NASA Technical Reports Server (NTRS)
Weller, T.
1977-01-01
The applicability and adequacy of several computer techniques in predicting satisfactorily the nonlinear/inelastic response of angle ply laminates were evaluated. The analytical predictions were correlated with the results of a test program on the inelastic response under axial compression of a large variety of graphite-epoxy and boron-epoxy angle ply laminates. These comparison studies indicate that neither of the abovementioned analyses can satisfactorily predict either the mode of response or the ultimate stress value corresponding to a particular angle ply laminate configuration. Consequently, also the simple failure mechanisms assumed in the analytical models were not verified.
1983-03-01
120] hypothesized a linear summation model to predict the corrosion -fatigue behavior above Kjscc for a high-strength steel . The model considers the...120] could satisfactorily predict the rates of corrosion -fatigue-crack growth for 18-Ni Maraging steels tested in several gaseous and aqueous...NADC-83126-60 Vol. II 6. The corrosion fatigue behavior of titanium alloys is very complex. Therefore, a better understanding of corrosion fatigue
Model of the non-linear stress-strain behavior of a 2D-SiC/SiC ceramic matrix composite (CMC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillaumat, L; Lamon, J.
The non-linear stress-strain behaviour of a 2D-SiC/SiC composite reinforced with fabrics of fiber bundles was predicted from properties of major constituents. A finite element analysis was employed for stress computation. The different steps of matrix damage identified experimentally were duplicated in the mesh. Predictions compared satisfactorily with experimental data.
Numerical modeling of rapidly varying flows using HEC-RAS and WSPG models.
Rao, Prasada; Hromadka, Theodore V
2016-01-01
The performance of two popular hydraulic models (HEC-RAS and WSPG) for modeling hydraulic jump in an open channel is investigated. The numerical solutions are compared with a new experimental data set obtained for varying channel bottom slopes and flow rates. Both the models satisfactorily predict the flow depths and location of the jump. The end results indicate that the numerical models output is sensitive to the value of chosen roughness coefficient. For this application, WSPG model is easier to implement with few input variables.
Stochastic model to forecast ground-level ozone concentration at urban and rural areas.
Dueñas, C; Fernández, M C; Cañete, S; Carretero, J; Liger, E
2005-12-01
Stochastic models that estimate the ground-level ozone concentrations in air at an urban and rural sampling points in South-eastern Spain have been developed. Studies of temporal series of data, spectral analyses of temporal series and ARIMA models have been used. The ARIMA model (1,0,0) x (1,0,1)24 satisfactorily predicts hourly ozone concentrations in the urban area. The ARIMA (2,1,1) x (0,1,1)24 has been developed for the rural area. In both sampling points, predictions of hourly ozone concentrations agree reasonably well with measured values. However, the prediction of hourly ozone concentrations in the rural point appears to be better than that of the urban point. The performance of ARIMA models suggests that this kind of modelling can be suitable for ozone concentrations forecasting.
Modelling and prediction for chaotic fir laser attractor using rational function neural network.
Cho, S
2001-02-01
Many real-world systems such as irregular ECG signal, volatility of currency exchange rate and heated fluid reaction exhibit highly complex nonlinear characteristic known as chaos. These chaotic systems cannot be retreated satisfactorily using linear system theory due to its high dimensionality and irregularity. This research focuses on prediction and modelling of chaotic FIR (Far InfraRed) laser system for which the underlying equations are not given. This paper proposed a method for prediction and modelling a chaotic FIR laser time series using rational function neural network. Three network architectures, TDNN (Time Delayed Neural Network), RBF (radial basis function) network and the RF (rational function) network, are also presented. Comparisons between these networks performance show the improvements introduced by the RF network in terms of a decrement in network complexity and better ability of predictability.
NASA Astrophysics Data System (ADS)
Heo, Youn Jeong; Cho, Jeongho; Heo, Moon Beom
2010-07-01
The broadcast ephemeris and IGS ultra-rapid predicted (IGU-P) products are primarily available for use in real-time GPS applications. The IGU orbit precision has been remarkably improved since late 2007, but its clock products have not shown acceptably high-quality prediction performance. One reason for this fact is that satellite atomic clocks in space can be easily influenced by various factors such as temperature and environment and this leads to complicated aspects like periodic variations, which are not sufficiently described by conventional models. A more reliable prediction model is thus proposed in this paper in order to be utilized particularly in describing the periodic variation behaviour satisfactorily. The proposed prediction model for satellite clocks adds cyclic terms to overcome the periodic effects and adopts delay coordinate embedding, which offers the possibility of accessing linear or nonlinear coupling characteristics like satellite behaviour. The simulation results have shown that the proposed prediction model outperforms the IGU-P solutions at least on a daily basis.
Daniel J. Leduc; Thomas G. Matney; Keith L. Belli; V. Clark Baldwin
2001-01-01
Artificial neural networks (NN) are becoming a popular estimation tool. Because they require no assumptions about the form of a fitting function, they can free the modeler from reliance on parametric approximating functions that may or may not satisfactorily fit the observed data. To date there have been few applications in forestry science, but as better NN software...
Dimer-based model for heptaspanning membrane receptors.
Franco, Rafael; Casadó, Vicent; Mallol, Josefa; Ferré, Sergi; Fuxe, Kjell; Cortés, Antonio; Ciruela, Francisco; Lluis, Carmen; Canela, Enric I
2005-07-01
The existence of intramembrane receptor-receptor interactions for heptaspanning membrane receptors is now fully accepted, but a model considering dimers as the basic unit that binds to two ligand molecules is lacking. Here, we propose a two-state-dimer model in which the ligand-induced conformational changes from one component of the dimer are communicated to the other. Our model predicts cooperativity in binding, which is relevant because the other current models fail to address this phenomenon satisfactorily. Our two-state-dimer model also predicts the variety of responses elicited by full or partial agonists, neutral antagonists and inverse agonists. This model can aid our understanding of the operation of heptaspanning receptors and receptor channels, and, potentially, be important for improving the treatment of cardiovascular, neurological and neuropsychyatric diseases.
Zhang, Yong; Zhong, Miner; Geng, Nana; Jiang, Yunjian
2017-01-01
The market demand for electric vehicles (EVs) has increased in recent years. Suitable models are necessary to understand and forecast EV sales. This study presents a singular spectrum analysis (SSA) as a univariate time-series model and vector autoregressive model (VAR) as a multivariate model. Empirical results suggest that SSA satisfactorily indicates the evolving trend and provides reasonable results. The VAR model, which comprised exogenous parameters related to the market on a monthly basis, can significantly improve the prediction accuracy. The EV sales in China, which are categorized into battery and plug-in EVs, are predicted in both short term (up to December 2017) and long term (up to 2020), as statistical proofs of the growth of the Chinese EV industry.
Zhang, Yong; Zhong, Miner; Geng, Nana; Jiang, Yunjian
2017-01-01
The market demand for electric vehicles (EVs) has increased in recent years. Suitable models are necessary to understand and forecast EV sales. This study presents a singular spectrum analysis (SSA) as a univariate time-series model and vector autoregressive model (VAR) as a multivariate model. Empirical results suggest that SSA satisfactorily indicates the evolving trend and provides reasonable results. The VAR model, which comprised exogenous parameters related to the market on a monthly basis, can significantly improve the prediction accuracy. The EV sales in China, which are categorized into battery and plug-in EVs, are predicted in both short term (up to December 2017) and long term (up to 2020), as statistical proofs of the growth of the Chinese EV industry. PMID:28459872
Modelling of the internal dynamics and density in a tens of joules plasma focus device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquez, Ariel; Gonzalez, Jose; Tarifeno-Saldivia, Ariel
2012-01-15
Using MHD theory, coupled differential equations were generated using a lumped parameter model to describe the internal behaviour of the pinch compression phase in plasma focus discharges. In order to provide these equations with appropriate initial conditions, the modelling of previous phases was included by describing the plasma sheath as planar shockwaves. The equations were solved numerically, and the results were contrasted against experimental measurements performed on the device PF-50J. The model is able to predict satisfactorily the timing and the radial electron density profile at the maximum compression.
Estimation of the curvature of the solid liquid interface during Bridgman crystal growth
NASA Astrophysics Data System (ADS)
Barat, Catherine; Duffar, Thierry; Garandet, Jean-Paul
1998-11-01
An approximate solution for the solid/liquid interface curvature due to the crucible effect in crystal growth is derived from simple heat flux considerations. The numerical modelling of the problem carried out with the help of the finite element code FIDAP supports the predictions of our analytical expression and allows to identify its range of validity. Experimental interface curvatures, measured in gallium antimonide samples grown by the vertical Bridgman method, are seen to compare satisfactorily to analytical and numerical results. Other literature data are also in fair agreement with the predictions of our models in the case where the amount of heat carried by the crucible is small compared to the overall heat flux.
Improvement of operational prediction system applied to the oil spill prediction in the Yellow Sea
NASA Astrophysics Data System (ADS)
Kim, C.; Cho, Y.; Choi, B.; Jung, K.
2012-12-01
Multi-nested operational prediction system for the Yellow Sea (YS) has been developed to predict the movement of oil spill. Drifter trajectory simulations were performed to predict the path of the oil spill of the MV Hebei Spirit accident occurred on 7 December 2007. The oil spill trajectories at the surface predicted by numerical model without tidal forcing were remarkably faster than the observation. However the speed of drifters predicted by model considering tide was satisfactorily improved not only for the motion with tidal cycle but also for the motion with subtidal period. The subtidal flow of the simulation with tide was weaker than that without tide due to tidal stress. Tidal stress decelerated the southward subtidal flows driven by northwesterly wind along the Korean coast of the YS in winter. This result provides a substantial implication that tide must be included for accurate prediction of oil spill trajectory not only for variation within a tidal cycle but also for longer time scale advection in tide dominant area.
NASA Technical Reports Server (NTRS)
West, Jeff; Westra, Doug; Lin, Jeff; Tucker, Kevin
2006-01-01
All solutions with Loci-CHEM achieved demonstrated steady state and mesh convergence. Preconditioning had no effect on solution accuracy and typically yields a 3-5times solution speed-up. The SST turbulence model has superior performance, relative to the data in the head end region, for the rise rate and peak heat flux. It was slightly worse than the others in the downstream region where all over-predicted the data by 30-100%.There was systematic mesh refinement in the unstructured volume and structured boundary layer areas produced only minor solution differences. Mesh convergence was achieved. Overall, Loci-CHEM satisfactorily predicts heat flux rise rate and peak heat flux and significantly over predicts the downstream heat flux.
Partitioning of polar and non-polar neutral organic chemicals into human and cow milk.
Geisler, Anett; Endo, Satoshi; Goss, Kai-Uwe
2011-10-01
The aim of this work was to develop a predictive model for milk/water partition coefficients of neutral organic compounds. Batch experiments were performed for 119 diverse organic chemicals in human milk and raw and processed cow milk at 37°C. No differences (<0.3 log units) in the partition coefficients of these types of milk were observed. The polyparameter linear free energy relationship model fit the calibration data well (SD=0.22 log units). An experimental validation data set including hormones and hormone active compounds was predicted satisfactorily by the model. An alternative modelling approach based on log K(ow) revealed a poorer performance. The model presented here provides a significant improvement in predicting enrichment of potentially hazardous chemicals in milk. In combination with physiologically based pharmacokinetic modelling this improvement in the estimation of milk/water partitioning coefficients may allow a better risk assessment for a wide range of neutral organic chemicals. Copyright © 2011 Elsevier Ltd. All rights reserved.
Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.
Decker, Gifford Z; Thomson, Scott L
2007-05-01
The use of the mechanical energy (ME) equation for fluid flow, an extension of the Bernoulli equation, to predict the aerodynamic loading on a two-dimensional finite element vocal fold model is examined. Three steady, one-dimensional ME flow models, incorporating different methods of flow separation point prediction, were compared. For two models, determination of the flow separation point was based on fixed ratios of the glottal area at separation to the minimum glottal area; for the third model, the separation point determination was based on fluid mechanics boundary layer theory. Results of flow rate, separation point, and intraglottal pressure distribution were compared with those of an unsteady, two-dimensional, finite element Navier-Stokes model. Cases were considered with a rigid glottal profile as well as with a vibrating vocal fold. For small glottal widths, the three ME flow models yielded good predictions of flow rate and intraglottal pressure distribution, but poor predictions of separation location. For larger orifice widths, the ME models were poor predictors of flow rate and intraglottal pressure, but they satisfactorily predicted separation location. For the vibrating vocal fold case, all models resulted in similar predictions of mean intraglottal pressure, maximum orifice area, and vibration frequency, but vastly different predictions of separation location and maximum flow rate.
Ławryńczuk, Maciej
2017-03-01
This paper details development of a Model Predictive Control (MPC) algorithm for a boiler-turbine unit, which is a nonlinear multiple-input multiple-output process. The control objective is to follow set-point changes imposed on two state (output) variables and to satisfy constraints imposed on three inputs and one output. In order to obtain a computationally efficient control scheme, the state-space model is successively linearised on-line for the current operating point and used for prediction. In consequence, the future control policy is easily calculated from a quadratic optimisation problem. For state estimation the extended Kalman filter is used. It is demonstrated that the MPC strategy based on constant linear models does not work satisfactorily for the boiler-turbine unit whereas the discussed algorithm with on-line successive model linearisation gives practically the same trajectories as the truly nonlinear MPC controller with nonlinear optimisation repeated at each sampling instant. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wang, James M.
1991-01-01
The aeroelastic stability of a shaft-fixed bearingless rotor is analyzed in wind-tunnel tests for a wide range of operating conditions in order to determine whether such a system could be made aeroelastically stable without incorporating auxiliary dampers. The model rotor and blade properties are determined and used as an input to a bearingless-rotor analysis. Theoretical predictions are compared with experimental results in hover and forward flights. The analysis predicts the lag mode damping satisfactorily for collective pitch between 5 deg and 10 deg; however, the quasi-steady linear aerodynamic modeling overpredicts the damping values for higher collective pitch settings. It is noted that soft blade pitch links improve aeroelastic stability in hover and at low advance ratio.
The solar flare extreme ultraviolet to hard X-ray ratio
NASA Technical Reports Server (NTRS)
Mcclymont, A. N.; Canfield, R. C.
1986-01-01
Simultaneous measurements of the peak 10-1030 A extreme ultraviolet (EUV) flux enhancement and more than 10 keV hard X-ray (HXR) peak flux of many solar flare bursts, ranging over about four orders of magnitude in HXR intensity, are studied. A real departure from linearity is found in the relationship between the peak EUV and HXR fluxes in impulsive flare bursts. This relationship is well described by a given power law. Comparison of the predictions of the impulsive nonthermal thick-target electron beam model with observations shows that the model satisfactorily predicts the observed time differences between the HXR and EUV peaks and explains the data very well under given specific assumptions. It is concluded that the high-energy fluxes implied by the invariant area thick-target model cannot be completely ruled out, while the invariant area model with smaller low cutoff requires impossibly large beam densities. A later alternative thick-target model is suggested.
Barutta, Joaquin; Guex, Raphael; Ibáñez, Agustín
2010-06-01
Abstract From everyday cognition to scientific discovery, analogical processes play an important role: bringing connection, integration, and interrelation of information. Recently, a PFC model of analogy has been proposed to explain many cognitive processes and integrate general functional properties of PFC. We argue here that analogical processes do not suffice to explain the cognitive processes and functions of PFC. Moreover the model does not satisfactorily integrate specific explanatory mechanisms required for the different processes involved. Its relevance would be improved if fewer cognitive phenomena were considered and more specific predictions and explanations about those processes were stated.
Crevillén-García, D
2018-04-01
Time-consuming numerical simulators for solving groundwater flow and dissolution models of physico-chemical processes in deep aquifers normally require some of the model inputs to be defined in high-dimensional spaces in order to return realistic results. Sometimes, the outputs of interest are spatial fields leading to high-dimensional output spaces. Although Gaussian process emulation has been satisfactorily used for computing faithful and inexpensive approximations of complex simulators, these have been mostly applied to problems defined in low-dimensional input spaces. In this paper, we propose a method for simultaneously reducing the dimensionality of very high-dimensional input and output spaces in Gaussian process emulators for stochastic partial differential equation models while retaining the qualitative features of the original models. This allows us to build a surrogate model for the prediction of spatial fields in such time-consuming simulators. We apply the methodology to a model of convection and dissolution processes occurring during carbon capture and storage.
Li, Haiquan; Dai, Xinbin; Zhao, Xuechun
2008-05-01
Membrane transport proteins play a crucial role in the import and export of ions, small molecules or macromolecules across biological membranes. Currently, there are a limited number of published computational tools which enable the systematic discovery and categorization of transporters prior to costly experimental validation. To approach this problem, we utilized a nearest neighbor method which seamlessly integrates homologous search and topological analysis into a machine-learning framework. Our approach satisfactorily distinguished 484 transporter families in the Transporter Classification Database, a curated and representative database for transporters. A five-fold cross-validation on the database achieved a positive classification rate of 72.3% on average. Furthermore, this method successfully detected transporters in seven model and four non-model organisms, ranging from archaean to mammalian species. A preliminary literature-based validation has cross-validated 65.8% of our predictions on the 11 organisms, including 55.9% of our predictions overlapping with 83.6% of the predicted transporters in TransportDB.
Shock loading predictions from application of indicial theory to shock-turbulence interactions
NASA Technical Reports Server (NTRS)
Keefe, Laurence R.; Nixon, David
1991-01-01
A sequence of steps that permits prediction of some of the characteristics of the pressure field beneath a fluctuating shock wave from knowledge of the oncoming turbulent boundary layer is presented. The theory first predicts the power spectrum and pdf of the position and velocity of the shock wave, which are then used to obtain the shock frequency distribution, and the pdf of the pressure field, as a function of position within the interaction region. To test the validity of the crucial assumption of linearity, the indicial response of a normal shock is calculated from numerical simulation. This indicial response, after being fit by a simple relaxation model, is used to predict the shock position and velocity spectra, along with the shock passage frequency distribution. The low frequency portion of the shock spectra, where most of the energy is concentrated, is satisfactorily predicted by this method.
Assessment of PDF Micromixing Models Using DNS Data for a Two-Step Reaction
NASA Astrophysics Data System (ADS)
Tsai, Kuochen; Chakrabarti, Mitali; Fox, Rodney O.; Hill, James C.
1996-11-01
Although the probability density function (PDF) method is known to treat the chemical reaction terms exactly, its application to turbulent reacting flows have been overshadowed by the ability to model the molecular mixing terms satisfactorily. In this study, two PDF molecular mixing models, the linear-mean-square-estimation (LMSE or IEM) model and the generalized interaction-by-exchange-with-the-mean (GIEM) model, are compared with the DNS data in decaying turbulence with a two-step parallel-consecutive reaction and two segregated initial conditions: ``slabs" and ``blobs". Since the molecular mixing model is expected to have a strong effect on the mean values of chemical species under such initial conditions, the model evaluation is intended to answer the following questions: Can the PDF models predict the mean values of chemical species correctly with completely segregated initial conditions? (2) Is a single molecular mixing timescale sufficient for the PDF models to predict the mean values with different initial conditions? (3) Will the chemical reactions change the molecular mixing timescales of the reacting species enough to affect the accuracy of the model's prediction for the mean values of chemical species?
NASA Astrophysics Data System (ADS)
Chen, W.-B.; Liu, W.-C.; Hsu, M.-H.
2012-12-01
Precise predictions of storm surges during typhoon events have the necessity for disaster prevention in coastal seas. This paper explores an artificial neural network (ANN) model, including the back propagation neural network (BPNN) and adaptive neuro-fuzzy inference system (ANFIS) algorithms used to correct poor calculations with a two-dimensional hydrodynamic model in predicting storm surge height during typhoon events. The two-dimensional model has a fine horizontal resolution and considers the interaction between storm surges and astronomical tides, which can be applied for describing the complicated physical properties of storm surges along the east coast of Taiwan. The model is driven by the tidal elevation at the open boundaries using a global ocean tidal model and is forced by the meteorological conditions using a cyclone model. The simulated results of the hydrodynamic model indicate that this model fails to predict storm surge height during the model calibration and verification phases as typhoons approached the east coast of Taiwan. The BPNN model can reproduce the astronomical tide level but fails to modify the prediction of the storm surge tide level. The ANFIS model satisfactorily predicts both the astronomical tide level and the storm surge height during the training and verification phases and exhibits the lowest values of mean absolute error and root-mean-square error compared to the simulated results at the different stations using the hydrodynamic model and the BPNN model. Comparison results showed that the ANFIS techniques could be successfully applied in predicting water levels along the east coastal of Taiwan during typhoon events.
Devillers, J; Pandard, P; Richard, B
2013-01-01
Biodegradation is an important mechanism for eliminating xenobiotics by biotransforming them into simple organic and inorganic products. Faced with the ever growing number of chemicals available on the market, structure-biodegradation relationship (SBR) and quantitative structure-biodegradation relationship (QSBR) models are increasingly used as surrogates of the biodegradation tests. Such models have great potential for a quick and cheap estimation of the biodegradation potential of chemicals. The Estimation Programs Interface (EPI) Suite™ includes different models for predicting the potential aerobic biodegradability of organic substances. They are based on different endpoints, methodologies and/or statistical approaches. Among them, Biowin 5 and 6 appeared the most robust, being derived from the largest biodegradation database with results obtained only from the Ministry of International Trade and Industry (MITI) test. The aim of this study was to assess the predictive performances of these two models from a set of 356 chemicals extracted from notification dossiers including compatible biodegradation data. Another set of molecules with no more than four carbon atoms and substituted by various heteroatoms and/or functional groups was also embodied in the validation exercise. Comparisons were made with the predictions obtained with START (Structural Alerts for Reactivity in Toxtree). Biowin 5 and Biowin 6 gave satisfactorily prediction results except for the prediction of readily degradable chemicals. A consensus model built with Biowin 1 allowed the diminution of this tendency.
Paleoclassical transport explains electron transport barriers in RTP and TEXTOR
NASA Astrophysics Data System (ADS)
Hogeweij, G. M. D.; Callen, J. D.; RTP Team; TEXTOR Team
2008-06-01
The recently developed paleoclassical transport model sets the minimum level of electron thermal transport in a tokamak. This transport level has proven to be in good agreement with experimental observations in many cases when fluctuation-induced anomalous transport is small, i.e. in (near-)ohmic plasmas in small to medium size tokamaks, inside internal transport barriers (ITBs) or edge transport barriers (H-mode pedestal). In this paper predictions of the paleoclassical transport model are compared in detail with data from such kinds of discharges: ohmic discharges from the RTP tokamak, EC heated RTP discharges featuring both dynamic and shot-to-shot scans of the ECH power deposition radius and off-axis EC heated discharges from the TEXTOR tokamak. For ohmically heated RTP discharges the Te profiles predicted by the paleoclassical model are in reasonable agreement with the experimental observations, and various parametric dependences are captured satisfactorily. The electron thermal ITBs observed in steady state EC heated RTP discharges and transiently after switch-off of off-axis ECH in TEXTOR are predicted very well by the paleoclassical model.
Almonacid, S; Simpson, R; Teixeira, A
2007-11-01
Egg and egg preparations are important vehicles for Salmonella enteritidis infections. The influence of time-temperature becomes important when the presence of this organism is found in commercial shell eggs. A computer-aided mathematical model was validated to estimate surface and interior temperature of shell eggs under variable ambient and refrigerated storage temperature. A risk assessment of S. enteritidis based on the use of this model, coupled with S. enteritidis kinetics, has already been reported in a companion paper published earlier in JFS. The model considered the actual geometry and composition of shell eggs and was solved by numerical techniques (finite differences and finite elements). Parameters of interest such as local (h) and global (U) heat transfer coefficient, thermal conductivity, and apparent volumetric specific heat were estimated by an inverse procedure from experimental temperature measurement. In order to assess the error in predicting microbial population growth, theoretical and experimental temperatures were applied to a S. enteritidis growth model taken from the literature. Errors between values of microbial population growth calculated from model predicted compared with experimentally measured temperatures were satisfactorily low: 1.1% and 0.8% for the finite difference and finite element model, respectively.
Improving a prediction system for oil spills in the Yellow Sea: effect of tides on subtidal flow.
Kim, Chang-Sin; Cho, Yang-Ki; Choi, Byoung-Ju; Jung, Kyung Tae; You, Sung Hyup
2013-03-15
A multi-nested prediction system for the Yellow Sea using drifter trajectory simulations was developed to predict the movements of an oil spill after the MV Hebei Spirit accident. The speeds of the oil spill trajectories predicted by the model without tidal forcing were substantially faster than the observations; however, predictions taking into account the tides, including both tidal cycle and subtidal periods, were satisfactorily improved. Subtidal flow in the simulation without tides was stronger than in that with tides because of reduced frictional effects. Friction induced by tidal stress decelerated the southward subtidal flows driven by northwesterly winter winds along the Korean coast of the Yellow Sea. These results strongly suggest that in order to produce accurate predictions of oil spill trajectories, simulations must include tidal effects, such as variations within a tidal cycle and advections over longer time scales in tide-dominated areas. Copyright © 2012 Elsevier Ltd. All rights reserved.
Interatomic Potentials for Structure Simulation of Alkaline-Earth Cuprates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremin, N.N.; Leonyuk, L.I.; Urusov, V.S.
2001-05-01
A specific potential model of interionic interactions was derived in which the crystal structures of alkaline-earth cuprates were satisfactorily described and some of their physical properties were predicted. It was found that a harmonic three-particle O-Cu-O potential and some Morse-type contributions to the simple Buckingham-type Cu-O repulsive potential enable one to improve essentially the results of crystal structure modeling for cuprates. The obtained potential set seems to be well transferable for different cuprates, despite the variety in linkages of the CuO{sub 4} groups. In the present work this potential set model was applied in the crystal structure modeling for Ca{submore » 2}CuO{sub 3}, CaCuO{sub 2}, SrCuO{sub 3}, (Sr{sub 1.19}Ca{sub 0.73})Cu{sub 2}O{sub 4}, and BaCuO{sub 2}. Some elastic and energetic properties of the compounds under question were predicted.« less
Eren, Gokcen; Macchiarulo, Antonio; Banoglu, Erden
2012-02-01
Pharmacological intervention with 5-Lipoxygenase (5-LO) is a promising strategy for treatment of inflammatory and allergic ailments, including asthma. With the aim of developing predictive models of 5-LO affinity and gaining insights into the molecular basis of ligand-target interaction, we herein describe QSAR studies of 59 diverse nonredox-competitive 5-LO inhibitors based on the use of molecular shape descriptors and docking experiments. These studies have successfully yielded a predictive model able to explain much of the variance in the activity of the training set compounds while predicting satisfactorily the 5-LO inhibitory activity of an external test set of compounds. The inspection of the selected variables in the QSAR equation unveils the importance of specific interactions which are observed from docking experiments. Collectively, these results may be used to design novel potent and selective nonredox 5-LO inhibitors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A model describing diffusion in prostate cancer.
Gilani, Nima; Malcolm, Paul; Johnson, Glyn
2017-07-01
Quantitative diffusion MRI has frequently been studied as a means of grading prostate cancer. Interpretation of results is complicated by the nature of prostate tissue, which consists of four distinct compartments: vascular, ductal lumen, epithelium, and stroma. Current diffusion measurements are an ill-defined weighted average of these compartments. In this study, prostate diffusion is analyzed in terms of a model that takes explicit account of tissue compartmentalization, exchange effects, and the non-Gaussian behavior of tissue diffusion. The model assumes that exchange between the cellular (ie, stromal plus epithelial) and the vascular and ductal compartments is slow. Ductal and cellular diffusion characteristics are estimated by Monte Carlo simulation and a two-compartment exchange model, respectively. Vascular pseudodiffusion is represented by an additional signal at b = 0. Most model parameters are obtained either from published data or by comparing model predictions with the published results from 41 studies. Model prediction error is estimated using 10-fold cross-validation. Agreement between model predictions and published results is good. The model satisfactorily explains the variability of ADC estimates found in the literature. A reliable model that predicts the diffusion behavior of benign and cancerous prostate tissue of different Gleason scores has been developed. Magn Reson Med 78:316-326, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Amy B.; Stauffer, Philip H.; Reed, Donald T.
The primary objective of the experimental effort described here is to aid in understanding the complex nature of liquid, vapor, and solid transport occurring around heated nuclear waste in bedded salt. In order to gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that (a) hydrological and physiochemical parameters and (b) processes are correctly simulated. The experiments proposed here are designed to study aspects of the system that have not been satisfactorily quantified in prior work. In addition to exploring the complex coupled physical processes in support of numerical model validation, lessons learnedmore » from these experiments will facilitate preparations for larger-scale experiments that may utilize similar instrumentation techniques.« less
Simultaneous determination of three herbicides by differential pulse voltammetry and chemometrics.
Ni, Yongnian; Wang, Lin; Kokot, Serge
2011-01-01
A novel differential pulse voltammetry method (DPV) was researched and developed for the simultaneous determination of Pendimethalin, Dinoseb and sodium 5-nitroguaiacolate (5NG) with the aid of chemometrics. The voltammograms of these three compounds overlapped significantly, and to facilitate the simultaneous determination of the three analytes, chemometrics methods were applied. These included classical least squares (CLS), principal component regression (PCR), partial least squares (PLS) and radial basis function-artificial neural networks (RBF-ANN). A separately prepared verification data set was used to confirm the calibrations, which were built from the original and first derivative data matrices of the voltammograms. On the basis relative prediction errors and recoveries of the analytes, the RBF-ANN and the DPLS (D - first derivative spectra) models performed best and are particularly recommended for application. The DPLS calibration model was applied satisfactorily for the prediction of the three analytes from market vegetables and lake water samples.
T- P Phase Diagram of Nitrogen at High Pressures
NASA Astrophysics Data System (ADS)
Algul, G.; Enginer, Y.; Yurtseven, H.
2018-05-01
By employing a mean field model, calculation of the T- P phase diagram of molecular nitrogen is performed at high pressures up to 200 GPa. Experimental data from the literature are used to fit a quadratic function in T and P, describing the phase line equations which have been derived using the mean field model studied here for N 2, and the fitted parameters are determined. Our model study gives that the observed T- P phase diagram can be described satisfactorily for the first-order transitions between the phases at low as well as high pressures in nitrogen. Some thermodynamic quantities can also be predicted as functions of temperature and pressure from the mean field model studied here and they can be compared with the experimental data.
NASA Technical Reports Server (NTRS)
Chen, Hsun H.; Cebeci, Tuncer
2007-01-01
Airfoils at high Reynolds numbers, in general, have small separation bubbles that are usually confined to the leading edge. Since the Reynolds number is large, the turbulence model for the transition region between the laminar and turbulent flow is not important. Furthermore, the onset of transition occurs either at separation or prior to separation and can be predicted satisfactorily by empirical correlations when the incident angle is small and can be assumed to correspond to laminar separation when the correlations do not apply, i.e., at high incidence angles.
NASA Technical Reports Server (NTRS)
Ruhlin, C. L.; Bhatia, K. G.; Nagaraja, K. S.
1986-01-01
A transonic model and a low-speed model were flutter tested in the Langley Transonic Dynamics Tunnel at Mach numbers up to 0.90. Transonic flutter boundaries were measured for 10 different model configurations, which included variations in wing fuel, nacelle pylon stiffness, and wingtip configuration. The winglet effects were evaluated by testing the transonic model, having a specific wing fuel and nacelle pylon stiffness, with each of three wingtips, a nonimal tip, a winglet, and a nominal tip ballasted to simulate the winglet mass. The addition of the winglet substantially reduced the flutter speed of the wing at transonic Mach numbers. The winglet effect was configuration-dependent and was primarily due to winglet aerodynamics rather than mass. Flutter analyses using modified strip-theory aerodynamics (experimentally weighted) correlated reasonably well with test results. The four transonic flutter mechanisms predicted by analysis were obtained experimentally. The analysis satisfactorily predicted the mass-density-ratio effects on subsonic flutter obtained using the low-speed model. Additional analyses were made to determine the flutter sensitivity to several parameters at transonic speeds.
Time-dependent oral absorption models
NASA Technical Reports Server (NTRS)
Higaki, K.; Yamashita, S.; Amidon, G. L.
2001-01-01
The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.
NASA Astrophysics Data System (ADS)
Kuki, Ákos; Czifrák, Katalin; Karger-Kocsis, József; Zsuga, Miklós; Kéki, Sándor
2015-02-01
The prediction of shape-memory behavior is essential regarding the design of a smart material for different applications. This paper proposes a simple and quick method for the prediction of shape-memory behavior of amorphous shape memory polymers (SMPs) on the basis of a single dynamic mechanical analysis (DMA) temperature sweep at constant frequency. All the parameters of the constitutive equations for linear viscoelasticity are obtained by fitting the DMA curves. The change with the temperature of the time-temperature superposition shift factor ( a T ) is expressed by the Williams-Landel-Ferry (WLF) model near and above the glass transition temperature ( T g ), and by the Arrhenius law below T g . The constants of the WLF and Arrhenius equations can also be determined. The results of our calculations agree satisfactorily with the experimental free recovery curves from shape-memory tests.
A Gradually Varied Approach to Model Turbidity Currents in Submarine Channels
NASA Astrophysics Data System (ADS)
Bolla Pittaluga, M.; Frascati, A.; Falivene, O.
2018-01-01
We develop a one-dimensional model to describe the dynamics of turbidity current flowing in submarine channels. We consider the flow as a steady state polydisperse suspension accounting for water detrainment from the clear water-turbid interface, for spatial variations of the channel width and for water and sediment lateral overspill from the channel levees. Moreover, we account for sediment exchange with the bed extending the model to deal with situations where the current meets a nonerodible bed. Results show that when water detrainment is accounted for, the flow thickness becomes approximately constant proceeding downstream. Similarly, in the presence of channel levees, the flow tends to adjust to channel relief through the lateral loss of water and sediment. As more mud is spilled above the levees relative to sand, the flow becomes more sand rich proceeding downstream when lateral overspill is present. Velocity and flow thickness predicted by the model are then validated by showing good agreement with laboratory observations. Finally, the model is applied to the Monterey Canyon bathymetric data matching satisfactorily the December 2002 event field measurements and predicting a runout length consistent with observations.
Guo, Ruiying; Nendel, Claas; Rahn, Clive; Jiang, Chunguang; Chen, Qing
2010-06-01
Vegetable production in China is associated with high inputs of nitrogen, posing a risk of losses to the environment. Organic matter mineralisation is a considerable source of nitrogen (N) which is hard to quantify. In a two-year greenhouse cucumber experiment with different N treatments in North China, non-observed pathways of the N cycle were estimated using the EU-Rotate_N simulation model. EU-Rotate_N was calibrated against crop dry matter and soil moisture data to predict crop N uptake, soil mineral N contents, N mineralisation and N loss. Crop N uptake (Modelling Efficiencies (ME) between 0.80 and 0.92) and soil mineral N contents in different soil layers (ME between 0.24 and 0.74) were satisfactorily simulated by the model for all N treatments except for the traditional N management. The model predicted high N mineralisation rates and N leaching losses, suggesting that previously published estimates of N leaching for these production systems strongly underestimated the mineralisation of N from organic matter. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Mansur, M. Hossein; Tischler, Mark B.
1997-01-01
Historically, component-type flight mechanics simulation models of helicopters have been unable to satisfactorily predict the roll response to pitch stick input and the pitch response to roll stick input off-axes responses. In the study presented here, simple first-order low-pass filtering of the elemental lift and drag forces was considered as a means of improving the correlation. The method was applied to a blade-element model of the AH-64 APache, and responses of the modified model were compared with flight data in hover and forward flight. Results indicate that significant improvement in the off-axes responses can be achieved in hover. In forward flight, however, the best correlation in the longitudinal and lateral off-axes responses required different values of the filter time constant for each axis. A compromise value was selected and was shown to result in good overall improvement in the off-axes responses. The paper describes both the method and the model used for its implementation, and presents results obtained at hover and in forward flight.
Extra virgin olive oil bitterness evaluation by sensory and chemical analyses.
Favati, Fabio; Condelli, Nicola; Galgano, Fernanda; Caruso, Marisa Carmela
2013-08-15
An experimental investigation was performed on blend extra virgin olive oils (EVOOs) from different cultivars and EVOO from different olive monovarieties (Coratina, Leccino, Maiatica, Ogliarola) with the aim to evaluate the possibility of estimating the perceived bitterness intensity by using chemical indices, such as the total phenol content and the compounds responsible for oil bitterness measured spectrophotometrically at 225 nm (K225 value), as bitterness predictors in different EVOO. Therefore, a bitterness predictive model, based on the relationship between the perceived bitterness intensity of the selected stimuli and the chosen chemicals parameters has been built and validated. The results indicated that the oil bitterness intensity could be satisfactorily predicted by using the K225 values of oil samples. Copyright © 2013 Elsevier Ltd. All rights reserved.
Normand, Frédéric; Lauri, Pierre-Éric
2012-03-01
Accurate and reliable predictive models are necessary to estimate nondestructively key variables for plant growth studies such as leaf area and leaf, stem, and total biomass. Predictive models are lacking at the current-year branch scale despite the importance of this scale in plant science. We calibrated allometric models to estimate leaf area and stem and branch (leaves + stem) mass of current-year branches, i.e., branches several months old studied at the end of the vegetative growth season, of four mango cultivars on the basis of their basal cross-sectional area. The effects of year, site, and cultivar were tested. Models were validated with independent data and prediction accuracy was evaluated with the appropriate statistics. Models revealed a positive allometry between dependent and independent variables, whose y-intercept but not the slope, was affected by the cultivar. The effects of year and site were negligible. For each branch characteristic, cultivar-specific models were more accurate than common models built with pooled data from the four cultivars. Prediction quality was satisfactory but with data dispersion around the models, particularly for large values. Leaf area and stem and branch mass of mango current-year branches could be satisfactorily estimated on the basis of branch basal cross-sectional area with cultivar-specific allometric models. The results suggested that, in addition to the heteroscedastic behavior of the variables studied, model accuracy was probably related to the functional plasticity of branches in relation to the light environment and/or to the number of growth units composing the branches.
Thermal loading of natural streams
Jackman, Alan P.; Yotsukura, Nobuhiro
1977-01-01
The impact of thermal loading on the temperature regime of natural streams is investigated by mathematical models, which describe both transport (convection-diffusion) and decay (surface dissipation) of waste heat over 1-hour or shorter time intervals. The models are derived from the principle of conservation of thermal energy for application to one- and two-dimensional spaces. The basic concept in these models is to separate water temperature into two parts, (1) excess temperature due to thermal loading and (2) natural (ambient) temperature. This separation allows excess temperature to be calculated from the models without incoming radiation data. Natural temperature may either be measured in prototypes or calculated from the model. If use is made of the model, however, incoming radiation is required as input data. Comparison of observed and calculated temperatures in seven natural streams shows that the models are capable of predicting transient temperature regimes satisfactorily in most cases. (Woodard-USGS)
San-Valero, Pau; Dorado, Antonio D; Quijano, Guillermo; Álvarez-Hornos, F Javier; Gabaldón, Carmen
2018-01-01
A dynamic model describing styrene abatement was developed for a two-phase partitioning bioreactor operated as a biotrickling filter (TPPB-BTF). The model was built as a coupled set of two different systems of partial differential equations depending on whether an irrigation or a non-irrigation period was simulated. The maximum growth rate was previously calibrated from a conventional BTF treating styrene (Part 1). The model was extended to simulate the TPPB-BTF based on the hypothesis that the main change associated with the non-aqueous phase is the modification of the pollutant properties in the liquid phase. The three phases considered were gas, a water-silicone liquid mixture, and biofilm. The selected calibration parameters were related to the physical properties of styrene: Henry's law constant, diffusivity, and the gas-liquid mass transfer coefficient. A sensitivity analysis revealed that Henry's law constant was the most sensitive parameter. The model was successfully calibrated with a goodness of fit of 0.94. It satisfactorily simulated the performance of the TPPB-BTF at styrene loads ranging from 13 to 77 g C m -3 h -1 and empty bed residence times of 30-15 s with the mass transfer enhanced by a factor of 1.6. The model was validated with data obtained in a TPPB-BTF removing styrene continuously. The experimental outlet emissions associated to oscillating inlet concentrations were satisfactorily predicted by using the calibrated parameters. Model simulations demonstrated the potential improvement of the mass-transfer performance of a conventional BTF degrading styrene by adding silicone oil. Copyright © 2017 Elsevier Ltd. All rights reserved.
Synthetic calibration of a Rainfall-Runoff Model
Thompson, David B.; Westphal, Jerome A.; ,
1990-01-01
A method for synthetically calibrating storm-mode parameters for the U.S. Geological Survey's Precipitation-Runoff Modeling System is described. Synthetic calibration is accomplished by adjusting storm-mode parameters to minimize deviations between the pseudo-probability disributions represented by regional regression equations and actual frequency distributions fitted to model-generated peak discharge and runoff volume. Results of modeling storm hydrographs using synthetic and analytic storm-mode parameters are presented. Comparisons are made between model results from both parameter sets and between model results and observed hydrographs. Although mean storm runoff is reproducible to within about 26 percent of the observed mean storm runoff for five or six parameter sets, runoff from individual storms is subject to large disparities. Predicted storm runoff volume ranged from 2 percent to 217 percent of commensurate observed values. Furthermore, simulation of peak discharges was poor. Predicted peak discharges from individual storm events ranged from 2 percent to 229 percent of commensurate observed values. The model was incapable of satisfactorily executing storm-mode simulations for the study watersheds. This result is not considered a particular fault of the model, but instead is indicative of deficiencies in similar conceptual models.
A Group Increment Scheme for Infrared Absorption Intensities of Greenhouse Gases
NASA Technical Reports Server (NTRS)
Kokkila, Sara I.; Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.
2012-01-01
A molecule's absorption in the atmospheric infrared (IR) window (IRW) is an indicator of its efficiency as a greenhouse gas. A model for estimating the absorption of a fluorinated molecule within the IRW was developed to assess its radiative impact. This model will be useful in comparing different hydrofluorocarbons and hydrofluoroethers contribution to global warming. The absorption of radiation by greenhouse gases, in particular hydrofluoroethers and hydrofluorocarbons, was investigated using ab initio quantum mechanical methods. Least squares regression techniques were used to create a model based on this data. The placement and number of fluorines in the molecule were found to affect the absorption in the IR window and were incorporated into the model. Several group increment models are discussed. An additive model based on one-carbon groups is found to work satisfactorily in predicting the ab initio calculated vibrational intensities.
Modeling Analysis for NASA GRC Vacuum Facility 5 Upgrade
NASA Technical Reports Server (NTRS)
Yim, J. T.; Herman, D. A.; Burt, J. M.
2013-01-01
A model of the VF5 test facility at NASA Glenn Research Center was developed using the direct simulation Monte Carlo Hypersonic Aerothermodynamics Particle (HAP) code. The model results were compared to several cold flow and thruster hot fire cases. The main uncertainty in the model is the determination of the effective sticking coefficient -- which sets the pumping effectiveness of the cryopanels and oil diffusion pumps including baffle transmission. An effective sticking coefficient of 0.25 was found to provide generally good agreement with the experimental chamber pressure data. The model, which assumes a cold diffuse inflow, also fared satisfactorily in predicting the pressure distribution during thruster operation. The model was used to assess other chamber configurations to improve the local effective pumping speed near the thruster. A new configuration of the existing cryopumps is found to show more than 2x improvement over the current baseline configuration.
Probing color coherence effects in pp collisions at √s = 7 TeV
Chatrchyan, Serguei
2014-06-11
A study of color coherence effects in pp collisions at a center-of-mass energy of 7 TeV is presented. The data used in the analysis were collected in 2010 with the CMS detector at the LHC and correspond to an integrated luminosity of 36 inverse picobarns. Events are selected that contain at least three jets and where the two jets with the largest transverse momentum exhibit a back-to-back topology. The measured angular correlation between the second- and third-leading jet is shown to be sensitive to color coherence effects, and is compared to the predictions of Monte Carlo models with various implementationsmore » of color coherence. None of the models describe the data satisfactorily.« less
Probing color coherence effects in pp collisions at [Formula: see text].
Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Krätschmer, I; Liko, D; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, C; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Gonzalez, J Suarez; Alderweireldt, S; Bansal, M; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Luyckx, S; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Staykova, Z; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Kalogeropoulos, A; Keaveney, J; Lowette, S; Maes, M; Olbrechts, A; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Caillol, C; Clerbaux, B; De Lentdecker, G; Favart, L; Gay, A P R; Hreus, T; Léonard, A; Marage, P E; Mohammadi, A; Perniè, L; Reis, T; Seva, T; Thomas, L; Vander Velde, C; Vanlaer, P; Wang, J; Adler, V; Beernaert, K; Benucci, L; Cimmino, A; Costantini, S; Dildick, S; Garcia, G; Klein, B; Lellouch, J; Marinov, A; Mccartin, J; Rios, A A Ocampo; Ryckbosch, D; Sigamani, M; Strobbe, N; Thyssen, F; Tytgat, M; Walsh, S; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bruno, G; Castello, R; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jez, P; Lemaitre, V; Liao, J; Militaru, O; Nuttens, C; Pagano, D; Pin, A; Piotrzkowski, K; Popov, A; Selvaggi, M; Vidal Marono, M; Garcia, J M Vizan; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Alves, G A; Correa Martins Junior, M; Martins, T; Pol, M E; Souza, M H G; Aldá Júnior, W L; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; De Souza, S Fonseca; Malbouisson, H; Malek, M; Figueiredo, D Matos; Mundim, L; Nogima, H; Da Silva, W L Prado; Santoro, A; Sznajder, A; Manganote, E J Tonelli; Pereira, A Vilela; Dias, F A; Tomei, T R Fernandez Perez; Lagana, C; Novaes, S F; Padula, Sandra S; Bernardes, C A; Gregores, E M; Mercadante, P G; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Sultanov, G; Vutova, M; Dimitrov, A; Hadjiiska, R; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, X; Wang, Z; Asawatangtrakuldee, C; Ban, Y; Guo, Y; Li, Q; Li, W; Liu, S; Mao, Y; Qian, S J; Wang, D; Zhang, L; Zou, W; Avila, C; Montoya, C A Carrillo; Sierra, L F Chaparro; Gomez, J P; Moreno, B Gomez; Sanabria, J C; Godinovic, N; Lelas, D; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Mekterovic, D; Morovic, S; Tikvica, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Abdelalim, A A; Assran, Y; Elgammal, S; Kamel, A Ellithi; Mahmoud, M A; Radi, A; Kadastik, M; Müntel, M; Murumaa, M; Raidal, M; Rebane, L; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; de Monchenault, G Hamel; Jarry, P; Locci, E; Malcles, J; Millischer, L; Nayak, A; Rander, J; Rosowsky, A; Titov, M; Baffioni, S; Beaudette, F; Benhabib, L; Bluj, M; Busson, P; Charlot, C; Daci, N; Dahms, T; Dalchenko, M; Dobrzynski, L; Florent, A; de Cassagnac, R Granier; Haguenauer, M; Miné, P; Mironov, C; Naranjo, I N; Nguyen, M; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Veelken, C; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Brom, J-M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Juillot, P; Le Bihan, A-C; Van Hove, P; Gadrat, S; Beauceron, S; Beaupere, N; Boudoul, G; Brochet, S; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Xiao, H; Tsamalaidze, Z; Autermann, C; Beranek, S; Bontenackels, M; Calpas, B; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Klein, K; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Caudron, J; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Olschewski, M; Padeken, K; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Thüer, S; Weber, M; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Haj Ahmad, W; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Lingemann, J; Nowack, A; Nugent, I M; Perchalla, L; Pooth, O; Stahl, A; Asin, I; Bartosik, N; Behr, J; Behrenhoff, W; Behrens, U; Bell, A J; Bergholz, M; Bethani, A; Borras, K; Burgmeier, A; Cakir, A; Calligaris, L; Campbell, A; Choudhury, S; Costanza, F; Diez Pardos, C; Dooling, S; Dorland, T; Eckerlin, G; Eckstein, D; Flucke, G; Geiser, A; Glushkov, I; Grebenyuk, A; Gunnellini, P; Habib, S; Hauk, J; Hellwig, G; Horton, D; Jung, H; Kasemann, M; Katsas, P; Kleinwort, C; Kluge, H; Krämer, M; Krücker, D; Kuznetsova, E; Lange, W; Leonard, J; Lipka, K; Lohmann, W; Lutz, B; Mankel, R; Marfin, I; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Naumann-Emme, S; Novgorodova, O; Nowak, F; Olzem, J; Perrey, H; Petrukhin, A; Pitzl, D; Placakyte, R; Raspereza, A; Cipriano, P M Ribeiro; Riedl, C; Ron, E; Sahin, M Ö; Salfeld-Nebgen, J; Schmidt, R; Schoerner-Sadenius, T; Sen, N; Stein, M; Walsh, R; Wissing, C; Martin, M Aldaya; Blobel, V; Enderle, H; Erfle, J; Garutti, E; Gebbert, U; Görner, M; Gosselink, M; Haller, J; Heine, K; Höing, R S; Kaussen, G; Kirschenmann, H; Klanner, R; Kogler, R; Lange, J; Marchesini, I; Peiffer, T; Pietsch, N; Rathjens, D; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Schröder, M; Schum, T; Seidel, M; Sibille, J; Sola, V; Stadie, H; Steinbrück, G; Thomsen, J; Troendle, D; Usai, E; Vanelderen, L; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; De Boer, W; Descroix, A; Dierlamm, A; Feindt, M; Guthoff, M; Hartmann, F; Hauth, T; Held, H; Hoffmann, K H; Husemann, U; Katkov, I; Komaragiri, J R; Kornmayer, A; Lobelle Pardo, P; Martschei, D; Mozer, M U; Müller, Th; Niegel, M; Nürnberg, A; Oberst, O; Ott, J; Quast, G; Rabbertz, K; Ratnikov, F; Röcker, S; Schilling, F-P; Schott, G; Simonis, H J; Stober, F M; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weiler, T; Zeise, M; Anagnostou, G; Daskalakis, G; Geralis, T; Kesisoglou, S; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Ntomari, E; Topsis-Giotis, I; Gouskos, L; Panagiotou, A; Saoulidou, N; Stiliaris, E; Aslanoglou, X; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Paradas, E; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Molnar, J; Palinkas, J; Szillasi, Z; Karancsi, J; Raics, P; Trocsanyi, Z L; Ujvari, B; Swain, S K; Beri, S B; Bhatnagar, V; Dhingra, N; Gupta, R; Kaur, M; Mehta, M Z; Mittal, M; Nishu, N; Sharma, A; Singh, J B; Kumar, Ashok; Kumar, Arun; Ahuja, S; Bhardwaj, A; Choudhary, B C; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Saxena, P; Sharma, V; Shivpuri, R K; Banerjee, S; Bhattacharya, S; Chatterjee, K; Dutta, S; Gomber, B; Jain, Sa; Jain, Sh; Khurana, R; Modak, A; Mukherjee, S; Roy, D; Sarkar, S; Sharan, M; Singh, A P; Abdulsalam, A; Dutta, D; Kailas, S; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Chatterjee, R M; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Kole, G; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Mohanty, G B; Parida, B; Sudhakar, K; Wickramage, N; Dugad, S; Arfaei, H; Bakhshiansohi, H; Etesami, S M; Fahim, A; Jafari, A; Khakzad, M; Najafabadi, M Mohammadi; Mehdiabadi, S Paktinat; Safarzadeh, B; Zeinali, M; Grunewald, M; Abbrescia, M; Barbone, L; Calabria, C; Chhibra, S S; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Marangelli, B; My, S; Nuzzo, S; Pacifico, N; Pompili, A; Pugliese, G; Selvaggi, G; Silvestris, L; Singh, G; Venditti, R; Verwilligen, P; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Meneghelli, M; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Gonzi, S; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Ferretti, R; Ferro, F; Vetere, M Lo; Musenich, R; Robutti, E; Tosi, S; Benaglia, A; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Lucchini, M T; Malvezzi, S; Manzoni, R A; Martelli, A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; de Fatis, T Tabarelli; Buontempo, S; Cavallo, N; De Cosa, A; Fabozzi, F; Iorio, A O M; Lista, L; Meola, S; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bellato, M; Bisello, D; Branca, A; Carlin, R; Checchia, P; Dorigo, T; Dosselli, U; Galanti, M; Gasparini, F; Gasparini, U; Giubilato, P; Gozzelino, A; Kanishchev, K; Lacaprara, S; Lazzizzera, I; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Sgaravatto, M; Simonetto, F; Torassa, E; Tosi, M; Triossi, A; Zotto, P; Zucchetta, A; Zumerle, G; Gabusi, M; Ratti, S P; Riccardi, C; Vitulo, P; Biasini, M; Bilei, G M; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Nappi, A; Romeo, F; Saha, A; Santocchia, A; Spiezia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; Ciocci, M A; D'Agnolo, R T; Dell'Orso, R; Fiori, F; Foà, L; Giassi, A; Grippo, M T; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Moon, C S; Palla, F; Rizzi, A; Savoy-Navarro, A; Serban, A T; Spagnolo, P; Squillacioti, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Vernieri, C; Barone, L; Cavallari, F; Del Re, D; Diemoz, M; Grassi, M; Longo, E; Margaroli, F; Meridiani, P; Micheli, F; Nourbakhsh, S; Organtini, G; Paramatti, R; Rahatlou, S; Rovelli, C; Soffi, L; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bellan, R; Biino, C; Cartiglia, N; Casasso, S; Costa, M; Degano, A; Demaria, N; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, M M; Pastrone, N; Pelliccioni, M; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Tamponi, U; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Ricca, G Della; Gobbo, B; La Licata, C; Marone, M; Montanino, D; Penzo, A; Schizzi, A; Zanetti, A; Chang, S; Kim, T Y; Nam, S K; Kim, D H; Kim, G N; Kim, J E; Kong, D J; Lee, S; Oh, Y D; Park, H; Son, D C; Kim, J Y; Kim, Zero J; Song, S; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, T J; Lee, K S; Park, S K; Roh, Y; Choi, M; Kim, J H; Park, C; Park, I C; Park, S; Ryu, G; Choi, Y; Choi, Y K; Goh, J; Kim, M S; Kwon, E; Lee, B; Lee, J; Seo, H; Yu, I; Grigelionis, I; Juodagalvis, A; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Lopez-Fernandez, R; Martínez-Ortega, J; Sanchez-Hernandez, A; Villasenor-Cendejas, L M; Moreno, S Carrillo; Valencia, F Vazquez; Ibarguen, H A Salazar; Linares, E Casimiro; Pineda, A Morelos; Reyes-Santos, M A; Krofcheck, D; Butler, P H; Doesburg, R; Reucroft, S; Silverwood, H; Ahmad, M; Asghar, M I; Butt, J; Hoorani, H R; Khalid, S; Khan, W A; Khurshid, T; Qazi, S; Shah, M A; Shoaib, M; Bialkowska, H; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Wrochna, G; Zalewski, P; Brona, G; Bunkowski, K; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Wolszczak, W; Almeida, N; Bargassa, P; Da Cruz E Silva, C Beirão; Faccioli, P; Parracho, P G Ferreira; Gallinaro, M; Nguyen, F; Antunes, J Rodrigues; Seixas, J; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Konoplyanikov, V; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Skatchkov, N; Smirnov, V; Zarubin, A; Evstyukhin, S; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Erofeeva, M; Gavrilov, V; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Spiridonov, A; Stolin, V; Vlasov, E; Zhokin, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Vinogradov, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Markina, A; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Ekmedzic, M; Krpic, D; Milosevic, J; Aguilar-Benitez, M; Maestre, J Alcaraz; Battilana, C; Calvo, E; Cerrada, M; Llatas, M Chamizo; Colino, N; De La Cruz, B; Peris, A Delgado; Vázquez, D Domínguez; Bedoya, C Fernandez; Ramos, J P Fernández; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Lopez, O Gonzalez; Lopez, S Goy; Hernandez, J M; Josa, M I; Merino, G; De Martino, E Navarro; Pelayo, J Puerta; Olmeda, A Quintario; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Willmott, C; Albajar, C; de Trocóniz, J F; Brun, H; Cuevas, J; Menendez, J Fernandez; Folgueras, S; Caballero, I Gonzalez; Iglesias, L Lloret; Gomez, J Piedra; Cifuentes, J A Brochero; Cabrillo, I J; Calderon, A; Chuang, S H; Campderros, J Duarte; Fernandez, M; Gomez, G; Sanchez, J Gonzalez; Graziano, A; Jorda, C; Virto, A Lopez; Marco, J; Marco, R; Rivero, C Martinez; Matorras, F; Sanchez, F J Munoz; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Vila, I; Cortabitarte, R Vilar; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Bendavid, J; Benitez, J F; Bernet, C; Bianchi, G; Bloch, P; Bocci, A; Bonato, A; Bondu, O; Botta, C; Breuker, H; Camporesi, T; Cerminara, G; Christiansen, T; Perez, J A Coarasa; Colafranceschi, S; D'Alfonso, M; d'Enterria, D; Dabrowski, A; David, A; Guio, F De; De Roeck, A; De Visscher, S; Di Guida, S; Dobson, M; Dupont-Sagorin, N; Elliott-Peisert, A; Eugster, J; Franzoni, G; Funk, W; Georgiou, G; Giffels, M; Gigi, D; Gill, K; Giordano, D; Girone, M; Giunta, M; Glege, F; Garrido, R Gomez-Reino; Gowdy, S; Guida, R; Hammer, J; Hansen, M; Harris, P; Hartl, C; Hinzmann, A; Innocente, V; Janot, P; Karavakis, E; Kousouris, K; Krajczar, K; Lecoq, P; Lee, Y-J; Lourenço, C; Magini, N; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moser, R; Mulders, M; Musella, P; Nesvold, E; Orsini, L; Cortezon, E Palencia; Perez, E; Perrozzi, L; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Plagge, M; Quertenmont, L; Racz, A; Reece, W; Rolandi, G; Rovere, M; Sakulin, H; Santanastasio, F; Schäfer, C; Schwick, C; Sekmen, S; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Spiga, D; Stieger, B; Stoye, M; Tsirou, A; Veres, G I; Vlimant, J R; Wöhri, H K; Worm, S D; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Renker, D; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Bortignon, P; Buchmann, M A; Casal, B; Chanon, N; Deisher, A; Dissertori, G; Dittmar, M; Donegà, M; Dünser, M; Eller, P; Freudenreich, K; Grab, C; Hits, D; Lecomte, P; Lustermann, W; Mangano, B; Marini, A C; Del Arbol, P Martinez Ruiz; Meister, D; Mohr, N; Moortgat, F; Nägeli, C; Nef, P; Nessi-Tedaldi, F; Pandolfi, F; Pape, L; Pauss, F; Peruzzi, M; Quittnat, M; Ronga, F J; Rossini, M; Sala, L; Sanchez, A K; Starodumov, A; Takahashi, M; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Urscheler, C; Wallny, R; Weber, H A; Amsler, C; Chiochia, V; Favaro, C; Rikova, M Ivova; Kilminster, B; Mejias, B Millan; Otiougova, P; Robmann, P; Snoek, H; Taroni, S; Verzetti, M; Yang, Y; Cardaci, M; Chen, K H; Ferro, C; Kuo, C M; Li, S W; Lin, W; Lu, Y J; Volpe, R; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Dietz, C; Grundler, U; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Lu, R-S; Majumder, D; Petrakou, E; Shi, X; Shiu, J G; Tzeng, Y M; Wang, M; Asavapibhop, B; Suwonjandee, N; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Gurpinar, E; Hos, I; Kangal, E E; Topaksu, A Kayis; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sogut, K; Cerci, D Sunar; Tali, B; Topakli, H; Vergili, M; Akin, I V; Aliev, T; Bilin, B; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Karapinar, G; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Yalvac, M; Zeyrek, M; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Bahtiyar, H; Barlas, E; Cankocak, K; Günaydin, Y O; Vardarlı, F I; Yücel, M; Levchuk, L; Sorokin, P; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Frazier, R; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Kreczko, L; Lucas, C; Meng, Z; Metson, S; Newbold, D M; Nirunpong, K; Paramesvaran, S; Poll, A; Senkin, S; Smith, V J; Williams, T; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Ilic, J; Olaiya, E; Petyt, D; Radburn-Smith, B C; Shepherd-Themistocleous, C H; Tomalin, I R; Womersley, W J; Bainbridge, R; Buchmuller, O; Burton, D; Colling, D; Cripps, N; Cutajar, M; Dauncey, P; Davies, G; Negra, M Della; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Bryer, A Guneratne; Hall, G; Hatherell, Z; Hays, J; Iles, G; Jarvis, M; Karapostoli, G; Kenzie, M; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Marrouche, J; Mathias, B; Nandi, R; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rogerson, S; Rose, A; Seez, C; Sharp, P; Sparrow, A; Tapper, A; Acosta, M Vazquez; Virdee, T; Wakefield, S; Wardle, N; Chadwick, M; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Martin, W; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Dittmann, J; Hatakeyama, K; Kasmi, A; Liu, H; Scarborough, T; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Avetisyan, A; Bose, T; Fantasia, C; Heister, A; Lawson, P; Lazic, D; Rohlf, J; Sperka, D; St John, J; Sulak, L; Alimena, J; Christopher, G; Cutts, D; Demiragli, Z; Ferapontov, A; Garabedian, A; Heintz, U; Jabeen, S; Kukartsev, G; Laird, E; Landsberg, G; Luk, M; Narain, M; Segala, M; Sinthuprasith, T; Speer, T; Breedon, R; Breto, G; De La Barca Sanchez, M Calderon; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Gardner, M; Houtz, R; Ko, W; Kopecky, A; Lander, R; Miceli, T; Pellett, D; Pilot, J; Ricci-Tam, F; Rutherford, B; Searle, M; Shalhout, S; Smith, J; Squires, M; Tripathi, M; Wilbur, S; Yohay, R; Andreev, V; Cline, D; Cousins, R; Erhan, S; Everaerts, P; Farrell, C; Felcini, M; Hauser, J; Ignatenko, M; Jarvis, C; Rakness, G; Schlein, P; Takasugi, E; Traczyk, P; Valuev, V; Babb, J; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Jandir, P; Liu, H; Long, O R; Luthra, A; Malberti, M; Nguyen, H; Shrinivas, A; Sturdy, J; Sumowidagdo, S; Wilken, R; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Cittolin, S; Evans, D; Holzner, A; Kelley, R; Lebourgeois, M; Letts, J; Macneill, I; Padhi, S; Palmer, C; Petrucciani, G; Pieri, M; Sani, M; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Wasserbaech, S; Würthwein, F; Yagil, A; Yoo, J; Barge, D; Campagnari, C; Danielson, T; Flowers, K; Geffert, P; George, C; Golf, F; Incandela, J; Justus, C; Kovalskyi, D; Krutelyov, V; Villalba, R Magaña; Mccoll, N; Pavlunin, V; Richman, J; Rossin, R; Stuart, D; To, W; West, C; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Di Marco, E; Duarte, J; Kcira, D; Ma, Y; Mott, A; Newman, H B; Pena, C; Rogan, C; Spiropulu, M; Timciuc, V; Veverka, J; Wilkinson, R; Xie, S; Zhu, R Y; Azzolini, V; Calamba, A; Carroll, R; Ferguson, T; Iiyama, Y; Jang, D W; Liu, Y F; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Drell, B R; Ford, W T; Gaz, A; Lopez, E Luiggi; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Alexander, J; Chatterjee, A; Eggert, N; Gibbons, L K; Hopkins, W; Khukhunaishvili, A; Kreis, B; Mirman, N; Kaufman, G Nicolas; Patterson, J R; Ryd, A; Salvati, E; Sun, W; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Winstrom, L; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Gray, L; Green, D; Gutsche, O; Hare, D; Harris, R M; Hirschauer, J; Hooberman, B; Jindariani, S; Johnson, M; Joshi, U; Kaadze, K; Klima, B; Kunori, S; Kwan, S; Linacre, J; Lincoln, D; Lipton, R; Lykken, J; Maeshima, K; Marraffino, J M; Outschoorn, V I Martinez; Maruyama, S; Mason, D; McBride, P; Mishra, K; Mrenna, S; Musienko, Y; Newman-Holmes, C; O'Dell, V; Prokofyev, O; Ratnikova, N; Sexton-Kennedy, E; Sharma, S; Spalding, W J; Spiegel, L; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wu, W; Yang, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Chen, M; Cheng, T; Das, S; De Gruttola, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fisher, M; Fu, Y; Furic, I K; Hugon, J; Kim, B; Konigsberg, J; Korytov, A; Kropivnitskaya, A; Kypreos, T; Low, J F; Matchev, K; Milenovic, P; Mitselmakher, G; Muniz, L; Remington, R; Rinkevicius, A; Skhirtladze, N; Snowball, M; Yelton, J; Zakaria, M; Gaultney, V; Hewamanage, S; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Chen, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Prosper, H; Veeraraghavan, V; Weinberg, M; Baarmand, M M; Dorney, B; Hohlmann, M; Kalakhety, H; Yumiceva, F; Adams, M R; Apanasevich, L; Bazterra, V E; Betts, R R; Bucinskaite, I; Callner, J; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Kurt, P; Lacroix, F; Moon, D H; O'Brien, C; Silkworth, C; Strom, D; Turner, P; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Clarida, W; Dilsiz, K; Duru, F; Griffiths, S; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Newsom, C R; Ogul, H; Onel, Y; Ozok, F; Sen, S; Tan, P; Tiras, E; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bolognesi, S; Giurgiu, G; Gritsan, A V; Hu, G; Maksimovic, P; Martin, C; Swartz, M; Whitbeck, A; Baringer, P; Bean, A; Benelli, G; Kenny, R P; Murray, M; Noonan, D; Sanders, S; Stringer, R; Wood, J S; Barfuss, A F; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Saini, L K; Shrestha, S; Svintradze, I; Gronberg, J; Lange, D; Rebassoo, F; Wright, D; Baden, A; Calvert, B; Eno, S C; Gomez, J A; Hadley, N J; Kellogg, R G; Kolberg, T; Lu, Y; Marionneau, M; Mignerey, A C; Pedro, K; Peterman, A; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Apyan, A; Bauer, G; Busza, W; Cali, I A; Chan, M; Di Matteo, L; Dutta, V; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Kim, Y; Klute, M; Lai, Y S; Levin, A; Luckey, P D; Ma, T; Nahn, S; Paus, C; Ralph, D; Roland, C; Roland, G; Stephans, G S F; Stöckli, F; Sumorok, K; Velicanu, D; Wolf, R; Wyslouch, B; Yang, M; Yilmaz, Y; Yoon, A S; Zanetti, M; Zhukova, V; Dahmes, B; De Benedetti, A; Gude, A; Haupt, J; Kao, S C; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rusack, R; Sasseville, M; Singovsky, A; Tambe, N; Turkewitz, J; Acosta, J G; Cremaldi, L M; Kroeger, R; Oliveros, S; Perera, L; Rahmat, R; Sanders, D A; Summers, D; Avdeeva, E; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Eads, M; Suarez, R Gonzalez; Keller, J; Kravchenko, I; Lazo-Flores, J; Malik, S; Meier, F; Snow, G R; Dolen, J; Godshalk, A; Iashvili, I; Jain, S; Kharchilava, A; Rappoccio, S; Wan, Z; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Haley, J; Massironi, A; Nash, D; Orimoto, T; Trocino, D; Wood, D; Zhang, J; Anastassov, A; Hahn, K A; Kubik, A; Lusito, L; Mucia, N; Odell, N; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Sung, K; Velasco, M; Won, S; Berry, D; Brinkerhoff, A; Chan, K M; Hildreth, M; Jessop, C; Karmgard, D J; Kolb, J; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Morse, D M; Pearson, T; Planer, M; Ruchti, R; Slaunwhite, J; Valls, N; Wayne, M; Wolf, M; Antonelli, L; Bylsma, B; Durkin, L S; Hill, C; Hughes, R; Kotov, K; Ling, T Y; Puigh, D; Rodenburg, M; Smith, G; Vuosalo, C; Winer, B L; Wolfe, H; Berry, E; Elmer, P; Halyo, V; Hebda, P; Hegeman, J; Hunt, A; Jindal, P; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Raval, A; Saka, H; Stickland, D; Tully, C; Werner, J S; Zenz, S C; Zuranski, A; Brownson, E; Lopez, A; Mendez, H; Vargas, J E Ramirez; Alagoz, E; Benedetti, D; Bolla, G; Bortoletto, D; De Mattia, M; Everett, A; Hu, Z; Jones, M; Jung, K; Koybasi, O; Kress, M; Leonardo, N; Pegna, D Lopes; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Shipsey, I; Silvers, D; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Yoo, H D; Zablocki, J; Zheng, Y; Parashar, N; Adair, A; Akgun, B; Ecklund, K M; Geurts, F J M; Li, W; Michlin, B; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Garcia-Bellido, A; Goldenzweig, P; Han, J; Harel, A; Miner, D C; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Malik, S; Mesropian, C; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Lath, A; Panwalkar, S; Park, M; Patel, R; Rekovic, V; Robles, J; Salur, S; Schnetzer, S; Seitz, C; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Cerizza, G; Hollingsworth, M; Rose, K; Spanier, S; Yang, Z C; York, A; Bouhali, O; Eusebi, R; Flanagan, W; Gilmore, J; Kamon, T; Khotilovich, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Perloff, A; Roe, J; Safonov, A; Sakuma, T; Suarez, I; Tatarinov, A; Toback, D; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Kovitanggoon, K; Lee, S W; Libeiro, T; Volobouev, I; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Johns, W; Maguire, C; Melo, A; Sharma, M; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Boutle, S; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Lin, C; Neu, C; Wood, J; Gollapinni, S; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sakharov, A; Belknap, D A; Borrello, L; Carlsmith, D; Cepeda, M; Dasu, S; Duric, S; Friis, E; Grothe, M; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Klukas, J; Lanaro, A; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ross, I; Sarangi, T; Savin, A; Smith, W H; Swanson, J
A study of color coherence effects in pp collisions at a center-of-mass energy of 7[Formula: see text] is presented. The data used in the analysis were collected in 2010 with the CMS detector at the LHC and correspond to an integrated luminosity of 36 pb[Formula: see text]. Events are selected that contain at least three jets and where the two jets with the largest transverse momentum exhibit a back-to-back topology. The measured angular correlation between the second- and third-leading jet is shown to be sensitive to color coherence effects, and is compared to the predictions of Monte Carlo models with various implementations of color coherence. None of the models describe the data satisfactorily.
NASA Astrophysics Data System (ADS)
Jahedi Rad, Shahpour; Kaveh, Mohammad; Sharabiani, Vali Rasooli; Taghinezhad, Ebrahim
2018-05-01
The thin-layer convective- infrared drying behavior of white mulberry was experimentally studied at infrared power levels of 500, 1000 and 1500 W, drying air temperatures of 40, 55 and 70 °C and inlet drying air speeds of 0.4, 1 and 1.6 m/s. Drying rate raised with the rise of infrared power levels at a distinct air temperature and velocity and thus decreased the drying time. Five mathematical models describing thin-layer drying have been fitted to the drying data. Midlli et al. model could satisfactorily describe the convective-infrared drying of white mulberry fruit with the values of the correlation coefficient (R 2=0.9986) and root mean square error of (RMSE= 0.04795). Artificial neural network (ANN) and fuzzy logic methods was desirably utilized for modeling output parameters (moisture ratio (MR)) regarding input parameters. Results showed that output parameters were more accurately predicted by fuzzy model than by the ANN and mathematical models. Correlation coefficient (R 2) and RMSE generated by the fuzzy model (respectively 0.9996 and 0.01095) were higher than referred values for the ANN model (0.9990 and 0.01988 respectively).
NASA Astrophysics Data System (ADS)
Arantes Camargo, Livia; Marques Júnior, José; Reynaldo Ferracciú Alleoni, Luís; Tadeu Pereira, Gener; De Bortoli Teixeira, Daniel; Santos Rabelo de Souza Bahia, Angélica
2017-04-01
Environmental impact assessments may be assisted by spatial characterization of potentially toxic elements (PTEs). Diffuse reflectance spectroscopy (DRS) and X-ray fluorescence spectroscopy (XRF) are rapid, non-destructive, low-cost, prediction tools for a simultaneous characterization of different soil attributes. Although low concentrations of PTEs might preclude the observation of spectral features, their contents can be predicted using spectroscopy by exploring the existing relationship between the PTEs and soil attributes with spectral features. This study aimed to evaluate, in three geomorphic surfaces of Oxisols, the capacity for predicting PTEs (Ba, Co, and Ni) and their spatial variability by means of diffuse reflectance spectroscopy (DRS) and X-ray fluorescence spectroscopy (XRF). For that, soil samples were collected from three geomorphic surfaces and analyzed for chemical, physical, and mineralogical properties, and then analyzed in DRS (visible + near infrared - VIS+NIR and medium infrared - MIR) and XRF equipment. PTE prediction models were calibrated using partial least squares regression (PLSR). PTE spatial distribution maps were built using the values calculated by the calibrated models that reached the best accuracy using geostatistics. PTE prediction models were satisfactorily calibrated using MIR DRS for Ba, and Co (residual prediction deviation - RPD > 3.0), Vis DRS for Ni (RPD > 2.0) and FRX for all the studied PTEs (RPD > 1.8). DRS- and XRF-predicted values allowed the characterization and the understanding of spatial variability of the studied PTEs.
Near infrared spectroscopy for prediction of antioxidant compounds in the honey.
Escuredo, Olga; Seijo, M Carmen; Salvador, Javier; González-Martín, M Inmaculada
2013-12-15
The selection of antioxidant variables in honey is first time considered applying the near infrared (NIR) spectroscopic technique. A total of 60 honey samples were used to develop the calibration models using the modified partial least squares (MPLS) regression method and 15 samples were used for external validation. Calibration models on honey matrix for the estimation of phenols, flavonoids, vitamin C, antioxidant capacity (DPPH), oxidation index and copper using near infrared (NIR) spectroscopy has been satisfactorily obtained. These models were optimised by cross-validation, and the best model was evaluated according to multiple correlation coefficient (RSQ), standard error of cross-validation (SECV), ratio performance deviation (RPD) and root mean standard error (RMSE) in the prediction set. The result of these statistics suggested that the equations developed could be used for rapid determination of antioxidant compounds in honey. This work shows that near infrared spectroscopy can be considered as rapid tool for the nondestructive measurement of antioxidant constitutes as phenols, flavonoids, vitamin C and copper and also the antioxidant capacity in the honey. Copyright © 2013 Elsevier Ltd. All rights reserved.
Supercritical water oxidation of quinazoline: Reaction kinetics and modeling.
Gong, Yanmeng; Guo, Yang; Wang, Shuzhong; Song, Wenhan; Xu, Donghai
2017-03-01
This paper presents a first quantitative kinetic model for supercritical water oxidation (SCWO) of quinazoline that describes the formation and interconversion of intermediates and final products at 673-873 K. The set of 11 reaction pathways for phenol, pyrimidine, naphthalene, NH 3 , etc, involved in the simplified reaction network proved sufficient for fitting the experimental results satisfactorily. We validated the model prediction ability on CO 2 yields at initial quinazoline loading not used in the parameter estimation. Reaction rate analysis and sensitivity analysis indicate that nearly all reactions reach their thermodynamic equilibrium within 300 s. The pyrimidine yielding from quinazoline is the dominant ring-opening pathway and provides a significant contribution to CO 2 formation. Low sensitivity of NH 3 decomposition rate to concentration confirms its refractory nature in SCWO. Nitrogen content in liquid products decreases whereas that in gaseous phase increases as reaction time prolonged. The nitrogen predicted by the model in gaseous phase combined with the experimental nitrogen in liquid products gives an accurate nitrogen balance of conversion process. Copyright © 2016 Elsevier Ltd. All rights reserved.
