01-01

    Although conservation intervention has reversed the decline of some species, our success is outweighed by a much larger number of species moving towards extinction. Extinction risk modelling can identify correlates of risk and species not yet recognized to be threatened. Here, we use machine learning models to identify correlates of extinction risk in African terrestrial mammals using a set of variables belonging to four classes: species distribution state, human pressures, conservation response and species biology. We derived information on distribution state and human pressure from satellite-borne imagery. Variables in all four classes were identified as important predictors of extinction risk, and interactions were observed among variables in different classes (e.g. level of protection, human threats, species distribution ranges). Species biology had a key role in mediating the effect of external variables. The model was 90% accurate in classifying extinction risk status of species, but in a few cases the observed and modelled extinction risk mismatched. Species in this condition might suffer from an incorrect classification of extinction risk (hence require reassessment). An increased availability of satellite imagery combined with improved resolution and classification accuracy of the resulting maps will play a progressively greater role in conservation monitoring.

  18. Single toxin dose-response models revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demidenko, Eugene, E-mail: eugened@dartmouth.edu

    The goal of this paper is to offer a rigorous analysis of the sigmoid shape single toxin dose-response relationship. The toxin efficacy function is introduced and four special points, including maximum toxin efficacy and inflection points, on the dose-response curve are defined. The special points define three phases of the toxin effect on mortality: (1) toxin concentrations smaller than the first inflection point or (2) larger then the second inflection point imply low mortality rate, and (3) concentrations between the first and the second inflection points imply high mortality rate. Probabilistic interpretation and mathematical analysis for each of the fourmore » models, Hill, logit, probit, and Weibull is provided. Two general model extensions are introduced: (1) the multi-target hit model that accounts for the existence of several vital receptors affected by the toxin, and (2) model with a nonzero mortality at zero concentration to account for natural mortality. Special attention is given to statistical estimation in the framework of the generalized linear model with the binomial dependent variable as the mortality count in each experiment, contrary to the widespread nonlinear regression treating the mortality rate as continuous variable. The models are illustrated using standard EPA Daphnia acute (48 h) toxicity tests with mortality as a function of NiCl or CuSO{sub 4} toxin. - Highlights: • The paper offers a rigorous study of a sigmoid dose-response relationship. • The concentration with highest mortality rate is rigorously defined. • A table with four special points for five morality curves is presented. • Two new sigmoid dose-response models have been introduced. • The generalized linear model is advocated for estimation of sigmoid dose-response relationship.« less

  19. Fast and Slow Precipitation Responses to Individual Climate Forcers: A PDRMIP Multimodel Study

    NASA Technical Reports Server (NTRS)

    Samset, B. H.; Myhre, G.; Forster, P.M.; Hodnebrog, O.; Andrews, T.; Faluvegi, G.; Flaschner, D.; Kasoar, M.; Kharin, V.; Kirkevag, A.; hide

    2016-01-01

    Precipitation is expected to respond differently to various drivers of anthropogenic climate change. We present the first results from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), where nine global climate models have perturbed CO2, CH4, black carbon, sulfate, and solar insolation. We divide the resulting changes to global mean and regional precipitation into fast responses that scale with changes in atmospheric absorption and slow responses scaling with surface temperature change. While the overall features are broadly similar between models, we find significant regional intermodel variability, especially over land. Black carbon stands out as a component that may cause significant model diversity in predicted precipitation change. Processes linked to atmospheric absorption are less consistently modeled than those linked to top-of-atmosphere radiative forcing. We identify a number of land regions where the model ensemble consistently predicts that fast precipitation responses to climate perturbations dominate over the slow, temperature-driven responses.

  20. Neuromechanical tuning of nonlinear postural control dynamics

    NASA Astrophysics Data System (ADS)

    Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.

    2009-06-01

    Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.

  1. Modeling land surface hydrology sensitivity in the Colorado River Basin to historical climate variability

    NASA Astrophysics Data System (ADS)

    Whitney, K. M.; Bohn, T. J.; Vivoni, E. R.

    2017-12-01

    Over the past century, the Colorado River Basin (CRB) has experienced substantial warming and interannual climate variations, including prolonged drought periods. These patterns are projected to accelerate in the 21st century, with major consequences for water resources in the southwestern U.S. and northwestern Mexico. To evaluate future projections appropriately, however, it is important to first quantify the regional hydrologic response to historical climate variability in the CRB. In the current effort, we force the Variable Infiltration Capacity (VIC) land surface hydrology model and a river routing model with historical meteorological data to estimate water balance components and naturalized streamflow response in the CRB at 1/16o spatial resolution and at an hourly time step over the period 1950-2013. We utilize data products from satellite remote sensing to specify spatiotemporal variations in vegetation parameters and include an irrigation scheme to account for evapotranspiration from croplands in the CRB. Furthermore, we apply recent modifications in VIC to more properly account for bare soil evaporation in arid and semiarid ecosystems. Analyses of the historical model simulations are focused on quantifying the spatiotemporal variability of the soil moisture, evapotranspiration, streamflow and snowmelt response and their linkages to extreme meteorological events. Here we characterize the annual and monthly distributions, trends, and statistical extremes and central tendencies of water balance terms averaged over the CRB and its sub-basins for the entire study period 1950-2013. By building a model-based hydrologic climatology and catalog of historical extreme events for the CRB, we aim to construct a basis for future activities that analyze the impact of statistically downscaled climate change projections on the hydrology of the CRB and its urban areas.

  2. Controls on seasonal patterns of maximum ecosystem carbon uptake and canopy-scale photosynthetic light response: contributions from both temperature and photoperiod.

    PubMed

    Stoy, Paul C; Trowbridge, Amy M; Bauerle, William L

    2014-02-01

    Most models of photosynthetic activity assume that temperature is the dominant control over physiological processes. Recent studies have found, however, that photoperiod is a better descriptor than temperature of the seasonal variability of photosynthetic physiology at the leaf scale. Incorporating photoperiodic control into global models consequently improves their representation of the seasonality and magnitude of atmospheric CO2 concentration. The role of photoperiod versus that of temperature in controlling the seasonal variability of photosynthetic function at the canopy scale remains unexplored. We quantified the seasonal variability of ecosystem-level light response curves using nearly 400 site years of eddy covariance data from over eighty Free Fair-Use sites in the FLUXNET database. Model parameters describing maximum canopy CO2 uptake and the initial slope of the light response curve peaked after peak temperature in about 2/3 of site years examined, emphasizing the important role of temperature in controlling seasonal photosynthetic function. Akaike's Information Criterion analyses indicated that photoperiod should be included in models of seasonal parameter variability in over 90% of the site years investigated here, demonstrating that photoperiod also plays an important role in controlling seasonal photosynthetic function. We also performed a Granger causality analysis on both gross ecosystem productivity (GEP) and GEP normalized by photosynthetic photon flux density (GEP n ). While photoperiod Granger-caused GEP and GEP n in 99 and 92% of all site years, respectively, air temperature Granger-caused GEP in a mere 32% of site years but Granger-caused GEP n in 81% of all site years. Results demonstrate that incorporating photoperiod may be a logical step toward improving models of ecosystem carbon uptake, but not at the expense of including enzyme kinetic-based temperature constraints on canopy-scale photosynthesis.

  3. Interactions of Mean Climate Change and Climate Variability on Food Security Extremes

    NASA Technical Reports Server (NTRS)

    Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.

    2015-01-01

    Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.

  4. Analyzing the responses of species assemblages to climate change across the Great Basin, USA.

    NASA Astrophysics Data System (ADS)

    Henareh Khalyani, A.; Falkowski, M. J.; Crookston, N.; Yousef, F.

    2016-12-01

    The potential impacts of climate change on the future distribution of tree species in not well understood. Climate driven changes in tree species distribution could cause significant changes in realized species niches, potentially resulting in the loss of ecotonal species as well as the formation on novel assemblages of overlapping tree species. In an effort to gain a better understating of how the geographic distribution of tree species may respond to climate change, we model the potential future distribution of 50 different tree species across 70 million ha in the Great Basin, USA. This is achieved by leveraging a species realized niche model based on non-parametric analysis of species occurrences across climatic, topographic, and edaphic variables. Spatially explicit, high spatial resolution (30 m) climate variables (e.g., precipitation, and minimum, maximum, and mean temperature) and associated climate indices were generated on an annual basis between 1981-2010 by integrating climate station data with digital elevation data (Shuttle Radar Topographic Mission (SRTM) data) in a thin plate spline interpolation algorithm (ANUSPLIN). Bioclimate models of species niches in in the cotemporary period and three following 30 year periods were then generated by integrating the climate variables, soil data, and CMIP 5 general circulation model projections. Our results suggest that local scale contemporary variations in species realized niches across space are influenced by edaphic and topographic variables as well as climatic variables. The local variability in soil properties and topographic variability across space also affect the species responses to climate change through time and potential formation of species assemblages in future. The results presented here in will aid in the development of adaptive forest management techniques aimed at mitigating negative impacts of climate change on forest composition, structure, and function.

  5. Measurement of Psychological Disorders Using Cognitive Diagnosis Models

    ERIC Educational Resources Information Center

    Templin, Jonathan L.; Henson, Robert A.

    2006-01-01

    Cognitive diagnosis models are constrained (multiple classification) latent class models that characterize the relationship of questionnaire responses to a set of dichotomous latent variables. Having emanated from educational measurement, several aspects of such models seem well suited to use in psychological assessment and diagnosis. This article…

  6. Spatial patterns of recent Antarctic surface temperature trends and the importance of natural variability: lessons from multiple reconstructions and the CMIP5 models

    NASA Astrophysics Data System (ADS)

    Smith, Karen L.; Polvani, Lorenzo M.

    2017-04-01

    The recent annually averaged warming of the Antarctic Peninsula, and of West Antarctica, stands in stark contrast to very small trends over East Antarctica. This asymmetry arises primarily from a highly significant warming of West Antarctica in austral spring and a cooling of East Antarctica in austral autumn. Here we examine whether this East-West asymmetry is a response to anthropogenic climate forcings or a manifestation of natural climate variability. We compare the observed Antarctic surface air temperature trends over two distinct time periods (1960-2005 and 1979-2005), and with those simulated by 40 models participating in Phase 5 of the Coupled Model Intercomparison Project (CMIP5). We find that the observed East-West asymmetry differs substantially between the two periods and, furthermore, that it is completely absent from the forced response seen in the CMIP5 multi-model mean, from which all natural variability is eliminated by the averaging. We also examine the relationship between the Southern Annular mode (SAM) and Antarctic temperature trends, in both models and reanalyses, and again conclude that there is little evidence of anthropogenic SAM-induced driving of the recent temperature trends. These results offer new, compelling evidence pointing to natural climate variability as a key contributor to the recent warming of West Antarctica and of the Peninsula.

  7. Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge

    NASA Astrophysics Data System (ADS)

    Bakker, Pepijn; Clark, Peter U.; Golledge, Nicholas R.; Schmittner, Andreas; Weber, Michael E.

    2017-01-01

    Proxy-based indicators of past climate change show that current global climate models systematically underestimate Holocene-epoch climate variability on centennial to multi-millennial timescales, with the mismatch increasing for longer periods. Proposed explanations for the discrepancy include ocean-atmosphere coupling that is too weak in models, insufficient energy cascades from smaller to larger spatial and temporal scales, or that global climate models do not consider slow climate feedbacks related to the carbon cycle or interactions between ice sheets and climate. Such interactions, however, are known to have strongly affected centennial- to orbital-scale climate variability during past glaciations, and are likely to be important in future climate change. Here we show that fluctuations in Antarctic Ice Sheet discharge caused by relatively small changes in subsurface ocean temperature can amplify multi-centennial climate variability regionally and globally, suggesting that a dynamic Antarctic Ice Sheet may have driven climate fluctuations during the Holocene. We analysed high-temporal-resolution records of iceberg-rafted debris derived from the Antarctic Ice Sheet, and performed both high-spatial-resolution ice-sheet modelling of the Antarctic Ice Sheet and multi-millennial global climate model simulations. Ice-sheet responses to decadal-scale ocean forcing appear to be less important, possibly indicating that the future response of the Antarctic Ice Sheet will be governed more by long-term anthropogenic warming combined with multi-centennial natural variability than by annual or decadal climate oscillations.

  8. Dynamic calibration approach for determining catechins and gallic acid in green tea using LC-ESI/MS.

    PubMed

    Bedner, Mary; Duewer, David L

    2011-08-15

    Catechins and gallic acid are antioxidant constituents of Camellia sinensis, or green tea. Liquid chromatography with both ultraviolet (UV) absorbance and electrospray ionization mass spectrometric (ESI/MS) detection was used to determine catechins and gallic acid in three green tea matrix materials that are commonly used as dietary supplements. The results from both detection modes were evaluated with 14 quantitation models, all of which were based on the analyte response relative to an internal standard. Half of the models were static, where quantitation was achieved with calibration factors that were constant over an analysis set. The other half were dynamic, with calibration factors calculated from interpolated response factor data at each time a sample was injected to correct for potential variations in analyte response over time. For all analytes, the relatively nonselective UV responses were found to be very stable over time and independent of the calibrant concentration; comparable results with low variability were obtained regardless of the quantitation model used. Conversely, the highly selective MS responses were found to vary both with time and as a function of the calibrant concentration. A dynamic quantitation model based on polynomial data-fitting was used to reduce the variability in the quantitative results using the MS data.

  9. An empirical model of water quality for use in rapid management strategy evaluation in Southeast Queensland, Australia.

    PubMed

    de la Mare, William; Ellis, Nick; Pascual, Ricardo; Tickell, Sharon

    2012-04-01

    Simulation models have been widely adopted in fisheries for management strategy evaluation (MSE). However, in catchment management of water quality, MSE is hampered by the complexity of both decision space and the hydrological process models. Empirical models based on monitoring data provide a feasible alternative to process models; they run much faster and, by conditioning on data, they can simulate realistic responses to management actions. Using 10 years of water quality indicators from Queensland, Australia, we built an empirical model suitable for rapid MSE that reproduces the water quality variables' mean and covariance structure, adjusts the expected indicators through local management effects, and propagates effects downstream by capturing inter-site regression relationships. Empirical models enable managers to search the space of possible strategies using rapid assessment. They provide not only realistic responses in water quality indicators but also variability in those indicators, allowing managers to assess strategies in an uncertain world. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Placing Local Aggregations in a Larger-Scale Context: Hierarchical Modeling of Black-Footed Albatross Dispersion.

    PubMed

    Michael, P E; Jahncke, J; Hyrenbach, K D

    2016-01-01

    At-sea surveys facilitate the study of the distribution and abundance of marine birds along standardized transects, in relation to changes in the local environmental conditions and large-scale oceanographic forcing. We analyzed the form and the intensity of black-footed albatross (Phoebastria nigripes: BFAL) spatial dispersion off central California, using five years (2004-2008) of vessel-based surveys of seven replicated survey lines. We related BFAL patchiness to local, regional and basin-wide oceanographic variability using two complementary approaches: a hypothesis-based model and an exploratory analysis. The former tested the strength and sign of hypothesized BFAL responses to environmental variability, within a hierarchical atmosphere-ocean context. The latter explored BFAL cross-correlations with atmospheric / oceanographic variables. While albatross dispersion was not significantly explained by the hierarchical model, the exploratory analysis revealed that aggregations were influenced by static (latitude, depth) and dynamic (wind speed, upwelling) environmental variables. Moreover, the largest BFAL patches occurred along the survey lines with the highest densities, and in association with shallow banks. In turn, the highest BFAL densities occurred during periods of negative Pacific Decadal Oscillation index values and low atmospheric pressure. The exploratory analyses suggest that BFAL dispersion is influenced by basin-wide, regional-scale and local environmental variability. Furthermore, the hypothesis-based model highlights that BFAL do not respond to oceanographic variability in a hierarchical fashion. Instead, their distributions shift more strongly in response to large-scale ocean-atmosphere forcing. Thus, interpreting local changes in BFAL abundance and dispersion requires considering diverse environmental forcing operating at multiple scales.

  11. A Bayesian Approach to Person Fit Analysis in Item Response Theory Models. Research Report.

    ERIC Educational Resources Information Center

    Glas, Cees A. W.; Meijer, Rob R.

    A Bayesian approach to the evaluation of person fit in item response theory (IRT) models is presented. In a posterior predictive check, the observed value on a discrepancy variable is positioned in its posterior distribution. In a Bayesian framework, a Markov Chain Monte Carlo procedure can be used to generate samples of the posterior distribution…

  12. Groundwater response to leakage of surface water through a thick vadose zone in the middle reaches area of Heihe River Basin, in China

    NASA Astrophysics Data System (ADS)

    Wang, X.-S.; Ma, M.-G.; Li, X.; Zhao, J.; Dong, P.; Zhou, J.

    2009-12-01

    The behavior of groundwater response to leakage of surface water in the middle reaches area of Heihe River Basin is significantly influenced by a thick vadose zone. The variation of groundwater level is a result of two recharge events corresponding to leakage of Heihe River and irrigation water with different delay time. A nonlinear leakage model is developed to calculate the monthly leakage of Heihe River in considering changes of streamflow, river stage and agricultural water utilization. Numerical modeling of variable saturated flow is carried out to investigate the general behaviors of leakage-recharge conversion through a thick vadose zone. It is found that the variable recharge can be approximated by simple reservoir models for both leakage under a river and leakage under an irrigation district but with different delay-time and recession coefficient. A triple-reservoir model of relationship between surface water, vadose zone and groundwater is developed. It reproduces the in situ water table movement during 1989-2006 with variable streamflow of Heihe River and agricultural water utilization. The model is applied to interpret groundwater dynamics during 2007-2008 that observed in the Watershed Airborne Telemetry Experimental Research (WATER).

  13. Implementations of geographically weighted lasso in spatial data with multicollinearity (Case study: Poverty modeling of Java Island)

    NASA Astrophysics Data System (ADS)

    Setiyorini, Anis; Suprijadi, Jadi; Handoko, Budhi

    2017-03-01

    Geographically Weighted Regression (GWR) is a regression model that takes into account the spatial heterogeneity effect. In the application of the GWR, inference on regression coefficients is often of interest, as is estimation and prediction of the response variable. Empirical research and studies have demonstrated that local correlation between explanatory variables can lead to estimated regression coefficients in GWR that are strongly correlated, a condition named multicollinearity. It later results on a large standard error on estimated regression coefficients, and, hence, problematic for inference on relationships between variables. Geographically Weighted Lasso (GWL) is a method which capable to deal with spatial heterogeneity and local multicollinearity in spatial data sets. GWL is a further development of GWR method, which adds a LASSO (Least Absolute Shrinkage and Selection Operator) constraint in parameter estimation. In this study, GWL will be applied by using fixed exponential kernel weights matrix to establish a poverty modeling of Java Island, Indonesia. The results of applying the GWL to poverty datasets show that this method stabilizes regression coefficients in the presence of multicollinearity and produces lower prediction and estimation error of the response variable than GWR does.