CFD simulation of mechanical draft tube mixing in anaerobic digester tanks.
Meroney, Robert N; Colorado, P E
2009-03-01
Computational Fluid Dynamics (CFD) was used to simulate the mixing characteristics of four different circular anaerobic digester tanks (diameters of 13.7, 21.3, 30.5, and 33.5m) equipped with single and multiple draft impeller tube mixers. Rates of mixing of step and slug injection of tracers were calculated from which digester volume turnover time (DVTT), mixture diffusion time (MDT), and hydraulic retention time (HRT) could be calculated. Washout characteristics were compared to analytic formulae to estimate any presence of partial mixing, dead volume, short-circuiting, or piston flow. CFD satisfactorily predicted performance of both model and full-scale circular tank configurations.
Ionocovalency and Applications 1. Ionocovalency Model and Orbital Hybrid Scales
Zhang, Yonghe
2010-01-01
Ionocovalency (IC), a quantitative dual nature of the atom, is defined and correlated with quantum-mechanical potential to describe quantitatively the dual properties of the bond. Orbiotal hybrid IC model scale, IC, and IC electronegativity scale, XIC, are proposed, wherein the ionicity and the covalent radius are determined by spectroscopy. Being composed of the ionic function I and the covalent function C, the model describes quantitatively the dual properties of bond strengths, charge density and ionic potential. Based on the atomic electron configuration and the various quantum-mechanical built-up dual parameters, the model formed a Dual Method of the multiple-functional prediction, which has much more versatile and exceptional applications than traditional electronegativity scales and molecular properties. Hydrogen has unconventional values of IC and XIC, lower than that of boron. The IC model can agree fairly well with the data of bond properties and satisfactorily explain chemical observations of elements throughout the Periodic Table. PMID:21151444
Mkanya, Anele; Pellicane, Giuseppe; Pini, Davide; Caccamo, Carlo
2017-09-13
We report extensive calculations, based on the modified hypernetted chain (MHNC) theory, on the hierarchical reference theory (HRT), and on Monte Carlo simulations, of thermodynamical, structural and phase coexistence properties of symmetric binary hard-core Yukawa mixtures (HCYM) with attractive interactions at equal species concentration. The obtained results are throughout compared with those available in the literature for the same systems. It turns out that the MHNC predictions for thermodynamic and structural quantities are quite accurate in comparison with the MC data. The HRT is equally accurate for thermodynamics, and slightly less accurate for structure. Liquid-vapor (LV) and liquid-liquid (LL) consolute coexistence conditions as emerging from simulations, are also highly satisfactorily reproduced by both the MHNC and HRT for relatively long ranged potentials. When the potential range reduces, the MHNC faces problems in determining the LV binodal line; however, the LL consolute line and the critical end point (CEP) temperature and density turn out to be still satisfactorily predicted within this theory. The HRT also predicts with good accuracy the CEP position. The possibility of employing liquid state theories HCYM for the purpose of reliably determining phase equilibria in multicomponent colloidal fluids of current technological interest, is discussed.
NASA Astrophysics Data System (ADS)
Mkanya, Anele; Pellicane, Giuseppe; Pini, Davide; Caccamo, Carlo
2017-09-01
We report extensive calculations, based on the modified hypernetted chain (MHNC) theory, on the hierarchical reference theory (HRT), and on Monte Carlo simulations, of thermodynamical, structural and phase coexistence properties of symmetric binary hard-core Yukawa mixtures (HCYM) with attractive interactions at equal species concentration. The obtained results are throughout compared with those available in the literature for the same systems. It turns out that the MHNC predictions for thermodynamic and structural quantities are quite accurate in comparison with the MC data. The HRT is equally accurate for thermodynamics, and slightly less accurate for structure. Liquid-vapor (LV) and liquid-liquid (LL) consolute coexistence conditions as emerging from simulations, are also highly satisfactorily reproduced by both the MHNC and HRT for relatively long ranged potentials. When the potential range reduces, the MHNC faces problems in determining the LV binodal line; however, the LL consolute line and the critical end point (CEP) temperature and density turn out to be still satisfactorily predicted within this theory. The HRT also predicts with good accuracy the CEP position. The possibility of employing liquid state theories HCYM for the purpose of reliably determining phase equilibria in multicomponent colloidal fluids of current technological interest, is discussed.
Kakagianni, Myrsini; Gougouli, Maria; Koutsoumanis, Konstantinos P
2016-08-01
The presence of Geobacillus stearothermophilus spores in evaporated milk constitutes an important quality problem for the milk industry. This study was undertaken to provide an approach in modelling the effect of temperature on G. stearothermophilus ATCC 7953 growth and in predicting spoilage of evaporated milk. The growth of G. stearothermophilus was monitored in tryptone soy broth at isothermal conditions (35-67 °C). The data derived were used to model the effect of temperature on G. stearothermophilus growth with a cardinal type model. The cardinal values of the model for the maximum specific growth rate were Tmin = 33.76 °C, Tmax = 68.14 °C, Topt = 61.82 °C and μopt = 2.068/h. The growth of G. stearothermophilus was assessed in evaporated milk at Topt in order to adjust the model to milk. The efficiency of the model in predicting G. stearothermophilus growth at non-isothermal conditions was evaluated by comparing predictions with observed growth under dynamic conditions and the results showed a good performance of the model. The model was further used to predict the time-to-spoilage (tts) of evaporated milk. The spoilage of this product caused by acid coagulation when the pH approached a level around 5.2, eight generations after G. stearothermophilus reached the maximum population density (Nmax). Based on the above, the tts was predicted from the growth model as the sum of the time required for the microorganism to multiply from the initial to the maximum level ( [Formula: see text] ), plus the time required after the [Formula: see text] to complete eight generations. The observed tts was very close to the predicted one indicating that the model is able to describe satisfactorily the growth of G. stearothermophilus and to provide realistic predictions for evaporated milk spoilage. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solimo, H.N.; Barnes de Arreguez, N.G.
1994-01-01
Liquid-liquid equilibrium, distribution coefficients, and selectivities of the systems water + ethanol + 2-methylpropyl ethanoate or + 1,2-dibromoethane have been determined at 298.15 K in order to evaluate their suitability in preferentially extracting ethanol from aqueous solution. Tie-line data were satisfactorily correlated by the Othmer and Tobias method, and the plait point coordinates for the two systems were estimated. The experimental data was compared with the values calculated by the NRTL and UNIQUAC models. The water + ethanol + 2-methylpropyl ethanoate system was also compared with the values predicted by the UNIFAC model. Poor qualitative agreement was obtained with thesemore » models. From the experimental results, they can conclude that both solvents are inappropriate for ethanol extraction processes from aqueous solutions.« less
Particle migration in rotating liquids
NASA Technical Reports Server (NTRS)
Annamalai, P.; Cole, R.
1986-01-01
An analytical solution predicting the behavior of particles in the presence of both gravitational and rotational fields is obtained at the limit of quasi-steady creeping flow. The experiments performed in the present work using fluid particles, as well as the experiments already reported on solid particles, agree satisfactorily with the theory.
Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine
NASA Technical Reports Server (NTRS)
Wu, L.; Tam, V. H.; Chow, D. S. L.; Putcha, L.
2015-01-01
An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS). The bioavailability and pharmacokinetics (PK) were evaluated under IND (Investigational New Drug) guidelines. The aim of the project was to develop a PK model that can predict the relationships among plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial protocol with INSCOP. Twelve healthy human subjects were administered at three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min to 24 h after dosing and scopolamine concentrations were measured by using a validated LC-MS-MS assay. PK compartmental models, using actual dosing and sampling time, were established using Phoenix (version 1.2). Model selection was based on a likelihood ratio test on the difference of criteria (-2LL (i.e. log-likelihood ratio test)) and comparison of the quality of fit plots. The results: Predictable correlations among scopolamine concentrations in compartments of plasma, saliva and urine were established, and for the first time the model satisfactorily predicted the population and individual PK of INSCOP in plasma, saliva and urine. The model can be utilized to predict the INSCOP plasma concentration by saliva and urine data, and it will be useful for monitoring the PK of scopolamine in space and other remote environments using non-invasive sampling of saliva and/or urine.
Mid- and long-term runoff predictions by an improved phase-space reconstruction model.
Hong, Mei; Wang, Dong; Wang, Yuankun; Zeng, Xiankui; Ge, Shanshan; Yan, Hengqian; Singh, Vijay P
2016-07-01
In recent years, the phase-space reconstruction method has usually been used for mid- and long-term runoff predictions. However, the traditional phase-space reconstruction method is still needs to be improved. Using the genetic algorithm to improve the phase-space reconstruction method, a new nonlinear model of monthly runoff is constructed. The new model does not rely heavily on embedding dimensions. Recognizing that the rainfall-runoff process is complex, affected by a number of factors, more variables (e.g. temperature and rainfall) are incorporated in the model. In order to detect the possible presence of chaos in the runoff dynamics, chaotic characteristics of the model are also analyzed, which shows the model can represent the nonlinear and chaotic characteristics of the runoff. The model is tested for its forecasting performance in four types of experiments using data from six hydrological stations on the Yellow River and the Yangtze River. Results show that the medium-and long-term runoff is satisfactorily forecasted at the hydrological stations. Not only is the forecasting trend accurate, but also the mean absolute percentage error is no more than 15%. Moreover, the forecast results of wet years and dry years are both good, which means that the improved model can overcome the traditional ''wet years and dry years predictability barrier,'' to some extent. The model forecasts for different regions are all good, showing the universality of the approach. Compared with selected conceptual and empirical methods, the model exhibits greater reliability and stability in the long-term runoff prediction. Our study provides a new thinking for research on the association between the monthly runoff and other hydrological factors, and also provides a new method for the prediction of the monthly runoff. Copyright © 2015 Elsevier Inc. All rights reserved.
Ebshish, Ali; Yaakob, Zahira; Taufiq-Yap, Yun Hin; Bshish, Ahmed
2014-03-19
In this work; a response surface methodology (RSM) was implemented to investigate the process variables in a hydrogen production system. The effects of five independent variables; namely the temperature (X₁); the flow rate (X₂); the catalyst weight (X₃); the catalyst loading (X₄) and the glycerol-water molar ratio (X₅) on the H₂ yield (Y₁) and the conversion of glycerol to gaseous products (Y₂) were explored. Using multiple regression analysis; the experimental results of the H₂ yield and the glycerol conversion to gases were fit to quadratic polynomial models. The proposed mathematical models have correlated the dependent factors well within the limits that were being examined. The best values of the process variables were a temperature of approximately 600 °C; a feed flow rate of 0.05 mL/min; a catalyst weight of 0.2 g; a catalyst loading of 20% and a glycerol-water molar ratio of approximately 12; where the H₂ yield was predicted to be 57.6% and the conversion of glycerol was predicted to be 75%. To validate the proposed models; statistical analysis using a two-sample t -test was performed; and the results showed that the models could predict the responses satisfactorily within the limits of the variables that were studied.
Energy balance in the core of the Saturn plasma sheet: H2O chemistry
NASA Astrophysics Data System (ADS)
Shemansky, D. E.; Yoshii, J.; Liu, X.
2011-10-01
A model of the weakly ionized plasma at Saturn has been developed to investigate the properties of the system. Energy balance is a critical consideration. The present model is based on two sources of mass, H2O, and HI. H2O is a variable. HI is a significant volume of gas flowing through the plasma imposed by the source at Saturn [1,2,3]. The energy sources are solar radiation and heterogeneous magnetosphere electrons. The model calculations produce energy rates, species partitioning, and relaxation lifetimes. For the first time the state of the ambient plasma sheet electrons is directly connected to the energy forcing functions. Within limits of knowledge, the predicted state of the core region of the plasma sheet in neutral and ionized gas corresponds satisfactorily to observation. The dominant ions in these calculations are H2O+ and H3O+ with lifetimes of several days. The lifetime of H2O is roughly 60 days. In calculations carried out so far the predicted source rate for H2O is lower than the rates quoted from the Enceladus encounters.
Vehicle Scheduling Schemes for Commercial and Emergency Logistics Integration
Li, Xiaohui; Tan, Qingmei
2013-01-01
In modern logistics operations, large-scale logistics companies, besides active participation in profit-seeking commercial business, also play an essential role during an emergency relief process by dispatching urgently-required materials to disaster-affected areas. Therefore, an issue has been widely addressed by logistics practitioners and caught researchers' more attention as to how the logistics companies achieve maximum commercial profit on condition that emergency tasks are effectively and performed satisfactorily. In this paper, two vehicle scheduling models are proposed to solve the problem. One is a prediction-related scheme, which predicts the amounts of disaster-relief materials and commercial business and then accepts the business that will generate maximum profits; the other is a priority-directed scheme, which, firstly groups commercial and emergency business according to priority grades and then schedules both types of business jointly and simultaneously by arriving at the maximum priority in total. Moreover, computer-based simulations are carried out to evaluate the performance of these two models by comparing them with two traditional disaster-relief tactics in China. The results testify the feasibility and effectiveness of the proposed models. PMID:24391724
Vehicle scheduling schemes for commercial and emergency logistics integration.
Li, Xiaohui; Tan, Qingmei
2013-01-01
In modern logistics operations, large-scale logistics companies, besides active participation in profit-seeking commercial business, also play an essential role during an emergency relief process by dispatching urgently-required materials to disaster-affected areas. Therefore, an issue has been widely addressed by logistics practitioners and caught researchers' more attention as to how the logistics companies achieve maximum commercial profit on condition that emergency tasks are effectively and performed satisfactorily. In this paper, two vehicle scheduling models are proposed to solve the problem. One is a prediction-related scheme, which predicts the amounts of disaster-relief materials and commercial business and then accepts the business that will generate maximum profits; the other is a priority-directed scheme, which, firstly groups commercial and emergency business according to priority grades and then schedules both types of business jointly and simultaneously by arriving at the maximum priority in total. Moreover, computer-based simulations are carried out to evaluate the performance of these two models by comparing them with two traditional disaster-relief tactics in China. The results testify the feasibility and effectiveness of the proposed models.
Software tool for data mining and its applications
NASA Astrophysics Data System (ADS)
Yang, Jie; Ye, Chenzhou; Chen, Nianyi
2002-03-01
A software tool for data mining is introduced, which integrates pattern recognition (PCA, Fisher, clustering, hyperenvelop, regression), artificial intelligence (knowledge representation, decision trees), statistical learning (rough set, support vector machine), computational intelligence (neural network, genetic algorithm, fuzzy systems). It consists of nine function models: pattern recognition, decision trees, association rule, fuzzy rule, neural network, genetic algorithm, Hyper Envelop, support vector machine, visualization. The principle and knowledge representation of some function models of data mining are described. The software tool of data mining is realized by Visual C++ under Windows 2000. Nonmonotony in data mining is dealt with by concept hierarchy and layered mining. The software tool of data mining has satisfactorily applied in the prediction of regularities of the formation of ternary intermetallic compounds in alloy systems, and diagnosis of brain glioma.
Prediction of beef carcass and meat traits from rearing factors in young bulls and cull cows.
Soulat, J; Picard, B; Léger, S; Monteils, V
2016-04-01
The aim of this study was to predict the beef carcass and LM (thoracis part) characteristics and the sensory properties of the LM from rearing factors applied during the fattening period. Individual data from 995 animals (688 young bulls and 307 cull cows) in 15 experiments were used to establish prediction models. The data concerned rearing factors (13 variables), carcass characteristics (5 variables), LM characteristics (2 variables), and LM sensory properties (3 variables). In this study, 8 prediction models were established: dressing percentage and the proportions of fat tissue and muscle in the carcass to characterize the beef carcass; cross-sectional area of fibers (mean fiber area) and isocitrate dehydrogenase activity to characterize the LM; and, finally, overall tenderness, juiciness, and flavor intensity scores to characterize the LM sensory properties. A random effect was considered in each model: the breed for the prediction models for the carcass and LM characteristics and the trained taste panel for the prediction of the meat sensory properties. To evaluate the quality of prediction models, 3 criteria were measured: robustness, accuracy, and precision. The model was robust when the root mean square errors of prediction of calibration and validation sub-data sets were near to one another. Except for the mean fiber area model, the obtained predicted models were robust. The prediction models were considered to have a high accuracy when the mean prediction error (MPE) was ≤0.10 and to have a high precision when the was the closest to 1. The prediction of the characteristics of the carcass from the rearing factors had a high precision ( > 0.70) and a high prediction accuracy (MPE < 0.10), except for the fat percentage model ( = 0.67, MPE = 0.16). However, the predictions of the LM characteristics and LM sensory properties from the rearing factors were not sufficiently precise ( < 0.50) and accurate (MPE > 0.10). Only the flavor intensity of the beef score could be satisfactorily predicted from the rearing factors with high precision ( = 0.72) and accuracy (MPE = 0.10). All the prediction models displayed different effects of the rearing factors according to animal categories (young bulls or cull cows). In consequence, these prediction models display the necessary adaption of rearing factors during the fattening period according to animal categories to optimize the carcass traits according to animal categories.
NASA Astrophysics Data System (ADS)
Breton, S.-P.; Shen, W. Z.; Ivanell, S.
2017-05-01
Experimental data acquired in the New MEXICO experiment on a yawed 4.5m diameter rotor model turbine are used here to validate the actuator line (AL) and actuator disc (AD) models implemented in the Large Eddy Simulation code EllipSys3D in terms of loading and velocity field. Even without modelling the geometry of the hub and nacelle, the AL and AD models produce similar results that are generally in good agreement with the experimental data under the various configurations considered. As expected, the AL model does better at capturing the induction effects from the individual blade tip vortices, while the AD model can reproduce the averaged features of the flow. The importance of using high quality airfoil data (including 3D corrections) as well as a fine grid resolution is highlighted by the results obtained. Overall, it is found that both models can satisfactorily predict the 3D velocity field and blade loading of the New MEXICO rotor under yawed inflow.
Similarity criteria in calculations of the energy characteristics of a cw oxygen - iodine laser
NASA Astrophysics Data System (ADS)
Mezhenin, A. V.; Azyazov, V. N.
2012-12-01
The calculated and experimental data on the energy efficiency of a cw oxygen - iodine laser (OIL) are analysed based on two similarity criteria, namely, on the ratio of the residence time of the gas mixture in the resonator to the characteristic time of extraction of the energy stored in singlet oxygen td and on the gain-to-loss ratio Π. It is shown that the simplified two-level laser model satisfactorily predicts the output characteristics of OILs with a stable resonator at τd <= 7. Efficient energy extraction from the OIL active medium is achieved in the case of τd = 5 - 7, Π = 4 - 8.
An evaluation of study design for estimating a time-of-day noise weighting
NASA Technical Reports Server (NTRS)
Fields, J. M.
1986-01-01
The relative importance of daytime and nighttime noise of the same noise level is represented by a time-of-day weight in noise annoyance models. The high correlations between daytime and nighttime noise were regarded as a major reason that previous social surveys of noise annoyance could not accurately estimate the value of the time-of-day weight. Study designs which would reduce the correlation between daytime and nighttime noise are described. It is concluded that designs based on short term variations in nighttime noise levels would not be able to provide valid measures of response to nighttime noise. The accuracy of the estimate of the time-of-day weight is predicted for designs which are based on long term variations in nighttime noise levels. For these designs it is predicted that it is not possible to form satisfactorily precise estimates of the time-of-day weighting.
Khwannimit, Bodin
2007-06-01
To compare the validity of the Multiple Organ Dysfunction Score (MODS), Sequential Organ Failure Assessment (SOFA), and Logistic Organ Dysfunction Score (LOD) for predicting ICU mortality of Thai critically ill patients. A retrospective study was made of prospective data collected between the 1st July 2004 and 31st March 2006 at Songklanagarind Hospital. One thousand seven hundred and eighty two patients were enrolled in the present study. Two hundred and ninety three (16.4%) deaths were recorded in the ICU. The areas under the Receiver Operating Curves (A UC) for the prediction of ICU mortality the results were 0.861 for MODS, 0.879 for SOFA and 0.880 for LOD. The AUC of SOFA and LOD showed a statistical significance higher than the MODS score (p = 0.014 and p = 0.042, respectively). Of all the models, the neurological failure score showed the best correlation with ICU mortality. All three organ dysfunction scores satisfactorily predicted ICU mortality. The LOD and neurological failure had the best correlation with ICU outcome.
Monthly mean forecast experiments with the GISS model
NASA Technical Reports Server (NTRS)
Spar, J.; Atlas, R. M.; Kuo, E.
1976-01-01
The GISS general circulation model was used to compute global monthly mean forecasts for January 1973, 1974, and 1975 from initial conditions on the first day of each month and constant sea surface temperatures. Forecasts were evaluated in terms of global and hemispheric energetics, zonally averaged meridional and vertical profiles, forecast error statistics, and monthly mean synoptic fields. Although it generated a realistic mean meridional structure, the model did not adequately reproduce the observed interannual variations in the large scale monthly mean energetics and zonally averaged circulation. The monthly mean sea level pressure field was not predicted satisfactorily, but annual changes in the Icelandic low were simulated. The impact of temporal sea surface temperature variations on the forecasts was investigated by comparing two parallel forecasts for January 1974, one using climatological ocean temperatures and the other observed daily ocean temperatures. The use of daily updated sea surface temperatures produced no discernible beneficial effect.
Predicting risk for childhood asthma by pre-pregnancy, perinatal, and postnatal factors.
Wen, Hui-Ju; Chiang, Tung-Liang; Lin, Shio-Jean; Guo, Yue Leon
2015-05-01
Symptoms of atopic disease start early in human life. Predicting risk for childhood asthma by early-life exposure would contribute to disease prevention. A birth cohort study was conducted to investigate early-life risk factors for childhood asthma and to develop a predictive model for the development of asthma. National representative samples of newborn babies were obtained by multistage stratified systematic sampling from the 2005 Taiwan Birth Registry. Information on potential risk factors and children's health was collected by home interview when babies were 6 months old and 5 yr old, respectively. Backward stepwise regression analysis was used to identify the risk factors of childhood asthma for predictive models that were used to calculate the probability of childhood asthma. A total of 19,192 children completed the study satisfactorily. Physician-diagnosed asthma was reported in 6.6% of 5-yr-old children. Pre-pregnancy factors (parental atopy and socioeconomic status), perinatal factors (place of residence, exposure to indoor mold and painting/renovations during pregnancy), and postnatal factors (maternal postpartum depression and the presence of atopic dermatitis before 6 months of age) were chosen for the predictive models, and the highest predicted probability of asthma in 5-yr-old children was 68.1% in boys and 78.1% in girls; the lowest probability in boys and girls was 4.1% and 3.2%, respectively. This investigation provides a technique for predicting risk of childhood asthma that can be used to developing a preventive strategy against asthma. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Gijselaers, Hieronymus J M; Elena, Barberà; Kirschner, Paul A; de Groot, Renate H M
2016-01-01
Biological lifestyle factors (BLFs) such as physical activity, sleep, and nutrition play a role in cognitive functioning. Research concerning the relation between BLFs and cognitive performance is scarce however, especially in young and middle-aged adults. Research has not yet focused on a multidisciplinary approach with respect to this relation in the abovementioned population, where lifestyle habits are more stable. The aim of this study was to examine the contribution of these BLFs to cognitive performance. Path analysis was conducted in an observational study in which 1131 adults were analyzed using a cross-validation approach. Participants provided information on physical activity, sedentary behavior, chronotype, sleep duration, sleep quality, and the consumption of breakfast, fish, and caffeine via a survey. Their cognitive performance was measured using objective digital cognitive tests. Exploration yielded a predictive cohesive model that fitted the data properly, χ(2) /df = 0.8, CFI = 1.00, RMSEA < 0.001, SRMR = 0.016. Validation of the developed model indicated that the model fitted the data satisfactorily, χ(2) /df = 2.75, CFI = 0.95, RMSEA < 0.056, SRMR = 0.035. None of the variables within the BLFs were predictive for any of the cognitive performance measures, except for sedentary behavior. Although sedentary behavior was positively predictive for processing speed its contribution was small and unclear. The results indicate that the variables within the BLFs do not predict cognitive performance in young and middle-aged adults.
Kic size effect study on two high-strength steels using notched bend specimens
NASA Technical Reports Server (NTRS)
Stonesifer, F. R.
1974-01-01
Five methods are used to calculate plane strain fracture toughness (K sub Q) values for bend-specimens of various sizes from two high-strength steels. None of the methods appeared to satisfactorily predict valid stress intensity factor (K sub IC) values from specimens of sizes well below that required by E399 standard tests.
Response of Fusarium solani to Fluctuating Temperatures
Keith F. Jensen; Phillip E. Reynolds; Phillip E. Reynolds
1971-01-01
The purpose of this study was to measure growth under a range of constant temperatures and under a series of fluctuating temperature regimes, and to determine if growth in the fluctuating temperiture regimes could be predicted satisfactorily from the growth data collected in the constant temperature experiments. Growth was measured on both agar and liquid culture to...
NASA Astrophysics Data System (ADS)
Heinze, Rieke; Moseley, Christopher; Böske, Lennart Nils; Muppa, Shravan Kumar; Maurer, Vera; Raasch, Siegfried; Stevens, Bjorn
2017-06-01
Large-eddy simulations (LESs) of a multi-week period during the HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction) Observational Prototype Experiment (HOPE) conducted in Germany are evaluated with respect to mean boundary layer quantities and turbulence statistics. Two LES models are used in a semi-idealized setup through forcing with mesoscale model output to account for the synoptic-scale conditions. Evaluation is performed based on the HOPE observations. The mean boundary layer characteristics like the boundary layer depth are in a principal agreement with observations. Simulating shallow-cumulus layers in agreement with the measurements poses a challenge for both LES models. Variance profiles agree satisfactorily with lidar measurements. The results depend on how the forcing data stemming from mesoscale model output are constructed. The mean boundary layer characteristics become less sensitive if the averaging domain for the forcing is large enough to filter out mesoscale fluctuations.
Accelerated optical polymer aging studies for LED luminaire applications
NASA Astrophysics Data System (ADS)
Estupiñán, Edgar; Wendling, Peter; Kostrun, Marijan; Garner, Richard
2013-09-01
There is a need in the lighting industry to design and implement accelerated aging methods that accurately simulate the aging process of LED luminaire components. In response to this need, we have built a flexible and reliable system to study the aging characteristics of optical polymer materials, and we have employed it to study a commercially available LED luminaire diffuser made of PMMA. The experimental system consists of a "Blue LED Emitter" and a working surface. Both the temperatures of the samples and the optical powers of the LEDs are appropriately characterized in the system. Several accelerated aging experiments are carried out at different temperatures and optical powers over a 90 hour period and the measured transmission values are used as inputs to a degradation model derived using plausibility arguments. This model seems capable of predicting the behavior of the material as a function of time, temperature and optical power. The model satisfactorily predicts the measured transmission values of diffusers aged in luminaires at two different times and thus can be used to make application recommendations for this material. Specifically, at 35000 hours (the manufacturer's stated life of the luminaire) and at the typical operational temperature of the diffuser, the model predicts a transmission loss of only a few percent over the original transmission of the material at 450 nm, which renders this material suitable for this application.
Ebshish, Ali; Yaakob, Zahira; Taufiq-Yap, Yun Hin; Bshish, Ahmed
2014-01-01
In this work; a response surface methodology (RSM) was implemented to investigate the process variables in a hydrogen production system. The effects of five independent variables; namely the temperature (X1); the flow rate (X2); the catalyst weight (X3); the catalyst loading (X4) and the glycerol-water molar ratio (X5) on the H2 yield (Y1) and the conversion of glycerol to gaseous products (Y2) were explored. Using multiple regression analysis; the experimental results of the H2 yield and the glycerol conversion to gases were fit to quadratic polynomial models. The proposed mathematical models have correlated the dependent factors well within the limits that were being examined. The best values of the process variables were a temperature of approximately 600 °C; a feed flow rate of 0.05 mL/min; a catalyst weight of 0.2 g; a catalyst loading of 20% and a glycerol-water molar ratio of approximately 12; where the H2 yield was predicted to be 57.6% and the conversion of glycerol was predicted to be 75%. To validate the proposed models; statistical analysis using a two-sample t-test was performed; and the results showed that the models could predict the responses satisfactorily within the limits of the variables that were studied. PMID:28788567
The Formation and Physical Origin of Highly Ionized Cooling Gas
NASA Astrophysics Data System (ADS)
Bordoloi, Rongmon; Wagner, Alexander Y.; Heckman, Timothy M.; Norman, Colin A.
2017-10-01
We present a simple model that explains the origin of warm, diffuse gas seen primarily as highly ionized absorption-line systems in the spectra of background sources. We predict the observed column densities of several highly ionized transitions such as O VI, O vii, Ne viii, N v, and Mg x, and we present a unified comparison of the model predictions with absorption lines seen in the Milky Way disk, Milky Way halo, starburst galaxies, the circumgalactic medium, and the intergalactic medium at low and high redshifts. We show that diffuse gas seen in such diverse environments can be simultaneously explained by a simple model of radiatively cooling gas. We show that most such absorption-line systems are consistent with being collisionally ionized, and we estimate the maximum-likelihood temperature of the gas in each observation. This model satisfactorily explains why O VI is regularly observed around star-forming low-z L* galaxies, and why N v is rarely seen around the same galaxies. We further present some consequences of this model in quantifying the dynamics of the cooling gas around galaxies and predict the shock velocities associated with such flows. A unique strength of this model is that while it has only one free (but physically well-constrained) parameter, it nevertheless successfully reproduces the available data on O VI absorbers in the interstellar, circumgalactic, intragroup, and intergalactic media, as well as the available data on other absorption lines from highly ionized species.
Caballero-Lima, David; Kaneva, Iliyana N.; Watton, Simon P.
2013-01-01
In the hyphal tip of Candida albicans we have made detailed quantitative measurements of (i) exocyst components, (ii) Rho1, the regulatory subunit of (1,3)-β-glucan synthase, (iii) Rom2, the specialized guanine-nucleotide exchange factor (GEF) of Rho1, and (iv) actin cortical patches, the sites of endocytosis. We use the resulting data to construct and test a quantitative 3-dimensional model of fungal hyphal growth based on the proposition that vesicles fuse with the hyphal tip at a rate determined by the local density of exocyst components. Enzymes such as (1,3)-β-glucan synthase thus embedded in the plasma membrane continue to synthesize the cell wall until they are removed by endocytosis. The model successfully predicts the shape and dimensions of the hyphae, provided that endocytosis acts to remove cell wall-synthesizing enzymes at the subapical bands of actin patches. Moreover, a key prediction of the model is that the distribution of the synthase is substantially broader than the area occupied by the exocyst. This prediction is borne out by our quantitative measurements. Thus, although the model highlights detailed issues that require further investigation, in general terms the pattern of tip growth of fungal hyphae can be satisfactorily explained by a simple but quantitative model rooted within the known molecular processes of polarized growth. Moreover, the methodology can be readily adapted to model other forms of polarized growth, such as that which occurs in plant pollen tubes. PMID:23666623
The Formation and Physical Origin of Highly Ionized Cooling Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bordoloi, Rongmon; Wagner, Alexander Y.; Heckman, Timothy M.
We present a simple model that explains the origin of warm, diffuse gas seen primarily as highly ionized absorption-line systems in the spectra of background sources. We predict the observed column densities of several highly ionized transitions such as O vi, O vii, Ne viii, N v, and Mg x, and we present a unified comparison of the model predictions with absorption lines seen in the Milky Way disk, Milky Way halo, starburst galaxies, the circumgalactic medium, and the intergalactic medium at low and high redshifts. We show that diffuse gas seen in such diverse environments can be simultaneously explainedmore » by a simple model of radiatively cooling gas. We show that most such absorption-line systems are consistent with being collisionally ionized, and we estimate the maximum-likelihood temperature of the gas in each observation. This model satisfactorily explains why O vi is regularly observed around star-forming low- z L* galaxies, and why N v is rarely seen around the same galaxies. We further present some consequences of this model in quantifying the dynamics of the cooling gas around galaxies and predict the shock velocities associated with such flows. A unique strength of this model is that while it has only one free (but physically well-constrained) parameter, it nevertheless successfully reproduces the available data on O vi absorbers in the interstellar, circumgalactic, intragroup, and intergalactic media, as well as the available data on other absorption lines from highly ionized species.« less
Ni, Bing-Jie; Peng, Lai; Law, Yingyu; Guo, Jianhua; Yuan, Zhiguo
2014-04-01
Autotrophic ammonia oxidizing bacteria (AOB) have been recognized as a major contributor to N2O production in wastewater treatment systems. However, so far N2O models have been proposed based on a single N2O production pathway by AOB, and there is still a lack of effective approach for the integration of these models. In this work, an integrated mathematical model that considers multiple production pathways is developed to describe N2O production by AOB. The pathways considered include the nitrifier denitrification pathway (N2O as the final product of AOB denitrification with NO2(-) as the terminal electron acceptor) and the hydroxylamine (NH2OH) pathway (N2O as a byproduct of incomplete oxidation of NH2OH to NO2(-)). In this model, the oxidation and reduction processes are modeled separately, with intracellular electron carriers introduced to link the two types of processes. The model is calibrated and validated using experimental data obtained with two independent nitrifying cultures. The model satisfactorily describes the N2O data from both systems. The model also predicts shifts of the dominating pathway at various dissolved oxygen (DO) and nitrite levels, consistent with previous hypotheses. This unified model is expected to enhance our ability to predict N2O production by AOB in wastewater treatment systems under varying operational conditions.
Multi-sensory landscape assessment: the contribution of acoustic perception to landscape evaluation.
Gan, Yonghong; Luo, Tao; Breitung, Werner; Kang, Jian; Zhang, Tianhai
2014-12-01
In this paper, the contribution of visual and acoustic preference to multi-sensory landscape evaluation was quantitatively compared. The real landscapes were treated as dual-sensory ambiance and separated into visual landscape and soundscape. Both were evaluated by 63 respondents in laboratory conditions. The analysis of the relationship between respondent's visual and acoustic preference as well as their respective contribution to landscape preference showed that (1) some common attributes are universally identified in assessing visual, aural and audio-visual preference, such as naturalness or degree of human disturbance; (2) with acoustic and visual preferences as variables, a multi-variate linear regression model can satisfactorily predict landscape preference (R(2 )= 0.740), while the coefficients of determination for a unitary linear regression model were 0.345 and 0.720 for visual and acoustic preference as predicting factors, respectively; (3) acoustic preference played a much more important role in landscape evaluation than visual preference in this study (the former is about 4.5 times of the latter), which strongly suggests a rethinking of the role of soundscape in environment perception research and landscape planning practice.
Infrared absorption of CH3OSO detected with time-resolved Fourier-transform spectroscopy.
Chen, Jin-Dah; Lee, Yuan-Pern
2011-03-07
A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to detect temporally resolved infrared absorption spectra of CH(3)OSO produced upon irradiation of a flowing gaseous mixture of CH(3)OS(O)Cl in N(2) or CO(2) at 248 nm. Two intense transient features with origins near 1152 and 994 cm(-1) are assigned to syn-CH(3)OSO; the former is attributed to overlapping bands at 1154 ± 3 and 1151 ± 3 cm(-1), assigned to the S=O stretching mixed with CH(3) rocking (ν(8)) and the S=O stretching mixed with CH(3) wagging (ν(9)) modes, respectively, and the latter to the C-O stretching (ν(10)) mode at 994 ± 6 cm(-1). Two weak bands at 2991 ± 6 and 2956 ± 3 cm(-1) are assigned as the CH(3) antisymmetric stretching (ν(2)) and symmetric stretching (ν(3)) modes, respectively. Observed vibrational transition wavenumbers agree satisfactorily with those predicted with quantum-chemical calculations at level B3P86∕aug-cc-pVTZ. Based on rotational parameters predicted at that level, the simulated rotational contours of these bands agree satisfactorily with experimental results. The simulation indicates that the S=O stretching mode of anti-CH(3)OSO near 1164 cm(-1) likely makes a small contribution to the observed band near 1152 cm(-1). A simple kinetic model of self-reaction is employed to account for the decay of CH(3)OSO and yields a second-order rate coefficient k=(4 ± 2)×10(-10) cm(3)molecule(-1)s(-1). © 2011 American Institute of Physics.
Experimental study and modelling of selenite sorption onto illite and smectite clays.
Missana, T; Alonso, U; García-Gutiérrez, M
2009-06-15
This study provides a large set of experimental selenite sorption data for pure smectite and illite. Similar sorption behavior existed in both clays: linear within a large range of the Se concentrations investigated (from 1x10(-10) to 1x10(-3) M); and independent of ionic strength. Selenite sorption was also analysed in the illite/smectite system with the clays mixed in two different proportions, as follows: (a) 30% illite-70% smectite and (b) 43% illite-57% smectite. The objective of the study was to provide the simplest model possible to fit the experimental data, a model also capable of describing selenite sorption in binary illite/smectite clay systems. Selenite sorption data, separately obtained in the single mineral systems, were modeled using both a one- and a two-site non-electrostatic model that took into account the formation of two complexes at the edge sites of the clay. Although the use of a two-site model slightly improved the fit of data at a pH below 4, the simpler one-site model reproduced satisfactorily all the sorption data from pH 3 to 8. The complexation constants obtained by fitting sorption data of the individual minerals were incorporated into a model to predict the adsorption of selenium in the illite/smectite mixtures; the model's predictions were consistent with the experimental adsorption data.
Annular Seals of High Energy Centrifugal Pumps: Presentation of Full Scale Measurement
NASA Technical Reports Server (NTRS)
Florjancic, S.; Stuerchler, R.; Mccloskey, T.
1991-01-01
Prediction of rotordynamic behavior for high energy concentration centrifugal pumps is a challenging task which still imposes considerable difficulties. While the mechanical modeling of the rotor is solved most satisfactorily by finite element techniques, accurate boundary conditions for arbitrary operating conditions are known for journal bearings only. Little information is available on the reactive forces of annular seals, such as neck ring and interstage seals and balance pistons, and on the impeller interaction forces. The present focus is to establish reliable boundary conditions at annular seals. For this purpose, a full scale test machine was set up and smooth and serrated seal configurations measured. Dimensionless coefficients are presented and compared with a state of the art theory.
NASA Technical Reports Server (NTRS)
Kreskovsky, J. P.; Briley, W. R.; Mcdonald, H.
1982-01-01
A finite difference method is developed for making detailed predictions of three dimensional subsonic turbulent flow in turbofan lobe mixers. The governing equations are solved by a forward-marching solution procedure which corrects an inviscid potential flow solution for viscous and thermal effects, secondary flows, total pressure distortion and losses, internal flow blockage and pressure drop. Test calculations for a turbulent coaxial jet flow verify that the turbulence model performs satisfactorily for this relatively simple flow. Lobe mixer flows are presented for two geometries typical of current mixer design. These calculations included both hot and cold flow conditions, and both matched and mismatched Mach number and total pressure in the fan and turbine streams.
Packing of sidechains in low-resolution models for proteins.
Keskin, O; Bahar, I
1998-01-01
Atomic level rotamer libraries for sidechains in proteins have been proposed by several groups. Conformations of side groups in coarse-grained models, on the other hand, have not yet been analyzed, although low resolution approaches are the only efficient way to explore global structural features. A residue-specific backbone-dependent library for sidechain isomers, compatible with a coarse-grained model, is proposed. The isomeric states are utilized in packing sidechains of known backbone structures. Sidechain positions are predicted with a root-mean-square deviation (r.m.s.d.) of 2.40 A with respect to crystal structure for 50 test proteins. The rmsd for core residues is 1.60 A and decreases to 1.35 A when conformational correlations and directional effects in inter-residue couplings are considered. An automated method for assigning sidechain positions in coarse-grained model proteins is proposed and made available on the internet; the method accounts satisfactorily for sidechain packing, particularly in the core.
Persson, Ann-Sofie; Alderborn, Göran
2018-04-01
The objective was to present a hybrid approach to predict the strength-pressure relationship (SPR) of tablets using common compression parameters and a single measurement of tablet tensile strength. Experimental SPR were derived for six pharmaceutical powders with brittle and ductile properties and compared to predicted SPR based on a three-stage approach. The prediction was based on the Kawakita b -1 parameter and the in-die Heckel yield stress, an estimate of maximal tensile strength, and a parameter proportionality factor α. Three values of α were used to investigate the influence of the parameter on the SPR. The experimental SPR could satisfactorily be described by the three stage model, however for sodium bicarbonate the tensile strength plateau could not be observed experimentally. The shape of the predicted SPR was to a minor extent influenced by the Kawakita b -1 but the width of the linear region was highly influenced by α. An increased α increased the width of the linear region and thus also the maximal predicted tablet tensile strength. Furthermore, the correspondence between experimental and predicted SPR was influenced by the α value and satisfactory predictions were in general obtained for α = 4.1 indicating the predictive potential of the hybrid approach. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
A Model of Human Cooperation in Social Dilemmas
Capraro, Valerio
2013-01-01
Social dilemmas are situations in which collective interests are at odds with private interests: pollution, depletion of natural resources, and intergroup conflicts, are at their core social dilemmas. Because of their multidisciplinarity and their importance, social dilemmas have been studied by economists, biologists, psychologists, sociologists, and political scientists. These studies typically explain tendency to cooperation by dividing people in proself and prosocial types, or appealing to forms of external control or, in iterated social dilemmas, to long-term strategies. But recent experiments have shown that cooperation is possible even in one-shot social dilemmas without forms of external control and the rate of cooperation typically depends on the payoffs. This makes impossible a predictive division between proself and prosocial people and proves that people have attitude to cooperation by nature. The key innovation of this article is in fact to postulate that humans have attitude to cooperation by nature and consequently they do not act a priori as single agents, as assumed by standard economic models, but they forecast how a social dilemma would evolve if they formed coalitions and then they act according to their most optimistic forecast. Formalizing this idea we propose the first predictive model of human cooperation able to organize a number of different experimental findings that are not explained by the standard model. We show also that the model makes satisfactorily accurate quantitative predictions of population average behavior in one-shot social dilemmas. PMID:24009679
Appuhamy, Jayasooriya A D R N; France, James; Kebreab, Ermias
2016-09-01
There are several models in the literature for predicting enteric methane (CH4 ) emissions. These models were often developed on region or country-specific data and may not be able to predict the emissions successfully in every region. The majority of extant models require dry matter intake (DMI) of individual animals, which is not routinely measured. The objectives of this study were to (i) evaluate performance of extant models in predicting enteric CH4 emissions from dairy cows in North America (NA), Europe (EU), and Australia and New Zealand (AUNZ) and (ii) explore the performance using estimated DMI. Forty extant models were challenged on 55, 105, and 52 enteric CH4 measurements (g per lactating cow per day) from NA, EU, and AUNZ, respectively. The models were ranked using root mean square prediction error as a percentage of the average observed value (RMSPE) and concordance correlation coefficient (CCC). A modified model of Nielsen et al. (Acta Agriculturae Scand Section A, 63, 2013 and 126) using DMI, and dietary digestible neutral detergent fiber and fatty acid contents as predictor variables, were ranked highest in NA (RMSPE = 13.1% and CCC = 0.78). The gross energy intake-based model of Yan et al. (Livestock Production Science, 64, 2000 and 253) and the updated IPCC Tier 2 model were ranked highest in EU (RMSPE = 11.0% and CCC = 0.66) and AUNZ (RMSPE = 15.6% and CCC = 0.75), respectively. DMI of cows in NA and EU was estimated satisfactorily with body weight and fat-corrected milk yield data (RMSPE < 12.0% and CCC > 0.60). Using estimated DMI, the Nielsen et al. (2013) (RMSPE = 12.7 and CCC = 0.79) and Yan et al. (2000) (RMSPE = 13.7 and CCC = 0.50) models still predicted emissions in respective regions well. Enteric CH4 emissions from dairy cows can be predicted successfully (i.e., RMSPE < 15%), if DMI can be estimated with reasonable accuracy (i.e., RMSPE < 10%). © 2016 John Wiley & Sons Ltd.
Ramirez-Avila, John J; Radcliffe, David E; Osmond, Deanna; Bolster, Carl; Sharpley, Andrew; Ortega-Achury, Sandra L; Forsberg, Adam; Oldham, J Larry
2017-11-01
The Agricultural Policy Environmental eXtender (APEX) model has been widely applied to assess phosphorus (P) loss in runoff water and has been proposed as a model to support practical decisions regarding agricultural P management, as well as a model to evaluate tools such as the P Index. The aim of this study is to evaluate the performance of APEX to simulate P losses from agricultural systems to determine its potential use for refinement or replacement of the P Index in the southern region of the United States. Uncalibrated and calibrated APEX model predictions were compared against measured water quality data from row crop fields in North Carolina and Mississippi and pasture fields in Arkansas and Georgia. Calibrated models satisfactorily predicted event-based surface runoff volumes at all sites (Nash-Sutcliffe efficiency [NSE] > 0.47, |percent bias [PBIAS]| < 34) except Arkansas (NSE < 0.11, |PBIAS| < 50) but did not satisfactory simulate sediment, dissolved P, or total P losses in runoff water. The APEX model tended to underestimate dissolved and total P losses from fields where manure was surface applied. The model also overestimated sediments and total P loads during irrigation events. We conclude that the capability of APEX to predict sediment and P losses is limited, and consequently so is the potential for using APEX to make P management recommendations to improve P Indices in the southern United States. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Technical Reports Server (NTRS)
Bowman, James S., Jr.
1955-01-01
An investigation is being conducted in the Langley 20-foot free-spinning tunnel on a 1/24-scale model of the Grumman F11F-1 airplane to determine spin and recovery characteristics and the minimum-size parachute required to satisfactorily terminate the spin in an emergency. Results obtained to date are presented herein. Test results indicate that it may be difficult to obtain an erect or inverted spin on the airplane, but, if a spin is obtained, the spin will be very oscillatory and recovery from the developed erect spin by rudder reversal may not be possible. The lateral controls will have no appreciable effect on recoveries from erect.spins. Recovery from the inverted spin by merely neutralizing the rudder will be satisfactory. After recoveries by rudder reversal and after recoveries from spins without control movement (no spins), the model oftentimes rolled very rapidly about the X-axis. Based on limited preliminary tests made in this investigation to make the model recover satisfactorily, it appears that canards near the nose of the airplane or differentially operated horizontal tails may be utilized to provide rapid recoveries. The parachute test results indicate that an 11-foot-diameter (laid-out-flat) parachute with a drag coefficient of 0.650 (based on the laid- out-flat diameter) and with a towline length equal to the wing span is the minimum-size parachute required to satisfactorily terminate an erect or inverted spin in an emergency.
NASA Astrophysics Data System (ADS)
Hallbauer-Zadorozhnaya, Valeriya; Santarato, Giovanni; Abu Zeid, Nasser
2015-08-01
In this paper, two separate but related goals are tackled. The first one is to demonstrate that in some saturated rock textures the non-linear behaviour of induced polarization (IP) and the violation of Ohm's law not only are real phenomena, but they can also be satisfactorily predicted by a suitable physical-mathematical model, which is our second goal. This model is based on Fick's second law. As the model links the specific dependence of resistivity and chargeability of a laboratory sample to the injected current and this in turn to its pore size distribution, it is able to predict pore size distribution from laboratory measurements, in good agreement with mercury injection capillary pressure test results. This fact opens up the possibility for hydrogeophysical applications on a macro scale. Mathematical modelling shows that the chargeability acquired in the field under normal conditions, that is at low current, will always be very small and approximately proportional to the applied current. A suitable field test site for demonstrating the possible reliance of both resistivity and chargeability on current was selected and a specific measuring strategy was established. Two data sets were acquired using different injected current strengths, while keeping the charging time constant. Observed variations of resistivity and chargeability are in agreement with those predicted by the mathematical model. These field test data should however be considered preliminary. If confirmed by further evidence, these facts may lead to changing the procedure of acquiring field measurements in future, and perhaps may encourage the design and building of a new specific geo-resistivity meter. This paper also shows that the well-known Marshall and Madden's equations based on Fick's law cannot be solved without specific boundary conditions.
Sophocleous, M.A.
1984-01-01
The salinity problems created in the Burrton area as a result of poor oil-field brine disposal practices of the past continue to be a major concern to the area depending on the Equus Beds aquifer for water, including the City of Wichita, Kansas. In this paper, an attempt is made to predict where and how fast the brine plume will move in this area, and what the average chloride concentrations in different parts of the aquifer are. In order to make such predictions, it was necessary to get a calibrated model of the groundwater-flow velocity field. Multiple regression analysis is used for parameter estimation of the steady-state groundwater-flow equation applied in the most critical area of the Equus Beds aquifer. Results of such an analysis produced a correlation coefficient of 0.992 between calculated and observed values of hydraulic head. A chloride transport modeling effort is then carried out despite some serious data deficiencies, the significance of which are evaluated through sensitivity analysis. Thus, starting with the quasi steady-state conditions of the early 1940's, it was possible to match the present chloride distribution satisfactorily. Chloride concentration predictions made for the year 2000 indicate that the quality of the Wichita well-field waters will not generally deteriorate from their present condition by that time. ?? 1984.
Santoro, Domenico; Crapulli, Ferdinando; Raisee, Mehrdad; Raspa, Giuseppe; Haas, Charles N
2015-06-16
Wastewater disinfection processes are typically designed according to heuristics derived from batch experiments in which the interaction among wastewater quality, reactor hydraulics, and inactivation kinetics is often neglected. In this paper, a computational fluid dynamics (CFD) study was conducted in a nondeterministic (ND) modeling framework to predict the Escherichia coli inactivation by peracetic acid (PAA) in municipal contact tanks fed by secondary settled wastewater effluent. The extent and variability associated with the observed inactivation kinetics were both satisfactorily predicted by the stochastic inactivation model at a 95% confidence level. Moreover, it was found that (a) the process variability induced by reactor hydraulics is negligible when compared to the one caused by inactivation kinetics, (b) the PAA dose required for meeting regulations is dictated equally by the fixed limit of the microbial concentration as well as its probability of occurrence, and (c) neglecting the probability of occurrence during process sizing could lead to an underestimation of the PAA dose required by as much as 100%. Finally, the ND-CFD model was used to generate sizing information in the form of probabilistic disinfection curves relating E. coli inactivation and probability of occurrence with the average PAA dose and PAA residual concentration at the outlet of the contact tank.
Luo, Chuan; Li, Zhaofu; Li, Hengpeng; Chen, Xiaomin
2015-09-02
The application of hydrological and water quality models is an efficient approach to better understand the processes of environmental deterioration. This study evaluated the ability of the Annualized Agricultural Non-Point Source (AnnAGNPS) model to predict runoff, total nitrogen (TN) and total phosphorus (TP) loading in a typical small watershed of a hilly region near Taihu Lake, China. Runoff was calibrated and validated at both an annual and monthly scale, and parameter sensitivity analysis was performed for TN and TP before the two water quality components were calibrated. The results showed that the model satisfactorily simulated runoff at annual and monthly scales, both during calibration and validation processes. Additionally, results of parameter sensitivity analysis showed that the parameters Fertilizer rate, Fertilizer organic, Canopy cover and Fertilizer inorganic were more sensitive to TN output. In terms of TP, the parameters Residue mass ratio, Fertilizer rate, Fertilizer inorganic and Canopy cover were the most sensitive. Based on these sensitive parameters, calibration was performed. TN loading produced satisfactory results for both the calibration and validation processes, whereas the performance of TP loading was slightly poor. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for the planning and management of watersheds.
A piecewise mass-spring-damper model of the human breast.
Cai, Yiqing; Chen, Lihua; Yu, Winnie; Zhou, Jie; Wan, Frances; Suh, Minyoung; Chow, Daniel Hung-Kay
2018-01-23
Previous models to predict breast movement whilst performing physical activities have, erroneously, assumed uniform elasticity within the breast. Consequently, the predicted displacements have not yet been satisfactorily validated. In this study, real time motion capture of the natural vibrations of a breast that followed, after raising and allowing it to fall freely, revealed an obvious difference in the vibration characteristics above and below the static equilibrium position. This implied that the elastic and viscous damping properties of a breast could vary under extension or compression. Therefore, a new piecewise mass-spring-damper model of a breast was developed with theoretical equations to derive values for its spring constants and damping coefficients from free-falling breast experiments. The effective breast mass was estimated from the breast volume extracted from a 3D body scanned image. The derived spring constant (k a = 73.5 N m -1 ) above the static equilibrium position was significantly smaller than that below it (k b = 658 N m -1 ), whereas the respective damping coefficients were similar (c a = 1.83 N s m -1 , c b = 2.07 N s m -1 ). These values were used to predict the nipple displacement during bare-breasted running for validation. The predicted and experimental results had a 2.6% or less root-mean-square-error of the theoretical and experimental amplitudes, so the piecewise mass-spring-damper model and equations were considered to have been successfully validated. This provides a theoretical basis for further research into the dynamic, nonlinear viscoelastic properties of different breasts and the prediction of external forces for the necessary breast support during different sports activities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Different modelling approaches to evaluate nitrogen transport and turnover at the watershed scale
NASA Astrophysics Data System (ADS)
Epelde, Ane Miren; Antiguedad, Iñaki; Brito, David; Jauch, Eduardo; Neves, Ramiro; Garneau, Cyril; Sauvage, Sabine; Sánchez-Pérez, José Miguel
2016-08-01
This study presents the simulation of hydrological processes and nutrient transport and turnover processes using two integrated numerical models: Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998), an empirical and semi-distributed numerical model; and Modelo Hidrodinâmico (MOHID) (Neves, 1985), a physics-based and fully distributed numerical model. This work shows that both models reproduce satisfactorily water and nitrate exportation at the watershed scale at annual and daily basis, MOHID providing slightly better results. At the watershed scale, both SWAT and MOHID simulated similarly and satisfactorily the denitrification amount. However, as MOHID numerical model was the only one able to reproduce adequately the spatial variation of the soil hydrological conditions and water table level fluctuation, it proved to be the only model able of reproducing the spatial variation of the nutrient cycling processes that are dependent to the soil hydrological conditions such as the denitrification process. This evidences the strength of the fully distributed and physics-based models to simulate the spatial variability of nutrient cycling processes that are dependent to the hydrological conditions of the soils.
Chemical data as markers of the geographical origins of sugarcane spirits.
Serafim, F A T; Pereira-Filho, Edenir R; Franco, D W
2016-04-01
In an attempt to classify sugarcane spirits according to their geographic region of origin, chemical data for 24 analytes were evaluated in 50 cachaças produced using a similar procedure in selected regions of Brazil: São Paulo - SP (15), Minas Gerais - MG (11), Rio de Janeiro - RJ (11), Paraiba -PB (9), and Ceará - CE (4). Multivariate analysis was applied to the analytical results, and the predictive abilities of different classification methods were evaluated. Principal component analysis identified five groups, and chemical similarities were observed between MG and SP samples and between RJ and PB samples. CE samples presented a distinct chemical profile. Among the samples, partial linear square discriminant analysis (PLS-DA) classified 50.2% of the samples correctly, K-nearest neighbor (KNN) 86%, and soft independent modeling of class analogy (SIMCA) 56.2%. Therefore, in this proof of concept demonstration, the proposed approach based on chemical data satisfactorily predicted the cachaças' geographic origins. Copyright © 2015 Elsevier Ltd. All rights reserved.
Caballero, D; Kaushik, S; Correlo, V M; Oliveira, J M; Reis, R L; Kundu, S C
2017-12-01
Most cancer patients do not die from the primary tumor but from its metastasis. Current in vitro and in vivo cancer models are incapable of satisfactorily predicting the outcome of various clinical treatments on patients. This is seen as a serious limitation and efforts are underway to develop a new generation of highly predictive cancer models with advanced capabilities. In this regard, organ-on-chip models of cancer metastasis emerge as powerful predictors of disease progression. They offer physiological-like conditions where the (hypothesized) mechanistic determinants of the disease can be assessed with ease. Combined with high-throughput characteristics, the employment of organ-on-chip technology would allow pharmaceutical companies and clinicians to test new therapeutic compounds and therapies. This will permit the screening of a large battery of new drugs in a fast and economic manner, to accelerate the diagnosis of the disease in the near future, and to test personalized treatments using cells from patients. In this review, we describe the latest advances in the field of organ-on-chip models of cancer metastasis and their integration with advanced imaging, screening and biosensing technologies for future precision medicine applications. We focus on their clinical applicability and market opportunities to drive us forward to the next generation of tumor models for improved cancer patient theranostics. Copyright © 2017 Elsevier Ltd. All rights reserved.
GOBF-ARMA based model predictive control for an ideal reactive distillation column.
Seban, Lalu; Kirubakaran, V; Roy, B K; Radhakrishnan, T K
2015-11-01
This paper discusses the control of an ideal reactive distillation column (RDC) using model predictive control (MPC) based on a combination of deterministic generalized orthonormal basis filter (GOBF) and stochastic autoregressive moving average (ARMA) models. Reactive distillation (RD) integrates reaction and distillation in a single process resulting in process and energy integration promoting green chemistry principles. Improved selectivity of products, increased conversion, better utilization and control of reaction heat, scope for difficult separations and the avoidance of azeotropes are some of the advantages that reactive distillation offers over conventional technique of distillation column after reactor. The introduction of an in situ separation in the reaction zone leads to complex interactions between vapor-liquid equilibrium, mass transfer rates, diffusion and chemical kinetics. RD with its high order and nonlinear dynamics, and multiple steady states is a good candidate for testing and verification of new control schemes. Here a combination of GOBF-ARMA models is used to catch and represent the dynamics of the RDC. This GOBF-ARMA model is then used to design an MPC scheme for the control of product purity of RDC under different operating constraints and conditions. The performance of proposed modeling and control using GOBF-ARMA based MPC is simulated and analyzed. The proposed controller is found to perform satisfactorily for reference tracking and disturbance rejection in RDC. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bjerg, Poul L.; Ammentorp, Hans C.; Christensen, Thomas H.
1993-04-01
A large-scale and long-term field experiment on cation exchange in a sandy aquifer has been modelled by a three-dimensional geochemical transport model. The geochemical model includes cation-exchange processes using a Gaines-Thomas expression, the closed carbonate system and the effects of ionic strength. Information on geology, hydrogeology and the transient conservative solute transport behaviour was obtained from a dispersion study in the same aquifer. The geochemical input parameters were carefully examined. CEC and selectivity coefficients were determined on the actual aquifer material by batch experiments and by the composition of the cations on the exchange complex. Potassium showed a non-ideal exchange behaviour with KCa selectivity coefficients indicating dependency on equivalent fraction and K + concentration in the aqueous phase. The model simulations over a distance of 35 m and a period of 250 days described accurately the observed attenuation of Na and the expelled amounts of Ca and Mg. Also, model predictions of plateau zones, formed by interaction with the background groundwater, in general agreed satisfactorily with the observations. Transport of K was simulated over a period of 800 days due to a substantially attenuation in the aquifer. The observed and the predicted breakthrough curves showed a reasonable accordance taking the duration of the experiment into account. However, some discrepancies were observed probably caused by the revealed non-ideal exchange behaviour of K +.
Kinetics of alkali-based photocathode degradation
Pavlenko, Vitaly; Liu, Fangze; Hoffbauer, Mark A.; ...
2016-11-02
Here, we report on a kinetic model that describes the degradation of the quantum efficiency (QE) of Cs 3Sb and negative electron affinity (NEA) GaAs photocathodes under UHV conditions. Additionally, the generally accepted irreversible chemical change of a photocathode’s surface due to reactions with residual gases, such as O 2, CO 2, and H 2O, the model incorporates an intermediate reversible physisorption step, similar to Langmuir adsorption. Moreover, this intermediate step is needed to satisfactorily describe the strongly non-exponential QE degradation curves for two distinctly different classes of photocathodes –surface-activated and “bulk,” indicating that in both systems the QE degradationmore » results from surface damage. The recovery of the QE upon improvement of vacuum conditions is also accurately predicted by this model with three parameters (rates of gas adsorption, desorption, and irreversible chemical reaction with the surface) comprising metrics to better characterize the lifetime of the cathodes, instead of time-pressure exposure expressed in Langmuir units.« less
Evaluation of WRF Parameterizations for Air Quality Applications over the Midwest USA
NASA Astrophysics Data System (ADS)
Zheng, Z.; Fu, K.; Balasubramanian, S.; Koloutsou-Vakakis, S.; McFarland, D. M.; Rood, M. J.
2017-12-01
Reliable predictions from Chemical Transport Models (CTMs) for air quality research require accurate gridded weather inputs. In this study, a sensitivity analysis of 17 Weather Research and Forecast (WRF) model runs was conducted to explore the optimum configuration in six physics categories (i.e., cumulus, surface layer, microphysics, land surface model, planetary boundary layer, and longwave/shortwave radiation) for the Midwest USA. WRF runs were initally conducted over four days in May 2011 for a 12 km x 12 km domain over contiguous USA and a nested 4 km x 4 km domain over the Midwest USA (i.e., Illinois and adjacent areas including Iowa, Indiana, and Missouri). Model outputs were evaluated statistically by comparison with meteorological observations (DS337.0, METAR data, and the Water and Atmospheric Resources Monitoring Network) and resulting statistics were compared to benchmark values from the literature. Identified optimum configurations of physics parametrizations were then evaluated for the whole months of May and October 2011 to evaluate WRF model performance for Midwestern spring and fall seasons. This study demonstrated that for the chosen physics options, WRF predicted well temperature (Index of Agreement (IOA) = 0.99), pressure (IOA = 0.99), relative humidity (IOA = 0.93), wind speed (IOA = 0.85), and wind direction (IOA = 0.97). However, WRF did not predict daily precipitation satisfactorily (IOA = 0.16). Developed gridded weather fields will be used as inputs to a CTM ensemble consisting of the Comprehensive Air Quality Model with Extensions to study impacts of chemical fertilizer usage on regional air quality in the Midwest USA.
An analytical approach to the rise velocity of periodic bubble trains in non-Newtonian fluids.
Frank, X; Li, H Z; Funfschilling, D
2005-01-01
The present study aims at providing insight into the acceleration mechanism of a bubble chain rising in shear-thinning viscoelastic fluids. The experimental investigation by the Particle Image Velocimetry (PIV), birefringence visualisation and rheological simulation shows that two aspects are central to bubble interactions in such media: the stress creation by the passage of bubbles, and their relaxation due to the fluid's memory forming an evanescent corridor of reduced viscosity. Interactions between bubbles were taken into account mainly through a linear superposition of the stress evolution behind each bubble. An analytical approach together with the rheological consideration was developed to compute the rise velocity of a bubble chain in function of the injection period and bubble volume. The model predictions compare satisfactorily with the experimental investigation.
Numerical Simulation of Noise from Supersonic Jets Passing Through a Rigid Duct
NASA Technical Reports Server (NTRS)
Kandula, Max
2012-01-01
The generation, propagation and radiation of sound from a perfectly expanded Mach 2.5 cold supersonic jet flowing through an enclosed rigid-walled duct with an upstream J-deflector have been numerically simulated with the aid of OVERFLOW Navier-Stokes CFD code. A one-equation turbulence model is considered. While the near-field sound sources are computed by the CFD code, the far-field sound is evaluated by Kirchhoff surface integral formulation. Predictions of the farfield directivity of the OASPL (Overall Sound Pressure Level) agree satisfactorily with the experimental data previously reported by the author. Calculations also suggest that there is significant entrainment of air into the duct, with the mass flow rate of entrained air being about three times the jet exit mass flow rate.
A study of the stress wave factor technique for evaluation of composite materials
NASA Technical Reports Server (NTRS)
Duke, J. C., Jr.; Henneke, E. G., II; Kiernan, M. T.; Grosskopf, P. P.
1989-01-01
The acousto-ultrasonic approach for nondestructive evaluation provides a measurement procedure for quantifying the integrated effect of globally distributed damage characteristic of fiber reinforced composite materials. The evaluation procedure provides a stress wave factor that correlates closely with several material performance parameters. The procedure was investigated for a variety of materials including advanced composites, hybrid structure bonds, adhesive bonds, wood products, and wire rope. The research program focused primarily on development of fundamental understanding and applications advancements of acousto-ultrasonics for materials characterization. This involves characterization of materials for which detection, location, and identification of imperfections cannot at present be analyzed satisfactorily with mechanical performance prediction models. In addition to presenting definitive studies on application potentials, the understanding of the acousto-ultrasonic method as applied to advanced composites is reviewed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Mei; Wang, Dong, E-mail: wangdong@nju.edu.cn; Wang, Yuankun
In recent years, the phase-space reconstruction method has usually been used for mid- and long-term runoff predictions. However, the traditional phase-space reconstruction method is still needs to be improved. Using the genetic algorithm to improve the phase-space reconstruction method, a new nonlinear model of monthly runoff is constructed. The new model does not rely heavily on embedding dimensions. Recognizing that the rainfall–runoff process is complex, affected by a number of factors, more variables (e.g. temperature and rainfall) are incorporated in the model. In order to detect the possible presence of chaos in the runoff dynamics, chaotic characteristics of the modelmore » are also analyzed, which shows the model can represent the nonlinear and chaotic characteristics of the runoff. The model is tested for its forecasting performance in four types of experiments using data from six hydrological stations on the Yellow River and the Yangtze River. Results show that the medium-and long-term runoff is satisfactorily forecasted at the hydrological stations. Not only is the forecasting trend accurate, but also the mean absolute percentage error is no more than 15%. Moreover, the forecast results of wet years and dry years are both good, which means that the improved model can overcome the traditional ‘‘wet years and dry years predictability barrier,’’ to some extent. The model forecasts for different regions are all good, showing the universality of the approach. Compared with selected conceptual and empirical methods, the model exhibits greater reliability and stability in the long-term runoff prediction. Our study provides a new thinking for research on the association between the monthly runoff and other hydrological factors, and also provides a new method for the prediction of the monthly runoff. - Highlights: • The improved phase-space reconstruction model of monthly runoff is established. • Two variables (temperature and rainfall) are incorporated in the model. • Chaotic characteristics of the model are also analyzed. • The forecast results of the mid and long-term runoff in six stations are accurate.« less
Bridging scales in the evolution of infectious disease life histories: theory.
Day, Troy; Alizon, Samuel; Mideo, Nicole
2011-12-01
A significant goal of recent theoretical research on pathogen evolution has been to develop theory that bridges within- and between-host dynamics. The main approach used to date is one that nests within-host models of pathogen replication in models for the between-host spread of infectious diseases. Although this provides an elegant approach, it nevertheless suffers from some practical difficulties. In particular, the information required to satisfactorily model the mechanistic details of the within-host dynamics is not often available. Here, we present a theoretical approach that circumvents these difficulties by quantifying the relevant within-host factors in an empirically tractable way. The approach is closely related to quantitative genetic models for function-valued traits, and it also allows for the prediction of general characteristics of disease life history, including the timing of virulence, transmission, and host recovery. In a companion paper, we illustrate the approach by applying it to data from a model system of malaria. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Application of Reactive Transport Modeling to Heap Bioleaching of Copper
NASA Astrophysics Data System (ADS)
Liu, W.
2017-12-01
Copper heap bioleaching is a complex industrial process that utilizes oxidative chemical leaching and microbial activities to extract copper from packed ore beds. Mathematical modelling is an effective tool for identifying key factors that determine the leaching performance. HeapSim is a modelling tool that incorporates all fundamental processes that occur in a heap under leach, such as the movement of leaching solution, chemical reaction kinetics, heat transfer, and microbial activities, to predict the leaching behavior of a heap. In this study, the HeapSim model was applied to simulate chalcocite heap bioleaching at Quebrada Blanca mine located in the Northern Chile. The main findings were that the model could be satisfactorily calibrated and validated to simulate chalcocite leaching. Heap temperature was sensitive to the changes in the raffinate temperature, raffinate flow rate, and the extent of pyrite oxidation. At high flow rates, heap temperature was controlled by the raffinate temperature. In contrast, heat removal by the raffinate solution flow was insignificant at low flow rates, leading to the accumulation of heat generated by pyrite reaction and therefore an increase in heap temperature.
Stochastic entangled chain dynamics of dense polymer solutions.
Kivotides, Demosthenes; Wilkin, S Louise; Theofanous, Theo G
2010-10-14
We propose an adjustable-parameter-free, entangled chain dynamics model of dense polymer solutions. The model includes the self-consistent dynamics of molecular chains and solvent by describing the former via coarse-grained polymer dynamics that incorporate hydrodynamic interaction effects, and the latter via the forced Stokes equation. Real chain elasticity is modeled via the inclusion of a Pincus regime in the polymer's force-extension curve. Excluded volume effects are taken into account via the combined action of coarse-grained intermolecular potentials and explicit geometric tracking of chain entanglements. We demonstrate that entanglements are responsible for a new (compared to phantom chain dynamics), slow relaxation mode whose characteristic time scale agrees very well with experiment. Similarly good agreement between theory and experiment is also obtained for the equilibrium chain size. We develop methods for the solution of the model in periodic flow domains and apply them to the computation of entangled polymer solutions in equilibrium. We show that the number of entanglements Π agrees well with the number of entanglements expected on the basis of tube theory, satisfactorily reproducing the latter's scaling of Π with the polymer volume fraction φ. Our model predicts diminishing chain size with concentration, thus vindicating Flory's suggestion of excluded volume effects screening in dense solutions. The predicted scaling of chain size with φ is consistent with the heuristic, Flory theory based value.
Modeling effect of cover condition and soil type on rotavirus transport in surface flow.
Bhattarai, Rabin; Davidson, Paul C; Kalita, Prasanta K; Kuhlenschmidt, Mark S
2017-08-01
Runoff from animal production facilities contains various microbial pathogens which pose a health hazard to both humans and animals. Rotavirus is a frequently detected pathogen in agricultural runoff and the leading cause of death among children around the world. Diarrheal infection caused by rotavirus causes more than two million hospitalizations and death of more than 500,000 children every year. Very little information is available on the environmental factors governing rotavirus transport in surface runoff. The objective of this study is to model rotavirus transport in overland flow and to compare the model results with experimental observations. A physically based model, which incorporates the transport of infective rotavirus particles in both liquid (suspension or free-floating) and solid phase (adsorbed to soil particles), has been used in this study. Comparison of the model results with experimental results showed that the model could reproduce the recovery kinetics satisfactorily but under-predicted the virus recovery in a few cases when multiple peaks were observed during experiments. Similarly, the calibrated model had a good agreement between observed and modeled total virus recovery. The model may prove to be a promising tool for developing effective management practices for controlling microbial pathogens in surface runoff.
NASA Technical Reports Server (NTRS)
Klinar, Walter J.; Healy, Frederick M.
1952-01-01
An investigation of a 1/24-scale model of the Grumman F9F-6 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The erect and inverted spin and recovery characteristics of the model were determined for the normal flight loading with the model in the clean condition. The effect of loading variations was investigated briefly. Spin-recovery parachute tests were also performed. The results indicate that erect spins obtained on the airplane in the clean condition will be satisfactorily terminated for all loading conditions provided full rudder reversal is accompanied by moving the ailerons and flaperons (lateral controls) to full with the spin (stick right in a right spin). Inverted spins should be satisfactorily terminated by full reversal of the rudder alone. The model tests indicate that an 11.4-foot (laid-out-flat diameter) tail parachute (drag coefficient approximately 0.73) should be effective as an emergency spin-recovery device during demonstration spins of the airplane provided the towline is attached above the horizontal stabilizer.
NASA Astrophysics Data System (ADS)
Delsman, J. R.; Hu-a-ng, K. R. M.; Vos, P. C.; de Louw, P. G. B.; Oude Essink, G. H. P.; Stuyfzand, P. J.; Bierkens, M. F. P.
2013-11-01
Management of coastal fresh groundwater reserves requires a thorough understanding of the present-day groundwater salinity distribution and its possible future development. However, coastal groundwater often still reflects a complex history of marine transgressions and regressions, and is only rarely in equilibrium with current boundary conditions. In addition, the distribution of groundwater salinity is virtually impossible to characterize satisfactorily, complicating efforts to model and predict coastal groundwater flow. A way forward may be to account for the historical development of groundwater salinity when modeling present-day coastal groundwater flow. In this paper, we construct a palaeo-hydrogeological model to simulate the evolution of groundwater salinity in the coastal area of the Netherlands throughout the Holocene. While intended as a perceptual tool, confidence in our model results is warranted by a good correspondence with a hydrochemical characterization of groundwater origin. Model results attest to the impact of groundwater density differences on coastal groundwater flow on millennial timescales and highlight their importance in shaping today's groundwater salinity distribution. Not once reaching steady-state throughout the Holocene, our results demonstrate the long-term dynamics of salinity in coastal aquifers. This stresses the importance of accounting for the historical evolution of coastal groundwater salinity when modeling present-day coastal groundwater flow, or when predicting impacts of e.g. sea level rise on coastal aquifers. Of more local importance, our findings suggest a more significant role of pre-Holocene groundwater in the present-day groundwater salinity distribution in the Netherlands than previously recognized. The implications of our results extend beyond understanding the present-day distribution of salinity, as the proven complex history of coastal groundwater also holds important clues for understanding and predicting the distribution of other societally relevant groundwater constituents.
Nonlinear response and bistability of driven ion acoustic waves
NASA Astrophysics Data System (ADS)
Akbari-Moghanjoughi, M.
2017-08-01
The hydrodynamic model is used to obtain a generalized pseudoforce equation through which the nonlinear response of periodically driven ion acoustic waves is studied in an electron-ion plasma with isothermal and adiabatic ion fluids. The pseudotime series, corresponding to different driving frequencies, indicates that nonlinearity effects appear more strongly for smaller frequency values. The existence of extra harmonic resonances in the nonlinear amplitude spectrum is a clear indication of the interaction of an external force with harmonic components of the nonlinear ion acoustic waves. It is shown that many plasma parameters significantly and differently affect the nonlinear resonance spectrum of ion acoustic excitations. A heuristic but accurate model for the foldover effect is used which quite satisfactorily predicts the bistability of driven plasma oscillations. It is remarked that the characteristic resonance peak of isothermal ion plasma oscillations appears at lower frequencies but is stronger compared to that of adiabatic ions. Comparison of the exact numerical results for fully nonlinear and approximate (weakly nonlinear) models indicates that a weakly nonlinear model exaggerates the hysteresis and jump phenomenon for higher values of the external force amplitude.
NASA Astrophysics Data System (ADS)
van Schaik, Joris W. J.; Kleja, Dan B.; Gustafsson, Jon Petter
2010-02-01
Vast amounts of knowledge about the proton- and metal-binding properties of dissolved organic matter (DOM) in natural waters have been obtained in studies on isolated humic and fulvic (hydrophobic) acids. Although macromolecular hydrophilic acids normally make up about one-third of DOM, their proton- and metal-binding properties are poorly known. Here, we investigated the acid-base and Cu-binding properties of the hydrophobic (fulvic) acid fraction and two hydrophilic fractions isolated from a soil solution. Proton titrations revealed a higher total charge for the hydrophilic acid fractions than for the hydrophobic acid fraction. The most hydrophilic fraction appeared to be dominated by weak acid sites, as evidenced by increased slope of the curve of surface charge versus pH at pH values above 6. The titration curves were poorly predicted by both Stockholm Humic Model (SHM) and NICA-Donnan model calculations using generic parameter values, but could be modelled accurately after optimisation of the proton-binding parameters (pH ⩽ 9). Cu-binding isotherms for the three fractions were determined at pH values of 4, 6 and 9. With the optimised proton-binding parameters, the SHM model predictions for Cu binding improved, whereas the NICA-Donnan predictions deteriorated. After optimisation of Cu-binding parameters, both models described the experimental data satisfactorily. Iron(III) and aluminium competed strongly with Cu for binding sites at both pH 4 and pH 6. The SHM model predicted this competition reasonably well, but the NICA-Donnan model underestimated the effects significantly at pH 6. Overall, the Cu-binding behaviour of the two hydrophilic acid fractions was very similar to that of the hydrophobic acid fraction, despite the differences observed in proton-binding characteristics. These results show that for modelling purposes, it is essential to include the hydrophilic acid fraction in the pool of 'active' humic substances.