  14. An introduction to mixture item response theory models.

    PubMed

    De Ayala, R J; Santiago, S Y

    2017-02-01

    Mixture item response theory (IRT) allows one to address situations that involve a mixture of latent subpopulations that are qualitatively different but within which a measurement model based on a continuous latent variable holds. In this modeling framework, one can characterize students by both their location on a continuous latent variable as well as by their latent class membership. For example, in a study of risky youth behavior this approach would make it possible to estimate an individual's propensity to engage in risky youth behavior (i.e., on a continuous scale) and to use these estimates to identify youth who might be at the greatest risk given their class membership. Mixture IRT can be used with binary response data (e.g., true/false, agree/disagree, endorsement/not endorsement, correct/incorrect, presence/absence of a behavior), Likert response scales, partial correct scoring, nominal scales, or rating scales. In the following, we present mixture IRT modeling and two examples of its use. Data needed to reproduce analyses in this article are available as supplemental online materials at http://dx.doi.org/10.1016/j.jsp.2016.01.002. Copyright © 2016 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  15. Screening of the aerodynamic and biophysical properties of barley malt

    NASA Astrophysics Data System (ADS)

    Ghodsvali, Alireza; Farzaneh, Vahid; Bakhshabadi, Hamid; Zare, Zahra; Karami, Zahra; Mokhtarian, Mohsen; Carvalho, Isabel. S.

    2016-10-01

    An understanding of the aerodynamic and biophysical properties of barley malt is necessary for the appropriate design of equipment for the handling, shipping, dehydration, grading, sorting and warehousing of this strategic crop. Malting is a complex biotechnological process that includes steeping; germination and finally, the dehydration of cereal grains under controlled temperature and humidity conditions. In this investigation, the biophysical properties of barley malt were predicted using two models of artificial neural networks as well as response surface methodology. Stepping time and germination time were selected as the independent variables and 1 000 kernel weight, kernel density and terminal velocity were selected as the dependent variables (responses). The obtained outcomes showed that the artificial neural network model, with a logarithmic sigmoid activation function, presents more precise results than the response surface model in the prediction of the aerodynamic and biophysical properties of produced barley malt. This model presented the best result with 8 nodes in the hidden layer and significant correlation coefficient values of 0.783, 0.767 and 0.991 were obtained for responses one thousand kernel weight, kernel density, and terminal velocity, respectively. The outcomes indicated that this novel technique could be successfully applied in quantitative and qualitative monitoring within the malting process.

  16. Reliability, reference values and predictor variables of the ulnar sensory nerve in disease free adults.

    PubMed

    Ruediger, T M; Allison, S C; Moore, J M; Wainner, R S

    2014-09-01

    The purposes of this descriptive and exploratory study were to examine electrophysiological measures of ulnar sensory nerve function in disease free adults to determine reliability, determine reference values computed with appropriate statistical methods, and examine predictive ability of anthropometric variables. Antidromic sensory nerve conduction studies of the ulnar nerve using surface electrodes were performed on 100 volunteers. Reference values were computed from optimally transformed data. Reliability was computed from 30 subjects. Multiple linear regression models were constructed from four predictor variables. Reliability was greater than 0.85 for all paired measures. Responses were elicited in all subjects; reference values for sensory nerve action potential (SNAP) amplitude from above elbow stimulation are 3.3 μV and decrement across-elbow less than 46%. No single predictor variable accounted for more than 15% of the variance in the response. Electrophysiologic measures of the ulnar sensory nerve are reliable. Absent SNAP responses are inconsistent with disease free individuals. Reference values recommended in this report are based on appropriate transformations of non-normally distributed data. No strong statistical model of prediction could be derived from the limited set of predictor variables. Reliability analyses combined with relatively low level of measurement error suggest that ulnar sensory reference values may be used with confidence. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Evaluation of Two Crew Module Boilerplate Tests Using Newly Developed Calibration Metrics

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, Mercedes C.

    2012-01-01

    The paper discusses a application of multi-dimensional calibration metrics to evaluate pressure data from water drop tests of the Max Launch Abort System (MLAS) crew module boilerplate. Specifically, three metrics are discussed: 1) a metric to assess the probability of enveloping the measured data with the model, 2) a multi-dimensional orthogonality metric to assess model adequacy between test and analysis, and 3) a prediction error metric to conduct sensor placement to minimize pressure prediction errors. Data from similar (nearly repeated) capsule drop tests shows significant variability in the measured pressure responses. When compared to expected variability using model predictions, it is demonstrated that the measured variability cannot be explained by the model under the current uncertainty assumptions.

  18. Decision tree modeling using R.

    PubMed

    Zhang, Zhongheng

    2016-08-01

    In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.

  19. Prediction of Response to Neoadjuvant Chemotherapy and Radiation Therapy with Baseline and Restaging 18F-FDG PET Imaging Biomarkers in Patients with Esophageal Cancer.

    PubMed

    Beukinga, Roelof J; Hulshoff, Jan Binne; Mul, Véronique E M; Noordzij, Walter; Kats-Ugurlu, Gursah; Slart, Riemer H J A; Plukker, John T M

    2018-06-01

    Purpose To assess the value of baseline and restaging fluorine 18 ( 18 F) fluorodeoxyglucose (FDG) positron emission tomography (PET) radiomics in predicting pathologic complete response to neoadjuvant chemotherapy and radiation therapy (NCRT) in patients with locally advanced esophageal cancer. Materials and Methods In this retrospective study, 73 patients with histologic analysis-confirmed T1/N1-3/M0 or T2-4a/N0-3/M0 esophageal cancer were treated with NCRT followed by surgery (Chemoradiotherapy for Esophageal Cancer followed by Surgery Study regimen) between October 2014 and August 2017. Clinical variables and radiomic features from baseline and restaging 18 F-FDG PET were selected by univariable logistic regression and least absolute shrinkage and selection operator. The selected variables were used to fit a multivariable logistic regression model, which was internally validated by using bootstrap resampling with 20 000 replicates. The performance of this model was compared with reference prediction models composed of maximum standardized uptake value metrics, clinical variables, and maximum standardized uptake value at baseline NCRT radiomic features. Outcome was defined as complete versus incomplete pathologic response (tumor regression grade 1 vs 2-5 according to the Mandard classification). Results Pathologic response was complete in 16 patients (21.9%) and incomplete in 57 patients (78.1%). A prediction model combining clinical T-stage and restaging NCRT (post-NCRT) joint maximum (quantifying image orderliness) yielded an optimism-corrected area under the receiver operating characteristics curve of 0.81. Post-NCRT joint maximum was replaceable with five other redundant post-NCRT radiomic features that provided equal model performance. All reference prediction models exhibited substantially lower discriminatory accuracy. Conclusion The combination of clinical T-staging and quantitative assessment of post-NCRT 18 F-FDG PET orderliness (joint maximum) provided high discriminatory accuracy in predicting pathologic complete response in patients with esophageal cancer. © RSNA, 2018 Online supplemental material is available for this article.

  20. Seasonal and latitudinal acclimatization of cardiac transcriptome responses to thermal stress in porcelain crabs, Petrolisthes cinctipes.

    PubMed

    Stillman, Jonathon H; Tagmount, Abderrahmane

    2009-10-01

    Central predictions of climate warming models include increased climate variability and increased severity of heat waves. Physiological acclimatization in populations across large-scale ecological gradients in habitat temperature fluctuation is an important factor to consider in detecting responses to climate change related increases in thermal fluctuation. We measured in vivo cardiac thermal maxima and used microarrays to profile transcriptome heat and cold stress responses in cardiac tissue of intertidal zone porcelain crabs across biogeographic and seasonal gradients in habitat temperature fluctuation. We observed acclimatization dependent induction of heat shock proteins, as well as unknown genes with heat shock protein-like expression profiles. Thermal acclimatization had the largest effect on heat stress responses of extensin-like, beta tubulin, and unknown genes. For these genes, crabs acclimatized to thermally variable sites had higher constitutive expression than specimens from low variability sites, but heat stress dramatically induced expression in specimens from low variability sites and repressed expression in specimens from highly variable sites. Our application of ecological transcriptomics has yielded new biomarkers that may represent sensitive indicators of acclimatization to habitat temperature fluctuation. Our study also has identified novel genes whose further description may yield novel understanding of cellular responses to thermal acclimatization or thermal stress.

  1. Quantile regression models of animal habitat relationships

    USGS Publications Warehouse

    Cade, Brian S.

    2003-01-01

    Typically, all factors that limit an organism are not measured and included in statistical models used to investigate relationships with their environment. If important unmeasured variables interact multiplicatively with the measured variables, the statistical models often will have heterogeneous response distributions with unequal variances. Quantile regression is an approach for estimating the conditional quantiles of a response variable distribution in the linear model, providing a more complete view of possible causal relationships between variables in ecological processes. Chapter 1 introduces quantile regression and discusses the ordering characteristics, interval nature, sampling variation, weighting, and interpretation of estimates for homogeneous and heterogeneous regression models. Chapter 2 evaluates performance of quantile rankscore tests used for hypothesis testing and constructing confidence intervals for linear quantile regression estimates (0 ≤ τ ≤ 1). A permutation F test maintained better Type I errors than the Chi-square T test for models with smaller n, greater number of parameters p, and more extreme quantiles τ. Both versions of the test required weighting to maintain correct Type I errors when there was heterogeneity under the alternative model. An example application related trout densities to stream channel width:depth. Chapter 3 evaluates a drop in dispersion, F-ratio like permutation test for hypothesis testing and constructing confidence intervals for linear quantile regression estimates (0 ≤ τ ≤ 1). Chapter 4 simulates from a large (N = 10,000) finite population representing grid areas on a landscape to demonstrate various forms of hidden bias that might occur when the effect of a measured habitat variable on some animal was confounded with the effect of another unmeasured variable (spatially and not spatially structured). Depending on whether interactions of the measured habitat and unmeasured variable were negative (interference interactions) or positive (facilitation interactions), either upper (τ > 0.5) or lower (τ < 0.5) quantile regression parameters were less biased than mean rate parameters. Sampling (n = 20 - 300) simulations demonstrated that confidence intervals constructed by inverting rankscore tests provided valid coverage of these biased parameters. Quantile regression was used to estimate effects of physical habitat resources on a bivalve mussel (Macomona liliana) in a New Zealand harbor by modeling the spatial trend surface as a cubic polynomial of location coordinates.

  2. Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system structural components

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.

    1987-01-01

    The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.

  3. Probabilistic Structural Analysis Methods for select space propulsion system structural components (PSAM)

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Burnside, O. H.; Wu, Y.-T.; Polch, E. Z.; Dias, J. B.

    1988-01-01

    The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.

  4. Nonparametric Hierarchical Bayesian Model for Functional Brain Parcellation

    PubMed Central

    Lashkari, Danial; Sridharan, Ramesh; Vul, Edward; Hsieh, Po-Jang; Kanwisher, Nancy; Golland, Polina

    2011-01-01

    We develop a method for unsupervised analysis of functional brain images that learns group-level patterns of functional response. Our algorithm is based on a generative model that comprises two main layers. At the lower level, we express the functional brain response to each stimulus as a binary activation variable. At the next level, we define a prior over the sets of activation variables in all subjects. We use a Hierarchical Dirichlet Process as the prior in order to simultaneously learn the patterns of response that are shared across the group, and to estimate the number of these patterns supported by data. Inference based on this model enables automatic discovery and characterization of salient and consistent patterns in functional signals. We apply our method to data from a study that explores the response of the visual cortex to a collection of images. The discovered profiles of activation correspond to selectivity to a number of image categories such as faces, bodies, and scenes. More generally, our results appear superior to the results of alternative data-driven methods in capturing the category structure in the space of stimuli. PMID:21841977

  5. Multi-objective parametric optimization of Inertance type pulse tube refrigerator using response surface methodology and non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Rout, Sachindra K.; Choudhury, Balaji K.; Sahoo, Ranjit K.; Sarangi, Sunil K.

    2014-07-01

    The modeling and optimization of a Pulse Tube Refrigerator is a complicated task, due to its complexity of geometry and nature. The aim of the present work is to optimize the dimensions of pulse tube and regenerator for an Inertance-Type Pulse Tube Refrigerator (ITPTR) by using Response Surface Methodology (RSM) and Non-Sorted Genetic Algorithm II (NSGA II). The Box-Behnken design of the response surface methodology is used in an experimental matrix, with four factors and two levels. The diameter and length of the pulse tube and regenerator are chosen as the design variables where the rest of the dimensions and operating conditions of the ITPTR are constant. The required output responses are the cold head temperature (Tcold) and compressor input power (Wcomp). Computational fluid dynamics (CFD) have been used to model and solve the ITPTR. The CFD results agreed well with those of the previously published paper. Also using the results from the 1-D simulation, RSM is conducted to analyse the effect of the independent variables on the responses. To check the accuracy of the model, the analysis of variance (ANOVA) method has been used. Based on the proposed mathematical RSM models a multi-objective optimization study, using the Non-sorted genetic algorithm II (NSGA-II) has been performed to optimize the responses.

  6. CLUSTERING SOUTH AFRICAN HOUSEHOLDS BASED ON THEIR ASSET STATUS USING LATENT VARIABLE MODELS

    PubMed Central

    McParland, Damien; Gormley, Isobel Claire; McCormick, Tyler H.; Clark, Samuel J.; Kabudula, Chodziwadziwa Whiteson; Collinson, Mark A.

    2014-01-01

    The Agincourt Health and Demographic Surveillance System has since 2001 conducted a biannual household asset survey in order to quantify household socio-economic status (SES) in a rural population living in northeast South Africa. The survey contains binary, ordinal and nominal items. In the absence of income or expenditure data, the SES landscape in the study population is explored and described by clustering the households into homogeneous groups based on their asset status. A model-based approach to clustering the Agincourt households, based on latent variable models, is proposed. In the case of modeling binary or ordinal items, item response theory models are employed. For nominal survey items, a factor analysis model, similar in nature to a multinomial probit model, is used. Both model types have an underlying latent variable structure—this similarity is exploited and the models are combined to produce a hybrid model capable of handling mixed data types. Further, a mixture of the hybrid models is considered to provide clustering capabilities within the context of mixed binary, ordinal and nominal response data. The proposed model is termed a mixture of factor analyzers for mixed data (MFA-MD). The MFA-MD model is applied to the survey data to cluster the Agincourt households into homogeneous groups. The model is estimated within the Bayesian paradigm, using a Markov chain Monte Carlo algorithm. Intuitive groupings result, providing insight to the different socio-economic strata within the Agincourt region. PMID:25485026

  7. Finite element analysis of notch behavior using a state variable constitutive equation

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Stouffer, D. C.; Abuelfoutouh, N.

    1985-01-01

    The state variable constitutive equation of Bodner and Partom was used to calculate the load-strain response of Inconel 718 at 649 C in the root of a notch. The constitutive equation was used with the Bodner-Partom evolution equation and with a second evolution equation that was derived from a potential function of the stress and state variable. Data used in determining constants for the constitutive models was from one-dimensional smooth bar tests. The response was calculated for a plane stress condition at the root of the notch with a finite element code using constant strain triangular elements. Results from both evolution equations compared favorably with the observed experimental response. The accuracy and efficiency of the finite element calculations also compared favorably to existing methods.

  8. Contribution of variable-speed pump hydro storage for power system dynamic performance

    NASA Astrophysics Data System (ADS)

    Silva, B.; Moreira, C.

    2017-04-01

    This paper presents the study of variable-speed Pump Storage Powerplant (PSP) in the Portuguese power system. It evaluates the progressive integration in three major locations and compares the power system performance following a severe fault event with consequent disconnection of non-Fault Ride-through (FRT) compliant Wind Farms (WF). To achieve such objective, a frequency responsive model was developed in PSS/E and was further used to substitute existing fixed-speed PSP. The results allow identifying a clear enhancement on the power system performance by the presence of frequency responsive variable-speed PSP, especially for the scenario presented, with high level of renewables integration.

  9. Ecophysiological modeling of photosynthesis and carbon allocation to the tree stem in the boreal forest

    NASA Astrophysics Data System (ADS)

    Gennaretti, Fabio; Gea-Izquierdo, Guillermo; Boucher, Etienne; Berninger, Frank; Arseneault, Dominique; Guiot, Joel

    2017-11-01

    A better understanding of the coupling between photosynthesis and carbon allocation in the boreal forest, together with its associated environmental factors and mechanistic rules, is crucial to accurately predict boreal forest carbon stocks and fluxes, which are significant components of the global carbon budget. Here, we adapted the MAIDEN ecophysiological forest model to consider important processes for boreal tree species, such as nonlinear acclimation of photosynthesis to temperature changes, canopy development as a function of previous-year climate variables influencing bud formation and the temperature dependence of carbon partition in summer. We tested these modifications in the eastern Canadian taiga using black spruce (Picea mariana (Mill.) B.S.P.) gross primary production and ring width data. MAIDEN explains 90 % of the observed daily gross primary production variability, 73 % of the annual ring width variability and 20-30 % of its high-frequency component (i.e., when decadal trends are removed). The positive effect on stem growth due to climate warming over the last several decades is well captured by the model. In addition, we illustrate how we improve the model with each introduced model adaptation and compare the model results with those of linear response functions. Our results demonstrate that MAIDEN simulates robust relationships with the most important climate variables (those detected by classical response-function analysis) and is a powerful tool for understanding how environmental factors interact with black spruce ecophysiology to influence present-day and future boreal forest carbon fluxes.

  10. A framework for parametric modeling of ankle ligaments to determine the in situ response under gross foot motion.

    PubMed

    Nie, Bingbing; Panzer, Matthew Brian; Mane, Adwait; Mait, Alexander Ritz; Donlon, John-Paul; Forman, Jason Lee; Kent, Richard Wesley

    2016-09-01

    Ligament sprains account for a majority of injuries to the foot and ankle complex, but ligament properties have not been understood well due to the difficulties in replicating the complex geometry, in situ stress state, and non-uniformity of the strain. For a full investigation of the injury mechanism, it is essential to build up a foot and ankle model validated at the level of bony kinematics and ligament properties. This study developed a framework to parameterize the ligament response for determining the in situ stress state and heterogeneous force-elongation characteristics using a finite element ankle model. Nine major ankle ligaments and the interosseous membrane were modeled as discrete elements corresponding functionally to the ligamentous microstructure of collagen fibers and having parameterized toe region and stiffness at the fiber level. The range of the design variables in the ligament model was determined from existing experimental data. Sensitivity of the bony kinematics to each variable was investigated by design of experiment. The results highlighted the critical role of the length of the toe region of the ligamentous fibers on the bony kinematics with the cumulative influence of more than 95%, while the fiber stiffness was statistically insignificant with an influence of less than 1% under the given variable range and loading conditions. With the flexibility of variable adjustment and high computational efficiency, the presented ankle model was generic in nature so as to maximize its applicability to capture the individual ligament behaviors in future studies.

  11. A Modeling Investigation of Thermal and Strain Induced Recovery and Nonlinear Hardening in Potential Based Viscoplasticity

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Saleeb, A. F.; Wilt, T. E.

    1993-01-01

    Specific forms for both the Gibb's and the complementary dissipation potentials were chosen such that a complete potential based multiaxial, isothermal, viscoplastic model was obtained. This model in general possesses three internal state variables (two scalars associated with dislocation density and one tensor associated with dislocation motion) both thermal and dynamic recovery mechanisms, and nonlinear kinematic hardening. This general model, although possessing associated flow and evolutionary laws, is shown to emulate three distinct classes of theories found in the literature, by modification of the driving threshold function F. A parametric study was performed on a specialized nondimensional multiaxial form containing only a single tensorial internal state variable (i.e., internal stress). The study was conducted with the idea of examining the impact of including a strain-induced recovery mechanism and the compliance operator, derived from the Gibb's potential, on the uniaxial and multiaxial response. One important finding was that inclusion of strain recovery provided the needed flexibility in modeling stress-strain and creep response of metals at low homologous temperatures, without adversely affecting the high temperature response. Furthermore, for nonproportional loading paths, the inclusion of the compliance operator had a significant influence on the multiaxial response, but had no influence on either uniaxial or proportional load histories.