Tabelin, Carlito Baltazar; Sasaki, Ryosuke; Igarashi, Toshifumi; Park, Ilhwan; Tamoto, Shuichi; Arima, Takahiko; Ito, Mayumi; Hiroyoshi, Naoki
2017-12-01
Predicting the fates of arsenic (As) and selenium (Se) in natural geologic media like rocks and soils necessitates the understanding of how their various oxyanionic species behave and migrate under dynamic conditions. In this study, geochemical factors and processes crucial in the leaching and transport of arsenite (As III ), arsenate (As V ), selenite (Se IV ) and selenate (Se VI ) in tunnel-excavated rocks of marine origin were investigated using microscopic/extraction techniques, column experiments, dissolution-precipitation kinetics and one-dimensional reactive transport modeling. The results showed that evaporite salts were important because aside from containing As and Se, they played crucial roles in the evolution of pH and concentrations of coexisting ions, both of which had strong effects on adsorption-desorption reactions of As and Se species with iron oxyhydroxide minerals/phases. The observed leaching trends of As V , As III , Se IV and Se VI were satisfactorily simulated by one-dimensional reactive transport models, which predict that preferential adsorptions of As V and Se IV were magnified by geochemical changes in the columns due to water flow. Moreover, our results showed that migrations of As III , Se IV and Se VI could be predicted adequately by 1D solute transport with simple activity-K' d approach, but surface complexation was more reliable to simulate adsorption-desorption behavior of As V . Copyright © 2017 Elsevier Ltd. All rights reserved.
Ebadi, M R; Sedghi, M; Golian, A; Ahmadi, H
2011-10-01
Accurate knowledge of true digestible amino acid (TDAA) contents of feedstuffs is necessary to accurately formulate poultry diets for profitable production. Several experimental approaches that are highly expensive and time consuming have been used to determine available amino acids. Prediction of the nutritive value of a feed ingredient from its chemical composition via regression methodology has been attempted for many years. The artificial neural network (ANN) model is a powerful method that may describe the relationship between digestible amino acid contents and chemical composition. Therefore, multiple linear regressions (MLR) and ANN models were developed for predicting the TDAA contents of sorghum grain based on chemical composition. A precision-fed assay trial using cecectomized roosters was performed to determine the TDAA contents in 48 sorghum samples from 12 sorghum varieties differing in chemical composition. The input variables for both MLR and ANN models were CP, ash, crude fiber, ether extract, and total phenols whereas the output variable was each individual TDAA for every sample. The results of this study revealed that it is possible to satisfactorily estimate the TDAA of sorghum grain through its chemical composition. The chemical composition of sorghum grain seems to highly influence the TDAA contents when considering components such as CP, crude fiber, ether extract, ash and total phenols. It is also possible to estimate the TDAA contents through multiple regression equations with reasonable accuracy depending on composition. However, a more satisfactory prediction may be achieved via ANN for all amino acids. The R(2) values for the ANN model corresponding to testing and training parameters showed a higher accuracy of prediction than equations established by the MLR method. In addition, the current data confirmed that chemical composition, often considered in total amino acid prediction, could be also a useful predictor of true digestible values of selected amino acids for poultry.
NASA Astrophysics Data System (ADS)
Lee, Jong-Chul; Lee, Won-Ho; Kim, Woun-Jea
2015-09-01
The design and development procedures of SF6 gas circuit breakers are still largely based on trial and error through testing although the development costs go higher every year. The computation cannot cover the testing satisfactorily because all the real processes arc not taken into account. But the knowledge of the arc behavior and the prediction of the thermal-flow inside the interrupters by numerical simulations are more useful than those by experiments due to the difficulties to obtain physical quantities experimentally and the reduction of computational costs in recent years. In this paper, in order to get further information into the interruption process of a SF6 self-blast interrupter, which is based on a combination of thermal expansion and the arc rotation principle, gas flow simulations with a CFD-arc modeling are performed during the whole switching process such as high-current period, pre-current zero period, and current-zero period. Through the complete work, the pressure-rise and the ramp of the pressure inside the chamber before current zero as well as the post-arc current after current zero should be a good criterion to predict the short-line fault interruption performance of interrupters.
Luo, Chuan; Li, Zhaofu; Li, Hengpeng; Chen, Xiaomin
2015-01-01
The application of hydrological and water quality models is an efficient approach to better understand the processes of environmental deterioration. This study evaluated the ability of the Annualized Agricultural Non-Point Source (AnnAGNPS) model to predict runoff, total nitrogen (TN) and total phosphorus (TP) loading in a typical small watershed of a hilly region near Taihu Lake, China. Runoff was calibrated and validated at both an annual and monthly scale, and parameter sensitivity analysis was performed for TN and TP before the two water quality components were calibrated. The results showed that the model satisfactorily simulated runoff at annual and monthly scales, both during calibration and validation processes. Additionally, results of parameter sensitivity analysis showed that the parameters Fertilizer rate, Fertilizer organic, Canopy cover and Fertilizer inorganic were more sensitive to TN output. In terms of TP, the parameters Residue mass ratio, Fertilizer rate, Fertilizer inorganic and Canopy cover were the most sensitive. Based on these sensitive parameters, calibration was performed. TN loading produced satisfactory results for both the calibration and validation processes, whereas the performance of TP loading was slightly poor. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for the planning and management of watersheds. PMID:26364642
NASA Astrophysics Data System (ADS)
Chang, Guobin; Xu, Tianhe; Yao, Yifei; Wang, Qianxin
2018-01-01
In order to incorporate the time smoothness of ionospheric delay to aid the cycle slip detection, an adaptive Kalman filter is developed based on variance component estimation. The correlations between measurements at neighboring epochs are fully considered in developing a filtering algorithm for colored measurement noise. Within this filtering framework, epoch-differenced ionospheric delays are predicted. Using this prediction, the potential cycle slips are repaired for triple-frequency signals of global navigation satellite systems. Cycle slips are repaired in a stepwise manner; i.e., for two extra wide lane combinations firstly and then for the third frequency. In the estimation for the third frequency, a stochastic model is followed in which the correlations between the ionospheric delay prediction errors and the errors in the epoch-differenced phase measurements are considered. The implementing details of the proposed method are tabulated. A real BeiDou Navigation Satellite System data set is used to check the performance of the proposed method. Most cycle slips, no matter trivial or nontrivial, can be estimated in float values with satisfactorily high accuracy and their integer values can hence be correctly obtained by simple rounding. To be more specific, all manually introduced nontrivial cycle slips are correctly repaired.
NASA Astrophysics Data System (ADS)
Li, Laifang; Li, Wenhong; Tang, Qiuhong; Zhang, Pengfei; Liu, Yimin
2016-01-01
Warm season heavy rainfall events over the Huaihe River Valley (HRV) of China are amongst the top causes of agriculture and economic loss in this region. Thus, there is a pressing need for accurate seasonal prediction of HRV heavy rainfall events. This study improves the seasonal prediction of HRV heavy rainfall by implementing a novel rainfall framework, which overcomes the limitation of traditional probability models and advances the statistical inference on HRV heavy rainfall events. The framework is built on a three-cluster Normal mixture model, whose distribution parameters are sampled using Bayesian inference and Markov Chain Monte Carlo algorithm. The three rainfall clusters reflect probability behaviors of light, moderate, and heavy rainfall, respectively. Our analysis indicates that heavy rainfall events make the largest contribution to the total amount of seasonal precipitation. Furthermore, the interannual variation of summer precipitation is attributable to the variation of heavy rainfall frequency over the HRV. The heavy rainfall frequency, in turn, is influenced by sea surface temperature anomalies (SSTAs) over the north Indian Ocean, equatorial western Pacific, and the tropical Atlantic. The tropical SSTAs modulate the HRV heavy rainfall events by influencing atmospheric circulation favorable for the onset and maintenance of heavy rainfall events. Occurring 5 months prior to the summer season, these tropical SSTAs provide potential sources of prediction skill for heavy rainfall events over the HRV. Using these preceding SSTA signals, we show that the support vector machine algorithm can predict HRV heavy rainfall satisfactorily. The improved prediction skill has important implication for the nation's disaster early warning system.
High Throughput In vivo Analysis of Plant Leaf Chemical Properties Using Hyperspectral Imaging
Pandey, Piyush; Ge, Yufeng; Stoerger, Vincent; Schnable, James C.
2017-01-01
Image-based high-throughput plant phenotyping in greenhouse has the potential to relieve the bottleneck currently presented by phenotypic scoring which limits the throughput of gene discovery and crop improvement efforts. Numerous studies have employed automated RGB imaging to characterize biomass and growth of agronomically important crops. The objective of this study was to investigate the utility of hyperspectral imaging for quantifying chemical properties of maize and soybean plants in vivo. These properties included leaf water content, as well as concentrations of macronutrients nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), and sulfur (S), and micronutrients sodium (Na), iron (Fe), manganese (Mn), boron (B), copper (Cu), and zinc (Zn). Hyperspectral images were collected from 60 maize and 60 soybean plants, each subjected to varying levels of either water deficit or nutrient limitation stress with the goal of creating a wide range of variation in the chemical properties of plant leaves. Plants were imaged on an automated conveyor belt system using a hyperspectral imager with a spectral range from 550 to 1,700 nm. Images were processed to extract reflectance spectrum from each plant and partial least squares regression models were developed to correlate spectral data with chemical data. Among all the chemical properties investigated, water content was predicted with the highest accuracy [R2 = 0.93 and RPD (Ratio of Performance to Deviation) = 3.8]. All macronutrients were also quantified satisfactorily (R2 from 0.69 to 0.92, RPD from 1.62 to 3.62), with N predicted best followed by P, K, and S. The micronutrients group showed lower prediction accuracy (R2 from 0.19 to 0.86, RPD from 1.09 to 2.69) than the macronutrient groups. Cu and Zn were best predicted, followed by Fe and Mn. Na and B were the only two properties that hyperspectral imaging was not able to quantify satisfactorily (R2 < 0.3 and RPD < 1.2). This study suggested the potential usefulness of hyperspectral imaging as a high-throughput phenotyping technology for plant chemical traits. Future research is needed to test the method more thoroughly by designing experiments to vary plant nutrients individually and cover more plant species, genotypes, and growth stages. PMID:28824683
High Throughput In vivo Analysis of Plant Leaf Chemical Properties Using Hyperspectral Imaging.
Pandey, Piyush; Ge, Yufeng; Stoerger, Vincent; Schnable, James C
2017-01-01
Image-based high-throughput plant phenotyping in greenhouse has the potential to relieve the bottleneck currently presented by phenotypic scoring which limits the throughput of gene discovery and crop improvement efforts. Numerous studies have employed automated RGB imaging to characterize biomass and growth of agronomically important crops. The objective of this study was to investigate the utility of hyperspectral imaging for quantifying chemical properties of maize and soybean plants in vivo . These properties included leaf water content, as well as concentrations of macronutrients nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), and sulfur (S), and micronutrients sodium (Na), iron (Fe), manganese (Mn), boron (B), copper (Cu), and zinc (Zn). Hyperspectral images were collected from 60 maize and 60 soybean plants, each subjected to varying levels of either water deficit or nutrient limitation stress with the goal of creating a wide range of variation in the chemical properties of plant leaves. Plants were imaged on an automated conveyor belt system using a hyperspectral imager with a spectral range from 550 to 1,700 nm. Images were processed to extract reflectance spectrum from each plant and partial least squares regression models were developed to correlate spectral data with chemical data. Among all the chemical properties investigated, water content was predicted with the highest accuracy [ R 2 = 0.93 and RPD (Ratio of Performance to Deviation) = 3.8]. All macronutrients were also quantified satisfactorily ( R 2 from 0.69 to 0.92, RPD from 1.62 to 3.62), with N predicted best followed by P, K, and S. The micronutrients group showed lower prediction accuracy ( R 2 from 0.19 to 0.86, RPD from 1.09 to 2.69) than the macronutrient groups. Cu and Zn were best predicted, followed by Fe and Mn. Na and B were the only two properties that hyperspectral imaging was not able to quantify satisfactorily ( R 2 < 0.3 and RPD < 1.2). This study suggested the potential usefulness of hyperspectral imaging as a high-throughput phenotyping technology for plant chemical traits. Future research is needed to test the method more thoroughly by designing experiments to vary plant nutrients individually and cover more plant species, genotypes, and growth stages.
NASA Technical Reports Server (NTRS)
Sivells, James C
1947-01-01
Report presents the results of an investigation conducted to determine some of the effects of airfoil section and washout on the experimental and calculated characteristics of 10-percent-thick wings. Three wings of aspect ratio 9 and ratio of root chord to tip chord 2.5 were tested. One wing had NACA 64-210 sections and 2 degree washout, the second had NACA 65-210 sections and 2 degree washout, and the third had NACA 65-210 sections and 0 degree washout. It was found that the experimental characteristics of the wings could be satisfactorily predicted from calculations based upon two-dimensional data when the airfoil contours of the wings conformed to the true airfoil sections with the same high degree of accuracy as the two-dimensional models.
A GDP-driven model for the binary and weighted structure of the International Trade Network
NASA Astrophysics Data System (ADS)
Almog, Assaf; Squartini, Tiziano; Garlaschelli, Diego
2015-01-01
Recent events such as the global financial crisis have renewed the interest in the topic of economic networks. One of the main channels of shock propagation among countries is the International Trade Network (ITN). Two important models for the ITN structure, the classical gravity model of trade (more popular among economists) and the fitness model (more popular among networks scientists), are both limited to the characterization of only one representation of the ITN. The gravity model satisfactorily predicts the volume of trade between connected countries, but cannot reproduce the missing links (i.e. the topology). On the other hand, the fitness model can successfully replicate the topology of the ITN, but cannot predict the volumes. This paper tries to make an important step forward in the unification of those two frameworks, by proposing a new gross domestic product (GDP) driven model which can simultaneously reproduce the binary and the weighted properties of the ITN. Specifically, we adopt a maximum-entropy approach where both the degree and the strength of each node are preserved. We then identify strong nonlinear relationships between the GDP and the parameters of the model. This ultimately results in a weighted generalization of the fitness model of trade, where the GDP plays the role of a ‘macroeconomic fitness’ shaping the binary and the weighted structure of the ITN simultaneously. Our model mathematically explains an important asymmetry in the role of binary and weighted network properties, namely the fact that binary properties can be inferred without the knowledge of weighted ones, while the opposite is not true.
High subsonic flow tests of a parallel pipe followed by a large area ratio diffuser
NASA Technical Reports Server (NTRS)
Barna, P. S.
1975-01-01
Experiments were performed on a pilot model duct system in order to explore its aerodynamic characteristics. The model was scaled from a design projected for the high speed operation mode of the Aircraft Noise Reduction Laboratory. The test results show that the model performed satisfactorily and therefore the projected design will most likely meet the specifications.
One-dimensional Analytical Modelling of Floating Seed Dispersal in Tidal Channels
NASA Astrophysics Data System (ADS)
Shi, W.; Purnama, A.; Shao, D.; Cui, B.; Gao, W.
2017-12-01
Seed dispersal is a primary factor influencing plant community development, and thus plays a critical role in maintaining wetland ecosystem functioning. However, compared with fluvial seed dispersal of riparian plants, dispersal of saltmarsh plant seeds in tidal channels is much less studied due to its complex behavior, and relevant mathematical modelling is particularly lacking. In this study, we developed a one-dimensional advection-dispersion model to explore the patterns of tidal seed dispersal. Oscillatory tidal current and water depth were assumed to represent the tidal effects. An exponential decay coefficient λ was introduced to account for seed deposition and retention. Analytical solution in integral form was derived using Green's function and further evaluated using numerical integration. The developed model was applied to simulate Spartina densiflora seed dispersal in a tidal channel located at the Mad River Slough in North Humboldt Bay, California, USA, to demonstrate its practical applicability. Model predictions agree satisfactorily with field observation and simulation results from Delft3D numerical model. Sensitivity analyses were also conducted to evaluate the effects of varying calibrated parameters on model predictions. The range of the seed dispersion as well as the distribution of the seed concentration were further analyzed through statistical parameters such as centroid displacement and variance of the seed cloud together with seed concentration contours. Implications of the modelling results on tidal marsh restoration and protection, e.g., revegetation through seed addition, were also discussed through scenario analysis. The developed analytical model provides a useful tool for ecological management of tidal marshes.
Groves, Rachel B; Coulman, Sion A; Birchall, James C; Evans, Sam L
2013-02-01
The mechanical characteristics of skin are extremely complex and have not been satisfactorily simulated by conventional engineering models. The ability to predict human skin behaviour and to evaluate changes in the mechanical properties of the tissue would inform engineering design and would prove valuable in a diversity of disciplines, for example the pharmaceutical and cosmetic industries, which currently rely upon experiments performed in animal models. The aim of this study was to develop a predictive anisotropic, hyperelastic constitutive model of human skin and to validate this model using laboratory data. As a corollary, the mechanical characteristics of human and murine skin have been compared. A novel experimental design, using tensile tests on circular skin specimens, and an optimisation procedure were adopted for laboratory experiments to identify the material parameters of the tissue. Uniaxial tensile tests were performed along three load axes on excised murine and human skin samples, using a single set of material parameters for each skin sample. A finite element model was developed using the transversely isotropic, hyperelastic constitutive model of Weiss et al. (1996) and was embedded within a Veronda-Westmann isotropic material matrix, using three fibre families to create anisotropic behaviour. The model was able to represent the nonlinear, anisotropic behaviour of the skin well. Additionally, examination of the optimal material coefficients and the experimental data permitted quantification of the mechanical differences between human and murine skin. Differences between the skin types, most notably the extension of the skin at low load, have highlighted some of the limitations of murine skin as a biomechanical model of the human tissue. The development of accurate, predictive computational models of human tissue, such as skin, to reduce, refine or replace animal models and to inform developments in the medical, engineering and cosmetic fields, is a significant challenge but is highly desirable. Concurrent advances in computer technology and our understanding of human physiology must be utilised to produce more accurate and accessible predictive models, such as the finite element model described in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ali, Y.; Tabassam, U.; Suleymanov, M.; Bhatti, A. S.
2017-10-01
Transverse momentum (pT) distributions of primary charged particles were compared to simulations using the Ultra Relativistic Quantum Molecular Dynamics (UrQMD) transport model and the HIJING 1.0 model in minimum bias p-Pb collisions at sNN = 5.02TeV in the pseudorapidity (η) regions: η < 0.3, 0.3 < η < 0.8 and 0.8 < η < 1.3 and in the transverse momentum range 0.5 < pT < 20GeV/c. The simulated distributions were then compared with the ALICE data and it was observed that UrQMD predicts systematically higher yields than HIJING 1.0. Both codes cannot describe the experimental data in the range of 0.5 < pT < 20GeV/c, though in the region of pT > 5GeV/c the model predictions are very close to the experimental results for particles with |η| < 0.3, 0.3 < η < 0.8. The ratio of the yield at forward pseudorapidity to that at |η| < 0.3 was also studied. It was observed that the predictions of the models depend on η. In the experiment there is no essential difference of yields for particles from the intervals of |η| < 0.3, 0.3 < η < 0.8 and 0.8 < η < 1.3. The differences are significant for the models where the ratios are systematically less than 1. This means that the results are not connected to a medium effect but reflect the Cronin effect. We are led to conclude that the codes cannot take into account satisfactorily the leading effect due to the asymmetric p-Pb fragmentation.
Calculation of a coaxial microwave torch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritsinin, S. I.; Kossyi, I. A.; Kulumbaev, E. B.
2006-10-15
Parameters of an equilibrium microwave discharge in an atmospheric-pressure argon flow in a coaxial waveguide with a truncated inner electrode are calculated numerically by using a self-consistent two-dimensional MHD model. The results obtained agree satisfactorily with the experimental data.
NASA Astrophysics Data System (ADS)
Rammig, A.; Fleischer, K.; Lapola, D.; Holm, J.; Hoosbeek, M.
2017-12-01
Increasing atmospheric CO2 concentration is assumed to have a stimulating effect ("CO2 fertilization effect") on forest growth and resilience. Empirical evidence, however, for the existence and strength of such a tropical CO2 fertilization effect is scarce and thus a major impediment for constraining the uncertainties in Earth System Model projections. The implications of the tropical CO2 effect are far-reaching, as it strongly influences the global carbon and water cycle, and hence future global climate. In the scope of the Amazon Free Air CO2 Enrichment (FACE) experiment, we addressed these uncertainties by assessing the CO2 fertilization effect at ecosystem scale. AmazonFACE is the first FACE experiment in an old-growth, highly diverse tropical rainforest. Here, we present a priori model-based hypotheses for the experiment derived from a set of 12 ecosystem models. Model simulations identified key uncertainties in our understanding of limiting processes and derived model-based hypotheses of expected ecosystem responses to elevated CO2 that can directly be tested during the experiment. Ambient model simulations compared satisfactorily with in-situ measurements of ecosystem carbon fluxes, as well as carbon, nitrogen, and phosphorus stocks. Models consistently predicted an increase in photosynthesis with elevated CO2, which declined over time due to developing limitations. The conversion of enhanced photosynthesis into biomass, and hence ecosystem carbon sequestration, varied strongly among the models due to different assumptions on nutrient limitation. Models with flexible allocation schemes consistently predicted an increased investment in belowground structures to alleviate nutrient limitation, in turn accelerating turnover rates of soil organic matter. The models diverged on the prediction for carbon accumulation after 10 years of elevated CO2, mainly due to contrasting assumptions in their phosphorus cycle representation. These differences define the expected response ratio to elevated CO2 at the AmazonFACE site and identify priorities for experimental work and model development.
Modeling macro-and microstructures of Gas-Metal-Arc Welded HSLA-100 steel
NASA Astrophysics Data System (ADS)
Yang, Z.; Debroy, T.
1999-06-01
Fluid flow and heat transfer during gas-metal-arc welding (GMAW) of HSLA-100 steel were studied using a transient, three-dimensional, turbulent heat transfer and fluid flow model. The temperature and velocity fields, cooling rates, and shape and size of the fusion and heat-affected zones (HAZs) were calculated. A continuous-cooling-transformation (CCT) diagram was computed to aid in the understanding of the observed weld metal microstructure. The computed results demonstrate that the dissipation of heat and momentum in the weld pool is significantly aided by turbulence, thus suggesting that previous modeling results based on laminar flow need to be re-examined. A comparison of the calculated fusion and HAZ geometries with their corresponding measured values showed good agreement. Furthermore, “finger” penetration, a unique geometric characteristic of gas-metal-arc weld pools, could be satisfactorily predicted from the model. The ability to predict these geometric variables and the agreement between the calculated and the measured cooling rates indicate the appropriateness of using a turbulence model for accurate calculations. The microstructure of the weld metal consisted mainly of acicular ferrite with small amounts of bainite. At high heat inputs, small amounts of allotriomorphic and Widmanstätten ferrite were also observed. The observed microstructures are consistent with those expected from the computed CCT diagram and the cooling rates. The results presented here demonstrate significant promise for understanding both macro-and microstructures of steel welds from the combination of the fundamental principles from both transport phenomena and phase transformation theory.
The effect of alloying on gamma and gamma prime in nickel-base superalloys
NASA Technical Reports Server (NTRS)
Dreshfield, R. L.; Wallace, J. F.
1972-01-01
An investigation was conducted to determine the compositional limits of gamma and gamma prime phases in nickel-base superalloys. Fifty-one nickel-base alloys were melted under vacuum and heat treated for 4 hours at 1190 C followed by 1008 hours at 850 C. The alloys had the following composition ranges: A1 4.0 to 13 atomic percent, Cr 6.5 to 20.5 percent, Ti 0.25 to 4.75 percent, Mo 0.0 to 6.0 percent, and W 0.0 to 4.0 percent. The residues from the ammonium sulfate electrolytic extraction for the two-phase alloys were analyzed chemically and by X-ray diffraction. The results of the investigation were used to assemble a mathematical model of the gamma-gamma prime region of the Ni-Al-Cr-Ti-Mo-W system. A computer program was written to analyze the model of the phase diagram. Some of these results are also presented graphically. The resulting model is capable of satisfactorily predicting the compositions of conjugate gamma-gamma prime phases in the alloys investigated and twelve of fifteen commercial superalloys studied.
NASA Astrophysics Data System (ADS)
Singh, Krishan P.; Snorrason, Arni
1984-02-01
Important breach parameters were identified and their ranges were estimated from a detailed study of historical earthdam failures due to overtopping. The U.S. Army Corps of Engineers Hydrologic Engineering Center (HEC) and the National Weather Service (NWS) dam breach models were chosen for evaluation and simulation. Both models use similar input data and breach descriptions, but the HEC uses the hydrologic routing method (modified Puls method), whereas the NWS uses the St. Vénant equations for routing. Information on eight dams in Illinois was taken from the Corps of Engineers inspection reports, and surveyed cross-sections of the downstream channels were supplied by the Division of Water Resources of the Illinois Department of Transportation. Various combinations of breach parameters (failure time, TF; depth of overtopping, hf; and breach size, B) were used for breach simulations by both methods with the 1.00PMF, 0.50PMF and 0.25PMF (probable maximum flood) inflow hydrographs. In general, the flood stage profiles predicted by the NWS were smoother and more reasonable than those predicted by the HEC. For channels with relatively steep slopes, the methods compared fairly well, whereas for the channels with mild slope, the HEC model often predicted oscillating, erratic flood stages, mainly due to its inability to route flood waves satisfactorily in non-prismatic channels. The breach outflow peaks are affected significantly by B but less so by hf. The ratio of outflow peak to inflow peak and the effect of TF on outflow decrease as the drainage area above the dam and impounded storage increase. Flood stage profiles predicted with cross-sections taken from 7.5' maps compared favorably with those predicted using surveyed cross-sections. For the range of breach parameters studied, the range of outflow peaks and flood stages downstream from the dam can be determined for regulatory and disaster prevention measures.
Optimal visuotactile integration for velocity discrimination of self-hand movements
Chancel, M.; Blanchard, C.; Guerraz, M.; Montagnini, A.
2016-01-01
Illusory hand movements can be elicited by a textured disk or a visual pattern rotating under one's hand, while proprioceptive inputs convey immobility information (Blanchard C, Roll R, Roll JP, Kavounoudias A. PLoS One 8: e62475, 2013). Here, we investigated whether visuotactile integration can optimize velocity discrimination of illusory hand movements in line with Bayesian predictions. We induced illusory movements in 15 volunteers by visual and/or tactile stimulation delivered at six angular velocities. Participants had to compare hand illusion velocities with a 5°/s hand reference movement in an alternative forced choice paradigm. Results showed that the discrimination threshold decreased in the visuotactile condition compared with unimodal (visual or tactile) conditions, reflecting better bimodal discrimination. The perceptual strength (gain) of the illusions also increased: the stimulation required to give rise to a 5°/s illusory movement was slower in the visuotactile condition compared with each of the two unimodal conditions. The maximum likelihood estimation model satisfactorily predicted the improved discrimination threshold but not the increase in gain. When we added a zero-centered prior, reflecting immobility information, the Bayesian model did actually predict the gain increase but systematically overestimated it. Interestingly, the predicted gains better fit the visuotactile performances when a proprioceptive noise was generated by covibrating antagonist wrist muscles. These findings show that kinesthetic information of visual and tactile origins is optimally integrated to improve velocity discrimination of self-hand movements. However, a Bayesian model alone could not fully describe the illusory phenomenon pointing to the crucial importance of the omnipresent muscle proprioceptive cues with respect to other sensory cues for kinesthesia. PMID:27385802
Inclusion of TCAF model in XSPEC to study accretion flow dynamics around black hole candidates
NASA Astrophysics Data System (ADS)
Debnath, Dipak; Chakrabarti, Sandip Kumar; Mondal, Santanu
Spectral and Temporal properties of black hole candidates can be well understood with the Chakrabarti-Titarchuk solution of two component advective flow (TCAF). This model requires two accretion rates, namely, the Keplerian disk accretion rate and the sub-Keplerian halo accretion rate, the latter being composed of a low angular momentum flow which may or may not develop a shock. In this solution, the relevant parameter is the relative importance of the halo (which creates the Compton cloud region) rate with respect to the Keplerian disk rate (soft photon source). Though this model has been used earlier to manually fit data of several black hole candidates quite satisfactorily, for the first time we are able to create a user friendly version by implementing additive Table model FITS file into GSFC/NASA's spectral analysis software package XSPEC. This enables any user to extract physical parameters of accretion flows, such as two accretion rates, shock location, shock strength etc. for any black hole candidate. Most importantly, unlike any other theoretical model, we show that TCAF is capable of predicting timing properties from spectral fits, since in TCAF, a shock is responsible for deciding spectral slopes as well as QPO frequencies.
Willuweit, Lars; O'Sullivan, John J
2013-12-15
Population growth, urbanisation and climate change represent significant pressures on urban water resources, requiring water managers to consider a wider array of management options that account for economic, social and environmental factors. The Dynamic Urban Water Simulation Model (DUWSiM) developed in this study links urban water balance concepts with the land use dynamics model MOLAND and the climate model LARS-WG, providing a platform for long term planning of urban water supply and water demand by analysing the effects of urbanisation scenarios and climatic changes on the urban water cycle. Based on potential urbanisation scenarios and their effects on a city's water cycle, DUWSiM provides the functionality for assessing the feasibility of centralised and decentralised water supply and water demand management options based on forecasted water demand, stormwater and wastewater generation, whole life cost and energy and potential for water recycling. DUWSiM has been tested using data from Dublin, the capital of Ireland, and it has been shown that the model is able to satisfactorily predict water demand and stormwater runoff. Copyright © 2013 Elsevier Ltd. All rights reserved.
Interfacial charging phenomena of aluminum (hydr)oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiemstra, T.; Yong, H.; Van Riemsdijk, W.H.
1999-08-31
The interfacial charging of Al(OH){sub 3} (gibbsite and bayerite) and Al{sub 2}O{sub 3} has been studied. For Al(OH){sub 3} it can be shown that the very strong variation in charging behavior for different preparations is related to the relative presence of differently reacting crystal planes. The edge faces of the hexagonal gibbsite crystals are proton reactive over the whole pH range, in contrast to the 001 plane, which is mainly uncharged below pH = 10. On this 001 face only doubly coordinated surface groups are found, in contrast to the edges which also have singly coordinated surface groups. The resultsmore » are fully in agreement with the predictions of the Multi site complexation (MUSIC) model. The proton adsorption, electrolyte ion adsorption, and shift of the IEP of gibbsite and aluminum oxide have been modeled simultaneously. For gibbsite, the ion pair formation of Na is larger than that of Cl, as is evidenced by modeling the experimentally observed upward shift on the IEP and charge reversal at high electrolyte concentrations. All these experimental results can be satisfactorily modeled with the MUSIC model, including the experimental surface potential of aluminum oxide (ISFET).« less
Evers, J B; Vos, J; Yin, X; Romero, P; van der Putten, P E L; Struik, P C
2010-05-01
Intimate relationships exist between form and function of plants, determining many processes governing their growth and development. However, in most crop simulation models that have been created to simulate plant growth and, for example, predict biomass production, plant structure has been neglected. In this study, a detailed simulation model of growth and development of spring wheat (Triticum aestivum) is presented, which integrates degree of tillering and canopy architecture with organ-level light interception, photosynthesis, and dry-matter partitioning. An existing spatially explicit 3D architectural model of wheat development was extended with routines for organ-level microclimate, photosynthesis, assimilate distribution within the plant structure according to organ demands, and organ growth and development. Outgrowth of tiller buds was made dependent on the ratio between assimilate supply and demand of the plants. Organ-level photosynthesis, biomass production, and bud outgrowth were simulated satisfactorily. However, to improve crop simulation results more efforts are needed mechanistically to model other major plant physiological processes such as nitrogen uptake and distribution, tiller death, and leaf senescence. Nevertheless, the work presented here is a significant step forwards towards a mechanistic functional-structural plant model, which integrates plant architecture with key plant processes.
Models for Ductile and Brittle Fracture for Two-Dimensional Wave Propagation Calculations
1975-02-01
bainite , and retained austenlte. Fracture toughness testing by Hickey indicated that the United States Steel material was slightly tougher...CLASSIFICATION OF THIS PACEfWh«! Data Bnitnd) ’ ductile model). Rolled homogeneous steel XAR30 was characterized statically and dynamically...1145 aluminum, Armco iron, and XAR30 armor steel . The fracture models were found to function satisfactorily. It is concluded that the
Spanwise measurements of vertical components of atmospheric turbulence
NASA Technical Reports Server (NTRS)
Sleeper, Robert K.
1990-01-01
Correlation and spectrum magnitude estimates are computed for vertical gust velocity measurements at the nose and wing tips of a NASA B-57B aircraft for six level flight, low speed and low altitude runs and are compared with those of the von Karman atmospheric turbulence model extended for spanwise relationships. The distance between the wing tips was 62.6 ft. Airspeeds ranged from about 330 to 400 ft/sec, heights above the ground ranged from near ground level to about 5250 ft. and gust velocity standard deviations ranged from 4.10 to 8.86 ft/sec. Integral scale lengths, determined by matching measured autocorrelation estimates with those of the model, ranged from 410 to 2050 ft. Digital signals derived from piezoelectric sensors provided continuous pressure and airspeed measurements. Some directional acceleration sensitivity of the sensors was eliminated by sensor orientation, and their performance was spectrally verified for the higher frequencies with supplemental onboard piezoresistive sensors. The model appeared to satisfactorily predict the trends of the measured cross-correlations and cross-spectrum magnitudes, particularly between the nose and wing tips. However, the measured magnitude estimates of the cross-spectra between the wing tips exceeded the predicted levels at the higher frequencies. Causes for the additional power across the wing tips were investigated. Vertical gust velocity components evaluated along and lateral to the flight path implied that the frozen-turbulence-field assumption is a suitable approximation.
Niazi, Ali; Zolgharnein, Javad; Afiuni-Zadeh, Somaie
2007-11-01
Ternary mixtures of thiamin, riboflavin and pyridoxal have been simultaneously determined in synthetic and real samples by applications of spectrophotometric and least-squares support vector machines. The calibration graphs were linear in the ranges of 1.0 - 20.0, 1.0 - 10.0 and 1.0 - 20.0 microg ml(-1) with detection limits of 0.6, 0.5 and 0.7 microg ml(-1) for thiamin, riboflavin and pyridoxal, respectively. The experimental calibration matrix was designed with 21 mixtures of these chemicals. The concentrations were varied between calibration graph concentrations of vitamins. The simultaneous determination of these vitamin mixtures by using spectrophotometric methods is a difficult problem, due to spectral interferences. The partial least squares (PLS) modeling and least-squares support vector machines were used for the multivariate calibration of the spectrophotometric data. An excellent model was built using LS-SVM, with low prediction errors and superior performance in relation to PLS. The root mean square errors of prediction (RMSEP) for thiamin, riboflavin and pyridoxal with PLS and LS-SVM were 0.6926, 0.3755, 0.4322 and 0.0421, 0.0318, 0.0457, respectively. The proposed method was satisfactorily applied to the rapid simultaneous determination of thiamin, riboflavin and pyridoxal in commercial pharmaceutical preparations and human plasma samples.
NASA Astrophysics Data System (ADS)
Bouillot, Baptiste; Spyriouni, Theodora; Teychené, Sébastien; Biscans, Béatrice
2017-04-01
The solubility of seven pharmaceutical compounds (paracetamol, benzoic acid, 4-aminobenzoic acid, salicylic acid, ibuprofen, naproxen and temazepam) in pure and mixed solvents as a function of temperature is calculated with SciPharma, a semi-empirical approach based on PC-SAFT, and the NRTL-SAC model. To conduct a fair comparison between the approaches, the parameters of the compounds were regressed against the same solubility data, chosen to account for hydrophilic, polar and hydrophobic interactions. Only these solubility data were used by both models for predicting solubility in other pure and mixed solvents for which experimental data were available for comparison. A total of 386 pure solvent data points were used for the comparison comprising one or more temperatures per solvent. SciPharma is found to be more accurate than NRTL-SAC on the pure solvent data used especially in the description of the temperature dependence. This is due to the appropriate parameterization of the pharmaceuticals and the temperature-dependent description of the activity coefficient in PC-SAFT. The solubility in mixed solvents is predicted satisfactorily with SciPharma. NRTL-SAC tends to overestimate the solubility in aqueous solutions of alcohols or shows invariable solubility with composition in other cases.
Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine
NASA Technical Reports Server (NTRS)
Wu, L.; Chow, D. S. L.; Tam, V.; Putcha, L.
2014-01-01
An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness. The bioavailability and pharmacokinetics (PK) were evaluated under the Food and Drug Administration guidelines for clinical trials for an Investigative New Drug (IND). The aim of this project was to develop a PK model that can predict the relationship between plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial with INSCOP. METHODS: Twelve healthy human subjects were administered three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min to 24 h after dosing and scopolamine concentrations measured by using a validated LC-MS-MS assay. Pharmacokinetic Compartmental models, using actual dosing and sampling times, were built using Phoenix (version 1.2). Model discrimination was performed, by minimizing the Akaike Information Criteria (AIC), maximizing the coefficient of determination (r²) and by comparison of the quality of fit plots. RESULTS: The best structural model to describe scopolamine disposition after INSCOP administration (minimal AIC =907.2) consisted of one compartment for plasma, saliva and urine respectively that were inter-connected with different rate constants. The estimated values of PK parameters were compiled in Table 1. The model fitting exercises revealed a nonlinear PK for scopolamine between plasma and saliva compartments for K21, Vmax and Km. CONCLUSION: PK model for INSCOP was developed and for the first time it satisfactorily predicted the PK of scopolamine in plasma, saliva and urine after INSCOP administration. Using non-linear PK yielded the best structural model to describe scopolamine disposition between plasma and saliva compartments, and inclusion of non-linear PK resulted in a significant improved model fitting. The model can be utilized to predict scopolamine plasma concentration using saliva and/or urine data that allows non-invasive assessment of pharmacotherapeutics of scopolamine in space and other remote environments without requiring blood sampling.
Eeshwarasinghe, Dinushika; Loganathan, Paripurnanda; Kalaruban, Mahatheva; Sounthararajah, Danious Pratheep; Kandasamy, Jaya; Vigneswaran, Saravanamuthu
2018-05-01
Polycyclic aromatic hydrocarbons (PAHs) constitute a group of highly persistent, toxic and widespread environmental micropollutants that are increasingly found in water. A study was conducted in removing five PAHs, specifically naphthalene, acenaphthylene, acenaphthene, fluorene and phenanthrene, from water by adsorption onto granular activated carbon (GAC). The pseudo-first-order (PFO) model satisfactorily described the kinetics of adsorption of the PAHs. The Weber and Morris diffusion model's fit to the data showed that there were faster and slower rates of intra-particle diffusion probably into the mesopores and micropores of the GAC, respectively. These rates were negatively related to the molar volumes of the PAHs. Batch equilibrium adsorption data fitted well to the Langmuir, Freundlich and Dubinin-Radushkevich models, of which the Freundlich model exhibited the best fit. The adsorption affinities were related to the hydrophobicity of the PAHs as determined by the log K ow values. Free energies of adsorption calculated from the Dubinin-Radushkevich model and the satisfactory kinetic data fitting to the PFO model suggested physical adsorption of the PAHs. Adsorption of naphthalene, acenaphthylene and acenaphthene in fixed-bed columns containing a mixture of GAC (0.5 g) + sand (24.5 g) was satisfactorily simulated by the Thomas model.
Resolving the Strange Behavior of Extraterrestrial Potassium in the Upper Atmosphere
NASA Technical Reports Server (NTRS)
Plane, J. M. C.; Feng, W.; Dawkins, E.; Chipperfield, M. P.; Hoeffner, J.; Janches, D.; Marsh, D. R.
2014-01-01
It has been known since the 1960s that the layers of Na and K atoms, which occur between 80 and 105km in the Earth's atmosphere as a result of meteoric ablation, exhibit completely different seasonal behavior. In the extratropics Na varies annually, with a pronounced wintertime maximum and summertime minimum. However, K varies semiannually with a small summertime maximum and minima at the equinoxes. This contrasting behavior has never been satisfactorily explained. Here we use a combination of electronic structure and chemical kinetic rate theory to determine two key differences in the chemistries of K and Na. First, the neutralization of K+ ions is only favored at low temperatures during summer. Second, cycling between K and its major neutral reservoir KHCO3 is essentially temperature independent. A whole atmosphere model incorporating this new chemistry, together with a meteor input function, now correctly predicts the seasonal behavior of the K layer.
Kim Oanh, Nguyen Thi; Leelasakultum, Ketsiri
2011-05-01
This study investigated the main causes of haze episodes in the northwestern Thailand to provide early warning and prediction. In an absence of emission input data required for chemical transport modeling to predict the haze, the climatological approach in combination with statistical analysis was used. An automatic meteorological classification scheme was developed using regional meteorological station data of 8years (2001-2008) which classified the prevailing synoptic patterns over Northern Thailand into 4 patterns. Pattern 2, occurring with high frequency in March, was found to associate with the highest levels of 24h PM(10) in Chiangmai, the largest city in Northern Thailand. Typical features of this pattern were the dominance of thermal lows over India, Western China and Northern Thailand with hot, dry and stagnant air in Northern Thailand. March 2007, the month with the most severe haze episode in Chiangmai, was found to have a high frequency of occurrence of pattern 2 coupled with the highest emission intensities from biomass open burning. Backward trajectories showed that, on haze episode days, air masses passed over the region of dense biomass fire hotspots before arriving at Chiangmai. A stepwise regression model was developed to predict 24h PM(10) for days of meteorology pattern 2 using February-April data of 2007-2009 and tested with 2004-2010 data. The model performed satisfactorily for the model development dataset (R(2)=87%) and test dataset (R(2)=81%), which appeared to be superior over a simple persistence regression of 24h PM(10) (R(2)=76%). Our developed model had an accuracy over 90% for the categorical forecast of PM(10)>120μg/m(3). The episode warning procedure would identify synoptic pattern 2 and predict 24h PM(10) in Chiangmai 24h in advance. This approach would be applicable for air pollution episode management in other areas with complex terrain where similar conditions exist. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, J.; Zhang, Q.; Yan, J. D.; Zhong, J.; Fang, M. T. C.
2016-11-01
It is shown that the arc model based on laminar flow cannot predict satisfactorily the voltage of an air arc burning in a supersonic nozzle. The Prandtl mixing length model (PML) and a modified k-epsilon turbulence model (MKE) are used to introduce turbulence enhanced momentum and energy transport. Arc voltages predicted by these two turbulence models are in good agreement with experiments at the stagnation pressure (P 0) of 10 bar. The predicted arc voltages by MKE for P 0 = 13 bar and 7 bar are in better agreement with experiments than those predicted by PML. MKE is therefore a preferred turbulence model for an air nozzle arc. There are two peaks in ρC P of air at 4000 K and 7000 K due, respectively, to the dissociation of oxygen and that of nitrogen. These peaks produce corresponding peaks in turbulent thermal conductivity, which results in very broad radial temperature profile and a large arc radius. Thus, turbulence indirectly enhances axial enthalpy transport, which becomes the dominant energy transport process for the overall energy balance of the arc column at high currents. When the current reduces, turbulent thermal conduction gradually becomes dominant. The temperature dependence of ρC P has a decisive influence on the radial temperature profile of a turbulent arc, thus the thermal interruption capability of a gas. Comparison between ρC P for air and SF6 shows that ρC P for SF6 has peaks below 4000 K. This renders a distinctive arc core and a small arc radius for turbulent SF6, thus superior arc quenching capability. It is suggested, for the first time, that ρC P provides guidance for the search of a replacement switching gas for SF6.
Chang, Fi-John; Chen, Pin-An; Chang, Li-Chiu; Tsai, Yu-Hsuan
2016-08-15
This study attempts to model the spatio-temporal dynamics of total phosphate (TP) concentrations along a river for effective hydro-environmental management. We propose a systematical modeling scheme (SMS), which is an ingenious modeling process equipped with a dynamic neural network and three refined statistical methods, for reliably predicting the TP concentrations along a river simultaneously. Two different types of artificial neural network (BPNN-static neural network; NARX network-dynamic neural network) are constructed in modeling the dynamic system. The Dahan River in Taiwan is used as a study case, where ten-year seasonal water quality data collected at seven monitoring stations along the river are used for model training and validation. Results demonstrate that the NARX network can suitably capture the important dynamic features and remarkably outperforms the BPNN model, and the SMS can effectively identify key input factors, suitably overcome data scarcity, significantly increase model reliability, satisfactorily estimate site-specific TP concentration at seven monitoring stations simultaneously, and adequately reconstruct seasonal TP data into a monthly scale. The proposed SMS can reliably model the dynamic spatio-temporal water pollution variation in a river system for missing, hazardous or costly data of interest. Copyright © 2016 Elsevier B.V. All rights reserved.
Climate Cycles and Forecasts of Cutaneous Leishmaniasis, a Nonstationary Vector-Borne Disease
Chaves, Luis Fernando; Pascual, Mercedes
2006-01-01
Background Cutaneous leishmaniasis (CL) is one of the main emergent diseases in the Americas. As in other vector-transmitted diseases, its transmission is sensitive to the physical environment, but no study has addressed the nonstationary nature of such relationships or the interannual patterns of cycling of the disease. Methods and Findings We studied monthly data, spanning from 1991 to 2001, of CL incidence in Costa Rica using several approaches for nonstationary time series analysis in order to ensure robustness in the description of CL's cycles. Interannual cycles of the disease and the association of these cycles to climate variables were described using frequency and time-frequency techniques for time series analysis. We fitted linear models to the data using climatic predictors, and tested forecasting accuracy for several intervals of time. Forecasts were evaluated using “out of fit” data (i.e., data not used to fit the models). We showed that CL has cycles of approximately 3 y that are coherent with those of temperature and El Niño Southern Oscillation indices (Sea Surface Temperature 4 and Multivariate ENSO Index). Conclusions Linear models using temperature and MEI can predict satisfactorily CL incidence dynamics up to 12 mo ahead, with an accuracy that varies from 72% to 77% depending on prediction time. They clearly outperform simpler models with no climate predictors, a finding that further supports a dynamical link between the disease and climate. PMID:16903778
Numerical simulations of convection at the surface of a ZZ Ceti white dwarf
NASA Astrophysics Data System (ADS)
Ludwig, H.-G.; Jordan, S.; Steffen, M.
1994-04-01
We applied two-dimensional hydrodynamics and non-grey radiative transfer calculations to the surface layers of a hydrogen-rich white dwarf (spectral type DA) with Teff = 12600 K and log g = 8.0, corresponding to a position in the HR-diagram slightly cooler than the hot boundary of the ZZ Ceti instability strip. In our simulation the entire convection zone including the overshoot layers is embedded in the computational box so that we obtain a complete and detailed model of convection for this representative object. We address the important question to what extent models based on mixing length theory (MLT) are able to predict the physical properties of convection. We find a rapidly (timescale approximately equals 100 ms) evolving flow pattern with fast concentrated downdrafts surrounded by slow broad upflows of warmer material. Convection carries up to 30% of the total flux and excites internal gravity waves by dynamical processes associated with the merging of downdrafts. The mean entropy gradient is reversed with respect to MLT predictions in the deeper layers of the convection zone. Strong overshoot occurs at its upper and lower boundary. A synthetic spectrum calculated from the mean photospheric temperature stratification can be fitted satisfactorily with a MLT model adopting alpha = 1.5. At greater depth the temperature profile approaches a model with alpha = 4. The total depth of the convective layers is rather small compared to values suggested by studies of the excitation mechanism for the pulsations of DAs.
NASA Astrophysics Data System (ADS)
Rougier, Esteban; Patton, Howard J.
2015-05-01
Reduced displacement potentials (RDPs) for chemical explosions of the Source Physics Experiments (SPE) in granite at the Nevada Nuclear Security Site are estimated from free-field ground motion recordings. Far-field P wave source functions are proportional to the time derivative of RDPs. Frequency domain comparisons between measured source functions and model predictions show that high-frequency amplitudes roll off as ω- 2, but models fail to predict the observed seismic moment, corner frequency, and spectral overshoot. All three features are fit satisfactorily for the SPE-2 test after cavity radius Rc is reduced by 12%, elastic radius is reduced by 58%, and peak-to-static pressure ratio on the elastic radius is increased by 100%, all with respect to the Mueller-Murphy model modified with the Denny-Johnson Rc scaling law. A large discrepancy is found between the cavity volume inferred from RDPs and the volume estimated from laser scans of the emplacement hole. The measurements imply a scaled Rc of ~5 m/kt1/3, more than a factor of 2 smaller than nuclear explosions. Less than 25% of the seismic moment can be attributed to cavity formation. A breakdown of the incompressibility assumption due to shear dilatancy of the source medium around the cavity is the likely explanation. New formulas are developed for volume changes due to medium bulking (or compaction). A 0.04% decrease of average density inside the elastic radius accounts for the missing volumetric moment. Assuming incompressibility, established Rc scaling laws predicted the moment reasonable well, but it was only fortuitous because dilation of the source medium compensated for the small cavity volume.
Effects of curvature on rarefied gas flows between rotating concentric cylinders
NASA Astrophysics Data System (ADS)
Dongari, Nishanth; White, Craig; Scanlon, Thomas J.; Zhang, Yonghao; Reese, Jason M.
2013-05-01
The gas flow between two concentric rotating cylinders is considered in order to investigate non-equilibrium effects associated with the Knudsen layers over curved surfaces. We investigate the nonlinear flow physics in the near-wall regions using a new power-law (PL) wall-scaling approach. This PL model incorporates Knudsen layer effects in near-wall regions by taking into account the boundary limiting effects on the molecular free paths. We also report new direct simulation Monte Carlo results covering a wide range of Knudsen numbers and accommodation coefficients, and for various outer-to-inner cylinder radius ratios. Our simulation data are compared with both the classical slip flow theory and the PL model, and we find that non-equilibrium effects are not only dependent on Knudsen number and accommodation coefficient but are also significantly affected by the surface curvature. The relative merits and limitations of both theoretical models are explored with respect to rarefaction and curvature effects. The PL model is able to capture some of the nonlinear trends associated with Knudsen layers up to the early transition flow regime. The present study also illuminates the limitations of classical slip flow theory even in the early slip flow regime for higher curvature test cases, although the model does exhibit good agreement throughout the slip flow regime for lower curvature cases. Torque and velocity profile comparisons also convey that a good prediction of integral flow properties does not necessarily guarantee the accuracy of the theoretical model used, and it is important to demonstrate that field variables are also predicted satisfactorily.
Comparison of random regression test-day models for Polish Black and White cattle.
Strabel, T; Szyda, J; Ptak, E; Jamrozik, J
2005-10-01
Test-day milk yields of first-lactation Black and White cows were used to select the model for routine genetic evaluation of dairy cattle in Poland. The population of Polish Black and White cows is characterized by small herd size, low level of production, and relatively early peak of lactation. Several random regression models for first-lactation milk yield were initially compared using the "percentage of squared bias" criterion and the correlations between true and predicted breeding values. Models with random herd-test-date effects, fixed age-season and herd-year curves, and random additive genetic and permanent environmental curves (Legendre polynomials of different orders were used for all regressions) were chosen for further studies. Additional comparisons included analyses of the residuals and shapes of variance curves in days in milk. The low production level and early peak of lactation of the breed required the use of Legendre polynomials of order 5 to describe age-season lactation curves. For the other curves, Legendre polynomials of order 3 satisfactorily described daily milk yield variation. Fitting third-order polynomials for the permanent environmental effect made it possible to adequately account for heterogeneous residual variance at different stages of lactation.
Stereopsis, vertical disparity and relief transformations.
Gårding, J; Porrill, J; Mayhew, J E; Frisby, J P
1995-03-01
The pattern of retinal binocular disparities acquired by a fixating visual system depends on both the depth structure of the scene and the viewing geometry. This paper treats the problem of interpreting the disparity pattern in terms of scene structure without relying on estimates of fixation position from eye movement control and proprioception mechanisms. We propose a sequential decomposition of this interpretation process into disparity correction, which is used to compute three-dimensional structure up to a relief transformation, and disparity normalization, which is used to resolve the relief ambiguity to obtain metric structure. We point out that the disparity normalization stage can often be omitted, since relief transformations preserve important properties such as depth ordering and coplanarity. Based on this framework we analyse three previously proposed computational models of disparity processing; the Mayhew and Longuet-Higgins model, the deformation model and the polar angle disparity model. We show how these models are related, and argue that none of them can account satisfactorily for available psychophysical data. We therefore propose an alternative model, regional disparity correction. Using this model we derive predictions for a number of experiments based on vertical disparity manipulations, and compare them to available experimental data. The paper is concluded with a summary and a discussion of the possible architectures and mechanisms underling stereopsis in the human visual system.
Towards improved storm surge models in the northern Bay of Bengal
NASA Astrophysics Data System (ADS)
Krien, Y.; Testut, L.; Islam, A. K. M. S.; Bertin, X.; Durand, F.; Mayet, C.; Tazkia, A. R.; Becker, M.; Calmant, S.; Papa, F.; Ballu, V.; Shum, C. K.; Khan, Z. H.
2017-03-01
The northern Bay of Bengal is home to some of the deadliest cyclones recorded during the last decades. Storm surge models developed for this region significantly improved in recent years, but they still fail to predict patterns of coastal flooding with sufficient accuracy. In the present paper, we make use of a state-of-the art numerical modeling system with improved bathymetric and topographic data to identify the strengths, weaknesses, and to suggest areas for improvement of current storm surge models in this area. The new model is found to perform relatively well in reproducing waves characteristics and maximum water levels for the two extreme cyclones studied here: Phailin (2013) and Sidr (2007). The wave setup turns out to be small compared to the wind-driven surge, although it still plays a significant role for inland flooding. Relatively large tide-surge interactions mainly due to shallow water effects are also evidenced by the model. These findings plead in favor of further efforts to improve the representation of the bathymetry, especially in the nearshore area, and the implementation of models including tides and radiation stresses explicitly. The main limit of the model is its inability to predict the detailed patterns of coastal flooding satisfactorily. The reason lies mainly in the fact that topographic data also need to be further improved. In particular, a good knowledge of embankments characteristics (crest elevation and their condition) is found to be of primary importance to represent inland flooding correctly. Public authorities should take urgent action to ensure that better data are available to the scientific community, so that state-of-the-art storm surge models reaching a sufficiently high level of confidence can be used for emergency preparedness and to implement mitigation strategies in the northern Bay of Bengal.
NASA Astrophysics Data System (ADS)
Anisimov, K. N.; Loginov, A. M.; Gusev, M. P.; Zarubin, S. V.; Nikonov, S. V.; Krasnov, A. V.
2017-12-01
This paper presents the results of physical modelling of the mould powder skull in the gap between an ingot and the mould. Based on the results obtained from this and previous works, the mathematical model of mould powder behaviour in the gap and its influence on formation of surface defects was developed. The results of modelling satisfactorily conform to the industrial data on ingot surface defects.
How would peak rainfall intensity affect runoff predictions using conceptual water balance models?
NASA Astrophysics Data System (ADS)
Yu, B.
2015-06-01
Most hydrological models use continuous daily precipitation and potential evapotranspiration for streamflow estimation. With the projected increase in mean surface temperature, hydrological processes are set to intensify irrespective of the underlying changes to the mean precipitation. The effect of an increase in rainfall intensity on the long-term water balance is, however, not adequately accounted for in the commonly used hydrological models. This study follows from a previous comparative analysis of a non-stationary daily series of stream flow of a forested watershed (River Rimbaud) in the French Alps (area = 1.478 km2) (1966-2006). Non-stationarity in the recorded stream flow occurred as a result of a severe wild fire in 1990. Two daily models (AWBM and SimHyd) were initially calibrated for each of three distinct phases in relation to the well documented land disturbance. At the daily and monthly time scales, both models performed satisfactorily with the Nash-Sutcliffe coefficient of efficiency (NSE) varying from 0.77 to 0.92. When aggregated to the annual time scale, both models underestimated the flow by about 22% with a reduced NSE at about 0.71. Exploratory data analysis was undertaken to relate daily peak hourly rainfall intensity to the discrepancy between the observed and modelled daily runoff amount. Preliminary results show that the effect of peak hourly rainfall intensity on runoff prediction is insignificant, and model performance is unlikely to improve when peak daily precipitation is included. Trend analysis indicated that the large decrease of precipitation when daily precipitation amount exceeded 10-20 mm may have contributed greatly to the decrease in stream flow of this forested watershed.
Modeling macro-and microstructures of gas-metal-arc welded HSLA-100 steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Z.; Debroy, T.
1999-06-01
Fluid flow and heat transfer during gas-metal-arc welding (GMAW) of HSLA-100 steel were studied using a transient, three-dimensional, turbulent heat transfer and fluid flow model. The temperature and velocity fields, cooling rates, and shape and size of the fusion and heat-affected zones (HAZs) were calculated. A continuous-cooling-transformation (CCT) diagram was computed to aid in the understanding of the observed weld metal microstructure. The computed results demonstrate that the dissipation of heat and momentum in the weld pool is significantly aided by turbulence,m thus suggesting that previous modeling results based on laminar flow need to be re-examined. A comparison of themore » calculated fusion and HAZ geometries with their corresponding measured values showed good agreement. Furthermore, finger penetration, a unique geometric characteristic of gas-metal-arc weld pools, could be satisfactorily predicted from the model. The ability to predict these geometric variables and the agreement between the calculated and the measured cooling rates indicate the appropriateness of using a turbulence model for accurate calculations. The microstructure of the weld metal consisted mainly of acicular ferrite with small amounts of bainite. At high heat inputs, small amounts of allotriomorphic and Widmanstaetten ferrite were also observed. The observed microstructures are consistent with those expected from the computed CCT diagram and the cooling rates. The results presented here demonstrate significant promise for understanding both macro-and microstructures of steel welds from the combination of the fundamental principles from both transport phenomena and phase transformation theory.« less
Posada-Izquierdo, Guiomar D; Pérez-Rodríguez, Fernando; López-Gálvez, Francisco; Allende, Ana; Selma, María V; Gil, María I; Zurera, Gonzalo
2013-04-01
Fresh-cut iceberg lettuce inoculated with Escherichia coli O157:H7 was submitted to chlorine washing (150 mg/mL) and modified atmosphere packaging on laboratory scale. Populations of E. coli O157:H7 were assessed in fresh-cut lettuce stored at 4, 8, 13 and 16 °C using 6-8 replicates in each analysis point in order to capture experimental variability. The pathogen was able to grow at temperatures ≥8 °C, although at low temperatures, growth data presented a high variability between replicates. Indeed, at 8 °C after 15 days, some replicates did not show growth while other replicates did present an increase. A growth primary model was fitted to the raw growth data to estimate lag time and maximum growth rate. The prediction and confidence bands for the fitted growth models were estimated based on Monte-Carlo method. The estimated maximum growth rates (log cfu/day) corresponded to 0.14 (95% CI: 0.06-0.31), 0.55 (95% CI: 0.17-1.20) and 1.43 (95% CI: 0.82-2.15) for 8, 13 and 16 °C, respectively. A square-root secondary model was satisfactorily derived from the estimated growth rates (R(2) > 0.80; Bf = 0.97; Af = 1.46). Predictive models and data obtained in this study are intended to improve quantitative risk assessment studies for E. coli O157:H7 in leafy green products. Copyright © 2012. Published by Elsevier Ltd.
Separation of m-cresol from neutral oils with liquid-liquid extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venter, D.L.; Nieuwoudt
Coal pyrolysis liquors are a major source of valuable phenolic compounds. In this study, the separation of m-cresol from neutral oils by means of liquid-liquid extraction is investigated. Liquid-liquid equilibria for the systems m-cresol + o-toluonitrile + hexane + water + tetraethylene glycol + undecane + dodecane and m-cresol + o-toluonitrile + hexane + water + tetraethylene glycol have bee determined at 313.15 K in order to evaluate the suitability of tetraethylene glycol as a high-boiling solvent for the separation of m-cresol from neutral oils. The effect of parameters such as solvent ratios on the desired separation were investigated. Thesemore » are illustrated on the basis of separation factors, percentage of feed o-toluonitrile remaining in the solvent phase, and percentage recovery of m-cresol. From the experimental results it was concluded that tetraethylene glycol is suitable for the proposed separation. The nonrandom two-liquid model fitted the experimental data satisfactorily. The model was used in the simulation of a multistage extraction column. m-Cresol recoveries of greater than 97% and m-cresol purity of greater than 99.5% were predicted.« less
A model for the characterization of the spatial properties in vestibular neurons
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Bush, G. A.; Perachio, A. A.
1992-01-01
Quantitative study of the static and dynamic response properties of some otolith-sensitive neurons has been difficult in the past partly because their responses to different linear acceleration vectors exhibited no "null" plane and a dependence of phase on stimulus orientation. The theoretical formulation of the response ellipse provides a quantitative way to estimate the spatio-temporal properties of such neurons. Its semi-major axis gives the direction of the polarization vector (i.e., direction of maximal sensitivity) and it estimates the neuronal response for stimulation along that direction. In addition, the semi-minor axis of the ellipse provides an estimate of the neuron's maximal sensitivity in the "null" plane. In this paper, extracellular recordings from otolith-sensitive vestibular nuclei neurons in decerebrate rats were used to demonstrate the practical application of the method. The experimentally observed gain and phase dependence on the orientation angle of the acceleration vector in a head-horizontal plane was described and satisfactorily fit by the response ellipse model. In addition, the model satisfactorily fits neuronal responses in three-dimensions and unequivocally demonstrates that the response ellipse formulation is the general approach to describe quantitatively the spatial properties of vestibular neurons.
A Minimal Model Describing Hexapedal Interlimb Coordination: The Tegotae-Based Approach
Owaki, Dai; Goda, Masashi; Miyazawa, Sakiko; Ishiguro, Akio
2017-01-01
Insects exhibit adaptive and versatile locomotion despite their minimal neural computing. Such locomotor patterns are generated via coordination between leg movements, i.e., an interlimb coordination, which is largely controlled in a distributed manner by neural circuits located in thoracic ganglia. However, the mechanism responsible for the interlimb coordination still remains elusive. Understanding this mechanism will help us to elucidate the fundamental control principle of animals' agile locomotion and to realize robots with legs that are truly adaptive and could not be developed solely by conventional control theories. This study aims at providing a “minimal" model of the interlimb coordination mechanism underlying hexapedal locomotion, in the hope that a single control principle could satisfactorily reproduce various aspects of insect locomotion. To this end, we introduce a novel concept we named “Tegotae,” a Japanese concept describing the extent to which a perceived reaction matches an expectation. By using the Tegotae-based approach, we show that a surprisingly systematic design of local sensory feedback mechanisms essential for the interlimb coordination can be realized. We also use a hexapod robot we developed to show that our mathematical model of the interlimb coordination mechanism satisfactorily reproduces various insects' gait patterns. PMID:28649197
Arumugam, A; Senthamizhan, S G; Ponnusami, V; Sudalai, S
2018-06-01
Polyhydroxyalkanoates (PHA) are biodegradable polymers found in the cellular masses of a wide range of bacterial species and the demand for PHA is steadily growing. In this work we have produced PHA from a low-cost substrate, Calophyllum inophyllum oil, using Cupriavidus necator. Effects of various process parameters such as Oil concentration, Nitrogen source and inoculum size on the production of PHA were studied using Response Surface Methodology. A quadratic equation was used in the model to fit the experimental data. It was found that the model could satisfactorily predict the PHA yield (R 2 =99.17%). Linear, quadratic and interaction terms used in the model were found to be statistically significant. Maximum PHA yield of 10.6gL -1 was obtained under the optimized conditions of oil concentration - 17.5%, inoculum concentration - 50mL/L and nitrogen content - 1.125gL -1 , respectively. The product obtained was characterized using FTIR and NMR to confirm that it was PHA. The results demonstrate that C. inophyllum oil, a non-edible oil, can be potentially used as a low-cost substrate for the production of PHA. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Caroli, Christiane; Ronsin, Olivier; Lemaître, Anaël
2018-02-01
The stress response of permanently crosslinked gelatin gels was recently observed to display glass-like features, namely, a stretched-exponential behavior terminated by an exponential decay, the characteristic time scales of which increase dramatically with decreasing temperature. This phenomenon is studied here using a model of flexible polymer gel network where relaxation proceeds via elementary monomer exchanges between helix and coil segments. The relaxation dynamics of a full network simulation is found to be nearly identical to that of a model of independent strands, which shows that for flexible polymer gels in the range of elastic moduli of interest, both strand contour length disorder and elastic couplings are irrelevant. We thus focus on the independent strand model and find it not only to explain the observed functional form of the stress relaxation curves but also to yield predictions that match very satisfactorily the experimental measurements of final relaxation time and total stress drop. The system under study thus constitutes a rare case where the origin of glass-like behavior can be unambiguously identified, namely, as the signature of the enhancement of helix content fluctuations when approaching from above the mean-field helix-coil transition of strands.
Chou, Wei-Lung; Wang, Chih-Ta; Chang, Wen-Chun; Chang, Shih-Yu
2010-08-15
In this study, metal hydroxides generated during electrocoagulation (EC) were used to remove the chemical oxygen demand (COD) of oxide chemical mechanical polishing (oxide-CMP) wastewater from a semiconductor manufacturing plant by EC. Adsorption studies were conducted in a batch system for various current densities and temperatures. The COD concentration in the oxide-CMP wastewater was effectively removed and decreased by more than 90%, resulting in a final wastewater COD concentration that was below the Taiwan discharge standard (100 mg L(-1)). Since the processed wastewater quality exceeded the direct discharge standard, the effluent could be considered for reuse. The adsorption kinetic studies showed that the EC process was best described using the pseudo-second-order kinetic model at the various current densities and temperatures. The experimental data were also tested against different adsorption isotherm models to describe the EC process. The Freundlich adsorption isotherm model predictions matched satisfactorily with the experimental observations. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the COD adsorption of oxide-CMP wastewater on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chantha, Oeurng; Sabine, Sauvage; José-Miguel, Sánchez-Pérez
2010-05-01
Suspended sediment transport from agricultural catchments to stream networks is responsible for aquatic habitat degradation, reservoir sedimentation and the transport of sediment-bound pollutants (pesticides, particulate nutrients, heavy metals and other toxic substances). Quantifying and understanding the dynamics of suspended sediment transfer from agricultural land to watercourses is essential in controlling soil erosion and in implementing appropriate mitigation practices to reduce stream suspended sediment and associated pollutant loads, and hence improve surface water quality downstream. Gascogne area, southwest France, has been dominated by anthropogenic activities particularly intensive agriculture causing severe erosion in recent decades. This leads to a major threat to surface water quality due to soil erosion. Therefore, the catchment water quality has been continuously monitored since January 2007 and the historical data of hydrology and suspended sediment has existed since 1998. In this study, the Soil and Water Assessment Tool (SWAT 2005) was applied to assess hydrology, suspended sediment and particulate organic carbon in this catchment Agricultural management practices (crop rotation, planting date, fertilizer quantity and irrigations) were taken into the model for simulation period of 11 years (July, 1998 to March, 2009). The investigation was conducted using a 11-year streamflow and two years of suspended sediment record from January 2007 to March 2009. Modelling strategy with dominant landuse and soil type was chosen in this study. The SWAT generally performs satisfactorily and could simulate both daily and monthly runoff and sediment yield. The simulated daily and monthly runoff matched the observed values satisfactorily (ENash>0.5). For suspended sediment simulation, the simulated values were compared with the observed continuous suspended sediment derived from turbidity data. Based on the relationship between SSC and POC (R2 = 0.93), POC was modelled by simulated SSC from SWAT. The model predicted that the average annual catchment rainfall of the 11-year evaluation period (726 mm) with evapotranspiration (78.3%), percolation/groundwater recharge (14.1%), transmission loss (0.5%), and yielding surface runoff (7.1%). The simulated average total water yield of 11 years accounted for 138 mm (observed=133mm) and annual sediment yield varying from 4766 t to 123000 t (Mean= 48 t km-2). The annual yield of particulate organic carbon ranged from 120 t to 3100 t (Mean=1.2 t km-2).
An overview of the nonequilibrium behavior of polymer glasses
NASA Technical Reports Server (NTRS)
Tant, M. R.; Wilkes, G. L.
1981-01-01
It is pointed out that research efforts are at present being directed in two areas, one comprising experimental studies of this phenomenon in various glassy polymer systems and the other involving the development of a quantitative theory capable of satisfactorily predicting aging behavior for a variety of polymer materials under different conditions. Recent work in both these areas is surveyed. The basic principles of nonequilibrium behavior are outlined, with emphasis placed on changes in material properties with annealing below the glass transition temperature. Free volume theory and thermodynamic theory are discussed.
Kinetics of the reduction of bushveld complex chromite ore at 1416 °C
NASA Astrophysics Data System (ADS)
Soykan, O.; Eric, R. H.; King, R. P.
1991-12-01
The kinetics of the reduction of chromite ore from the LG-6 layer of the Bushveld Complex of the Transvaal in South Africa were studied at 1416 °C by the thermogravimetric analysis (TGA) technique. Spectroscopic graphite powder was employed as the reductant. The aim of this article is to present a kinetic model that satisfactorily describes the solid-state carbothermic reduction of chromite. A generalized rate model based on an ionic diffusion mechanism was developed. The model included the contribution of the interfacial area between partially reduced and unreduced zones in chromite particles and diffusion. The kinetic model described the process for degrees of reduction from 10 to 75 pet satisfactorily. It was observed that at a given particle size, the rate of reduction was controlled mainly by interfacial area up to about 40 pet reduction, after which the rate was dominated by diffusion. On the other hand, for a given degree of reduction, the contribution of the interfacial area to the rate increased, while that of diffusion decreased, with a decrease in the particle size. The value of the diffusion coefficient for the Fe2+ species at 1416 °C was calculated to be 2.63 x 10-2 cm2/s.
A Conceptualization of Threat Communications and Preventive Health Behavior.
ERIC Educational Resources Information Center
Beck, Kenneth H.; Frankel, Arthur
Making others especially fearful of what can happen if they ignore the advice given in a health-threat warning (fear appeal) encourages their acceptance of the message most of the time, though occasionally this strategy backfires. Current formulations of fear appeals are unable to reconcile these findings satisfactorily. The drive model notion…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Y.; Kawase, Y.
2006-07-01
In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial compostingmore » mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.« less
14 CFR 121.463 - Aircraft dispatcher qualifications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... aircraft dispatcher for a particular airplane group unless that person has, with respect to an airplane of that group, satisfactorily completed the following: (1) Initial dispatcher training, except that a person who has satisfactorily completed such training for another type airplane of the same group need...
14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Has satisfactorily completed the training phases for the aircraft, including recurrent training, that... satisfactorily completed the appropriate training phases for the aircraft, including recurrent training, that are... AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Training § 135.338 Qualifications: Flight...
Zhang, Guowen; Ni, Yongnian; Churchill, Jane; Kokot, Serge
2006-09-15
In food production, reliable analytical methods for confirmation of purity or degree of spoilage are required by growers, food quality assessors, processors, and consumers. Seven parameters of physico-chemical properties, such as acid number, colority, density, refractive index, moisture and volatility, saponification value and peroxide value, were measured for quality and adulterated soybean, as well as quality and rancid rapeseed oils. Chemometrics methods were then applied for qualitative and quantitative discrimination and prediction of the oils by methods such exploratory principal component analysis (PCA), partial least squares (PLS), radial basis function-artificial neural networks (RBF-ANN), and multi-criteria decision making methods (MCDM), PROMETHEE and GAIA. In general, the soybean and rapeseed oils were discriminated by PCA, and the two spoilt oils behaved differently with the rancid rapeseed samples exhibiting more object scatter on the PC-scores plot, than the adulterated soybean oil. For the PLS and RBF-ANN prediction methods, suitable training models were devised, which were able to predict satisfactorily the category of the four different oil samples in the verification set. Rank ordering with the use of MCDM models indicated that the oil types can be discriminated on the PROMETHEE II scale. For the first time, it was demonstrated how ranking of oil objects with the use of PROMETHEE and GAIA could be utilized as a versatile indicator of quality performance of products on the basis of a standard selected by the stakeholder. In principle, this approach provides a very flexible method for assessment of product quality directly from the measured data.
Cutrì, Elena; Meoli, Alessio; Dubini, Gabriele; Migliavacca, Francesco; Hsia, Tain-Yen; Pennati, Giancarlo
2017-09-01
Hypoplastic left heart syndrome is a complex congenital heart disease characterised by the underdevelopment of the left ventricle normally treated with a three-stage surgical repair. In this study, a multiscale closed-loop cardio-circulatory model is created to reproduce the pre-operative condition of a patient suffering from such pathology and virtual surgery is performed. Firstly, cardio-circulatory parameters are estimated using a fully closed-loop cardio-circulatory lumped parameter model. Secondly, a 3D standalone FEA model is build up to obtain active and passive ventricular characteristics and unloaded reference state. Lastly, the 3D model of the single ventricle is coupled to the lumped parameter model of the circulation obtaining a multiscale closed-loop pre-operative model. Lacking any information on the fibre orientation, two cases were simulated: (i) fibre distributed as in the physiological right ventricle and (ii) fibre as in the physiological left ventricle. Once the pre-operative condition is satisfactorily simulated for the two cases, virtual surgery is performed. The post-operative results in the two cases highlighted similar hemodynamic behaviour but different local mechanics. This finding suggests that the knowledge of the patient-specific fibre arrangement is important to correctly estimate the single ventricle's working condition and consequently can be valuable to support clinical decision. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
On the Applicability of DLVO Theory to the Prediction of Clay Colloids Stability.
Missana; Adell
2000-10-01
The stability behavior of Na-montmorillonite colloids has been studied by combining the analysis of their surface charge properties and time-resolved dynamic light scattering experiments. The chemical surface model for several types of clays, including montmorillonite, has to take into account the double surface charge contribution due to their permanent structural charge and to their pH-dependent charge, which is developed at the edge sites, therefore, these stability studies were carried out as a function of both ionic strength and pH. DLVO theory is largely applied for the prediction of the stability of many colloidal systems, including the natural ones. This work shows that the stability behavior of Na-montmorillonite colloids cannot be satisfactorily reproduced by DLVO theory, using the surface parameters experimentally obtained. Particularly, this theory is unable to explain their pH-dependent stability behavior caused by the small charge at the edge sites. Based on these results, a literature review of DLVO stability prediction of clay colloids was performed. It confirmed that this theory is not capable of taking into account the double contribution to the total surface charge and, at the same time, pointed out the main uncertainties related to the appropriate use of the input parameters for the calculation as, for example, the Hamaker constant or the surface potential. Copyright 2000 Academic Press.