  12. The design of a turboshaft speed governor using modern control techniques

    NASA Technical Reports Server (NTRS)

    Delosreyes, G.; Gouchoe, D. R.

    1986-01-01

    The objectives of this program were: to verify the model of off schedule compressor variable geometry in the T700 turboshaft engine nonlinear model; to evaluate the use of the pseudo-random binary noise (PRBN) technique for obtaining engine frequency response data; and to design a high performance power turbine speed governor using modern control methods. Reduction of T700 engine test data generated at NASA-Lewis indicated that the off schedule variable geometry effects were accurate as modeled. Analysis also showed that the PRBN technique combined with the maximum likelihood model identification method produced a Bode frequency response that was as accurate as the response obtained from standard sinewave testing methods. The frequency response verified the accuracy of linear models consisting of engine partial derivatives and used for design. A power turbine governor was designed using the Linear Quadratic Regulator (LQR) method of full state feedback control. A Kalman filter observer was used to estimate helicopter main rotor blade velocity. Compared to the baseline T700 power turbine speed governor, the LQR governor reduced droop up to 25 percent for a 490 shaft horsepower transient in 0.1 sec simulating a wind gust, and up to 85 percent for a 700 shaft horsepower transient in 0.5 sec simulating a large collective pitch angle transient.

  13. Application of the Bifactor Model to Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Seo, Dong Gi

    2011-01-01

    Most computerized adaptive tests (CAT) have been studied under the framework of unidimensional item response theory. However, many psychological variables are multidimensional and might benefit from using a multidimensional approach to CAT. In addition, a number of psychological variables (e.g., quality of life, depression) can be conceptualized…

  14. Signal to noise quantification of regional climate projections

    NASA Astrophysics Data System (ADS)

    Li, S.; Rupp, D. E.; Mote, P.

    2016-12-01

    One of the biggest challenges in interpreting climate model outputs for impacts studies and adaptation planning is understanding the sources of disagreement among models (which is often used imperfectly as a stand-in for system uncertainty). Internal variability is a primary source of uncertainty in climate projections, especially for precipitation, for which models disagree about even the sign of changes in large areas like the continental US. Taking advantage of a large initial-condition ensemble of regional climate simulations, this study quantifies the magnitude of changes forced by increasing greenhouse gas concentrations relative to internal variability. Results come from a large initial-condition ensemble of regional climate model simulations generated by weather@home, a citizen science computing platform, where the western United States climate was simulated for the recent past (1985-2014) and future (2030-2059) using a 25-km horizontal resolution regional climate model (HadRM3P) nested in global atmospheric model (HadAM3P). We quantify grid point level signal-to-noise not just in temperature and precipitation responses, but also the energy and moisture flux terms that are related to temperature and precipitation responses, to provide important insights regarding uncertainty in climate change projections at local and regional scales. These results will aid modelers in determining appropriate ensemble sizes for different climate variables and help users of climate model output with interpreting climate model projections.

  15. Bias and robustness of uncertainty components estimates in transient climate projections

    NASA Astrophysics Data System (ADS)

    Hingray, Benoit; Blanchet, Juliette; Jean-Philippe, Vidal

    2016-04-01

    A critical issue in climate change studies is the estimation of uncertainties in projections along with the contribution of the different uncertainty sources, including scenario uncertainty, the different components of model uncertainty and internal variability. Quantifying the different uncertainty sources faces actually different problems. For instance and for the sake of simplicity, an estimate of model uncertainty is classically obtained from the empirical variance of the climate responses obtained for the different modeling chains. These estimates are however biased. Another difficulty arises from the limited number of members that are classically available for most modeling chains. In this case, the climate response of one given chain and the effect of its internal variability may be actually difficult if not impossible to separate. The estimate of scenario uncertainty, model uncertainty and internal variability components are thus likely to be not really robust. We explore the importance of the bias and the robustness of the estimates for two classical Analysis of Variance (ANOVA) approaches: a Single Time approach (STANOVA), based on the only data available for the considered projection lead time and a time series based approach (QEANOVA), which assumes quasi-ergodicity of climate outputs over the whole available climate simulation period (Hingray and Saïd, 2014). We explore both issues for a simple but classical configuration where uncertainties in projections are composed of two single sources: model uncertainty and internal climate variability. The bias in model uncertainty estimates is explored from theoretical expressions of unbiased estimators developed for both ANOVA approaches. The robustness of uncertainty estimates is explored for multiple synthetic ensembles of time series projections generated with MonteCarlo simulations. For both ANOVA approaches, when the empirical variance of climate responses is used to estimate model uncertainty, the bias is always positive. It can be especially high with STANOVA. In the most critical configurations, when the number of members available for each modeling chain is small (< 3) and when internal variability explains most of total uncertainty variance (75% or more), the overestimation is higher than 100% of the true model uncertainty variance. The bias can be considerably reduced with a time series ANOVA approach, owing to the multiple time steps accounted for. The longer the transient time period used for the analysis, the larger the reduction. When a quasi-ergodic ANOVA approach is applied to decadal data for the whole 1980-2100 period, the bias is reduced by a factor 2.5 to 20 depending on the projection lead time. In all cases, the bias is likely to be not negligible for a large number of climate impact studies resulting in a likely large overestimation of the contribution of model uncertainty to total variance. For both approaches, the robustness of all uncertainty estimates is higher when more members are available, when internal variability is smaller and/or the response-to-uncertainty ratio is higher. QEANOVA estimates are much more robust than STANOVA ones: QEANOVA simulated confidence intervals are roughly 3 to 5 times smaller than STANOVA ones. Excepted for STANOVA when less than 3 members is available, the robustness is rather high for total uncertainty and moderate for internal variability estimates. For model uncertainty or response-to-uncertainty ratio estimates, the robustness is conversely low for QEANOVA to very low for STANOVA. In the most critical configurations (small number of member, large internal variability), large over- or underestimation of uncertainty components is very thus likely. To propose relevant uncertainty analyses and avoid misleading interpretations, estimates of uncertainty components should be therefore bias corrected and ideally come with estimates of their robustness. This work is part of the COMPLEX Project (European Collaborative Project FP7-ENV-2012 number: 308601; http://www.complex.ac.uk/). Hingray, B., Saïd, M., 2014. Partitioning internal variability and model uncertainty components in a multimodel multireplicate ensemble of climate projections. J.Climate. doi:10.1175/JCLI-D-13-00629.1 Hingray, B., Blanchet, J. (revision) Unbiased estimators for uncertainty components in transient climate projections. J. Climate Hingray, B., Blanchet, J., Vidal, J.P. (revision) Robustness of uncertainty components estimates in climate projections. J.Climate

  16. Bayesian inference for multivariate meta-analysis Box-Cox transformation models for individual patient data with applications to evaluation of cholesterol lowering drugs

    PubMed Central

    Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G.; Shah, Arvind K.; Lin, Jianxin

    2013-01-01

    In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data (IPD) in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the Deviance Information Criterion (DIC) is used to select the best transformation model. Since the model is quite complex, a novel Monte Carlo Markov chain (MCMC) sampling scheme is developed to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol lowering drugs where the goal is to jointly model the three dimensional response consisting of Low Density Lipoprotein Cholesterol (LDL-C), High Density Lipoprotein Cholesterol (HDL-C), and Triglycerides (TG) (LDL-C, HDL-C, TG). Since the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately: however, a multivariate approach would be more appropriate since these variables are correlated with each other. A detailed analysis of these data is carried out using the proposed methodology. PMID:23580436

  17. Bayesian inference for multivariate meta-analysis Box-Cox transformation models for individual patient data with applications to evaluation of cholesterol-lowering drugs.

    PubMed

    Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G; Shah, Arvind K; Lin, Jianxin

    2013-10-15

    In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the deviance information criterion is used to select the best transformation model. Because the model is quite complex, we develop a novel Monte Carlo Markov chain sampling scheme to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol-lowering drugs where the goal is to jointly model the three-dimensional response consisting of low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and triglycerides (TG) (LDL-C, HDL-C, TG). Because the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately; however, a multivariate approach would be more appropriate because these variables are correlated with each other. We carry out a detailed analysis of these data by using the proposed methodology. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Using machine learning to model dose-response relationships.

    PubMed

    Linden, Ariel; Yarnold, Paul R; Nallamothu, Brahmajee K

    2016-12-01

    Establishing the relationship between various doses of an exposure and a response variable is integral to many studies in health care. Linear parametric models, widely used for estimating dose-response relationships, have several limitations. This paper employs the optimal discriminant analysis (ODA) machine-learning algorithm to determine the degree to which exposure dose can be distinguished based on the distribution of the response variable. By framing the dose-response relationship as a classification problem, machine learning can provide the same functionality as conventional models, but can additionally make individual-level predictions, which may be helpful in practical applications like establishing responsiveness to prescribed drug regimens. Using data from a study measuring the responses of blood flow in the forearm to the intra-arterial administration of isoproterenol (separately for 9 black and 13 white men, and pooled), we compare the results estimated from a generalized estimating equations (GEE) model with those estimated using ODA. Generalized estimating equations and ODA both identified many statistically significant dose-response relationships, separately by race and for pooled data. Post hoc comparisons between doses indicated ODA (based on exact P values) was consistently more conservative than GEE (based on estimated P values). Compared with ODA, GEE produced twice as many instances of paradoxical confounding (findings from analysis of pooled data that are inconsistent with findings from analyses stratified by race). Given its unique advantages and greater analytic flexibility, maximum-accuracy machine-learning methods like ODA should be considered as the primary analytic approach in dose-response applications. © 2016 John Wiley & Sons, Ltd.

  19. Variable-Length Computerized Adaptive Testing Using the Higher Order DINA Model

    ERIC Educational Resources Information Center

    Hsu, Chia-Ling; Wang, Wen-Chung

    2015-01-01

    Cognitive diagnosis models provide profile information about a set of latent binary attributes, whereas item response models yield a summary report on a latent continuous trait. To utilize the advantages of both models, higher order cognitive diagnosis models were developed in which information about both latent binary attributes and latent…

  20. Statistics, Uncertainty, and Transmitted Variation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendelberger, Joanne Roth

    2014-11-05

    The field of Statistics provides methods for modeling and understanding data and making decisions in the presence of uncertainty. When examining response functions, variation present in the input variables will be transmitted via the response function to the output variables. This phenomenon can potentially have significant impacts on the uncertainty associated with results from subsequent analysis. This presentation will examine the concept of transmitted variation, its impact on designed experiments, and a method for identifying and estimating sources of transmitted variation in certain settings.

  1. Transcriptional response to West Nile virus infection in the zebra finch (Taeniopygia guttata)

    USGS Publications Warehouse

    Newhouse, Daniel J.; Hofmeister, Erik K.; Balakrishnan, Christopher N.

    2017-01-01

    West Nile virus (WNV) is a widespread arbovirus that imposes a significant cost to both human and wildlife health. WNV exists in a bird-mosquito transmission cycle in which passerine birds act as the primary reservoir host. As a public health concern, the mammalian immune response to WNV has been studied in detail. Little, however, is known about the avian immune response to WNV. Avian taxa show variable susceptibility to WNV and what drives this variation is unknown. Thus, to study the immune response to WNV in birds, we experimentally infected captive zebra finches (Taeniopygia guttata). Zebra finches provide a useful model, as like many natural avian hosts they are moderately susceptible to WNV and thus provide sufficient viremia to infect mosquitoes. We performed RNAseq in spleen tissue during peak viremia to provide an overview of the transcriptional response. In general, we find strong parallels with the mammalian immune response to WNV, including upregulation of five genes in the Rig-I-like receptor signalling pathway, and offer insights into avian-specific responses. Together with complementary immunological assays, we provide a model of the avian immune response to WNV and set the stage for future comparative studies among variably susceptible populations and species.

  2. A new mean estimator using auxiliary variables for randomized response models

    NASA Astrophysics Data System (ADS)

    Ozgul, Nilgun; Cingi, Hulya

    2013-10-01

    Randomized response models are commonly used in surveys dealing with sensitive questions such as abortion, alcoholism, sexual orientation, drug taking, annual income, tax evasion to ensure interviewee anonymity and reduce nonrespondents rates and biased responses. Starting from the pioneering work of Warner [7], many versions of RRM have been developed that can deal with quantitative responses. In this study, new mean estimator is suggested for RRM including quantitative responses. The mean square error is derived and a simulation study is performed to show the efficiency of the proposed estimator to other existing estimators in RRM.

  3. Semi-empirical study of ortho-cresol photo degradation in manganese-doped zinc oxide nanoparticles suspensions

    PubMed Central

    2012-01-01

    The optimization processes of photo degradation are complicated and expensive when it is performed with traditional methods such as one variable at a time. In this research, the condition of ortho-cresol (o-cresol) photo degradation was optimized by using a semi empirical method. First of all, the experiments were designed with four effective factors including irradiation time, pH, photo catalyst’s amount, o-cresol concentration and photo degradation % as response by response surface methodology (RSM). The RSM used central composite design (CCD) method consists of 30 runs to obtain the actual responses. The actual responses were fitted with the second order algebraic polynomial equation to select a model (suggested model). The suggested model was validated by a few numbers of excellent statistical evidences in analysis of variance (ANOVA). The used evidences include high F-value (143.12), very low P-value (<0.0001), non-significant lack of fit, the determination coefficient (R2 = 0.99) and the adequate precision (47.067). To visualize the optimum, the validated model simulated the condition of variables and response (photo degradation %) be using a few number of three dimensional plots (3D). To confirm the model, the optimums were performed in laboratory. The results of performed experiments were quite close to the predicted values. In conclusion, the study indicated that the model is successful to simulate the optimum condition of o-cresol photo degradation under visible-light irradiation by manganese doped ZnO nanoparticles. PMID:22909072

  4. Whole season compared to growth-stage resolved temperature trends: implications for US maize yield

    NASA Astrophysics Data System (ADS)

    Butler, E. E.; Mueller, N. D.; Huybers, P. J.

    2014-12-01

    The effect of temperature on maize yield has generally been considered using a single value for the entire growing season. We compare the effect of temperature trends on yield between two distinct models: a single temperature sensitivity for the whole season and a variable sensitivity across four distinct agronomic development stages. The more resolved variable-sensitivity model indicates roughly a factor of two greater influence of temperature on yield than that implied by the single-sensitivity model. The largest discrepancies occur in silking, which is demonstrated to be the most sensitive stage in the variable-sensitivity model. For instance, whereas median yields are observed to be only 53% of typical values during the hottest 1% of silking-stage temperatures, the single-sensitivity model over predicts median yields of 68% whereas the variable-sensitivity model more correctly predicts median yields of 61%. That the variable sensitivity model is also not capable of capturing the full extent of yield losses suggests that further refinement to represent the non-linear response would be useful. Results from the variable sensitivity model also indicate that management decisions regarding planting times, which have generally shifted toward earlier dates, have led to greater yield benefit than that implied by the single-sensitivity model. Together, the variation of both temperature trends and yield variability within growing stages calls for closer attention to how changes in management interact with changes in climate to ultimately affect yields.

  5. Associations between race, sex and immune response variations to rubella vaccination in two independent cohorts

    PubMed Central

    Haralambieva, Iana H.; Salk, Hannah M.; Lambert, Nathaniel D.; Ovsyannikova, Inna G.; Kennedy, Richard B.; Warner, Nathaniel D.; Pankratz, V.Shane; Poland, Gregory A.

    2014-01-01

    Introduction Immune response variations after vaccination are influenced by host genetic factors and demographic variables, such as race, ethnicity and sex. The latter have not been systematically studied in regard to live rubella vaccine, but are of interest for developing next generation vaccines for diverse populations, for predicting immune responses after vaccination, and for better understanding the variables that impact immune response. Methods We assessed associations between demographic variables, including race, ethnicity and sex, and rubella-specific neutralizing antibody levels and secreted cytokines (IFN! , IL-6) in two independent cohorts (1,994 subjects), using linear and linear mixed models approaches, and genetically defined racial and ethnic categorizations. Results Our replicated findings in two independent, large, racially diverse cohorts indicate that individuals of African descent have significantly higher rubella-specific neutralizing antibody levels compared to individuals of European descent and/or Hispanic ethnicity (p! 0.001). Conclusion Our study provides consistent evidence for racial/ethnic differences in humoral immune response following rubella vaccination. PMID:24530932

  6. Individualized Prediction of Heat Stress in Firefighters: A Data-Driven Approach Using Classification and Regression Trees.

    PubMed

    Mani, Ashutosh; Rao, Marepalli; James, Kelley; Bhattacharya, Amit

    2015-01-01

    The purpose of this study was to explore data-driven models, based on decision trees, to develop practical and easy to use predictive models for early identification of firefighters who are likely to cross the threshold of hyperthermia during live-fire training. Predictive models were created for three consecutive live-fire training scenarios. The final predicted outcome was a categorical variable: will a firefighter cross the upper threshold of hyperthermia - Yes/No. Two tiers of models were built, one with and one without taking into account the outcome (whether a firefighter crossed hyperthermia or not) from the previous training scenario. First tier of models included age, baseline heart rate and core body temperature, body mass index, and duration of training scenario as predictors. The second tier of models included the outcome of the previous scenario in the prediction space, in addition to all the predictors from the first tier of models. Classification and regression trees were used independently for prediction. The response variable for the regression tree was the quantitative variable: core body temperature at the end of each scenario. The predicted quantitative variable from regression trees was compared to the upper threshold of hyperthermia (38°C) to predict whether a firefighter would enter hyperthermia. The performance of classification and regression tree models was satisfactory for the second (success rate = 79%) and third (success rate = 89%) training scenarios but not for the first (success rate = 43%). Data-driven models based on decision trees can be a useful tool for predicting physiological response without modeling the underlying physiological systems. Early prediction of heat stress coupled with proactive interventions, such as pre-cooling, can help reduce heat stress in firefighters.

  7. Climate Change: Modeling the Human Response

    NASA Astrophysics Data System (ADS)

    Oppenheimer, M.; Hsiang, S. M.; Kopp, R. E.

    2012-12-01

    Integrated assessment models have historically relied on forward modeling including, where possible, process-based representations to project climate change impacts. Some recent impact studies incorporate the effects of human responses to initial physical impacts, such as adaptation in agricultural systems, migration in response to drought, and climate-related changes in worker productivity. Sometimes the human response ameliorates the initial physical impacts, sometimes it aggravates it, and sometimes it displaces it onto others. In these arenas, understanding of underlying socioeconomic mechanisms is extremely limited. Consequently, for some sectors where sufficient data has accumulated, empirically based statistical models of human responses to past climate variability and change have been used to infer response sensitivities which may apply under certain conditions to future impacts, allowing a broad extension of integrated assessment into the realm of human adaptation. We discuss the insights gained from and limitations of such modeling for benefit-cost analysis of climate change.

  8. System level analysis and control of manufacturing process variation

    DOEpatents

    Hamada, Michael S.; Martz, Harry F.; Eleswarpu, Jay K.; Preissler, Michael J.

    2005-05-31

    A computer-implemented method is implemented for determining the variability of a manufacturing system having a plurality of subsystems. Each subsystem of the plurality of subsystems is characterized by signal factors, noise factors, control factors, and an output response, all having mean and variance values. Response models are then fitted to each subsystem to determine unknown coefficients for use in the response models that characterize the relationship between the signal factors, noise factors, control factors, and the corresponding output response having mean and variance values that are related to the signal factors, noise factors, and control factors. The response models for each subsystem are coupled to model the output of the manufacturing system as a whole. The coefficients of the fitted response models are randomly varied to propagate variances through the plurality of subsystems and values of signal factors and control factors are found to optimize the output of the manufacturing system to meet a specified criterion.

  9. Implementing seasonal carbon allocation into a dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Vermeulen, Marleen; Kruijt, Bart; Hickler, Thomas; Forrest, Matthew; Kabat, Pavel

    2014-05-01

    Long-term measurements of terrestrial fluxes through the FLUXNET Eddy Covariance network have revealed that carbon and water fluxes can be highly variable from year-to-year. This so-called interannual variability (IAV) of ecosystems is not fully understood because a direct relation with environmental drivers cannot always be found. Many dynamic vegetation models allocate NPP to leaves, stems, and root compartments on an annual basis, and thus do not account for seasonal changes in productivity in response to changes in environmental stressors. We introduce this vegetation seasonality into dynamic vegetation model LPJ-GUESS by implementing a new carbon allocation scheme on a daily basis. We focus in particular on modelling the observed flux seasonality of the Amazon basin, and validate our new model against fluxdata and MODIS GPP products. We expect that introducing seasonal variability into the model improves estimates of annual productivity and IAV, and therefore the model's representation of ecosystem carbon budgets as a whole.

  10. Glucose Oxidase Biosensor Modeling and Predictors Optimization by Machine Learning Methods.

    PubMed

    Gonzalez-Navarro, Felix F; Stilianova-Stoytcheva, Margarita; Renteria-Gutierrez, Livier; Belanche-Muñoz, Lluís A; Flores-Rios, Brenda L; Ibarra-Esquer, Jorge E

    2016-10-26

    Biosensors are small analytical devices incorporating a biological recognition element and a physico-chemical transducer to convert a biological signal into an electrical reading. Nowadays, their technological appeal resides in their fast performance, high sensitivity and continuous measuring capabilities; however, a full understanding is still under research. This paper aims to contribute to this growing field of biotechnology, with a focus on Glucose-Oxidase Biosensor (GOB) modeling through statistical learning methods from a regression perspective. We model the amperometric response of a GOB with dependent variables under different conditions, such as temperature, benzoquinone, pH and glucose concentrations, by means of several machine learning algorithms. Since the sensitivity of a GOB response is strongly related to these dependent variables, their interactions should be optimized to maximize the output signal, for which a genetic algorithm and simulated annealing are used. We report a model that shows a good generalization error and is consistent with the optimization.

  11. Computer simulation models as tools for identifying research needs: A black duck population model

    USGS Publications Warehouse

    Ringelman, J.K.; Longcore, J.R.

    1980-01-01

    Existing data on the mortality and production rates of the black duck (Anas rubripes) were used to construct a WATFIV computer simulation model. The yearly cycle was divided into 8 phases: hunting, wintering, reproductive, molt, post-molt, and juvenile dispersal mortality, and production from original and renesting attempts. The program computes population changes for sex and age classes during each phase. After completion of a standard simulation run with all variable default values in effect, a sensitivity analysis was conducted by changing each of 50 input variables, 1 at a time, to assess the responsiveness of the model to changes in each variable. Thirteen variables resulted in a substantial change in population level. Adult mortality factors were important during hunting and wintering phases. All production and mortality associated with original nesting attempts were sensitive, as was juvenile dispersal mortality. By identifying those factors which invoke the greatest population change, and providing an indication of the accuracy required in estimating these factors, the model helps to identify those variables which would be most profitable topics for future research.

  12. The Sun as a variable star: Solar and stellar irradiance variations; Colloquium of the International Astronomical Union, 143rd, Boulder, CO, Jun. 20-25, 1993

    NASA Technical Reports Server (NTRS)

    Pap, Judit M. (Editor); Froehlich, Claus (Editor); Hudson, Hugh S. (Editor); Tobiska, W. Kent (Editor)

    1994-01-01

    Variations in solar and stellar irradiances have long been of interest. An International Astronomical Union (IAU) colloquium reviewed such relevant subjects as observations, theoretical interpretations, and empirical and physical models, with a special emphasis on climatic impact of solar irradiance variability. Specific topics discussed included: (1) General Reviews on Observations of Solar and Stellar Irradiance Variability; (2) Observational Programs for Solar and Stellar Irradiance Variability; (3) Variability of Solar and Stellar Irradiance Related to the Network, Active Regions (Sunspots and Plages), and Large-Scale Magnetic Structures; (4) Empirical Models of Solar Total and Spectral Irradiance Variability; (5) Solar and Stellar Oscillations, Irradiance Variations and their Interpretations; and (6) The Response of the Earth's Atmosphere to Solar Irradiance Variations and Sun-Climate Connections.

  13. Seasonal-scale nearshore morphological evolution: Field observations and numerical modeling

    USGS Publications Warehouse

    Ruggiero, P.; Walstra, D.-J.R.; Gelfenbaum, G.; van, Ormondt M.

    2009-01-01

    A coupled waves-currents-bathymetric evolution model (DELFT-3D) is compared with field measurements to test hypotheses regarding the processes responsible for alongshore varying nearshore morphological changes at seasonal time scales. A 2001 field experiment, along the beaches adjacent to Grays Harbor, Washington, USA, captured the transition between the high-energy erosive conditions of winter and the low-energy beach-building conditions typical of summer. The experiment documented shoreline progradation on the order of 10-20 m and on average approximately 70 m of onshore sandbar migration during a four-month period. Significant alongshore variability was observed in the morphological response of the sandbar over a 4 km reach of coast with sandbar movement ranging from 20 m of offshore migration to over 175 m of onshore bar migration, the largest seasonal-scale onshore migration event observed in a natural setting. Both observations and model results suggest that, in the case investigated here, alongshore variations in initial bathymetry are primarily responsible for the observed alongshore variable morphological changes. Alongshore varying incident hydrodynamic forcing, occasionally significant in this region due to a tidal inlet and associated ebb-tidal delta, was relatively minor during the study period and appears to play an insignificant role in the observed alongshore variability in sandbar behavior at kilometer-scale. The role of fully three-dimensional cell circulation patterns in explaining the observed morphological variability also appears to be minor, at least in the case investigated here. ?? 2009 Elsevier B.V.

  14. What Climate Sensitivity Index Is Most Useful for Projections?

    NASA Astrophysics Data System (ADS)

    Grose, Michael R.; Gregory, Jonathan; Colman, Robert; Andrews, Timothy

    2018-02-01

    Transient climate response (TCR), transient response at 140 years (T140), and equilibrium climate sensitivity (ECS) indices are intended as benchmarks for comparing the magnitude of climate response projected by climate models. It is generally assumed that TCR or T140 would explain more variability between models than ECS for temperature change over the 21st century, since this timescale is the realm of transient climate change. Here we find that TCR explains more variability across Coupled Model Intercomparison Project phase 5 than ECS for global temperature change since preindustrial, for 50 or 100 year global trends up to the present, and for projected change under representative concentration pathways in regions of delayed warming such as the Southern Ocean. However, unexpectedly, we find that ECS correlates higher than TCR for projected change from the present in the global mean and in most regions. This higher correlation does not relate to aerosol forcing, and the physical cause requires further investigation.

  15. Strain Rate Sensitivity of Epoxy Resin in Tensile and Shear Loading

    NASA Technical Reports Server (NTRS)

    Gilat, Amos; Goldberg, Robert K.; Roberts, Gary D.

    2005-01-01

    The mechanical response of E-862 and PR-520 resins is investigated in tensile and shear loadings. At both types of loading the resins are tested at strain rates of about 5x10(exp 5), 2, and 450 to 700 /s. In addition, dynamic shear modulus tests are carried out at various frequencies and temperatures, and tensile stress relaxation tests are conducted at room temperature. The results show that the toughened PR-520 resin can carry higher stresses than the untoughened E-862 resin. Strain rate has a significant effect on the response of both resins. In shear both resins show a ductile response with maximum stress that is increasing with strain rate. In tension a ductile response is observed at low strain rate (approx. 5x10(exp 5) /s), and brittle response is observed at the medium and high strain rates (2, and 700 /s). The hydrostatic component of the stress in the tensile tests causes premature failure in the E-862 resin. Localized deformation develops in the PR-520 resin when loaded in shear. An internal state variable constitutive model is proposed for modeling the response of the resins. The model includes a state variable that accounts for the effect of the hydrostatic component of the stress on the deformation.

  16. Examining the Predictive Validity of a Dynamic Assessment of Decoding to Forecast Response Tier 2 to Intervention

    PubMed Central

    Cho, Eunsoo; Compton, Donald L.; Fuchs, Doug; Fuchs, Lynn S.; Bouton, Bobette

    2013-01-01

    The purpose of this study was to examine the role of a dynamic assessment (DA) of decoding in predicting responsiveness to Tier 2 small group tutoring in a response-to-intervention model. First-grade students (n=134) who did not show adequate progress in Tier 1 based on 6 weeks of progress monitoring received Tier 2 small-group tutoring in reading for 14 weeks. Student responsiveness to Tier 2 was assessed weekly with word identification fluency (WIF). A series of conditional individual growth curve analyses were completed that modeled the correlates of WIF growth (final level of performance and growth). Its purpose was to examine the predictive validity of DA in the presence of 3 sets of variables: static decoding measures, Tier 1 responsiveness indicators, and pre-reading variables (phonemic awareness, rapid letter naming, oral vocabulary, and IQ). DA was a significant predictor of final level and growth, uniquely explaining 3% – 13% of the variance in Tier 2 responsiveness depending on the competing predictors in the model and WIF outcome (final level of performance or growth). Although the additional variances explained uniquely by DA were relatively small, results indicate the potential of DA in identifying Tier 2 nonresponders. PMID:23213050

  17. Examining the predictive validity of a dynamic assessment of decoding to forecast response to tier 2 intervention.

    PubMed

    Cho, Eunsoo; Compton, Donald L; Fuchs, Douglas; Fuchs, Lynn S; Bouton, Bobette

    2014-01-01

    The purpose of this study was to examine the role of a dynamic assessment (DA) of decoding in predicting responsiveness to Tier 2 small-group tutoring in a response-to-intervention model. First grade students (n = 134) who did not show adequate progress in Tier 1 based on 6 weeks of progress monitoring received Tier 2 small-group tutoring in reading for 14 weeks. Student responsiveness to Tier 2 was assessed weekly with word identification fluency (WIF). A series of conditional individual growth curve analyses were completed that modeled the correlates of WIF growth (final level of performance and growth). Its purpose was to examine the predictive validity of DA in the presence of three sets of variables: static decoding measures, Tier 1 responsiveness indicators, and prereading variables (phonemic awareness, rapid letter naming, oral vocabulary, and IQ). DA was a significant predictor of final level and growth, uniquely explaining 3% to 13% of the variance in Tier 2 responsiveness depending on the competing predictors in the model and WIF outcome (final level of performance or growth). Although the additional variances explained uniquely by DA were relatively small, results indicate the potential of DA in identifying Tier 2 nonresponders. © Hammill Institute on Disabilities 2012.

  18. Outcome definitions and clinical predictors influence pharmacogenetic associations between HTR3A gene polymorphisms and response to clozapine in patients with schizophrenia.

    PubMed

    Rajkumar, A P; Poonkuzhali, B; Kuruvilla, A; Srivastava, A; Jacob, M; Jacob, K S

    2012-12-01

    Pharmacogenetics of schizophrenia has not yet delivered anticipated clinical dividends. Clinical heterogeneity of schizophrenia contributes to the poor replication of the findings of pharmacogenetic association studies. Functionally important HTR3A gene single-nucleotide polymorphisms (SNPs) were reported to be associated with response to clozapine. The aim of this study was to investigate how the association between HTR3A gene SNP and response to clozapine is influenced by various clinical predictors and by differing outcome definitions in patients with treatment-resistant schizophrenia (TRS). We recruited 101 consecutive patients with TRS, on stable doses of clozapine, and evaluated their HTR3A gene SNP (rs1062613 and rs2276302), psychopathology, and serum clozapine levels. We assessed their socio-demographic and clinical profiles, premorbid adjustment, traumatic events, cognition, and disability using standard assessment schedules. We evaluated their response to clozapine, by employing six differing outcome definitions. We employed appropriate multivariate statistics to calculate allelic and genotypic association, accounting for the effects of various clinical variables. T allele of rs1062613 and G allele of rs2276302 were significantly associated with good clinical response to clozapine (p = 0.02). However, varying outcome definitions make these associations inconsistent. rs1062613 and rs2276302 could explain only 13.8 % variability in the responses to clozapine, while combined clinical predictors and HTR3A pharmacogenetic association model could explain 38 % variability. We demonstrated that the results of pharmacogenetic studies in schizophrenia depend heavily on their outcome definitions and that combined clinical and pharmacogenetic models have better predictive values. Future pharmacogenetic studies should employ multiple outcome definitions and should evaluate associated clinical variables.

  19. Analysis of host response to bacterial infection using error model based gene expression microarray experiments

    PubMed Central

    Stekel, Dov J.; Sarti, Donatella; Trevino, Victor; Zhang, Lihong; Salmon, Mike; Buckley, Chris D.; Stevens, Mark; Pallen, Mark J.; Penn, Charles; Falciani, Francesco

    2005-01-01

    A key step in the analysis of microarray data is the selection of genes that are differentially expressed. Ideally, such experiments should be properly replicated in order to infer both technical and biological variability, and the data should be subjected to rigorous hypothesis tests to identify the differentially expressed genes. However, in microarray experiments involving the analysis of very large numbers of biological samples, replication is not always practical. Therefore, there is a need for a method to select differentially expressed genes in a rational way from insufficiently replicated data. In this paper, we describe a simple method that uses bootstrapping to generate an error model from a replicated pilot study that can be used to identify differentially expressed genes in subsequent large-scale studies on the same platform, but in which there may be no replicated arrays. The method builds a stratified error model that includes array-to-array variability, feature-to-feature variability and the dependence of error on signal intensity. We apply this model to the characterization of the host response in a model of bacterial infection of human intestinal epithelial cells. We demonstrate the effectiveness of error model based microarray experiments and propose this as a general strategy for a microarray-based screening of large collections of biological samples. PMID:15800204

  20. Examining the impacts of increased corn production on ...

    EPA Pesticide Factsheets

    This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirectional and Environmental Policy Integrated Climate modeling system incorporates agricultural management practices and N exchange processes between the soil and atmosphere to estimate levels of N that may volatilize into the atmosphere, re-deposit, and seep or flow into surface and groundwater. Simulated values from this modeling system were used in a land-use regression model to examine associations between groundwater nitrate-N measurements and a suite of factors related to N fertilizer and groundwater nitrate contamination. Multi-variable modeling analysis revealed that the N-fertilizer rate (versus total) applied to irrigated (versus rainfed) grain corn (versus other crops) was the strongest N-related predictor variable of groundwater nitrate-N concentrations. Application of this multi-variable model considered groundwater nitrate-N concentration responses under two corn production scenarios. Findings suggest that increased corn production between 2002 and 2022 could result in 56% to 79% increase in areas vulnerable to groundwater nitrate-N concentrations ≥ 5 mg/L. These above-threshold areas occur on soils with a hydraulic conductivity 13% higher than the rest of the domain. Additio

  1. Variable Complexity Structural Optimization of Shells

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Venkataraman, Satchi

    1999-01-01

    Structural designers today face both opportunities and challenges in a vast array of available analysis and optimization programs. Some programs such as NASTRAN, are very general, permitting the designer to model any structure, to any degree of accuracy, but often at a higher computational cost. Additionally, such general procedures often do not allow easy implementation of all constraints of interest to the designer. Other programs, based on algebraic expressions used by designers one generation ago, have limited applicability for general structures with modem materials. However, when applicable, they provide easy understanding of design decisions trade-off. Finally, designers can also use specialized programs suitable for designing efficiently a subset of structural problems. For example, PASCO and PANDA2 are panel design codes, which calculate response and estimate failure much more efficiently than general-purpose codes, but are narrowly applicable in terms of geometry and loading. Therefore, the problem of optimizing structures based on simultaneous use of several models and computer programs is a subject of considerable interest. The problem of using several levels of models in optimization has been dubbed variable complexity modeling. Work under NASA grant NAG1-2110 has been concerned with the development of variable complexity modeling strategies with special emphasis on response surface techniques. In addition, several modeling issues for the design of shells of revolution were studied.

  2. Variable Complexity Structural Optimization of Shells

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Venkataraman, Satchi

    1998-01-01

    Structural designers today face both opportunities and challenges in a vast array of available analysis and optimization programs. Some programs such as NASTRAN, are very general, permitting the designer to model any structure, to any degree of accuracy, but often at a higher computational cost. Additionally, such general procedures often do not allow easy implementation of all constraints of interest to the designer. Other programs, based on algebraic expressions used by designers one generation ago, have limited applicability for general structures with modem materials. However, when applicable, they provide easy understanding of design decisions trade-off. Finally, designers can also use specialized programs suitable for designing efficiently a subset of structural problems. For example, PASCO and PANDA2 are panel design codes, which calculate response and estimate failure much more efficiently than general-purpose codes, but are narrowly applicable in terms of geometry and loading. Therefore, the problem of optimizing structures based on simultaneous use of several models and computer programs is a subject of considerable interest. The problem of using several levels of models in optimization has been dubbed variable complexity modeling. Work under NASA grant NAG1-1808 has been concerned with the development of variable complexity modeling strategies with special emphasis on response surface techniques. In addition several modeling issues for the design of shells of revolution were studied.

  3. Multilevel corporate environmental responsibility.

    PubMed

    Karassin, Orr; Bar-Haim, Aviad

    2016-12-01

    The multilevel empirical study of the antecedents of corporate social responsibility (CSR) has been identified as "the first knowledge gap" in CSR research. Based on an extensive literature review, the present study outlines a conceptual multilevel model of CSR, then designs and empirically validates an operational multilevel model of the principal driving factors affecting corporate environmental responsibility (CER), as a measure of CSR. Both conceptual and operational models incorporate three levels of analysis: institutional, organizational, and individual. The multilevel nature of the design allows for the assessment of the relative importance of the levels and of their components in the achievement of CER. Unweighted least squares (ULS) regression analysis reveals that the institutional-level variables have medium relationships with CER, some variables having a negative effect. The organizational level is revealed as having strong and positive significant relationships with CER, with organizational culture and managers' attitudes and behaviors as significant driving forces. The study demonstrates the importance of multilevel analysis in improving the understanding of CSR drivers, relative to single level models, even if the significance of specific drivers and levels may vary by context. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Optimisation of Copper Oxide Impregnation on Carbonised Oil Palm Empty Fruit Bunch for Nitric Oxide Removal using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Ahmad, Norhidayah; Yong, Sing Hung; Ibrahim, Naimah; Ali, Umi Fazara Md; Ridwan, Fahmi Muhammad; Ahmad, Razi

    2018-03-01

    Oil palm empty fruit bunch (EFB) was successfully modified with phosphoric acid hydration followed by impregnation with copper oxide (CuO) to synthesize CuO modified catalytic carbon (CuO/EFBC) for low-temperature removal of nitric oxide (NO) from gas streams. CuO impregnation was optimised through response surface methodology (RSM) using Box-Behnken Design (BBD) in terms of metal loading (5-20%), sintering temperature (200-800˚C) and sintering time (2-6 hours). The model response for the variables was NO adsorption capacity, which was obtained from an up-flow column adsorption experiment with 100 mL/min flow of 500 ppm NO/He at different operating conditions. The optimum operating variables suggested by the model were 20% metal loading, 200˚C sintering temperature and 6 hours sintering time. A good agreement (R2 = 0.9625) was achieved between the experimental data and model prediction. ANOVA analysis indicated that the model terms (metal loading and sintering temperature) are significant (Prob.>F less than 0.05).