Implementation of two-component advective flow solution in XSPEC
NASA Astrophysics Data System (ADS)
Debnath, Dipak; Chakrabarti, Sandip K.; Mondal, Santanu
2014-05-01
Spectral and temporal properties of black hole candidates can be explained reasonably well using Chakrabarti-Titarchuk solution of two-component advective flow (TCAF). This model requires two accretion rates, namely the Keplerian disc accretion rate and the halo accretion rate, the latter being composed of a sub-Keplerian, low-angular-momentum flow which may or may not develop a shock. In this solution, the relevant parameter is the relative importance of the halo (which creates the Compton cloud region) rate with respect to the Keplerian disc rate (soft photon source). Though this model has been used earlier to manually fit data of several black hole candidates quite satisfactorily, for the first time, we made it user friendly by implementing it into XSPEC software of Goddard Space Flight Center (GSFC)/NASA. This enables any user to extract physical parameters of the accretion flows, such as two accretion rates, the shock location, the shock strength, etc., for any black hole candidate. We provide some examples of fitting a few cases using this model. Most importantly, unlike any other model, we show that TCAF is capable of predicting timing properties from the spectral fits, since in TCAF, a shock is responsible for deciding spectral slopes as well as quasi-periodic oscillation frequencies. L86
Onwude, Daniel I; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan
2018-03-01
Drying is a method used to preserve agricultural crops. During the drying of products with high moisture content, structural changes in shape, volume, area, density and porosity occur. These changes could affect the final quality of dried product and also the effective design of drying equipment. Therefore, this study investigated a novel approach in monitoring and predicting the shrinkage of sweet potato during drying. Drying experiments were conducted at temperatures of 50-70 °C and samples thicknesses of 2-6 mm. The volume and surface area obtained from camera vision, and the perimeter and illuminated area from backscattered optical images were analysed and used to evaluate the shrinkage of sweet potato during drying. The relationship between dimensionless moisture content and shrinkage of sweet potato in terms of volume, surface area, perimeter and illuminated area was found to be linearly correlated. The results also demonstrated that the shrinkage of sweet potato based on computer vision and backscattered optical parameters is affected by the product thickness, drying temperature and drying time. A multilayer perceptron (MLP) artificial neural network with input layer containing three cells, two hidden layers (18 neurons), and five cells for output layer, was used to develop a model that can monitor, control and predict the shrinkage parameters and moisture content of sweet potato slices under different drying conditions. The developed ANN model satisfactorily predicted the shrinkage and dimensionless moisture content of sweet potato with correlation coefficient greater than 0.95. Combined computer vision, laser light backscattering imaging and artificial neural network can be used as a non-destructive, rapid and easily adaptable technique for in-line monitoring, predicting and controlling the shrinkage and moisture changes of food and agricultural crops during drying. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
27 CFR 28.321 - Tax assessed on loss not accounted for.
Code of Federal Regulations, 2010 CFR
2010-04-01
... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS EXPORTATION OF ALCOHOL Losses Beer and Beer Concentrate... penalties and interest, on; (a) The quantity of beer not satisfactorily accounted for, or (b) the quantity of beer used to produce the quantity of beer concentrate which is not satisfactorily accounted for...
14 CFR 135.337 - Qualifications: Check airmen (aircraft) and check airmen (simulator).
Code of Federal Regulations, 2010 CFR
2010-01-01
... satisfactorily completed the training phases for the aircraft, including recurrent training, that are required to... under this part; (2) Has satisfactorily completed the appropriate training phases for the aircraft... ON BOARD SUCH AIRCRAFT Training § 135.337 Qualifications: Check airmen (aircraft) and check airmen...
27 CFR 28.321 - Tax assessed on loss not accounted for.
Code of Federal Regulations, 2012 CFR
2012-04-01
... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS EXPORTATION OF ALCOHOL Losses Beer and Beer Concentrate... penalties and interest, on; (a) The quantity of beer not satisfactorily accounted for, or (b) the quantity of beer used to produce the quantity of beer concentrate which is not satisfactorily accounted for...
27 CFR 28.321 - Tax assessed on loss not accounted for.
Code of Federal Regulations, 2013 CFR
2013-04-01
... TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL EXPORTATION OF ALCOHOL Losses Beer and Beer Concentrate... penalties and interest, on; (a) The quantity of beer not satisfactorily accounted for, or (b) the quantity of beer used to produce the quantity of beer concentrate which is not satisfactorily accounted for...
27 CFR 28.321 - Tax assessed on loss not accounted for.
Code of Federal Regulations, 2014 CFR
2014-04-01
... TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL EXPORTATION OF ALCOHOL Losses Beer and Beer Concentrate... penalties and interest, on; (a) The quantity of beer not satisfactorily accounted for, or (b) the quantity of beer used to produce the quantity of beer concentrate which is not satisfactorily accounted for...
27 CFR 28.321 - Tax assessed on loss not accounted for.
Code of Federal Regulations, 2011 CFR
2011-04-01
... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS EXPORTATION OF ALCOHOL Losses Beer and Beer Concentrate... penalties and interest, on; (a) The quantity of beer not satisfactorily accounted for, or (b) the quantity of beer used to produce the quantity of beer concentrate which is not satisfactorily accounted for...
NASA Astrophysics Data System (ADS)
Hüsami Afşar, Mehdi; Unal Şorman, Ali; Tugrul Yilmaz, Mustafa
2016-04-01
Different drought characteristics (e.g. duration, average severity, and average areal extent) often have monotonic relation that increased magnitude of one often follows a similar increase in the magnitude of the other drought characteristic. Hence it is viable to establish a relationship between different drought characteristics with the goal of predicting one using other ones. Copula functions that relate different variables using their joint and conditional cumulative probability distributions are often used to statistically model the drought characteristics. In this study bivariate and trivariate joint probabilities of these characteristics are obtained over Ankara (Turkey) between 1960 and 2013. Copula-based return period estimation of drought characteristics of duration, average severity, and average areal extent show joint probabilities of these characteristics can be satisfactorily achieved. Among different copula families investigated in this study, elliptical family (i.e. including normal and t-student copula functions) resulted in the lowest root mean square error. "This study was supported by TUBITAK fund #114Y676)."
Influence of turning Treatments on Al6061 by Offline Inspection Technique
NASA Astrophysics Data System (ADS)
Annigeri, Ulhas K.; Sandeep, K. L. G.; Prasanna Chaitanya, M.; Sairam Varma, G.; Datta, B. Arun
2018-02-01
Aluminium is mostly extracted from bauxite and is frequently being utilised in the manufacture of sea, land and air vehicles. Since, it has the merit of resistance to corrosion it is frequently being used in sea vehicles. Another outstanding merit of aluminium is its weight which is very less compared to other ferrous materials. In our study, we have selected Al6061 as the material and based on full factorial design the surface roughness has been observed with three base parameters speed, feed and depth of cut. A mathematical model has been developed to predict the surface roughness and also the dominant factor affecting the turning process has been determined. The plots such as main effects, interaction and Pareto chart have been analysed to give an effective conclusion to the process followed in the study. The purpose of these experiments to compare the effect of process treatments in all possible pairs to select the best treatment to the process has been done satisfactorily.
Single-cultivar extra virgin olive oil classification using a potentiometric electronic tongue.
Dias, Luís G; Fernandes, Andreia; Veloso, Ana C A; Machado, Adélio A S C; Pereira, José A; Peres, António M
2014-10-01
Label authentication of monovarietal extra virgin olive oils is of great importance. A novel approach based on a potentiometric electronic tongue is proposed to classify oils obtained from single olive cultivars (Portuguese cvs. Cobrançosa, Madural, Verdeal Transmontana; Spanish cvs. Arbequina, Hojiblanca, Picual). A meta-heuristic simulated annealing algorithm was applied to select the most informative sets of sensors to establish predictive linear discriminant models. Olive oils were correctly classified according to olive cultivar (sensitivities greater than 97%) and each Spanish olive oil was satisfactorily discriminated from the Portuguese ones with the exception of cv. Arbequina (sensitivities from 61% to 98%). Also, the discriminant ability was related to the polar compounds contents of olive oils and so, indirectly, with organoleptic properties like bitterness, astringency or pungency. Therefore the proposed E-tongue can be foreseen as a useful auxiliary tool for trained sensory panels for the classification of monovarietal extra virgin olive oils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Can we trust climate models to realistically represent severe European windstorms?
NASA Astrophysics Data System (ADS)
Trzeciak, Tomasz M.; Knippertz, Peter; Pirret, Jennifer S. R.; Williams, Keith D.
2016-06-01
Cyclonic windstorms are one of the most important natural hazards for Europe, but robust climate projections of the position and the strength of the North Atlantic storm track are not yet possible, bearing significant risks to European societies and the (re)insurance industry. Previous studies addressing the problem of climate model uncertainty through statistical comparisons of simulations of the current climate with (re-)analysis data show large disagreement between different climate models, different ensemble members of the same model and observed climatologies of intense cyclones. One weakness of such evaluations lies in the difficulty to separate influences of the climate model's basic state from the influence of fast processes on the development of the most intense storms, which could create compensating effects and therefore suggest higher reliability than there really is. This work aims to shed new light into this problem through a cost-effective "seamless" approach of hindcasting 20 historical severe storms with the two global climate models, ECHAM6 and GA4 configuration of the Met Office Unified Model, run in a numerical weather prediction mode using different lead times, and horizontal and vertical resolutions. These runs are then compared to re-analysis data. The main conclusions from this work are: (a) objectively identified cyclone tracks are represented satisfactorily by most hindcasts; (b) sensitivity to vertical resolution is low; (c) cyclone depth is systematically under-predicted for a coarse resolution of T63 by both climate models; (d) no systematic bias is found for the higher resolution of T127 out to about three days, demonstrating that climate models are in fact able to represent the complex dynamics of explosively deepening cyclones well, if given the correct initial conditions; (e) an analysis using a recently developed diagnostic tool based on the surface pressure tendency equation points to too weak diabatic processes, mainly latent heating, as the main source for the under-prediction in the coarse-resolution runs. Finally, an interesting implication of these results is that the too low number of deep cyclones in many free-running climate simulations may therefore be related to an insufficient number of storm-prone initial conditions. This question will be addressed in future work.
A Brief Guide to Modelling in Secondary School: Estimating Big Numbers
ERIC Educational Resources Information Center
Albarracín, Lluís; Gorgorió, Núria
2015-01-01
Fermi problems are problems which, due to their difficulty, can be satisfactorily solved by being broken down into smaller pieces that are solved separately. In this article, we present different sequences of activities involving Fermi problems that can be carried out in Secondary School classes. The aim of these activities is to discuss…
Confined wetting of FoCa clay powder/pellet mixtures: Experimentation and numerical modeling
NASA Astrophysics Data System (ADS)
Maugis, Pascal; Imbert, Christophe
Potential geological nuclear waste disposals must be properly sealed to prevent contamination of the biosphere by radionuclides. In the framework of the RESEAL project, the performance of a bentonite shaft seal is currently studied at Mol (Belgium). This paper focuses on the hydro-mechanical physical behavior of centimetric, unsaturated samples of the backfilling material - a mixture of FoCa-clay powder and pellets - during oedometer tests. The hydro-mechanical response of the samples is observed experimentally, and then compared to numerical simulations performed by our Cast3M Finite Element code. The generalized Darcy’s law and the Barcelona Basic Model mechanical model formed the physical basis of the numerical model and the interpretation. They are widely used in engineered barriers modeling. Vertical swelling pressure and water intake were measured throughout the test. Although water income presents a monotonous increase, the swelling pressure evolution is marked by a peak, and then a local minimum before increasing again to an asymptotic value. This unexpected behavior is explained by yielding rather than by heterogeneity. It is satisfactorily reproduced by the model after parameter calibration. Several samples with different heights ranging from 5 to 12 cm show the same hydro-mechanical response, apart from a dilatation of the time scale. The interest of the characterization of centimetric samples to predicting the efficiency of a metric sealing is discussed.
Duan, Zhi; Hansen, Terese Holst; Hansen, Tina Beck; Dalgaard, Paw; Knøchel, Susanne
2016-08-02
With low temperature long time (LTLT) cooking it can take hours for meat to reach a final core temperature above 53°C and germination followed by growth of Clostridium perfringens is a concern. Available and new growth data in meats including 154 lag times (tlag), 224 maximum specific growth rates (μmax) and 25 maximum population densities (Nmax) were used to developed a model to predict growth of C. perfringens during the coming-up time of LTLT cooking. New data were generate in 26 challenge tests with chicken (pH6.8) and pork (pH5.6) at two different slowly increasing temperature (SIT) profiles (10°C to 53°C) followed by 53°C in up to 30h in total. Three inoculum types were studied including vegetative cells, non-heated spores and heat activated (75°C, 20min) spores of C. perfringens strain 790-94. Concentrations of vegetative cells in chicken increased 2 to 3logCFU/g during the SIT profiles. Similar results were found for non-heated and heated spores in chicken, whereas in pork C. perfringens 790-94 increased less than 1logCFU/g. At 53°C C. perfringens 790-94 was log-linearly inactivated. Observed and predicted concentrations of C. perfringens, at the time when 53°C (log(N53)) was reached, were used to evaluate the new growth model and three available predictive models previously published for C. perfringens growth during cooling rather than during SIT profiles. Model performance was evaluated by using mean deviation (MD), mean absolute deviation (MAD) and the acceptable simulation zone (ASZ) approach with a zone of ±0.5logCFU/g. The new model showed best performance with MD=0.27logCFU/g, MAD=0.66logCFU/g and ASZ=67%. The two growth models that performed best, were used together with a log-linear inactivation model and D53-values from the present study to simulate the behaviour of C. perfringens under the fast and slow SIT profiles investigated in the present study. Observed and predicted concentrations were compared using a new fail-safe acceptable zone (FSAZ) method. FSAZ was defined as the predicted concentration of C. perfringens plus 0.5logCFU/g. If at least 85% of the observed log-counts were below the FSAZ, the model was considered fail-safe. The two models showed similar performance but none of them performed satisfactorily for all conditions. It is recommended to use the models without a lag phase until more precise lag time models become available. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Makarov, P. V.; Bakeev, R. A.
2015-10-01
Spall fracture of materials is still the only means for investigation of the material life and mechanisms of its fracture in the micro-, nano-, and picosecond time ranges of tensile loading. The phenomenological model based on the concepts of multiscale fracture of materials as nonlinear dynamic systems is shown to satisfactorily describe their life in the given range. The model is employed for the calculation of spallation life.
NASA Astrophysics Data System (ADS)
Zhang, Wei
2011-07-01
The longitudinal dispersion coefficient, DL, is a fundamental parameter of longitudinal solute transport models: the advection-dispersion (AD) model and various deadzone models. Since DL cannot be measured directly, and since its calibration using tracer test data is quite expensive and not always available, researchers have developed various methods, theoretical or empirical, for estimating DL by easier available cross-sectional hydraulic measurements (i.e., the transverse velocity profile, etc.). However, for known and unknown reasons, DL cannot be satisfactorily predicted using these theoretical/empirical formulae. Either there is very large prediction error for theoretical methods, or there is a lack of generality for the empirical formulae. Here, numerical experiments using Mike21, a software package that implements one of the most rigorous two-dimensional hydrodynamic and solute transport equations, for longitudinal solute transport in hypothetical streams, are presented. An analysis of the evolution of simulated solute clouds indicates that the two fundamental assumptions in Fischer's longitudinal transport analysis may be not reasonable. The transverse solute concentration distribution, and hence the longitudinal transport appears to be controlled by a dimensionless number ?, where Q is the average volumetric flowrate, Dt is a cross-sectional average transverse dispersion coefficient, and W is channel flow width. A simple empirical ? relationship may be established. Analysis and a revision of Fischer's theoretical formula suggest that ɛ influences the efficiency of transverse mixing and hence has restraining effect on longitudinal spreading. The findings presented here would improve and expand our understanding of longitudinal solute transport in open channel flow.
Gajjar, Rachna M; Kasting, Gerald B
2014-11-15
The overall goal of this research was to further develop and improve an existing skin diffusion model by experimentally confirming the predicted absorption rates of topically-applied volatile organic compounds (VOCs) based on their physicochemical properties, the skin surface temperature, and the wind velocity. In vitro human skin permeation of two hydrophilic solvents (acetone and ethanol) and two lipophilic solvents (benzene and 1,2-dichloroethane) was studied in Franz cells placed in a fume hood. Four doses of each (14)C-radiolabed compound were tested - 5, 10, 20, and 40μLcm(-2), corresponding to specific doses ranging in mass from 5.0 to 63mgcm(-2). The maximum percentage of radiolabel absorbed into the receptor solutions for all test conditions was 0.3%. Although the absolute absorption of each solvent increased with dose, percentage absorption decreased. This decrease was consistent with the concept of a stratum corneum deposition region, which traps small amounts of solvent in the upper skin layers, decreasing the evaporation rate. The diffusion model satisfactorily described the cumulative absorption of ethanol; however, values for the other VOCs were underpredicted in a manner related to their ability to disrupt or solubilize skin lipids. In order to more closely describe the permeation data, significant increases in the stratum corneum/water partition coefficients, Ksc, and modest changes to the diffusion coefficients, Dsc, were required. The analysis provided strong evidence for both skin swelling and barrier disruption by VOCs, even by the minute amounts absorbed under these in vitro test conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
Comprehensive system models: Strategies for evaluation
NASA Technical Reports Server (NTRS)
Field, Christopher; Kutzbach, John E.; Ramanathan, V.; Maccracken, Michael C.
1992-01-01
The task of evaluating comprehensive earth system models is vast involving validations of every model component at every scale of organization, as well as tests of all the individual linkages. Even the most detailed evaluation of each of the component processes and the individual links among them should not, however, engender confidence in the performance of the whole. The integrated earth system is so rich with complex feedback loops, often involving components of the atmosphere, oceans, biosphere, and cryosphere, that it is certain to exhibit emergent properties very difficult to predict from the perspective of a narrow focus on any individual component of the system. Therefore, a substantial share of the task of evaluating comprehensive earth system models must reside at the level of whole system evaluations. Since complete, integrated atmosphere/ ocean/ biosphere/ hydrology models are not yet operational, questions of evaluation must be addressed at the level of the kinds of earth system processes that the models should be competent to simulate, rather than at the level of specific performance criteria. Here, we have tried to identify examples of earth system processes that are difficult to simulate with existing models and that involve a rich enough suite of feedbacks that they are unlikely to be satisfactorily described by highly simplified or toy models. Our purpose is not to specify a checklist of evaluation criteria but to introduce characteristics of the earth system that may present useful opportunities for model testing and, of course, improvement.
NASA Astrophysics Data System (ADS)
Maldonado, Sergio; Borthwick, Alistair G. L.
2018-02-01
We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allowed to enter the upper layer, and hence the total load may also be simulated, provided that concentrations of suspended sediment remain low. The model conforms with established theories of bedload, and is validated satisfactorily against empirical expressions for sediment transport rates and the morphodynamic experiment of a migrating mining pit by Lee et al. (1993 J. Hydraul. Eng. 119, 64-80 (doi:10.1061/(ASCE)0733-9429(1993)119:1(64))). Investigation into the effect of a local bed gradient on bedload leads to derivation of an analytical, physically meaningful expression for morphological diffusion induced by a non-zero local bed slope. Incorporation of the proposed morphological diffusion into a conventional morphodynamic model (defined as a coupling between the shallow water equations, Exner equation and an empirical formula for bedload) improves model predictions when applied to the evolution of a mining pit, without the need either to resort to special numerical treatment of the equations or to use additional tuning parameters.
Maldonado, Sergio; Borthwick, Alistair G L
2018-02-01
We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allowed to enter the upper layer, and hence the total load may also be simulated, provided that concentrations of suspended sediment remain low. The model conforms with established theories of bedload, and is validated satisfactorily against empirical expressions for sediment transport rates and the morphodynamic experiment of a migrating mining pit by Lee et al. (1993 J. Hydraul. Eng. 119 , 64-80 (doi:10.1061/(ASCE)0733-9429(1993)119:1(64))). Investigation into the effect of a local bed gradient on bedload leads to derivation of an analytical, physically meaningful expression for morphological diffusion induced by a non-zero local bed slope. Incorporation of the proposed morphological diffusion into a conventional morphodynamic model (defined as a coupling between the shallow water equations, Exner equation and an empirical formula for bedload) improves model predictions when applied to the evolution of a mining pit, without the need either to resort to special numerical treatment of the equations or to use additional tuning parameters.
Military Review. March-April 2004
2004-04-01
sophisticated organized crime syndicates are all becoming more capable and more dangerous. Satisfactorily offsetting the hazards of each, individu...that range from rising regional powers to terrorist move ments and irresponsible regimes unbounded by ac cepted restraints governing international...terrorists, and even sophisticated organized crime syndicates are all becoming more capable and more dangerous. Satisfactorily offsetting the hazards
An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion
NASA Technical Reports Server (NTRS)
Jachimowski, Casimir J.
1988-01-01
A chemical kinetic mechanism for the combustion of hydrogen has been assembled and optimized by comparing the observed behavior as determined in shock tube and flame studies with that predicted by the mechanism. The reactions contained in the mechanism reflect the current state of knowledge of the chemistry of the hydrogen/air system, and the assigned rate coefficients are consistent with accepted values. It was determined that the mechanism is capable of satisfactorily reproducing the experimental results for a range of conditions relevant to scramjet combustion. Calculations made with the reaction mechanism for representative scramjet combustor conditions at Mach 8, 16, and 25 showed that chemical kinetic effects can be important and that combustor models which use nonequilibrium chemistry should be used in preference to models that assume equilibrium chemistry. For the conditions examined the results also showed the importance of including the HO2 chemistry in the mechanism. For Mach numbers less than 16, the studies suggest that an ignition source will most likely be required to overcome slow ignition chemistry. At Mach 25, the initial temperature and pressure was high enough that ignition was rapid and the presence of an ignition source did not significantly affect reaction rates.
Cos, Oriol; Ramon, Ramon; Montesinos, José Luis; Valero, Francisco
2006-09-05
A predictive control algorithm coupled with a PI feedback controller has been satisfactorily implemented in the heterologous Rhizopus oryzae lipase production by Pichia pastoris methanol utilization slow (Mut(s)) phenotype. This control algorithm has allowed the study of the effect of methanol concentration, ranging from 0.5 to 1.75 g/L, on heterologous protein production. The maximal lipolytic activity (490 UA/mL), specific yield (11,236 UA/g(biomass)), productivity (4,901 UA/L . h), and specific productivity (112 UA/g(biomass)h were reached for a methanol concentration of 1 g/L. These parameters are almost double than those obtained with a manual control at a similar methanol set-point. The study of the specific growth, consumption, and production rates showed different patterns for these rates depending on the methanol concentration set-point. Results obtained have shown the need of implementing a robust control scheme when reproducible quality and productivity are sought. It has been demonstrated that the model-based control proposed here is a very efficient, robust, and easy-to-implement strategy from an industrial application point of view. (c) 2006 Wiley Periodicals, Inc.
Pandey, G.R.; Cayan, D.R.; Dettinger, M.D.; Georgakakos, K.P.
2000-01-01
A hybrid (physical-statistical) scheme is developed to resolve the finescale distribution of daily precipitation over complex terrain. The scheme generates precipitation by combining information from the upper-air conditions and from sparsely distributed station measurements; thus, it proceeds in two steps. First, an initial estimate of the precipitation is made using a simplified orographic precipitation model. It is a steady-state, multilayer, and two-dimensional model following the concepts of Rhea. The model is driven by the 2.5?? ?? 2.5?? gridded National Oceanic and Atmospheric Administration-National Centers for Environmental Prediction upper-air profiles, and its parameters are tuned using the observed precipitation structure of the region. Precipitation is generated assuming a forced lifting of the air parcels as they cross the mountain barrier following a straight trajectory. Second, the precipitation is adjusted using errors between derived precipitation and observations from nearby sites. The study area covers the northern half of California, including coastal mountains, central valley, and the Sierra Nevada. The model is run for a 5-km rendition of terrain for days of January-March over the period of 1988-95. A jackknife analysis demonstrates the validity of the approach. The spatial and temporal distributions of the simulated precipitation field agree well with the observed precipitation. Further, a mapping of model performance indices (correlation coefficients, model bias, root-mean-square error, and threat scores) from an array of stations from the region indicates that the model performs satisfactorily in resolving daily precipitation at 5-km resolution.
Creep modeling for life evaluation and strengthening mechanism of tungsten alloyed 9-12% Cr steels
NASA Astrophysics Data System (ADS)
Park, Kyu-Seop; Bae, Dong-Sik; Lee, Sung-Keun; Lee, Goo-Hyun; Kim, Jung-Ho; Endo, Takao
2006-10-01
Recently, high strength tungsten (W) alloyed steels have been developed for use in power plants with higher steam conditions for environmental reasons as well as the improvement of thermal efficiency resulting in lower fuel costs. In order to establish a creep modeling of high strength martensitic steel and to understand the basic role of W in tungsten alloyed 9-12Cr steels, conventional martensitic steels (X20CrMoV121, X20CrMoWV121, and Mod9Cr-1Mo) and tungsten alloyed steels (NF616 and HCM12A) were employed for creep tests and creep behavior analyses by the Ω method. The proposed creep model, which takes into account both primary and tertiary creep, satisfactorily described the creep curves and accurately predicted creep life, as martensitic steel undergoes a relatively large amount of primary creep, up to nearly 30%, over its normal life. The tungsten alloyed steels exhibited a smaller minimum creep rate and a larger stress exponent compared to the conventional steels. In addition, in tungsten alloyed steel, the Ω value features strong stress dependence such that creep life is prolonged at lower stresses due to high Ω values. The importance of the Ω value from the standpoint of creep strengthening in primary and tertiary creep is discussed.
Population pharmacokinetics of phenytoin in critically ill children.
Hennig, Stefanie; Norris, Ross; Tu, Quyen; van Breda, Karin; Riney, Kate; Foster, Kelly; Lister, Bruce; Charles, Bruce
2015-03-01
The objective was to study the population pharmacokinetics of bound and unbound phenytoin in critically ill children, including influences on the protein binding profile. A population pharmacokinetic approach was used to analyze paired protein-unbound and total phenytoin plasma concentrations (n = 146 each) from 32 critically ill children (0.08-17 years of age) who were admitted to a pediatric hospital, primarily intensive care unit. The pharmacokinetics of unbound and bound phenytoin and the influence of possible influential covariates were modeled and evaluated using visual predictive checks and bootstrapping. The pharmacokinetics of protein-unbound phenytoin was described satisfactorily by a 1-compartment model with first-order absorption in conjunction with a linear partition coefficient parameter to describe the binding of phenytoin to albumin. The partitioning coefficient describing protein binding and distribution to bound phenytoin was estimated to be 8.22. Nonlinear elimination of unbound phenytoin was not supported in this patient group. Weight, allometrically scaled for clearance and volume of distribution for the unbound and bound compartments, and albumin concentration significantly influenced the partition coefficient for protein binding of phenytoin. The population model can be applied to estimate the fraction of unbound phenytoin in critically ill children given an individual's albumin concentration. © 2014, The American College of Clinical Pharmacology.
The hydrological response of a rocky head water basin to convective rainfalls
NASA Astrophysics Data System (ADS)
Gregoretti, Carlo; Bernard, Martino; Degetto, Massimo; Matteo, Berti; Alessandro, Simoni; Stefano, Lanzoni
2015-04-01
A sharp-crested weir is installed at the outlet (altitude 1770 m a.s.l) of a rocky channel incised on the walls of Dimai Peak in the area of Fiames (Cortina d'Ampezzo, Dolomites-North Eastern Italian Alps) at the purpose of measuring runoff discharges. The area of the headwater basin is just 0.032 km2 but sub-vertical cliffs are capable to generate notable discharge during severe rainstorms. Due to the severe environment only five runoff events were measured (two times the facility was destroyed by rock falls and avalanches; other times failure of sensors stopped the measurements). Hydrological response is characterized by peaked hydrographs with very high rising limb. A kinematic distributed hydrological model was used to simulate the response of the basin to the convective rainfalls with the help of two rain gauges placed upstream the basin head and downstream the outlet respectively. The hydrological model uses an hortonian simplified law for determining excess rainfall and satisfactorily simulates the measured hydrographs. Such measurements are important for the understanding the hydrological response of a rocky basin to a convective rainfall. Their modeling are important as well when focused on predicting both flash floods in mountain torrents and the triggering conditions and magnitude of runoff generated debris flows.
NASA Astrophysics Data System (ADS)
Laborda, Eduardo; Wang, Yijun; Henstridge, Martin C.; Martínez-Ortiz, Francisco; Molina, Angela; Compton, Richard G.
2011-08-01
The Marcus-Hush and Butler-Volmer kinetic electrode models are compared experimentally by studying the reduction of 2-methyl-2-nitropropane in acetonitrile at mercury microelectrodes using Reverse Scan Square Wave Voltammetry. This technique is found to be very sensitive to the electrode kinetics and to permit critical comparison of the two models. The Butler-Volmer model satisfactorily fits the experimental data whereas Marcus-Hush does not quantitatively describe this redox system.
Denitrification in Agricultural Soils: Integrated control and Modelling at various scales (DASIM)
NASA Astrophysics Data System (ADS)
Müller, Christoph; Well, Reinhard; Böttcher, Jürgen; Butterbach-Bahl, Klaus; Dannenmann, Michael; Deppe, Marianna; Dittert, Klaus; Dörsch, Peter; Horn, Marcus; Ippisch, Olaf; Mikutta, Robert; Senbayram, Mehmet; Vogel, Hans-Jörg; Wrage-Mönnig, Nicole; Müller, Carsten
2016-04-01
The new research unit DASIM brings together the expertise of 11 working groups to study the process of denitrification at unprecedented spatial and temporal resolution. Based on state-of-the art analytical techniques our aim is to develop improved denitrification models ranging from the microscale to the field/plot scale. Denitrification, the process of nitrate reduction allowing microbes to sustain respiration under anaerobic conditions, is the key process returning reactive nitrogen as N2to the atmosphere. Actively denitrifying communities in soil show distinct regulatory phenotypes (DRP) with characteristic controls on the single reaction steps and end-products. It is unresolved whether DRPs are anchored in the taxonomic composition of denitrifier communities and how environmental conditions shape them. Despite being intensively studied for more than 100 years, denitrification rates and emissions of its gaseous products can still not be satisfactorily predicted. While the impact of single environmental parameters is well understood, the complexity of the process itself with its intricate cellular regulation in response to highly variable factors in the soil matrix prevents robust prediction of gaseous emissions. Key parameters in soil are pO2, organic matter content and quality, pH and the microbial community structure, which in turn are affected by the soil structure, chemistry and soil-plant interactions. In the DASIM research unit, we aim at the quantitative prediction of denitrification rates as a function of microscale soil structure, organic matter quality, DRPs and atmospheric boundary conditions via a combination of state-of-the-art experimental and analytical tools (X-ray μCT, 15N tracing, NanoSIMS, microsensors, advanced flux detection, NMR spectroscopy, and molecular methods including next generation sequencing of functional gene transcripts). We actively seek collaboration with researchers working in the field of denitrification.
Gypens, Nathalie; Borges, Alberto V.; Speeckaert, Gaelle; Lancelot, Christiane
2014-01-01
We developed a module describing the dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) dynamics, including biological transformations by phytoplankton and bacteria, and physico-chemical processes (including DMS air-sea exchange). This module was integrated in the MIRO ecological model and applied in a 0D frame in the Southern North Sea (SNS). The DMS(P) module is built on parameterizations derived from available knowledge on DMS(P) sources, transformations and sinks, and provides an explicit representation of bacterial activity in contrast to most of existing models that only include phytoplankton process (and abiotic transformations). The model is tested in a highly productive coastal ecosystem (the Belgian coastal zone, BCZ) dominated by diatoms and the Haptophyceae Phaeocystis, respectively low and high DMSP producers. On an annual basis, the particulate DMSP (DMSPp) production simulated in 1989 is mainly related to Phaeocystis colonies (78%) rather than diatoms (13%) and nanoflagellates (9%). Accordingly, sensitivity analysis shows that the model responds more to changes in the sulfur:carbon (S:C) quota and lyase yield of Phaeocystis. DMS originates equally from phytoplankton and bacterial DMSP-lyase activity and only 3% of the DMS is emitted to the atmosphere. Model analysis demonstrates the sensitivity of DMS emission towards the atmosphere to the description and parameterization of biological processes emphasizing the need of adequately representing in models both phytoplankton and bacterial processes affecting DMS(P) dynamics. This is particularly important in eutrophied coastal environments such as the SNS dominated by high non-diatom blooms and where empirical models developed from data-sets biased towards open ocean conditions do not satisfactorily predict the timing and amplitude of the DMS seasonal cycle. In order to predict future feedbacks of DMS emissions on climate, it is needed to account for hotspots of DMS emissions from coastal environments that, if eutrophied, are dominated not only by diatoms. PMID:24465753
Phuong, H N; Martin, O; de Boer, I J M; Ingvartsen, K L; Schmidely, Ph; Friggens, N C
2015-01-01
This study explored the ability of an existing lifetime nutrient partitioning model for simulating individual variability in genetic potentials of dairy cows. Generally, the model assumes a universal trajectory of dynamic partitioning of priority between life functions and genetic scaling parameters are then incorporated to simulate individual difference in performance. Data of 102 cows including 180 lactations of 3 breeds: Danish Red, Danish Holstein, and Jersey, which were completely independent from those used previously for model development, were used. Individual cow performance records through sequential lactations were used to derive genetic scaling parameters for each animal by calibrating the model to achieve best fit, cow by cow. The model was able to fit individual curves of body weight, and milk fat, milk protein, and milk lactose concentrations with a high degree of accuracy. Daily milk yield and dry matter intake were satisfactorily predicted in early and mid lactation, but underpredictions were found in late lactation. Breeds and parities did not significantly affect the prediction accuracy. The means of genetic scaling parameters between Danish Red and Danish Holstein were similar but significantly different from those of Jersey. The extent of correlations between the genetic scaling parameters was consistent with that reported in the literature. In conclusion, this model is of value as a tool to derive estimates of genetic potentials of milk yield, milk composition, body reserve usage, and growth for different genotypes of cow. Moreover, it can be used to separate genetic variability in performance between individual cows from environmental noise. The model enables simulation of the effects of a genetic selection strategy on lifetime efficiency of individual cows, which has a main advantage of including the rearing costs, and thus, can be used to explore the impact of future selection on animal performance and efficiency. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Biologically optimized helium ion plans: calculation approach and its in vitro validation
NASA Astrophysics Data System (ADS)
Mairani, A.; Dokic, I.; Magro, G.; Tessonnier, T.; Kamp, F.; Carlson, D. J.; Ciocca, M.; Cerutti, F.; Sala, P. R.; Ferrari, A.; Böhlen, T. T.; Jäkel, O.; Parodi, K.; Debus, J.; Abdollahi, A.; Haberer, T.
2016-06-01
Treatment planning studies on the biological effect of raster-scanned helium ion beams should be performed, together with their experimental verification, before their clinical application at the Heidelberg Ion Beam Therapy Center (HIT). For this purpose, we introduce a novel calculation approach based on integrating data-driven biological models in our Monte Carlo treatment planning (MCTP) tool. Dealing with a mixed radiation field, the biological effect of the primary 4He ion beams, of the secondary 3He and 4He (Z = 2) fragments and of the produced protons, deuterons and tritons (Z = 1) has to be taken into account. A spread-out Bragg peak (SOBP) in water, representative of a clinically-relevant scenario, has been biologically optimized with the MCTP and then delivered at HIT. Predictions of cell survival and RBE for a tumor cell line, characterized by {{(α /β )}\\text{ph}}=5.4 Gy, have been successfully compared against measured clonogenic survival data. The mean absolute survival variation ({μΔ \\text{S}} ) between model predictions and experimental data was 5.3% ± 0.9%. A sensitivity study, i.e. quantifying the variation of the estimations for the studied plan as a function of the applied phenomenological modelling approach, has been performed. The feasibility of a simpler biological modelling based on dose-averaged LET (linear energy transfer) has been tested. Moreover, comparisons with biophysical models such as the local effect model (LEM) and the repair-misrepair-fixation (RMF) model were performed. {μΔ \\text{S}} values for the LEM and the RMF model were, respectively, 4.5% ± 0.8% and 5.8% ± 1.1%. The satisfactorily agreement found in this work for the studied SOBP, representative of clinically-relevant scenario, suggests that the introduced approach could be applied for an accurate estimation of the biological effect for helium ion radiotherapy.
Pore Space Connectivity and the Transport Properties of Rocks
Bernabé, Yves; Li, Min; Tang, Yan-Bing; ...
2016-06-23
Pore connectivity is likely one of the most important factors affecting the permeability of reservoir rocks. Furthermore, connectivity effects are not restricted to materials approaching a percolation transition but can continuously and gradually occur in rocks undergoing geological processes such as mechanical and chemical diagenesis. Here, we compiled sets of published measurements of porosity, permeability and formation factor, performed in samples of unconsolidated granular aggregates, in which connectivity does not change, and in two other materials, sintered glass beads and Fontainebleau sandstone, in which connectivity does change. We compared these data to the predictions of a Kozeny-Carman model of permeability,more » which does not account for variations in connectivity, and to those of Bernabé et al. (2010, 2011) model, which does [Bernabé Y., Li M., Maineult A. (2010) Permeability and pore connectivity: a new model based on network simulations, J. Geophys. Res. 115, B10203; Bernabé Y., Zamora M., Li M., Maineult A., Tang Y.B. (2011) Pore connectivity, permeability and electrical formation factor: a new model and comparison to experimental data, J. Geophys. Res. 116, B11204]. Both models agreed equally well with experimental data obtained in unconsolidated granular media. But, in the other materials, especially in the low porosity samples that had undergone the greatest amount of sintering or diagenesis, only Bernabé et al. model matched the experimental data satisfactorily. In comparison, predictions of the Kozeny-Carman model differed by orders of magnitude. The advantage of the Bernabé et al. model was its ability to account for a continuous, gradual reduction in pore connectivity during sintering or diagenesis. Though we can only speculate at this juncture about the mechanisms responsible for the connectivity reduction, we propose two possible mechanisms, likely to be active at different stages of sintering and diagenesis, and thus allowing the gradual evolution observed experimentally.« less
Pore Space Connectivity and the Transport Properties of Rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernabé, Yves; Li, Min; Tang, Yan-Bing
Pore connectivity is likely one of the most important factors affecting the permeability of reservoir rocks. Furthermore, connectivity effects are not restricted to materials approaching a percolation transition but can continuously and gradually occur in rocks undergoing geological processes such as mechanical and chemical diagenesis. Here, we compiled sets of published measurements of porosity, permeability and formation factor, performed in samples of unconsolidated granular aggregates, in which connectivity does not change, and in two other materials, sintered glass beads and Fontainebleau sandstone, in which connectivity does change. We compared these data to the predictions of a Kozeny-Carman model of permeability,more » which does not account for variations in connectivity, and to those of Bernabé et al. (2010, 2011) model, which does [Bernabé Y., Li M., Maineult A. (2010) Permeability and pore connectivity: a new model based on network simulations, J. Geophys. Res. 115, B10203; Bernabé Y., Zamora M., Li M., Maineult A., Tang Y.B. (2011) Pore connectivity, permeability and electrical formation factor: a new model and comparison to experimental data, J. Geophys. Res. 116, B11204]. Both models agreed equally well with experimental data obtained in unconsolidated granular media. But, in the other materials, especially in the low porosity samples that had undergone the greatest amount of sintering or diagenesis, only Bernabé et al. model matched the experimental data satisfactorily. In comparison, predictions of the Kozeny-Carman model differed by orders of magnitude. The advantage of the Bernabé et al. model was its ability to account for a continuous, gradual reduction in pore connectivity during sintering or diagenesis. Though we can only speculate at this juncture about the mechanisms responsible for the connectivity reduction, we propose two possible mechanisms, likely to be active at different stages of sintering and diagenesis, and thus allowing the gradual evolution observed experimentally.« less
Cranking Calculation in the sdg Interacting Boson Model
NASA Astrophysics Data System (ADS)
Wang, Baolin
1998-10-01
A self-consistent cranking calculation of the intrinsic states of the sdg interacting boson model is performed. The formulae of the moment of inertia are given in a general sdg IBM multipole Hamiltonian with one- and two-body terms. In the quadrupole interaction, the intrinsic states, the quadrupole and hexadecapole deformation and the moment of inertia are investigated in the large N limit. Using a simple Hamiltonian, the results of numerical calculations for 152, 154Sm and 154-160 Gd satisfactorily reproduce the experimental data.
Long-range empirical potential model: extension to hexagonal close-packed metals.
Dai, Y; Li, J H; Liu, B X
2009-09-23
An n-body potential is developed and satisfactorily applied to hcp metals, Co, Hf, Mg, Re, Ti, and Zr, in the form of long-range empirical potential. The potential can well reproduce the lattice constants, c/a ratios, cohesive energies, and the bulk modulus for their stable structures (hcp) and metastable structures (bcc or fcc). Meanwhile, the potential can correctly predict the order of structural stability and distinguish the energy differences between their stable hcp structure and other structures. The energies and forces derived by the potential can smoothly go to zero at cutoff radius, thus completely avoiding the unphysical behaviors in the simulations. The developed potential is applied to study the vacancy, surface fault, stacking fault and self-interstitial atom in the hcp metals. The calculated formation energies of vacancy and divacancy and activation energies of self-diffusion by vacancies are in good agreement with the values in experiments and in other works. The calculated surface energies and stacking fault energies are also consistent with the experimental data and those obtained in other theoretical works. The calculated formation energies generally agree with the results in other works, although the stable configurations of self-interstitial atoms predicted in this work somewhat contrast with those predicted by other methods. The proposed potential is shown to be relevant for describing the interaction of bcc, fcc and hcp metal systems, bringing great convenience for researchers in constructing potentials for metal systems constituted by any combination of bcc, fcc and hcp metals.
Evaluation of CMIP5 and CORDEX Derived Wind Wave Climate in Arabian Sea and Bay of Bengal
NASA Astrophysics Data System (ADS)
Chowdhury, P.; Behera, M. R.
2017-12-01
Climate change impact on surface ocean wave parameters need robust assessment for effective coastal zone management. Climate model skill to simulate dynamical General Circulation Models (GCMs) and Regional Circulation Models (RCMs) forced wind-wave climate over northern Indian Ocean is assessed in the present work. The historical dynamical wave climate is simulated using surface winds derived from four GCMs and four RCMs, participating in the Coupled Model Inter-comparison Project (CMIP5) and Coordinated Regional Climate Downscaling Experiment (CORDEX-South Asia), respectively, and their ensemble are used to force a spectral wave model. The surface winds derived from GCMs and RCMs are corrected for bias, using Quantile Mapping method, before being forced to the spectral wave model. The climatological properties of wave parameters (significant wave height (Hs), mean wave period (Tp) and direction (θm)) are evaluated relative to ERA-Interim historical wave reanalysis datasets over Arabian Sea (AS) and Bay of Bengal (BoB) regions of the northern Indian Ocean for a period of 27 years. We identify that the nearshore wave climate of AS is better predicted than the BoB by both GCMs and RCMs. Ensemble GCM simulated Hs in AS has a better correlation with ERA-Interim ( 90%) than in BoB ( 80%), whereas ensemble RCM simulated Hs has a low correlation in both regions ( 50% in AS and 45% in BoB). In AS, ensemble GCM simulated Tp has better predictability ( 80%) compared to ensemble RCM ( 65%). However, neither GCM nor RCM could satisfactorily predict Tp in nearshore BoB. Wave direction is poorly simulated by GCMs and RCMs in both AS and BoB, with correlation around 50% with GCMs and 60% with RCMs wind derived simulations. However, upon comparing individual RCMs with their parent GCMs, it is found that few of the RCMs predict wave properties better than their parent GCMs. It may be concluded that there is no consistent added value by RCMs over GCMs forced wind-wave climate over northern Indian Ocean. We also identify that there is little to no significance of choosing a finer resolution GCM ( 1.4°) over a coarse GCM ( 2.8°) in improving skill of GCM forced dynamical wave simulations.
Tisseuil, Clément; Velo, Enkelejda; Bino, Silvia; Kadriaj, Perparim; Mersini, Kujtim; Shukullari, Ada; Simaku, Artan; Rogozi, Elton; Caputo, Beniamino; Ducheyne, Els; Della Torre, Alessandra; Reiter, Paul; Gilbert, Marius
2018-02-01
The increasing spread of the Asian tiger mosquito, Aedes albopictus, in Europe and US raises public health concern due to the species competence to transmit several exotic human arboviruses, among which dengue, chikungunya and Zika, and urges the development of suitable modeling approach to forecast the spatial and temporal distribution of the mosquito. Here we developed a dynamical species distribution modeling approach forecasting Ae. albopictus eggs abundance at high spatial (0.01 degree WGS84) and temporal (weekly) resolution over 10 Balkan countries, using temperature times series of Modis data products and altitude as input predictors. The model was satisfactorily calibrated and validated over Albania based observed eggs abundance data weekly monitored during three years. For a given week of the year, eggs abundance was mainly predicted by the number of eggs and the mean temperature recorded in the preceding weeks. That is, results are in agreement with the biological cycle of the mosquito, reflecting the effect temperature on eggs spawning, maturation and hatching. The model, seeded by initial egg values derived from a second model, was then used to forecast the spatial and temporal distribution of eggs abundance over the selected Balkan countries, weekly in 2011, 2012 and 2013. The present study is a baseline to develop an easy-handling forecasting model able to provide information useful for promoting active surveillance and possibly prevention of Ae. albopictus colonization in presently non-infested areas in the Balkans as well as in other temperate regions.
The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques.
Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong; Pan, Min
2017-09-28
Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R² > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH < 5.0, whereas Cd(II) adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH < 5.0 and pH > 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X₂Cd) at low pH and inner-sphere surface complexation sites (SOCd⁺ and (SO)₂CdOH - species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water-mineral interface.
A Self-Consistent Fault Slip Model for the 2011 Tohoku Earthquake and Tsunami
NASA Astrophysics Data System (ADS)
Yamazaki, Yoshiki; Cheung, Kwok Fai; Lay, Thorne
2018-02-01
The unprecedented geophysical and hydrographic data sets from the 2011 Tohoku earthquake and tsunami have facilitated numerous modeling and inversion analyses for a wide range of dislocation models. Significant uncertainties remain in the slip distribution as well as the possible contribution of tsunami excitation from submarine slumping or anelastic wedge deformation. We seek a self-consistent model for the primary teleseismic and tsunami observations through an iterative approach that begins with downsampling of a finite fault model inverted from global seismic records. Direct adjustment of the fault displacement guided by high-resolution forward modeling of near-field tsunami waveform and runup measurements improves the features that are not satisfactorily accounted for by the seismic wave inversion. The results show acute sensitivity of the runup to impulsive tsunami waves generated by near-trench slip. The adjusted finite fault model is able to reproduce the DART records across the Pacific Ocean in forward modeling of the far-field tsunami as well as the global seismic records through a finer-scale subfault moment- and rake-constrained inversion, thereby validating its ability to account for the tsunami and teleseismic observations without requiring an exotic source. The upsampled final model gives reasonably good fits to onshore and offshore geodetic observations albeit early after-slip effects and wedge faulting that cannot be reliably accounted for. The large predicted slip of over 20 m at shallow depth extending northward to 39.7°N indicates extensive rerupture and reduced seismic hazard of the 1896 tsunami earthquake zone, as inferred to varying extents by several recent joint and tsunami-only inversions.
NASA Technical Reports Server (NTRS)
Ludwig, David A.; Convertino, Victor A.; Goldwater, Danielle J.; Sandler, Harold
1987-01-01
Small sample size (n less than 1O) and inappropriate analysis of multivariate data have hindered previous attempts to describe which physiologic and demographic variables are most important in determining how long humans can tolerate acceleration. Data from previous centrifuge studies conducted at NASA/Ames Research Center, utilizing a 7-14 d bed rest protocol to simulate weightlessness, were included in the current investigation. After review, data on 25 women and 22 men were available for analysis. Study variables included gender, age, weight, height, percent body fat, resting heart rate, mean arterial pressure, Vo(sub 2)max and plasma volume. Since the dependent variable was time to greyout (failure), two contemporary biostatistical modeling procedures (proportional hazard and logistic discriminant function) were used to estimate risk, given a particular subject's profile. After adjusting for pro-bed-rest tolerance time, none of the profile variables remained in the risk equation for post-bed-rest tolerance greyout. However, prior to bed rest, risk of greyout could be predicted with 91% accuracy. All of the profile variables except weight, MAP, and those related to inherent aerobic capacity (Vo(sub 2)max, percent body fat, resting heart rate) entered the risk equation for pro-bed-rest greyout. A cross-validation using 24 new subjects indicated a very stable model for risk prediction, accurate within 5% of the original equation. The result for the inherent fitness variables is significant in that a consensus as to whether an increased aerobic capacity is beneficial or detrimental has not been satisfactorily established. We conclude that tolerance to +Gz acceleration before and after simulated weightlessness is independent of inherent aerobic fitness.
2015-11-05
impact analyses) satisfactorily encompasses the fundamentals of environmental health risk and can be applied to all mobile and stationary equipment...regulations. This paper does not seek to justify the EPA MHB approach, but explains the fundamentals and describes how the MHB concept can be...satisfactorily encompasses the fundamentals of environmental health risk and can be applied to all mobile and stationary equipment types. 15. SUBJECT TERMS
Jung, Kyung-Won; Choi, Brian Hyun; Jeong, Tae-Un; Ahn, Kyu-Hong
2016-11-01
This study introduces a new methodology to synthesize magnetic biochar/Fe3O4 nanocomposites (M-BC) from marine macroalgae using a facile electro-magnetization technique. M-BC was prepared by stainless steel electrode-based electrochemical system, followed by pyrolysis. Physical and chemical analyses revealed that the porosity and magnetic properties were simultaneously improved via the electro-magnetization process, which enabled not only higher adsorption performance, but also easier separation/recovery from aqueous media at post-adsorption stage using a bar magnet. The adsorption equilibrium studies reveal that the Sips model satisfactorily predicts the adsorption capacity, which found to be 190, 297, and 382mgg(-1) at 10, 20, and 30°C, respectively. The overall findings indicate that one-step electro-magnetization technique can be effectively utilized for the fabrication of biochar with concurrent acquisition of porosity and magnetism, which can bring about new directions in the practical use of adsorption process in environment remediation and mitigate crises originating from it. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anders, R.; Chrysikopoulos, C.V.
2006-01-01
Static and dynamic batch experiments were conducted to study the effects of temperature and the presence of sand on the inactivation of bacteriophage MS2 and PRD1. The experimental data suggested that the inactivation process can be satisfactorily represented by a pseudo-first-order expression with time-dependent rate coefficients. The time-dependent rate coefficients were used to determine pertinent thermodynamic properties required for the analysis of the molecular processes involved in the inactivation of each bacteriophage. A combination of high temperature and the presence of sand appears to produce the greatest disruption to the surrounding protein coat of MS2. However, the lower activation energies for PRD1 indicate a weaker dependence of the inactivation rate on temperature. Instead, the presence of air-liquid and air-solid interfaces appears to produce the greatest damage to specific viral components that are related to infection. These results indicate the importance of using thermodynamic parameters based on the time-dependent inactivation model to better predict the inactivation of viruses in groundwater. ?? 2006 American Chemical Society.
Pyrolysis kinetics behavior of solid tire wastes available in Bangladesh.
Islam, M Rofiqul; Haniu, H; Fardoushi, J
2009-02-01
Pyrolysis kinetics of available bicycle/rickshaw, motorcycle and truck tire wastes in Bangladesh have been investigated thermogravimetrically in a nitrogen atmosphere at heating rates of 10 and 60 degrees C/min over a temperature range of 30-800 degrees C. The three tire wastes exhibited similar behaviors in that, when heating rate was increased, the initial reaction temperature decreased but the reaction range and reaction rate increased. The percentage of total weight loss was higher for truck tire waste and lower for bicycle/rickshaw tire waste. The pyrolysis of truck tire waste was found to be easier than that of bicycle/rickshaw and motorcycle tire wastes while it was comparatively more difficult for motorcycle tire waste. The overall rate equation for the three tire wastes has been modeled satisfactorily by one simplified equation from which the kinetic parameters of unreacted materials based on the Arrhenius form can be determined. The predicted rate equation compares fairly well with the measured TG and DTG data. DTA curves for all of the samples show that the degradation reactions are three main exotherms and one endotherm.
Compression wave studies in Blair dolomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grady, D.E.; Hollenbach, R.E.; Schuler, K.W.
Dynamic compression wave studies have been conducted on Blair dolomite in the stress range of 0-7.0 GPa. Impact techniques were used to generate stress impulse input functions, and diffuse surface laser interferometry provided the dynamic instrumentation. Experimental particle velocity profiles obtained by this method were coupled with the conservation laws of mass and momentum to determine the stress-strain and stress-modulus constitutive properties of the material. Comparison between dynamic and quasistatic uniaxial stress-strain curves uncovered significant differences. Energy dissipated in a complete load and unload cycle differed by almost an order of magnitude and the longitudinal moduli differed by as muchmore » as a factor of two. Blair dolomite was observed to yield under dynamic loading at 2.5 GPa. Below 2.5 GPa the loading waves had a finite risetime and exhibited steady propagation. A finite linear viscoelastic constitutive model satisfactorily predicted the observed wave propagation. We speculate that dynamic properties of preexisting cracks provides a physical mechanism for both the rate dependent steady wave behavior and the difference between dynamic and quasistatic response.« less
ERIC Educational Resources Information Center
Beauchamp, Guy
2005-01-01
A study to present specific hypothesis that satisfactorily explain the boiling point of a number of molecules, CH[subscript w]F[subscript x]Cl[subscript y]Br[subscript z] having similar structure, and then analyze the model with the help of multiple linear regression (MLR), a data analysis tool. The MLR analysis was useful in selecting the…
Long-term hydrological simulation based on the Soil Conservation Service curve number
NASA Astrophysics Data System (ADS)
Mishra, Surendra Kumar; Singh, Vijay P.
2004-05-01
Presenting a critical review of daily flow simulation models based on the Soil Conservation Service curve number (SCS-CN), this paper introduces a more versatile model based on the modified SCS-CN method, which specializes into seven cases. The proposed model was applied to the Hemavati watershed (area = 600 km2) in India and was found to yield satisfactory results in both calibration and validation. The model conserved monthly and annual runoff volumes satisfactorily. A sensitivity analysis of the model parameters was performed, including the effect of variation in storm duration. Finally, to investigate the model components, all seven variants of the modified version were tested for their suitability.
NASA Astrophysics Data System (ADS)
Cea, L.; Legout, C.; Darboux, F.; Esteves, M.; Nord, G.
2014-05-01
This paper presents a validation of a two-dimensional overland flow model using empirical laboratory data. Unlike previous publications in which model performance is evaluated as the ability to predict an outlet hydrograph, we use high resolution 2D water depth and velocity data to analyze to what degree the model is able to reproduce the spatial distribution of these variables. Several overland flow conditions over two impervious surfaces of the order of one square meter with different micro and macro-roughness characteristics are studied. The first surface is a simplified representation of a sinusoidal terrain with three crests and furrows, while the second one is a mould of a real agricultural seedbed terrain. We analyze four different bed friction parameterizations and we show that the performance of formulations which consider the transition between laminar, smooth turbulent and rough turbulent flow do not improve the results obtained with Manning or Keulegan formulas for rough turbulent flow. The simulations performed show that using Keulegan formula with a physically-based definition of the bed roughness coefficient, a two-dimensional shallow water model is able to reproduce satisfactorily the flow hydrodynamics. It is shown that, even if the resolution of the topography data and numerical mesh are high enough to include all the small scale features of the bed surface, the roughness coefficient must account for the macro-roughness characteristics of the terrain in order to correctly reproduce the flow hydrodynamics.
NASA Astrophysics Data System (ADS)
Xie, M.; Agus, S. S.; Schanz, T.; Kolditz, O.
2004-12-01
This paper presents an upscaling concept of swelling/shrinking processes of a compacted bentonite/sand mixture, which also applies to swelling of porous media in general. A constitutive approach for highly compacted bentonite/sand mixture is developed accordingly. The concept is based on the diffuse double layer theory and connects microstructural properties of the bentonite as well as chemical properties of the pore fluid with swelling potential. Main factors influencing the swelling potential of bentonite, i.e. variation of water content, dry density, chemical composition of pore fluid, as well as the microstructures and the amount of swelling minerals are taken into account. According to the proposed model, porosity is divided into interparticle and interlayer porosity. Swelling is the potential of interlayer porosity increase, which reveals itself as volume change in the case of free expansion, or turns to be swelling pressure in the case of constrained swelling. The constitutive equations for swelling/shrinking are implemented in the software GeoSys/RockFlow as a new chemo-hydro-mechanical model, which is able to simulate isothermal multiphase flow in bentonite. Details of the mathematical and numerical multiphase flow formulations, as well as the code implementation are described. The proposed model is verified using experimental data of tests on a highly compacted bentonite/sand mixture. Comparison of the 1D modelling results with the experimental data evidences the capability of the proposed model to satisfactorily predict free swelling of the material under investigation. Copyright
de Oliveira, Samuel Conceição; de Castro, Heizir Ferreira; Visconti, Alexandre Eliseu Stourdze; Giudici, Reinaldo
2015-03-01
Experiments of continuous alcoholic fermentation of sugarcane juice with flocculating yeast recycle were conducted in a system of two 0.22-L tower bioreactors in series, operated at a range of dilution rates (D 1 = D 2 = 0.27-0.95 h(-1)), constant recycle ratio (α = F R /F = 4.0) and a sugar concentration in the feed stream (S 0) around 150 g/L. The data obtained in these experimental conditions were used to adjust the parameters of a mathematical model previously developed for the single-stage process. This model considers each of the tower bioreactors as a perfectly mixed continuous reactor and the kinetics of cell growth and product formation takes into account the limitation by substrate and the inhibition by ethanol and biomass, as well as the substrate consumption for cellular maintenance. The model predictions agreed satisfactorily with the measurements taken in both stages of the cascade. The major differences with respect to the kinetic parameters previously estimated for a single-stage system were observed for the maximum specific growth rate, for the inhibition constants of cell growth and for the specific rate of substrate consumption for cell maintenance. Mathematical models were validated and used to simulate alternative operating conditions as well as to analyze the performance of the two-stage process against that of the single-stage process.
Supersonic jet noise generated by large scale instabilities
NASA Technical Reports Server (NTRS)
Seiner, J. M.; Mclaughlin, D. K.; Liu, C. H.
1982-01-01
The role of large scale wavelike structures as the major mechanism for supersonic jet noise emission is examined. With the use of aerodynamic and acoustic data for low Reynolds number, supersonic jets at and below 70 thousand comparisons are made with flow fluctuation and acoustic measurements in high Reynolds number, supersonic jets. These comparisons show that a similar physical mechanism governs the generation of sound emitted in he principal noise direction. These experimental data are further compared with a linear instability theory whose prediction for the axial location of peak wave amplitude agrees satisfactorily with measured phased averaged flow fluctuation data in the low Reynolds number jets. The agreement between theory and experiment in the high Reynolds number flow differs as to the axial location for peak flow fluctuations and predicts an apparent origin for sound emission far upstream of the measured acoustic data.
Airborne fungal spores of Alternaria, meteorological parameters and predicting variables
NASA Astrophysics Data System (ADS)
Filali Ben Sidel, Farah; Bouziane, Hassan; del Mar Trigo, Maria; El Haskouri, Fatima; Bardei, Fadoua; Redouane, Abdelbari; Kadiri, Mohamed; Riadi, Hassane; Kazzaz, Mohamed
2015-03-01
Alternaria is frequently found as airborne fungal spores and is recognized as an important cause of respiratory allergies. The aerobiological monitoring of fungal spores was performed using a Burkard volumetric spore traps. To establish predicting variables for daily and weakly spore counts, a stepwise multiple regression between spore concentrations and independent variables (meteorological parameters and lagged values from the series of spore concentrations: previous day or week concentration (Alt t - 1) and mean concentration of the same day or week in other years ( C mean)) was made with data obtained during 2009-2011. Alternaria conidia are present throughout the year in the atmosphere of Tetouan, although they show important seasonal fluctuations. The highest levels of Alternaria spores were recorded during the spring and summer or autumn. Alternaria showed maximum daily values in April, May or October depending on year. When the spore variables of Alternaria, namely C mean and Alt t - 1, and meteorological parameters were included in the equation, the resulting R 2 satisfactorily predict future concentrations for 55.5 to 81.6 % during the main spore season and the pre-peak 2. In the predictive model using weekly values, the adjusted R 2 varied from 0.655 to 0.676. The Wilcoxon test was used to compare the results from the expected values and the pre-peak spore data or weekly values for 2012, indicating that there were no significant differences between series compared. This test showed the C mean, Alt t - 1, frequency of the wind third quadrant, maximum wind speed and minimum relative humidity as the most efficient independent variables to forecast the overall trend of this spore in the air.
Landin, Wendell E; Mun, Greg C; Nims, Raymond W; Harbell, John W
2007-09-01
The cytosensor microphysiometer (mu phi) was investigated as a rapid, relatively inexpensive test to predict performance of skin cleansing wipes on the human 21-day cumulative irritation patch test (21CIPT). It indirectly measures metabolic rate changes in L929 cells as a function of test article dose, by measuring the acidification rate in a low-buffer medium. The dose producing a 50% reduction in metabolic rate (MRD50), relative to the baseline rate, is used as a measure of toxicity. The acute toxicity of the mu phi assay can be compared to the chronic toxicity of the 21CIPT, which is based largely on the exposure of test agents to the epidermal cells, resulting in damage and penetration of the stratum corneum leading to cell toxicity. Two series of surfactant-based cleansing wipe products were tested via the mu phi assay and 21CIPT. The first series, consisting of 20 products, was used to determine a prediction model. The second series of 38 products consisted of routine product development formulas or marketed products. Comparing the results from both tests, samples with an MRD50 greater than 50 mg/ml provided a 21CIPT score consistent with a product that performs satisfactorily in the market. When the MRD50 was greater than 78 mg/ml, the 21CIPT score was usually zero. The mu phi may be more sensitive than the 21CIPT for ranking minimally irritating materials. The mu phi assay is useful as a screen for predicting the performance of a wet wipes formula on the 21CIPT, and concurrently reduces the use of animals for safety testing in a product development program for cleansing wipes.
Cochlear-implant spatial selectivity with monopolar, bipolar and tripolar stimulation.
Zhu, Ziyan; Tang, Qing; Zeng, Fan-Gang; Guan, Tian; Ye, Datian
2012-01-01
Sharp spatial selectivity is critical to auditory performance, particularly in pitch-related tasks. Most contemporary cochlear implants have employed monopolar stimulation that produces broad electric fields, which presumably contribute to poor pitch and pitch-related performance by implant users. Bipolar or tripolar stimulation can generate focused electric fields but requires higher current to reach threshold and, more interestingly, has not produced any apparent improvement in cochlear-implant performance. The present study addressed this dilemma by measuring psychophysical and physiological spatial selectivity with both broad and focused stimulations in the same cohort of subjects. Different current levels were adjusted by systematically measuring loudness growth for each stimulus, each stimulation mode, and in each subject. Both psychophysical and physiological measures showed that, although focused stimulation produced significantly sharper spatial tuning than monopolar stimulation, it could shift the tuning position or even split the tuning tips. The altered tuning with focused stimulation is interpreted as a result of poor electrode-to-neuron interface in the cochlea, and is suggested to be mainly responsible for the lack of consistent improvement in implant performance. A linear model could satisfactorily quantify the psychophysical and physiological data and derive the tuning width. Significant correlation was found between the individual physiological and psychophysical tuning widths, and the correlation was improved by log-linearly transforming the physiological data to predict the psychophysical data. Because the physiological measure took only one-tenth of the time of the psychophysical measure, the present model is of high clinical significance in terms of predicting and improving cochlear-implant performance. Copyright © 2011 Elsevier B.V. All rights reserved.
Cochlear Implant Spatial Selectivity with Monopolar, Bipolar and Tripolar Stimulation
Zhu, Ziyan; Tang, Qing; Zeng, Fan-Gang; Guan, Tian; Ye, Datian
2011-01-01
Sharp spatial selectivity is critical to auditory performance, particularly in pitch related tasks. Most contemporary cochlear implants have employed monopolar stimulation that produces broad electric fields, which presumably contribute to poor pitch and pitch-related performance by implant users. Bipolar or tripolar stimulation can generate focused electric fields but requires higher current to reach threshold and, more interestingly, has not produced any apparent improvement in cochlear implant performance. The present study addressed this dilemma by measuring psychophysical and physiological spatial selectivity with both broad and focused stimulations in the same cohort of subjects. Different current levels were adjusted by systematically measuring loudness growth for each stimulus, each stimulation mode, and in each subject. Both psychophysical and physiological measures showed that, although focused stimulation produced significantly sharper spatial tuning than monopolar stimulation, it could shift the tuning position or even split the tuning tips. The altered tuning with focused stimulation is interpreted as a result of poor electrode-to-neuron interface in the cochlea, and is suggested to be mainly responsible for the lack of consistent improvement in implant performance. A linear model could satisfactorily quantify the psychophysical and physiological data and derive the tuning width. Significant correlation was found between the individual physiological and psychophysical tuning widths, and the correlation was improved by log-linearly transforming the physiological data to predict the psychophysical data. Because the physiological measure took only one-tenth of the time of the psychophysical measure, the present model is of high clinical significance in terms of predicting and improving cochlear implant performance. PMID:22138630
Experimental Investigation and Analysis of HEC-6 River Morphological Model
NASA Astrophysics Data System (ADS)
Tingsanchali, Tawatchai; Supharatid, Seree
1996-05-01
Only comparatively few experimental studies have been carried out to investigate the performance of the HEC-6 river morphological model. The model was developed by the Hydrologic Engineering Center of the US Army Corps of Engineers. In this study, experiments were carried out in a 20 m long concrete flume 0.6 m wide with varying rectangular cross-sections. The channel bed is paved with uniform sand of D50 = 0.9 mm and D90 = 1.2 mm within the test reach of 12 m. Two types of experiments were carried out with sediment transport, one under steady uniform flow and another under steady non-uniform flow conditions. Nine steady uniform flow experiments were carried out to compare the measured equilibrium relationship of flow and sediment transport rate with two bedload formulae, namely, Du Boys and Meyer-Peter and Muller, and with three total load formulae, namely, Toffaleti, Laursen and Yang. It was found that even though the sediment transport consists of a certain portion of bedload, the total load formulae give satisfactory results and better agreement than the two bedload formulae. Five steady non-uniform flow experiments were carried out under various conditions of varying bed profile and channel width and also with sediment addition and withdrawal. The measured transient water surface and bed profiles are compared with the computed results from the HEC-6 model. It was found that the Toffaleti and Yang total load formulae used in the HEC-6 model give the most satisfactory prediction of actual bed profiles under various conditions of non-uniform flow and sediment transport. The effects of Manning's n, variations of sediment inflow, various sediment transport formulae, sediment grain size and the model numerical parameters, i.e. distance interval x and numerical weighting factor, on the computed water surface and bed profiles were determined. It was found that the selection of the sediment transport formulae has the most significant effect on the computed results. It can be concluded that the HEC-6 model can predict satisfactorily a long-term average pattern of local scour and deposition along a channel with either a small abrupt change in geometry or gradually varying cross-sections. However, the accuracy of the model prediction is reduced in the regions where highly non-uniform flow occurs.
Seismic performance of geosynthetic-soil retaining wall structures
NASA Astrophysics Data System (ADS)
Zarnani, Saman
Vertical inclusions of expanded polystyrene (EPS) placed behind rigid retaining walls were investigated as geofoam seismic buffers to reduce earthquake-induced loads. A numerical model was developed using the program FLAC and the model validated against 1-g shaking table test results of EPS geofoam seismic buffer models. Two constitutive models for the component materials were examined: elastic-perfectly plastic with Mohr-Coulomb (M-C) failure criterion and non-linear hysteresis damping model with equivalent linear method (ELM) approach. It was judged that the M-C model was sufficiently accurate for practical purposes. The mechanical property of interest to attenuate dynamic loads using a seismic buffer was the buffer stiffness defined as K = E/t (E = buffer elastic modulus, t = buffer thickness). For the range of parameters investigated in this study, K ≤50 MN/m3 was observed to be the practical range for the optimal design of these systems. Parametric numerical analyses were performed to generate design charts that can be used for the preliminary design of these systems. A new high capacity shaking table facility was constructed at RMC that can be used to study the seismic performance of earth structures. Reduced-scale models of geosynthetic reinforced soil (GRS) walls were built on this shaking table and then subjected to simulated earthquake loading conditions. In some shaking table tests, combined use of EPS geofoam and horizontal geosynthetic reinforcement layers was investigated. Numerical models were developed using program FLAC together with ELM and M-C constitutive models. Physical and numerical results were compared against predicted values using analysis methods found in the journal literature and in current North American design guidelines. The comparison shows that current Mononobe-Okabe (M-O) based analysis methods could not consistently satisfactorily predict measured reinforcement connection load distributions at all elevations under both static and dynamic loading conditions. The results from GRS model wall tests with combined EPS geofoam and geosynthetic reinforcement layers show that the inclusion of a EPS geofoam layer behind the GRS wall face can reduce earth loads acting on the wall facing to values well below those recorded for conventional GRS wall model configurations.
Couceiro, Lucía; Le Gac, Mickael; Hunsperger, Heather M; Mauger, Stéphane; Destombe, Christophe; Cock, J Mark; Ahmed, Sophia; Coelho, Susana M; Valero, Myriam; Peters, Akira F
2015-07-01
The evolutionary stability of haploid-diploid life cycles is still controversial. Mathematical models indicate that niche differences between ploidy phases may be a necessary condition for the evolution and maintenance of these life cycles. Nevertheless, experimental support for this prediction remains elusive. In the present work, we explored this hypothesis in natural populations of the brown alga Ectocarpus. Consistent with the life cycle described in culture, Ectocarpus crouaniorum in NW France and E. siliculosus in SW Italy exhibited an alternation between haploid gametophytes and diploid sporophytes. Our field data invalidated, however, the long-standing view of an isomorphic alternation of generations. Gametophytes and sporophytes displayed marked differences in size and, conforming to theoretical predictions, occupied different spatiotemporal niches. Gametophytes were found almost exclusively on the alga Scytosiphon lomentaria during spring whereas sporophytes were present year-round on abiotic substrata. Paradoxically, E. siliculosus in NW France exhibited similar habitat usage despite the absence of alternation of ploidy phases. Diploid sporophytes grew both epilithically and epiphytically, and this mainly asexual population gained the same ecological advantage postulated for haploid-diploid populations. Consequently, an ecological interpretation of the niche differences between haploid and diploid individuals does not seem to satisfactorily explain the evolution of the Ectocarpus life cycle. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Fisher, W.; Wang, Jian; George, Nysia I.; Gearhart, Jeffery M.; McLanahan, Eva D.
2016-01-01
The Institute of Medicine recommends that lactating women ingest 290 μg iodide/d and a nursing infant, less than two years of age, 110 μg/d. The World Health Organization, United Nations Children’s Fund, and International Council for the Control of Iodine Deficiency Disorders recommend population maternal and infant urinary iodide concentrations ≥ 100 μg/L to ensure iodide sufficiency. For breast milk, researchers have proposed an iodide concentration range of 150–180 μg/L indicates iodide sufficiency for the mother and infant, however no national or international guidelines exist for breast milk iodine concentration. For the first time, a lactating woman and nursing infant biologically based model, from delivery to 90 days postpartum, was constructed to predict maternal and infant urinary iodide concentration, breast milk iodide concentration, the amount of iodide transferred in breast milk to the nursing infant each day and maternal and infant serum thyroid hormone kinetics. The maternal and infant models each consisted of three sub-models, iodide, thyroxine (T4), and triiodothyronine (T3). Using our model to simulate a maternal intake of 290 μg iodide/d, the average daily amount of iodide ingested by the nursing infant, after 4 days of life, gradually increased from 50 to 101 μg/day over 90 days postpartum. The predicted average lactating mother and infant urinary iodide concentrations were both in excess of 100 μg/L and the predicted average breast milk iodide concentration, 157 μg/L. The predicted serum thyroid hormones (T4, free T4 (fT4), and T3) in both the nursing infant and lactating mother were indicative of euthyroidism. The model was calibrated using serum thyroid hormone concentrations for lactating women from the United States and was successful in predicting serum T4 and fT4 levels (within a factor of two) for lactating women in other countries. T3 levels were adequately predicted. Infant serum thyroid hormone levels were adequately predicted for most data. For moderate iodide deficient conditions, where dietary iodide intake may range from 50 to 150 μg/d for the lactating mother, the model satisfactorily described the iodide measurements, although with some variation, in urine and breast milk. Predictions of serum thyroid hormones in moderately iodide deficient lactating women (50 μg/d) and nursing infants did not closely agree with mean reported serum thyroid hormone levels, however, predictions were usually within a factor of two. Excellent agreement between prediction and observation was obtained for a recent moderate iodide deficiency study in lactating women. Measurements included iodide levels in urine of infant and mother, iodide in breast milk, and serum thyroid hormone levels in infant and mother. A maternal iodide intake of 50 μg/d resulted in a predicted 29–32% reduction in serum T4 and fT4 in nursing infants, however the reduced serum levels of T4 and fT4 were within most of the published reference intervals for infant. This biologically based model is an important first step at integrating the rapid changes that occur in the thyroid system of the nursing newborn in order to predict adverse outcomes from exposure to thyroid acting chemicals, drugs, radioactive materials or iodine deficiency. PMID:26930410
Fisher, W; Wang, Jian; George, Nysia I; Gearhart, Jeffery M; McLanahan, Eva D
2016-01-01
The Institute of Medicine recommends that lactating women ingest 290 μg iodide/d and a nursing infant, less than two years of age, 110 μg/d. The World Health Organization, United Nations Children's Fund, and International Council for the Control of Iodine Deficiency Disorders recommend population maternal and infant urinary iodide concentrations ≥ 100 μg/L to ensure iodide sufficiency. For breast milk, researchers have proposed an iodide concentration range of 150-180 μg/L indicates iodide sufficiency for the mother and infant, however no national or international guidelines exist for breast milk iodine concentration. For the first time, a lactating woman and nursing infant biologically based model, from delivery to 90 days postpartum, was constructed to predict maternal and infant urinary iodide concentration, breast milk iodide concentration, the amount of iodide transferred in breast milk to the nursing infant each day and maternal and infant serum thyroid hormone kinetics. The maternal and infant models each consisted of three sub-models, iodide, thyroxine (T4), and triiodothyronine (T3). Using our model to simulate a maternal intake of 290 μg iodide/d, the average daily amount of iodide ingested by the nursing infant, after 4 days of life, gradually increased from 50 to 101 μg/day over 90 days postpartum. The predicted average lactating mother and infant urinary iodide concentrations were both in excess of 100 μg/L and the predicted average breast milk iodide concentration, 157 μg/L. The predicted serum thyroid hormones (T4, free T4 (fT4), and T3) in both the nursing infant and lactating mother were indicative of euthyroidism. The model was calibrated using serum thyroid hormone concentrations for lactating women from the United States and was successful in predicting serum T4 and fT4 levels (within a factor of two) for lactating women in other countries. T3 levels were adequately predicted. Infant serum thyroid hormone levels were adequately predicted for most data. For moderate iodide deficient conditions, where dietary iodide intake may range from 50 to 150 μg/d for the lactating mother, the model satisfactorily described the iodide measurements, although with some variation, in urine and breast milk. Predictions of serum thyroid hormones in moderately iodide deficient lactating women (50 μg/d) and nursing infants did not closely agree with mean reported serum thyroid hormone levels, however, predictions were usually within a factor of two. Excellent agreement between prediction and observation was obtained for a recent moderate iodide deficiency study in lactating women. Measurements included iodide levels in urine of infant and mother, iodide in breast milk, and serum thyroid hormone levels in infant and mother. A maternal iodide intake of 50 μg/d resulted in a predicted 29-32% reduction in serum T4 and fT4 in nursing infants, however the reduced serum levels of T4 and fT4 were within most of the published reference intervals for infant. This biologically based model is an important first step at integrating the rapid changes that occur in the thyroid system of the nursing newborn in order to predict adverse outcomes from exposure to thyroid acting chemicals, drugs, radioactive materials or iodine deficiency.