  5. A two-fold increase of carbon cycle sensitivity to tropical temperature variations.

    PubMed

    Wang, Xuhui; Piao, Shilong; Ciais, Philippe; Friedlingstein, Pierre; Myneni, Ranga B; Cox, Peter; Heimann, Martin; Miller, John; Peng, Shushi; Wang, Tao; Yang, Hui; Chen, Anping

    2014-02-13

    Earth system models project that the tropical land carbon sink will decrease in size in response to an increase in warming and drought during this century, probably causing a positive climate feedback. But available data are too limited at present to test the predicted changes in the tropical carbon balance in response to climate change. Long-term atmospheric carbon dioxide data provide a global record that integrates the interannual variability of the global carbon balance. Multiple lines of evidence demonstrate that most of this variability originates in the terrestrial biosphere. In particular, the year-to-year variations in the atmospheric carbon dioxide growth rate (CGR) are thought to be the result of fluctuations in the carbon fluxes of tropical land areas. Recently, the response of CGR to tropical climate interannual variability was used to put a constraint on the sensitivity of tropical land carbon to climate change. Here we use the long-term CGR record from Mauna Loa and the South Pole to show that the sensitivity of CGR to tropical temperature interannual variability has increased by a factor of 1.9 ± 0.3 in the past five decades. We find that this sensitivity was greater when tropical land regions experienced drier conditions. This suggests that the sensitivity of CGR to interannual temperature variations is regulated by moisture conditions, even though the direct correlation between CGR and tropical precipitation is weak. We also find that present terrestrial carbon cycle models do not capture the observed enhancement in CGR sensitivity in the past five decades. More realistic model predictions of future carbon cycle and climate feedbacks require a better understanding of the processes driving the response of tropical ecosystems to drought and warming.

  6. Variability of visual responses of superior colliculus neurons depends on stimulus velocity.

    PubMed

    Mochol, Gabriela; Wójcik, Daniel K; Wypych, Marek; Wróbel, Andrzej; Waleszczyk, Wioletta J

    2010-03-03

    Visually responding neurons in the superficial, retinorecipient layers of the cat superior colliculus receive input from two primarily parallel information processing channels, Y and W, which is reflected in their velocity response profiles. We quantified the time-dependent variability of responses of these neurons to stimuli moving with different velocities by Fano factor (FF) calculated in discrete time windows. The FF for cells responding to low-velocity stimuli, thus receiving W inputs, increased with the increase in the firing rate. In contrast, the dynamics of activity of the cells responding to fast moving stimuli, processed by Y pathway, correlated negatively with FF whether the response was excitatory or suppressive. These observations were tested against several types of surrogate data. Whereas Poisson description failed to reproduce the variability of all collicular responses, the inclusion of secondary structure to the generating point process recovered most of the observed features of responses to fast moving stimuli. Neither model could reproduce the variability of low-velocity responses, which suggests that, in this case, more complex time dependencies need to be taken into account. Our results indicate that Y and W channels may differ in reliability of responses to visual stimulation. Apart from previously reported morphological and physiological differences of the cells belonging to Y and W channels, this is a new feature distinguishing these two pathways.

  7. Optimization of non-thermal plasma efficiency in the simultaneous elimination of benzene, toluene, ethyl-benzene, and xylene from polluted airstreams using response surface methodology.

    PubMed

    Najafpoor, Ali Asghar; Jonidi Jafari, Ahmad; Hosseinzadeh, Ahmad; Khani Jazani, Reza; Bargozin, Hasan

    2018-01-01

    Treatment with a non-thermal plasma (NTP) is a new and effective technology applied recently for conversion of gases for air pollution control. This research was initiated to optimize the efficient application of the NTP process in benzene, toluene, ethyl-benzene, and xylene (BTEX) removal. The effects of four variables including temperature, initial BTEX concentration, voltage, and flow rate on the BTEX elimination efficiency were investigated using response surface methodology (RSM). The constructed model was evaluated by analysis of variance (ANOVA). The model goodness-of-fit and statistical significance was assessed using determination coefficients (R 2 and R 2 adj ) and the F-test. The results revealed that the R 2 proportion was greater than 0.96 for BTEX removal efficiency. The statistical analysis demonstrated that the BTEX removal efficiency was significantly correlated with the temperature, BTEX concentration, voltage, and flow rate. Voltage was the most influential variable affecting the dependent variable as it exerted a significant effect (p < 0.0001) on the response variable. According to the achieved results, NTP can be applied as a progressive, cost-effective, and practical process for treatment of airstreams polluted with BTEX in conditions of low residence time and high concentrations of pollutants.

  8. Assessing conservation relevance of organism-environment relations using predicted changes in response variables

    USGS Publications Warehouse

    Gutzwiller, Kevin J.; Barrow, Wylie C.; White, Joseph D.; Johnson-Randall, Lori; Cade, Brian S.; Zygo, Lisa M.

    2010-01-01

    1. Organism–environment models are used widely in conservation. The degree to which they are useful for informing conservation decisions – the conservation relevance of these relations – is important because lack of relevance may lead to misapplication of scarce conservation resources or failure to resolve important conservation dilemmas. Even when models perform well based on model fit and predictive ability, conservation relevance of associations may not be clear without also knowing the magnitude and variability of predicted changes in response variables. 2. We introduce a method for evaluating the conservation relevance of organism–environment relations that employs confidence intervals for predicted changes in response variables. The confidence intervals are compared to a preselected magnitude of change that marks a threshold (trigger) for conservation action. To demonstrate the approach, we used a case study from the Chihuahuan Desert involving relations between avian richness and broad-scale patterns of shrubland. We considered relations for three winters and two spatial extents (1- and 2-km-radius areas) and compared predicted changes in richness to three thresholds (10%, 20% and 30% change). For each threshold, we examined 48 relations. 3. The method identified seven, four and zero conservation-relevant changes in mean richness for the 10%, 20% and 30% thresholds respectively. These changes were associated with major (20%) changes in shrubland cover, mean patch size, the coefficient of variation for patch size, or edge density but not with major changes in shrubland patch density. The relative rarity of conservation-relevant changes indicated that, overall, the relations had little practical value for informing conservation decisions about avian richness. 4. The approach we illustrate is appropriate for various response and predictor variables measured at any temporal or spatial scale. The method is broadly applicable across ecological environments, conservation objectives, types of statistical predictive models and levels of biological organization. By focusing on magnitudes of change that have practical significance, and by using the span of confidence intervals to incorporate uncertainty of predicted changes, the method can be used to help improve the effectiveness of conservation efforts.

  9. Transient Earth system responses to cumulative carbon dioxide emissions: linearities, uncertainties, and probabilities in an observation-constrained model ensemble

    NASA Astrophysics Data System (ADS)

    Steinacher, M.; Joos, F.

    2016-02-01

    Information on the relationship between cumulative fossil CO2 emissions and multiple climate targets is essential to design emission mitigation and climate adaptation strategies. In this study, the transient response of a climate or environmental variable per trillion tonnes of CO2 emissions, termed TRE, is quantified for a set of impact-relevant climate variables and from a large set of multi-forcing scenarios extended to year 2300 towards stabilization. An ˜ 1000-member ensemble of the Bern3D-LPJ carbon-climate model is applied and model outcomes are constrained by 26 physical and biogeochemical observational data sets in a Bayesian, Monte Carlo-type framework. Uncertainties in TRE estimates include both scenario uncertainty and model response uncertainty. Cumulative fossil emissions of 1000 Gt C result in a global mean surface air temperature change of 1.9 °C (68 % confidence interval (c.i.): 1.3 to 2.7 °C), a decrease in surface ocean pH of 0.19 (0.18 to 0.22), and a steric sea level rise of 20 cm (13 to 27 cm until 2300). Linearity between cumulative emissions and transient response is high for pH and reasonably high for surface air and sea surface temperatures, but less pronounced for changes in Atlantic meridional overturning, Southern Ocean and tropical surface water saturation with respect to biogenic structures of calcium carbonate, and carbon stocks in soils. The constrained model ensemble is also applied to determine the response to a pulse-like emission and in idealized CO2-only simulations. The transient climate response is constrained, primarily by long-term ocean heat observations, to 1.7 °C (68 % c.i.: 1.3 to 2.2 °C) and the equilibrium climate sensitivity to 2.9 °C (2.0 to 4.2 °C). This is consistent with results by CMIP5 models but inconsistent with recent studies that relied on short-term air temperature data affected by natural climate variability.

  10. Use of Theory to Examine Health Responsibility in Urban Adolescents.

    PubMed

    Ayres, Cynthia G; Pontes, Nancy M

    The study's purpose was to examine the factors that may influence health responsibility among adolescents. More specifically, this study examined relationships among health responsibility, resilience, neighborhood perception, social support, and health promoting behaviors in adolescents, between the ages of 13 and 18years old. The Health Promotion Model was used as the theoretical framework. This study empirically tested theoretical relationships postulated in the literature between health responsibility and the variables: (a) resilience (b) social support (c) neighborhood perception (d) social support and (e) health promoting behaviors. A correlational study design was used. A convenience sample of 122 adolescents in an urban setting completed questionnaires assessing health responsibility, resilience, social support, neighborhood perception, health promoting behaviors, and a demographic questionnaire. Pearson correlations were used to examine relationships among variables. A statistically significant relationship was found between health responsibility and healthy promoting behaviors (r=0.733, p<0.001) and between health responsibility and neighborhood perception (r=0.163, p<0.01). No relationships were found between the dependent variable of health responsibility and the independent variables of resilience and social support in this population. Study findings help contribute to the body of knowledge regarding the factors that influence health responsibility among urban adolescents to promote adoption and maintenance of healthy behaviors among this population. Nurses need to educate adolescents to provide them with a good understanding of the consequences of health behaviors so that they can assess their own risk and make responsible, healthy choices. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The relationship between aircraft noise exposure and day-use visitor survey responses in backcountry areas of national parks.

    PubMed

    Rapoza, Amanda; Sudderth, Erika; Lewis, Kristin

    2015-10-01

    To evaluate the relationship between aircraft noise exposure and the quality of national park visitor experience, more than 4600 visitor surveys were collected at seven backcountry sites in four U.S. national parks simultaneously with calibrated sound level measurements. Multilevel logistic regression was used to estimate parameters describing the relationship among visitor responses, aircraft noise dose metrics, and mediator variables. For the regression models, survey responses were converted to three dichotomous variables, representing visitors who did or did not experience slightly or more, moderately or more, or very or more annoyance or interference with natural quiet from aircraft noise. Models with the most predictive power included noise dose metrics of sound exposure level, percent time aircraft were audible, and percentage energy due to helicopters and fixed-wing propeller aircraft. These models also included mediator variables: visitor ratings of the "importance of calmness, peace and tranquility," visitor group composition (adults or both adults and children), first visit to the site, previously taken an air tour, and participation in bird-watching or interpretive talks. The results complement and extend previous research conducted in frontcountry areas and will inform evaluations of air tour noise effects on visitors to national parks and remote wilderness sites.

  12. Optimization of process variables by response surface methodology for malachite green dye removal using lime peel activated carbon

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohd Azmier; Afandi, Nur Syahidah; Bello, Olugbenga Solomon

    2017-05-01

    This study investigates the adsorptive removal of malachite green (MG) dye from aqueous solutions using chemically modified lime-peel-based activated carbon (LPAC). The adsorbent prepared was characterized using FTIR, SEM, Proximate analysis and BET techniques, respectively. Central composite design (CCD) in response surface methodology (RSM) was used to optimize the adsorption process. The effects of three variables: activation temperature, activation time and chemical impregnation ratio (IR) using KOH and their effects on percentage of dye removal and LPAC yield were investigated. Based on CCD design, quadratic models and two factor interactions (2FI) were developed correlating the adsorption variables to the two responses. Analysis of variance (ANOVA) was used to judge the adequacy of the model. The optimum conditions of MG dye removal using LPAC are: activation temperature (796 °C), activation time (1.0 h) and impregnation ratio (2.6), respectively. The percentage of MG dye removal obtained was 94.68 % resulting in 17.88 % LPAC yield. The percentage of error between predicted and experimental results for the removal of MG dye is 0.4 %. Model prediction was in good agreement with experimental results and LPAC was found to be effective in removing MG dye from aqueous solution.

  13. Process optimization for osmo-dehydrated carambola (Averrhoa carambola L) slices and its storage studies.

    PubMed

    Roopa, N; Chauhan, O P; Raju, P S; Das Gupta, D K; Singh, R K R; Bawa, A S

    2014-10-01

    An osmotic-dehydration process protocol for Carambola (Averrhoacarambola L.,), an exotic star shaped tropical fruit, was developed. The process was optimized using Response Surface Methodology (RSM) following Central Composite Rotatable Design (CCRD). The experimental variables selected for the optimization were soak solution concentration (°Brix), soaking temperature (°C) and soaking time (min) with 6 experiments at central point. The effect of process variables was studied on solid gain and water loss during osmotic dehydration process. The data obtained were analyzed employing multiple regression technique to generate suitable mathematical models. Quadratic models were found to fit well (R(2), 95.58 - 98.64 %) in describing the effect of variables on the responses studied. The optimized levels of the process variables were achieved at 70°Brix, 48 °C and 144 min for soak solution concentration, soaking temperature and soaking time, respectively. The predicted and experimental results at optimized levels of variables showed high correlation. The osmo-dehydrated product prepared at optimized conditions showed a shelf-life of 10, 8 and 6 months at 5 °C, ambient (30 ± 2 °C) and 37 °C, respectively.

  14. Multilevel Hierarchical Modeling of Benthic Macroinvertebrate Responses to Urbanization in Nine Metropolitan Regions across the Conterminous United States

    USGS Publications Warehouse

    Kashuba, Roxolana; Cha, YoonKyung; Alameddine, Ibrahim; Lee, Boknam; Cuffney, Thomas F.

    2010-01-01

    Multilevel hierarchical modeling methodology has been developed for use in ecological data analysis. The effect of urbanization on stream macroinvertebrate communities was measured across a gradient of basins in each of nine metropolitan regions across the conterminous United States. The hierarchical nature of this dataset was harnessed in a multi-tiered model structure, predicting both invertebrate response at the basin scale and differences in invertebrate response at the region scale. Ordination site scores, total taxa richness, Ephemeroptera, Plecoptera, Trichoptera (EPT) taxa richness, and richness-weighted mean tolerance of organisms at a site were used to describe invertebrate responses. Percentage of urban land cover was used as a basin-level predictor variable. Regional mean precipitation, air temperature, and antecedent agriculture were used as region-level predictor variables. Multilevel hierarchical models were fit to both levels of data simultaneously, borrowing statistical strength from the complete dataset to reduce uncertainty in regional coefficient estimates. Additionally, whereas non-hierarchical regressions were only able to show differing relations between invertebrate responses and urban intensity separately for each region, the multilevel hierarchical regressions were able to explain and quantify those differences within a single model. In this way, this modeling approach directly establishes the importance of antecedent agricultural conditions in masking the response of invertebrates to urbanization in metropolitan regions such as Milwaukee-Green Bay, Wisconsin; Denver, Colorado; and Dallas-Fort Worth, Texas. Also, these models show that regions with high precipitation, such as Atlanta, Georgia; Birmingham, Alabama; and Portland, Oregon, start out with better regional background conditions of invertebrates prior to urbanization but experience faster negative rates of change with urbanization. Ultimately, this urbanization-invertebrate response example is used to detail the multilevel hierarchical construction methodology, showing how the result is a set of models that are both statistically more rigorous and ecologically more interpretable than simple linear regression models.

  15. Servo Controlled Variable Pressure Modification to Space Shuttle Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Kouns, H. H.

    1983-01-01

    Engineering drawings show modifications made to the constant pressure control of the model AP27V-7 hydraulic pump to an electrically controlled variable pressure setting compensator. A hanger position indicator was included for continuously monitoring hanger angle. A simplex servo driver was furnished for controlling the pressure setting servovalve. Calibration of the rotary variable displacement transducer is described as well as pump performance and response characteristics.

  16. Attentional modulation of neuronal variability in circuit models of cortex

    PubMed Central

    Kanashiro, Tatjana; Ocker, Gabriel Koch; Cohen, Marlene R; Doiron, Brent

    2017-01-01

    The circuit mechanisms behind shared neural variability (noise correlation) and its dependence on neural state are poorly understood. Visual attention is well-suited to constrain cortical models of response variability because attention both increases firing rates and their stimulus sensitivity, as well as decreases noise correlations. We provide a novel analysis of population recordings in rhesus primate visual area V4 showing that a single biophysical mechanism may underlie these diverse neural correlates of attention. We explore model cortical networks where top-down mediated increases in excitability, distributed across excitatory and inhibitory targets, capture the key neuronal correlates of attention. Our models predict that top-down signals primarily affect inhibitory neurons, whereas excitatory neurons are more sensitive to stimulus specific bottom-up inputs. Accounting for trial variability in models of state dependent modulation of neuronal activity is a critical step in building a mechanistic theory of neuronal cognition. DOI: http://dx.doi.org/10.7554/eLife.23978.001 PMID:28590902

  17. Response Surface Modeling Using Multivariate Orthogonal Functions

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; DeLoach, Richard

    2001-01-01

    A nonlinear modeling technique was used to characterize response surfaces for non-dimensional longitudinal aerodynamic force and moment coefficients, based on wind tunnel data from a commercial jet transport model. Data were collected using two experimental procedures - one based on modem design of experiments (MDOE), and one using a classical one factor at a time (OFAT) approach. The nonlinear modeling technique used multivariate orthogonal functions generated from the independent variable data as modeling functions in a least squares context to characterize the response surfaces. Model terms were selected automatically using a prediction error metric. Prediction error bounds computed from the modeling data alone were found to be- a good measure of actual prediction error for prediction points within the inference space. Root-mean-square model fit error and prediction error were less than 4 percent of the mean response value in all cases. Efficacy and prediction performance of the response surface models identified from both MDOE and OFAT experiments were investigated.

  18. Multiresponse modeling of variably saturated flow and isotope tracer transport for a hillslope experiment at the Landscape Evolution Observatory

    NASA Astrophysics Data System (ADS)

    Scudeler, Carlotta; Pangle, Luke; Pasetto, Damiano; Niu, Guo-Yue; Volkmann, Till; Paniconi, Claudio; Putti, Mario; Troch, Peter

    2016-10-01

    This paper explores the challenges of model parameterization and process representation when simulating multiple hydrologic responses from a highly controlled unsaturated flow and transport experiment with a physically based model. The experiment, conducted at the Landscape Evolution Observatory (LEO), involved alternate injections of water and deuterium-enriched water into an initially very dry hillslope. The multivariate observations included point measures of water content and tracer concentration in the soil, total storage within the hillslope, and integrated fluxes of water and tracer through the seepage face. The simulations were performed with a three-dimensional finite element model that solves the Richards and advection-dispersion equations. Integrated flow, integrated transport, distributed flow, and distributed transport responses were successively analyzed, with parameterization choices at each step supported by standard model performance metrics. In the first steps of our analysis, where seepage face flow, water storage, and average concentration at the seepage face were the target responses, an adequate match between measured and simulated variables was obtained using a simple parameterization consistent with that from a prior flow-only experiment at LEO. When passing to the distributed responses, it was necessary to introduce complexity to additional soil hydraulic parameters to obtain an adequate match for the point-scale flow response. This also improved the match against point measures of tracer concentration, although model performance here was considerably poorer. This suggests that still greater complexity is needed in the model parameterization, or that there may be gaps in process representation for simulating solute transport phenomena in very dry soils.

  19. Selecting Populations for Non-Analogous Climate Conditions Using Universal Response Functions: The Case of Douglas-Fir in Central Europe

    PubMed Central

    Chakraborty, Debojyoti; Wang, Tongli; Andre, Konrad; Konnert, Monika; Lexer, Manfred J.; Matulla, Christoph; Schueler, Silvio

    2015-01-01

    Identifying populations within tree species potentially adapted to future climatic conditions is an important requirement for reforestation and assisted migration programmes. Such populations can be identified either by empirical response functions based on correlations of quantitative traits with climate variables or by climate envelope models that compare the climate of seed sources and potential growing areas. In the present study, we analyzed the intraspecific variation in climate growth response of Douglas-fir planted within the non-analogous climate conditions of Central and continental Europe. With data from 50 common garden trials, we developed Universal Response Functions (URF) for tree height and mean basal area and compared the growth performance of the selected best performing populations with that of populations identified through a climate envelope approach. Climate variables of the trial location were found to be stronger predictors of growth performance than climate variables of the population origin. Although the precipitation regime of the population sources varied strongly none of the precipitation related climate variables of population origin was found to be significant within the models. Overall, the URFs explained more than 88% of variation in growth performance. Populations identified by the URF models originate from western Cascades and coastal areas of Washington and Oregon and show significantly higher growth performance than populations identified by the climate envelope approach under both current and climate change scenarios. The URFs predict decreasing growth performance at low and middle elevations of the case study area, but increasing growth performance on high elevation sites. Our analysis suggests that population recommendations based on empirical approaches should be preferred and population selections by climate envelope models without considering climatic constrains of growth performance should be carefully appraised before transferring populations to planting locations with novel or dissimilar climate. PMID:26288363

  20. Post-cracking characteristics of high performance fiber reinforced cementitious composites

    NASA Astrophysics Data System (ADS)

    Suwannakarn, Supat W.

    The application of high performance fiber reinforced cement composites (HPFRCC) in structural systems depends primarily on the material's tensile response, which is a direct function of fiber and matrix characteristics, the bond between them, and the fiber content or volume fraction. The objective of this dissertation is to evaluate and model the post-cracking behavior of HPFRCC. In particular, it focused on the influential parameters controlling tensile behavior and the variability associated with them. The key parameters considered include: the stress and strain at first cracking, the stress and strain at maximum post-cracking, the shape of the stress-strain or stress-elongation response, the multiple cracking process, the shape of the resistance curve after crack localization, the energy associated with the multiple cracking process, and the stress versus crack opening response of a single crack. Both steel fibers and polymeric fibers, perceived to have the greatest potential for current commercial applications, are considered. The main variables covered include fiber type (Torex, Hooked, PVA, and Spectra) and fiber volume fraction (ranging from 0.75% to 2.0%). An extensive experimental program is carried out using direct tensile tests and stress-versus crack opening displacement tests on notched tensile prisms. The key experimental results were analysed and modeled using simple prediction equations which, combined with a composite mechanics approach, allowed for predicting schematic simplified stress-strain and stress-displacement response curves for use in structural modeling. The experimental data show that specimens reinforced with Torex fibers performs best, follows by Hooked and Spectra fibers, then PVA fibers. Significant variability in key parameters was observed througout suggesting that variability must be studied further. The new information obtained can be used as input for material models for finite element analysis and can provide greater confidence in using the HPFRC composites in structural applications. It also provides a good foundation to integrate these composites in conventional structural analysis and design.

  1. Natural variability of marine ecosystems inferred from a coupled climate to ecosystem simulation

    NASA Astrophysics Data System (ADS)

    Le Mézo, Priscilla; Lefort, Stelly; Séférian, Roland; Aumont, Olivier; Maury, Olivier; Murtugudde, Raghu; Bopp, Laurent

    2016-01-01

    This modeling study analyzes the simulated natural variability of pelagic ecosystems in the North Atlantic and North Pacific. Our model system includes a global Earth System Model (IPSL-CM5A-LR), the biogeochemical model PISCES and the ecosystem model APECOSM that simulates upper trophic level organisms using a size-based approach and three interactive pelagic communities (epipelagic, migratory and mesopelagic). Analyzing an idealized (e.g., no anthropogenic forcing) 300-yr long pre-industrial simulation, we find that low and high frequency variability is dominant for the large and small organisms, respectively. Our model shows that the size-range exhibiting the largest variability at a given frequency, defined as the resonant range, also depends on the community. At a given frequency, the resonant range of the epipelagic community includes larger organisms than that of the migratory community and similarly, the latter includes larger organisms than the resonant range of the mesopelagic community. This study shows that the simulated temporal variability of marine pelagic organisms' abundance is not only influenced by natural climate fluctuations but also by the structure of the pelagic community. As a consequence, the size- and community-dependent response of marine ecosystems to climate variability could impact the sustainability of fisheries in a warming world.

  2. Mechanisms of long-term mean sea level variability in the North Sea

    NASA Astrophysics Data System (ADS)

    Dangendorf, Sönke; Calafat, Francisco; Øie Nilsen, Jan Even; Richter, Kristin; Jensen, Jürgen

    2015-04-01

    We examine mean sea level (MSL) variations in the North Sea on timescales ranging from months to decades under the consideration of different forcing factors since the late 19th century. We use multiple linear regression models, which are validated for the second half of the 20th century against the output of a state-of-the-art tide+surge model (HAMSOM), to determine the barotropic response of the ocean to fluctuations in atmospheric forcing. We demonstrate that local atmospheric forcing mainly triggers MSL variability on timescales up to a few years, with the inverted barometric effect dominating the variability along the UK and Norwegian coastlines and wind (piling up the water along the coast) controlling the MSL variability in the south from Belgium up to Denmark. However, in addition to the large inter-annual sea level variability there is also a considerable fraction of decadal scale variability. We show that on decadal timescales MSL variability in the North Sea mainly reflects steric changes, which are mostly remotely forced. A spatial correlation analysis of altimetry observations and baroclinic ocean model outputs suggests evidence for a coherent signal extending from the Norwegian shelf down to the Canary Islands. This supports the theory of longshore wind forcing along the eastern boundary of the North Atlantic causing coastally trapped waves to propagate along the continental slope. With a combination of oceanographic and meteorological measurements we demonstrate that ~80% of the decadal sea level variability in the North Sea can be explained as response of the ocean to longshore wind forcing, including boundary wave propagation in the Northeast Atlantic. These findings have important implications for (i) detecting significant accelerations in North Sea MSL, (ii) the conceptual set up of regional ocean models in terms of resolution and boundary conditions, and (iii) the development of adequate and realistic regional climate change projections.

  3. COMPUTATIONAL METHODS FOR SENSITIVITY AND UNCERTAINTY ANALYSIS FOR ENVIRONMENTAL AND BIOLOGICAL MODELS

    EPA Science Inventory

    This work introduces a computationally efficient alternative method for uncertainty propagation, the Stochastic Response Surface Method (SRSM). The SRSM approximates uncertainties in model outputs through a series expansion in normal random variables (polynomial chaos expansion)...

  4. Sensitivity of global terrestrial ecosystems to climate variability.

    PubMed

    Seddon, Alistair W R; Macias-Fauria, Marc; Long, Peter R; Benz, David; Willis, Kathy J

    2016-03-10

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems--be they natural or with a strong anthropogenic signature--to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.

  5. Sensitivity of global terrestrial ecosystems to climate variability

    NASA Astrophysics Data System (ADS)

    Seddon, Alistair W. R.; Macias-Fauria, Marc; Long, Peter R.; Benz, David; Willis, Kathy J.

    2016-03-01

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems—be they natural or with a strong anthropogenic signature—to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.

  6. Societal response to nanotechnology: converging technologies-converging societal response research?

    NASA Astrophysics Data System (ADS)

    Ronteltap, Amber; Fischer, Arnout R. H.; Tobi, Hilde

    2011-10-01

    Nanotechnology is an emerging technology particularly vulnerable to societal unrest, which may hinder its further development. With the increasing convergence of several technological domains in the field of nanotechnology, so too could convergence of social science methods help to anticipate societal response. This paper systematically reviews the current state of convergence in societal response research by first sketching the predominant approaches to previous new technologies, followed by an analysis of current research into societal response to nanotechnology. A set of 107 papers on previous new technologies shows that rational actor models have played an important role in the study of societal response to technology, in particular in the field of information technology and the geographic region of Asia. Biotechnology and nuclear power have, in contrast, more often been investigated through risk perception and other affective determinants, particularly in Europe and the USA. A set of 42 papers on societal response to nanotechnology shows similarities to research in biotechnology, as it also builds on affective variables such as risk perception. Although there is a tendency to extend the rational models with affective variables, convergence in social science approaches to response to new technologies still has a long way to go. The challenge for researchers of societal response to technologies is to converge to some shared principles by taking up the best parts from the rational actor models dominant in information technology, whilst integrating non-rational constructs from biotechnology research. The introduction of nanotechnology gives a unique opportunity to do so.

  7. Wind Forced Variability in Eddy Formation, Eddy Shedding, and the Separation of the East Australian Current

    NASA Astrophysics Data System (ADS)

    Bull, Christopher Y. S.; Kiss, Andrew E.; Jourdain, Nicolas C.; England, Matthew H.; van Sebille, Erik

    2017-12-01

    The East Australian Current (EAC), like many other subtropical western boundary currents, is believed to be penetrating further poleward in recent decades. Previous observational and model studies have used steady state dynamics to relate changes in the westerly winds to changes in the separation behavior of the EAC. As yet, little work has been undertaken on the impact of forcing variability on the EAC and Tasman Sea circulation. Here using an eddy-permitting regional ocean model, we present a suite of simulations forced by the same time-mean fields, but with different atmospheric and remote ocean variability. These eddy-permitting results demonstrate the nonlinear response of the EAC to variable, nonstationary inhomogeneous forcing. These simulations show an EAC with high intrinsic variability and stochastic eddy shedding. We show that wind stress variability on time scales shorter than 56 days leads to increases in eddy shedding rates and southward eddy propagation, producing an increased transport and southward reach of the mean EAC extension. We adopt an energetics framework that shows the EAC extension changes to be coincident with an increase in offshore, upstream eddy variance (via increased barotropic instability) and increase in subsurface mean kinetic energy along the length of the EAC. The response of EAC separation to regional variable wind stress has important implications for both past and future climate change studies.

  8. Use of Continuous Monitors and Autosamplers to Predict Unmeasured Water-Quality Constituents in Tributaries of the Tualatin River, Oregon

    USGS Publications Warehouse

    Anderson, Chauncey W.; Rounds, Stewart A.

    2010-01-01

    Management of water quality in streams of the United States is becoming increasingly complex as regulators seek to control aquatic pollution and ecological problems through Total Maximum Daily Load programs that target reductions in the concentrations of certain constituents. Sediment, nutrients, and bacteria, for example, are constituents that regulators target for reduction nationally and in the Tualatin River basin, Oregon. These constituents require laboratory analysis of discrete samples for definitive determinations of concentrations in streams. Recent technological advances in the nearly continuous, in situ monitoring of related water-quality parameters has fostered the use of these parameters as surrogates for the labor intensive, laboratory-analyzed constituents. Although these correlative techniques have been successful in large rivers, it was unclear whether they could be applied successfully in tributaries of the Tualatin River, primarily because these streams tend to be small, have rapid hydrologic response to rainfall and high streamflow variability, and may contain unique sources of sediment, nutrients, and bacteria. This report evaluates the feasibility of developing correlative regression models for predicting dependent variables (concentrations of total suspended solids, total phosphorus, and Escherichia coli bacteria) in two Tualatin River basin streams: one draining highly urbanized land (Fanno Creek near Durham, Oregon) and one draining rural agricultural land (Dairy Creek at Highway 8 near Hillsboro, Oregon), during 2002-04. An important difference between these two streams is their response to storm runoff; Fanno Creek has a relatively rapid response due to extensive upstream impervious areas and Dairy Creek has a relatively slow response because of the large amount of undeveloped upstream land. Four other stream sites also were evaluated, but in less detail. Potential explanatory variables included continuously monitored streamflow (discharge), stream stage, specific conductance, turbidity, and time (to account for seasonal processes). Preliminary multiple-regression models were identified using stepwise regression and Mallow's Cp, which maximizes regression correlation coefficients and accounts for the loss of additional degrees of freedom when extra explanatory variables are used. Several data scenarios were created and evaluated for each site to assess the representativeness of existing monitoring data and autosampler-derived data, and to assess the utility of the available data to develop robust predictive models. The goodness-of-fit of candidate predictive models was assessed with diagnostic statistics from validation exercises that compared predictions against a subset of the available data. The regression modeling met with mixed success. Functional model forms that have a high likelihood of success were identified for most (but not all) dependent variables at each site, but there were limitations in the available datasets, notably the lack of samples from high-flows. These limitations increase the uncertainty in the predictions of the models and suggest that the models are not yet ready for use in assessing these streams, particularly under high-flow conditions, without additional data collection and recalibration of model coefficients. Nonetheless, the results reveal opportunities to use existing resources more efficiently. Baseline conditions are well represented in the available data, and, for the most part, the models reproduced these conditions well. Future sampling might therefore focus on high flow conditions, without much loss of ability to characterize the baseline. Seasonal cycles, as represented by trigonometric functions of time, were not significant in the evaluated models, perhaps because the baseline conditions are well characterized in the datasets or because the other explanatory variables indirectly incorporate seasonal aspects. Multicollinearity among independent variabl

  9. A potato model intercomparison across varying climates and productivity levels.

    PubMed

    Fleisher, David H; Condori, Bruno; Quiroz, Roberto; Alva, Ashok; Asseng, Senthold; Barreda, Carolina; Bindi, Marco; Boote, Kenneth J; Ferrise, Roberto; Franke, Angelinus C; Govindakrishnan, Panamanna M; Harahagazwe, Dieudonne; Hoogenboom, Gerrit; Naresh Kumar, Soora; Merante, Paolo; Nendel, Claas; Olesen, Jorgen E; Parker, Phillip S; Raes, Dirk; Raymundo, Rubi; Ruane, Alex C; Stockle, Claudio; Supit, Iwan; Vanuytrecht, Eline; Wolf, Joost; Woli, Prem

    2017-03-01

    A potato crop multimodel assessment was conducted to quantify variation among models and evaluate responses to climate change. Nine modeling groups simulated agronomic and climatic responses at low-input (Chinoli, Bolivia and Gisozi, Burundi)- and high-input (Jyndevad, Denmark and Washington, United States) management sites. Two calibration stages were explored, partial (P1), where experimental dry matter data were not provided, and full (P2). The median model ensemble response outperformed any single model in terms of replicating observed yield across all locations. Uncertainty in simulated yield decreased from 38% to 20% between P1 and P2. Model uncertainty increased with interannual variability, and predictions for all agronomic variables were significantly different from one model to another (P < 0.001). Uncertainty averaged 15% higher for low- vs. high-input sites, with larger differences observed for evapotranspiration (ET), nitrogen uptake, and water use efficiency as compared to dry matter. A minimum of five partial, or three full, calibrated models was required for an ensemble approach to keep variability below that of common field variation. Model variation was not influenced by change in carbon dioxide (C), but increased as much as 41% and 23% for yield and ET, respectively, as temperature (T) or rainfall (W) moved away from historical levels. Increases in T accounted for the highest amount of uncertainty, suggesting that methods and parameters for T sensitivity represent a considerable unknown among models. Using median model ensemble values, yield increased on average 6% per 100-ppm C, declined 4.6% per °C, and declined 2% for every 10% decrease in rainfall (for nonirrigated sites). Differences in predictions due to model representation of light utilization were significant (P < 0.01). These are the first reported results quantifying uncertainty for tuber/root crops and suggest modeling assessments of climate change impact on potato may be improved using an ensemble approach. © 2016 John Wiley & Sons Ltd.

  10. Systematic review of statistically-derived models of immunological response in HIV-infected adults on antiretroviral therapy in Sub-Saharan Africa.

    PubMed

    Sempa, Joseph B; Ujeneza, Eva L; Nieuwoudt, Martin

    2017-01-01

    In Sub-Saharan African (SSA) resource limited settings, Cluster of Differentiation 4 (CD4) counts continue to be used for clinical decision making in antiretroviral therapy (ART). Here, HIV-infected people often remain with CD4 counts <350 cells/μL even after 5 years of viral load suppression. Ongoing immunological monitoring is necessary. Due to varying statistical modeling methods comparing immune response to ART across different cohorts is difficult. We systematically review such models and detail the similarities, differences and problems. 'Preferred Reporting Items for Systematic Review and Meta-Analyses' guidelines were used. Only studies of immune-response after ART initiation from SSA in adults were included. Data was extracted from each study and tabulated. Outcomes were categorized into 3 groups: 'slope', 'survival', and 'asymptote' models. Wordclouds were drawn wherein the frequency of variables occurring in the reviewed models is indicated by their size and color. 69 covariates were identified in the final models of 35 studies. Effect sizes of covariates were not directly quantitatively comparable in view of the combination of differing variables and scale transformation methods across models. Wordclouds enabled the identification of qualitative and semi-quantitative covariate sets for each outcome category. Comparison across categories identified sex, baseline age, baseline log viral load, baseline CD4, ART initiation regimen and ART duration as a minimal consensus set. Most models were different with respect to covariates included, variable transformations and scales, model assumptions, modelling strategies and reporting methods, even for the same outcomes. To enable comparison across cohorts, statistical models would benefit from the application of more uniform modelling techniques. Historic efforts have produced results that are anecdotal to individual cohorts only. This study was able to define 'prior' knowledge in the Bayesian sense. Such information has value for prospective modelling efforts.

  11. Spectroscopic measurements of soybeans used to parameterize physiological traits in the AgroIBIS ecosystem model

    NASA Astrophysics Data System (ADS)

    Singh, A.; Serbin, S.; Kucharik, C. J.; Townsend, P. A.