Modelling the molecular composition and nuclear-spin chemistry of collapsing prestellar sources
NASA Astrophysics Data System (ADS)
Hily-Blant, P.; Faure, A.; Rist, C.; Pineau des Forêts, G.; Flower, D. R.
2018-04-01
We study the gravitational collapse of prestellar sources and the associated evolution of their chemical composition. We use the University of Grenoble Alpes Astrochemical Network (UGAN), which includes reactions involving the different nuclear-spin states of H2, H+3, and of the hydrides of carbon, nitrogen, oxygen, and sulfur, for reactions involving up to seven protons. In addition, species-to-species rate coefficients are provided for the ortho/para interconversion of the H_3^+ + H2 system and isotopic variants. The composition of the medium is followed from an initial steady state through the early phase of isothermal gravitational collapse. Both the freeze-out of the molecules on to grains and the coagulation of the grains were incorporated in the model. The predicted abundances and column densities of the spin isomers of ammonia and its deuterated forms are compared with those measured recently towards the prestellar cores H-MM1, L16293E, and Barnard B1. We find that gas-phase processes alone account satisfactorily for the observations, without recourse to grain-surface reactions. In particular, our model reproduces both the isotopologue abundance ratios and the ortho:para ratios of NH2D and NHD2 within observational uncertainties. More accurate observations are necessary to distinguish between full scrambling processes—as assumed in our gas-phase network—and direct nucleus- or atom-exchange reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalski, Adam F.; Allred, Joel C.; Daw, Adrian
2017-02-10
The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from Reuven Ramatymore » High Energy Solar Spectroscopic Imager . We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe ii chromospheric emission line profiles observed in the impulsive phase.« less
Adsorption of the compounds encountered in monosaccharide dehydration in zeolite beta.
León, Marta; Swift, T Dallas; Nikolakis, Vladimiros; Vlachos, Dionisios G
2013-06-04
A comprehensive study of the adsorption of the compounds involved in the reaction of dehydration of fructose to 5-hydroxymethyl furfural (HMF) on the zeolite H-BEA with SiO2/Al2O3 = 18 has been carried out. Furthermore, a method for the estimation of the real adsorption loading from the experimentally measured excess adsorption is developed and applied to calculate the adsorption isotherms both in the case of single-solute and multisolute mixtures. It was found that zeolite H-BEA adsorbs HMF and levulinic acid from water mixtures to greater extent than sugars and formic acid, which prefer to partition in the aqueous phase. HMF and levulinic acid adsorption isotherms could be fitted in a Redlich-Peterson isotherm model, while the adsorption of formic acid is better fitted using the Freundlich model and sugars via the Henry model. Adsorption loadings decreased with increasing temperature (0, 25, and 40 °C), which is characteristic of an exothermic process. From the temperature dependence of the isotherms, the limiting heat of adsorption at zero coverage was determined using van't Hoff equation. Given the importance and the complexity of multicomponent systems, several experiments of adsorption of multisolute solutions have been carried out. In most of the cases, the ideal adsorbed solution theory (IAST) has been proven to satisfactorily predict adsorption from multisolute mixtures using as input the single-solute isotherms.
Beretta, Lorenzo; Santaniello, Alessandro; van Riel, Piet L C M; Coenen, Marieke J H; Scorza, Raffaella
2010-08-06
Epistasis is recognized as a fundamental part of the genetic architecture of individuals. Several computational approaches have been developed to model gene-gene interactions in case-control studies, however, none of them is suitable for time-dependent analysis. Herein we introduce the Survival Dimensionality Reduction (SDR) algorithm, a non-parametric method specifically designed to detect epistasis in lifetime datasets. The algorithm requires neither specification about the underlying survival distribution nor about the underlying interaction model and proved satisfactorily powerful to detect a set of causative genes in synthetic epistatic lifetime datasets with a limited number of samples and high degree of right-censorship (up to 70%). The SDR method was then applied to a series of 386 Dutch patients with active rheumatoid arthritis that were treated with anti-TNF biological agents. Among a set of 39 candidate genes, none of which showed a detectable marginal effect on anti-TNF responses, the SDR algorithm did find that the rs1801274 SNP in the Fc gamma RIIa gene and the rs10954213 SNP in the IRF5 gene non-linearly interact to predict clinical remission after anti-TNF biologicals. Simulation studies and application in a real-world setting support the capability of the SDR algorithm to model epistatic interactions in candidate-genes studies in presence of right-censored data. http://sourceforge.net/projects/sdrproject/.
NASA Technical Reports Server (NTRS)
Kowalski, Adam F.; Allred, Joel C.; Daw, Adrian N.; Cauzzi, Gianna; Carlsson, Mats
2017-01-01
The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from Reuven Ramaty High Energy Solar Spectroscopic Imager. We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe II chromospheric emission line profiles observed in the impulsive phase.
πN scattering and γN → Nπ photoproduction within the unitary improved Born approximation
NASA Astrophysics Data System (ADS)
Mariano, A.
2007-07-01
Following the programme of describing consistently several processes where the isobar Δ(1232 MeV) nucleon resonance appears as an intermediate state, in this work we propose to unitarize our old improved Born approximation already used to describe successfully π+p elastic and radiative scattering, to treat pion photoproduction. First we add the effect of final state interactions and make a new determination of the mass, width and the coupling constant to the pion-nucleon state of the Δ resonance. Then extending the model for pion photoproduction and using the resonance parameters determined previously, we are able to define effective form factors (at k2γ = 0) for the γN → Δ vertex with values GM = 2.97 ± 0.08 and GE = 0.055 ± 0.010, by fitting the data for the M3/21+ and E3/21+ multipoles. These values are fully consistent with recent chiral effective field theory calculations, and using them we can predict satisfactorily the data for other multipoles and the photoproduction cross section. Finally, we intend a model-independent determination of the bare form factors making a dynamical dressing of the vertex, getting G0M = 1.69 ± 0.02, G0E = 0.028 ± 0.008 and R0EM = -1.67 ± 0.45%, which are compared with different quark models.
Modelling the molecular composition and nuclear-spin chemistryof collapsing pre-stellar sources
NASA Astrophysics Data System (ADS)
Hily-Blant, P.; Faure, A.; Rist, C.; Pineau des Forêts, G.; Flower, D. R.
2018-07-01
We study the gravitational collapse of pre-stellar sources and the associated evolution of their chemical composition. We use the University of Grenoble Alpes Astrochemical Network (UGAN), which includes reactions involving the different nuclear-spin states of H2, H_3^+, and of the hydrides of carbon, nitrogen, oxygen, and sulphur, for reactions involving up to seven protons. In addition, species-to-species rate coefficients are provided for the ortho/para interconversion of the H_3^+ + H2 system and isotopic variants. The composition of the medium is followed from an initial steady state through the early phase of isothermal gravitational collapse. Both the freeze-out of the molecules on to grains and the coagulation of the grains were incorporated in the model. The predicted abundances and column densities of the spin isomers of ammonia and its deuterated forms are compared with those measured recently towards the pre-stellar cores H-MM1, L16293E, and Barnard B1. We find that gas-phase processes alone account satisfactorily for the observations, without recourse to grain-surface reactions. In particular, our model reproduces both the isotopologue abundance ratios and the ortho:para ratios of NH2D and NHD2 within observational uncertainties. More accurate observations are necessary to distinguish between full scrambling processes - as assumed in our gas-phase network - and direct nucleus- or atom-exchange reactions.
Ruan, Wenqian; Hu, Jiwei; Qi, Jimei; Hou, Yu; Cao, Rensheng; Wei, Xionghui
2018-05-22
Reduced-graphene-oxide-supported bimetallic Fe/Ni nanoparticles were synthesized in this study for the removal of crystal violet (CV) dye from aqueous solutions. This material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), Raman spectroscopy, N₂-sorption, and X-ray photoelectron spectroscopy (XPS). The influence of independent parameters (namely, initial dye concentration, initial pH, contact time, and temperature) on the removal efficiency were investigated via Box⁻Behnken design (BBD). Artificial intelligence (i.e., artificial neural network, genetic algorithm, and particle swarm optimization) was used to optimize and predict the optimum conditions and obtain the maximum removal efficiency. The zero point of charge (pH ZPC ) of rGO/Fe/Ni composites was determined by using the salt addition method. The experimental equilibrium data were fitted well to the Freundlich model for the evaluation of the actual behavior of CV adsorption, and the maximum adsorption capacity was estimated as 2000.00 mg/g. The kinetic study discloses that the adsorption processes can be satisfactorily described by the pseudo-second-order model. The values of Gibbs free energy change (Δ G ⁰), entropy change (Δ S ⁰), and enthalpy change (Δ H ⁰) demonstrate the spontaneous and endothermic nature of the adsorption of CV onto rGO/Fe/Ni composites.
NASA Astrophysics Data System (ADS)
Bagnall, Kevin R.; Wang, Evelyn N.
2016-06-01
Micro-Raman thermography is one of the most popular techniques for measuring local temperature rise in gallium nitride (GaN) high electron mobility transistors with high spatial and temporal resolution. However, accurate temperature measurements based on changes in the Stokes peak positions of the GaN epitaxial layers require properly accounting for the stress and/or strain induced by the inverse piezoelectric effect. It is common practice to use the pinched OFF state as the unpowered reference for temperature measurements because the vertical electric field in the GaN buffer that induces inverse piezoelectric stress/strain is relatively independent of the gate bias. Although this approach has yielded temperature measurements that agree with those derived from the Stokes/anti-Stokes ratio and thermal models, there has been significant difficulty in quantifying the mechanical state of the GaN buffer in the pinched OFF state from changes in the Raman spectra. In this paper, we review the experimental technique of micro-Raman thermography and derive expressions for the detailed dependence of the Raman peak positions on strain, stress, and electric field components in wurtzite GaN. We also use a combination of semiconductor device modeling and electro-mechanical modeling to predict the stress and strain induced by the inverse piezoelectric effect. Based on the insights gained from our electro-mechanical model and the best values of material properties in the literature, we analyze changes in the E2 high and A1 (LO) Raman peaks and demonstrate that there are major quantitative discrepancies between measured and modeled values of inverse piezoelectric stress and strain. We examine many of the hypotheses offered in the literature for these discrepancies but conclude that none of them satisfactorily resolves these discrepancies. Further research is needed to determine whether the electric field components could be affecting the phonon frequencies apart from the inverse piezoelectric effect in wurtzite GaN, which has been predicted theoretically in zinc blende gallium arsenide (GaAs).
Modelling the structural response of cotton plants to mepiquat chloride and population density
Gu, Shenghao; Evers, Jochem B.; Zhang, Lizhen; Mao, Lili; Zhang, Siping; Zhao, Xinhua; Liu, Shaodong; van der Werf, Wopke; Li, Zhaohu
2014-01-01
Background and Aims Cotton (Gossypium hirsutum) has indeterminate growth. The growth regulator mepiquat chloride (MC) is used worldwide to restrict vegetative growth and promote boll formation and yield. The effects of MC are modulated by complex interactions with growing conditions (nutrients, weather) and plant population density, and as a result the effects on plant form are not fully understood and are difficult to predict. The use of MC is thus hard to optimize. Methods To explore crop responses to plant density and MC, a functional–structural plant model (FSPM) for cotton (named CottonXL) was designed. The model was calibrated using 1 year's field data, and validated by using two additional years of detailed experimental data on the effects of MC and plant density in stands of pure cotton and in intercrops of cotton with wheat. CottonXL simulates development of leaf and fruits (square, flower and boll), plant height and branching. Crop development is driven by thermal time, population density, MC application, and topping of the main stem and branches. Key Results Validation of the model showed good correspondence between simulated and observed values for leaf area index with an overall root-mean-square error of 0·50 m2 m−2, and with an overall prediction error of less than 10 % for number of bolls, plant height, number of fruit branches and number of phytomers. Canopy structure became more compact with the decrease of leaf area index and internode length due to the application of MC. Moreover, MC did not have a substantial effect on boll density but increased lint yield at higher densities. Conclusions The model satisfactorily represents the effects of agronomic measures on cotton plant structure. It can be used to identify optimal agronomic management of cotton to achieve optimal plant structure for maximum yield under varying environmental conditions. PMID:24489020
Population pharmacokinetics of tafenoquine during malaria prophylaxis in healthy subjects.
Charles, Bruce G; Miller, Ann K; Nasveld, Peter E; Reid, Mark G; Harris, Ivor E; Edstein, Michael D
2007-08-01
The population pharmacokinetics of tafenoquine were studied in Australian soldiers taking tafenoquine for malarial prophylaxis. The subjects (476 males and 14 females) received a loading dose of 200 mg tafenoquine base daily for 3 days, followed by a weekly dose of 200 mg tafenoquine for 6 months. Blood samples were collected from each subject after the last loading dose and then at weeks 4, 8, and 16. Plasma tafenoquine concentrations were determined by liquid chromatography-tandem mass spectrometry. Population modeling was performed with NONMEM, using a one-compartment model. Typical values of the first-order absorption rate constant (K(a)), clearance (CL/F), and volume of distribution (V/F) were 0.243 h(-1), 0.056 liters/h/kg, and 23.7 liters/kg, respectively. The intersubject variability (coefficient of variation) in CL/F and V/F was 18% and 22%, respectively. The interoccasion variability in CL/F was 18%, and the mean elimination half-life was 12.7 days. A positive linear association between weight and both CL/F and V/F was found, but this had insufficient impact to warrant dosage adjustments. Model robustness was assessed by a nonparametric bootstrap (200 samples). A degenerate visual predictive check indicated that the raw data mirrored the postdose concentration-time profiles simulated (n = 1,000) from the final model. Individual pharmacokinetic estimates for tafenoquine did not predict the prophylactic outcome with the drug for four subjects who relapsed with Plasmodium vivax malaria, as they had similar pharmacokinetics to those who were free of malaria infection. No obvious pattern existed between the plasma tafenoquine concentration and the pharmacokinetic parameter values for subjects with and without drug-associated moderate or severe adverse events. This validated population pharmacokinetic model satisfactorily describes the disposition and variability of tafenoquine used for long-term malaria prophylaxis in a large cohort of soldiers on military deployment.
Population Pharmacokinetics of Tafenoquine during Malaria Prophylaxis in Healthy Subjects▿
Charles, Bruce G.; Miller, Ann K.; Nasveld, Peter E.; Reid, Mark G.; Harris, Ivor E.; Edstein, Michael D.
2007-01-01
The population pharmacokinetics of tafenoquine were studied in Australian soldiers taking tafenoquine for malarial prophylaxis. The subjects (476 males and 14 females) received a loading dose of 200 mg tafenoquine base daily for 3 days, followed by a weekly dose of 200 mg tafenoquine for 6 months. Blood samples were collected from each subject after the last loading dose and then at weeks 4, 8, and 16. Plasma tafenoquine concentrations were determined by liquid chromatography-tandem mass spectrometry. Population modeling was performed with NONMEM, using a one-compartment model. Typical values of the first-order absorption rate constant (Ka), clearance (CL/F), and volume of distribution (V/F) were 0.243 h−1, 0.056 liters/h/kg, and 23.7 liters/kg, respectively. The intersubject variability (coefficient of variation) in CL/F and V/F was 18% and 22%, respectively. The interoccasion variability in CL/F was 18%, and the mean elimination half-life was 12.7 days. A positive linear association between weight and both CL/F and V/F was found, but this had insufficient impact to warrant dosage adjustments. Model robustness was assessed by a nonparametric bootstrap (200 samples). A degenerate visual predictive check indicated that the raw data mirrored the postdose concentration-time profiles simulated (n = 1,000) from the final model. Individual pharmacokinetic estimates for tafenoquine did not predict the prophylactic outcome with the drug for four subjects who relapsed with Plasmodium vivax malaria, as they had similar pharmacokinetics to those who were free of malaria infection. No obvious pattern existed between the plasma tafenoquine concentration and the pharmacokinetic parameter values for subjects with and without drug-associated moderate or severe adverse events. This validated population pharmacokinetic model satisfactorily describes the disposition and variability of tafenoquine used for long-term malaria prophylaxis in a large cohort of soldiers on military deployment. PMID:17517850
Muscle forces analysis in the shoulder mechanism during wheelchair propulsion.
Lin, Hwai-Ting; Su, Fong-Chin; Wu, Hong-Wen; An, Kai-Nan
2004-01-01
This study combines an ergometric wheelchair, a six-camera video motion capture system and a prototype computer graphics based musculoskeletal model (CGMM) to predict shoulder joint loading, muscle contraction force per muscle and the sequence of muscular actions during wheelchair propulsion, and also to provide an animated computer graphics model of the relative interactions. Five healthy male subjects with no history of upper extremity injury participated. A conventional manual wheelchair was equipped with a six-component load cell to collect three-dimensional forces and moments experienced by the wheel, allowing real-time measurement of hand/rim force applied by subjects during normal wheelchair operation. An ExpertVision six-camera video motion capture system collected trajectory data of markers attached on anatomical positions. The CGMM was used to simulate and animate muscle action by using an optimization technique combining observed muscular motions with physiological constraints to estimate muscle contraction forces during wheelchair propulsion. The CGMM provides results that satisfactorily match the predictions of previous work, disregarding minor differences which presumably result from differing experimental conditions, measurement technologies and subjects. Specifically, the CGMM shows that the supraspinatus, infraspinatus, anterior deltoid, pectoralis major and biceps long head are the prime movers during the propulsion phase. The middle and posterior deltoid and supraspinatus muscles are responsible for arm return during the recovery phase. CGMM modelling shows that the rotator cuff and pectoralis major play an important role during wheelchair propulsion, confirming the known risk of injury for these muscles during wheelchair propulsion. The CGMM successfully transforms six-camera video motion capture data into a technically useful and visually interesting animated video model of the shoulder musculoskeletal system. The CGMM further yields accurate estimates of muscular forces during motion, indicating that this prototype modelling and analysis technique will aid in study, analysis and therapy of the mechanics and underlying pathomechanics involved in various musculoskeletal overuse syndromes.
Experimental investigation of passive thermodynamic vent system (TVS) with liquid nitrogen
NASA Astrophysics Data System (ADS)
Bae, Junhyuk; Yoo, Junghyun; Jin, Lingxue; Jeong, Sangkwon
2018-01-01
Thermodynamic vent system (TVS) is an attractive technology to maintain an allowable pressure level of a cryogenic propellant storage in a spacecraft under micro-gravity condition. There are two types of TVS; active or passive. In this paper, the passive TVS which does not utilize a cryogenic liquid circulation pump is experimentally investigated with liquid nitrogen and numerically analyzed by thermodynamic and heat transfer model. A cylindrical copper tank, which is 198 mm in inner diameter and 216 mm in height, is utilized to suppress a thermal-stratification effect of inside cryogenic fluid. A coil heat exchanger, which is 3 m in length and 6.35 mm in outer diameter, and a fixed size orifice of which diameter is 0.4 mm are fabricated to remove heat from the stored fluid to the vented flow. Each vent process is initiated at 140 kPa and ended at 120 kPa with liquid nitrogen fill levels which are 30%, 50% and 70%, respectively. In the numerical model, the fluid in the tank is assumed to be homogeneous saturated liquid-vapor. Mass and energy balance equations with heat transfer conditions suggested in this research are considered to calculate the transient pressure variation in the tank and the amount of heat transfer across the heat exchanger. We achieve the average heat rejection rate of more than 9 W by TVS and conclude that the passive TVS operates satisfactorily. In addition, the prediction model is verified by experimental results. Although the model has limitation in providing accurate results, it can surely predict the tendency of pressure and temperature changes in the tank. Furthermore, the model can suggest how we can improve the heat exchanger design to enhance an overall efficiency of passive TVS. Moreover, the performance of passive TVS is compared with other cryogenic vent systems (direct vent system and active TVS) by suggested performance indicator.
NASA Technical Reports Server (NTRS)
Covington, M. A.
2005-01-01
New tests and analyses are reported that were carried out to resolve testing uncertainties in the original development and qualification of a lightweight ablative material used for the Stardust spacecraft forebody heat shield. These additional arcjet tests and analyses confirmed the ablative and thermal performance of low density Phenolic Impregnated Carbon Ablator (PICA) material used for the Stardust design. Testing was done under conditions that simulate the peak convective heating conditions (1200 W/cm2 and 0.5 atm) expected during Earth entry of the Stardust Sample Return Capsule. Test data and predictions from an ablative material response computer code for the in-depth temperatures were compared to guide iterative adjustment of material thermophysical properties used in the code so that the measured and predicted temperatures agreed. The PICA recession rates and maximum internal temperatures were satisfactorily predicted by the computer code with the revised properties. Predicted recession rates were also in acceptable agreement with measured rates for heating conditions 37% greater than the nominal peak heating rate of 1200 W/sq cm. The measured in-depth temperature response data show consistent temperature rise deviations that may be caused by an undocumented endothermic process within the PICA material that is not accurately modeled by the computer code. Predictions of the Stardust heat shield performance based on the present evaluation provide evidence that the maximum adhesive bondline temperature will be much lower than the maximum allowable of 250 C and an earlier design prediction. The re-evaluation also suggests that even with a 25 percent increase in peak heating rates, the total recession of the heat shield would be a small fraction of the as-designed thickness. These results give confidence in the Stardust heat shield design and confirm the potential of PICA material for use in new planetary probe and sample return applications.
Zornoza, R; Guerrero, C; Mataix-Solera, J; Scow, K M; Arcenegui, V; Mataix-Beneyto, J
2008-07-01
The potential of near infrared (NIR) reflectance spectroscopy to predict various physical, chemical and biochemical properties in Mediterranean soils from SE Spain was evaluated. Soil samples (n=393) were obtained by sampling thirteen locations during three years (2003-2005 period). These samples had a wide range of soil characteristics due to variations in land use, vegetation cover and specific climatic conditions. Biochemical properties also included microbial biomarkers based on phospholipid fatty acids (PLFA). Partial least squares (PLS) regression with cross validation was used to establish relationships between the NIR spectra and the reference data from physical, chemical and biochemical analyses. Based on the values of coefficient of determination (r(2)) and the ratio of standard deviation of validation set to root mean square error of cross validation (RPD), predicted results were evaluated as excellent (r(2)>0.90 and RPD>3) for soil organic carbon, Kjeldahl nitrogen, soil moisture, cation exchange capacity, microbial biomass carbon, basal soil respiration, acid phosphatase activity, β-glucosidase activity and PLFA biomarkers for total bacteria, Gram positive bacteria, actinomycetes, vesicular-arbuscular mycorrhizal fungi and total PLFA biomass. Good predictions (0.81
NASA Astrophysics Data System (ADS)
Annan, James; Hargreaves, Julia
2016-04-01
In order to perform any Bayesian processing of a model ensemble, we need a prior over the ensemble members. In the case of multimodel ensembles such as CMIP, the historical approach of ``model democracy'' (i.e. equal weight for all models in the sample) is no longer credible (if it ever was) due to model duplication and inbreeding. The question of ``model independence'' is central to the question of prior weights. However, although this question has been repeatedly raised, it has not yet been satisfactorily addressed. Here I will discuss the issue of independence and present a theoretical foundation for understanding and analysing the ensemble in this context. I will also present some simple examples showing how these ideas may be applied and developed.
Helicopter noise in hover: Computational modelling and experimental validation
NASA Astrophysics Data System (ADS)
Kopiev, V. F.; Zaytsev, M. Yu.; Vorontsov, V. I.; Karabasov, S. A.; Anikin, V. A.
2017-11-01
The aeroacoustic characteristics of a helicopter rotor are calculated by a new method, to assess its applicability in assessing rotor performance in hovering. Direct solution of the Euler equations in a noninertial coordinate system is used to calculate the near-field flow around the spinning rotor. The far-field noise field is calculated by the Ffowcs Williams-Hawkings (FW-H) method using permeable control surfaces that include the blade. For a multiblade rotor, the signal obtained is duplicated and shifted in phase for each successive blade. By that means, the spectral characteristics of the far-field noise may be obtained. To determine the integral aerodynamic characteristics of the rotor, software is written to calculate the thrust and torque characteristics from the near-field flow solution. The results of numerical simulation are compared with experimental acoustic and aerodynamic data for a large-scale model of a helicopter main rotor in an open test facility. Two- and four-blade configurations of the rotor are considered, in different hover conditions. The proposed method satisfactorily predicts the aerodynamic characteristics of the blades in such conditions and gives good estimates for the first harmonics of the noise. That permits the practical use of the proposed method, not only for hovering but also for forward flight.
Fritsch, Andreas; Hellmich, Christian; Dormieux, Luc
2009-09-21
There is an ongoing discussion on how bone strength could be explained from its internal structure and composition. Reviewing recent experimental and molecular dynamics studies, we here propose a new vision on bone material failure: mutual ductile sliding of hydroxyapatite mineral crystals along layered water films is followed by rupture of collagen crosslinks. In order to cast this vision into a mathematical form, a multiscale continuum micromechanics theory for upscaling of elastoplastic properties is developed, based on the concept of concentration and influence tensors for eigenstressed microheterogeneous materials. The model reflects bone's hierarchical organization, in terms of representative volume elements for cortical bone, for extravascular and extracellular bone material, for mineralized fibrils and the extrafibrillar space, and for wet collagen. In order to get access to the stress states at the interfaces between crystals, the extrafibrillar mineral is resolved into an infinite amount of cylindrical material phases oriented in all directions in space. The multiscale micromechanics model is shown to be able to satisfactorily predict the strength characteristics of different bones from different species, on the basis of their mineral/collagen content, their intercrystalline, intermolecular, lacunar, and vascular porosities, and the elastic and strength properties of hydroxyapatite and (molecular) collagen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Platts, J.A.; Abraham, M.H.
The partitioning of organic compounds between air and foliage and between water and foliage is of considerable environmental interest. The purpose of this work is to show that partitioning into the cuticular matrix of one particular species can be satisfactorily modeled by general equations the authors have previously developed and, hence, that the same general equations could be used to model partitioning into other plant materials of the same or different species. The general equations are linear free energy relationships that employ descriptors for polarity/polarizability, hydrogen bond acidity and basicity, dispersive effects, and volume. They have been applied to themore » partition of 62 very varied organic compounds between cuticular matrix of the tomato fruit, Lycopersicon esculentum, and either air (MX{sub a}) or water (MX{sub w}). Values of log MX{sub a} covering a range of 12.4 log units are correlated with a standard deviation of 0.232 log unit, and values of log MX{sub w} covering a range of 7.6 log unit are correlated with an SD of 0.236 log unit. Possibilities are discussed for the prediction of new air-plant cuticular matrix and water-plant cuticular matrix partition values on the basis of the equations developed.« less
The role of meteoric smoke in the Earth s environment
NASA Astrophysics Data System (ADS)
Plane, J.
An average of about 120 tonnes of interplanetary dust is believed to enter the earth's atmosphere each day. At least 55% of this ablates completely into atoms and ions, mostly between 70 and 110 km. Meteoric ablation is the source of the layers of metal atoms (Na, Fe etc.) that occur globally in the upper mesosphere; these layers are observed routinely by ground-based resonance lidars. This paper is concerned with the subsequent fate of the meteoric metals, and other constituents such as sulfur. The laboratory programme at the University of East Anglia studies the reactions that metallic species are likely to undergo in this region of the atmosphere. The resulting rate coefficients and photolysis cross sections are then used in atmospheric models. Once these models can satisfactorily reproduce the characteristic features of the mesospheric metal layers (as is the case for Na and Fe), they can then be used to predict the condensation of metal-containing species (oxides, hydroxides, carbonates) into nanometer-sized dust particles, known as "meteoric smoke". This paper will discuss the role of this smoke in providing condensation nuclei for noctilucent clouds in the upper mesosphere, forming sulphuric acid particles in the stratospheric Junge layer, and fertilizing the Fe-deficient Southern Ocean.
NASA Astrophysics Data System (ADS)
Kupchishin, A. I.; Niyazov, M. N.; Taipova, B. G.; Voronova, N. A.; Khodarina, N. N.
2018-01-01
Complex experimental studies on the effect of electron irradiation on the deposition rate of active sludge in aqueous systems by the optical method have been carried out. The obtained dependences of density (ρ) on time (t) are of the same nature for different radiation sources. The experimental curves of the dependence of the active sludge density on time are satisfactorily described by an exponential model.
Caserta, Arrigo; Boore, David; Rovelli, Antonio; Govoni, Aladino; Marra, Fabrizio; Monica, Gieseppe Della; Boschi, Enzo
2013-01-01
The mainshock and moderate‐magnitude aftershocks of the 6 April 2009 M 6.3 L’Aquila seismic sequence, about 90 km northeast of Rome, provided the first earthquake ground‐motion recordings in the urban area of Rome. Before those recordings were obtained, the assessments of the seismic hazard in Rome were based on intensity observations and theoretical considerations. The L’Aquila recordings offer an unprecedented opportunity to calibrate the city response to central Apennine earthquakes—earthquakes that have been responsible for the largest damage to Rome in historical times. Using the data recorded in Rome in April 2009, we show that (1) published theoretical predictions of a 1 s resonance in the Tiber valley are confirmed by observations showing a significant amplitude increase in response spectra at that period, (2) the empirical soil‐transfer functions inferred from spectral ratios are satisfactorily fit through 1D models using the available geological, geophysical, and laboratory data, but local variability can be large for individual events, (3) response spectra for the motions recorded in Rome from the L’Aquila earthquakes are significantly amplified in the radial component at periods near 1 s, even at a firm site on volcanic rocks, and (4) short‐period response spectra are smaller than expected when compared to ground‐motion predictions from equations based on a global dataset, whereas the observed response spectra are higher than expected for periods near 1 s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gajjar, Rachna M.; Kasting, Gerald B., E-mail: Gerald.Kasting@uc.edu
The overall goal of this research was to further develop and improve an existing skin diffusion model by experimentally confirming the predicted absorption rates of topically-applied volatile organic compounds (VOCs) based on their physicochemical properties, the skin surface temperature, and the wind velocity. In vitro human skin permeation of two hydrophilic solvents (acetone and ethanol) and two lipophilic solvents (benzene and 1,2-dichloroethane) was studied in Franz cells placed in a fume hood. Four doses of each {sup 14}C-radiolabed compound were tested — 5, 10, 20, and 40 μL cm{sup −2}, corresponding to specific doses ranging in mass from 5.0 tomore » 63 mg cm{sup −2}. The maximum percentage of radiolabel absorbed into the receptor solutions for all test conditions was 0.3%. Although the absolute absorption of each solvent increased with dose, percentage absorption decreased. This decrease was consistent with the concept of a stratum corneum deposition region, which traps small amounts of solvent in the upper skin layers, decreasing the evaporation rate. The diffusion model satisfactorily described the cumulative absorption of ethanol; however, values for the other VOCs were underpredicted in a manner related to their ability to disrupt or solubilize skin lipids. In order to more closely describe the permeation data, significant increases in the stratum corneum/water partition coefficients, K{sub sc}, and modest changes to the diffusion coefficients, D{sub sc}, were required. The analysis provided strong evidence for both skin swelling and barrier disruption by VOCs, even by the minute amounts absorbed under these in vitro test conditions. - Highlights: • Human skin absorption of small doses of VOCs was measured in vitro in a fume hood. • The VOCs tested were ethanol, acetone, benzene and 1,2-dichloroethane. • Fraction of dose absorbed for all compounds at all doses tested was less than 0.3%. • The more aggressive VOCs absorbed at higher levels than diffusion model predictions. • We conclude that even small exposures to VOCs temporarily alter skin permeability.« less
Zhao, Y G; O'Connell, N E; Yan, T
2016-06-01
Development of effective methane (CH) mitigation strategies for grazing sheep requires accurate prediction tools. The present study aimed to identify key parameters influencing enteric CH emissions and develop prediction equations for enteric CH emissions from sheep offered fresh grass. The data used were collected from 82 sheep offered fresh perennial ryegrass () as sole diets in 6 metabolism experiments (data from non-grass-only diets were not used). Sheep were from breeds of Highlander, Texel, Scottish Blackface, and Swaledale at the age of 5 to 18 mo and weighing from 24.5 to 62.7 kg. Grass was harvested daily from 6 swards on contrasting harvest dates (May to December). Before the commencement of each study, the experimental sward was harvested at a residual height of 4 cm and allowed to grow for 2 to 4 wk. The feeding trials commenced when the grass sward was suitable to zero grazing (average grass height = 15 cm), thus offering grass of a quality similar to what grazing animals would receive under routine grazing management. Sheep were housed in individual pens for 14 d and then moved to individual calorimeter chambers for 4 d. Feed intake, fecal and urine outputs, and CH emissions were measured during the final 4 d. Data were analyzed using the REML procedure to develop prediction equations for CH emissions. Linear and multiple prediction equations were developed using BW, DMI, GE intake (GEI), and grass chemical concentrations (DM, OM, water-soluble carbohydrates [WSC], NDF, ADF, nitrogen [N], GE, DE, and ME) as explanatory variables. The mean CH production was 21.1 g/kg DMI or 0.062 MJ/MJ GEI. Dry matter intake and GEI were much more accurate predictors for CH emissions than BW ( < 0.001, = 0.86 and = 0.87 vs. = 0.09, respectively). Adding grass DE and ME concentrations and grass nutrient concentrations (e.g., OM, N, GE, NDF, and WSC) to the relationships between DMI or GEI and CH emissions improved prediction accuracy with values increased to 0.93. Models based on farm-level data, for example, BW and grass nutrient (i.e., DM, GE, OM, and N) concentrations, were also developed and performed satisfactorily ( < 0.001, = 0.63). These models can contribute to improve prediction accuracy for enteric CH emissions from sheep grazing on ryegrass pasture.
The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques
Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong
2017-01-01
Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R2 > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH < 5.0, whereas Cd(II) adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH < 5.0 and pH > 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X2Cd) at low pH and inner-sphere surface complexation sites (SOCd+ and (SO)2CdOH− species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water–mineral interface. PMID:28956849
Characteristics of the Langley 8-foot Transonic Tunnel with Slotted Test Section
NASA Technical Reports Server (NTRS)
Wright, Ray H; Ritchie, Virgil S; Pearson, Albin O
1958-01-01
A large wind tunnel, approximately 8 feet in diameter, has been converted to transonic operation by means of slots in the boundary extending in the direction of flow. The usefulness of such a slotted wind tunnel, already known with respect to the reduction of the subsonic blockage interference and the production of continuously variable supersonic flows, has been augmented by devising a slot shape with which a supersonic test region with excellent flow quality could be produced. Experimental locations of detached shock waves ahead of axially symmetric bodies at low supersonic speeds in the slotted test section agreed satisfactorily with predictions obtained by use of existing approximate methods.
NASA Technical Reports Server (NTRS)
Hearth, Donald P; Wilcox, Fred A
1954-01-01
An investigation was conducted in the 8-by-6 foot supersonic wind tunnel on the effect of exhaust-gas temperatures on the external and internal characteristics of a convergent-divergent nozzle having an area expansion ratio of 1.83. Data were obtained over a pressure-ratio range from 1 to 20 at free-stream Mach numbers of 1.6 and 2.0 for exhaust temperatures of 860 degrees, 1650 degrees, and 2000 degrees R. Results of this investigation indicated that generally both the internal and external performance characteristics were only slightly affected by a large change in jet temperature. The small differences in performance which did occur were predicted satisfactorily from theoretical considerations.
Impact of Variable-Resolution Meshes on Regional Climate Simulations
NASA Astrophysics Data System (ADS)
Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.
2014-12-01
The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using ERA-Interim re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally- refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.
Impact of Variable-Resolution Meshes on Regional Climate Simulations
NASA Astrophysics Data System (ADS)
Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.
2013-12-01
The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using NCEP/NCAR re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally-refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.
Acid-base properties of 2:1 clays. I. Modeling the role of electrostatics.
Delhorme, Maxime; Labbez, Christophe; Caillet, Céline; Thomas, Fabien
2010-06-15
We present a theoretical investigation of the titratable charge of clays with various structural charge (sigma(b)): pyrophyllite (sigma(b) = 0 e x nm(-2)), montmorillonite (sigma(b) = -0.7 e x nm(-2)) and illite (sigma(b) = -1.2 e x nm(-2)). The calculations were carried out using a Monte Carlo method in the Grand Canonical ensemble and in the framework of the primitive model. The clay particle was modeled as a perfect hexagonal platelet, with an "ideal" crystal structure. The only fitting parameters used are the intrinsic equilibrium constants (pK(0)) for the protonation/deprotonation reactions of the broken-bond sites on the lateral faces of the clay particles, silanol, =SiO(-) + H(+) --> =SiOH, and aluminol, =AlO(-1/2) + H(+) --> =AlOH(+1/2). Simulations are found to give a satisfactory description of the acid-base titration of montmorillonite without any additional fitting parameter. In particular, combining the electrostatics from the crystal substitutions with ionization constants, the simulations satisfactorily catch the shift in the titration curve of montmorillonite according to the ionic strength. Change in the ionic strength modulates the screening of the electrostatic interactions which results in this shift. Accordingly, the PZNPC is found to shift toward alkaline pH upon increasing the permanent basal charge. Unlike previous mean field model results, a significant decrease in PZNPC values is predicted in response to stack formation. Finally, the mean field approach is shown to be inappropriate to study the acid-base properties of clays.
Boskidis, Ioannis; Gikas, Georgios D; Pisinaras, Vassilios; Tsihrintzis, Vassilios A
2010-09-01
The results of an investigation of the quantitative and qualitative characteristics of Vosvozis river in Northern Greece is presented. For the purposes of this study, three gaging stations were installed along Vosvozis river, where water quantity and quality measurements were conducted for the period August 2005 to November 2006. Water discharge, temperature, pH, dissolved oxygen (DO) and electrical conductivity (EC) were measured in situ using appropriate equipment. The collected water samples were analyzed in the laboratory for the determination of nitrate, nitrite and ammonium nitrogen, total Kjeldalh nitrogen (TKN), orthophosphate (OP), total phosphorus (TP), COD, and BOD. Agricultural diffuse sources provided the major source of nitrate nitrogen loads during the wet period. During the dry period (from June to October), the major nutrient (N, P) and COD, BOD sources were point sources. The trophic status of Vosvozis river during the monitoring period was determined as eutrophic, based on Dodds classification scheme. Moreover, the SWAT model was used to simulate hydrographs and nutrient loads. SWAT was validated with the measured data. Predicted hydrographs and pollutographs were plotted against observed values and showed good agreement. The validated model was used to test eight alternative scenarios concerning different cropping management approaches. The results of these scenarios indicate that nonpoint source pollution is the prevailing type of pollution in the study area. The SWAT model was found to satisfactorily simulate processes in ephemeral river basins and is an effective tool in water resources management.
Trojano, L; Balbi, P; Russo, G; Elefante, R
1994-05-01
We present a 2-year verbal and nonverbal follow-up of a crossed aphasic patient. The patient had suffered from widespread ischemic damage in the area of right middle cerebral artery, with a parieto-temporal lesion. Three months postonset he showed classical Wernicke's aphasia associated with oral, limb and constructional apraxia and left hemineglect. However, follow-up findings showed a complex, dynamic pattern entirely consistent with cognitive models of language and nonlanguage abilities. Current models of functional brain lateralizations could not satisfactorily account for such longitudinal, fine-grain observations.
Modelling of Tc migration in an un-oxidized fractured drill core from Äspö, Sweden
NASA Astrophysics Data System (ADS)
Huber, F. M.; Totskiy, Y.; Montoya Garcia, V.; Enzmann, F.; Trumm, M.; Wenka, A.; Geckeis, H.; Schaefer, T.
2015-12-01
The radionuclide retention of redox sensitive radionuclides (e.g. Pu, Np, U, Tc) in crystalline host rock greatly depends on the rock matrix and the rock redox capacity. Preservation of drill cores concerning oxidation is therefore of paramount importance to reliably predict the near-natural radionuclide retention properties. Here, experimental results of HTO and Tc laboratory migration experiments in a naturally single fractured Äspö un-oxidized drill core are modelled using two different 2D models. Both models employ geometrical information obtained by μ-computed tomography (μCT) scanning of the drill core. The models differ in geometrical complexity meaning the first model (PPM-MD) consists of a simple parallel plate with a porous matrix adjacent to the fracture whereas the second model (MPM) uses the mid-plane of the 3D fracture only (no porous matrix). Simulation results show that for higher flow rates (Peclet number > 1), the MPM satisfactorily describes the HTO breakthrough curves (BTC) whereas the PPM-MD model nicely reproduces the HTO BTC for small Pe numbers (<1). These findings clearly highlight the influence of fracture geometry/flow field complexity on solute transport for Pe numbers > 1 and the dominating effect of matrix diffusion for Peclet numbers < 1. Retention of Tc is modelled using a simple Kd-approach in case of the PPM-MD and including 1st order sorptive reduction/desorption kinetics in case of the MPM. Batch determined sorptive reduction/desorption kinetic rates and Kd values for Tc on non-oxidized Äspö diorite are used in the model and compared to best fit values. By this approach, the transferability of kinetic data concerning sorptive reduction determined in static batch experiments to dynamic transport experiments is examined.
Yin, Anyue; Yamada, Akihiro; Stam, Wiro B; van Hasselt, Johan G C; van der Graaf, Piet H
2018-06-02
Development of combination therapies has received significant interest in recent years. Previously a two-receptor one-transducer (2R-1T) model was proposed to characterize drug interactions with two receptors that lead to the same phenotypic response through a common transducer pathway. We applied, for the first time, the 2R-1T model to characterize the interaction of noradrenaline and arginine-vasopressin on vasoconstriction, and performed inter-species scaling to humans using this mechanism-based model. Contractile data was obtained from in vitro rat small mesenteric arteries after exposure to single or combined challenges of noradrenaline and arginine-vasopressin with or without pre-treatment with the irreversible α-adrenoceptor antagonist, phenoxybenzamine. Data was analysed using the 2R-1T model to characterize the observed exposure-response relationships and drug-drug interaction. The model was then scaled to humans by accounting for differences in receptor density. With receptor affinities set to literature values, the 2R-1T model satisfactorily characterized the interaction between noradrenaline and arginine-vasopressin in rat small mesenteric arteries (relative standard error ≤ 20%), as well as the effect of phenoxybenzamine. Furthermore, after scaling the model to human vascular tissue, the model also adequately predicted the interaction between both agents on human renal arteries. The 2R-1T model can be of relevance to quantitatively characterize the interaction between two drugs that interact via different receptors and a common transducer pathway. Its mechanistic properties are valuable for scaling the model across species. This approach is therefore of significant value to rationally optimize novel combination treatments. This article is protected by copyright. All rights reserved.
An extrapolation method for compressive strength prediction of hydraulic cement products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siqueira Tango, C.E. de
1998-07-01
The basis for the AMEBA Method is presented. A strength-time function is used to extrapolate the predicted cementitious material strength for a late (ALTA) age, based on two earlier age strengths--medium (MEDIA) and low (BAIXA) ages. The experimental basis for the method is data from the IPT-Brazil laboratory and the field, including a long-term study on concrete, research on limestone, slag, and fly-ash additions, and quality control data from a cement factory, a shotcrete tunnel lining, and a grout for structural repair. The method applicability was also verified for high-performance concrete with silica fume. The formula for predicting late agemore » (e.g., 28 days) strength, for a given set of involved ages (e.g., 28,7, and 2 days) is normally a function only of the two earlier ages` (e.g., 7 and 2 days) strengths. This equation has been shown to be independent on materials variations, including cement brand, and is easy to use also graphically. Using the AMEBA method, and only needing to know the type of cement used, it has been possible to predict strengths satisfactorily, even without the preliminary tests which are required in other methods.« less
NASA Astrophysics Data System (ADS)
Teixeira, Miguel A. C.
2017-04-01
A linear model is used to diagnose the onset of rotors in flow over 2D ridges, for atmospheres that are neutrally stratified near the surface and stably stratified aloft, with a sharp temperature inversion in between, where trapped lee waves may propagate. This is achieved by coupling an inviscid two-layer mountain-wave model with a bulk boundary-layer model. The full model shows some ability to detect flow stagnation as a function of key input parameters, such as the Froude number and the height of the inversion, by comparison with results from numerical simulations and laboratory experiments carried out by previous authors. The effect of a boundary layer is essential to correctly predict flow stagnation, as the inviscid version of the model severely overestimates the dimensionless critical mountain height necessary for stagnation to occur. An improved model that includes only the effects of mean flow deceleration and amplification of the velocity perturbation within the boundary layer predicts flow stagnation much better in the most non-hydrostatic cases treated here, where waves appear to be directly forced by the orography. However, in the most hydrostatic case, only the full model, taking into account the feedback of the boundary layer on the inviscid flow, satisfactorily predicts flow stagnation, although the corresponding stagnation condition is unable to discriminate between rotors and hydraulic jumps. This is due to the fact that the trapped lee waves associated with the rotors are not forced directly by the orography in this case, but rather seem to be generated indirectly by nonlinear processes. This mechanism is, to a certain extent, mimicked by the modified surface boundary condition adopted in the full model, where an "effective orography" that differs from the real one forces the trapped lee waves. Versions of the model not including this feedback severely underestimate the amplitude of the trapped lee waves in the most hydrostatic case, partly because the Fourier transform of the orography has zeros, which unrealistically weaken the wave response. Concerning the inability of even the full model to discriminate between rotors and hydraulic jumps, this may be attributed to the fact that the flow perturbations associated with stagnation in the model differ from those seen in the numerical simulations, especially for the most hydrostatic rotors, where the waves are generated indirectly. This suggests that flow stagnation may not be occurring for the right reasons in those cases.
A model for methane production in anaerobic digestion of swine wastewater.
Yang, Hongnan; Deng, Liangwei; Liu, Gangjin; Yang, Di; Liu, Yi; Chen, Ziai
2016-10-01
A study was conducted using a laboratory-scale anaerobic sequencing batch digester to investigate the quantitative influence of organic loading rates (OLRs) on the methane production rate during digestion of swine wastewater at temperatures between 15 °C and 35 °C. The volumetric production rate of methane (Rp) at different OLRs and temperatures was obtained. The maximum volumetric methane production rates (Rpmax) were 0.136, 0.796, 1.294, 1.527 and 1.952 LCH4 L(-1) d(-1) at corresponding organic loading rates of 1.2, 3.6, 5.6, 5.6 and 7.2 g volatile solids L(-1) d(-1), respectively, which occurred at 15, 20, 25, 30 and 35 °C, respectively. A new model was developed to describe the quantitative relationship between Rp and OLR. In addition to the maximum volumetric methane production rate (Rpmax) and the half-saturation constant (KLR) commonly used in previous models such as the modified Stover-Kincannon model and Deng model, the new model introduced a new index (KD) that denoted the speed of volumetric methane production rate approaching the maximum as a function of temperature. The new model more satisfactorily described the influence of OLR on the rate of methane production than other models as confirmed by higher determination coefficients (R(2)) (0.9717-0.9900) and lower bias between the experimental and predicted data in terms of the root mean square error and the Akaike Information Criterion. Data from other published research also validated the applicability and generality of the new kinetic model to different types of wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lytou, Anastasia; Panagou, Efstathios Z; Nychas, George-John E
2016-05-01
The aim of this study was the development of a model to describe the growth kinetics of aerobic microbial population of chicken breast fillets marinated in pomegranate juice under isothermal and dynamic temperature conditions. Moreover, the effect of pomegranate juice on the extension of the shelf life of the product was investigated. Samples (10 g) of chicken breast fillets were immersed in marinades containing pomegranate juice for 3 h at 4 °C following storage under aerobic conditions at 4, 10, and 15 °C for 10 days. Total Viable Counts (TVC), Pseudomonas spp and lactic acid bacteria (LAB) were enumerated, in parallel with sensory assessment (odor and overall appearance) of marinated and non-marinated samples. The Baranyi model was fitted to the growth data of TVC to calculate the maximum specific growth rate (μmax) that was further modeled as a function of temperature using a square root-type model. The validation of the model was conducted under dynamic temperature conditions based on two fluctuating temperature scenarios with periodic changes from 6 to 13 °C. The shelf life was determined both mathematically and with sensory assessment and its temperature dependence was modeled by an Arrhenius type equation. Results showed that the μmax of TVC of marinated samples was significantly lower compared to control samples regardless temperature, while under dynamic temperature conditions the model satisfactorily predicted the growth of TVC in both control and marinated samples. The shelf-life of marinated samples was significantly extended compared to the control (5 days extension at 4 °C). The calculated activation energies (Ea), 82 and 52 kJ/mol for control and marinated samples, respectively, indicated higher temperature dependence of the shelf life of control samples compared to marinated ones. The present results indicated that pomegranate juice could be used as an alternative ingredient in marinades to prolong the shelf life of chicken. Copyright © 2015 Elsevier Ltd. All rights reserved.
Madeira, Sérgio; Rodrigues, Ricardo; Tralhão, António; Santos, Miguel; Almeida, Carla; Marques, Marta; Ferreira, Jorge; Raposo, Luís; Neves, José; Mendes, Miguel
2016-02-01
The European System for Cardiac Operative Risk Evaluation (EuroSCORE) has been established as a tool for assisting decision-making in surgical patients and as a benchmark for quality assessment. Infective endocarditis often requires surgical treatment and is associated with high mortality. This study was undertaken to (i) validate both versions of the EuroSCORE, the older logistic EuroSCORE I and the recently developed EuroSCORE II and to compare their performances; (ii) identify predictors other than those included in the EuroSCORE models that might further improve their performance. We retrospectively studied 128 patients from a single-centre registry who underwent heart surgery for active infective endocarditis between January 2007 and November 2014. Binary logistic regression was used to find independent predictors of mortality and to create a new prediction model. Discrimination and calibration of models were assessed by receiver-operating characteristic curve analysis, calibration curves and the Hosmer-Lemeshow test. The observed perioperative mortality was 16.4% (n = 21). The median EuroSCORE I and EuroSCORE II were 13.9% interquartile range (IQ) (7.0-35.0) and 6.6% IQ (3.5-18.2), respectively. Discriminative power was numerically higher for EuroSCORE II {area under the curve (AUC) of 0.83 [95% confidence interval (CI), 0.75-0.91]} than for EuroSCORE I [0.75 (95% CI, 0.66-0.85), P = 0.09]. The Hosmer-Lemeshow test showed good calibration for EuroSCORE II (P = 0.08) but not for EuroSCORE I (P = 0.04). EuroSCORE I tended to over-predict and EuroSCORE II to under-predict mortality. Among the variables known to be associated with greater infective endocarditis severity, only prosthetic valve infective endocarditis remained an independent predictor of mortality [odds ratio (OR) 6.6; 95% CI, 1.1-39.5; P = 0.04]. The new model including the EuroSCORE II variables and variables known to be associated with greater infective endocarditis severity showed an AUC of 0.87 (95% CI, 0.79-0.94) and differed significantly from EuroSCORE I (P = 0.03) but not from EuroSCORE II (P = 0.4). Both EuroSCORE I and II satisfactorily stratify risk in active infective endocarditis; however, EuroSCORE II performed better in the overall comparison. Specific endocarditis features will increase model complexity without an unequivocal improvement in predictive ability. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
NASA Astrophysics Data System (ADS)
Karahan, Aydın; Buongiorno, Jacopo
2010-01-01
An engineering code to predict the irradiation behavior of U-Zr and U-Pu-Zr metallic alloy fuel pins and UO2-PuO2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named Fuel Engineering and Structural analysis Tool (FEAST). FEAST has several modules working in coupled form with an explicit numerical algorithm. These modules describe fission gas release and fuel swelling, fuel chemistry and restructuring, temperature distribution, fuel-clad chemical interaction, and fuel and clad mechanical analysis including transient creep-fracture for the clad. Given the fuel pin geometry, composition and irradiation history, FEAST can analyze fuel and clad thermo-mechanical behavior at both steady-state and design-basis (non-disruptive) transient scenarios. FEAST was written in FORTRAN-90 and has a simple input file similar to that of the LWR fuel code FRAPCON. The metal-fuel version is called FEAST-METAL, and is described in this paper. The oxide-fuel version, FEAST-OXIDE is described in a companion paper. With respect to the old Argonne National Laboratory code LIFE-METAL and other same-generation codes, FEAST-METAL emphasizes more mechanistic, less empirical models, whenever available. Specifically, fission gas release and swelling are modeled with the GRSIS algorithm, which is based on detailed tracking of fission gas bubbles within the metal fuel. Migration of the fuel constituents is modeled by means of thermo-transport theory. Fuel-clad chemical interaction models based on precipitation kinetics were developed for steady-state operation and transients. Finally, a transient intergranular creep-fracture model for the clad, which tracks the nucleation and growth of the cavities at the grain boundaries, was developed for and implemented in the code. Reducing the empiricism in the constitutive models should make it more acceptable to extrapolate FEAST-METAL to new fuel compositions and higher burnup, as envisioned in advanced sodium reactors. FEAST-METAL was benchmarked against the open-literature EBR-II database for steady state and furnace tests (transients). The results show that the code is able to predict important phenomena such as clad strain, fission gas release, clad wastage, clad failure time, axial fuel slug deformation and fuel constituent redistribution, satisfactorily.
Status of Chronic Oxidation Studies of Graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contescu, Cristian I.; Mee, Robert W.
Graphite will undergo extremely slow, but continuous oxidation by traces of moisture that will be present, albeit at very low levels, in the helium coolant of HTGR. This chronic oxidation may cause degradation of mechanical strength and thermal properties of graphite components if a porous oxidation layer penetrates deep enough in the bulk of graphite components during the lifetime of the reactor. The current research on graphite chronic oxidation is motivated by the acute need to understand the behavior of each graphite grade during prolonged exposure to high temperature chemical attack by moisture. The goal is to provide the elementsmore » needed to develop predictive models for long-time oxidation behavior of graphite components in the cooling helium of HTGR. The tasks derived from this goal are: (1) Oxidation rate measurements in order to determine and validate a comprehensive kinetic model suitable for prediction of intrinsic oxidation rates as a function of temperature and oxidant gas composition; (2) Characterization of effective diffusivity of water vapor in the graphite pore system in order to account for the in-pore transport of moisture; and (3) Development and validation of a predictive model for the penetration depth of the oxidized layer, in order to assess the risk of oxidation caused damage of particular graphite grades after prolonged exposure to the environment of helium coolant in HTGR. The most important and most time consuming of these tasks is the measurement of oxidation rates in accelerated oxidation tests (but still under kinetic control) and the development of a reliable kinetic model. This report summarizes the status of chronic oxidation studies on graphite, and then focuses on model development activities, progress of kinetic measurements, validation of results, and improvement of the kinetic models. Analysis of current and past results obtained with three grades of showed that the classical Langmuir-Hinshelwood model cannot reproduce all data collected so far. Starting from here we propose a modification of the LH model to include temperature activation of graphite surface as a Boltzmann activation function. The enhanced Boltzmann-Langmuir-Hinshelwood model (BLH) was tested successfully on three grades of graphite. The model is a robust, comprehensive mathematical function that allows better fitting of experimental results spanning a wide range of temperature and partial pressures of water vapor and hydrogen. However, the model did not fit satisfactorily the data extracted from the old report on graphite H-451 oxidation by water.« less
NASA Astrophysics Data System (ADS)
Sarkadi, L.
2018-04-01
Fully differential cross sections (FDCSs) have been calculated for the single ionization of helium by 1- and 3-MeV proton and 100-MeV/u C6 + ion impact using the classical trajectory Monte Carlo (CTMC) method in the nonrelativistic, three-body approximation. The calculations were made employing a Wigner-type model in which the quantum-mechanical position distribution of the electron is approximated by a weighted integral of the microcanonical distribution over a range of the binding energy of the electron. In the scattering plane, the model satisfactorily reproduces the observed shape of the binary peak. In the region of the peak the calculated FDCSs agree well with the results of continuum-distorted-wave calculations for all the investigated collisions. For 1-MeV proton impact the experimentally observed shift of the binary peak with respect to the first Born approximation is compared with the shifts obtained by different higher-order quantum-mechanical theories and the present CTMC method. The best result was achieved by CTMC, but still a large part of the shift remained unexplained. Furthermore, it was found that the classical theory failed to reproduce the shape of the recoil peak observed in the experiments, it predicts a much narrower peak. This indicates that the formation of the recoil peak is dominated by quantum-mechanical effects. For 100-MeV/u C6 + ion impact the present CTMC calculations confirmed the existence of the "double-peak" structure of the angular distribution of the electron in the plane perpendicular to the momentum transfer, in accordance with the observation, the prediction of an incoherent semiclassical model, and previous CTMC results. This finding together with wave-packet calculations suggests that the "C6 + puzzle" may be solved by considering the loss of the projectile coherence. Experiments to be conducted using ion beams of anisotropic coherence are proposed for a more differential investigation of the ionization dynamics.
Modeling Transfer of Vibrio Parahaemolyticus During Peeling of Raw Shrimp.
Xiao, Xingning; Pang, Haiying; Wang, Wen; Fang, Weihuan; Fu, Yingchun; Li, Yanbin
2018-03-01
This study aimed to qualify the transfer of Vibrio parahaemolyticus during the shrimp peeling process via gloves under 3 different scenarios. The 1st 2 scenarios provided quantitative information for the probability distribution of bacterial transfer rates from (i) contaminated shrimp (6 log CFU/g) to non-contaminated gloves (Scenario 1) and (ii) contaminated gloves (6 log CFU/per pair) to non-contaminated shrimp (Scenario 2). In Scenario 3, bacterial transfer from contaminated shrimp to non-contaminated shrimp in the shrimp peeling process via gloves was investigated to develop a predictive model for describing the successive bacterial transfer. The range of bacterial transfer rate (%) in Scenarios 1 and 2 was 7% to 91.95% and 0.04% to 12.87%, respectively, indicating that the bacteria can be transferred from shrimp to gloves much easier than that from gloves to shrimp. A Logistic (1.59, 0.14) and Triangle distribution (-1.61, 0.12, 1.32) could be used to describe the bacterial transfer rate in Scenarios 1 and 2, respectively. In Scenario 3, a continuously decay patterning with fluctuations as the peeling progressed has been observed at all inoculation levels of the 1st shrimp (5, 6, and 7 log CFU/g). The bacteria could be transferred easier at 1st few peels, and the decreasing bacterial transfer was found in later phase. Two models (exponential and Weibull) could describe the successive bacterial transfer satisfactorily (pseudo-R 2 > 0.84, RMSE < 1.23, SEP < 10.37). The result of this study can provide information regarding cross-contamination events in the seafood factory. This study presented that Vibrio parahaemolyticus cross-contamination could be caused by gloves during the shrimp peeling process. The bacterial transfer rate distribution and predictive model derived from this work could be used in risk assessment of V. parahaemolyticus to ensure peeled shrimp safety. © 2018 Institute of Food Technologists®.
Impurity-induced photoconductivity of narrow-gap Cadmium–Mercury–Telluride structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlov, D. V., E-mail: dvkoz@impras.ru; Rumyantsev, V. V.; Morozov, S. V.
2015-12-15
The photoconductivity (PC) spectra of CdHgTe (MCT) solid solutions with a Cd fraction of 17 and 19% are measured. A simple model for calculating the states of doubly charged acceptors in MCT solid solutions, which makes it possible to describe satisfactorily the observed photoconductivity spectra, is proposed. The found lines in the photoconductivity spectra of narrow-gap MCT structures are associated with transitions between the states of both charged and neutral acceptor centers.
Testing the Cubic Galileon Gravity Model by the Milky Way Rotation Curve and SPARC Data
NASA Astrophysics Data System (ADS)
Chan, Man Ho; Hui, Hon Ka
2018-04-01
Recently, the cubic Galileon gravity (CGG) model has been suggested as an alternative gravity theory to general relativity. The model consists of an extra field potential term that can serve as the “fifth force.” In this article, we examine the possibility of whether or not this extra force term can explain the missing mass problem in galaxies without the help of dark matter. By using the Milky Way rotation curve and the Spitzer Photomery and Accurate Rotation Curves data, we show that this CGG model can satisfactorily explain the shapes of these rotation curves without dark matter. The CGG model can be regarded as a new alternative theory to challenge the existing dark matter paradigm.
Habitat and distribution of post-recruit life stages of the squid Loligo forbesii
NASA Astrophysics Data System (ADS)
Smith, Jennifer M.; Macleod, Colin D.; Valavanis, Vasilis; Hastie, Lee; Valinassab, Tooraj; Bailey, Nick; Santos, M. Begoña; Pierce, Graham J.
2013-10-01
This study models habitat preferences of the squid Loligo forbesii through its post-recruitment life cycle in waters around Scotland (UK). Trawl survey and market sample data from 1985 to 2004 are used to model seasonal habitats of immature, maturing and mature squid (maturity being inferred from size and season). Squid presence-absence and catch rate in areas of presence were analysed using generalised additive models, relating spatiotemporal patterns of distribution and abundance to ecogeographic variables. For all maturity classes, higher abundance in winter and spring (i.e., quarters 1 and 2) was associated with deeper water while higher abundance in summer and autumn (quarters 3 and 4) was associated with shallower water, consistent with seasonal onshore-offshore migrations but suggesting that most spawning may take place in deeper waters. The preferred SST range was generally 8-8.75 °C while preferred salinity values were below 35‰ in winter and summer and above 35‰ in spring and autumn. Squid were positively associated with gravel substrate and negatively associated with mud. Seasonal changes in habitat use were more clearly evident than changes related to inferred maturity, although the two effects cannot be fully separated due to the annual life cycle. Habitat selection for this species can be satisfactorily modelled on a seasonal basis; predictions based on such models could be useful for fishers to target the species more effectively, and could assist managers wishing to protect spawning grounds. The extent to which this approach may be useful for other cephalopods is discussed.
NASA Technical Reports Server (NTRS)
McGill, George E.
2004-01-01
Grant NAGS12158 addressed a major NASA objective concerning the possibility of a palm ocean or large lake in the northern lowlands of Mars. Our overall approach for this study was an analysis of the graben-bounded giant polygons of Utopia Planitia, but specifically those grabens that define circles rather than open polygons. These circular grabens overlie buried impact craters, and the grabens form because of differential compaction of the overlying material over crater rims and floors. Several years ago, I predicted that the graben circles would bound depressions, and that the depths of these depressions would scale with the diameters of the graben circles. These predictions have been verified by earlier analysis. During this one-year grant (with one-year no-cost extension) we greatly increased the sample size and validated the earlier research robustly. What remained unexplained was why most of the graben circles in Utopia Planitia were double. A new model, involving volumetric compaction rather than simply 2-D compaction, satisfactorily explains the double rings and also provides a measure of relative thickness of the cover material burying the craters as a function of radial distance from the center of the Utopia Basin. Only two materials are likely candidates for the compacting cover material: volcanic ash, or wet sediment. The water in the wet sediment is largely responsible for the volumetric compaction; dry ash will compact vertically but experiences very limited lateral shrinkage. Thus the depressions within the circular grabens and the model explaining the double rings strongly favor wet sediment and thus provide evidence in favor of a past body of standing water in the northern lowlands. Publications supported entirely or in part by this grant are listed below.
Maltez de Almeida, João Ricardo; Gomes, André Boechat; Barros, Thomas Pitangueira; Fahel, Paulo Eduardo; de Seixas Rocha, Mário
2015-07-01
The purposes of this study were to investigate whether dynamic contrast-enhanced MRI is adequate for subcategorization of suspicious lesions (BI-RADS category 4) and to evaluate whether use of DWI improves diagnostic performance. The study group was composed of 103 suspicious lesions found in 83 subjects. Patient ages and lesion sizes were compiled, and two radiologists reanalyzed the images; subcategorized the findings as BI-RADS 4A, 4B, or 4C; and calculated apparent diffusion coefficient (ADC) values. The stratified variables were tested by univariate analysis and inserted in two multivariate predictive models, which were used to generate ROC curves and compare AUCs. Positive predictive values (PPVs) for each subcategory and ADC level were calculated, and interobserver agreement was tested. Forty-four (42.7%) suspicious findings proved malignant. Except for age (p = 0.08), all stratified predictor variables were significant in univariate analyses (p < 0.01). Logistic regression models did not differ substantially after comparison of the ROC curves (p = 0.09), but the one including ADC values was slightly better: AUC of 0.89 (95% CI, 0.82-0.95) against AUC of 0.85 (95% CI, 0.78-0.93). PPV increased progressively in each BI-RADS 4 subcategory (4A, 0.15; 4B, 0.37; 4C, 0.84). ADC values of 1.10 × 10(-3) mm(2)/s or less had the second highest PPV (0.77). Interobserver agreement was substantial at a kappa value of 0.80 (95% CI, 0.70-0.90; p < 0.01). Risk stratification of suspicious lesions (BI-RADS category 4) can be satisfactorily performed with DCE-MRI and slightly improved when DWI is introduced.
Improved understanding of the relationship between hydraulic properties and streaming potentials
NASA Astrophysics Data System (ADS)
Cassiani, G.; Brovelli, A.
2009-12-01
Streaming potential (SP) measurements have been satisfactorily used in a number of recent studies as a non-invasive tool to monitor fluid movement in both the vadose and the saturated zone. SPs are generated from the coupling between two independent physical processes oc-curring at the pore-level, namely water flow and excess of ions at the negatively charged solid matrix-water interface. The intensity of the measured potentials depends on physical proper-ties of the medium, including the internal micro-geometry of the system, the charge density of the interface and the composition of the pore fluid, which affects its ionic strength, pH and redox potential. The goal of this work is to investigate whether a relationship between the intensity of the SPs and the saturated hydraulic conductivity can be identified. Both properties are - at least to some extent - dependent on the pore-size distribution and connectivity of the pores, and there-fore some degree of correlation is expected. We used a pore-scale numerical model previously developed to simulate both the bulk hydraulic conductivity and the intensity of the SPs gener-ated in a three-dimensional pore-network. The chemical-physical properties of both the inter-face (Zeta-potential) and of the aqueous phase are computed using an analytical, physically based model that has shown good agreement with experimental data. Modelling results were satisfactorily compared with experimental data, showing that the model, although simplified retains the key properties and mechanisms that control SP generation. A sensitivity analysis with respect to the key geometrical and chemical parameters was conducted to evaluate how the correlation between the two studied variables changes and to ascertain whether the bulk hydraulic conductivity can be estimated from SP measurements alone.
NASA Astrophysics Data System (ADS)
Liang, Xiuyu; Zhan, Hongbin; Zhang, You-Kuan; Schilling, Keith
2018-04-01
Roques et al. (https://doi.org/10.1002/2017WR022085) claims that they have proposed an exponential time step (ETS) method to improve the computing method of Liang et al. (https://doi.org/10.1002/2017WR020938) which used a constant time step (CTS) method on the derivative for dQ/dt in field data, where Q is the base flow discharge and t is the time since the start of base flow recession. This reply emphasizes that the main objective of Liang et al. (https://doi.org/10.1002/2017WR020938) was to develop an analytical model to investigate the effects of the unsaturated flow on base flow recession, not on the data interpretation methods. The analytical model indicates that the base flow recession hydrograph behaves as dQ/dt ˜aQb with the exponent b close to 1 at late times, which is consistent with previous theoretical models. The model of Liang et al. (https://doi.org/10.1002/2017WR020938) was applied to field data where the derivative of dQ/dt was computed using the CTS method, a method that has been widely adopted in previous studies. The ETS method proposed by Roques et al. (https://doi.org/10.1016/j.advwatres.2017.07.013) appears to be a good alternative but its accuracy needs further validation. Using slopes to fit field data as proposed by Roques et al. (https://doi.org/10.1002/2017WR022085) appears to match data satisfactorily at early times whereas it performs less satisfactorily at late times and leads to the exponent b being obviously larger than 1.
Simulation of Micron-Sized Debris Populations in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Xu, Y.-L.; Hyde, J. L.; Prior, T.; Matney, Mark
2010-01-01
The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 m and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris populations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input populations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact conditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satisfactorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 m.
Simulation of Micron-Sized Debris Populations in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Xu, Y.-L.; Matney, M.; Liou, J.-C.; Hyde, J. L.; Prior, T. G.
2010-01-01
The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version . ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 micron and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris populations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input populations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact conditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satisfactorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 micron.
Asymmetric Marcus-Hush theory for voltammetry.
Laborda, Eduardo; Henstridge, Martin C; Batchelor-McAuley, Christopher; Compton, Richard G
2013-06-21
The current state-of-the-art in modeling the rate of electron transfer between an electroactive species and an electrode is reviewed. Experimental studies show that neither the ubiquitous Butler-Volmer model nor the more modern symmetric Marcus-Hush model are able to satisfactorily reproduce the experimental voltammetry for both solution-phase and surface-bound redox couples. These experimental deviations indicate the need for revision of the simplifying approximations used in the above models. Within this context, models encompassing asymmetry are considered which include different vibrational and solvation force constants for the electroactive species. The assumption of non-adiabatic electron transfer is also examined. These refinements have provided more satisfactory models of the electron transfer process and they enable us to gain more information about the microscopic characteristics of the system by means of simple electrochemical measurements.
Spin-state transition in LaCoO3 by variational cluster approximation
NASA Astrophysics Data System (ADS)
Eder, R.
2010-01-01
The variational cluster approximation (VCA) is applied to the calculation of thermodynamical quantities and single-particle spectra of LaCoO3 . Trial self-energies and the numerical value of the Luttinger-Ward functional are obtained by exact diagonalization of a CoO6 cluster. The VCA correctly predicts LaCoO3 as a paramagnetic insulator, and a gradual and relatively smooth increase in the occupation of high-spin Co3+ ions causes the temperature dependence of entropy and magnetic susceptibility. The single-particle spectral function agrees well with experiment; the experimentally observed temperature dependence of photoelectron spectra is reproduced satisfactorily. Remaining discrepancies with experiment highlight the importance of spin-orbit coupling and local lattice relaxation.
High risk of tuberculous infection in North Sulawesi Province of Indonesia.
Bachtiar, A; Miko, T Y; Machmud, R; Mehta, F; Chadha, V K; Yudarini, P; Loprang, F; Fahmi, S; Jitendra, R
2009-12-01
Of all the provinces in Indonesia, the highest tuberculosis (TB) case notification rates are reported from North Sulawesi Province. To estimate the annual risk of tuberculous infection (ARTI) among schoolchildren in the 6-9 year age group. A cross-sectional survey was carried out in 99 schools selected by a two-stage sampling process. Children attending grades 1-4 in the selected schools were administered intradermally with 2 tuberculin units (TUs) of purified protein derivative RT23 with Tween 80, and the maximum transverse diameter of induration was measured about 72 h later. A total of 6557 children in the 6-9 year age group were satisfactorily test-read, irrespective of their bacille Calmette-Guérin (BCG) vaccination status. Based on the frequency distribution of reaction sizes obtained among satisfactorily test-read children (without and with BCG scar), the estimated ARTI rates when estimated by different methods (anti-mode, mirror-image and mixture model) varied between 1.9% and 2.5%. BCG-induced tuberculin sensitivity was not found to influence the ARTI estimates, as the differences in estimates between children without and with BCG scar were not statistically significant. TB control efforts should be further intensified to reduce the risk of tuberculous infection.
The blogosphere as an excitable social medium: Richter’s and Omori’s Law in media coverage
NASA Astrophysics Data System (ADS)
Klimek, Peter; Bayer, Werner; Thurner, Stefan
2011-10-01
We study the dynamics of public media attention by monitoring the content of online blogs. Social and media events can be traced by the propagation of word frequencies of related keywords. Media events are classified as exogenous-where blogging activity is triggered by an external news item-or endogenous where word frequencies build up within a blogging community without external influences. We show that word occurrences exhibit statistical similarities to earthquakes. Moreover the size distribution of events scales with a similar exponent as found in the Gutenberg-Richter law. The dynamics of media events before and after the main event can be satisfactorily modeled as a type of process which has been used to understand fore-and aftershock rate distributions in earthquakes-the Omori law. We present empirical evidence that for media events of endogenous origin the overall public reception of the event is correlated with the behavior of word frequencies at the beginning of the event, and is to a certain degree predictable. These results imply that the process of opinion formation in a human society might be related to effects known from excitable media.
A Low-Cost Sensor Buoy System for Monitoring Shallow Marine Environments
Albaladejo, Cristina; Soto, Fulgencio; Torres, Roque; Sánchez, Pedro; López, Juan A.
2012-01-01
Monitoring of marine ecosystems is essential to identify the parameters that determine their condition. The data derived from the sensors used to monitor them are a fundamental source for the development of mathematical models with which to predict the behaviour of conditions of the water, the sea bed and the living creatures inhabiting it. This paper is intended to explain and illustrate a design and implementation for a new multisensor monitoring buoy system. The system design is based on a number of fundamental requirements that set it apart from other recent proposals: low cost of implementation, the possibility of application in coastal shallow-water marine environments, suitable dimensions for deployment and stability of the sensor system in a shifting environment like the sea bed, and total autonomy of power supply and data recording. The buoy system has successfully performed remote monitoring of temperature and marine pressure (SBE 39 sensor), temperature (MCP9700 sensor) and atmospheric pressure (YOUNG 61302L sensor). The above requirements have been satisfactorily validated by operational trials in a marine environment. The proposed buoy sensor system thus seems to offer a broad range of applications. PMID:23012562
Rapid disappearance of a warm, dusty circumstellar disk.
Melis, Carl; Zuckerman, B; Rhee, Joseph H; Song, Inseok; Murphy, Simon J; Bessell, Michael S
2012-07-04
Stars form with gaseous and dusty circumstellar envelopes, which rapidly settle into disks that eventually give rise to planetary systems. Understanding the process by which these disks evolve is paramount in developing an accurate theory of planet formation that can account for the variety of planetary systems discovered so far. The formation of Earth-like planets through collisional accumulation of rocky objects within a disk has mainly been explored in theoretical and computational work in which post-collision ejecta evolution typically is ignored, although recent work has considered the fate of such material. Here we report observations of a young, Sun-like star (TYC 8241 2652 1) where infrared flux from post-collisional ejecta has decreased drastically, by a factor of about 30, over a period of less than two years. The star seems to have gone from hosting substantial quantities of dusty ejecta, in a region analogous to where the rocky planets orbit in the Solar System, to retaining at most a meagre amount of cooler dust. Such a phase of rapid ejecta evolution has not been previously predicted or observed, and no currently available physical model satisfactorily explains the observations.
NASA Astrophysics Data System (ADS)
Shao, C. W.; Zhang, P.; Zhang, Z. J.; Liu, R.; Zhang, Z. F.
2017-12-01
We find the existing empirical relations based on monotonic tensile properties and/or hardness cannot satisfactorily predict the low-cycle fatigue (LCF) performance of materials, especially for twinning-induced plasticity (TWIP) steels. Given this, we first identified the different deformation mechanisms under monotonic and cyclic deformation after a comprehensive study of stress-strain behaviors and microstructure evolutions for Fe-Mn-C alloys during tension and LCF, respectively. It is found that the good tensile properties of TWIP steel mainly originate from the large activation of multiple twinning systems, which may be attributed to the grain rotation during tensile deformation; while its LCF performance depends more on the dislocation slip mode, in addition to its strength and plasticity. Based on this, we further investigate the essential relations between microscopic damage mechanism (dislocation-dislocation interaction) and cyclic stress response, and propose a hysteresis loop model based on dislocation annihilation theory, trying to quickly assess the LCF resistance of Fe-Mn-C steels as well as other engineering materials. It is suggested that the hysteresis loop and its evolution can provide significant information on cyclic deformation behavior, e.g., (point) defect multiplication and vacancy aggregation, which may help estimate the LCF properties.
Johansen, Morten Bo; Izarzugaza, Jose M. G.; Brunak, Søren; Petersen, Thomas Nordahl; Gupta, Ramneek
2013-01-01
We have developed a sequence conservation-based artificial neural network predictor called NetDiseaseSNP which classifies nsSNPs as disease-causing or neutral. Our method uses the excellent alignment generation algorithm of SIFT to identify related sequences and a combination of 31 features assessing sequence conservation and the predicted surface accessibility to produce a single score which can be used to rank nsSNPs based on their potential to cause disease. NetDiseaseSNP classifies successfully disease-causing and neutral mutations. In addition, we show that NetDiseaseSNP discriminates cancer driver and passenger mutations satisfactorily. Our method outperforms other state-of-the-art methods on several disease/neutral datasets as well as on cancer driver/passenger mutation datasets and can thus be used to pinpoint and prioritize plausible disease candidates among nsSNPs for further investigation. NetDiseaseSNP is publicly available as an online tool as well as a web service: http://www.cbs.dtu.dk/services/NetDiseaseSNP PMID:23935863
Prediction of the P-leaching potential of arable soils in areas with high livestock densities*
Werner, Wilfried; Trimborn, Manfred; Pihl, Uwe
2006-01-01
Due to long-term positive P-balances many surface soils in areas with high livestock density in Germany are oversupplied with available P, creating a potential for vertical P losses by leaching. In extensive studies to characterize the endangering of ground water to P pollution by chemical soil parameters it is shown that the available P content and the P concentration of the soil solution in the deeper soil layers, as indicators of the P-leaching potential, cannot be satisfactorily predicted from the available P content of the topsoils. The P equilibrium concentration in the soil solution directly above ground water table or the pipe drainage system highly depends on the relative saturation of the P-sorption capacity in this layer. A saturation index of <20% normally corresponds with P equilibrium concentrations of <0.2 mg P/L. Phytoremediation may reduce the P leaching potential of P-enriched soils only over a very long period. PMID:16773724
Olivares, M; Larrañaga, A; Irazola, M; Sarmiento, A; Murelaga, X; Etxebarria, N
2012-08-30
The determination of crystal size of chert samples can provide suitable information about the raw material used for the manufacture of archeological items. X-ray diffraction (XRD) has been widely used for this purpose in several scientific areas. However, the historical value of archeological pieces makes this procedure sometimes unfeasible and thus, non-invasive new analytical approaches are required. In this sense, a new method was developed relating the crystal size obtained by means of XRD and infrared spectroscopy (IR) using partial least squares regression. The IR spectra collected from a large amount of different geological chert samples of archeological use were pre-processed following different treatments (i.e., derivatization or sample-wise normalization) to obtain the best regression model. The full cross-validation was satisfactorily validated using real samples and the experimental root mean standard error of precision value was 165 Å whereas the average precision of the estimated size value was 3%. The features of infrared bands were also evaluated in order to know the background of the prediction ability. In the studied case, the variance in the model was associated to the differences in the characteristic stretching and bending infrared bands of SiO(2). Based on this fact, it would be feasible to estimate the crystal size if it is built beforehand a chemometric model relating the size measured by standard methods and the IR spectra. Copyright © 2012 Elsevier B.V. All rights reserved.
Ruan, Wenqian; Qi, Jimei; Hou, Yu; Cao, Rensheng; Wei, Xionghui
2018-01-01
Reduced-graphene-oxide-supported bimetallic Fe/Ni nanoparticles were synthesized in this study for the removal of crystal violet (CV) dye from aqueous solutions. This material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), Raman spectroscopy, N2-sorption, and X-ray photoelectron spectroscopy (XPS). The influence of independent parameters (namely, initial dye concentration, initial pH, contact time, and temperature) on the removal efficiency were investigated via Box–Behnken design (BBD). Artificial intelligence (i.e., artificial neural network, genetic algorithm, and particle swarm optimization) was used to optimize and predict the optimum conditions and obtain the maximum removal efficiency. The zero point of charge (pHZPC) of rGO/Fe/Ni composites was determined by using the salt addition method. The experimental equilibrium data were fitted well to the Freundlich model for the evaluation of the actual behavior of CV adsorption, and the maximum adsorption capacity was estimated as 2000.00 mg/g. The kinetic study discloses that the adsorption processes can be satisfactorily described by the pseudo-second-order model. The values of Gibbs free energy change (ΔG0), entropy change (ΔS0), and enthalpy change (ΔH0) demonstrate the spontaneous and endothermic nature of the adsorption of CV onto rGO/Fe/Ni composites. PMID:29789483
2010-01-01
Background Epistasis is recognized as a fundamental part of the genetic architecture of individuals. Several computational approaches have been developed to model gene-gene interactions in case-control studies, however, none of them is suitable for time-dependent analysis. Herein we introduce the Survival Dimensionality Reduction (SDR) algorithm, a non-parametric method specifically designed to detect epistasis in lifetime datasets. Results The algorithm requires neither specification about the underlying survival distribution nor about the underlying interaction model and proved satisfactorily powerful to detect a set of causative genes in synthetic epistatic lifetime datasets with a limited number of samples and high degree of right-censorship (up to 70%). The SDR method was then applied to a series of 386 Dutch patients with active rheumatoid arthritis that were treated with anti-TNF biological agents. Among a set of 39 candidate genes, none of which showed a detectable marginal effect on anti-TNF responses, the SDR algorithm did find that the rs1801274 SNP in the FcγRIIa gene and the rs10954213 SNP in the IRF5 gene non-linearly interact to predict clinical remission after anti-TNF biologicals. Conclusions Simulation studies and application in a real-world setting support the capability of the SDR algorithm to model epistatic interactions in candidate-genes studies in presence of right-censored data. Availability: http://sourceforge.net/projects/sdrproject/ PMID:20691091
2011-01-01
Background Mental health problems in young people are an important public health issue. Students leaving their hometown and family at a young age to pursue better educational opportunities overseas are confronted with life adjustment stress, which in turn affects their mental health and academic performance. This study aimed to examine the relationships among stress, coping strategies, and depressive symptoms using the stress coping framework in overseas Chinese university preparatory students in Taiwan. Methods A cross-sectional study was conducted at an overseas Chinese university preparatory institute in Taiwan. Of enrolled overseas Chinese university preparatory students at 2009, 756 completed a structured questionnaire measuring stress, strategies for coping with it, and the Center for Epidemiologic Studies Depression Scale. Results High levels of stress significantly predicted the adoption of active, problem-focused coping strategies (R2 = 0.13, p < .01) and passive, emotion-focused coping strategies (R2 = 0.24, p < .01). Acceptable CFI, SRMR, and RMSEA values from the structural equation modeling analysis demonstrated that the model satisfactorily fits the stress coping framework, after active coping strategies were eliminated from the model. Results from the Sobel test revealed that passive coping strategies mediated the relation between stress and depressive symptoms (z = 8.06, p < .001). Conclusion Our study results suggested that stress is associated with coping strategies and depressive symptoms and passive strategies mediate the relation between stress and depressive symptoms in overseas Chinese university preparatory students. PMID:21595974
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raabe, O.G.; Goldman, M.
Since data on the pulmonary toxicity of plutonium in people are not available, estimates must be based upon available experimental animal data. For this purpose, inhalation studies with beagle dogs exposed to aerosols of /sup 238/PuO/sub 2/ and /sup 239/PuO/sub 2/ were analyzed and a simple model has been proposed to describe apparent dose-response relationships. It was found that for each aerosol and radionuclide form, the cumulative absorbed lung dose that leads to death from lung damage up to 1000 days could be assumed to have a log-normal distribution of values that was independent of time to death. The datamore » was satisfactorily fit to a model in which the time of death postexposure is given by: t = (K/D), with the time to death, the cumulative dose to lung tissue (the killing dose), and anti D the average dose rate to lung tissue from time of exposure to death. The ratios of median K values, normalized to the value for /sup 90/Sr--Y FAP, indicate a relative biological effectiveness (RBE) of 14 for /sup 239/PuO/sub 2/ particles and 5 for /sup 238/PuO/sub 2/ particles. This demonstrates an effect of particle specific activity on relative biological effectiveness for early mortality, since an increase in specific activity of particles leads to a lower apparent RBE.« less
Modeling of UH-60A Hub Accelerations with Neural Networks
NASA Technical Reports Server (NTRS)
Kottapalli, Sesi
2002-01-01
Neural network relationships between the full-scale, flight test hub accelerations and the corresponding three N/rev pilot floor vibration components (vertical, lateral, and longitudinal) are studied. The present quantitative effort on the UH-60A Black Hawk hub accelerations considers the lateral and longitudinal vibrations. An earlier study had considered the vertical vibration. The NASA/Army UH-60A Airloads Program flight test database is used. A physics based "maneuver-effect-factor (MEF)", derived using the roll-angle and the pitch-rate, is used. Fundamentally, the lateral vibration data show high vibration levels (up to 0.3 g's) at low airspeeds (for example, during landing flares) and at high airspeeds (for example, during turns). The results show that the advance ratio and the gross weight together can predict the vertical and the longitudinal vibration. However, the advance ratio and the gross weight together cannot predict the lateral vibration. The hub accelerations and the advance ratio can be used to satisfactorily predict the vertical, lateral, and longitudinal vibration. The present study shows that neural network based representations of all three UH-60A pilot floor vibration components (vertical, lateral, and longitudinal) can be obtained using the hub accelerations along with the gross weight and the advance ratio. The hub accelerations are clearly a factor in determining the pilot vibration. The present conclusions potentially allow for the identification of neural network relationships between the experimental hub accelerations obtained from wind tunnel testing and the experimental pilot vibration data obtained from flight testing. A successful establishment of the above neural network based link between the wind tunnel hub accelerations and the flight test vibration data can increase the value of wind tunnel testing.
NASA Astrophysics Data System (ADS)
Gosai, Agnivo
The concomitant detection, monitoring and analysis of biomolecules have assumed utmost importance in the field of medical diagnostics as well as in different spheres of biotechnology research such as drug development, environmental hazard detection and biodefense. There is an increased demand for the modulation of the biological response for such detection / sensing schemes which will be facilitated by the sensitive and controllable transmission of external stimuli. Electrostatic actuation for the controlled release/capture of biomolecules through conformational transformations of bioreceptors provides an efficient and feasible mechanism to modulate biological response. In addition, electrostatic actuation mechanism has the advantage of allowing massively parallel schemes and measurement capabilities that could ultimately be essential for biomedical applications. Experiments have previously demonstrated the unbinding of thrombin from its aptamer in presence of small positive electrode potential whereas the complex remained associated in presence of small negative potentials / zero potential. However, the nanoscale physics/chemistry involved in this process is not clearly understood. In this thesis a combination of continuum mechanics based modeling and a variety of atomistic simulation techniques have been utilized to corroborate the aforementioned experimental observations. It is found that the computational approach can satisfactorily predict the dynamics of the electrically excited aptamer-thrombin complex as well as provide an analytical model to characterize the forced binding of the complex.
NMR relaxation induced by iron oxide particles: testing theoretical models.
Gossuin, Y; Orlando, T; Basini, M; Henrard, D; Lascialfari, A; Mattea, C; Stapf, S; Vuong, Q L
2016-04-15
Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water.
Detection of the YORP effect in asteroid (1620) Geographos
NASA Astrophysics Data System (ADS)
Durech, J.; Vokrouhlický, D.; Kaasalainen, M.; Higgins, D.; Krugly, Yu. N.; Gaftonyuk, N. M.; Shevchenko, V. G.; Chiorny, V. G.; Hamanowa, H.; Hamanowa, H.; Reddy, V.; Dyvig, R. R.
2008-10-01
Aims: The rotation state of small asteroids is affected by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) torque. The directly observable consequence of the YORP effect is the secular change of the asteroid's rotation period. We carried out new photometric observations of asteroid (1620) Geographos in 2008 to extend the time line that, if long enough, would enable us to see possible deviations from a constant period rotation. Methods: We used the lightcurve inversion method to model the shape and spin state of Geographos. We assumed that the rotation rate evolves in time as ω(t) = ω0 + \\upsilon t, where both the constant term of the rotation rate ω0 and the linear term \\upsilon are parameters to be optimized. In total, we used 94 lightcurves observed in 1969-2008. Results: We show that for \\upsilon = 0, a constant-period model, the whole dataset of lightcurves cannot be satisfactorily fitted. However, when relaxing \\upsilon in the optimization process we obtain an excellent agreement between the model and observations. The best-fit value \\upsilon = (1.15 ± 0.15) × 10-8 rad d-2 implies that Geographos' rotation rate accelerates by ≃2.7 ms yr-1. This is in agreement with the theoretically predicted value 1.4 × 10-8 rad d-2 obtained from numerical integration of YORP torques acting on our convex shape model. Geographos is only the third asteroid (after (1862) Apollo and (54509) YORP) for which the YORP effect has been detected. It is also the largest object for which effects of thermal torques were revealed.
An explosion model for the formation of the radio halo of NGC 891
NASA Astrophysics Data System (ADS)
You, Jun-han; Allen, R. J.; Hu, Fu-xing
1987-06-01
The explosion model for the formation of the radio halo of NGC 891 proposed here are mainly based on two physical assumptions: a) the relativistic electrons belong to two families, a halo family and a disk family: the disk family originating in supernova events throughout the disk and the halo family, in a violent explosion of the galactic nucleus in the distant past. b) Energy equipartition, that is, the magnetic energy density be proportional to the number density of stars. On these two assumptions, the main observed features of the radio halo of NGC 891 can be satisfactorily explained.
An explosion model for the formation of the radio halo of NGC 891
NASA Astrophysics Data System (ADS)
You, Jun-Han; Allen, R. J.; Hu, Fu-Xing
1986-06-01
The explosion model for the formation of the radio halo of NGC 891 proposed here is mainly based on two physical assumptions: (1) the relativistic electrons belong to two families, a halo family and a disk family, the disk family originating in supernova events throughout the disk, and the halo family in a violent explosion of the galactic nucleus in the distant past; and (2) energy equipartition, where the magnetic energy density is proportional to the number density of stars. On these two assumptions, the main observed features of the radio halo of NGC 891 can be satisfactorily explained.
NASA Technical Reports Server (NTRS)
Dudkin, V. E; Kovalev, E. E.; Nefedov, N. A.; Antonchik, V. A.; Bogdanov, S. D.; Ostroumov, V. I.; Crawford, H. J.; Benton, E. V.
1995-01-01
A nuclear photographic emulsion method was used to study the charge-state, ionization, and angular characteristics of secondaries produced in inelastic interactions of Fe-56 nuclei at 1.8 GeV/nucleon with H, CNO, and AgBr nuclei. The data obtained are compared with the results of calculations made in terms of the Dubna version of the cascade evaporation model (DCM). The DCM has been shown to satisfactorily describe most of the interaction characteristics for two nuclei in the studied reactions. At the same time, quantitative differences are observed in some cases.
Geostatistical applications in ground-water modeling in south-central Kansas
Ma, T.-S.; Sophocleous, M.; Yu, Y.-S.
1999-01-01
This paper emphasizes the supportive role of geostatistics in applying ground-water models. Field data of 1994 ground-water level, bedrock, and saltwater-freshwater interface elevations in south-central Kansas were collected and analyzed using the geostatistical approach. Ordinary kriging was adopted to estimate initial conditions for ground-water levels and topography of the Permian bedrock at the nodes of a finite difference grid used in a three-dimensional numerical model. Cokriging was used to estimate initial conditions for the saltwater-freshwater interface. An assessment of uncertainties in the estimated data is presented. The kriged and cokriged estimation variances were analyzed to evaluate the adequacy of data employed in the modeling. Although water levels and bedrock elevations are well described by spherical semivariogram models, additional data are required for better cokriging estimation of the interface data. The geostatistically analyzed data were employed in a numerical model of the Siefkes site in the project area. Results indicate that the computed chloride concentrations and ground-water drawdowns reproduced the observed data satisfactorily.This paper emphasizes the supportive role of geostatistics in applying ground-water models. Field data of 1994 ground-water level, bedrock, and saltwater-freshwater interface elevations in south-central Kansas were collected and analyzed using the geostatistical approach. Ordinary kriging was adopted to estimate initial conditions for ground-water levels and topography of the Permian bedrock at the nodes of a finite difference grid used in a three-dimensional numerical model. Cokriging was used to estimate initial conditions for the saltwater-freshwater interface. An assessment of uncertainties in the estimated data is presented. The kriged and cokriged estimation variances were analyzed to evaluate the adequacy of data employed in the modeling. Although water levels and bedrock elevations are well described by spherical semivariogram models, additional data are required for better cokriging estimation of the interface data. The geostatistically analyzed data were employed in a numerical model of the Siefkes site in the project area. Results indicate that the computed chloride concentrations and ground-water drawdowns reproduced the observed data satisfactorily.
Critical comparison of several order-book models for stock-market fluctuations
NASA Astrophysics Data System (ADS)
Slanina, F.
2008-01-01
Far-from-equilibrium models of interacting particles in one dimension are used as a basis for modelling the stock-market fluctuations. Particle types and their positions are interpreted as buy and sel orders placed on a price axis in the order book. We revisit some modifications of well-known models, starting with the Bak-Paczuski-Shubik model. We look at the four decades old Stigler model and investigate its variants. One of them is the simplified version of the Genoa artificial market. The list of studied models is completed by the models of Maslov and Daniels et al. Generically, in all cases we compare the return distribution, absolute return autocorrelation and the value of the Hurst exponent. It turns out that none of the models reproduces satisfactorily all the empirical data, but the most promising candidates for further development are the Genoa artificial market and the Maslov model with moderate order evaporation.
Vial, Flavie; Wei, Wei; Held, Leonhard
2016-12-20
In an era of ubiquitous electronic collection of animal health data, multivariate surveillance systems (which concurrently monitor several data streams) should have a greater probability of detecting disease events than univariate systems. However, despite their limitations, univariate aberration detection algorithms are used in most active syndromic surveillance (SyS) systems because of their ease of application and interpretation. On the other hand, a stochastic modelling-based approach to multivariate surveillance offers more flexibility, allowing for the retention of historical outbreaks, for overdispersion and for non-stationarity. While such methods are not new, they are yet to be applied to animal health surveillance data. We applied an example of such stochastic model, Held and colleagues' two-component model, to two multivariate animal health datasets from Switzerland. In our first application, multivariate time series of the number of laboratories test requests were derived from Swiss animal diagnostic laboratories. We compare the performance of the two-component model to parallel monitoring using an improved Farrington algorithm and found both methods yield a satisfactorily low false alarm rate. However, the calibration test of the two-component model on the one-step ahead predictions proved satisfactory, making such an approach suitable for outbreak prediction. In our second application, the two-component model was applied to the multivariate time series of the number of cattle abortions and the number of test requests for bovine viral diarrhea (a disease that often results in abortions). We found that there is a two days lagged effect from the number of abortions to the number of test requests. We further compared the joint modelling and univariate modelling of the number of laboratory test requests time series. The joint modelling approach showed evidence of superiority in terms of forecasting abilities. Stochastic modelling approaches offer the potential to address more realistic surveillance scenarios through, for example, the inclusion of times series specific parameters, or of covariates known to have an impact on syndrome counts. Nevertheless, many methodological challenges to multivariate surveillance of animal SyS data still remain. Deciding on the amount of corroboration among data streams that is required to escalate into an alert is not a trivial task given the sparse data on the events under consideration (e.g. disease outbreaks).
Botanical discrimination of Greek unifloral honeys with physico-chemical and chemometric analyses.
Karabagias, Ioannis K; Badeka, Anastasia V; Kontakos, Stavros; Karabournioti, Sofia; Kontominas, Michael G
2014-12-15
The aim of the present study was to investigate the possibility of characterisation and classification of Greek unifloral honeys (pine, thyme, fir and orange blossom) according to botanical origin using volatile compounds, conventional physico-chemical parameters and chemometric analyses (MANOVA and Linear Discriminant Analysis). For this purpose, 119 honey samples were collected during the harvesting period 2011 from 14 different regions in Greece known to produce unifloral honey of good quality. Physico-chemical analysis included the identification and semi quantification of fifty five volatile compounds performed by Headspace Solid Phase Microextraction coupled to gas chromatography/mass spectroscopy and the determination of conventional quality parameters such as pH, free, lactonic, total acidity, electrical conductivity, moisture, ash, lactonic/free acidity ratio and colour parameters L, a, b. Results showed that using 40 diverse variables (30 volatile compounds of different classes and 10 physico-chemical parameters) the honey samples were satisfactorily classified according to botanical origin using volatile compounds (84.0% correct prediction), physicochemical parameters (97.5% correct prediction), and the combination of both (95.8% correct prediction) indicating that multi element analysis comprises a powerful tool for honey discrimination purposes. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagnall, Kevin R.; Wang, Evelyn N.
2016-06-15
Micro-Raman thermography is one of the most popular techniques for measuring local temperature rise in gallium nitride (GaN) high electron mobility transistors with high spatial and temporal resolution. However, accurate temperature measurements based on changes in the Stokes peak positions of the GaN epitaxial layers require properly accounting for the stress and/or strain induced by the inverse piezoelectric effect. It is common practice to use the pinched OFF state as the unpowered reference for temperature measurements because the vertical electric field in the GaN buffer that induces inverse piezoelectric stress/strain is relatively independent of the gate bias. Although this approachmore » has yielded temperature measurements that agree with those derived from the Stokes/anti-Stokes ratio and thermal models, there has been significant difficulty in quantifying the mechanical state of the GaN buffer in the pinched OFF state from changes in the Raman spectra. In this paper, we review the experimental technique of micro-Raman thermography and derive expressions for the detailed dependence of the Raman peak positions on strain, stress, and electric field components in wurtzite GaN. We also use a combination of semiconductor device modeling and electro-mechanical modeling to predict the stress and strain induced by the inverse piezoelectric effect. Based on the insights gained from our electro-mechanical model and the best values of material properties in the literature, we analyze changes in the E{sub 2} high and A{sub 1} (LO) Raman peaks and demonstrate that there are major quantitative discrepancies between measured and modeled values of inverse piezoelectric stress and strain. We examine many of the hypotheses offered in the literature for these discrepancies but conclude that none of them satisfactorily resolves these discrepancies. Further research is needed to determine whether the electric field components could be affecting the phonon frequencies apart from the inverse piezoelectric effect in wurtzite GaN, which has been predicted theoretically in zinc blende gallium arsenide (GaAs).« less
Removal of Rhodamine B from aqueous solution using magnetic NiFe nanoparticles.
Liu, Yan; Liu, Kaige; Zhang, Lin; Zhang, Zhaowen
2015-01-01
Surface-modified magnetic nano alloy particles Ni2.33Fe were prepared using a hydrothermal method and they were utilized for removing Rhodamine B (RhB) from aqueous solution. The magnetic nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis and Fourier transform infrared spectroscopy, which confirmed that the surface of the magnetic product with a face-centered cubic-type structure was successfully modified by sodium citrate. Kinetics studies were conducted. The pseudo-second-order kinetic model was used for fitting the kinetic data successfully. The Freundlich and Langmuir adsorption models were employed for the mathematical description of adsorption equilibrium. It was found that the adsorption isotherm can be very satisfactorily fitted by the Freundlich model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.; Kim, H.
1995-03-01
Sulfolane is widely used as a solvent for the extraction of aromatic hydrocarbons. Ternary phase equilibrium data are essential for the proper understanding of the solvent extraction process. Liquid-liquid equilibrium data for the systems sulfolane + octane + benzene, sulfolane + octane + toluene and sulfolane + octane + p-xylene were determined at 298.15, 308.15, and 318.15 K. Tie line data were satisfactorily correlated by the Othmer and Tobias method. The experimental data were compared with the values calculated by the UNIQUAC and NRTL models. Good quantitative agreement was obtained with these models. However, the calculated values based on themore » NRTL model were found to be better than those based on the UNIQUAC model.« less
Barak, Segev; Weiner, Ina
2011-08-01
Several developments have converged to drive what may be called "the cognitive revolution" in drug discovery in schizophrenia (SCZ), including the emphasis on cognitive deficits as a core disabling aspect of SCZ, the increasing consensus that cognitive deficits are not treated satisfactorily by the available antipsychotic drugs (APDs), and the failure of animal models to predict drug efficacy for cognitive deficits in clinical trials. Consequently, in recent years, a paradigm shift has been encouraged in animal modeling, triggered by the NIMH sponsored Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) initiative, and intended to promote the development and use of behavioral measures in animals that can generate valid (clinically relevant) measures of cognition and thus promote the identification of cognition enhancers for SCZ. Here, we provide a non-exhaustive survey of the effects of putative cognition enhancers (PCEs) representing 10 pharmacological targets as well as antipsychotic drugs (APDs), on SCZ-mimetic drugs (NMDA antagonists, muscarinic antagonist scopolamine and dopaminergic agonist amphetamine), in several tasks considered to measure cognitive processes/domains that are disrupted in SCZ (the five choice serial reaction time task, sustain attention task, working and/or recognition memory (delayed (non)matching to sample, delayed alternation task, radial arm maze, novel object recognition), reversal learning, attentional set shifting, latent inhibition and spatial learning and memory). We conclude that most of the available models have no capacity to distinguish between PCEs and APDs and that there is a need to establish models based on tasks whose perturbations lead to performance impairments that are resistant to APDs, and/or to accept APDs as a "weak gold standard". Several directions derived from the surveyed data are suggested. Copyright © 2011 Elsevier Inc. All rights reserved.
Installation and checkout of the DOE/NASA Mod-1 2000-kW wind turbine generator
NASA Technical Reports Server (NTRS)
Puthoff, R. L.; Collins, J. L.; Wolf, R. A.
1980-01-01
The paper describes the DOE/NASA Mod-1 wind turbine generator, its assembly and testing, and its installation at Boone, North Carolina. The paper concludes with performance data taken during the initial tests conducted on the machine. The successful installation and initial operation of the Mod-1 wind turbine generator has had the following results: (1) megawatt-size wind turbines can be operated satisfactorily on utility grids; (2) the structural loads can be predicted by existing codes; (3) assembly of the machine on top of the tower presents no major problem; (4) large blades 100 ft long can be transported long distances and over mountain roads; and (5) operating experience and performance data will contribute substantially to the design of future low-cost wind turbines.
Broadband study of blazar 1ES 1959+650 during flaring state in 2016
NASA Astrophysics Data System (ADS)
Patel, S. R.; Shukla, A.; Chitnis, V. R.; Dorner, D.; Mannheim, K.; Acharya, B. S.; Nagare, B. J.
2018-03-01
Aims: The nearby TeV blazar 1ES 1959+650 (z = 0.047) was reported to be in flaring state during June-July 2016 by Fermi-LAT, FACT, MAGIC and VERITAS collaborations. We studied the spectral energy distributions (SEDs) in different states of the flare during MJD 57530-57589 using simultaneous multiwaveband data with the aim of understanding the possible broadband emission scenario during the flare. Methods: The UV-optical and X-ray data from UVOT and XRT respectively on board Swift and high energy γ-ray data from Fermi-LAT were used to generate multiwaveband lightcurves as well as to obtain high flux states and quiescent state SEDs. The correlation and lag between different energy bands was quantified using discrete correlation function. The synchrotron self-Compton (SSC) model was used to reproduce the observed SEDs during flaring and quiescent states of the source. Results: A good correlation is seen between X-ray and high energy γ-ray fluxes. The spectral hardening with increase in the flux is seen in X-ray band. The power law index vs. flux plot in γ-ray band indicates the different emission regions for 0.1-3 GeV and 3-300 GeV energy photons. Two zone SSC model satisfactorily fits the observed broadband SEDs. The inner zone is mainly responsible for producing synchrotron peak and high energy γ-ray part of the SED in all states. The second zone is mainly required to produce less variable optical-UV and low energy γ-ray emission. Conclusions: Conventional single zone SSC model does not satisfactorily explain broadband emission during observation period considered. There is an indication of two emission zones in the jet which are responsible for producing broadband emission from optical to high energy γ-rays.
On the Scaling Law for Broadband Shock Noise Intensity in Supersonic Jets
NASA Technical Reports Server (NTRS)
Kanudula, Max
2009-01-01
A theoretical model for the scaling of broadband shock noise intensity in supersonic jets was formulated on the basis of linear shock-shear wave interaction. An hypothesis has been postulated that the peak angle of incidence (closer to the critical angle) for the shear wave primarily governs the generation of sound in the interaction process rather than the noise generation contribution from off-peak incident angles. The proposed theory satisfactorily explains the well-known scaling law for the broadband shock -associated noise in supersonic jets.
Allegrini, P; Balocchi, R; Chillemi, S; Grigolini, P; Hamilton, P; Maestri, R; Palatella, L; Raffaelli, G
2003-06-01
We analyze RR heartbeat sequences with a dynamic model that satisfactorily reproduces both the long- and the short-time statistical properties of heart beating. These properties are expressed quantitatively by means of two significant parameters, the scaling delta concerning the asymptotic effects of long-range correlation, and the quantity 1-pi establishing the amount of uncorrelated fluctuations. We find a correlation between the position in the phase space (delta, pi) of patients with congestive heart failure and their mortality risk.
Beitrag zum mechanismus der oxydation von freiblei in bleiakkumulatorpaste bei der reifung
NASA Astrophysics Data System (ADS)
Duc Hung, Nguyen; Garche, J.; Wiesener, K.
The kinetics of lead oxidation during curing was studied by chemical analysis of the free lead content as well as by the gas volumetry of oxygen. The difference in the results in this research lies in the evolution of hydrogen as a curing reaction. This agrees with the results of curing the paste The optimal water content of the paste for lead oxidation was determined. A model for the electrolyte film during curing has been developed, which allows the results to be interpreted satisfactorily.
Critical elements on fitting the Bayesian multivariate Poisson Lognormal model
NASA Astrophysics Data System (ADS)
Zamzuri, Zamira Hasanah binti
2015-10-01
Motivated by a problem on fitting multivariate models to traffic accident data, a detailed discussion of the Multivariate Poisson Lognormal (MPL) model is presented. This paper reveals three critical elements on fitting the MPL model: the setting of initial estimates, hyperparameters and tuning parameters. These issues have not been highlighted in the literature. Based on simulation studies conducted, we have shown that to use the Univariate Poisson Model (UPM) estimates as starting values, at least 20,000 iterations are needed to obtain reliable final estimates. We also illustrated the sensitivity of the specific hyperparameter, which if it is not given extra attention, may affect the final estimates. The last issue is regarding the tuning parameters where they depend on the acceptance rate. Finally, a heuristic algorithm to fit the MPL model is presented. This acts as a guide to ensure that the model works satisfactorily given any data set.
Global sensitivity analysis of the BSM2 dynamic influent disturbance scenario generator.
Flores-Alsina, Xavier; Gernaey, Krist V; Jeppsson, Ulf
2012-01-01
This paper presents the results of a global sensitivity analysis (GSA) of a phenomenological model that generates dynamic wastewater treatment plant (WWTP) influent disturbance scenarios. This influent model is part of the Benchmark Simulation Model (BSM) family and creates realistic dry/wet weather files describing diurnal, weekend and seasonal variations through the combination of different generic model blocks, i.e. households, industry, rainfall and infiltration. The GSA is carried out by combining Monte Carlo simulations and standardized regression coefficients (SRC). Cluster analysis is then applied, classifying the influence of the model parameters into strong, medium and weak. The results show that the method is able to decompose the variance of the model predictions (R(2)> 0.9) satisfactorily, thus identifying the model parameters with strongest impact on several flow rate descriptors calculated at different time resolutions. Catchment size (PE) and the production of wastewater per person equivalent (QperPE) are two parameters that strongly influence the yearly average dry weather flow rate and its variability. Wet weather conditions are mainly affected by three parameters: (1) the probability of occurrence of a rain event (Llrain); (2) the catchment size, incorporated in the model as a parameter representing the conversion from mm rain · day(-1) to m(3) · day(-1) (Qpermm); and, (3) the quantity of rain falling on permeable areas (aH). The case study also shows that in both dry and wet weather conditions the SRC ranking changes when the time scale of the analysis is modified, thus demonstrating the potential to identify the effect of the model parameters on the fast/medium/slow dynamics of the flow rate. The paper ends with a discussion on the interpretation of GSA results and of the advantages of using synthetic dynamic flow rate data for WWTP influent scenario generation. This section also includes general suggestions on how to use the proposed methodology to any influent generator to adapt the created time series to a modeller's demands.
NASA Technical Reports Server (NTRS)
Blanchard, W. S., Jr.
1981-01-01
Ultradeep stall descent and spin recovery characteristics of a 1/6 scale radio controlled model of the Piper PA38 Tomahawk aircraft was investigated. It was shown that the full scale PA38 is a suitable aircraft for conducting ultradeep stall research. Spin recovery was accomplished satisfactorily by entry to the ultradeep stall mode, followed by the exit from the ultradeep stall mode. It is concluded that since the PA38 has excellent spin recovery characteristics using normal recovery techniques (opposite rudder and forward control colum pressure), recovery using ultradeep stall would be beneficial only if the pilot suffered from disorientation.
Magnetization process and low-temperature thermodynamics of a spin-1/2 Heisenberg octahedral chain
NASA Astrophysics Data System (ADS)
Strečka, Jozef; Richter, Johannes; Derzhko, Oleg; Verkholyak, Taras; Karľová, Katarína
2018-05-01
Low-temperature magnetization curves and thermodynamics of a spin-1/2 Heisenberg octahedral chain with the intra-plaquette and monomer-plaquette interactions are examined within a two-component lattice-gas model of hard-core monomers, which takes into account all low-lying energy modes in a highly frustrated parameter space involving the monomer-tetramer, localized many-magnon and fully polarized ground states. It is shown that the developed lattice-gas model satisfactorily describes all pronounced features of the low-temperature magnetization process and the magneto-thermodynamics such as abrupt changes of the isothermal magnetization curves, a double-peak structure of the specific heat or a giant magnetocaloric effect.
The effect of clulstering of galaxies on the statistics of gravitational lenses
NASA Technical Reports Server (NTRS)
Anderson, N.; Alcock, C.
1986-01-01
It is examined whether clustering of galaxies can significantly alter the statistical properties of gravitational lenses? Only models of clustering that resemble the observed distribution of galaxies in the properties of the two-point correlation function are considered. Monte-Carlo simulations of the imaging process are described. It is found that the effect of clustering is too small to be significant, unless the mass of the deflectors is so large that gravitational lenses become common occurrences. A special model is described which was concocted to optimize the effect of clustering on gravitational lensing but still resemble the observed distribution of galaxies; even this simulation did not satisfactorily produce large numbers of wide-angle lenses.
A validation test for Adagio through replication of Big Hill and Bayou Choctaw JAS3D models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Byoung Yoon
2013-06-01
JAS3D, a three dimensional iterative solid mechanics code, has been used for structural analyses for the Strategic Petroleum Reserve system since the 1990s. JAS3D is no longer supported by Sandia National Laboratories, and has been replaced by Adagio. To validate the transition from JAS3D to Adagio, the existing JAS3D input decks and user subroutines for Bayou Choctaw and Big Hill models were converted for use with Adagio. The calculation results from the Adagio runs are compared to the JAS3D. Since the Adagio results are very similar to the JAS3D results, Adagio is judged to be performing satisfactorily.
The acclimative biogeochemical model of the southern North Sea
NASA Astrophysics Data System (ADS)
Kerimoglu, Onur; Hofmeister, Richard; Maerz, Joeran; Riethmüller, Rolf; Wirtz, Kai W.
2017-10-01
Ecosystem models often rely on heuristic descriptions of autotrophic growth that fail to reproduce various stationary and dynamic states of phytoplankton cellular composition observed in laboratory experiments. Here, we present the integration of an advanced phytoplankton growth model within a coupled three-dimensional physical-biogeochemical model and the application of the model system to the southern North Sea (SNS) defined on a relatively high resolution (˜ 1.5-4.5 km) curvilinear grid. The autotrophic growth model, recently introduced by Wirtz and Kerimoglu (2016), is based on a set of novel concepts for the allocation of internal resources and operation of cellular metabolism. The coupled model system consists of the General Estuarine Transport Model (GETM) as the hydrodynamical driver, a lower-trophic-level model and a simple sediment diagenesis model. We force the model system with realistic atmospheric and riverine fluxes, background turbidity caused by suspended particulate matter (SPM) and open ocean boundary conditions. For a simulation for the period 2000-2010, we show that the model system satisfactorily reproduces the physical and biogeochemical states of the system within the German Bight characterized by steep salinity; nutrient and chlorophyll (Chl) gradients, as inferred from comparisons against observation data from long-term monitoring stations; sparse in situ measurements; continuous transects; and satellites. The model also displays skill in capturing the formation of thin chlorophyll layers at the pycnocline, which is frequently observed within the stratified regions during summer. A sensitivity analysis reveals that the vertical distributions of phytoplankton concentrations estimated by the model can be qualitatively sensitive to the description of the light climate and dependence of sinking rates on the internal nutrient reserves. A non-acclimative (fixed-physiology) version of the model predicted entirely different vertical profiles, suggesting that accounting for physiological flexibility might be relevant for a consistent representation of the vertical distribution of phytoplankton biomass. Our results point to significant variability in the cellular chlorophyll-to-carbon ratio (Chl : C) across seasons and the coastal to offshore transition. Up to 3-fold-higher Chl : C at the coastal areas in comparison to those at the offshore areas contribute to the steepness of the chlorophyll gradient. The model also predicts much higher phytoplankton concentrations at the coastal areas in comparison to its non-acclimative equivalent. Hence, findings of this study provide evidence for the relevance of physiological flexibility, here reflected by spatial and seasonal variations in Chl : C, for a realistic description of biogeochemical fluxes, particularly in the environments displaying strong resource gradients.
Supersonic combustion ramjet propulsion experiments in a shock tunnel
NASA Technical Reports Server (NTRS)
Paull, A.; Stalker, R. J.; Mee, D. J.
1995-01-01
Measurements have been made of the propulsive effect of supersonic combustion ramjets incorporated into a simple axisymmetric model in a free piston shock tunnel. The nominal Mach number was 6, and the stagnation enthalpy varied from 2.8 MJ kg(exp -1) to 8.5 MJ kg(exp -1). A mixture of 13 percent silane and 87 percent hydrogen was used as fuel, and experiments were conducted at equivalence ratios up to approximately 0.8. The measurements involved the axial force on the model, and were made using a stress wave force balance, which is a recently developed technique for measuring forces in shock tunnels. A net thrust was experienced up to a stagnation enthalpy of 3.7 MJ kg(exp -1), but as the stagnation enthalpy increased, an increasing net drag was recorded. pitot and static pressure measurements showed that the combustion was supersonic. The results were found to compare satisfactorily with predictions based on established theoretical models, used with some simplifying approximations. The rapid reduction of net thrust with increasing stagnation enthalpy was seen to arise from increasing precombustion temperature, showing the need to control this variable if thrust performance was to be maintained over a range of stagnation enthalpies. Both the inviscid and viscous drag were seen to be relatively insensitive to stagnation enthalpy, with the combustion chambers making a particularly significant contribution to drag. The maximum fuel specific impulse achieved in the experiments was only 175 sec., but the theory indicates that there is considerable scope for improvement on this through aerodynamic design.
Parameterizing correlations between hydrometeor species in mixed-phase Arctic clouds
NASA Astrophysics Data System (ADS)
Larson, Vincent E.; Nielsen, Brandon J.; Fan, Jiwen; Ovchinnikov, Mikhail
2011-01-01
Mixed-phase Arctic clouds, like other clouds, contain small-scale variability in hydrometeor fields, such as cloud water or snow mixing ratio. This variability may be worth parameterizing in coarse-resolution numerical models. In particular, for modeling multispecies processes such as accretion and aggregation, it would be useful to parameterize subgrid correlations among hydrometeor species. However, one difficulty is that there exist many hydrometeor species and many microphysical processes, leading to complexity and computational expense. Existing lower and upper bounds on linear correlation coefficients are too loose to serve directly as a method to predict subgrid correlations. Therefore, this paper proposes an alternative method that begins with the spherical parameterization framework of Pinheiro and Bates (1996), which expresses the correlation matrix in terms of its Cholesky factorization. The values of the elements of the Cholesky matrix are populated here using a "cSigma" parameterization that we introduce based on the aforementioned bounds on correlations. The method has three advantages: (1) the computational expense is tolerable; (2) the correlations are, by construction, guaranteed to be consistent with each other; and (3) the methodology is fairly general and hence may be applicable to other problems. The method is tested noninteractively using simulations of three Arctic mixed-phase cloud cases from two field experiments: the Indirect and Semi-Direct Aerosol Campaign and the Mixed-Phase Arctic Cloud Experiment. Benchmark simulations are performed using a large-eddy simulation (LES) model that includes a bin microphysical scheme. The correlations estimated by the new method satisfactorily approximate the correlations produced by the LES.
Berec, Ludĕk; Gelbic, Ivan; Sebesta, Oldrich
2014-01-01
An understanding of how climate variables drive seasonal dynamics of mosquito populations is critical to mitigating negative impacts of potential outbreaks, including both nuisance effects and risk of mosquito-borne infectious disease. Here, we identify climate variables most affecting seasonal dynamics of two major floodwater mosquitoes, Aedes vexans (Meigen, 1830) and Aedes sticticus (Meigen, 1838) (Diptera: Culicidae), along the lower courses of the Dyje River, at the border between the Czech Republic and Austria. Monthly trap counts of both floodwater mosquitoes varied both across sites and years. Despite this variability, both models used to fit the observed data at all sites (and especially that for Ae. sticticus) and site-specific models fitted the observed data quite well. The most important climate variables we identified-temperature and especially flooding-were driving seasonal dynamics of both Aedes species. We suggest that flooding determines seasonal peaks in the monthly mosquito trap counts while temperature modulates seasonality in these counts. Hence, floodwater mosquitoes indeed appear worthy of their name. Moreover, the climate variables we considered for modeling were able reasonably to predict mosquito trap counts in the month ahead. Our study can help in planning flood management; timely notification of people, given that these mosquitoes are a real nuisance in this region; public health policy management to mitigate risk from such mosquito-borne diseases as that caused in humans by the Tahyna virus; and anticipating negative consequences of climate change, which are expected only to worsen unless floods, or the mosquitoes themselves, are satisfactorily managed.
NASA Astrophysics Data System (ADS)
Yu, Zhongbo; Xu, Shiqin; Ji, Xibin; Sudicky, Edward A.
2018-06-01
Accurate estimates of evapotranspiration and its components are essential for quantifying the water and energy fluxes and water resources management in arid regions. To this end, daily actual evapotranspiration (ETa), pan evaporation, and concurrent microclimate from an arid shrublands were measured over two growing seasons (2014-2015) to determine water budgets and to test the validity of the complementary relationship (CR) at this temporal scale. The average ETa is 229.32 ± 45.86 mm during two growing seasons, while canopy transpiration, soil evaporation, and interception accounted for 68.1 ± 16.5%, 29.1 ± 2.5% and 2.8 ± 0.6%, respectively. Actual evapotranspiration and Penman potential evapotranspiration, or pan evaporation exhibit complementary behavior, where the complementary relationship is asymmetric. Daily ETa rates are significantly overestimated by the symmetric Advection-Aridity (AA) model. Employing the modified AA model, where parameters are calibrated locally and wet environment evapotranspiration is evaluated at wet environment air temperature as opposed to the measured air temperature, the prediction accuracy of ETa is dramatically improved. With calibrated parameters, the E601B sunken pan can satisfactorily describe the dynamics of daily ETa, while the D20 aboveground pan underestimates it to some extent. Moreover, the modified AA model is able to capture the dynamics of groundwater usage by vegetation during dry summer. These findings gain our new knowledge on the capability of CR theory to resolve special issue occurred in phreatophytic shrublands, and can also provide beneficial reference to water resource and eco-environment management in arid regions.
Soulis, Johannes V; Fytanidis, Dimitrios K; Lampri, Olga P; Giannoglou, George D
2016-04-01
The temporal variation of the hemodynamic mechanical parameters during cardiac pulse wave is considered as an important atherogenic factor. Applying non-Newtonian blood molecular viscosity simulation is crucial for hemodynamic analysis. Understanding low density lipoprotein (LDL) distribution in relation to flow parameters will possibly spot the prone to atherosclerosis aorta regions. The biomechanical parameters tested were averaged wall shear stress (AWSS), oscillatory shear index (OSI) and relative residence time (RRT) in relation to the LDL concentration. Four non-Newtonian molecular viscosity models and the Newtonian one were tested for the normal human aorta under oscillating flow. The analysis was performed via computational fluid dynamic. Tested viscosity blood flow models for the biomechanical parameters yield a consistent aorta pattern. High OSI and low AWSS develop at the concave aorta regions. This is most noticeable in downstream flow region of the left subclavian artery and at concave ascending aorta. Concave aorta regions exhibit high RRT and elevated LDL. For the concave aorta site, the peak LDL value is 35.0% higher than its entrance value. For the convex site, it is 18.0%. High LDL endothelium regions located at the aorta concave site are well predicted with high RRT. We are in favor of using the non-Newtonian power law model for analysis. It satisfactorily approximates the molecular viscosity, WSS, OSI, RRT and LDL distribution. Concave regions are mostly prone to atherosclerosis. The flow biomechanical factor RRT is a relatively useful tool for identifying the localization of the atheromatic plaques of the normal human aorta.
Vertical dielectric screening of few-layer van der Waals semiconductors.
Koo, Jahyun; Gao, Shiyuan; Lee, Hoonkyung; Yang, Li
2017-10-05
Vertical dielectric screening is a fundamental parameter of few-layer van der Waals two-dimensional (2D) semiconductors. However, unlike the widely-accepted wisdom claiming that the vertical dielectric screening is sensitive to the thickness, our first-principles calculation based on the linear response theory (within the weak field limit) reveals that this screening is independent of the thickness and, in fact, it is the same as the corresponding bulk value. This conclusion is verified in a wide range of 2D paraelectric semiconductors, covering narrow-gap ones and wide-gap ones with different crystal symmetries, providing an efficient and reliable way to calculate and predict static dielectric screening of reduced-dimensional materials. Employing this conclusion, we satisfactorily explain the tunable band gap in gated 2D semiconductors. We further propose to engineer the vertical dielectric screening by changing the interlayer distance via vertical pressure or hybrid structures. Our predicted vertical dielectric screening can substantially simplify the understanding of a wide range of measurements and it is crucial for designing 2D functional devices.
H2-rich interstellar grain mantles: An equilibrium description
NASA Technical Reports Server (NTRS)
Dissly, Richard W.; Allen, Mark; Anicich, Vincent G.
1994-01-01
Experiments simulating the codeposition of molecular hydrogen and water ice on interstellar grains demonstrate that amorphous water ice at 12 K can incorporate a substantial amount of H2, up to a mole ratio of H2/H2O = 0.53. We find that the physical behavior of approximately 80% of the hydrogen can be explained satisfactorily in terms of an equilibrium population, thermodynamically governed by a wide distribution of binding site energies. Such a description predicts that gas phase accretion could lead to mole fractions of H2 in interstellar grain mantles of nearly 0.3; for the probable conditions of WL5 in the rho Ophiuchi cloud, an H2 mole fraction of between 0.05 and 0.3 is predicted, in possible agreement with the observed abundance reported by Sandford, Allamandola, & Geballe. Accretion of gas phase H2 onto grain mantles, rather than photochemical production of H2 within the ice, could be a general explanation for frozen H2 in interstellar ices. We speculate on the implications of such a composition for grain mantle chemistry and physics.
Mbuthia, Jackson Mwenda; Rewe, Thomas Odiwuor; Kahi, Alexander Kigunzu
2015-02-01
This study estimated economic values for production traits (dressing percentage (DP), %; live weight for growers (LWg), kg; live weight for sows (LWs), kg) and functional traits (feed intake for growers (FEEDg), feed intake for sow (FEEDs), preweaning survival rate (PrSR), %; postweaning survival (PoSR), %; sow survival rate (SoSR), %, total number of piglets born (TNB) and farrowing interval (FI), days) under different smallholder pig production systems in Kenya. Economic values were estimated considering two production circumstances: fixed-herd and fixed-feed. Under the fixed-herd scenario, economic values were estimated assuming a situation where the herd cannot be increased due to other constraints apart from feed resources. The fixed-feed input scenario assumed that the herd size is restricted by limitation of feed resources available. In addition to the tradition profit model, a risk-rated bio-economic model was used to derive risk-rated economic values. This model accounted for imperfect knowledge concerning risk attitude of farmers and variance of input and output prices. Positive economic values obtained for traits DP, LWg, LWs, PoSR, PrSR, SoSR and TNB indicate that targeting them in improvement would positively impact profitability in pig breeding programmes. Under the fixed-feed basis, the risk-rated economic values for DP, LWg, LWs and SoSR were similar to those obtained under the fixed-herd situation. Accounting for risks in the EVs did not yield errors greater than ±50 % in all the production systems and basis of evaluation meaning there would be relatively little effect on the real genetic gain of a selection index. Therefore, both traditional and risk-rated models can be satisfactorily used to predict profitability in pig breeding programmes.
Diagnostic x-ray dosimetry using Monte Carlo simulation.
Ioppolo, J L; Price, R I; Tuchyna, T; Buckley, C E
2002-05-21
An Electron Gamma Shower version 4 (EGS4) based user code was developed to simulate the absorbed dose in humans during routine diagnostic radiological procedures. Measurements of absorbed dose using thermoluminescent dosimeters (TLDs) were compared directly with EGS4 simulations of absorbed dose in homogeneous, heterogeneous and anthropomorphic phantoms. Realistic voxel-based models characterizing the geometry of the phantoms were used as input to the EGS4 code. The voxel geometry of the anthropomorphic Rando phantom was derived from a CT scan of Rando. The 100 kVp diagnostic energy x-ray spectra of the apparatus used to irradiate the phantoms were measured, and provided as input to the EGS4 code. The TLDs were placed at evenly spaced points symmetrically about the central beam axis, which was perpendicular to the cathode-anode x-ray axis at a number of depths. The TLD measurements in the homogeneous and heterogenous phantoms were on average within 7% of the values calculated by EGS4. Estimates of effective dose with errors less than 10% required fewer numbers of photon histories (1 x 10(7)) than required for the calculation of dose profiles (1 x 10(9)). The EGS4 code was able to satisfactorily predict and thereby provide an instrument for reducing patient and staff effective dose imparted during radiological investigations.
Diagnostic x-ray dosimetry using Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Ioppolo, J. L.; Price, R. I.; Tuchyna, T.; Buckley, C. E.
2002-05-01
An Electron Gamma Shower version 4 (EGS4) based user code was developed to simulate the absorbed dose in humans during routine diagnostic radiological procedures. Measurements of absorbed dose using thermoluminescent dosimeters (TLDs) were compared directly with EGS4 simulations of absorbed dose in homogeneous, heterogeneous and anthropomorphic phantoms. Realistic voxel-based models characterizing the geometry of the phantoms were used as input to the EGS4 code. The voxel geometry of the anthropomorphic Rando phantom was derived from a CT scan of Rando. The 100 kVp diagnostic energy x-ray spectra of the apparatus used to irradiate the phantoms were measured, and provided as input to the EGS4 code. The TLDs were placed at evenly spaced points symmetrically about the central beam axis, which was perpendicular to the cathode-anode x-ray axis at a number of depths. The TLD measurements in the homogeneous and heterogenous phantoms were on average within 7% of the values calculated by EGS4. Estimates of effective dose with errors less than 10% required fewer numbers of photon histories (1 × 107) than required for the calculation of dose profiles (1 × 109). The EGS4 code was able to satisfactorily predict and thereby provide an instrument for reducing patient and staff effective dose imparted during radiological investigations.
Interaction of H2 @C60 and nitroxide through conformationally constrained peptide bridges.
Garbuio, Luca; Li, Yongjun; Antonello, Sabrina; Gascón, José A; Lawler, Ronald G; Lei, Xuegong; Murata, Yasujiro; Turro, Nicholas J; Maran, Flavio
2014-01-01
We synthesized two molecular systems, in which an endofullerene C60 , incarcerating one hydrogen molecule (H2 @C60 ) and a nitroxide radical are connected by a folded 310 -helical peptide. The difference between the two molecules is the direction of the peptide orientation. The nuclear spin relaxation rates and the para → ortho conversion rate of the incarcerated hydrogen molecule were determined by (1) H NMR spectroscopy. The experimental results were analyzed using DFT-optimized molecular models. The relaxation rates and the conversion rates of the two peptides fall in the expected distance range. One of the two peptides is particularly rigid and thus ideal to keep the H2 @C60 /nitroxide separation, r, as large and controlled as possible, which results in particularly low relaxation and conversion rates. Despite the very similar optimized distance, however, the rates measured with the other peptide are considerably higher and thus are compatible with a shorter effective distance. The results strengthen the outcome of previous investigations that while the para → ortho conversion rates satisfactorily obey the Wigner's theory, the nuclear spin relaxation rates are in excellent agreement with the Solomon-Bloembergen equation predicting a 1/r(6) dependence. © 2013 The American Society of Photobiology.
Anaerobic treatment of winery wastewater in fixed bed reactors.
Ganesh, Rangaraj; Rajinikanth, Rajagopal; Thanikal, Joseph V; Ramanujam, Ramamoorty Alwar; Torrijos, Michel
2010-06-01
The treatment of winery wastewater in three upflow anaerobic fixed-bed reactors (S9, S30 and S40) with low density floating supports of varying size and specific surface area was investigated. A maximum OLR of 42 g/l day with 80 +/- 0.5% removal efficiency was attained in S9, which had supports with the highest specific surface area. It was found that the efficiency of the reactors increased with decrease in size and increase in specific surface area of the support media. Total biomass accumulation in the reactors was also found to vary as a function of specific surface area and size of the support medium. The Stover-Kincannon kinetic model predicted satisfactorily the performance of the reactors. The maximum removal rate constant (U(max)) was 161.3, 99.0 and 77.5 g/l day and the saturation value constant (K(B)) was 162.0, 99.5 and 78.0 g/l day for S9, S30 and S40, respectively. Due to their higher biomass retention potential, the supports used in this study offer great promise as media in anaerobic fixed bed reactors. Anaerobic fixed-bed reactors with these supports can be applied as high-rate systems for the treatment of large volumes of wastewaters typically containing readily biodegradable organics, such as the winery wastewater.
An experimental study of wall adaptation and interference assessment using Cauchy integral formula
NASA Technical Reports Server (NTRS)
Murthy, A. V.
1991-01-01
This paper summarizes the results of an experimental study of combined wall adaptation and residual interference assessment using the Cauchy integral formula. The experiments were conducted on a supercritical airfoil model in the Langley 0.3-m Transonic Cryogenic Tunnel solid flexible wall test section. The ratio of model chord to test section height was about 0.7. The method worked satisfactorily in reducing the blockage interference and demonstrated the primary requirement for correcting for the blockage effects at high model incidences to correctly determine high lift characteristics. The studies show that the method has potential for reducing the residual interference to considerably low levels. However, corrections to blockage and upwash velocities gradients may still be required for the final adapted wall shapes.
Modeling sediment concentration of rill flow
NASA Astrophysics Data System (ADS)
Yang, Daming; Gao, Peiling; Zhao, Yadong; Zhang, Yuhang; Liu, Xiaoyuan; Zhang, Qingwen
2018-06-01
Accurate estimation of sediment concentration is essential to establish physically-based erosion models. The objectives of this study were to evaluate the effects of flow discharge (Q), slope gradient (S), flow velocity (V), shear stress (τ), stream power (ω) and unit stream power (U) on sediment concentration. Laboratory experiments were conducted using a 10 × 0.1 m rill flume under four flow discharges (2, 4, 8 and 16 L min-1), and five slope gradients (5°, 10°, 15°, 20° and 25°). The results showed that the measured sediment concentration varied from 87.08 to 620.80 kg m-3 with a mean value of 343.13 kg m-3. Sediment concentration increased as a power function with flow discharge and slope gradient, with R2 = 0.975 and NSE = 0.945. The sediment concentration was more sensitive to slope gradient than to flow discharge. The sediment concentration was well predicted by unit stream power (R2 = 0.937, NSE = 0.865), whereas less satisfactorily by flow velocity (R2 = 0.470, NSE = 0.539) and stream power (R2 = 0.773, NSE = 0.732). In addition, using the equations to simulate the measured sediment concentration of other studies, the result further indicated that slope gradient, flow discharge and unit stream power were good predictors of sediment concentration. In general, slope gradient, flow discharge and unit stream power seem to be the preferred predictors for estimating sediment concentration.
NASA Astrophysics Data System (ADS)
Hast, Michael; Howe, Christine
2013-07-01
Events involving motion in fall are differentiated psychologically from events involving horizontal motion. Do children associate motion down inclines more with motion along horizontals or more with motion in fall, or do they even treat it as an integration of the two? The question was raised over 20 years ago but never satisfactorily answered, so the principal aim of the reported research was to take matters forward. Children (n = 144) aged 5-11 years were assessed while predicting natural dynamic events along a horizontal, in fall and down an incline. They were required to make predictions of speed with heavy and light balls and under changes in incline heights. The results show that, consistent with previous work, faster horizontal motion was associated with the light ball across all ages, whereas faster fall was associated with the heavy ball. However, while the younger children predicted faster incline motion for the lighter ball, there was a shift in this conception towards older children predicting faster motion for the heavier ball. Understanding of how changes in incline height affect speed was generally good, with this aspect of the study helping to establish how children perceive diagonal dimensions. How supported horizontal motion and unsupported fall motion may affect children's changing understanding of incline motion is discussed, thus providing more complete insight into children's understanding of natural object motion than has been established so far.
Population pharmacokinetics of caffeine in healthy male adults using mixed-effects models.
Seng, K-Y; Fun, C-Y; Law, Y-L; Lim, W-M; Fan, W; Lim, C-L
2009-02-01
Caffeine has been shown to maintain or improve the performance of individuals, but its pharmacokinetic profile for Asians has not been well characterized. In this study, a population pharmacokinetic model for describing the pharmacokinetics of caffeine in Singapore males was developed. The data were also analysed using non-compartmental models. Data gathered from 59 male volunteers, who each ingested a single caffeine capsule in two clinical trials (3 or 5 mg/kg), were analysed via non-linear mixed-effects modelling. The participants' covariates, including age, body weight, and regularity of caffeinated-beverage consumption or smoking, were analysed in a stepwise fashion to identify their potential influence on caffeine pharmacokinetics. The final pharmacostatistical model was then subjected to stochastic simulation to predict the plasma concentrations of caffeine after oral (204, 340 and 476 mg) dosing regimens (repeated dosing every 6, 8 or 12 h) over a hypothetical 3-day period. The data were best described by a one-compartmental model with first-order absorption and first-order elimination. Smoking status was an influential covariate for clearance: clearance (mL/min) = 110*SMOKE + 114, where SMOKE was 0 and 1 for the non-smoker and the smoker respectively. Interoccasion variability was smaller compared to interindividual variability in clearance, volume and absorption rate (27% vs. 33%, 10% vs. 15% and 23% vs. 51% respectively). The extrapolated elimination half-lives of caffeine in the non-smokers and the smokers were 4.3 +/- 1.5 and 3.0 +/- 0.7 h respectively. Dosing simulations indicated that dosing regimens of 340 mg (repeated every 8 h) and 476 mg (repeated every 6 h) should achieve population-averaged caffeine concentrations within the reported beneficial range (4.5-9 microg/mL) in the non-smokers and the smokers respectively over 72 h. The population pharmacokinetic model satisfactorily described the disposition and variability of caffeine in the data. Mixed-effects modelling showed that the dose of caffeine depended on cigarette smoking status.
Long-Term Durability of a Matrix for High-Temperature Composites Predicted
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.
2001-01-01
Polymer matrix composites (PMC's) are being increasingly used in applications where they are exposed for long durations to harsh environments such as elevated temperatures, moisture, oils and solvents, and thermal cycling. The exposure to these environments leads to the degradation of structures made from these materials. This also affects the useful lifetimes of these structures. Some of the more prominent aerospace applications of polymer matrix composites include engine supports and cowlings, reusable launch vehicle parts, radomes, thrust-vectoring flaps, and the thermal insulation of rocket motors. This demand has led to efforts to develop lightweight, high-strength, high-modulus materials that have upper-use temperatures over 316 C. A cooperative program involving two grants to the Massachusetts Institute of Technology and in-house work at the NASA Glenn Research Center was conducted to identify the mechanisms and the measurement of mechanical and physical properties that are necessary to formulate a mechanism-based model for predicting the lifetime of high-temperature polymer matrix composites. The polymer that was studied was PMR-15 polyimide, a leading matrix resin for use in high-temperature-resistant aerospace composite structures such as propulsion systems. The temperature range that was studied was from 125 to 316 C. The diffusion behavior of PMR-15 neat resin was characterized and modeled. Thermogravimetric analysis (TGA) was also conducted in nitrogen, oxygen, and air to provide quantitative information on thermal and oxidative degradation reactions. A new low-cost technique was developed to collect chemical degradation data for isothermal tests lasting up to 4000 hr in duration. In the temperature range studied, results indicate complex behavior that was not observed by previous TGA tests, including the presence of weight-gain reactions. These were found to be significant in the initial periods of aging from 125 to 225 C. Two types of weight loss reactions dominated at aging temperatures above 225 C. One was concentrated at the surface of the polymer and was very active at temperatures above 225 C. The second was observed to dominate in the latter stages of aging at temperatures below 260 C. This three-reaction model satisfactorily explains past findings that the degradation mechanism of PMR-15 appears to change around 316 C. It also indicates that the second weight gain mechanism is a significant factor at temperatures below 204 C. On the basis of these results, a predictive model was developed for the thermal degradation of PMR-15 at 316 C. A comparison of data generated by this model with actual experimental data is shown in the following figure.
Performance comparison for Barnes model 12-1000, Exotech model 100, and Ideas Inc. Biometer Mark 2
NASA Technical Reports Server (NTRS)
Robinson, B. (Principal Investigator)
1981-01-01
Results of tests show that all channels of all instruments, except channel 3 of the Biometer Mark 2, were stable in response to input signals were linear, and were adequately stable in response to temperature changes. The Biometer Mark 2 is labelled with an inappropriate description of the units measured and the dynamic range is a inappropriate for field measurements causing unnecessarily high fractional errors. This instrument is, therefore, quantization limited. The dynamic range and noise performance of the Model 12-1000 are appropriate for remote sensing field research. The field of view and performance of the Model 100A and the Model 12-1000 are satisfactory. The Biometer Mark 2 has not, as yet, been satisfactorily equipped with an acceptable field of view determining device. Neither the widely used aperture plate nor the 24 deg cone are acceptable.
Comparative evaluation of urban storm water quality models
NASA Astrophysics Data System (ADS)
Vaze, J.; Chiew, Francis H. S.
2003-10-01
The estimation of urban storm water pollutant loads is required for the development of mitigation and management strategies to minimize impacts to receiving environments. Event pollutant loads are typically estimated using either regression equations or "process-based" water quality models. The relative merit of using regression models compared to process-based models is not clear. A modeling study is carried out here to evaluate the comparative ability of the regression equations and process-based water quality models to estimate event diffuse pollutant loads from impervious surfaces. The results indicate that, once calibrated, both the regression equations and the process-based model can estimate event pollutant loads satisfactorily. In fact, the loads estimated using the regression equation as a function of rainfall intensity and runoff rate are better than the loads estimated using the process-based model. Therefore, if only estimates of event loads are required, regression models should be used because they are simpler and require less data compared to process-based models.
Proactive and Reactive Transmission Power Control for Energy-Efficient On-Body Communications
Vallejo, Mónica; Recas, Joaquín.; Ayala, José L.
2015-01-01
In wireless body sensor network (WBSNs), the human body has an important effect on the performance of the communication due to the temporal variations caused and the attenuation and fluctuation of the path loss. This fact suggests that the transmission power must adapt to the current state of the link in a way that it ensures a balance between energy consumption and packet loss. In this paper, we validate our two transmission power level policies (reactive and predictive approaches) using the Castalia simulator. The integration of our experimental measurements in the simulator allows us to easily evaluate complex scenarios, avoiding the difficulties associated with a practical realization. Our results show that both schemes perform satisfactorily, providing overall energy savings of 24% and 22% for a case of study, as compared to the maximum transmission power mode. PMID:25769049
Trapping dynamics of xenon on Pt(111)
NASA Astrophysics Data System (ADS)
Arumainayagam, Christopher R.; Madix, Robert J.; Mcmaster, Mark C.; Suzawa, Valerie M.; Tully, John C.
1990-02-01
The dynamics of Xe trapping on Pt(111) was studied using supersonic atomic beam techniques. Initial trapping probabilities ( S0) were measured directly as a function of incident translational energy ( EinT) and angle of incidence (θ i) at a surface temperature ( Tins) 95 K. The initial trapping probability decreases smoothly with increasing ET cosθ i;, rather than ET cos 2θ i, suggesting participation of parallel momentum in the trapping process. Accordingly, the measured initial trapping probability falls off more slowly with increasing incident translational energy than predicted by one-dimensional theories. This finding is in near agreement with previous mean translational energy measurements for Xe desorbing near the Pt(111) surface normal, assuming detailed balance applies. Three-dimensional stochastic classical trajectory calculations presented herein also exhibit the importance of tangential momentum in trapping and satisfactorily reproduce the experimental initial trapping probabilities.
The effect of texture granularity on texture synthesis quality
NASA Astrophysics Data System (ADS)
Golestaneh, S. Alireza; Subedar, Mahesh M.; Karam, Lina J.
2015-09-01
Natural and artificial textures occur frequently in images and in video sequences. Image/video coding systems based on texture synthesis can make use of a reliable texture synthesis quality assessment method in order to improve the compression performance in terms of perceived quality and bit-rate. Existing objective visual quality assessment methods do not perform satisfactorily when predicting the synthesized texture quality. In our previous work, we showed that texture regularity can be used as an attribute for estimating the quality of synthesized textures. In this paper, we study the effect of another texture attribute, namely texture granularity, on the quality of synthesized textures. For this purpose, subjective studies are conducted to assess the quality of synthesized textures with different levels (low, medium, high) of perceived texture granularity using different types of texture synthesis methods.
Post-Dryout Heat Transfer to a Refrigerant Flowing in Horizontal Evaporator Tubes
NASA Astrophysics Data System (ADS)
Mori, Hideo; Yoshida, Suguru; Kakimoto, Yasushi; Ohishi, Katsumi; Fukuda, Kenichi
Studies of the post-dryout heat transfer were made based on the experimental data for HFC-134a flowing in horizontal smooth and spiral1y grooved (micro-fin) tubes and the characteristics of the post-dryout heat transfer were c1arified. The heat transfer coefficient at medium and high mass flow rates in the smooth tube was lower than the single-phase heat transfer coefficient of the superheated vapor flow, of which mass flow rate was given on the assumption that the flow was in a thermodynamic equilibrium. A prediction method of post-dryout heat transfer coefficient was developed to reproduce the measurement satisfactorily for the smooth tube. The post dryout heat transfer in the micro-fin tube can be regarded approximately as a superheated vapor single-phase heat transfer.
Quintela-del-Río, Alejandro; Francisco-Fernández, Mario
2011-02-01
The study of extreme values and prediction of ozone data is an important topic of research when dealing with environmental problems. Classical extreme value theory is usually used in air-pollution studies. It consists in fitting a parametric generalised extreme value (GEV) distribution to a data set of extreme values, and using the estimated distribution to compute return levels and other quantities of interest. Here, we propose to estimate these values using nonparametric functional data methods. Functional data analysis is a relatively new statistical methodology that generally deals with data consisting of curves or multi-dimensional variables. In this paper, we use this technique, jointly with nonparametric curve estimation, to provide alternatives to the usual parametric statistical tools. The nonparametric estimators are applied to real samples of maximum ozone values obtained from several monitoring stations belonging to the Automatic Urban and Rural Network (AURN) in the UK. The results show that nonparametric estimators work satisfactorily, outperforming the behaviour of classical parametric estimators. Functional data analysis is also used to predict stratospheric ozone concentrations. We show an application, using the data set of mean monthly ozone concentrations in Arosa, Switzerland, and the results are compared with those obtained by classical time series (ARIMA) analysis. Copyright © 2010 Elsevier Ltd. All rights reserved.
Effect of the meniscus contact angle during early regimes of spontaneous imbibition in nanochannels.
Karna, Nabin Kumar; Oyarzua, Elton; Walther, Jens H; Zambrano, Harvey A
2016-11-30
Nanoscale capillarity has been extensively investigated; nevertheless, many fundamental questions remain open. In spontaneous imbibition, the classical Lucas-Washburn equation predicts a singularity as the fluid enters the channel consisting of an anomalous infinite velocity of the capillary meniscus. Bosanquet's equation overcomes this problem by taking into account fluid inertia predicting an initial imbibition regime with constant velocity. Nevertheless, the initial constant velocity as predicted by Bosanquet's equation is much greater than those observed experimentally. In the present study, large scale atomistic simulations are conducted to investigate capillary imbibition of water in slit silica nanochannels with heights between 4 and 18 nm. We find that the meniscus contact angle remains constant during the inertial regime and its value depends on the height of the channel. We also find that the meniscus velocity computed at the channel entrance is related to the particular value of the meniscus contact angle. Moreover, during the subsequent visco-inertial regime, as the influence of viscosity increases, the meniscus contact angle is found to be time dependent for all the channels under study. Furthermore, we propose an expression for the time evolution of the dynamic contact angle in nanochannels which, when incorporated into Bosanquet's equation, satisfactorily explains the initial capillary rise.
A clinical study of autogenic training-based behavioral treatment for panic disorder.
Sakai, M
1996-03-01
The present study investigated the effect of autogenic training-based behavioral treatment for panic disorder and identified the predictors of treatment outcome. Thirty-four patients meeting DSM-III-R criteria for panic disorder received autogenic training-based behavioral treatment from October 1981 to December 1994. They were treated individually by the author. The medical records of the patients were investigated for the purpose of this study. The results showed that this autogenic training-based behavioral treatment had successful results. Fifteen patients were cured, nine much improved, five improved, and five unchanged at the end of the treatment. Improvement trends were found as for the severity of panic attack and the severity of agoraphobic avoidance. No consistent findings about predictors emerged when such pretreatment variables as demographics and severity of symptoms were used to predict the outcome. Also, three treatment variables showed useful predictive power. First, practicing the second standard autogenic training exercise satisfactorily predicted better outcomes. Second, application of in vivo exposure was found to be positively associated with the treatment outcome in patients with agoraphobic avoidance. Third, longer treatment periods were associated with better outcomes. These findings suggested that the autogenic training-based behavioral treatment could provide relief to the majority of panic disorder patients.
Nowcast model for low-energy electrons in the inner magnetosphere
NASA Astrophysics Data System (ADS)
Ganushkina, N. Yu.; Amariutei, O. A.; Welling, D.; Heynderickx, D.
2015-01-01
We present the nowcast model for low-energy (<200 keV) electrons in the inner magnetosphere, which is the version of the Inner Magnetosphere Particle Transport and Acceleration Model (IMPTAM) for electrons. Low-energy electron fluxes are very important to specify when hazardous satellite surface-charging phenomena are considered. The presented model provides the low-energy electron flux at all L shells and at all satellite orbits, when necessary. The model is driven by the real-time solar wind and interplanetary magnetic field (IMF) parameters with 1 h time shift for propagation to the Earth's magnetopause and by the real time Dst index. Real-time geostationary GOES 13 or GOES 15 (whenever each is available) data on electron fluxes in three energies, such as 40 keV, 75 keV, and 150 keV, are used for comparison and validation of IMPTAM running online. On average, the model provides quite reasonable agreement with the data; the basic level of the observed fluxes is reproduced. The best agreement between the modeled and the observed fluxes are found for <100 keV electrons. At the same time, not all the peaks and dropouts in the observed electron fluxes are reproduced. For 150 keV electrons, the modeled fluxes are often smaller than the observed ones by an order of magnitude. The normalized root-mean-square deviation is found to range from 0.015 to 0.0324. Though these metrics are buoyed by large standard deviations, owing to the dynamic nature of the fluxes, they demonstrate that IMPTAM, on average, predicts the observed fluxes satisfactorily. The computed binary event tables for predicting high flux values within each 1 h window reveal reasonable hit rates being 0.660-0.318 for flux thresholds of 5 ·104-2 ·105 cm-2 s-1 sr-1 keV-1 for 40 keV electrons, 0.739-0.367 for flux thresholds of 3 ·104-1 ·105 cm-2 s-1 sr-1 keV-1 for 75 keV electrons, and 0.485-0.438 for flux thresholds of 3 ·103-3.5 ·103 cm-2 s-1 sr-1 keV-1 for 150 keV electrons but rather small Heidke Skill Scores (0.17 and below). This is the first attempt to model low-energy electrons in real time at 10 min resolution. The output of this model can serve as an input of electron seed population for real-time higher-energy radiation belt modeling.
NASA Astrophysics Data System (ADS)
Eliseev, A. A.; Gorozhankin, D. F.; Napolskii, K. S.; Petukhov, A. V.; Sapoletova, N. A.; Vasilieva, A. V.; Grigoryeva, N. A.; Mistonov, A. A.; Byelov, D. V.; Bouwman, W. G.; Kvashnina, K. O.; Chernyshov, D. Yu.; Bosak, A. A.; Grigoriev, S. V.
2009-10-01
The distribution of the scattering intensity in the reciprocal space for natural and artificial opals has been reconstructed from a set of small-angle X-ray diffraction patterns. The resulting three-dimensional intensity maps are used to analyze the defect structure of opals. The structure of artificial opals can be satisfactorily described in the Wilson probability model with the prevalence of layers in the fcc environment. The diffraction patterns observed for a natural opal confirm the presence of sufficiently long unequally occupied fcc domains.
NASA Astrophysics Data System (ADS)
Baryshev, S. A.; Goncharova, I. F.; Konvisar, P. G.; Kuznetsov, V. A.
1990-06-01
Thermally induced optical damage (TIOD) was observed in undoped barium-sodium niobate (BSN) crystals as a result of changes in their temperature. This damage was deduced from the behavior of YAG:Nd3+ laser radiation when a BSN crystal was inserted in the resonator and also using a helium-neon laser probe beam. The experimental results were satisfactorily explained by the familiar pyroelectric model of TIOD and, in the crystals studied, an inhomogeneity of the conductivity rather than an inhomogeneity of the pyroelectric constant played the main role.