    2014-12-01

    Ecosystem models such AgroIBIS require detailed parameterizations of numerous vegetation traits related to leaf structure, biochemistry and photosynthetic capacity to properly assess plant carbon assimilation and yield response to environmental variability. In general, these traits are estimated from a limited number of field measurements or sourced from the literature, but rarely is the full observed range of variability in these traits utilized in modeling activities. In addition, pathogens and pests, such as the exotic soybean aphid (Aphis glycines), which affects photosynthetic pathways in soybean plants by feeding on phloem and sap, can potentially impact plant productivity and yields. Capturing plant responses to pest pressure in conjunction with environmental variability is of considerable interest to managers and the scientific community alike. In this research, we employed full-range (400-2500 nm) field and laboratory spectroscopy to rapidly characterize the leaf biochemical and physiological traits, namely foliar nitrogen, specific leaf area (SLA) and the maximum rate of RuBP carboxylation by the enzyme RuBisCo (Vcmax) in soybean plants, which experienced a broad range of environmental conditions and soybean aphid pressures. We utilized near-surface spectroscopic remote sensing measurements as a means to capture the spatial and temporal patterns of aphid impacts across broad aphid pressure levels. In addition, we used the spectroscopic data to generate a much larger dataset of key model parameters required by AgroIBIS than would be possible through traditional measurements of biochemistry and leaf-level gas exchange. The use of spectroscopic retrievals of soybean traits allowed us to better characterize the variability of plant responses associated with aphid pressure to more accurately model the likely impacts of soybean aphid on soybeans. Our next steps include the coupling of the information derived from our spectral measurements with the AgroIBIS model to project the impacts of increasing aphid pressures on yields expected with continued global change and altered environmental conditions.

  12. Landscape-scale soil moisture heterogeneity and its influence on surface fluxes at the Jornada LTER site: Evaluating a new model parameterization for subgrid-scale soil moisture variability

    NASA Astrophysics Data System (ADS)

    Baker, I. T.; Prihodko, L.; Vivoni, E. R.; Denning, A. S.

    2017-12-01

    Arid and semiarid regions represent a large fraction of global land, with attendant importance of surface energy and trace gas flux to global totals. These regions are characterized by strong seasonality, especially in precipitation, that defines the level of ecosystem stress. Individual plants have been observed to respond non-linearly to increasing soil moisture stress, where plant function is generally maintained as soils dry down to a threshold at which rapid closure of stomates occurs. Incorporating this nonlinear mechanism into landscape-scale models can result in unrealistic binary "on-off" behavior that is especially problematic in arid landscapes. Subsequently, models have `relaxed' their simulation of soil moisture stress on evapotranspiration (ET). Unfortunately, these relaxations are not physically based, but are imposed upon model physics as a means to force a more realistic response. Previously, we have introduced a new method to represent soil moisture regulation of ET, whereby the landscape is partitioned into `BINS' of soil moisture wetness, each associated with a fractional area of the landscape or grid cell. A physically- and observationally-based nonlinear soil moisture stress function is applied, but when convolved with the relative area distribution represented by wetness BINS the system has the emergent property of `smoothing' the landscape-scale response without the need for non-physical impositions on model physics. In this research we confront BINS simulations of Bowen ratio, soil moisture variability and trace gas flux with soil moisture and eddy covariance observations taken at the Jornada LTER dryland site in southern New Mexico. We calculate the mean annual wetting cycle and associated variability about the mean state and evaluate model performance against this variability and time series of land surface fluxes from the highly instrumented Tromble Weir watershed. The BINS simulations capture the relatively rapid reaction to wetting events and more prolonged response to drying cycles, as opposed to binary behavior in the control.

  13. ENSO effects on stratospheric ozone: A nudged model perspective

    NASA Astrophysics Data System (ADS)

    Braesicke, Peter; Kirner, Oliver; Versick, Stefan; Joeckel, Patrick

    2015-04-01

    The El Niño/Southern Oscillation (ENSO) phenomenon is an important pacemaker for interannual variability in the Earth's atmosphere. ENSO impacts on ozone have been observed and modelled for the stratosphere and the troposphere. It is well recognized that attribution of ENSO variability is important for trend detection. ENSO impacts in low latitudes are easier to detect, because the response emerges close (temporally and spatially) to the forcing. Moving from low to high latitudes it becomes increasingly difficult to isolate ENSO driven variability, due to time-lags involved and many other modes of variability playing a role as well. Here, we use a nudged version of the EMAC chemistry-climate model to evaluate ENSO impacts on ozone over the last 35 years. In the nudged mode configuration EMAC is not entirely free running. The tropospheric meteorology is constrained using ERA-Interim data. Only the upper stratosphere and the composition (including ozone) are calculated without additional observational constraints. Using lagged correlations and supported by additional idealised modelling, we describe the ENSO impact on tropospheric and stratospheric ozone in the EMAC system. We trace the ENSO signal from the tropical lower troposphere to the polar lower and middle stratosphere. Instead of distinguishing tropospheric and stratospheric responses, we present a coherent approach detecting the ENSO signal as a function of altitude, latitude and time, and demonstrate how a concise characterisation of the ENSO impact aids improved trend detection.

  14. Taking the pulse of mountains: Ecosystem responses to climatic variability

    USGS Publications Warehouse

    Fagre, Daniel B.; Peterson, David L.; Hessl, Amy E.

    2003-01-01

    An integrated program of ecosystem modeling and field studies in the mountains of the Pacific Northwest (U.S.A.) has quantified many of the ecological processes affected by climatic variability. Paleoecological and contemporary ecological data in forest ecosystems provided model parameterization and validation at broad spatial and temporal scales for tree growth, tree regeneration and treeline movement. For subalpine tree species, winter precipitation has a strong negative correlation with growth; this relationship is stronger at higher elevations and west-side sites (which have more precipitation). Temperature affects tree growth at some locations with respect to length of growing season (spring) and severity of drought at drier sites (summer). Furthermore, variable but predictable climate-growth relationships across elevation gradients suggest that tree species respond differently to climate at different locations, making a uniform response of these species to future climatic change unlikely. Multi-decadal variability in climate also affects ecosystem processes. Mountain hemlock growth at high-elevation sites is negatively correlated with winter snow depth and positively correlated with the winter Pacific Decadal Oscillation (PDO) index. At low elevations, the reverse is true. Glacier mass balance and fire severity are also linked to PDO. Rapid establishment of trees in subalpine ecosystems during this century is increasing forest cover and reducing meadow cover at many subalpine locations in the western U.S.A. and precipitation (snow depth) is a critical variable regulating conifer expansion. Lastly, modeling potential future ecosystem conditions suggests that increased climatic variability will result in increasing forest fire size and frequency, and reduced net primary productivity in drier, east-side forest ecosystems. As additional empirical data and modeling output become available, we will improve our ability to predict the effects of climatic change across a broad range of climates and mountain ecosystems in the northwestern U.S.A.

  15. How does complex terrain influence responses of carbon and water cycle processes to climate variability and climate change? (Invited)

    NASA Astrophysics Data System (ADS)

    Bond, B. J.; Peterson, K.; McKane, R.; Lajtha, K.; Quandt, D. J.; Allen, S. T.; Sell, S.; Daly, C.; Harmon, M. E.; Johnson, S. L.; Spies, T.; Sollins, P.; Abdelnour, A. G.; Stieglitz, M.

    2010-12-01

    We are pursuing the ambitious goal of understanding how complex terrain influences the responses of carbon and water cycle processes to climate variability and climate change. Our studies take place in H.J. Andrews Experimental Forest, an LTER (Long Term Ecological Research) site situated in Oregon’s central-western Cascade Range. Decades of long-term measurements and intensive research have revealed influences of topography on vegetation patterns, disturbance history, and hydrology. More recent research has shown surprising interactions between microclimates and synoptic weather patterns due to cold air drainage and pooling in mountain valleys. Using these data and insights, in addition to a recent LiDAR (Light Detection and Ranging) reconnaissance and a small sensor network, we are employing process-based models, including “SPA” (Soil-Plant-Atmosphere, developed by Mathew Williams of the University of Edinburgh), and “VELMA” (Visualizing Ecosystems for Land Management Alternatives, developed by Marc Stieglitz and colleagues of the Georgia Institute of Technology) to focus on two important features of mountainous landscapes: heterogeneity (both spatial and temporal) and connectivity (atmosphere-canopy-hillslope-stream). Our research questions include: 1) Do fine-scale spatial and temporal heterogeneity result in emergent properties at the basin scale, and if so, what are they? 2) How does connectivity across ecosystem components affect system responses to climate variability and change? Initial results show that for environmental drivers that elicit non-linear ecosystem responses on the plot scale, such as solar radiation, soil depth and soil water content, fine-scale spatial heterogeneity may produce unexpected emergent properties at larger scales. The results from such modeling experiments are necessarily a function of the supporting algorithms. However, comparisons based on models such as SPA and VELMA that operate at much different spatial scales (plots vs. hillslopes) and levels of biophysical organization (individual plants vs. aggregate plant biomass) can help us to understand how and why mountainous ecosystems may have distinctive responses to climate variability and climate change.

  16. Estimation of Latent Group Effects: Psychometric Technical Report No. 2.

    ERIC Educational Resources Information Center

    Mislevy, Robert J.

    Conventional methods of multivariate normal analysis do not apply when the variables of interest are not observed directly, but must be inferred from fallible or incomplete data. For example, responses to mental test items may depend upon latent aptitude variables, which modeled in turn as functions of demographic effects in the population. A…

  17. Proactive Control Processes in Event-Based Prospective Memory: Evidence from Intraindividual Variability and Ex-Gaussian Analyses

    ERIC Educational Resources Information Center

    Ball, B. Hunter; Brewer, Gene A.

    2018-01-01

    The present study implemented an individual differences approach in conjunction with response time (RT) variability and distribution modeling techniques to better characterize the cognitive control dynamics underlying ongoing task cost (i.e., slowing) and cue detection in event-based prospective memory (PM). Three experiments assessed the relation…

  18. The Effects of Climate Variability on Phytoplankton Composition in the Equatorial Pacific Ocean using a Model and a Satellite-Derived Approach

    NASA Technical Reports Server (NTRS)

    Rousseaux, C. S.; Gregg, W. W.

    2012-01-01

    Compared the interannual variation in diatoms, cyanobacteria, coccolithophores and chlorophytes from the NASA Ocean Biogeochemical Model with those derived from satellite data (Hirata et al. 2011) between 1998 and 2006 in the Equatorial Pacific. Using NOBM, La Ni a events were characterized by an increase in diatoms (correlation with MEI, r=-0.81, P<0.05), while cyanobacteria concentrations decreased significantly (r=0.61; P<0.05). El Nino produced the reverse pattern, with cyanobacteria populations increasing while diatoms plummeted. This represented a radical shift in the phytoplankton community in response to climate variability. However, satellite-derived phytoplankton groups were all negatively correlated with climate variability (r ranged from -0.39 for diatoms to -0.64 for coccolithophores, P<0.05). Spatially, the satellite-derived approach was closer to an independent in situ dataset for all phytoplankton groups except diatoms than NOBM. However, the different responses of phytoplankton to intense interannual events in the Equatorial Pacific raises questions about the representation of phytoplankton dynamics in models and algorithms: is a phytoplankton community shift as in the model or an across-the-board change in abundances of all phytoplankton as in the satellite-derived approach.

  19. Neurocognitive functioning as an intermediary variable between psychopathology and insight in schizophrenia.

    PubMed

    Hwang, Samuel Suk-Hyun; Ahn, Yong Min; Kim, Yong Sik

    2015-12-30

    Based on the neuropsychological deficit model of insight in schizophrenia, we constructed exploratory prediction models for insight, designating neurocognitive measures as the intermediary variables between psychopathology and insight into patients with schizophrenia. The models included the positive, negative, and autistic preoccupation symptoms as primary predictors, and activation symptoms as an intermediary variable for insight. Fifty-six Korean patients, in the acute stage of schizophrenia, completed the Positive and Negative Syndrome Scale, as well as a comprehensive neurocognitive battery of tests at the baseline, 8-weeks, and 1-year follow-ups. Among the neurocognitive measures, the Korean Wechsler Adult Intelligence Scale (K-WAIS) picture arrangement, Controlled Oral Word Association Test (COWAT) perseverative response, and the Continuous Performance Test (CPT) standard error of reaction time showed significant correlations with the symptoms and the insight. When these measures were fitted into the model as intermediaries between the symptoms and the insight, only the perseverative response was found to have a partial mediating effect - both cross-sectionally, and in the 8-week longitudinal change. Overall, the relationship between insight and neurocognitive functioning measures was found to be selective and weak. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. A Short Note on Estimating the Testlet Model with Different Estimators in Mplus

    ERIC Educational Resources Information Center

    Luo, Yong

    2018-01-01

    Mplus is a powerful latent variable modeling software program that has become an increasingly popular choice for fitting complex item response theory models. In this short note, we demonstrate that the two-parameter logistic testlet model can be estimated as a constrained bifactor model in Mplus with three estimators encompassing limited- and…

  1. Metamodeling and mapping of nitrate flux in the unsaturated zone and groundwater, Wisconsin, USA

    USGS Publications Warehouse

    Nolan, Bernard T.; Green, Christopher T.; Juckem, Paul F.; Liao, Lixia; Reddy, James E.

    2018-01-01

    Nitrate contamination of groundwater in agricultural areas poses a major challenge to the sustainability of water resources. Aquifer vulnerability models are useful tools that can help resource managers identify areas of concern, but quantifying nitrogen (N) inputs in such models is challenging, especially at large spatial scales. We sought to improve regional nitrate (NO3−) input functions by characterizing unsaturated zone NO3− transport to groundwater through use of surrogate, machine-learning metamodels of a process-based N flux model. The metamodels used boosted regression trees (BRTs) to relate mappable landscape variables to parameters and outputs of a previous “vertical flux method” (VFM) applied at sampled wells in the Fox, Wolf, and Peshtigo (FWP) river basins in northeastern Wisconsin. In this context, the metamodels upscaled the VFM results throughout the region, and the VFM parameters and outputs are the metamodel response variables. The study area encompassed the domain of a detailed numerical model that provided additional predictor variables, including groundwater recharge, to the metamodels. We used a statistical learning framework to test a range of model complexities to identify suitable hyperparameters of the six BRT metamodels corresponding to each response variable of interest: NO3− source concentration factor (which determines the local NO3− input concentration); unsaturated zone travel time; NO3− concentration at the water table in 1980, 2000, and 2020 (three separate metamodels); and NO3− “extinction depth”, the eventual steady state depth of the NO3−front. The final metamodels were trained to 129 wells within the active numerical flow model area, and considered 58 mappable predictor variables compiled in a geographic information system (GIS). These metamodels had training and cross-validation testing R2 values of 0.52 – 0.86 and 0.22 – 0.38, respectively, and predictions were compiled as maps of the above response variables. Testing performance was reasonable, considering that we limited the metamodel predictor variables to mappable factors as opposed to using all available VFM input variables. Relationships between metamodel predictor variables and mapped outputs were generally consistent with expectations, e.g. with greater source concentrations and NO3− at the groundwater table in areas of intensive crop use and well drained soils. Shorter unsaturated zone travel times in poorly drained areas likely indicated preferential flow through clay soils, and a tendency for fine grained deposits to collocate with areas of shallower water table. Numerical estimates of groundwater recharge were important in the metamodels and may have been a proxy for N input and redox conditions in the northern FWP, which had shallow predicted NO3− extinction depth. The metamodel results provide proof-of-concept for regional characterization of unsaturated zone NO3− transport processes in a statistical framework based on readily mappable GIS input variables.

  2. Application of Response Surface Methodology (RSM) for wastewater of hospital by using electrocoagulation

    NASA Astrophysics Data System (ADS)

    Murdani; Jakfar; Ekawati, D.; Nadira, R.; Darmadi

    2018-04-01

    Hospital wastewater is a source of potential environmental contamination. Therefore, the waste water needs to be treated before it is discharged into the landfill. Various research methods have been used to treat hospital wastewater. However, some methods that have been implemented have not achieved the effluent standards for hospitals that have been set by the government. The experiment was conducted by an electrochemical method is electrolysis using aluminum electrodes with independent variable is the voltage, contact time and concentration of electrolytes. The response optimization using response surface with optimum conditions obtained by the contact time of 34.26 min, voltage 12 V, concentration electrolyte 0.38 M can decrease of COD 65.039%. The model recommended by the response surface for the three variables, namely quadratic response.

  3. Model-Free Conditional Independence Feature Screening For Ultrahigh Dimensional Data.

    PubMed

    Wang, Luheng; Liu, Jingyuan; Li, Yong; Li, Runze

    2017-03-01

    Feature screening plays an important role in ultrahigh dimensional data analysis. This paper is concerned with conditional feature screening when one is interested in detecting the association between the response and ultrahigh dimensional predictors (e.g., genetic makers) given a low-dimensional exposure variable (such as clinical variables or environmental variables). To this end, we first propose a new index to measure conditional independence, and further develop a conditional screening procedure based on the newly proposed index. We systematically study the theoretical property of the proposed procedure and establish the sure screening and ranking consistency properties under some very mild conditions. The newly proposed screening procedure enjoys some appealing properties. (a) It is model-free in that its implementation does not require a specification on the model structure; (b) it is robust to heavy-tailed distributions or outliers in both directions of response and predictors; and (c) it can deal with both feature screening and the conditional screening in a unified way. We study the finite sample performance of the proposed procedure by Monte Carlo simulations and further illustrate the proposed method through two real data examples.

  4. A Hierarchical Analysis of Tree Growth and Environmental Drivers Across Eastern US Temperate Forests

    NASA Astrophysics Data System (ADS)

    Mantooth, J.; Dietze, M.

    2014-12-01

    Improving predictions of how forests in the eastern United States will respond to future global change requires a better understanding of the drivers of variability in tree growth rates. Current inventory data lack the temporal resolution to characterize interannual variability, while existing growth records lack the extent required to assess spatial scales of variability. Therefore, we established a network of forest inventory plots across ten sites across the eastern US, and measured growth in adult trees using increment cores. Sites were chosen to maximize climate space explored, while within sites, plots were spread across primary environmental gradients to explore landscape-level variability in growth. Using the annual growth record available from tree cores, we explored the responses of trees to multiple environmental covariates over multiple spatial and temporal scales. We hypothesized that within and across sites growth rates vary among species, and that intraspecific growth rates increase with temperature along a species' range. We also hypothesized that trees show synchrony in growth responses to landscape-scale climatic changes. Initial analyses of growth increments indicate that across sites, trees with intermediate shade tolerance, e.g. Red Oak (Quercus rubra), tend to have the highest growth rates. At the site level, there is evidence for synchrony in response to large-scale climatic events (e.g. prolonged drought and above average temperatures). However, growth responses to climate at the landscape scale have yet to be detected. Our current analysis utilizes hierarchical Bayesian state-space modeling to focus on growth responses of adult trees to environmental covariates at multiple spatial and temporal scales. This predictive model of tree growth currently incorporates observed effects at the individual, plot, site, and landscape scale. Current analysis using this model shows a potential slowing of growth in the past decade for two sites in the northeastern US (Harvard Forest and Bartlett Experimental Forest), however more work is required to determine the robustness of this trend. Finally, these observations are being incorporated into ecosystem models using the Brown Dog informatics tools and the Predictive Ecosystem Analyzer (PEcAn) data assimilation workflow.

  5. Lawsuit lead time prediction: Comparison of data mining techniques based on categorical response variable.

    PubMed

    Gruginskie, Lúcia Adriana Dos Santos; Vaccaro, Guilherme Luís Roehe

    2018-01-01

    The quality of the judicial system of a country can be verified by the overall length time of lawsuits, or the lead time. When the lead time is excessive, a country's economy can be affected, leading to the adoption of measures such as the creation of the Saturn Center in Europe. Although there are performance indicators to measure the lead time of lawsuits, the analysis and the fit of prediction models are still underdeveloped themes in the literature. To contribute to this subject, this article compares different prediction models according to their accuracy, sensitivity, specificity, precision, and F1 measure. The database used was from TRF4-the Tribunal Regional Federal da 4a Região-a federal court in southern Brazil, corresponding to the 2nd Instance civil lawsuits completed in 2016. The models were fitted using support vector machine, naive Bayes, random forests, and neural network approaches with categorical predictor variables. The lead time of the 2nd Instance judgment was selected as the response variable measured in days and categorized in bands. The comparison among the models showed that the support vector machine and random forest approaches produced measurements that were superior to those of the other models. The evaluation of the models was made using k-fold cross-validation similar to that applied to the test models.