Mechanism of asymmetric lineshape broadening in GaAs1-xNx Raman spectra
NASA Astrophysics Data System (ADS)
Mialitsin, Aleksej; Fluegel, Brian; Ptak, Aaron; Mascarenhas, Angelo
2012-07-01
Resonance Raman spectroscopy is used to probe the asymmetric broadening of the LO phonon linewidth in a dilute GaAs1-xNx alloy (x=0.41%). Electronic Raman scattering from a broad continuum is observed that gets enhanced concurrently with the LO phonon linewidth under resonance. The Fano interaction between the LO phonon and the electronic continuum is used to develop a model that satisfactorily explains the origin of the asymmetric LO phonon linewidth broadening in this abnormal alloy as arising due to coupling between the discrete and the continuum configurations.
An integrated geophysical study of north African and Mediterranean lithospheric structure
NASA Astrophysics Data System (ADS)
Dial, Paul Joseph
1998-07-01
This dissertation utilizes gravity and seismic waveform modeling techniques to: (1) determine models of lithospheric structure across northern African through gravity modeling and (2) determine lithospheric and crustal structure and seismic wave propagation characteristics across northern Africa and the Mediterranean region. The purpose of the gravity investigation was to construct models of lithospheric structure across northern Africa through the analysis of gravity data constrained by previous geological and geophysical studies. Three lithospheric models were constructed from Bouguer gravity data using computer modeling, and the gravity data was wavelength-filtered to investigate the relative depth and extent of the structures associated with the major anomalies. In the Atlas Mountains area, the resulting earth models showed slightly greater crustal thickness than those of previous studies if a low density mantle region is not included in the models. However, if a low density mantle region (density = 3.25 g/cm3) was included beneath the Atlas, the earth models showed little crustal thickening (38 km), in accord with previous seismic studies. The second portion of the research consisted of seismic waveform modeling of regional and teleseismic events to determine crustal and lithospheric structure across northern Africa and the Mediterranean. A total of 174 seismograms (145 at regional distances (200--1400 km) and 29 with epicentral distances exceeding 1900 km) were modeled using 1-D velocity models and a reflectivity code. At regional distances from four stations surrounding the western Mediterranean basin (MAL, TOL, PTO and AQU) and one station near the Red Sea (HLW), 1-D velocity models can satisfactorily model the relative amplitudes of both the Pnl and surface wave portions of the seismograms. Modeling of propagation paths greater than 1900 km was also conducted across northern Africa and the Mediterranean. The results indicate that the S-wave velocity model of Corchete et al. (1995) is more appropriate for the Iberian Peninsula, southwestern Mediterranean basin and northwest African coast than the other models tested. This model was better able to predict both the timing and amplitudes of the observed Sn and surface wave components on the observed seismograms. (Abstract shortened by UMI.)
Modelling an industrial anaerobic granular reactor using a multi-scale approach.
Feldman, H; Flores-Alsina, X; Ramin, P; Kjellberg, K; Jeppsson, U; Batstone, D J; Gernaey, K V
2017-12-01
The objective of this paper is to show the results of an industrial project dealing with modelling of anaerobic digesters. A multi-scale mathematical approach is developed to describe reactor hydrodynamics, granule growth/distribution and microbial competition/inhibition for substrate/space within the biofilm. The main biochemical and physico-chemical processes in the model are based on the Anaerobic Digestion Model No 1 (ADM1) extended with the fate of phosphorus (P), sulfur (S) and ethanol (Et-OH). Wastewater dynamic conditions are reproduced and data frequency increased using the Benchmark Simulation Model No 2 (BSM2) influent generator. All models are tested using two plant data sets corresponding to different operational periods (#D1, #D2). Simulation results reveal that the proposed approach can satisfactorily describe the transformation of organics, nutrients and minerals, the production of methane, carbon dioxide and sulfide and the potential formation of precipitates within the bulk (average deviation between computer simulations and measurements for both #D1, #D2 is around 10%). Model predictions suggest a stratified structure within the granule which is the result of: 1) applied loading rates, 2) mass transfer limitations and 3) specific (bacterial) affinity for substrate. Hence, inerts (X I ) and methanogens (X ac ) are situated in the inner zone, and this fraction lowers as the radius increases favouring the presence of acidogens (X su ,X aa , X fa ) and acetogens (X c4 ,X pro ). Additional simulations show the effects on the overall process performance when operational (pH) and loading (S:COD) conditions are modified. Lastly, the effect of intra-granular precipitation on the overall organic/inorganic distribution is assessed at: 1) different times; and, 2) reactor heights. Finally, the possibilities and opportunities offered by the proposed approach for conducting engineering optimization projects are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Equation of state and phase diagram of carbon
NASA Astrophysics Data System (ADS)
Averin, A. B.; Dremov, V. V.; Samarin, S. I.; Sapozhnikov, A. T.
1996-05-01
Thermodynamically consistent equation of state (EOS) for graphite and diamond is proposed. The EOS satisfactorily describes experimental data on shock compression, heat capacity, thermal expansion and phase equilibrium and can be used in mathematical models and computer codes for calculation of graphite-diamond phase transition under dynamic loading. Monte-Carlo calculations of diamond thermodynamic properties have been carried out to check correctness of the EOS in the regions of phase diagram where experimental data are absent. On the basis of the EOS and Grover's model of liquid state the EOS of liquid carbon have been constructed and carbon phase diagram (graphite and diamond melting curves and triple point) have been calculated. Comparison of calculated and experimental Hugoniots has stated a question about diamond melting curve.
Exploring substance use normalization among adolescents: a multilevel study in 35 countries.
Sznitman, Sharon R; Kolobov, Tanya; Bogt, Tom Ter; Kuntsche, Emmanuel; Walsh, Sophie D; Boniel-Nissim, Meyran; Harel-Fisch, Yossi
2013-11-01
The substance use normalization thesis predicts that adolescent substance users are less likely to report substance use risk factors in high than in low prevalence countries. This study tests whether national population-level alcohol, cigarette and cannabis prevalence rates moderate the strength of the relationship between individual level social and behavioral risk factors and individual level alcohol, cigarette and cannabis use. Data from 2009/2010 Health Behaviour in School-Aged Children Study (N = 68,045, age = 15) from 35 countries was analyzed using logistic Hierarchical Linear Modeling. As expected based on low cannabis prevalence rates in all countries studied, no evidence of normalization was found for recent cannabis use. Also in line with the normalization thesis, results show that for substance use that reaches above 40% in at least some of the countries studied (drunkenness, alcohol and cigarette use), adolescents who reported use are less likely to report social and behavioral risk factors in high prevalence countries than in low prevalence countries. However, support for the normalization thesis was only partial in that results show that in models where evidence for normalization was found, there are risk factors that predict substance use to an equal degree regardless of country level prevalence rates. The current research shows that the normalization thesis is a useful framework for understanding the contextual aspects of adolescent alcohol, tobacco, and cannabis use. The study has implications for drug prevention as it suggests that selective prevention efforts may be particularly useful in low prevalence countries where screening based on risk factors may usefully identify adolescents at most risk for developing drug use problems. This approach may be less useful in high prevalence countries where screening based on risk factors is less likely to satisfactorily identify those at risk for developing drug use problems. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aditya, Gautam; Hossain, Asif
2018-05-01
Cadmium is one of the most hazardous heavy metal concerning human health and aquatic pollution. The removal of cadmium through biosorption is a feasible option for restoration of the ecosystem health of the contaminated freshwater ecosystems. In compliance with this proposition and considering the efficiency of calcium carbonate as biosorbent, the shell dust of the economically important snail Bellamya bengalensis was tested for the removal of cadmium from aqueous medium. Following use of the flesh as a cheap source of protein, the shells of B. bengalensis made up of CaCO3 are discarded as aquaculture waste. The biosorption was assessed through batch sorption studies along with studies to characterize the morphology and surface structures of waste shell dust. The data on the biosorption were subjected to the artificial neural network (ANN) model for optimization of the process. The biosorption process changed as functions of pH of the solution, concentration of heavy metal, biomass of the adsorbent and time of exposure. The kinetic process was well represented by pseudo second order ( R 2 = 0.998), and Langmuir equilibrium ( R 2 = 0.995) had better fits in the equilibrium process with 30.33 mg g-1 of maximum sorption capacity. The regression equation ( R 2 = 0.948) in the ANN model supports predicted values of Cd removal satisfactorily. The normalized importance analysis in ANN predicts Cd2+ concentration, and pH has the most influence in removal than biomass dose and time. The SEM and EDX studies show clear peaks for Cd confirming the biosorption process while the FTIR study depicts the main functional groups (-OH, C-H, C=O, C=C) responsible for the biosorption process. The study indicated that the waste shell dust can be used as an efficient, low cost, environment friendly, sustainable adsorbent for the removal of cadmium from aqueous solution.
Robust failure detection filters. M.S. Thesis
NASA Technical Reports Server (NTRS)
Sanmartin, A. M.
1985-01-01
The robustness of detection filters applied to the detection of actuator failures on a free-free beam is analyzed. This analysis is based on computer simulation tests of the detection filters in the presence of different types of model mismatch, and on frequency response functions of the transfers corresponding to the model mismatch. The robustness of detection filters based on a model of the beam containing a large number of structural modes varied dramatically with the placement of some of the filter poles. The dynamics of these filters were very hard to analyze. The design of detection filters with a number of modes equal to the number of sensors was trivial. They can be configured to detect any number of actuator failure events. The dynamics of these filters were very easy to analyze and their robustness properties were much improved. A change of the output transformation allowed the filter to perform satisfactorily with realistic levels of model mismatch.
NASA Astrophysics Data System (ADS)
Stefanello, M. B.; Degrazia, G. A.; Mortarini, L.; Buligon, L.; Maldaner, S.; Carvalho, J. C.; Acevedo, O. C.; Martins, L. G. N.; Anfossi, D.; Buriol, C.; Roberti, D.
2018-02-01
Describing the effects of wind meandering motions on the dispersion of scalars is a challenging task, since this type of flow represents a physical state characterized by multiple scales. In this study, a Lagrangian stochastic diffusion model is derived to describe scalar transport during the horizontal wind meandering phenomenon that occurs within a planetary boundary layer. The model is derived from the linearization of the Langevin equation, and it employs a heuristic functional form that represents the autocorrelation function of meandering motion. The new solutions, which describe the longitudinal and lateral wind components, were used to simulate tracer experiments that were performed in low-wind speed conditions. The results of the comparison indicate that the new model can effectively reproduce the observed concentrations of the contaminants, and therefore, it can satisfactorily describe enhanced dispersion effects due to the presence of meandering.
Barillot, Romain; Louarn, Gaëtan; Escobar-Gutiérrez, Abraham J; Huynh, Pierre; Combes, Didier
2011-10-01
Most studies dealing with light partitioning in intercropping systems have used statistical models based on the turbid medium approach, thus assuming homogeneous canopies. However, these models could not be directly validated although spatial heterogeneities could arise in such canopies. The aim of the present study was to assess the ability of the turbid medium approach to accurately estimate light partitioning within grass-legume mixed canopies. Three contrasted mixtures of wheat-pea, tall fescue-alfalfa and tall fescue-clover were sown according to various patterns and densities. Three-dimensional plant mock-ups were derived from magnetic digitizations carried out at different stages of development. The benchmarks for light interception efficiency (LIE) estimates were provided by the combination of a light projective model and plant mock-ups, which also provided the inputs of a turbid medium model (SIRASCA), i.e. leaf area index and inclination. SIRASCA was set to gradually account for vertical heterogeneity of the foliage, i.e. the canopy was described as one, two or ten horizontal layers of leaves. Mixtures exhibited various and heterogeneous profiles of foliar distribution, leaf inclination and component species height. Nevertheless, most of the LIE was satisfactorily predicted by SIRASCA. Biased estimations were, however, observed for (1) grass species and (2) tall fescue-alfalfa mixtures grown at high density. Most of the discrepancies were due to vertical heterogeneities and were corrected by increasing the vertical description of canopies although, in practice, this would require time-consuming measurements. The turbid medium analogy could be successfully used in a wide range of canopies. However, a more detailed description of the canopy is required for mixtures exhibiting vertical stratifications and inter-/intra-species foliage overlapping. Architectural models remain a relevant tool for studying light partitioning in intercropping systems that exhibit strong vertical heterogeneities. Moreover, these models offer the possibility to integrate the effects of microclimate variations on plant growth.
López-Carballeira, Diego; Ruipérez, Fernando
2016-04-01
The evaluation of four high-level composite methods based on the modification of Gaussian-3 (G3) theory for radicals and 18 exchange-correlation density functionals, including modern long-range and dispersion-corrected functionals, in the modelization of singlet diradicals has been performed in this work. Structural parameters and properties such as singlet-triplet gaps, electron affinities, ionization potentials, dipole moments, enthalpies of formation, and bond dissociation energies have been calculated in a set of six well-characterized singlet diradicals, and benchmarked against experimental data and wavefunction-based CASSCF/CASPT2 calculations. The complexity of the open-shell singlet ground state is revealed in the difficulties to properly represent the diradical character reported by some DFT functionals, specially those that do not comprise a certain amount of Hartree-Fock exchange in their formulation. We find that STGs, EAs, dipole moments, and thermochemical properties are, in general, satisfactorily calculated, while for IPs larger deviations with respect to the experiments are found in all cases. The best overall performance is accounted for by hybrid functionals, including some of the long-range corrected functionals, but also pure functionals, comprising the kinetic energy density in their formulation, are found to be competent. Composite methods perform satisfactorily, especially G3(MP2)-RAD and G3X(MP2)-RAD, which calculate singlet-triplet gaps and electron affinities more accurately. On the other hand, G3-RAD and G3X-RAD provide better ionization potentials. This study emphasizes that the use of recently developed functionals, within the broken symmetry approximation, is an appropriate tool for the simulation of organic singlet diradicals, with similar accuracy compared to more expensive composite methods. Nevertheless, suitable selection of the methodology is still crucial for the accomplishment of accurate results.
Parameterizing correlations between hydrometeor species in mixed-phase Arctic clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Vincent E.; Nielsen, Brandon J.; Fan, Jiwen
2011-08-16
Mixed-phase Arctic clouds, like other clouds, contain small-scale variability in hydrometeor fields, such as cloud water or snow mixing ratio. This variability may be worth parameterizing in coarse-resolution numerical models. In particular, for modeling processes such as accretion and aggregation, it would be useful to parameterize subgrid correlations among hydrometeor species. However, one difficulty is that there exist many hydrometeor species and many microphysical processes, leading to complexity and computational expense.Existing lower and upper bounds (inequalities) on linear correlation coefficients provide useful guidance, but these bounds are too loose to serve directly as a method to predict subgrid correlations. Therefore,more » this paper proposes an alternative method that is based on a blend of theory and empiricism. The method begins with the spherical parameterization framework of Pinheiro and Bates (1996), which expresses the correlation matrix in terms of its Cholesky factorization. The values of the elements of the Cholesky matrix are parameterized here using a cosine row-wise formula that is inspired by the aforementioned bounds on correlations. The method has three advantages: 1) the computational expense is tolerable; 2) the correlations are, by construction, guaranteed to be consistent with each other; and 3) the methodology is fairly general and hence may be applicable to other problems. The method is tested non-interactively using simulations of three Arctic mixed-phase cloud cases from two different field experiments: the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE). Benchmark simulations are performed using a large-eddy simulation (LES) model that includes a bin microphysical scheme. The correlations estimated by the new method satisfactorily approximate the correlations produced by the LES.« less
The life cycles of Be viscous decretion discs: fundamental disc parameters of 54 SMC Be stars
NASA Astrophysics Data System (ADS)
Rímulo, L. R.; Carciofi, A. C.; Vieira, R. G.; Rivinius, Th; Faes, D. M.; Figueiredo, A. L.; Bjorkman, J. E.; Georgy, C.; Ghoreyshi, M. R.; Soszyński, I.
2018-05-01
Be stars are main-sequence massive stars with emission features in their spectrum, which originates in circumstellar gaseous discs. Even though the viscous decretion disc model can satisfactorily explain most observations, two important physical ingredients, namely the magnitude of the viscosity (α) and the disc mass injection rate, remain poorly constrained. The light curves of Be stars that undergo events of disc formation and dissipation offer an opportunity to constrain these quantities. A pipeline was developed to model these events that use a grid of synthetic light curves, computed from coupled hydrodynamic and radiative transfer calculations. A sample of 54 Be stars from the OGLE survey of the Small Magellanic Cloud (SMC) was selected for this study. Because of the way our sample was selected (bright stars with clear disc events), it likely represents the densest discs in the SMC. Like their siblings in the Galaxy, the mass of the disc in the SMC increases with the stellar mass. The typical mass and angular momentum loss rates associated with the disc events are of the order of ˜10-10 M⊙ yr-1 and ˜5 × 1036 g cm2 s-2, respectively. The values of α found in this work are typically of a few tenths, consistent with recent results in the literature and with the ones found in dwarf novae, but larger than current theory predicts. Considering the sample as a whole, the viscosity parameter is roughly two times larger at build-up (<αbu> = 0.63) than at dissipation (<αd> = 0.26). Further work is necessary to verify whether this trend is real or a result of some of the model assumptions.
Spatio-temporal observations of tertiary ozone maximum
NASA Astrophysics Data System (ADS)
Sofieva, V. F.; Kyrölä, E.; Verronen, P. T.; Seppälä, A.; Tamminen, J.; Marsh, D. R.; Smith, A. K.; Bertaux, J.-L.; Hauchecorne, A.; Dalaudier, F.; Fussen, D.; Vanhellemont, F.; Fanton D'Andon, O.; Barrot, G.; Guirlet, M.; Fehr, T.; Saavedra, L.
2009-03-01
We present spatio-temporal distributions of tertiary ozone maximum (TOM), based on GOMOS (Global Ozone Monitoring by Occultation of Stars) ozone measurements in 2002-2006. The tertiary ozone maximum is typically observed in the high-latitude winter mesosphere at altitude ~72 km. Although the explanation for this phenomenon has been found recently - low concentrations of odd-hydrogen cause the subsequent decrease in odd-oxygen losses - models have had significant deviations from existing observations until recently. Good coverage of polar night regions by GOMOS data has allowed for the first time obtaining spatial and temporal observational distributions of night-time ozone mixing ratio in the mesosphere. The distributions obtained from GOMOS data have specific features, which are variable from year to year. In particular, due to a long lifetime of ozone in polar night conditions, the downward transport of polar air by the meridional circulation is clearly observed in the tertiary ozone maximum time series. Although the maximum tertiary ozone mixing ratio is achieved close to the polar night terminator (as predicted by the theory), TOM can be observed also at very high latitudes, not only in the beginning and at the end, but also in the middle of winter. We have compared the observational spatio-temporal distributions of tertiary ozone maximum with that obtained using WACCM (Whole Atmosphere Community Climate Model) and found that the specific features are reproduced satisfactorily by the model. Since ozone in the mesosphere is very sensitive to HOx concentrations, energetic particle precipitation can significantly modify the shape of the ozone profiles. In particular, GOMOS observations have shown that the tertiary ozone maximum was temporarily destroyed during the January 2005 and December 2006 solar proton events as a result of the HOx enhancement from the increased ionization.
Spatio-temporal observations of the tertiary ozone maximum
NASA Astrophysics Data System (ADS)
Sofieva, V. F.; Kyrölä, E.; Verronen, P. T.; Seppälä, A.; Tamminen, J.; Marsh, D. R.; Smith, A. K.; Bertaux, J.-L.; Hauchecorne, A.; Dalaudier, F.; Fussen, D.; Vanhellemont, F.; Fanton D'Andon, O.; Barrot, G.; Guirlet, M.; Fehr, T.; Saavedra, L.
2009-07-01
We present spatio-temporal distributions of the tertiary ozone maximum (TOM), based on GOMOS (Global Ozone Monitoring by Occultation of Stars) ozone measurements in 2002-2006. The tertiary ozone maximum is typically observed in the high-latitude winter mesosphere at an altitude of ~72 km. Although the explanation for this phenomenon has been found recently - low concentrations of odd-hydrogen cause the subsequent decrease in odd-oxygen losses - models have had significant deviations from existing observations until recently. Good coverage of polar night regions by GOMOS data has allowed for the first time to obtain spatial and temporal observational distributions of night-time ozone mixing ratio in the mesosphere. The distributions obtained from GOMOS data have specific features, which are variable from year to year. In particular, due to a long lifetime of ozone in polar night conditions, the downward transport of polar air by the meridional circulation is clearly observed in the tertiary ozone maximum time series. Although the maximum tertiary ozone mixing ratio is achieved close to the polar night terminator (as predicted by the theory), TOM can be observed also at very high latitudes, not only in the beginning and at the end, but also in the middle of winter. We have compared the observational spatio-temporal distributions of the tertiary ozone maximum with that obtained using WACCM (Whole Atmosphere Community Climate Model) and found that the specific features are reproduced satisfactorily by the model. Since ozone in the mesosphere is very sensitive to HOx concentrations, energetic particle precipitation can significantly modify the shape of the ozone profiles. In particular, GOMOS observations have shown that the tertiary ozone maximum was temporarily destroyed during the January 2005 and December 2006 solar proton events as a result of the HOx enhancement from the increased ionization.
NASA Astrophysics Data System (ADS)
Taie Semiromi, M.; Koch, M.
2017-12-01
Although linear/regression statistical downscaling methods are very straightforward and widely used, and they can be applied to a single predictor-predictand pair or spatial fields of predictors-predictands, the greatest constraint is the requirement of a normal distribution of the predictor and the predictand values, which means that it cannot be used to predict the distribution of daily rainfall because it is typically non-normal. To tacked with such a limitation, the current study aims to introduce a new developed hybrid technique taking advantages from Artificial Neural Networks (ANNs), Wavelet and Quantile Mapping (QM) for downscaling of daily precipitation for 10 rain-gauge stations located in Gharehsoo River Basin, Iran. With the purpose of daily precipitation downscaling, the study makes use of Second Generation Canadian Earth System Model (CanESM2) developed by Canadian Centre for Climate Modeling and Analysis (CCCma). Climate projections are available for three representative concentration pathways (RCPs) namely RCP 2.6, RCP 4.5 and RCP 8.5 for up to 2100. In this regard, 26 National Centers for Environmental Prediction (NCEP) reanalysis large-scale variables which have potential physical relationships with precipitation, were selected as candidate predictors. Afterwards, predictor screening was conducted using correlation, partial correlation and explained variance between predictors and predictand (precipitation). Depending on each rain-gauge station between two and three predictors were selected which their decomposed details (D) and approximation (A) obtained from discrete wavelet analysis were fed as inputs to the neural networks. After downscaling of daily precipitation, bias correction was conducted using quantile mapping. Out of the complete time series available, i.e. 1978-2005, two third of which namely 1978-1996 was used for calibration of QM and the reminder, i.e. 1997-2005 was considered for the validation. Result showed that the proposed hybrid method supported by QM for bias-correction could quite satisfactorily simulate daily precipitation. Also, results indicated that under all RCPs, precipitation will be more or less than 12% decreased by 2100. However, precipitation will be less decreased under RCP 8.5 compared with RCP 4.5.
NASA Astrophysics Data System (ADS)
Hailegeorgis, Teklu T.; Alfredsen, Knut; Abdella, Yisak S.; Kolberg, Sjur
2015-03-01
Identification of proper parameterizations of spatial heterogeneity is required for precipitation-runoff models. However, relevant studies with a specific aim at hourly runoff simulation in boreal mountainous catchments are not common. We conducted calibration and evaluation of hourly runoff simulation in a boreal mountainous watershed based on six different parameterizations of the spatial heterogeneity of subsurface storage capacity for a semi-distributed (subcatchments hereafter called elements) and distributed (1 × 1 km2 grid) setup. We evaluated representation of element-to-element, grid-to-grid, and probabilistic subcatchment/subbasin, subelement and subgrid heterogeneities. The parameterization cases satisfactorily reproduced the streamflow hydrographs with Nash-Sutcliffe efficiency values for the calibration and validation periods up to 0.84 and 0.86 respectively, and similarly for the log-transformed streamflow up to 0.85 and 0.90. The parameterizations reproduced the flow duration curves, but predictive reliability in terms of quantile-quantile (Q-Q) plots indicated marked over and under predictions. The simple and parsimonious parameterizations with no subelement or no subgrid heterogeneities provided equivalent simulation performance compared to the more complex cases. The results indicated that (i) identification of parameterizations require measurements from denser precipitation stations than what is required for acceptable calibration of the precipitation-streamflow relationships, (ii) there is challenges in the identification of parameterizations based on only calibration to catchment integrated streamflow observations and (iii) a potential preference for the simple and parsimonious parameterizations for operational forecast contingent on their equivalent simulation performance for the available input data. In addition, the effects of non-identifiability of parameters (interactions and equifinality) can contribute to the non-identifiability of the parameterizations.
Apostoaei, A Iulian
2005-05-01
A model describing transport of 131I in the environment was developed by SENES Oak Ridge, Inc., for assessment of radiation doses and excess lifetime risk from 131I atmospheric releases from Oak Ridge Reservation in Oak Ridge, Tennessee, and from Idaho National Engineering and Environmental Laboratory in southeast Idaho. This paper describes the results of an exercise designed to test the reliability of this model and to identify the main sources of uncertainty in doses and risks estimated by this model. The testing of the model was based on materials published by the International Atomic Energy Agency BIOMASS program, specifically environmental data collected after the release into atmosphere of 63 curies of 131I during 2-5 September 1963, after an accident at the Hanford PUREX Chemical Separations Plant, in Hanford, Washington. Measurements of activity in air, vegetation, and milk were collected in nine counties around Hanford during the first couple of months after the accident. The activity of 131I in the thyroid glands of two children was measured 47 d after the accident. The model developed by SENES Oak Ridge, Inc., was used to estimate concentrations of 131I in environmental media, thyroid doses for the general population, and the activity of 131I in thyroid glands of the two children. Predicted concentrations of 131I in pasture grass and milk and thyroid doses were compared with similar estimates produced by other modelers. The SENES model was also used to estimate excess lifetime risk of thyroid cancer due to the September 1963 releases of 131I from Hanford. The SENES model was first calibrated and then applied to all locations of interest around Hanford without fitting the model parameters to a given location. Predictions showed that the SENES model reproduces satisfactorily the time-dependent and the time-integrated measured concentrations in vegetation and milk, and provides reliable estimates of 131I activity in thyroids of children. SENES model generated concentrations of 131I closer to observed concentrations, as compared to the predictions produced with other models. The inter-model comparison showed that variation of thyroid doses among all participating models (SENES model included) was a factor of 3 for the general population, but a factor of 10 for the two studied children. As opposed to other models, SENES model allows a complete analysis of uncertainties in every predicted quantity, including estimated thyroid doses and risk of thyroid cancer. The uncertainties in the risk-per-unit-dose and the dose-per-unit-intake coefficients are major contributors to the uncertainty in the estimated lifetime risk and thyroid dose, respectively. The largest contributors to the uncertainty in the estimated concentration in milk are the feed-to-milk transfer factor (F(m)), the dry deposition velocity (V(d)), and the mass interception factor (r/Y)dry for the elemental form of iodine (I2). Exposure to the 1963 PUREX/Hanford accident produced low doses and risks for people living at the studied locations. The upper 97.5th percentile of the excess lifetime risk of thyroid cancer for the most extreme situations is about 10(-4). Measurements in pasture grass and milk at all locations around Hanford indicate a very low transfer of 131I from pasture to cow's milk (e.g., a feed-to-milk transfer coefficient, F(m), for commercial cows of about 0.0022 d L(-1)). These values are towards the low end of F(m) values measured elsewhere and they are low compared to the F(m) values used in other dose reconstruction studies, including the Hanford Environmental Dose Reconstruction.
NASA Astrophysics Data System (ADS)
Gambolati, G.; Castelletto, N.; Ferronato, M.; Janna, C.; Teatini, P.
2012-12-01
One major environmental concern of subsurface fluid withdrawal is land subsidence. The issue of a reliable estimate and prediction of the expected anthropogenic land subsidence is particularly important whenever the production of hydrocarbon (oil and gas) occurs from large reservoirs located close to deltaic zones (e.g., Mississippi, Po, Nile, Niger, Yellow rivers) or shallow-water with low-lying coastlands (e.g., Northern Caspian sea, Dutch Wadden Sea). In such cases even a small reduction of the ground elevation relative to the mean sea level may impact seriously on human settlements and natural environment. The monitoring of the ongoing land subsidence has been significantly improved over the last decade by SAR-based interferometry. These measurements can be quite effectively used to map the process and calibrate geomechanical models for predicting the future event. However, this powerful methodology cannot be implemented off-shore. Although permanent GPS stations can be established to monitor the movement of the production facilities usually installed above the gravity center of a reservoir, an accurate characterization of the settlement bowl affecting the sea bottom, with a possible migration toward the shore, is a challenge still today. In the present communication the case study of the Riccione gas reservoir is discussed. The field is located in the near-shore northern Adriatic Sea, approximately 15 km far from the coastline, where the seawater height is about 20 m. The gas-bearing strata are 1100 m deep and are hydraulically connected to a relatively weak aquifer. Production of 70% of the cumulative reserves as of 2006 yielded a pore pressure decrease of 60 bars. Reliable geometry and geomechanical properties of the depleted formations were detected with the aid of a 3D seismic survey and a borehole equipped with radioactive markers, respectively. The latter pointed out that the Riccione formations are characterized by an unusually high oedometer compressibility approximately 5 times larger than typical values found in the northern Adriatic sedimentary basin. Based on the pore pressure computed by a flow-dynamic model calibrated against the measured pressure records, a 3D finite-element geomechanical model was developed and used to assess land subsidence caused by the field development. As of 2006 a maximum subsidence of 85 cm was predicted, with the bowl extension confined above the trace of the reservoir. An a-posteriori survey of the Adriatic bathymetry by multibeam revealed that not only the maximum value but also the shape of the anthropogenic subsidence pattern was satisfactorily matched by the modeling results. This outcome helps add confidence in the reliability of computational modeling whenever an accurate characterization of the reservoir geometry and a good estimate of the petrophysical /geomechanical properties of the porous medium are available.
The missing impact craters on Venus
NASA Technical Reports Server (NTRS)
Speidel, D. H.
1993-01-01
The size-frequency pattern of the 842 impact craters on Venus measured to date can be well described (across four standard deviation units) as a single log normal distribution with a mean crater diameter of 14.5 km. This result was predicted in 1991 on examination of the initial Magellan analysis. If this observed distribution is close to the real distribution, the 'missing' 90 percent of the small craters and the 'anomalous' lack of surface splotches may thus be neither missing nor anomalous. I think that the missing craters and missing splotches can be satisfactorily explained by accepting that the observed distribution approximates the real one, that it is not craters that are missing but the impactors. What you see is what you got. The implication that Venus crossing impactors would have the same type of log normal distribution is consistent with recently described distribution for terrestrial craters and Earth crossing asteroids.
NASA Technical Reports Server (NTRS)
Brewer, W. D.
1975-01-01
The behavior of graphite and several charring ablators in a variety of high radiative heat flux environments was studied in various radiative environments produced by a CO2 laser and a carbon arc facility. Graphite was also tested in xenon arc radiation. Tests were conducted in air nitrogen, helium, and a mixture of CO2 and nitrogen, simulating the Venus atmosphere. The experimental results are compared with theoretical results obtained with a one dimensional charring ablator analysis and a two dimensional subliming ablator analysis. Photomicroscopy showed no significant differences in appearance or microstructure of the charring ablators or graphite after testing in the three different facilities, indicating that the materials respond fundamentally the same to the radiation of different frequencies. The performance of phenolic nylon and graphite was satisfactorily predicted with existing analyses and published material property data.
Aqueous solubilities of alkylphenols and methoxyphenols at 25 C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varhanickova, D.; Shiu, W.Y.; Mackay, D.
1995-03-01
The aqueous solubilities of 25 phenolic substances (2-methylphenol; 3-methylphenol; 4-methylphenol; 2,3-dimethylphenol; 2,4-dimethylphenol; 2,5-dimethylphenol; 2,6-dimethylphenol; 3,4-dimethylphenol; 3,5dimethylphenol; 2-ethylphenol: 4-ethylphenol; 2,3,5-trimethylphenol; 2,4,6-trimethylphenol; 3,4,5-trimethylphenol; 4-propylphenol; 2-isopropylphenol; 4-isopropylphenol; 4-butylphenol; 3-tert-butylphenol; 4-tert-butylphenol; 4-hexylphenol; 3,5-di-tert-butylphenol; 4-octylphenol; 3-methoxyphenol; and 4-methoxyphenol) were determined at 25 C, by a conventional shake-flask, batch contacting method with analysis by high-pressure liquid chromatography with LTV detection. Satisfactory agreement was obtained between measured and previously reported solubilities for 10 of these substances. The liquid or supercooled liquid solubilities are satisfactorily correlated with the solute`s LeBas molar volume and with first-order valence molecular connectivity, yielding structure-property relationships that may be useful for predictive purposes.
Arivazhagan, M; Kavitha, R; Subhasini, V P
2014-07-15
The detailed HF and B3LYP/6-311++G(d,p) comparative studies on the complete FT-IR and FT-Raman spectra of 6-methoxy-1,2,3,4-tetrahydronaphthalene [MTHN] have been studied. In view of the special properties and uses, the present investigation has been undertaken to provide a satisfactorily vibrational analysis of 6-methoxy-1,2,3,4-tetrahydronaphthalene. Therefore, a thorough Raman, IR, molecular electrostatic potential (MESP), non-linear optical (NLO) properties, UV-VIS, HOMO-LUMO and NMR spectroscopic investigation are reported complemented by B3LYP theoretical predictions with basis set 6-311++G(d,p) to provide novel insight on vibrational assignments and conformational stability of MTHN. Potential energy surface scans (PES) of the CH3 group are undertaken to shed light on the rather complicated conformational interchanges in the compound under investigation. Copyright © 2014 Elsevier B.V. All rights reserved.
A non-linear induced polarization effect on transient electromagnetic soundings
NASA Astrophysics Data System (ADS)
Hallbauer-Zadorozhnaya, Valeriya Yu.; Santarato, Giovanni; Abu Zeid, Nasser; Bignardi, Samuel
2016-10-01
In a TEM survey conducted for characterizing the subsurface for geothermal purposes, a strong induced polarization effect was recorded in all collected data. Surprisingly, anomalous decay curves were obtained in part of the sites, whose shape depended on the repetition frequency of the exciting square waveform, i.e. on current pulse length. The Cole-Cole model, besides being not directly related to physical parameters of rocks, was found inappropriate to model the observed distortion, due to induced polarization, because this model is linear, i.e. it cannot fit any dependence on current pulse. This phenomenon was investigated and explained as due to the presence of membrane polarization linked to constrictivity of (fresh) water-saturated pores. An algorithm for mathematical modeling of TEM data was then developed to fit this behavior. The case history is then discussed: 1D inversion, which accommodates non-linear effects, produced models that agree quite satisfactorily with resistivity and chargeability models obtained by an electrical resistivity tomography carried out for comparison.
Code of Federal Regulations, 2010 CFR
2010-10-01
... for Children and Families, 370 L'Enfant Promenade, SW., Washington, DC 20447. The complaint shall... that are not satisfactorily resolved through communication with the Lead Agency will be pursued through...
29 CFR 1952.204 - Final approval determination.
Code of Federal Regulations, 2010 CFR
2010-07-01
... satisfactorily providing reports to OSHA through participation in the Federal-State Unified Management Information System, the Assistant Secretary evaluated actual operations under the Minnesota State plan for a...
29 CFR 1952.324 - Final approval determination.
Code of Federal Regulations, 2010 CFR
2010-07-01
... satisfactorily providing reports to OSHA through participation in the Federal-State Integrated Management Information System, the Assistant Secretary evaluated actual operations under the Indiana State plan for a...
29 CFR 1952.234 - Final approval determination.
Code of Federal Regulations, 2010 CFR
2010-07-01
... satisfactorily providing reports to OSHA through participation in the Federal-State Unified Management Information System, the Assistant Secretary evaluated actual operations under the Kentucky State plan for a...
NASA Astrophysics Data System (ADS)
Tanaka, Shinobu; Hayakawa, Yuuto; Ogawa, Mitsuhiro; Yamakoshi, Ken-ichi
2010-08-01
We have been developing a new technique for measuring urine glucose concentration using near infrared spectroscopy (NIRS) in conjunction with the Partial Least Square (PLS) method. In the previous study, we reported some results of preliminary experiments for assessing feasibility of this method using a FT-IR spectrometer. In this study, considering practicability of the system, a flow-through cell with the optical path length of 10 mm was newly introduced. Accuracy of the system was verified by the preliminary experiments using urine samples. From the results obtained, it was clearly demonstrated that the present method had a capability of predicting individual urine glucose level with reasonable accuracy (the minimum value of standard error of prediction: SEP = 22.3 mg/dl) and appeared to be a useful means for long-term home health care. However, mean value of SEP obtained by the urine samples from ten subjects was not satisfactorily low (53.7 mg/dl). For improving the accuracy, (1) mechanical stability of the optical system should be improved, (2) the method for normalizing the spectrum should be reconsidered, and (3) the number of subject should be increased.
Geodetic Finite-Fault-based Earthquake Early Warning Performance for Great Earthquakes Worldwide
NASA Astrophysics Data System (ADS)
Ruhl, C. J.; Melgar, D.; Grapenthin, R.; Allen, R. M.
2017-12-01
GNSS-based earthquake early warning (EEW) algorithms estimate fault-finiteness and unsaturated moment magnitude for the largest, most damaging earthquakes. Because large events are infrequent, algorithms are not regularly exercised and insufficiently tested on few available datasets. The Geodetic Alarm System (G-larmS) is a GNSS-based finite-fault algorithm developed as part of the ShakeAlert EEW system in the western US. Performance evaluations using synthetic earthquakes offshore Cascadia showed that G-larmS satisfactorily recovers magnitude and fault length, providing useful alerts 30-40 s after origin time and timely warnings of ground motion for onshore urban areas. An end-to-end test of the ShakeAlert system demonstrated the need for GNSS data to accurately estimate ground motions in real-time. We replay real data from several subduction-zone earthquakes worldwide to demonstrate the value of GNSS-based EEW for the largest, most damaging events. We compare predicted ground acceleration (PGA) from first-alert-solutions with those recorded in major urban areas. In addition, where applicable, we compare observed tsunami heights to those predicted from the G-larmS solutions. We show that finite-fault inversion based on GNSS-data is essential to achieving the goals of EEW.
Spreading of blood drops over dry porous substrate: complete wetting case.
Chao, Tzu Chieh; Arjmandi-Tash, Omid; Das, Diganta B; Starov, Victor M
2015-05-15
The process of dried blood spot sampling involves simultaneous spreading and penetration of blood into a porous filter paper with subsequent evaporation and drying. Spreading of small drops of blood, which is a non-Newtonian liquid, over a dry porous layer is investigated from both theoretical and experimental points of view. A system of two differential equations is derived, which describes the time evolution of radii of both the drop base and the wetted region inside the porous medium. The system of equations does not include any fitting parameters. The predicted time evolutions of both radii are compared with experimental data published earlier. For a given power law dependency of viscosity of blood with different hematocrit level, radii of both drop base and wetted region, and contact angle fell on three universal curves if appropriate scales are used with a plot of the dimensionless radii of the drop base and the wetted region inside the porous layer and dynamic contact angle on dimensionless time. The predicted theoretical relationships are three universal curves accounting satisfactorily for the experimental data. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Sidney S.; Wei, Tai-Huei; Huang, Tzer-Hsiang; Chang, Yun-Ching
2007-02-01
Using the Z-scan technique, we studied the nonlinear absorption and refraction behaviors of a dilute toluene solution of a silicon naphthalocyanine (Si(OSi(n-hexyl)3)2, SiNc) at 532 nanometer with both a 2.8-nanosecond pulse and a 21-nanosecond (HW1/eM) pulse train containing 11 18-picosecond pulses 7 nanosecond apart. A thermal acoustic model and its steady-state approximation account for the heat generated by the nonradiative relaxations subsequent to the absorption. We found that when the steady-state approximation satisfactorily explained the results obtained with a 21-nanosecond pulse train, only the thermal-acoustic model fit the 2.8-nanosecond experimental results, which supports the approximation criterion established by Kovsh et al.
Inheritance of magma ocean differentiation during lunar origin by giant impact
NASA Technical Reports Server (NTRS)
Warren, Paul H.
1992-01-01
The giant impact model for the Moon has won widespread support. It seems to satisfactorily explain the high angular momentum of the Earth-Moon system, and the strong depletion of FeNi in the Moon. This model is usually assumed to entail no significant fractionation of nonvolatile lithophile elements relative to a simple binary mixture of impactor silicates plus protoearth silicates. Although the Earth may have been hot enough before the impact to be completely molten, analysis of the likely number and timing of major impacts in the prehistory of the impactor indicates that a fully molten, undifferentiated condition for that relatively small body is unlikely. Given selective sampling by the giant impact, any significant vertical differentiation within the noncore portion of the impactor would have been largely inherited by the Moon.
Ocean Turbulence, III: New GISS Vertical Mixing Scheme
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Howard, A. M.; Cheng, Y.; Muller, C. J.; Leboissetier, A.; Jayne, S. R.
2010-01-01
We have found a new way to express the solutions of the RSM (Reynolds Stress Model) equations that allows us to present the turbulent diffusivities for heat, salt and momentum in a way that is considerably simpler and thus easier to implement than in previous work. The RSM provides the dimensionless mixing efficiencies Gamma-alpha (alpha stands for heat, salt and momentum). However, to compute the diffusivities, one needs additional information, specifically, the dissipation Epsilon. Since a dynamic equation for the latter that includes the physical processes relevant to the ocean is still not available, one must resort to different sources of information outside the RSM to obtain a complete Mixing Scheme usable in OGCMs. As for the RSM results, we show that the Gamma-alpha s are functions of both Ri and Rq (Richardson number and density ratio representing double diffusion, DD); the Gamma-alpha are different for heat, salt and momentum; in the case of heat, the traditional value Gamma-h = 0.2 is valid only in the presence of strong shear (when DD is inoperative) while when shear subsides, NATRE data show that Gamma-h can be three times as large, a result that we reproduce. The salt Gamma-s is given in terms of Gamma-h. The momentum Gamma-m has thus far been guessed with different prescriptions while the RSM provides a well defined expression for Gamma-m(Ri,R-rho). Having tested Gamma-h, we then test the momentum Gamma-m by showing that the turbulent Prandtl number Gamma-m/Gamma-h vs. Ri reproduces the available data quite well. As for the dissipation epsilon, we use different representations, one for the mixed layer (ML), one for the thermocline and one for the ocean;s bottom. For the ML, we adopt a procedure analogous to the one successfully used in PB (planetary boundary layer) studies; for the thermocline, we employ an expression for the variable epsilon/N(exp 2) from studies of the internal gravity waves spectra which includes a latitude dependence; for the ocean bottom, we adopt the enhanced bottom diffusivity expression used by previous authors but with a state of the art internal tidal energy formulation and replace the fixed Gamma-alpha = 0.2 with the RSM result that brings into the problem the Ri, R-rho dependence of the Gamma-alpha; the unresolved bottom drag, which has thus far been either ignored or modeled with heuristic relations, is modeled using a formalism we previously developed and tested in PBL studies. We carried out several tests without an OGCM. Prandtl and flux Richardson numbers vs. Ri. The RSM model reproduces both types of data satisfactorily. DD and Mixing efficiency Gamma-h(Ri,Rq). The RSM model reproduces well the NATRE data. Bimodal epsilon-distribution. NATRE data show that epsilon (Ri < 1) approximately equals 10epsilon(Ri > 1), which our model reproduces. Heat to salt flux ratio. In the Ri much greater than 1 regime, the RSM predictions reproduce the data satisfactorily. NATRE mass diffusivity. The z-profile of the mass diffusivity reproduces well the measurements at NATRE. The local form of the mixing scheme is algebraic with one cubic equation to solve.
Biophysical and economic limits to negative CO2 emissions
NASA Astrophysics Data System (ADS)
Smith, Pete; Davis, Steven J.; Creutzig, Felix; Fuss, Sabine; Minx, Jan; Gabrielle, Benoit; Kato, Etsushi; Jackson, Robert B.; Cowie, Annette; Kriegler, Elmar; van Vuuren, Detlef P.; Rogelj, Joeri; Ciais, Philippe; Milne, Jennifer; Canadell, Josep G.; McCollum, David; Peters, Glen; Andrew, Robbie; Krey, Volker; Shrestha, Gyami; Friedlingstein, Pierre; Gasser, Thomas; Grübler, Arnulf; Heidug, Wolfgang K.; Jonas, Matthias; Jones, Chris D.; Kraxner, Florian; Littleton, Emma; Lowe, Jason; Moreira, José Roberto; Nakicenovic, Nebojsa; Obersteiner, Michael; Patwardhan, Anand; Rogner, Mathis; Rubin, Ed; Sharifi, Ayyoob; Torvanger, Asbjørn; Yamagata, Yoshiki; Edmonds, Jae; Yongsung, Cho
2016-01-01
To have a >50% chance of limiting warming below 2 °C, most recent scenarios from integrated assessment models (IAMs) require large-scale deployment of negative emissions technologies (NETs). These are technologies that result in the net removal of greenhouse gases from the atmosphere. We quantify potential global impacts of the different NETs on various factors (such as land, greenhouse gas emissions, water, albedo, nutrients and energy) to determine the biophysical limits to, and economic costs of, their widespread application. Resource implications vary between technologies and need to be satisfactorily addressed if NETs are to have a significant role in achieving climate goals.
Positional Quality Assessment of Orthophotos Obtained from Sensors Onboard Multi-Rotor UAV Platforms
Mesas-Carrascosa, Francisco Javier; Rumbao, Inmaculada Clavero; Berrocal, Juan Alberto Barrera; Porras, Alfonso García-Ferrer
2014-01-01
In this study we explored the positional quality of orthophotos obtained by an unmanned aerial vehicle (UAV). A multi-rotor UAV was used to obtain images using a vertically mounted digital camera. The flight was processed taking into account the photogrammetry workflow: perform the aerial triangulation, generate a digital surface model, orthorectify individual images and finally obtain a mosaic image or final orthophoto. The UAV orthophotos were assessed with various spatial quality tests used by national mapping agencies (NMAs). Results showed that the orthophotos satisfactorily passed the spatial quality tests and are therefore a useful tool for NMAs in their production flowchart. PMID:25587877
NASA Astrophysics Data System (ADS)
Gironés, X.; Gallegos, A.; Carbó-Dorca, R.
2001-12-01
In this work, the antimalarial activity of two series of 20 and 7 synthetic 1,2,4-trioxanes and a set of 20 cyclic peroxy ketals are tested for correlation search by means of Molecular Quantum Similarity Measures (MQSM). QSAR models, dealing with different biological responses (IC90, IC50 and ED90) of the parasite Plasmodium Falciparum, are constructed using MQSM as molecular descriptors and are satisfactorily correlated. The statistical results of the 20 1,2,4-trioxanes are deeply analyzed to elucidate the relevant structural features in the biological activity, revealing the importance of phenyl substitutions.
NASA Astrophysics Data System (ADS)
Lofrumento, C.; Arci, F.; Carlesi, S.; Ricci, M.; Castellucci, E.; Becucci, M.
2015-02-01
The analysis of ground state structural and vibrational properties of Safranin-O is presented. The experimental results, obtained by FTIR, Raman and SERS spectroscopy, are discussed in comparison to the results of DFT calculations carried out at the B3LYP/6-311 + G(d,p) level of theory. The calculated spectra reproduce quite satisfactorily the experimental data. The calculated Safranin-O equilibrium structure and the assignment of the vibrational spectra are reported as well. From the changes between Raman and SERS spectra a model is presented for the interaction of Safranin-O with silver nanoparticles.
Liu, Xiaohan; Makino, Hideo; Kobayashi, Suguru; Maeda, Yoshinobu
2007-01-01
After a public experiment of the indoor guidance system using FLC (fluorescent light communication), we found that FLC provides a promising medium for the installation of a guidance system for the visually impaired. However, precise self-positioning was not satisfactorily achieved. In this article, we propose a new self-positioning method, one that uses a combination of RFID (Radio-frequency identification), Bluetooth and FLC. We analyzed the situation and developed a model that combined the three communication modes. Then we performed a series of experiments and get some results in the first step.
NASA Astrophysics Data System (ADS)
Fedorov, A. V.; Bedarev, I. A.; Lavruk, S. A.; Trushlyakov, V. I.; Kudentsov, V. Yu.
2018-03-01
In the present work, a method of mathematical simulation is employed to describe processes occurring in the specimens of new equipment and using the remaining propellant in rocket-engine tanks. Within the framework of certain turbulence models, the authors perform a calculation of the flow field in the volume of the tank of the launch-vehicle stage when a hot gas jet is injected into it. A vortex flow structure is revealed; the characteristics of heat transfer for different angles of injection of the jet are determined. The obtained correlation Nu = Nu(Re) satisfactorily describes experimental data.
Mesas-Carrascosa, Francisco Javier; Rumbao, Inmaculada Clavero; Berrocal, Juan Alberto Barrera; Porras, Alfonso García-Ferrer
2014-11-26
In this study we explored the positional quality of orthophotos obtained by an unmanned aerial vehicle (UAV). A multi-rotor UAV was used to obtain images using a vertically mounted digital camera. The flight was processed taking into account the photogrammetry workflow: perform the aerial triangulation, generate a digital surface model, orthorectify individual images and finally obtain a mosaic image or final orthophoto. The UAV orthophotos were assessed with various spatial quality tests used by national mapping agencies (NMAs). Results showed that the orthophotos satisfactorily passed the spatial quality tests and are therefore a useful tool for NMAs in their production flowchart.
Iodine-xenon studies of petrographically and chemically characterized Chainpur chondrules
NASA Technical Reports Server (NTRS)
Swindle, T. D.; Caffee, M. W.; Hohenberg, C. M.; Lindstrom, M. M.; Taylor, G. J.
1991-01-01
INAA, noble gas, and petrographic studies conducted on samples of 18 chondrules and matric material from the Chainpur (LL3) indicate that the I-129/I-127 ratio, R(0), varies by a factor of more than 10 among the chondrules. This corresponds to a greater-than-50 Ma span in apparent I-Xe ages. Models which invoke either gas-dust mixing or nebular heterogeneity cannot satisfactorily explain these data, any more than can hypotheses which attribute the variations to differences in formation age, metamorphic rate, or time of aqueous alteration. It is alternatively suggested that the variations represent periods of low-grade shock events.
NASA Astrophysics Data System (ADS)
Fedorov, A. V.; Bedarev, I. A.; Lavruk, S. A.; Trushlyakov, V. I.; Kudentsov, V. Yu.
2018-05-01
In the present work, a method of mathematical simulation is employed to describe processes occurring in the specimens of new equipment and using the remaining propellant in rocket-engine tanks. Within the framework of certain turbulence models, the authors perform a calculation of the flow field in the volume of the tank of the launch-vehicle stage when a hot gas jet is injected into it. A vortex flow structure is revealed; the characteristics of heat transfer for different angles of injection of the jet are determined. The obtained correlation Nu = Nu(Re) satisfactorily describes experimental data.
A non-gaussian model of continuous atmospheric turbulence for use in aircraft design
NASA Technical Reports Server (NTRS)
Reeves, P. M.; Joppa, R. G.; Ganzer, V. M.
1976-01-01
A non-Gaussian model of atmospheric turbulence is presented and analyzed. The model is restricted to the regions of the atmosphere where the turbulence is steady or continuous, and the assumptions of homogeneity and stationarity are justified. Also spatial distribution of turbulence is neglected, so the model consists of three independent, stationary stochastic processes which represent the vertical, lateral, and longitudinal gust components. The non-Gaussian and Gaussian models are compared with experimental data, and it is shown that the Gaussian model underestimates the number of high velocity gusts which occur in the atmosphere, while the non-Gaussian model can be adjusted to match the observed high velocity gusts more satisfactorily. Application of the proposed model to aircraft response is investigated, with particular attention to the response power spectral density, the probability distribution, and the level crossing frequency. A numerical example is presented which illustrates the application of the non-Gaussian model to the study of an aircraft autopilot system. Listings and sample results of a number of computer programs used in working with the model are included.
NASA Astrophysics Data System (ADS)
Williams, J.; Howerton, R.; Ramos, S.; Simpson, Z.; Weber, K.
2016-12-01
One of the most pronounced vegetation changes in recent history is the expansion of junipers (Juniperus spp.) throughout the intermountain west United States. These native species have expanded from their traditional fire-safe habitats into fire-dependent communities as a result of climatic fluctuations, grazing patterns, and wildfire suppression efforts. As junipers expand their range, they begin to dominate plant communities resulting in the recession of shrubs, grasses, and forbs. Land management agencies have a strong commitment to find areas that are vulnerable to juniper encroachment, so that these areas can be studied and more effectively managed. Aiding in this effort, this project used remote sensing to develop two tools that determine fire intensity on a per pixel basis and identify different phases of juniper encroachment, respectively. Landsat 8, representing land cover data was combined with topography information (slope and aspect) in a linear regression model that quantified fire intensity on a per pixel basis, identifying areas that would burn hotter and longer based on fuel type. The overall accuracy of the model was 86% with a kappa coefficient of 0.81. Visual validation using NAIP imagery in comparison with the fuel classification result showed good visual correlation of the fuel model with dense juniper stands. The second output of the project was an image/object based classification tool that uses multispectral imagery and supervised point classification to classify different vegetation types according to the spectral detail of the objects. The goal of the model is to improve phase identification of juniper stands. Initial visual verification with NAIP shows the model to be performing very satisfactorily but is dependent on the spatial resolution of the user fed input imagery. Furnishing land managers with these tools will assist in forecasting areas prone to juniper invasion based upon surrounding seedbanks, as well as, predict the ensuing intensity of fires should ignition occur.
Meliga, Stefano C; Coffey, Jacob W; Crichton, Michael L; Flaim, Christopher; Veidt, Martin; Kendall, Mark A F
2017-01-15
In-depth understanding of skin elastic and rupture behavior is fundamental to enable next-generation biomedical devices to directly access areas rich in cells and biomolecules. However, the paucity of skin mechanical characterization and lack of established fracture models limits their rational design. We present an experimental and numerical study of skin mechanics during dynamic interaction with individual and arrays of micro-penetrators. Initially, micro-indentation of individual skin strata revealed hyperelastic moduli were dramatically rate-dependent, enabling extrapolation of stiffness properties at high velocity regimes (>1ms -1 ). A layered finite-element model satisfactorily predicted the penetration of micro-penetrators using characteristic fracture energies (∼10pJμm -2 ) significantly lower than previously reported (≫100pJμm -2 ). Interestingly, with our standard application conditions (∼2ms -1 , 35gpistonmass), ∼95% of the application kinetic energy was transferred to the backing support rather than the skin ∼5% (murine ear model). At higher velocities (∼10ms -1 ) strain energy accumulated in the top skin layers, initiating fracture before stress waves transmitted deformation to the backing material, increasing energy transfer efficiency to 55%. Thus, the tools developed provide guidelines to rationally engineer skin penetrators to increase depth targeting consistency and payload delivery across patients whilst minimizing penetration energy to control skin inflammation, tolerability and acceptability. The mechanics of skin penetration by dynamically-applied microscopic tips is investigated using a combined experimental-computational approach. A FE model of skin is parameterized using indentation tests and a ductile-failure implementation validated against penetration assays. The simulations shed light on skin elastic and fracture properties, and elucidate the interaction with microprojection arrays for vaccine delivery allowing rational design of next-generation devices. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Large-deformation electrohydrodynamics of an elastic capsule in a DC electric field
NASA Astrophysics Data System (ADS)
Das, Sudip; Thaokar, Rochish M.
2018-04-01
The dynamics of a spherical elastic capsule, containing a Newtonian fluid bounded by an elastic membrane and immersed in another Newtonian fluid, in a uniform DC electric field is investigated. Discontinuity of electrical properties such as conductivities of the internal and external fluid media as well as capacitance and conductance of the membrane lead to a net interfacial Maxwell stress which can cause the deformation of such an elastic capsule. We investigate this problem considering well established membrane laws for a thin elastic membrane, with fully resolved hydrodynamics in the Stokes flow limit and describe the electrostatics using the capacitor model. In the limit of small deformation, the analytical theory predicts the dynamics fairly satisfactorily. Large deformations at high capillary number though necessitate a numerical approach (Boundary element method in the present case) to solve this highly non-linear problem. Akin to vesicles, at intermediate times, highly nonlinear biconcave shapes along with squaring and hexagon like shapes are observed when the outer medium is more conducting. The study identifies the essentiality of parameters such as high membrane capacitance, low membrane conductance, low hydrodynamic time scales and high capillary number for observation of these shape transitions. The transition is due to large compressive Maxwell stress at the poles at intermediate times. Thus such shape transition can be seen in spherical globules admitting electrical capacitance, possibly, irrespective of the nature of the interfacial restoring force.
Earth Science Futuristic Trends and Implementing Strategies
NASA Technical Reports Server (NTRS)
Habib, Shahid
2003-01-01
For the last several years, there is a strong trend among the science community to increase the number of space-based observations to get a much higher temporal and spatial resolution. Such information will eventually be useful in higher resolution models that can provide predictability with higher precision. Such desirability puts a tremendous burden on any single implementing entity in terms of budget, technology readiness and compute power. The health of planet Earth is not governed by a single country, but in reality, is everyone's business living on this planet. Therefore, with this notion, it is becoming an impractical problem by any single organization/country to undertake. So far, each country per their means has proceeded along satisfactorily in implementing or benefiting directly or indirectly from the Earth observation data and scientific products. However, time has come that this is becoming a humongous problem to be undertaken by a single country. Therefore, this paper gives some serious thoughts in what options are there in undertaking this tremendous challenge. The problem is multi-dimensional in terms of budget, technology availability, environmental legislations, public awareness, and communication limitations. Some of these issues are introduced, discussed and possible implementation strategies are provided in this paper to move out of this predicament. A strong emphasis is placed on international cooperation and collaboration to see a collective benefit for this effort.
Unconventional spin distributions in thick Ni{sub 80}Fe{sub 20} nanodisks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, D.; Lupo, P.; Haldar, A.
2016-05-09
We study the spin distributions in permalloy (Py: Ni{sub 80}Fe{sub 20}) nanodisks as a function of diameter D (300 nm ≤ D ≤ 1 μm) and thickness L (30 nm ≤ L ≤ 100 nm). We observed that beyond a certain thickness, for a fixed disk diameter, an unconventional spin topology precipitates which is marked by the presence of a divergence field within the magnetic vortex curl. The strength of this divergence changes anti-symmetrically from negative to positive—depending on the core polarity—along the axis of the cylindrical nanodisk. This is also accompanied by a skyrmion-like out-of-plane bending of the spin vectors farther away from the disk center. Additionally, the vortex core dilatesmore » significantly when compared to its typical size. This has been directly observed using magnetic force microscopy. We determined from the ferromagnetic resonance spectroscopy measurements that the unconventional topology in the thicker nanodisks gyrated at a frequency, which is significantly lower than what is predicted by a magnetic vortex based analytical model. Micromagnetic simulations involving dipolar and exchange interactions appear to satisfactorily reproduce the experimentally observed static and dynamic behaviors. Besides providing a physical example of an unconventional topology, these results can also aid the design of topologically protected memory elements.« less
NASA Technical Reports Server (NTRS)
Fradenburgh, Evan A; Gorton, Gerald C; Beke, Andrew
1954-01-01
An experimental investigation of a series of four convergent-divergent exhaust nozzles was conducted in the Lewis 8-by-6 foot supersonic wind tunnel at Mach numbers of 0.1, 0.6, 1.6, and 2.0 over a range of nozzle pressure ratios. The thrust characteristics of these nozzles were determined by a pressure-integration technique. From a thrust standpoint, a nozzle designed to give uniform parallel flow at the exit had no advantage over the simple geometric design with conical convergent and divergent sections. The rapid-divergent nozzles might be competitive with the more gradual-divergent nozzles since the relatively short length of these nozzles would be advantageous from a weight standpoint and might result in smaller thrust losses due to friction. The thrusts, with friction losses neglected, were predicted satisfactorily by one-dimensional theory for the nozzles with relatively gradual divergence. The thrusts of the rapid-divergent designs were several percentages below the theoretical values at the design pressure ratio or above, while at low pressure ratios there was a considerable effect of free-stream Mach number, with thrusts considerably above theoretical values at subsonic speeds and somewhat above theoretical values at supersonic speeds. This Mach numb effect appeared to be related to the variation of the model base pressure with free-stream Mach number.
Improta, Roberto; Vitagliano, Luigi; Esposito, Luciana
2015-11-01
The elucidation of the mutual influence between peptide bond geometry and local conformation has important implications for protein structure refinement, validation, and prediction. To gain insights into the structural determinants and the energetic contributions associated with protein/peptide backbone plasticity, we here report an extensive analysis of the variability of the peptide bond angles by combining statistical analyses of protein structures and quantum mechanics calculations on small model peptide systems. Our analyses demonstrate that all the backbone bond angles strongly depend on the peptide conformation and unveil the existence of regular trends as function of ψ and/or φ. The excellent agreement of the quantum mechanics calculations with the statistical surveys of protein structures validates the computational scheme here employed and demonstrates that the valence geometry of protein/peptide backbone is primarily dictated by local interactions. Notably, for the first time we show that the position of the H(α) hydrogen atom, which is an important parameter in NMR structural studies, is also dependent on the local conformation. Most of the trends observed may be satisfactorily explained by invoking steric repulsive interactions; in some specific cases the valence bond variability is also influenced by hydrogen-bond like interactions. Moreover, we can provide a reliable estimate of the energies involved in the interplay between geometry and conformations. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanier, Nicholas Edward
We have completed implementation of a laser package in LANL's principal AGEX design code, Cassio. Although we have greatly improved our target characterization and uncertainty quantification, we remain unable to satisfactorily simulate the NIF Pleiades data.
Eisenberg, Eugene
1965-01-01
Frequent errors in the diagnosis of diabetes insipidus arise from (1) failure to produce an adequate stimulus for release of antidiuretic hormone, and (2) failure to appreciate acute or chronic changes in renal function that may obscure test results. Properly timed determination of body weight, urine volume and serum and urine osmolarity during the course of water deprivation, and comparison of these values with those obtained after administration of exogenous vasopressin, eliminates most diagnostic errors. In four patients who had experienced local and systemic reactions to other exogenous forms of vasopressin, diabetes insipidus was satisfactorily controlled by administration of synthetic lysine-8 vasopressin in nasal spray. A fifth patient was also treated satisfactorily with this preparation. PMID:14290932
Avargues Navarro, María Luisa; Borda Mas, Mercedes; López Jiménez, Ana María
2010-05-01
The purpose of this study has been to test, with a sample of 193 Professors of the University of Seville, a structural model on the mediating role of personal perceived competence in the appearance of burnout syndrome and stress symptoms under potentially stressful work conditions. The instruments used to evaluate were a socio-demographic and work-related data questionnaire, The Maslach Burnout Inventory (M.B.I.), The Labour Scale of Stress and the Magallanes Stress Scale. The model of strategy implementation and LISREL 8.71 were used. The estimated model was adjusted satisfactorily, ascertaining the mediating effect of perceived competence in the effect exerted by the work conditions studied on the depersonalization and personal fulfillment, as well as in the appearance of stress symptoms. The effect on the emotional exhaustion dimension was not confirmed. The latter also acted on the estimated model as a mediating variable, facilitating the negative impact of stressors on emotional exhaustion, depersonalization and personal accomplishment.
Phosphorus vacancy cluster model for phosphorus diffusion gettering of metals in Si
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Renyu; Trzynadlowski, Bart; Dunham, Scott T.
2014-02-07
In this work, we develop models for the gettering of metals in silicon by high phosphorus concentration. We first performed ab initio calculations to determine favorable configurations of complexes involving phosphorus and transition metals (Fe, Cu, Cr, Ni, Ti, Mo, and W). Our ab initio calculations found that the P{sub 4}V cluster, a vacancy surrounded by 4 nearest-neighbor phosphorus atoms, which is the most favorable inactive P species in heavily doped Si, strongly binds metals such as Cu, Cr, Ni, and Fe. Based on the calculated binding energies, we build continuum models to describe the P deactivation and Fe getteringmore » processes with model parameters calibrated against experimental data. In contrast to previous models assuming metal-P{sub 1}V or metal-P{sub 2}V as the gettered species, the binding of metals to P{sub 4}V satisfactorily explains the experimentally observed strong gettering behavior at high phosphorus concentrations.« less
Influence of Oil on Refrigerant Evaporator Performance
NASA Astrophysics Data System (ADS)
Kim, Jong-Soo; Nagata, Karsuya; Katsuta, Masafumi; Tomosugi, Hiroyuki; Kikuchi, Kouichiro; Horichi, Toshiaki
In vapor compression refrigeration system using oil-lubricated compressors, some amount of oil is always circulated through the system. Oil circulation can have a significant influence on the evaporator performance of automotive air conditioner which is especially required to cool quickly the car interior after a period standing in the sun. An experimental investigation was carried out an electrically heated horizontal tube to measure local heat transfer coefficients for various flow rates and heat fluxes during forced convection boiling of pure refrigerant R12 and refrigerant-oil mixtures (0-11% oil concentration by weight) and the results were compared with oil free performance. Local heat transfer coefficients increased at the region of low vapor quality by the addition of oil. On the other hand, because the oil-rich liquid film was formed on the heat transfer surface, heat transfer coefficients gradually decreased as the vapor quality became higher. Average heat transfer coefficient reached a maximum at about 4% oil concentration and this trend agreed well with the results of Green and Furse. Previous correlations, using the properties of the refrigerant-oil mixture, could not predict satisfactorily the local heat transfer coefficients data. New correlation modified by oil concentration factor was developed for predicting the corresponding heat transfer coefficient for refrigerant-oil mixture convection boiling. The maximum percent deviation between predicted and measured heat transfer coefficient was within ±30%.
Hu, Shan; Shi, Qiantao; Jing, Chuanyong
2015-08-18
A pressing challenge in arsenic (As) adsorptive filtration is to decipher how the As atomic surface structure obtained in the laboratory can be used to accurately predict the field filtration cycle. The motivation of this study was therefore to integrate molecular level As adsorption mechanisms and capacities to predict effluent As from granular TiO2 columns in the field as well as its health impacts. Approximately 2,955 bed volumes of groundwater with an average of 542 μg/L As were filtered before the effluent As concentration exceeded 10 μg/L, corresponding to an adsorption capacity of 1.53 mg As/g TiO2. After regeneration, the TiO2 column could treat 2,563 bed volumes of groundwater, resulting in an As load of 1.36 mg/g TiO2. Column filtration and EXAFS results showed that among coexisting ions present in groundwater, only Ca(2+), Si(OH)4, and HCO3(-) would interfere with As adsorption. The compound effects of coexisting ions and molecular level structural information were incorporated in the PHREEQC program to satisfactorily predict the As breakthrough curves. The total urinary As concentration from four volunteers of local residences, ranging from 972 to 2,080 μg/L before groundwater treatment, decreased to the range 31.7-73.3 μg/L at the end of the experimental cycle (15-33 days).
Beaufort, Ilse N; De Weert-Van Oene, Gerdien H; Buwalda, Victor A J; de Leeuw, J Rob J; Goudriaan, Anna E
2017-01-01
Depression is a common co-morbid disorder in substance use disorder (SUD) patients. Hence, valid instruments are needed to screen for depression in this subpopulation. In this study, the predictive validity of the Depression, Anxiety and Stress Scale (DASS-21) for the presence of a depressive disorder was investigated in SUD inpatients. Furthermore, differences between DASS-21 scores at intake and those recorded one week after inpatient detoxification were assessed in order to determine the measurement point of the assessment of the DASS-21 leading to the best predictive validity. The DASS-21 was administered to 47 patients at intake and shortly after inpatient detoxification. The results of the DASS-21 were compared to the Mini International Neuropsychiatric Interview (MINI), which served as the gold standard. Levels of sensitivity and specificity of 78-89% and 71-76% were found for the DASS-21 assessed after detoxification, satisfactorily predicting depression as diagnosed with the MINI. Total DASS-21 scores as well as the DASS subscale for depression were significantly reduced at the second measurement, compared to the DASS at intake. We conclude that the DASS-21 may be a suitable instrument to screen for depressive disorders in SUD patients when administered (shortly) after detoxification. Future research is needed to support this conclusion. © 2017 The Author(s) Published by S. Karger AG, Basel.
Bekker, Marrie H J; Croon, Marcel A; van Balkom, Esther G A; Vermee, Jennifer B G
2008-06-01
Autonomy-connectedness is the capacity for being on one's own as well as for satisfactorily engaging in interpersonal relationships. Associations have been shown between autonomy-connectedness components (self-awareness, sensitivity to others, and the capacity for managing new situations) and various indices of psychopathology. Both in a theoretical sense as well as for enhancing treatment and prevention, it is relevant to identify which factors most powerfully predict individual differences in autonomy-connectedness: body awareness, alexithymia, or assertiveness. The present study examined this question in a clinical sample of women who were diagnosed as having autonomy problems (N=52) and in a female nonclinical community sample (N=59). In line with expectations, assertiveness was a strong predictor of (all three components of) autonomy-connectedness, as was emotionalizing, one of the alexithymia-components, but the latter in an opposite direction than we had expected: the higher an individual's ability to emotionalize was, the less self-aware and capable to manage new situations that person was, and the more sensitive to others. Cognitive alexithymia contributed to self-awareness as well as to the capacity for managing new situations, and one of the components of body awareness appeared to predict capacity for managing new situations. Our results indicate that assertiveness training and the enhancement of emotion regulation are important elements of autonomy-connectedness targeted interventions. (c) 2008 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Araki, Shouhei; Watanabe, Yukinobu; Kitajima, Mizuki; Sadamatsu, Hiroki; Nakano, Keita; Kin, Tadahiro; Iwamoto, Yosuke; Satoh, Daiki; Hagiwara, Masayuki; Yashima, Hiroshi; Shima, Tatsushi
2017-01-01
Double-differential neutron production cross sections (DDXs) for deuteron-induced reactions on Li, Be, C, Al, Cu, and Nb at 102 MeV were measured at forward angles ≤25° by means of a time of flight (TOF) method with NE213 liquid organic scintillators at the Research Center of Nuclear Physics (RCNP), Osaka University. The experimental DDXs and energy-integrated cross sections were compared with TENDL-2015 data and Particle and Heavy Ion Transport code System (PHITS) calculation using a combination of the KUROTAMA model, the Liege Intra-Nuclear Cascade model, and the generalized evaporation model. The PHITS calculation showed better agreement with the experimental results than TENDL-2015 for all target nuclei, although the shape of the broad peak around 50 MeV was not satisfactorily reproduced by the PHITS calculation.
Low intrinsic carrier density LSMO/Alq3/AlOx/Co organic spintronic devices
NASA Astrophysics Data System (ADS)
Riminucci, Alberto; Graziosi, Patrizio; Calbucci, Marco; Cecchini, Raimondo; Prezioso, Mirko; Borgatti, Francesco; Bergenti, Ilaria; Dediu, Valentin Alek
2018-04-01
The understanding of spin injection and transport in organic spintronic devices is still incomplete, with some experiments showing magnetoresistance and others not detecting it. We have investigated the transport properties of a large number of tris-(8-hydroxyquinoline)aluminum-based organic spintronic devices with an electrical resistance greater than 5 MΩ that did not show magnetoresistance. Their transport properties could be described satisfactorily by known models for organic semiconductors. At high voltages (>2 V), the results followed the model of space charge limited current with a Poole-Frenkel mobility. At low voltages (˜0.1 V), that are those at which the spin valve behavior is usually observed, the charge transport was modelled by nearest neighbor hopping in intra-gap impurity levels, with a charge carrier density of n0 = (1.44 ± 0.21) × 1015 cm-3 at room temperature. Such a low carrier density can explain why no magnetoresistance was observed.
Thermogravimetric analysis of the gasification of microalgae Chlorella vulgaris.
Figueira, Camila Emilia; Moreira, Paulo Firmino; Giudici, Reinaldo
2015-12-01
The gasification of microalgae Chlorella vulgaris under an atmosphere of argon and water vapor was investigated by thermogravimetric analysis. The data were interpreted by using conventional isoconversional methods and also by the independent parallel reaction (IPR) model, in which the degradation is considered to happen individually to each pseudo-component of biomass (lipid, carbohydrate and protein). The IPR model allows obtaining the kinetic parameters of the degradation reaction of each component. Three main stages were observed during the gasification process and the differential thermogravimetric curve was satisfactorily fitted by the IPR model considering three pseudocomponents. The comparison of the activation energy values obtained by the methods and those found in the literature for other microalgae was satisfactory. Quantification of reaction products was performed using online gas chromatography. The major products detected were H2, CO and CH4, indicating the potential for producing fuel gas and syngas from microalgae. Copyright © 2015 Elsevier Ltd. All rights reserved.
Smarter than others? Conjectures in lowest unique bid auctions.
Zhou, Cancan; Dong, Hongguang; Hu, Rui; Chen, Qinghua
2015-01-01
Research concerning various types of auctions, such as English auctions, Dutch auctions, highest-price sealed-bid auctions, and second-price sealed-bid auctions, is always a topic of considerable interest in interdisciplinary fields. The type of auction, known as a lowest unique bid auction (LUBA), has also attracted significant attention. Various models have been proposed, but they often fail to explain satisfactorily the real bid-distribution characteristics. This paper discusses LUBA bid-distribution characteristics, including the inverted-J shape and the exponential decrease in the upper region. The authors note that this type of distribution, which initially increases and later decreases, cannot be derived from the symmetric Nash equilibrium framework based on perfect information that has previously been used. A novel optimization model based on non-perfect information is presented. The kernel of this model is the premise that agents make decisions to achieve maximum profit based on imaginary information or assumptions regarding the behavior of others.
NASA Astrophysics Data System (ADS)
Eliçabe, Guillermo E.
2013-09-01
In this work, an exact scattering model for a system of clusters of spherical particles, based on the Rayleigh-Gans approximation, has been parameterized in such a way that it can be solved in inverse form using Thikhonov Regularization to obtain the morphological parameters of the clusters. That is to say, the average number of particles per cluster, the size of the primary spherical units that form the cluster, and the Discrete Distance Distribution Function from which the z-average square radius of gyration of the system of clusters is obtained. The methodology is validated through a series of simulated and experimental examples of x-ray and light scattering that show that the proposed methodology works satisfactorily in unideal situations such as: presence of error in the measurements, presence of error in the model, and several types of unideallities present in the experimental cases.
NASA Technical Reports Server (NTRS)
Smith, Charlee C., Jr.; Lovell, Powell M., Jr.
1954-01-01
An investigation is being conducted to determine the dynamic stability and control characteristics of a 0.13-scale flying model of Convair XFY-1 vertically rising airplane. This paper presents the results of flight and force tests to determine the stability and control characteristics of the model in vertical descent and landings in still air. The tests indicated that landings, including vertical descent from altitudes representing up to 400 feet for the full-scale airplane and at rates of descent up to 15 or 20 feet per second (full scale), can be performed satisfactorily. Sustained vertical descent in still air probably will be more difficult to perform because of large random trim changes that become greater as the descent velocity is increased. A slight steady head wind or cross wind might be sufficient to eliminate the random trim changes.