  6. Analysis of Salmonella sp bacterial contamination on Vannamei Shrimp using binary logit model approach

    NASA Astrophysics Data System (ADS)

    Oktaviana, P. P.; Fithriasari, K.

    2018-04-01

    Mostly Indonesian citizen consume vannamei shrimp as their food. Vannamei shrimp also is one of Indonesian exports comodities mainstay. Vannamei shrimp in the ponds and markets could be contaminated by Salmonella sp bacteria. This bacteria will endanger human health. Salmonella sp bacterial contamination on vannamei shrimp could be affected by many factors. This study is intended to identify what factors that supposedly influence the Salmonella sp bacterial contamination on vannamei shrimp. The researchers used the testing result of Salmonella sp bacterial contamination on vannamei shrimp as response variable. This response variable has two categories: 0 = if testing result indicate that there is no Salmonella sp on vannamei shrimp; 1 = if testing result indicate that there is Salmonella sp on vannamei shrimp. There are four factors that supposedly influence the Salmonella sp bacterial contamination on vannamei shrimp, which are the testing result of Salmonella sp bacterial contamination on farmer hand swab; the subdistrict of vannamei shrimp ponds; the fish processing unit supplied by; and the pond are in hectare. This four factors used as predictor variables. The analysis used is Binary Logit Model Approach according to the response variable that has two categories. The analysis result indicates that the factors or predictor variables which is significantly affect the Salmonella sp bacterial contamination on vannamei shrimp are the testing result of Salmonella sp bacterial contamination on farmer hand swab and the subdistrict of vannamei shrimp ponds.

  7. Fitting and Testing Conditional Multinormal Partial Credit Models

    ERIC Educational Resources Information Center

    Hessen, David J.

    2012-01-01

    A multinormal partial credit model for factor analysis of polytomously scored items with ordered response categories is derived using an extension of the Dutch Identity (Holland in "Psychometrika" 55:5-18, 1990). In the model, latent variables are assumed to have a multivariate normal distribution conditional on unweighted sums of item…

  8. Spurious Latent Classes in the Mixture Rasch Model

    ERIC Educational Resources Information Center

    Alexeev, Natalia; Templin, Jonathan; Cohen, Allan S.

    2011-01-01

    Mixture Rasch models have been used to study a number of psychometric issues such as goodness of fit, response strategy differences, strategy shifts, and multidimensionality. Although these models offer the potential for improving understanding of the latent variables being measured, under some conditions overextraction of latent classes may…

  9. The Influence of Sexual Identity on Higher Education Outcomes

    ERIC Educational Resources Information Center

    Sorgen, Carl H., IV.

    2011-01-01

    This research empirically explores how sexual identity influences higher education outcomes for lesbian, gay, bisexual, and queer (LGBQ) college students. A path model was constructed with structural equation modeling using responses from 1,125 non-heterosexual college students. The model includes four psychological variables (level of sexual…

  10. Spatio-temporal dynamics of ocean conditions and forage taxa reveal regional structuring of seabird–prey relationships.

    PubMed

    Santora, Jarrod A; Schroeder, Isaac D; Field, John C; Wells, Brian K; Sydeman, William J

    Studies of predator–prey demographic responses and the physical drivers of such relationships are rare, yet essential for predicting future changes in the structure and dynamics of marine ecosystems. Here, we hypothesize that predator–prey relationships vary spatially in association with underlying physical ocean conditions, leading to observable changes in demographic rates, such as reproduction. To test this hypothesis, we quantified spatio-temporal variability in hydrographic conditions, krill, and forage fish to model predator (seabird) demographic responses over 18 years (1990–2007). We used principal component analysis and spatial correlation maps to assess coherence among ocean conditions, krill, and forage fish, and generalized additive models to quantify interannual variability in seabird breeding success relative to prey abundance. The first principal component of four hydrographic measurements yielded an index that partitioned “warm/weak upwelling” and “cool/strong upwelling” years. Partitioning of krill and forage fish time series among shelf and oceanic regions yielded spatially explicit indicators of prey availability. Krill abundance within the oceanic region was remarkably consistent between years, whereas krill over the shelf showed marked interannual fluctuations in relation to ocean conditions. Anchovy abundance varied on the shelf, and was greater in years of strong stratification, weak upwelling and warmer temperatures. Spatio-temporal variability of juvenile forage fish co-varied strongly with each other and with krill, but was weakly correlated with hydrographic conditions. Demographic responses between seabirds and prey availability revealed spatially variable associations indicative of the dynamic nature of “predator–habitat” relationships. Quantification of spatially explicit demographic responses, and their variability through time, demonstrate the possibility of delineating specific critical areas where the implementation of protective measures could maintain functions and productivity of central place foraging predators.

  11. Probabilistic prediction of barrier-island response to hurricanes

    USGS Publications Warehouse

    Plant, Nathaniel G.; Stockdon, Hilary F.

    2012-01-01

    Prediction of barrier-island response to hurricane attack is important for assessing the vulnerability of communities, infrastructure, habitat, and recreational assets to the impacts of storm surge, waves, and erosion. We have demonstrated that a conceptual model intended to make qualitative predictions of the type of beach response to storms (e.g., beach erosion, dune erosion, dune overwash, inundation) can be reformulated in a Bayesian network to make quantitative predictions of the morphologic response. In an application of this approach at Santa Rosa Island, FL, predicted dune-crest elevation changes in response to Hurricane Ivan explained about 20% to 30% of the observed variance. An extended Bayesian network based on the original conceptual model, which included dune elevations, storm surge, and swash, but with the addition of beach and dune widths as input variables, showed improved skill compared to the original model, explaining 70% of dune elevation change variance and about 60% of dune and shoreline position change variance. This probabilistic approach accurately represented prediction uncertainty (measured with the log likelihood ratio), and it outperformed the baseline prediction (i.e., the prior distribution based on the observations). Finally, sensitivity studies demonstrated that degrading the resolution of the Bayesian network or removing data from the calibration process reduced the skill of the predictions by 30% to 40%. The reduction in skill did not change conclusions regarding the relative importance of the input variables, and the extended model's skill always outperformed the original model.

  12. High Resolution Flash Flood Forecasting Using a Wireless Sensor Network in the Dallas-Fort Worth Metroplex

    NASA Astrophysics Data System (ADS)

    Bartos, M. D.; Kerkez, B.; Noh, S.; Seo, D. J.

    2017-12-01

    In this study, we develop and evaluate a high resolution urban flash flood monitoring system using a wireless sensor network (WSN), a real-time rainfall-runoff model, and spatially-explicit radar rainfall predictions. Flooding is the leading cause of natural disaster fatalities in the US, with flash flooding in particular responsible for a majority of flooding deaths. While many riverine flood models have been operationalized into early warning systems, there is currently no model that is capable of reliably predicting flash floods in urban areas. Urban flash floods are particularly difficult to model due to a lack of rainfall and runoff data at appropriate scales. To address this problem, we develop a wide-area flood-monitoring wireless sensor network for the Dallas-Fort Worth metroplex, and use this network to characterize rainfall-runoff response over multiple heterogeneous catchments. First, we deploy a network of 22 wireless sensor nodes to collect real-time stream stage measurements over catchments ranging from 2-80 km2 in size. Next, we characterize the rainfall-runoff response of each catchment by combining stream stage data with gage and radar-based precipitation measurements. Finally, we demonstrate the potential for real-time flash flood prediction by joining the derived rainfall-runoff models with real-time radar rainfall predictions. We find that runoff response is highly heterogeneous among catchments, with large variabilities in runoff response detected even among nearby gages. However, when spatially-explicit rainfall fields are included, spatial variability in runoff response is largely captured. This result highlights the importance of increased spatial coverage for flash flood prediction.

  13. Reconciling the Observed and Modeled Southern Hemisphere Circulation Response to Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    McGraw, M. C.; Barnes, E. A.; Deser, C.

    2016-12-01

    Confusion exists regarding the tropospheric circulation response to volcanic eruptions, with models and observations seeming to disagree on the sign of the response. The forced Southern Hemisphere circulation response to the eruptions of Pinatubo and El Chichon is shown to be a robust positive annular mode, using over 200 ensemble members from 38 climate models. It is demonstrated that the models and observations are not at odds, but rather, internal climate variability is large and can overwhelm the forced response. It is further argued that the state of ENSO can at least partially explain the sign of the observed anomalies, and may account for the perceived discrepancy between model and observational studies. The eruptions of both El Chichon and Pinatubo occurred during El Nino events, and it is demonstrated that the SAM anomalies following volcanic eruptions are weaker during El Nino events compared to La Nina events.

  14. Climate variability and human impact in South America during the last 2000 years: synthesis and perspectives from pollen records

    NASA Astrophysics Data System (ADS)

    Flantua, S. G. A.; Hooghiemstra, H.; Vuille, M.; Behling, H.; Carson, J. F.; Gosling, W. D.; Hoyos, I.; Ledru, M. P.; Montoya, E.; Mayle, F.; Maldonado, A.; Rull, V.; Tonello, M. S.; Whitney, B. S.; González-Arango, C.

    2016-02-01

    An improved understanding of present-day climate variability and change relies on high-quality data sets from the past 2 millennia. Global efforts to model regional climate modes are in the process of being validated against, and integrated with, records of past vegetation change. For South America, however, the full potential of vegetation records for evaluating and improving climate models has hitherto not been sufficiently acknowledged due to an absence of information on the spatial and temporal coverage of study sites. This paper therefore serves as a guide to high-quality pollen records that capture environmental variability during the last 2 millennia. We identify 60 vegetation (pollen) records from across South America which satisfy geochronological requirements set out for climate modelling, and we discuss their sensitivity to the spatial signature of climate modes throughout the continent. Diverse patterns of vegetation response to climate change are observed, with more similar patterns of change in the lowlands and varying intensity and direction of responses in the highlands. Pollen records display local-scale responses to climate modes; thus, it is necessary to understand how vegetation-climate interactions might diverge under variable settings. We provide a qualitative translation from pollen metrics to climate variables. Additionally, pollen is an excellent indicator of human impact through time. We discuss evidence for human land use in pollen records and provide an overview considered useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change. We stress the need for the palynological community to be more familiar with climate variability patterns to correctly attribute the potential causes of observed vegetation dynamics. This manuscript forms part of the wider LOng-Term multi-proxy climate REconstructions and Dynamics in South America - 2k initiative that provides the ideal framework for the integration of the various palaeoclimatic subdisciplines and palaeo-science, thereby jump-starting and fostering multidisciplinary research into environmental change on centennial and millennial timescales.

  15. Investigating the sources of variability in the dynamic response of built-up structures through a linear analytical model

    NASA Astrophysics Data System (ADS)

    Abolfathi, Ali; O'Boy, Dan J.; Walsh, Stephen J.; Fisher, Stephen A.

    2017-01-01

    It is well established that the dynamic response of a number of nominally identical built-up structures are often different and the variability increases with increasing complexity of the structure. Furthermore, the effects of the different parameters, for example the variation in joint locations or the range of the Young's modulus, on the dynamic response of the system are not the same. In this paper, the effects of different material and geometric parameters on the variability of a vibration transfer function are compared using an analytical model of a simple linear built-up structure that consist of two plates connected by a single mount. Similar results can be obtained if multiple mounts are used. The scope of this paper is limited to a low and medium frequency range where usually deterministic models are used for vibrational analysis. The effect of the mount position and also the global variation in the properties of the plate, such as modulus of elasticity or thickness, is higher on the variability of vibration transfer function than the effect of the mount properties. It is shown that the vibration transfer function between the plates is independent of the mount property if a stiff enough mount with a small mass is implemented. For a soft mount, there is a direct relationship between the mount impedance and the variation in the vibration transfer function. Furthermore, there are a range of mount stiffnesses between these two extreme cases at which the vibration transfer function is more sensitive to changes in the stiffness of the mount than when compared to a soft mount. It is found that the effect of variation in the mount damping and the mount mass on the variability is negligible. Similarly, the effect of the plate damping on the variability is not significant.

  16. Where’s the Noise? Key Features of Spontaneous Activity and Neural Variability Arise through Learning in a Deterministic Network

    PubMed Central

    Hartmann, Christoph; Lazar, Andreea; Nessler, Bernhard; Triesch, Jochen

    2015-01-01

    Even in the absence of sensory stimulation the brain is spontaneously active. This background “noise” seems to be the dominant cause of the notoriously high trial-to-trial variability of neural recordings. Recent experimental observations have extended our knowledge of trial-to-trial variability and spontaneous activity in several directions: 1. Trial-to-trial variability systematically decreases following the onset of a sensory stimulus or the start of a motor act. 2. Spontaneous activity states in sensory cortex outline the region of evoked sensory responses. 3. Across development, spontaneous activity aligns itself with typical evoked activity patterns. 4. The spontaneous brain activity prior to the presentation of an ambiguous stimulus predicts how the stimulus will be interpreted. At present it is unclear how these observations relate to each other and how they arise in cortical circuits. Here we demonstrate that all of these phenomena can be accounted for by a deterministic self-organizing recurrent neural network model (SORN), which learns a predictive model of its sensory environment. The SORN comprises recurrently coupled populations of excitatory and inhibitory threshold units and learns via a combination of spike-timing dependent plasticity (STDP) and homeostatic plasticity mechanisms. Similar to balanced network architectures, units in the network show irregular activity and variable responses to inputs. Additionally, however, the SORN exhibits sequence learning abilities matching recent findings from visual cortex and the network’s spontaneous activity reproduces the experimental findings mentioned above. Intriguingly, the network’s behaviour is reminiscent of sampling-based probabilistic inference, suggesting that correlates of sampling-based inference can develop from the interaction of STDP and homeostasis in deterministic networks. We conclude that key observations on spontaneous brain activity and the variability of neural responses can be accounted for by a simple deterministic recurrent neural network which learns a predictive model of its sensory environment via a combination of generic neural plasticity mechanisms. PMID:26714277

  17. Assessing Extratropical Influence on Tropical Climatology and Variability with Regional Coupled Data Assimilation

    NASA Astrophysics Data System (ADS)

    Lu, F.; Liu, Z.; Liu, Y.; Zhang, S.; Jacob, R. L.

    2017-12-01

    The Regional Coupled Data Assimilation (RCDA) method is introduced as a tool to study coupled climate dynamics and teleconnections. The RCDA method is built on an ensemble-based coupled data assimilation (CDA) system in a coupled general circulation model (CGCM). The RCDA method limits the data assimilation to the desired model components (e.g. atmosphere) and regions (e.g. the extratropics), and studies the ensemble-mean model response (e.g. tropical response to "observed" extratropical atmospheric variability). When applied to the extratropical influence on tropical climate, the RCDA method has shown some unique advantages, namely the combination of a fully coupled model, real-world observations and an ensemble approach. Tropical variability (e.g. El Niño-Southern Oscillation or ENSO) and climatology (e.g. asymmetric Inter-Tropical Convergence Zone or ITCZ) were initially thought to be determined mostly by local forcing and ocean-atmosphere interaction in the tropics. Since late 20th century, numerous studies have showed that extratropical forcing could affect, or even largely determine some aspects of the tropical climate. Due to the coupled nature of the climate system, however, the challenge of determining and further quantifying the causality of extratropical forcing on the tropical climate remains. Using the RCDA method, we have demonstrated significant control of extratropical atmospheric forcing on ENSO variability in a CGCM, both with model-generated and real-world observation datasets. The RCDA method has also shown robust extratropical impact on the tropical double-ITCZ bias in a CGCM. The RCDA method has provided the first systematic and quantitative assessment of extratropical influence on tropical climatology and variability by incorporating real world observations in a CGCM.

  18. Incorporating imperfect detection into joint models of communites: A response to Warton et al.

    USGS Publications Warehouse

    Beissinger, Steven R.; Iknayan, Kelly J.; Guillera-Arroita, Gurutzeta; Zipkin, Elise; Dorazio, Robert; Royle, Andy; Kery, Marc

    2016-01-01

    Warton et al. [1] advance community ecology by describing a statistical framework that can jointly model abundances (or distributions) across many taxa to quantify how community properties respond to environmental variables. This framework specifies the effects of both measured and unmeasured (latent) variables on the abundance (or occurrence) of each species. Latent variables are random effects that capture the effects of both missing environmental predictors and correlations in parameter values among different species. As presented in Warton et al., however, the joint modeling framework fails to account for the common problem of detection or measurement errors that always accompany field sampling of abundance or occupancy, and are well known to obscure species- and community-level inferences.

  19. Application of Linear Mixed-Effects Models in Human Neuroscience Research: A Comparison with Pearson Correlation in Two Auditory Electrophysiology Studies.

    PubMed

    Koerner, Tess K; Zhang, Yang

    2017-02-27

    Neurophysiological studies are often designed to examine relationships between measures from different testing conditions, time points, or analysis techniques within the same group of participants. Appropriate statistical techniques that can take into account repeated measures and multivariate predictor variables are integral and essential to successful data analysis and interpretation. This work implements and compares conventional Pearson correlations and linear mixed-effects (LME) regression models using data from two recently published auditory electrophysiology studies. For the specific research questions in both studies, the Pearson correlation test is inappropriate for determining strengths between the behavioral responses for speech-in-noise recognition and the multiple neurophysiological measures as the neural responses across listening conditions were simply treated as independent measures. In contrast, the LME models allow a systematic approach to incorporate both fixed-effect and random-effect terms to deal with the categorical grouping factor of listening conditions, between-subject baseline differences in the multiple measures, and the correlational structure among the predictor variables. Together, the comparative data demonstrate the advantages as well as the necessity to apply mixed-effects models to properly account for the built-in relationships among the multiple predictor variables, which has important implications for proper statistical modeling and interpretation of human behavior in terms of neural correlates and biomarkers.

  20. Independent contrasts and PGLS regression estimators are equivalent.

    PubMed

    Blomberg, Simon P; Lefevre, James G; Wells, Jessie A; Waterhouse, Mary

    2012-05-01

    We prove that the slope parameter of the ordinary least squares regression of phylogenetically independent contrasts (PICs) conducted through the origin is identical to the slope parameter of the method of generalized least squares (GLSs) regression under a Brownian motion model of evolution. This equivalence has several implications: 1. Understanding the structure of the linear model for GLS regression provides insight into when and why phylogeny is important in comparative studies. 2. The limitations of the PIC regression analysis are the same as the limitations of the GLS model. In particular, phylogenetic covariance applies only to the response variable in the regression and the explanatory variable should be regarded as fixed. Calculation of PICs for explanatory variables should be treated as a mathematical idiosyncrasy of the PIC regression algorithm. 3. Since the GLS estimator is the best linear unbiased estimator (BLUE), the slope parameter estimated using PICs is also BLUE. 4. If the slope is estimated using different branch lengths for the explanatory and response variables in the PIC algorithm, the estimator is no longer the BLUE, so this is not recommended. Finally, we discuss whether or not and how to accommodate phylogenetic covariance in regression analyses, particularly in relation to the problem of phylogenetic uncertainty. This discussion is from both frequentist and Bayesian perspectives.

Top