Magnetic field distribution in superconducting composites as revealed by ESR-probe and magnetization
NASA Astrophysics Data System (ADS)
Davidov, D.; Bontemps, N.; Golosovsky, M.; Waysand, G.
1998-03-01
The distribution of a static magnetic field in superconductor-insulator composites consisting of BSCCO (YBCO) powder in paraffin wax is studied by ESR bulk probing and magnetization. The average field and field variance in the non-superconducting host are measured as function of temperature and volume fraction of superconductor. We develop a model of the field distribution in dilute magnetic and superconducting composites that relates the field inhomogeneity to magnetization and particle shape. We find that this model satisfactorily describes field distribution in our superconducting composites in the regime of strong flux pinning, i.e. below irreversibility line. We find deviations from the model above the irreversibility line and attribute this to flux motion. We show that the field distribution in superconducting composites is determined not only by magnetization and particle shape, but is strongly affected by the flux profile within the superconducting particles.
NASA Astrophysics Data System (ADS)
Van den Belt, Frank J. G.; De Boer, Poppe L.
2014-05-01
The desiccated deep-basin model, originally developed for the Mediterranean salt giant, deviated significantly from existing models and it has never been satisfactorily translated into a general concept. With time, however, Mediterranean models evolved towards moderate basin depths and the view that deposition took place in a flooded basin has gained reputation. These new insights have bridged the gap with general evaporite models and open possibilities of integrating concepts developed for other salt giants into the model. Recent modelling work (Van den Belt & De Boer, 2012) based on the Zechstein salt basin has shown that the thickness and composition of subsequent evaporite cycles can be explained by a model that involves a repetition of a three-stage process of 1) progressive narrowing of an ocean corridor in response to sulphate-platform progradation, resulting in 2) brine concentration and rapid infilling of the basin with halite and potash salts, the load of which causes 3) isostatic creation of accommodation space for the next cycle. Isostatic theory predicts that each cycle has approximately half the thickness of the previous one, e.g. 1.0 > 0.50 > 0.25 > 0.125 followed by a number of (coalesced) smaller cycles with a joint thickness of 0.125. The sequence in the basin centre then adds up to 2, which is two times the original basin depth. For the Zechstein case actual cycle thickness well matches these predicted values with cycle thicknesses of about 1.06 > 0.54 > 0.18 > 0.10 and 0.12. The cycle build-up of the Mediterranean salt giant is less well known, because of limited deep drilling. There are at least two cycles, a thin upper overlying a thick lower unit, but comparison of Zechstein patterns with Mediterranean sections has shown that more cycles may be present. Typical cycle boundaries include K/Mg-salt interbeds in halite units, and halite interbeds in sulphate units. Interestingly, analysis has shown that such indicators in Mediterranean sections indicate that cycles may indeed be stacked according to the 50% thickness rule. Examples are the K-salt halfway up the Sicilian section and the regular halite interbeds in the Upper Evaporite of the Western Mediterranean. In addition, the Lago Mare clays that define the top of the Mediterranean section are reminiscent of the Zechstein claystone cap. If the proposed mechanism indeed applies to the Mediterranean it would point at an initial basin depth of about 600-700 for the Western Mediterranean. Van den Belt & De Boer (2012) Utrecht Studies in Earth Sciences, v. 21, p. 59-65.
NASA Astrophysics Data System (ADS)
Jiang, Sanyuan; Zhang, Qi
2017-04-01
Phosphorus losses from excessive fertilizer application and improper land exploitation were found to be the limiting factor for freshwater quality deterioration and eutrophication. Phosphorus transport from uplands to river is related to hydrological, soil erosion and sediment transport processes, which is impacted by several physiographic and meteorological factors. The objective of this study was to investigate the spatiotemporal variation of phosphorus losses and response to climate change at a typical upstream tributary (Le'An river) of Poyang Lake. To this end, a process-oriented hydrological and nutrient transport model HYPE (Hydrological Predictions for the Environment) was set up for discharge and phosphorus transport simulation at Le'An catchment. Parameter ESTimator (PEST) was combined with HYPE model for parameter sensitivity analysis and optimisation. In runoff modelling, potential evapotranspiration rate of the dominant land use (forest) is most sensitive; parameters of surface runoff rate and percolation capacity for the red soil are also very sensitive. In phosphorus transport modelling, the exponent of equation for soil erosion processes induced by surface runoff is most sensitive, coefficient of adsorption/desorption processes for red soil is also very sensitive. Flow dynamics and water balance were simulated well at all sites for the whole period (1978-1986) with NSE≥0.80 and PBIAS≤14.53%. The optimized hydrological parameter set were transferable for the independent period (2009-2010) with NSE≥0.90 and highest PBIAS of -7.44% in stream flow simulation. Seasonal dynamics and balance of stream water TP (Total Phosphorus ) concentrations were captured satisfactorily indicated by NSE≥0.53 and highest PBIAS of 16.67%. In annual scale, most phosphorus is transported via surface runoff during heavy storm flow events, which may account for about 70% of annual TP loads. Based on future climate change analysis under three different emission scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), there is no considerable change in average annual rainfall amount in 2020-2035 while increasing occurrence frequency and intensity of extreme rainfall events were predicted. The validated HYPE model was run on the three emission scenarios. Overall increase of TP loads was found in future with the largest increase of annual TP loads under the high emission scenario (RCP 8.5). The outcomes of this study (i) verified the transferability of HYPE model at humid subtropical and heterogeneous catchment; (ii) revealed the sensitive hydrological and phosphorus transport processes and relevant parameters; (iii) implied more TP losses in future in response to increasing extreme rainfall events.
14 CFR 142.47 - Training center instructor eligibility requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... and procedures. (iii) The fundamental principles of the learning process. (iv) Instructor duties...) Cockpit resource management and crew coordination. (2) Satisfactorily complete a written test— (i) On the...
29 CFR 1952.344 - Final approval determination.
Code of Federal Regulations, 2010 CFR
2010-07-01
... satisfactorily providing reports to OSHA through particiption in the Federal-State Unified Management Information System, the Assistant Secretary evaluated actual operations under the Wyoming State plan for a period of...
Wellbore Seal Repair Using Nanocomposite Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stormont, John
2016-08-31
Nanocomposite wellbore repair materials have been developed, tested, and modeled through an integrated program of laboratory testing and numerical modeling. Numerous polymer-cement nanocomposites were synthesized as candidate wellbore repair materials using various combinations of base polymers and nanoparticles. Based on tests of bond strength to steel and cement, ductility, stability, flowability, and penetrability in opening of 50 microns and less, we identified Novolac epoxy reinforced with multi-walled carbon nanotubes and/or alumina nanoparticles to be a superior wellbore seal material compared to conventional microfine cements. A system was developed for testing damaged and repaired wellbore specimens comprised of a cement sheathmore » cast on a steel casing. The system allows independent application of confining pressures and casing pressures while gas flow is measured through the specimens along the wellbore axis. Repair with the nanocomposite epoxy base material was successful in dramatically reducing the flow through flaws of various sizes and types, and restoring the specimen comparable to an intact condition. In contrast, repair of damaged specimens with microfine cement was less effective, and the repair degraded with application of stress. Post-test observations confirm the complete penetration and sealing of flaws using the nanocomposite epoxy base material. A number of modeling efforts have supported the material development and testing efforts. We have modeled the steel-repair material interface behavior in detail during slant shear tests, which we used to characterize bond strength of candidate repair materials. A numerical model of the laboratory testing of damaged wellbore specimens was developed. This investigation found that microannulus permeability can satisfactorily be described by a joint model. Finally, a wellbore model has been developed that can be used to evaluate the response of the wellbore system (casing, cement, and microannulus), including the use of either cement or a nanocomposite in the microannulus to represent a repaired system. This wellbore model was successfully coupled with a field-scale model of CO 2 injection, to enable predictions of stress and strains in the wellbore subjected to subsurface changes (i.e. domal uplift) associated with fluid injection.« less
NASA Astrophysics Data System (ADS)
Paparrizos, Spyridon; Maris, Fotios
2017-05-01
The MIKE SHE model is able to simulate the entire stream flow which includes direct and basic flow. Many models either do not simulate or use simplistic methods to determine the basic flow. The MIKE SHE model takes into account many hydrological data. Since this study was directed towards the simulation of surface runoff and infiltration into saturated and unsaturated zone, the MIKE SHE is an appropriate model for reliable conclusions. In the current research, the MIKE SHE model was used to simulate runoff in the area of Sperchios River basin. Meteorological data from eight rainfall stations within the Sperchios River basin were used as inputs. Vegetation as well as geological data was used to perform the calibration and validation of the physical processes of the model. Additionally, ArcGIS program was used. The results indicated that the model was able to simulate the surface runoff satisfactorily, representing all the hydrological data adequately. Some minor differentiations appeared which can be eliminated with the appropriate adjustments that can be decided by the researcher's experience.
Investigation of alternative curb mixes.
DOT National Transportation Integrated Search
1975-01-01
The objective was to design and test mixes that might satisfactorily be used to replace the asbestos curb mix. Tentatively, it was recommended that a Gilsonite mix be used where high stability was required.
NASA Astrophysics Data System (ADS)
Hong, Chaopeng; Zhang, Qiang; Zhang, Yang; Tang, Youhua; Tong, Daniel; He, Kebin
2017-06-01
In this study, a regional coupled climate-chemistry modeling system using the dynamical downscaling technique was established by linking the global Community Earth System Model (CESM) and the regional two-way coupled Weather Research and Forecasting - Community Multi-scale Air Quality (WRF-CMAQ) model for the purpose of comprehensive assessments of regional climate change and air quality and their interactions within one modeling framework. The modeling system was applied over east Asia for a multi-year climatological application during 2006-2010, driven with CESM downscaling data under Representative Concentration Pathways 4.5 (RCP4.5), along with a short-term air quality application in representative months in 2013 that was driven with a reanalysis dataset. A comprehensive model evaluation was conducted against observations from surface networks and satellite observations to assess the model's performance. This study presents the first application and evaluation of the two-way coupled WRF-CMAQ model for climatological simulations using the dynamical downscaling technique. The model was able to satisfactorily predict major meteorological variables. The improved statistical performance for the 2 m temperature (T2) in this study (with a mean bias of -0.6 °C) compared with the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-models might be related to the use of the regional model WRF and the bias-correction technique applied for CESM downscaling. The model showed good ability to predict PM2. 5 in winter (with a normalized mean bias (NMB) of 6.4 % in 2013) and O3 in summer (with an NMB of 18.2 % in 2013) in terms of statistical performance and spatial distributions. Compared with global models that tend to underpredict PM2. 5 concentrations in China, WRF-CMAQ was able to capture the high PM2. 5 concentrations in urban areas. In general, the two-way coupled WRF-CMAQ model performed well for both climatological and air quality applications. The coupled modeling system with direct aerosol feedbacks predicted aerosol optical depth relatively well and significantly reduced the overprediction in downward shortwave radiation at the surface (SWDOWN) over polluted regions in China. The performance of cloud variables was not as good as other meteorological variables, and underpredictions of cloud fraction resulted in overpredictions of SWDOWN and underpredictions of shortwave and longwave cloud forcing. The importance of climate-chemistry interactions was demonstrated via the impacts of aerosol direct effects on climate and air quality. The aerosol effects on climate and air quality in east Asia (e.g., SWDOWN and T2 decreased by 21.8 W m-2 and 0.45 °C, respectively, and most pollutant concentrations increased by 4.8-9.5 % in January over China's major cities) were more significant than in other regions because of higher aerosol loadings that resulted from severe regional pollution, which indicates the need for applying online-coupled models over east Asia for regional climate and air quality modeling and to study the important climate-chemistry interactions. This work established a baseline for WRF-CMAQ simulations for a future period under the RCP4.5 climate scenario, which will be presented in a future paper.
Stochastic Generation of Monthly Rainfall Data
NASA Astrophysics Data System (ADS)
Srikanthan, R.
2009-03-01
Monthly rainfall data is generally needed in the simulation of water resources systems, and in the estimation of water yield from large catchments. Monthly streamflow data generation models are usually applied to generate monthly rainfall data, but this presents problems for most regions, which have significant months of no rainfall. In an earlier study, Srikanthan et al. (J. Hydrol. Eng., ASCE 11(3) (2006) 222-229) recommended the modified method of fragments to disaggregate the annual rainfall data generated by a first-order autoregressive model. The main drawback of this approach is the occurrence of similar patterns when only a short length of historic data is available. Porter and Pink (Hydrol. Water Res. Symp. (1991) 187-191) used synthetic fragments from a Thomas-Fiering monthly model to overcome this drawback. As an alternative, a new two-part monthly model is nested in an annual model to generate monthly rainfall data which preserves both the monthly and annual characteristics. This nested model was applied to generate rainfall data from seven rainfall stations located in eastern and southern parts of Australia, and the results showed that the model performed satisfactorily.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.
1980-01-01
Two three dimensional, time dependent models, one free surface, the other rigid lid, were verified at Anclote Anchorage and Lake Keowee respectively. The first site is a coastal site in northern Florida; the other is a man-made lake in South Carolina. These models describe the dispersion of heated discharges from power plants under the action of ambient conditions. A one dimensional, horizontally-averaged model was also developed and verified at Lake Keowee. The data base consisted of archival in situ measurements and data collected during field missions. The field missions were conducted during winter and summer conditions at each site. Each mission consisted of four infrared scanner flights with supporting ground truth and in situ measurements. At Anclote, special care was taken to characterize the complete tidal cycle. The three dimensional model results compared with IR data for thermal plumes on an average within 1 C root mean square difference. The one dimensional model performed satisfactorily in simulating the 1971-1979 period.
Automated longwall guidance and control systems, phase 1
NASA Technical Reports Server (NTRS)
Rybak, S. C.
1978-01-01
Candidate vertical control systems (VCS) and face advancement systems (FAS) required to satisfactorily automate the longwall system were analyzed and simulated in order to develop an overall longwall system configuration for preliminary design.
Code of Federal Regulations, 2010 CFR
2010-10-01
... satisfactorily at least 2 weeks indoctrination and training in the engine department of a partially automated steam vessel of 4,000 horsepower or over; or (3) Satisfactory completion of a course of training for...
On temporal stochastic modeling of precipitation, nesting models across scales
NASA Astrophysics Data System (ADS)
Paschalis, Athanasios; Molnar, Peter; Fatichi, Simone; Burlando, Paolo
2014-01-01
We analyze the performance of composite stochastic models of temporal precipitation which can satisfactorily reproduce precipitation properties across a wide range of temporal scales. The rationale is that a combination of stochastic precipitation models which are most appropriate for specific limited temporal scales leads to better overall performance across a wider range of scales than single models alone. We investigate different model combinations. For the coarse (daily) scale these are models based on Alternating renewal processes, Markov chains, and Poisson cluster models, which are then combined with a microcanonical Multiplicative Random Cascade model to disaggregate precipitation to finer (minute) scales. The composite models were tested on data at four sites in different climates. The results show that model combinations improve the performance in key statistics such as probability distributions of precipitation depth, autocorrelation structure, intermittency, reproduction of extremes, compared to single models. At the same time they remain reasonably parsimonious. No model combination was found to outperform the others at all sites and for all statistics, however we provide insight on the capabilities of specific model combinations. The results for the four different climates are similar, which suggests a degree of generality and wider applicability of the approach.
Schizophrenia: an integrated sociodevelopmental-cognitive model
Howes, Oliver D; Murray, Robin M
2014-01-01
Schizophrenia remains a major burden1. The dopamine (DA) and neurodevelopmental hypotheses attempt to explain the pathogenic mechanisms and origins of the disorder respectively2-4. Recently an alternative, the cognitive model, has gained popularity5. However the first two theories have not been satisfactorily integrated, and the most influential iteration of the cognitive model makes no mention of DA, neurodevelopment, or indeed the brain5. Here we show that developmental alterations secondary to variant genes, early hazards to the brain and childhood adversity, sensitise the DA system, and result in excessive presynaptic DA synthesis and DA release. Social adversity biases the cognitive schema that the individual uses to interpret experiences towards paranoid interpretations. Subsequent stress results in dysregulated DA release, causing the misattribution of salience to stimuli, which are then misinterpreted by the biased cognitive processes. The resulting paranoia and hallucinations in turn cause further stress, and eventually repeated DA dysregulation hard-wires the psychotic beliefs. Finally we consider the implications of this model for understanding and treating schizophrenia. PMID:24315522
NASA Astrophysics Data System (ADS)
Ochoa, Diego Alejandro; García, Jose Eduardo
2016-04-01
The Preisach model is a classical method for describing nonlinear behavior in hysteretic systems. According to this model, a hysteretic system contains a collection of simple bistable units which are characterized by an internal field and a coercive field. This set of bistable units exhibits a statistical distribution that depends on these fields as parameters. Thus, nonlinear response depends on the specific distribution function associated with the material. This model is satisfactorily used in this work to describe the temperature-dependent ferroelectric response in PZT- and KNN-based piezoceramics. A distribution function expanded in Maclaurin series considering only the first terms in the internal field and the coercive field is proposed. Changes in coefficient relations of a single distribution function allow us to explain the complex temperature dependence of hard piezoceramic behavior. A similar analysis based on the same form of the distribution function shows that the KNL-NTS properties soften around its orthorhombic to tetragonal phase transition.
Validation of drying models and rehydration characteristics of betel (Piper betel L.) leaves.
Balasubramanian, S; Sharma, R; Gupta, R K; Patil, R T
2011-12-01
Effect of temperature on drying behaviour of betel leaves at drying air temperatures of 50, 60 and 70°C was investigated in tunnel as well as cabinet dryer. The L* and b* values increased whereas, a* values decreased, as the drying air temperature increased from 50 to 70°C in both the dryers, but the colour values remained higher for cabinet dryer than tunnel dryer in all cases. Eleven different drying models were compared according to their coefficients of determination (R(2)), root mean square error (RMSE) and chi square (χ (2)) to estimate drying curves. The results indicated that, logarithmic model and modified Page model could satisfactorily describe the drying curve of betel leaves for tunnel drying and cabinet dryer, respectively. In terms of colour quality, drying of betel leaves at 60°C in tunnel dryer and at 50°C in cabinet dryer was found optimum whereas, rehydration at 40°C produced the best acceptable product.
Translation and cultural adaptation for Brazil of the Developing Nurses' Thinking model1
Jensen, Rodrigo; da Cruz, Diná de Almeida Lopes Monteiro; Tesoro, Mary Gay; Lopes, Maria Helena Baena de Moraes
2014-01-01
Objectives to translate and culturally adapt to Brazilian Portuguese the Developing Nurses' Thinking model, used as a strategy for teaching clinical reasoning. Method the translation and cultural adaptation were undertaken through initial translation, synthesis of the translations, back-translation, evaluation by a committee of specialists and a pre-test with 33 undergraduate nursing students. Results the stages of initial translation, synthesis of the translations and back-translation were undertaken satisfactorily, small adjustments being needed. In the evaluation of the translated version by the committee of specialists, all the items obtained agreement over 80% in the first round of evaluation and in the pre-test with the students, so the model was shown to be fit for purpose. Conclusion the use of the model as a complementary strategy in the teaching of diagnostic reasoning is recommended, with a view to the training of nurses who are more aware regarding the diagnostic task and the importance of patient safety. PMID:26107825
Towards Automated Bargaining in Electronic Markets: A Partially Two-Sided Competition Model
NASA Astrophysics Data System (ADS)
Gatti, Nicola; Lazaric, Alessandro; Restelli, Marcello
This paper focuses on the prominent issue of automating bargaining agents within electronic markets. Models of bargaining in literature deal with settings wherein there are only two agents and no model satisfactorily captures settings in which there is competition among buyers, being they more than one, and analogously among sellers. In this paper, we extend the principal bargaining protocol, i.e. the alternating-offers protocol, to capture bargaining in markets. The model we propose is such that, in presence of a unique buyer and a unique seller, agents' equilibrium strategies are those in the original protocol. Moreover, we game theoretically study the considered game providing the following results: in presence of one-sided competition (more buyers and one seller or vice versa) we provide agents' equilibrium strategies for all the values of the parameters, in presence of two-sided competition (more buyers and more sellers) we provide an algorithm that produce agents' equilibrium strategies for a large set of the parameters and we experimentally evaluate its effectiveness.
On Roesler and Arzt's new model of creep in dispersion strengthened alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orlova, A.; Cadek, J.
1992-08-01
The model of creep in dispersion (noncoherent particle) strengthened alloys assuming thermally activated detachment of dislocations from particles to be the rate controlling process, recently presented by Roesler and Arzt (1990), is correlated with some available creep and structure data for aluminum alloys strengthened by Al4C3 and Al2O3 particles. It is shown that though the model requires applied stress dependent apparent activation energy of creep, the stress dependence of creep rate can be satisfactorily accounted for even when this activation energy is stress independent, admitting a strong stress dependence of the preexponential structure factor, i.e., of the mobile dislocation density.more » On the other hand, the model is not able to account for the temperature dependence of creep rate if it is significantly stronger than that of the coefficient of lattice diffusion, as is usually the case with alloys strengthened by noncoherent particles in which the attractive dislocation/particle interaction can be expected. 14 refs.« less
NASA Astrophysics Data System (ADS)
Brook, Anna; Wittenberg, Lea
2015-04-01
Long-term environmental monitoring is addressed to identify physical and biological changes and progresses taking place in the ecosystem. This basic action of landscape monitoring is an essential part of the systematic long-term surveillance, aiming to evaluate, assess and predict the spatial change and progresses. Indeed, it provides a context for wide range of diverse studies and research frameworks from regional or global scale. Spatial-temporal trends and changes at various scales (massive to less certain) require establishing consistent baseline data over time. One of the spatial cases of landscape monitoring is dedicated to soil formation and pedological progresses. It is previously acknowledged that changes in soil affect the functionality of the environment, so monitoring changes recently become important cause considerable resources in areas such as environmental management, sustainability services, and protecting the environment healthy. Given the above, it can be concluded that monitoring changes in the base for sustainable development. The hydrological response of bare soils and watersheds in semiarid regions to intense rainfall events is known to be complex due to multiply physical and structural impacts and feedbacks. As a result, the comprehensive evaluations of mathematical models including detailed consideration of uncertainties in the modeling of hydrological and environmental systems are of increasing importance. The presented method incorporates means of remote sensing data, hydrological and climate data and implementing dedicated and integrative Monte Carlo Analysis Toolbox (MCAT) model for semiarid region. Complexity of practical models to represent spatial systems requires an extensive understanding of the spatial phenomena, while providing realistic balance of sensitivity and corresponding uncertainty levels. Nowadays a large number of dedicated mathematical models applied to assess environmental hydrological process. Among the most promising models is the MCAT, which is a MATLAB library of visual and numerical analysis tools for the evaluation of hydrological and environmental models. The model applied in this paper presents an innovative infrastructural system for predicting soil stability and erosion impacts. This integrated model is applicable to mixed areas with spatially varying soil properties, landscape, and land-cover characteristics. Data from a semiarid site in southern Israel was used to evaluate the model and analyze fundamental erosion mechanisms. The findings estimate the sensitivity of the suggested model to the physical parameters and encourage the use of hyperspectral remote sensing imagery (HSI). The proposed model is integrated according to the following stages: 1. The soil texture, aggregation, soil moisture estimated via airborne HSI data, including soil surface clay and calcium carbonate erosions; 2. The mechanical stability of soil assessed via pedo-transfer function corresponding to load dependent changes in soil physical properties due to pre-compression stress (set of equations study shear strength parameters take into account soil texture, aggregation, soil moisture and ecological soil variables); 3. The precipitation-related runoff model program (RMP) satisfactorily reproduces the observed seasonal mean and variation of surface runoff for the current climate simulation; 4. The Monte Carlo Analysis Toolbox (MCAT), a library of visual and numerical analysis tools for the evaluation of hydrological and environmental models, is proposed as a tool for integrate all the approaches to an applicable model. The presented model overcomes the limitations of existing modeling methods by integrating physical data produced via HSI and yet stays generic in terms of space and time independency.
Rheology and Extrusion of Cement-Fly Ashes Pastes
NASA Astrophysics Data System (ADS)
Micaelli, F.; Lanos, C.; Levita, G.
2008-07-01
The addition of fly ashes in cement pastes is tested to optimize the forming of cement based material by extrusion. Two sizes of fly ashes grains are examinated. The rheology of concentrated suspensions of ashes mixes is studied with a parallel plates rheometer. In stationary flow state, tested suspensions viscosities are satisfactorily described by the Krieger-Dougherty model. An "overlapped grain" suspensions model able to describe the bimodal suspensions behaviour is proposed. For higher values of solid volume fraction, Bingham viscoplastic behaviour is identified. Results showed that the plastic viscosity and plastic yield values present minimal values for the same optimal formulation of bimodal mixes. The rheological study is extended to more concentrated systems using an extruder. Finally it is observed that the addition of 30% vol. of optimized ashes mix determined a significant reduction of required extrusion load.
The advanced thermionic converter with microwave power as an auxiliary ionization source
NASA Technical Reports Server (NTRS)
Manikopoulos, C. N.; Hatziprocopiou, M.; Chiu, H. S.; Shaw, D. T.
1978-01-01
In the search for auxiliary sources of ionization for the advanced thermionic converter plasma, as required for terrestial applications, the use of externally applied microwave power is considered. The present work is part of the advanced model thermionic converter development research currently performed at the laboratory for Power and Environmental Studies at SUNY Buffalo. Microwave power in the frequency range 1-3 GHz is used to externally pump a thermionic converter and the results are compared to the theoretical model proposed by Lam (1976) in describing the thermionic converter plasma. The electron temperature of the plasma is found to be raised considerably by effective microwave heating which results in the disappearance of the double sheath ordinarily erected in front of the emitter. The experimental data agree satisfactorily with theory in the low current region.
Inverse estimation of parameters for an estuarine eutrophication model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, J.; Kuo, A.Y.
1996-11-01
An inverse model of an estuarine eutrophication model with eight state variables is developed. It provides a framework to estimate parameter values of the eutrophication model by assimilation of concentration data of these state variables. The inverse model using the variational technique in conjunction with a vertical two-dimensional eutrophication model is general enough to be applicable to aid model calibration. The formulation is illustrated by conducting a series of numerical experiments for the tidal Rappahannock River, a western shore tributary of the Chesapeake Bay. The numerical experiments of short-period model simulations with different hypothetical data sets and long-period model simulationsmore » with limited hypothetical data sets demonstrated that the inverse model can be satisfactorily used to estimate parameter values of the eutrophication model. The experiments also showed that the inverse model is useful to address some important questions, such as uniqueness of the parameter estimation and data requirements for model calibration. Because of the complexity of the eutrophication system, degrading of speed of convergence may occur. Two major factors which cause degradation of speed of convergence are cross effects among parameters and the multiple scales involved in the parameter system.« less
NASA Astrophysics Data System (ADS)
Mokhtari, M.; Tulet, P.; Fischer, C.; Bouteloup, Y.; Bouyssel, F.; Brachemi, O.
2015-02-01
The seasonal cycle and optical properties of mineral dust aerosols in North Africa were simulated for the period from 2006 to 2010 using the numerical atmospheric model ALADIN coupled to the surface scheme SURFEX. The particularity of the simulations is that the major physical processes responsible for dust emission and transport, as well as radiative effects, are taken into account at short timescales and mesoscale resolution. The aim of these simulations is to quantify the dust emission and deposition, locate the major areas of dust emission and establish a climatology of aerosol optical properties in North Africa. The mean monthly Aerosol Optical Thickness (AOT) simulated by ALADIN is compared with the AOTs derived from the standard Dark Target (DT) and Deep Blue (DB) algorithms of the Aqua-MODIS (MODerate resolution Imaging Spectroradiometer) products over North Africa, and with a set of sun photometer measurements located at Banizoumbou, Cinzana, Soroa, Mbour and Capo Verde. The vertical distribution of dust aerosol represented by extinction profiles is also analysed using CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations. The annual dust emission simulated by ALADIN over North Africa is 878 Tg year-1. The Bodélé depression appears to be the main area of dust emission in North Africa, with an average estimate of about 21.6 Tg year-1. The simulated AOTs are in good agreement with satellite and sun photometer observations. The positions of the maxima of the modelled AOTs over North Africa match the observed positions, and the ALADIN simulations satisfactorily reproduce the various dust events over the 2006-2010 period. The AOT climatology proposed in this paper provides a solid database of optical properties and consolidates the existing climatology over this region derived from satellites, the AERONET network and Regional Climate Models. Moreover, the three-dimensional distribution of the simulated AOTs also provides information about the vertical structure of the dust aerosol extinction.
Nicolas, Gaëlle; Chevalier, Véronique; Tantely, Luciano Michaël; Fontenille, Didier; Durand, Benoît
2014-12-01
Rift Valley fever (RVF) is a vector-borne zoonotic disease that causes high morbidity and mortality in ruminants. In 2008-2009, a RVF outbreak affected the whole Madagascar island, including the Anjozorobe district located in Madagascar highlands. An entomological survey showed the absence of Aedes among the potential RVF virus (RVFV) vector species identified in this area, and an overall low abundance of mosquitoes due to unfavorable climatic conditions during winter. No serological nor virological sign of infection was observed in wild terrestrial mammals of the area, suggesting an absence of wild RVF virus (RVFV) reservoir. However, a three years serological and virological follow-up in cattle showed a recurrent RVFV circulation. The objective of this study was to understand the key determinants of this unexpected recurrent transmission. To achieve this goal, a spatial deterministic discrete-time metapopulation model combined with cattle trade network was designed and parameterized to reproduce the local conditions using observational data collected in the area. Three scenarios that could explain the RVFV recurrent circulation in the area were analyzed: (i) RVFV overwintering thanks to a direct transmission between cattle when viraemic cows calve, vectors being absent during the winter, (ii) a low level vector-based circulation during winter thanks to a residual vector population, without direct transmission between cattle, (iii) combination of both above mentioned mechanisms. Multi-model inference methods resulted in a model incorporating both a low level RVFV winter vector-borne transmission and a direct transmission between animals when viraemic cows calve. Predictions satisfactorily reproduced field observations, 84% of cattle infections being attributed to vector-borne transmission, and 16% to direct transmission. These results appeared robust according to the sensitivity analysis. Interweaving between agricultural works in rice fields, seasonality of vector proliferation, and cattle exchange practices could be a key element for understanding RVFV circulation in this area of Madagascar highlands.
Learning from physics-based earthquake simulators: a minimal approach
NASA Astrophysics Data System (ADS)
Artale Harris, Pietro; Marzocchi, Warner; Melini, Daniele
2017-04-01
Physics-based earthquake simulators are aimed to generate synthetic seismic catalogs of arbitrary length, accounting for fault interaction, elastic rebound, realistic fault networks, and some simple earthquake nucleation process like rate and state friction. Through comparison of synthetic and real catalogs seismologists can get insights on the earthquake occurrence process. Moreover earthquake simulators can be used to to infer some aspects of the statistical behavior of earthquakes within the simulated region, by analyzing timescales not accessible through observations. The develoment of earthquake simulators is commonly led by the approach "the more physics, the better", pushing seismologists to go towards simulators more earth-like. However, despite the immediate attractiveness, we argue that this kind of approach makes more and more difficult to understand which physical parameters are really relevant to describe the features of the seismic catalog at which we are interested. For this reason, here we take an opposite minimal approach and analyze the behavior of a purposely simple earthquake simulator applied to a set of California faults. The idea is that a simple model may be more informative than a complex one for some specific scientific objectives, because it is more understandable. The model has three main components: the first one is a realistic tectonic setting, i.e., a fault dataset of California; the other two components are quantitative laws for earthquake generation on each single fault, and the Coulomb Failure Function for modeling fault interaction. The final goal of this work is twofold. On one hand, we aim to identify the minimum set of physical ingredients that can satisfactorily reproduce the features of the real seismic catalog, such as short-term seismic cluster, and to investigate on the hypothetical long-term behavior, and faults synchronization. On the other hand, we want to investigate the limits of predictability of the model itself.
A theory of X and Z multiquark resonances
NASA Astrophysics Data System (ADS)
Maiani, Luciano; Polosa, Antonio D.; Riquer, Veronica
2018-03-01
We introduce the hypothesis that diquarks and antidiquarks in tetraquarks are separated by a potential barrier. We show that this notion can answer satisfactorily long standing questions challenging the diquark-antidiquark model of exotic resonances. The tetraquark description of X and Z resonances is shown to be compatible with present limits on the non-observation of charged partners X±, of the X (3872) and the absence of a hyperfine splitting between two different neutral states. In the same picture, Zc and Zb particles are expected to form complete isospin triplets plus singlets. It is also explained why the decay rate into final states including quarkonia are suppressed with respect to those having open charm/beauty states.
A Theoretical Basis for the Scaling Law of Broadband Shock Noise Intensity in Supersonic Jets
NASA Technical Reports Server (NTRS)
Kandula, Max
2011-01-01
A theoretical basis for the scaling of broadband shock noise intensity In supersonic jets was formulated considering linear shock-shear wave interaction. Modeling of broadband shock noise with the aid of shock-turbulence interaction with special reference to linear theories is briefly reviewed. An hypothesis has been postulated that the peak angle of incidence (closer to the critical angle) for the shear wave primarily governs the generation of sound in the interaction process with the noise generation contribution from off-peak incident angles being relatively unimportant. The proposed hypothesis satisfactorily explains the well-known scaling law for the broadband shock-associated noise in supersonic jets.
Testing a common ice-ocean parameterization with laboratory experiments
NASA Astrophysics Data System (ADS)
McConnochie, C. D.; Kerr, R. C.
2017-07-01
Numerical models of ice-ocean interactions typically rely upon a parameterization for the transport of heat and salt to the ice face that has not been satisfactorily validated by observational or experimental data. We compare laboratory experiments of ice-saltwater interactions to a common numerical parameterization and find a significant disagreement in the dependence of the melt rate on the fluid velocity. We suggest a resolution to this disagreement based on a theoretical analysis of the boundary layer next to a vertical heated plate, which results in a threshold fluid velocity of approximately 4 cm/s at driving temperatures between 0.5 and 4°C, above which the form of the parameterization should be valid.
Lofrumento, C; Arci, F; Carlesi, S; Ricci, M; Castellucci, E; Becucci, M
2015-02-25
The analysis of ground state structural and vibrational properties of Safranin-O is presented. The experimental results, obtained by FTIR, Raman and SERS spectroscopy, are discussed in comparison to the results of DFT calculations carried out at the B3LYP/6-311+G(d,p) level of theory. The calculated spectra reproduce quite satisfactorily the experimental data. The calculated Safranin-O equilibrium structure and the assignment of the vibrational spectra are reported as well. From the changes between Raman and SERS spectra a model is presented for the interaction of Safranin-O with silver nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.
Characterization of thermoplastic polyimide NEW-TPI
NASA Technical Reports Server (NTRS)
Hou, T. H.; Reddy, R. M.
1991-01-01
Thermal and rheological properties of a commercial thermoplastic polyimide, NEW-TPI, were characterized. The as-received material possesses initially a transient crystallite form with a bimodal distribution in peak melting temperatures. After the meltings of the initial crystallite structures, the sample can be recrystallized by various thermal treatments. A bimodal or single-modal melting peak distribution is formed for annealing temperatures below or above 360 C, respectively. The recrystallized crystallinities are all transient in nature. The polymers are unable to be recrystallized after being subjected to elevated temperature annealing above 450 C. The recrystallization mechanism was postulated, and a simple kinetics model was found to describe the behavior satisfactorily under conditions of prolonged thermal annealing.
Integrating 3D geological information with a national physically-based hydrological modelling system
NASA Astrophysics Data System (ADS)
Lewis, Elizabeth; Parkin, Geoff; Kessler, Holger; Whiteman, Mark
2016-04-01
Robust numerical models are an essential tool for informing flood and water management and policy around the world. Physically-based hydrological models have traditionally not been used for such applications due to prohibitively large data, time and computational resource requirements. Given recent advances in computing power and data availability, a robust, physically-based hydrological modelling system for Great Britain using the SHETRAN model and national datasets has been created. Such a model has several advantages over less complex systems. Firstly, compared with conceptual models, a national physically-based model is more readily applicable to ungauged catchments, in which hydrological predictions are also required. Secondly, the results of a physically-based system may be more robust under changing conditions such as climate and land cover, as physical processes and relationships are explicitly accounted for. Finally, a fully integrated surface and subsurface model such as SHETRAN offers a wider range of applications compared with simpler schemes, such as assessments of groundwater resources, sediment and nutrient transport and flooding from multiple sources. As such, SHETRAN provides a robust means of simulating numerous terrestrial system processes which will add physical realism when coupled to the JULES land surface model. 306 catchments spanning Great Britain have been modelled using this system. The standard configuration of this system performs satisfactorily (NSE > 0.5) for 72% of catchments and well (NSE > 0.7) for 48%. Many of the remaining 28% of catchments that performed relatively poorly (NSE < 0.5) are located in the chalk in the south east of England. As such, the British Geological Survey 3D geology model for Great Britain (GB3D) has been incorporated, for the first time in any hydrological model, to pave the way for improvements to be made to simulations of catchments with important groundwater regimes. This coupling has involved development of software to allow for easy incorporation of geological information into SHETRAN for any model setup. The addition of more realistic subsurface representation following this approach is shown to greatly improve model performance in areas dominated by groundwater processes. The resulting modelling system has great potential to be used as a resource at national, regional and local scales in an array of different applications, including climate change impact assessments, land cover change studies and integrated assessments of groundwater and surface water resources.
48 CFR 846.472-2 - Repairs in excess of $1,000.
Code of Federal Regulations, 2014 CFR
2014-10-01
... CONTRACT MANAGEMENT QUALITY ASSURANCE Government Contract Quality Assurance 846.472-2 Repairs in excess of... make a determination that the work is being performed satisfactorily or that it has been completed in...
48 CFR 846.472-2 - Repairs in excess of $1,000.
Code of Federal Regulations, 2012 CFR
2012-10-01
... CONTRACT MANAGEMENT QUALITY ASSURANCE Government Contract Quality Assurance 846.472-2 Repairs in excess of... make a determination that the work is being performed satisfactorily or that it has been completed in...
48 CFR 846.472-2 - Repairs in excess of $1,000.
Code of Federal Regulations, 2011 CFR
2011-10-01
... CONTRACT MANAGEMENT QUALITY ASSURANCE Government Contract Quality Assurance 846.472-2 Repairs in excess of... make a determination that the work is being performed satisfactorily or that it has been completed in...
Observational constraints on Hubble parameter in viscous generalized Chaplygin gas
NASA Astrophysics Data System (ADS)
Thakur, P.
2018-04-01
Cosmological model with viscous generalized Chaplygin gas (in short, VGCG) is considered here to determine observational constraints on its equation of state parameters (in short, EoS) from background data. These data consists of H(z)-z (OHD) data, Baryonic Acoustic Oscillations peak parameter, CMB shift parameter and SN Ia data (Union 2.1). Best-fit values of the EoS parameters including present Hubble parameter (H0) and their acceptable range at different confidence limits are determined. In this model the permitted range for the present Hubble parameter and the transition redshift (zt) at 1σ confidence limits are H0= 70.24^{+0.34}_{-0.36} and zt=0.76^{+0.07}_{-0.07} respectively. These EoS parameters are then compared with those of other models. Present age of the Universe (t0) have also been determined here. Akaike information criterion and Bayesian information criterion for the model selection have been adopted for comparison with other models. It is noted that VGCG model satisfactorily accommodates the present accelerating phase of the Universe.
NASA Astrophysics Data System (ADS)
Chen, Zheng; Gan, Bolan; Wu, Lixin
2017-09-01
Based on 22 of the climate models from phase 3 of the Coupled Model Intercomparison Project, we investigate the ability of the models to reproduce the spatiotemporal features of the wintertime North Pacific Oscillation (NPO), which is the second most important factor determining the wintertime sea level pressure field in simulations of the pre-industrial control climate, and evaluate the NPO response to the future most reasonable global warming scenario (the A1B scenario). We reveal that while most models simulate the geographic distribution and amplitude of the NPO pattern satisfactorily, only 13 models capture both features well. However, the temporal variability of the simulated NPO could not be significantly correlated with the observations. Further analysis indicates the weakened NPO intensity for a scenario of strong global warming is attributable to the reduced lower-tropospheric baroclinicity at mid-latitudes, which is anticipated to disrupt large-scale and low-frequency atmospheric variability, resulting in the diminished transfer of energy to the NPO, together with its northward shift.
Sandoval-Contreras, T; Marín, S; Villarruel-López, A; Gschaedler, A; Garrido-Sánchez, L; Ascencio, F
2017-07-01
Molds are responsible for postharvest spoilage of citrus fruits. The objective of this study was to evaluate the effect of temperature on growth rate and the time to visible growth of Aspergillus niger strains isolated from citrus fruits. The growth of these strains was studied on agar lime medium (AL) at different temperatures, and growth rate was estimated using the Baranyi and Roberts model (Int. J. Food Microbiol. 23:277-294, 1994). The Rosso et al. cardinal model with inflexion (L. Rosso, J. R. Lobry, S. Bajard, and J. P. Flandrois, J. Theor. Biol. 162:447-463, 1993) was used as a secondary model to describe the effect of temperature on growth rate and the lag phase. We hypothesized that the same model could be used to calculate the time for the mycelium to become visible (t v ) by substituting the lag phase (1/λ and 1/λ opt ) with the time to visible colony (1/t v -opt and 1/t v ), respectively, in the Rosso et al. High variability was observed at suboptimal conditions. Extremes of temperature of growth for A. niger seem to have a normal variability. For the growth rate and time t v , the model was satisfactorily compared with results of previous studies. An external validation was performed in lime fruits; the bias and accuracy factors were 1.3 and 1.5, respectively, for growth rate and 0.24 and 3.72, respectively, for the appearance time. The discrepancy may be due to the influence of external factors. A. niger grows significantly more slowly on lime fruit than in culture medium, probably because the nutrients are more easily available in medium than in fruits, where the peel consistency may be a physical barrier. These findings will help researchers understand the postharvest behavior of mold on lime fruits, host-pathogen interactions, and environmental conditions infecting fruit and also help them develop guidelines for future work in the field of predictive mycology to improve models for control of postharvest fungi.
NASA Astrophysics Data System (ADS)
Chernetskiy, Maxim; Gobron, Nadine; Gomez-Dans, Jose; Disney, Mathias
2016-07-01
Upcoming satellite constellations will substantially increase the amount of Earth Observation (EO) data, and presents us with the challenge of consistently using all these available information to infer the state of the land surface, parameterised through Essential Climate Variables (ECVs). A promising approach to this problem is the use of physically based models that describe the processes that generate the images, using e.g. radiative transfer (RT) theory. However, these models need to be inverted to infer the land surface parameters from the observations, and there is often not enough information in the EO data to satisfactorily achieve this. Data assimilation (DA) approaches supplement the EO data with prior information in the form of models or prior parameter distributions, and have the potential for solving the inversion problem. These methods however are computationally expensive. In this study, we show the use of fast surrogate models of the RT codes (emulators) based on Gaussian Processes (Gomez-Dans et al, 2016) embedded with the Earth Observation Land Data Assimilation System (EO-LDAS) framework (Lewis et al 2012) in order to estimate the surface of the land surface from a heterogeneous set of optical observations. The study uses time series of moderate spatial resolution observations from MODIS (250 m), MERIS (300 m) and MISR (275 m) over one site to infer the temporal evolution of a number of land surface parameters (and associated uncertainties) related to vegetation: leaf area index (LAI), leaf chlorophyll content, etc. These parameter estimates are then used as input to an RT model (semidiscrete or PROSAIL, for example) to calculate fluxes such as broad band albedo or fAPAR. The study demonstrates that blending different sensors in a consistent way using physical models results in a rich and coherent set of land surface parameters retrieved, with quantified uncertainties. The use of RT models also allows for the consistent prediction of fluxes, with a simple mechanism for propagating the uncertainty in the land surface parameters to the flux estimates.
NASA Astrophysics Data System (ADS)
Costa, Anna; Molnar, Peter; Anghileri, Daniela
2017-04-01
Suspended sediment is associated with nutrient and contaminant transport in water courses. Estimating suspended sediment load is relevant for water-quality assessment, recreational activities, reservoir sedimentation issues, and ecological habitat assessment. Suspended sediment concentration (SSC) along channels is usually reproduced by suspended sediment rating curves, which relate SSC to discharge with a power law equation. Large uncertainty characterizes rating curves based only on discharge, because sediment supply is not explicitly accounted for. The aim of this work is to develop a source-oriented formulation of suspended sediment dynamics and to estimate suspended sediment yield at the outlet of a large Alpine catchment (upper Rhône basin, Switzerland). We propose a novel modelling approach for suspended sediment which accounts for sediment supply by taking into account the variety of sediment sources in an Alpine environment, i.e. the spatial location of sediment sources (e.g. distance from the outlet and lithology) and the different processes of sediment production and transport (e.g. by rainfall, overland flow, snowmelt). Four main sediment sources, typical of Alpine environments, are included in our model: glacial erosion, hillslope erosion, channel erosion and erosion by mass wasting processes. The predictive model is based on gridded datasets of precipitation and air temperature which drive spatially distributed degree-day models to simulate snowmelt and ice-melt, and determine erosive rainfall. A mass balance at the grid scale determines daily runoff. Each cell belongs to a different sediment source (e.g. hillslope, channel, glacier cell). The amount of sediment entrained and transported in suspension is simulated through non-linear functions of runoff, specific for sediment production and transport processes occurring at the grid scale (e.g. rainfall erosion, snowmelt-driven overland flow). Erodibility factors identify different lithological units, while the distance from the outlet is accounted for by including sediment wave velocities. The model is calibrated and validated on the basis of continuous turbidity data measured at the outlet of the basin. In addition, SSC data measured twice per week since 1964 are used to evaluate the performance of the model over longer time scales. Our predictive model is shown to reproduce SSC dynamics of the upper Rhône basin satisfactorily. The model accounts for the spatial distribution of sediment sources (location and processes of erosion and transport) and their activation/deactivation throughout the hydrological year. Therefore, it can reproduce the effects of changes in climate on sediment fluxes. In particular, we show that observed changes in SSC in the upper Rhône basin during the last 40 years are likely a consequence of increased air temperatures in this period and the consequent acceleration of glacial erosion.
Waligórski, M P R; Grzanka, L; Korcyl, M; Olko, P
2015-09-01
An algorithm was developed of a treatment planning system (TPS) kernel for carbon radiotherapy in which Katz's Track Structure Theory of cellular survival (TST) is applied as its radiobiology component. The physical beam model is based on available tabularised data, prepared by Monte Carlo simulations of a set of pristine carbon beams of different input energies. An optimisation tool developed for this purpose is used to find the composition of pristine carbon beams of input energies and fluences which delivers a pre-selected depth-dose distribution profile over the spread-out Bragg peak (SOBP) region. Using an extrapolation algorithm, energy-fluence spectra of the primary carbon ions and of all their secondary fragments are obtained over regular steps of beam depths. To obtain survival vs. depth distributions, the TST calculation is applied to the energy-fluence spectra of the mixed field of primary ions and of their secondary products at the given beam depths. Katz's TST offers a unique analytical and quantitative prediction of cell survival in such mixed ion fields. By optimising the pristine beam composition to a published depth-dose profile over the SOBP region of a carbon beam and using TST model parameters representing the survival of CHO (Chinese Hamster Ovary) cells in vitro, it was possible to satisfactorily reproduce a published data set of CHO cell survival vs. depth measurements after carbon ion irradiation. The authors also show by a TST calculation that 'biological dose' is neither linear nor additive. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Arsenović, Milica; Pezo, Lato; Vasić, Nebojša; Ćirić, Rodoljub; Stefanović, Milan
2015-07-01
The main idea of this research was to evaluate the efficacy of canine demodicosis conventional treatments using mathematical analyses. All available papers published between 1980 and 2014 were used in this study. One hundred six clinical trials enrolling 3414 cases of generalized demodicosis in dogs are studied. Dogs entered in the analysis were only the ones in which the disease occurred naturally, excluding the studies in which transplantation of Demodex canis mites was done from other animals. In conventional acaricide treatments, sorted according to active substances (moxidectin, amitraz, doramectin, ivermectin, and milbemycin oxime), the way of application (spot-on, dips, orally, or subcutaneous), concentration, and interval of application were used as input parameters in mathematical modeling. Data of interest were the treatment outcome, the number of dogs that went into remission, the number of animals not responding to treatment microscopically, the average duration of therapy, the follow-up period, the number of patients with disease recurrence, the number of adverse effects, and the number of animals with side effects. Dogs lost to follow-up or when the treatment was discontinued, due to various reasons not in connection with the therapy protocol, were not considered. Statistical and mathematical analyses were applied for prediction of the drugs' effectiveness. Developed mathematical models showed satisfactorily r (2), higher than 0.87. Good evidence for recommending the use of milbemycin oxime PO (0.5 mg/kg, daily) and moxidectin spot-on (Advocate®, Bayer) weekly is found. A bit less effective therapies were based on ivermectin PO (0.5 mg/kg, daily), moxidectin PO (0.35 mg/kg, daily), and amitraz dips (0.05 % solution, weekly), respectively. It is important to keep in mind that Advocate® is recommended by the manufacturer for use in milder cases.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-16
... requirement for competition where current grantees are performing satisfactorily. Further, based on our... other designation requirements. The complete SGA and any subsequent SGA amendments, in connection with...
Special issue : neck injuries and rear-end crashes
DOT National Transportation Integrated Search
1999-05-22
Research has indicated that head restraints could prevent whiplash injuries in rear-end crashes, but so far the existing head restraints do not satisfactorily prevent whiplash injuries. This special issue of 'Status Report' first provides a snapshot ...
Bittencourt, Marcio Sommer; Hulten, Edward; Polonsky, Tamar S; Hoffman, Udo; Nasir, Khurram; Abbara, Suhny; Di Carli, Marcelo; Blankstein, Ron
2016-07-19
The most appropriate score for evaluating the pretest probability of obstructive coronary artery disease (CAD) is unknown. We sought to compare the Diamond-Forrester (DF) score with the 2 CAD consortium scores recently recommended by the European Society of Cardiology. We included 2274 consecutive patients (age, 56±13 years; 57% male) without prior CAD referred for coronary computed tomographic angiography. Computed tomographic angiography findings were used to determine the presence or absence of obstructive CAD (≥50% stenosis). We compared the DF score with the 2 CAD consortium scores with respect to their ability to predict obstructive CAD and the potential implications of these scores on the downstream use of testing for CAD, as recommended by current guidelines. The DF score did not satisfactorily fit the data and resulted in a significant overestimation of the prevalence of obstructive CAD (P<0.001); the CAD consortium basic score had no significant lack of fitness; and the CAD consortium clinical provided adequate goodness of fit (P=0.39). The DF score had a lower discrimination for obstructive CAD, with an area under the receiver-operating characteristics curve of 0.713 versus 0.752 and 0.791 for the CAD consortium models (P<0.001 for both). Consequently, the use of the DF score was associated with fewer individuals being categorized as requiring no additional testing (8.3%) compared with the CAD consortium models (24.6% and 30.0%; P<0.001). The proportion of individuals with a high pretest probability was 18% with the DF and only 1.1% with the CAD consortium scores (P<0.001) CONCLUSIONS: Among contemporary patients referred for noninvasive testing, the DF risk score overestimates the risk of obstructive CAD. On the other hand, the CAD consortium scores offered improved goodness of fit and discrimination; thus, their use could decrease the need for noninvasive or invasive testing while increasing the yield of such tests. © 2016 American Heart Association, Inc.
Detailed Validation Assessment of Turbine Stage Disc Cavity Rotating Flows
NASA Astrophysics Data System (ADS)
Kanjiyani, Shezan
The subject of this thesis is concerned with the amount of cooling air assigned to seal high pressure turbine rim cavities which is critical for performance as well as component life. Insufficient air leads to excessive hot annulus gas ingestion and its penetration deep into the cavity compromising disc life. Excessive purge air, adversely affects performance. Experiments on a rotating turbine stage rig which included a rotor-stator forward disc cavity were performed at Arizona State University. The turbine rig has 22 vanes and 28 blades, while the rim cavity is composed of a single-tooth rim lab seal and a rim platform overlap seal. Time-averaged static pressures were measured in the gas path and the cavity, while mainstream gas ingestion into the cavity was determined by measuring the concentration distribution of tracer gas (carbon dioxide). Additionally, particle image velocimetry (PIV) was used to measure fluid velocity inside the rim cavity between the lab seal and the overlap. The data from the experiments were compared to an 360-degree unsteady RANS (URANS) CFD simulations. Although not able to match the time-averaged test data satisfactorily, the CFD simulations brought to light the unsteadiness present in the flow during the experiment which the slower response data did not fully capture. To interrogate the validity of URANS simulations in capturing complex rotating flow physics, the scope of this work also included to validating the CFD tool by comparing its predictions against experimental LDV data in a closed rotor-stator cavity. The enclosed cavity has a stationary shroud, a rotating hub, and mass flow does not enter or exit the system. A full 360 degree numerical simulation was performed comparing Fluent LES, with URANS turbulence models. Results from these investigations point to URANS state of art under-predicting closed cavity tangential velocity by 32% to 43%, and open rim cavity effectiveness by 50% compared to test data. The goal of this thesis is to assess the validity of URANS turbulence models in more complex rotating flows, compare accuracy with LES simulations, suggest CFD settings to better simulate turbine stage mainstream/disc cavity interaction with ingestion, and recommend experimentation techniques.
Voltammetric Thin-Layer Ionophore-Based Films: Part 2. Semi-Empirical Treatment.
Yuan, Dajing; Cuartero, Maria; Crespo, Gaston A; Bakker, Eric
2017-01-03
This work reports on a semiempirical treatment that allows one to rationalize and predict experimental conditions for thin-layer ionophore-based films with cation-exchange capacity read out with cyclic voltammetry. The transition between diffusional mass transport and thin-layer regime is described with a parameter (α), which depends on membrane composition, diffusion coefficient, scan rate, and electrode rotating speed. Once the thin-layer regime is fulfilled (α = 1), the membrane behaves in some analogy to a potentiometric sensor with a second discrimination variable (the applied potential) that allows one to operate such electrodes in a multianalyte detection mode owing to the variable applied ion-transfer potentials. The limit of detection of this regime is defined with a second parameter (β = 2) and is chosen in analogy to the definition of the detection limit for potentiometric sensors provided by the IUPAC. The analytical equations were validated through the simulation of the respective cyclic voltammograms under the same experimental conditions. While simulations of high complexity and better accuracy satisfactorily reproduced the experimental voltammograms during the forward and backward potential sweeps (companion paper 1), the semiempirical treatment here, while less accurate, is of low complexity and allows one to quite easily predict relevant experimental conditions for this emergent methodology.
Pavlova, Maria K; Silbereisen, Rainer K; Ranta, Mette; Salmela-Aro, Katariina
2016-11-01
It is widely believed that warm and supportive parenting fosters all kinds of prosocial behaviors in the offspring, including civic engagement. However, accumulating international evidence suggests that the effects of family support on civic engagement may sometimes be negative. To address this apparent controversy, we identified several scenarios for the negative effects of supportive parenting on youth civic engagement and tested them using four waves of data from the Finnish Educational Transitions Studies. They followed 1549 students (55 % female) from late adolescence into young adulthood, included both maternal (n = 231) and offspring reports of parental support, and assessed civic engagement in young adulthood. Control variables included socioeconomic status, other sociodemographic indicators, church belonging, personality traits, and earlier civic engagement. Higher maternal warmth and support and a stronger identification with the parental family in adolescence predicted offspring's lower political activism up to 10 years later. Perceived parental support in young adulthood predicted lower volunteering 2 years later. There were no significant effects on general organizational involvement (e.g., in student and hobby associations). None of the a priori scenarios that we identified from the literature appeared to explain the pattern of results satisfactorily. We put forth cultural and life stage explanations of our findings.
Solid-liquid interface free energies of pure bcc metals and B2 phases
Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.
2015-04-07
The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: Pm3¯m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic “Na” potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observedmore » in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of “Na” potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Thus, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.« less
du Toit, Lisa; Pillay, Viness; Choonara, Yahya
2010-01-01
Dissolution testing with subsequent analysis is considered as an imperative tool for quality evaluation of the combination rifampicin-isoniazid (RIF-INH) combination. Partial least squares (PLS) regression has been successfully undertaken to select suitable predictor variables and to identify outliers for the generation of equations for RIF and INH determination in fixed-dose combinations (FDCs). The aim of this investigation was to ascertain the applicability of the described technique in testing a novel oral FDC anti-TB drug delivery system and currently available two-drug FDCs, in comparison to the United States Pharmacopeial method for analysis of RIF and INH Capsules with chromatographic determination of INH and colorimetric RIF determination. Regression equations generated employing the statistical coefficients satisfactorily predicted RIF release at each sampling point (R(2)>or=0.9350). There was an acceptable degree of correlation between the drug release data, as predicted by regressional analysis of UV spectrophotometric data, and chromatographic and colorimetric determination of INH (R(2)=0.9793 and R(2)=0.9739) and RIF (R(2)= 0.9976 and R(2)=0.9996) for the two-drug FDC and the novel oral anti-TB drug delivery system, respectively. Regressional analysis of UV spectrophotometric data for simultaneous RIF and INH prediction thus provides a simplified methodology for use in diverse research settings for the assurance of RIF bioavailability from FDC formulations, specifically modified-release forms.
Solid-liquid interface free energies of pure bcc metals and B2 phases
NASA Astrophysics Data System (ADS)
Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.
2015-04-01
The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: P m 3 ¯ m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic "Na" potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of "Na" potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Moreover, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.
Embedded-atom-method interatomic potentials from lattice inversion.
Yuan, Xiao-Jian; Chen, Nan-Xian; Shen, Jiang; Hu, Wangyu
2010-09-22
The present work develops a physically reliable procedure for building the embedded-atom-method (EAM) interatomic potentials for the metals with fcc, bcc and hcp structures. This is mainly based on Chen-Möbius lattice inversion (Chen et al 1997 Phys. Rev. E 55 R5) and first-principles calculations. Following Baskes (Baskes et al 2007 Phys. Rev. B 75 094113), this new version of the EAM eliminates all of the prior arbitrary choices in the determination of the atomic electron density and pair potential functions. Parameterizing the universal form deduced from the calculations within the density-functional scheme for homogeneous electron gas as the embedding function, the new-type EAM potentials for Cu, Fe and Ti metals have successfully been constructed by considering interatomic interactions up to the fifth neighbor, the third neighbor and the seventh neighbor, respectively. The predictions of elastic constants, structural energy difference, vacancy formation energy and migration energy, activation energy of vacancy diffusion, latent heat of melting and relative volume change on melting all satisfactorily agree with the experimental results available or first-principles calculations. The predicted surface energies for low-index crystal faces and the melting point are in agreement with the experimental data to the same extent as those calculated by other EAM-type potentials such as the FBD-EAM, 2NN MEAM and MS-EAM. In addition, the order among the predicted low-index surface energies is also consistent with the experimental information.
Solid-liquid interface free energies of pure bcc metals and B2 phases.
Wilson, S R; Gunawardana, K G S H; Mendelev, M I
2015-04-07
The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: Pm3̄m; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic "Na" potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of "Na" potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Moreover, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.
NASA Astrophysics Data System (ADS)
Vicente, Renato; de Toledo, Charles M.; Leite, Vitor B. P.; Caticha, Nestor
2006-02-01
We investigate the Heston model with stochastic volatility and exponential tails as a model for the typical price fluctuations of the Brazilian São Paulo Stock Exchange Index (IBOVESPA). Raw prices are first corrected for inflation and a period spanning 15 years characterized by memoryless returns is chosen for the analysis. Model parameters are estimated by observing volatility scaling and correlation properties. We show that the Heston model with at least two time scales for the volatility mean reverting dynamics satisfactorily describes price fluctuations ranging from time scales larger than 20 min to 160 days. At time scales shorter than 20 min we observe autocorrelated returns and power law tails incompatible with the Heston model. Despite major regulatory changes, hyperinflation and currency crises experienced by the Brazilian market in the period studied, the general success of the description provided may be regarded as an evidence for a general underlying dynamics of price fluctuations at intermediate mesoeconomic time scales well approximated by the Heston model. We also notice that the connection between the Heston model and Ehrenfest urn models could be exploited for bringing new insights into the microeconomic market mechanics.
Mind-set interventions are a scalable treatment for academic underachievement.
Paunesku, David; Walton, Gregory M; Romero, Carissa; Smith, Eric N; Yeager, David S; Dweck, Carol S
2015-06-01
The efficacy of academic-mind-set interventions has been demonstrated by small-scale, proof-of-concept interventions, generally delivered in person in one school at a time. Whether this approach could be a practical way to raise school achievement on a large scale remains unknown. We therefore delivered brief growth-mind-set and sense-of-purpose interventions through online modules to 1,594 students in 13 geographically diverse high schools. Both interventions were intended to help students persist when they experienced academic difficulty; thus, both were predicted to be most beneficial for poorly performing students. This was the case. Among students at risk of dropping out of high school (one third of the sample), each intervention raised students' semester grade point averages in core academic courses and increased the rate at which students performed satisfactorily in core courses by 6.4 percentage points. We discuss implications for the pipeline from theory to practice and for education reform. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Dymond, J. H.; Young, K. J.
1980-12-01
Viscosity coefficient measurements at saturation pressure are reported for n-hexane + n-hexadecane, n-hexane + n-octane + n-hexadecane, and n-hexane + n-octane + n-dodecane + n-hexadecane at temperatures from 283 to 378 K. The results show that the Congruence Principle applies to the molar excess Gibbs free energy of activation for flow, δ* G E, at temperatures other than 298 K. However, curves of δ* G E versus index number of the mixture are temperature dependent, and this must be taken into account for accurate prediction of mixture viscosity coefficients by this approach. The purely empirical equation of Grunberg and Nissan; 1 10765_2004_Article_BF00516562_TeX2GIFE1.gif ln η = x_1 ln η _1 + x_2 ln η _2 + x_1 x_2 G which has the advantage of not involving molar volumes, satisfactorily reproduces the experimental results for the binary mixture, but G is definitely composition dependent.
Long time, large scale properties of the noisy driven-diffusion equation
NASA Astrophysics Data System (ADS)
Prakash, J. Ravi; Bouchaud, J. P.; Edwards, S. F.
1994-07-01
We study the driven-diffusion equation, describing the dynamics of density fluctuations delta-rho(x-vector, t) in powders or traffic flows. We have performed quite detailed numerical simulations of this equation in one dimension, focusing in particular on the scaling behavior of the correlation function (delta-rho(x-vector, t)delta-rho(0, 0)). One of our motivations was to assess the validity of various theoretical approaches, such as Renormalization Group and different self consistent truncation schemes, to these nonlinear dynamical equations. Although all of them are seen to predict correctly the scaling exponents, only one of them (where the non-exponential nature of the relaxation is taken into account) is able to reproduce satisfactorily the value of the numerical prefactors. Several other interesting issues, such as the noise spectrum of the output current, or the statistics of distance between jams (showing a transition between a `laminar' regime for small noise to a `jammed' regime for higher noise) are also investigated.
Sensitivity Analysis of Data Link Alternatives for LVLASO
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi
1998-01-01
As part of this research, we have modeled the Mode-S system when used to enhance communications among several ground vehicles to facilitate low-visibility landing and surface operations. The model has then been simulated using Bones Designer software. The effectiveness of the model has been evaluated under several conditions: (i) different number of vehicles (100, 200, and 300), (ii) different distributions of interarrival times for squitters: uniform, exponential, and constrained exponential, and (iii) Different safe distances (for collision purpose): squitter length, 1.5*squitter length, and 2* squitter length. The model has been developed in a modular fashion to facilitate any future modifications. The results from the simulations suggest that the Mode S system is indeed capable of functioning satisfactorily even when covering up to 300 vehicles. Certainly, about 10 percent of the squitters undergo collisions and hence the interarrival times for these is much larger than the expected time of 500 msec. In fact, the delay could be as much as 2 seconds. The model could be further enhanced to incorporate more realistic scenarios.
Influence of urban pattern on inundation flow in floodplains of lowland rivers.
Bruwier, M; Mustafa, A; Aliaga, D G; Archambeau, P; Erpicum, S; Nishida, G; Zhang, X; Pirotton, M; Teller, J; Dewals, B
2018-05-01
The objective of this paper is to investigate the respective influence of various urban pattern characteristics on inundation flow. A set of 2000 synthetic urban patterns were generated using an urban procedural model providing locations and shapes of streets and buildings over a square domain of 1×1km 2 . Steady two-dimensional hydraulic computations were performed over the 2000 urban patterns with identical hydraulic boundary conditions. To run such a large amount of simulations, the computational efficiency of the hydraulic model was improved by using an anisotropic porosity model. This model computes on relatively coarse computational cells, but preserves information from the detailed topographic data through porosity parameters. Relationships between urban characteristics and the computed inundation water depths have been based on multiple linear regressions. Finally, a simple mechanistic model based on two district-scale porosity parameters, combining several urban characteristics, is shown to capture satisfactorily the influence of urban characteristics on inundation water depths. The findings of this study give guidelines for more flood-resilient urban planning. Copyright © 2017 Elsevier B.V. All rights reserved.
Wunderli, Jean Marc; Pieren, Reto; Habermacher, Manuel; Vienneau, Danielle; Cajochen, Christian; Probst-Hensch, Nicole; Röösli, Martin; Brink, Mark
2016-01-01
Most environmental epidemiology studies model health effects of noise by regressing on acoustic exposure metrics that are based on the concept of average energetic dose over longer time periods (i.e. the Leq and related measures). Regarding noise effects on health and wellbeing, average measures often cannot satisfactorily predict annoyance and somatic health effects of noise, particularly sleep disturbances. It has been hypothesized that effects of noise can be better explained when also considering the variation of the level over time and the frequency distribution of event-related acoustic measures, such as for example, the maximum sound pressure level. However, it is unclear how this is best parametrized in a metric that is not correlated with the Leq, but takes into account the frequency distribution of events and their emergence from background. In this paper, a calculation method is presented that produces a metric which reflects the intermittency of road, rail and aircraft noise exposure situations. The metric termed intermittency ratio (IR) expresses the proportion of the acoustical energy contribution in the total energetic dose that is created by individual noise events above a certain threshold. To calculate the metric, it is shown how to estimate the distribution of maximum pass-by levels from information on geometry (distance and angle), traffic flow (number and speed) and single-event pass-by levels per vehicle category. On the basis of noise maps that simultaneously visualize Leq, as well as IR, the differences of both metrics are discussed. PMID:26350982
Meteoric Metal Chemistry in the Martian Atmosphere
NASA Astrophysics Data System (ADS)
Plane, J. M. C.; Carrillo-Sanchez, J. D.; Mangan, T. P.; Crismani, M. M. J.; Schneider, N. M.; Määttänen, A.
2018-03-01
Recent measurements by the Imaging Ultraviolet Spectrograph (IUVS) instrument on NASA's Mars Atmosphere and Volatile EvolutioN mission show that a persistent layer of Mg+ ions occurs around 90 km in the Martian atmosphere but that neutral Mg atoms are not detectable. These observations can be satisfactorily modeled with a global meteoric ablation rate of 0.06 t sol-1, out of a cosmic dust input of 2.7 ± 1.6 t sol-1. The absence of detectable Mg at 90 km requires that at least 50% of the ablating Mg atoms ionize through hyperthermal collisions with CO2 molecules. Dissociative recombination of MgO+.(CO2)n cluster ions with electrons to produce MgCO3 directly, rather than MgO, also avoids a buildup of Mg to detectable levels. The meteoric injection rate of Mg, Fe, and other metals—constrained by the IUVS measurements—enables the production rate of metal carbonate molecules (principally MgCO3 and FeCO3) to be determined. These molecules have very large electric dipole moments (11.6 and 9.2 Debye, respectively) and thus form clusters with up to six H2O molecules at temperatures below 150 K. These clusters should then coagulate efficiently, building up metal carbonate-rich ice particles which can act as nucleating particles for the formation of CO2-ice clouds. Observable mesospheric clouds are predicted to occur between 65 and 80 km at temperatures below 95 K and above 85 km at temperatures about 5 K colder.
A Non-Cut Cell Immersed Boundary Method for Use in Icing Simulations
NASA Technical Reports Server (NTRS)
Sarofeen, Christian M.; Noack, Ralph W.; Kreeger, Richard E.
2013-01-01
This paper describes a computational fluid dynamic method used for modelling changes in aircraft geometry due to icing. While an aircraft undergoes icing, the accumulated ice results in a geometric alteration of the aerodynamic surfaces. In computational simulations for icing, it is necessary that the corresponding geometric change is taken into consideration. The method used, herein, for the representation of the geometric change due to icing is a non-cut cell Immersed Boundary Method (IBM). Computational cells that are in a body fitted grid of a clean aerodynamic geometry that are inside a predicted ice formation are identified. An IBM is then used to change these cells from being active computational cells to having properties of viscous solid bodies. This method has been implemented in the NASA developed node centered, finite volume computational fluid dynamics code, FUN3D. The presented capability is tested for two-dimensional airfoils including a clean airfoil, an iced airfoil, and an airfoil in harmonic pitching motion about its quarter chord. For these simulations velocity contours, pressure distributions, coefficients of lift, coefficients of drag, and coefficients of pitching moment about the airfoil's quarter chord are computed and used for comparison against experimental results, a higher order panel method code with viscous effects, XFOIL, and the results from FUN3D's original solution process. The results of the IBM simulations show that the accuracy of the IBM compares satisfactorily with the experimental results, XFOIL results, and the results from FUN3D's original solution process.
Pandey, Devendra Kumar; Kaur, Prabhjot
2018-03-01
In the present investigation, pentacyclic triterpenoids were extracted from different parts of Swertia chirata by solid-liquid reflux extraction methods. The total pentacyclic triterpenoids (UA, OA, and BA) in extracted samples were determined by HPTLC method. Preliminary studies showed that stem part contains the maximum pentacyclic triterpenoid and was chosen for further studies. Response surface methodology (RSM) has been employed successfully by solid-liquid reflux extraction methods for the optimization of different extraction variables viz., temperature ( X 1 35-70 °C), extraction time ( X 2 30-60 min), solvent composition ( X 3 20-80%), solvent-to-solid ratio ( X 4 30-60 mlg -1 ), and particle size ( X 5 3-6 mm) on maximum recovery of triterpenoid from stem parts of Swertia chirata . A Plackett-Burman design has been used initially to screen out the three extraction factors viz., particle size, temperature, and solvent composition on yield of triterpenoid. Moreover, central composite design (CCD) was implemented to optimize the significant extraction parameters for maximum triterpenoid yield. Three extraction parameters viz., mean particle size (3 mm), temperature (65 °C), and methanol-ethyl acetate solvent composition (45%) can be considered as significant for the better yield of triterpenoid A second-order polynomial model satisfactorily fitted the experimental data with the R 2 values of 0.98 for the triterpenoid yield ( p < 0.001), implying good agreement between the experimental triterpenoid yield (3.71%) to the predicted value (3.79%).
Cellulose-reinforced composites and SRIM and RTM modeling
NASA Astrophysics Data System (ADS)
Fahrurrozi, Mohammad
Structural reaction injection molding (SRIM) cellulosic/polyurethane composites were prepared from various forms of cellulosic mats, and elastomeric polyurea-urethane (PUU) and rigid polyurethane (PU) formulations. Mats (woven and non-woven) prepared from different sources of fibers with lignin content ranging from zero (cotton) to at least 10% (sugar cane and kenaf fibers) performed comparably in PUU/cellulosic composites. Young's modulus and tensile strength of PUU/cellulosic composites were doubled with 5% and 7% fiber loading respectively. Young's modulus and tensile strength of PU/cellulosic composites were improved by 300% and 30%, respectively, with 7% fiber loading, whereas their bending moduli and strengths were improved up to 100% and 50%, respectively, with 18% fiber loading. However, the mechanical properties of PU composites were more sensitive to the fiber properties and fiber macroscopic arrangements. The study with chemical ratio variations indicates that as the fiber loading increases, the cellulose hydroxyl presence starts shifting the chemical balance and thus should be accounted for. Mats prepared from sugar cane fibers extracted from rind with low alkali concentration (0.2 N) followed by steam explosion require lower injection pressures compared to the ones prepared from fiber obtained from higher alkali treatment (above 0.5 N) without steam explosion. Hence, the steam exploded mats are more suitable for SRIM purposes. The PU kinetics was studied using an adiabatic temperature rise method. An Arrhenius type empirical equation was used to fit the data. The fitted equation was second order to the partial conversion, and the gelling time at adiabatic condition is less than 5 seconds (much quicker than the 10 to 12 seconds in mold gel time quoted by the manufacturer). FORTRAN programs were written to solve the SRIM model based on Darcy's equation. The model incorporated heat transfer and chemical reaction. The modeling was intended to aid in interpreting in-mold pressure data obtained from mat permeability characterization. The model also has other wider applications such as mold design and SRIM and resin transfer molding (RTM) simulation. The model predicts some experimental data from this work and the literature satisfactorily.
Hydroclimatic Change in the Congo River Basin: Past, Present and Future169
NASA Astrophysics Data System (ADS)
Aloysius, N. R.
2016-12-01
Tropical regions provide habitat for the world's most diverse fauna and flora, sequester more atmospheric carbon and provide livelihood for millions of people. The hydrological cycle provides vital linkages for maintaining these ecosystem functions, yet, the understanding of its spatiotemporal variability is limited. Research on the hydrological cycle of the Congo River Basin (CRB), which encompasses the second largest rainforests, has been largely ignored. Global Climate Models (GCM) show limited skills in simulating CRB's climate and their future projections vary widely. Yet, GCMs provide the most plausible scenarios of future climate, based upon which changes in hydrologic fluxes can be predicted with the aid hydrological models. In order to address the gaps in knowledge and to highlight the research needs, we i) developed a spatially explicit hydrological model suitable for describing key hydrological processes, ii) evaluated the performance of GCMs in simulating precipitation and temperature in the region, iii) developed a set of climate change scenarios for the CRB and iv) developed a simplified modeling framework to quantify water management options for rain-fed agriculture with the objective of achieving the triple goals of sustainable development: food security, poverty alleviation and ecosystem conservation. The hydrology model, which was validated with observed stream flows at 50 locations, satisfactorily characterizes spatiotemporal variability of key fluxes. Our evaluation of 25 GCM outputs reveal that many GCMs poorly simulate regional precipitation. We implemented a statistical bias-correction method to develop precipitation and temperature projections for two future greenhouse gas emission scenarios. These climate forcings were, then, used to drive the hydrology model. Our results show that the near-term projections are not affected by emission scenarios. However, towards the mid-21st century, projections are emission scenario dependent. Available freshwater resources are projected to increase in the CRB, except in the semiarid southeast. Our findings have wider implications for climate change assessment and water resource management, because the region, with high population growth and limited capacity to adapt, are primary targets of land and water grabs. 155
A Study Of In-Place Rutting Of Asphalt Pavements
DOT National Transportation Integrated Search
1989-01-01
The objective of this study was to evaluate in-place pavements experiencing rutting and pavements experiencing no rutting to begin to classify asphalt mixtures that should perform satisfactorily and those that would likely rut under traffic. The info...
47 CFR 3.49 - Agreement to be audited.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL AUTHORIZATION AND ADMINISTRATION OF ACCOUNTING... audit of their settlement activities by the Commission or its representative. Additionally, the... requirement to submit additional information to the Commission. Failure to respond satisfactorily to any audit...