Multicriteria framework for selecting a process modelling language
NASA Astrophysics Data System (ADS)
Scanavachi Moreira Campos, Ana Carolina; Teixeira de Almeida, Adiel
2016-01-01
The choice of process modelling language can affect business process management (BPM) since each modelling language shows different features of a given process and may limit the ways in which a process can be described and analysed. However, choosing the appropriate modelling language for process modelling has become a difficult task because of the availability of a large number modelling languages and also due to the lack of guidelines on evaluating, and comparing languages so as to assist in selecting the most appropriate one. This paper proposes a framework for selecting a modelling language in accordance with the purposes of modelling. This framework is based on the semiotic quality framework (SEQUAL) for evaluating process modelling languages and a multicriteria decision aid (MCDA) approach in order to select the most appropriate language for BPM. This study does not attempt to set out new forms of assessment and evaluation criteria, but does attempt to demonstrate how two existing approaches can be combined so as to solve the problem of selection of modelling language. The framework is described in this paper and then demonstrated by means of an example. Finally, the advantages and disadvantages of using SEQUAL and MCDA in an integrated manner are discussed.
Tsoi, B; O'Reilly, D; Jegathisawaran, J; Tarride, J-E; Blackhouse, G; Goeree, R
2015-06-17
In constructing or appraising a health economic model, an early consideration is whether the modelling approach selected is appropriate for the given decision problem. Frameworks and taxonomies that distinguish between modelling approaches can help make this decision more systematic and this study aims to identify and compare the decision frameworks proposed to date on this topic area. A systematic review was conducted to identify frameworks from peer-reviewed and grey literature sources. The following databases were searched: OVID Medline and EMBASE; Wiley's Cochrane Library and Health Economic Evaluation Database; PubMed; and ProQuest. Eight decision frameworks were identified, each focused on a different set of modelling approaches and employing a different collection of selection criterion. The selection criteria can be categorized as either: (i) structural features (i.e. technical elements that are factual in nature) or (ii) practical considerations (i.e. context-dependent attributes). The most commonly mentioned structural features were population resolution (i.e. aggregate vs. individual) and interactivity (i.e. static vs. dynamic). Furthermore, understanding the needs of the end-users and stakeholders was frequently incorporated as a criterion within these frameworks. There is presently no universally-accepted framework for selecting an economic modelling approach. Rather, each highlights different criteria that may be of importance when determining whether a modelling approach is appropriate. Further discussion is thus necessary as the modelling approach selected will impact the validity of the underlying economic model and have downstream implications on its efficiency, transparency and relevance to decision-makers.
Tyler Jon Smith; Lucy Amanda Marshall
2010-01-01
Model selection is an extremely important aspect of many hydrologic modeling studies because of the complexity, variability, and uncertainty that surrounds the current understanding of watershed-scale systems. However, development and implementation of a complete precipitation-runoff modeling framework, from model selection to calibration and uncertainty analysis, are...
Communities ready for takeoffIntegrating social assets for biofuel site-selection modeling.
Rijkhoff, Sanne A M; Hoard, Season A; Gaffney, Michael J; Smith, Paul M
2017-01-01
Although much of the social science literature supports the importance of community assets for success in many policy areas, these assets are often overlooked when selecting communities for new infrastructure facilities. Extensive collaboration is crucial for the success of environmental and economic projects, yet it often is not adequately addressed when making siting decisions for new projects. This article develops a social asset framework that includes social, creative, and human capital to inform site-selection decisions. This framework is applied to the Northwest Advanced Renewables Alliance project to assess community suitability for biofuel-related developments. This framework is the first to take all necessary community assets into account, providing insight into successful site selection beyond current models. The framework not only serves as a model for future biorefinery projects but also guides tasks that depend on informed location selection for success.
NASA Astrophysics Data System (ADS)
Farrell, Kathryn; Oden, J. Tinsley; Faghihi, Danial
2015-08-01
A general adaptive modeling algorithm for selection and validation of coarse-grained models of atomistic systems is presented. A Bayesian framework is developed to address uncertainties in parameters, data, and model selection. Algorithms for computing output sensitivities to parameter variances, model evidence and posterior model plausibilities for given data, and for computing what are referred to as Occam Categories in reference to a rough measure of model simplicity, make up components of the overall approach. Computational results are provided for representative applications.
Spielman, Stephanie J; Wilke, Claus O
2016-11-01
The mutation-selection model of coding sequence evolution has received renewed attention for its use in estimating site-specific amino acid propensities and selection coefficient distributions. Two computationally tractable mutation-selection inference frameworks have been introduced: One framework employs a fixed-effects, highly parameterized maximum likelihood approach, whereas the other employs a random-effects Bayesian Dirichlet Process approach. While both implementations follow the same model, they appear to make distinct predictions about the distribution of selection coefficients. The fixed-effects framework estimates a large proportion of highly deleterious substitutions, whereas the random-effects framework estimates that all substitutions are either nearly neutral or weakly deleterious. It remains unknown, however, how accurately each method infers evolutionary constraints at individual sites. Indeed, selection coefficient distributions pool all site-specific inferences, thereby obscuring a precise assessment of site-specific estimates. Therefore, in this study, we use a simulation-based strategy to determine how accurately each approach recapitulates the selective constraint at individual sites. We find that the fixed-effects approach, despite its extensive parameterization, consistently and accurately estimates site-specific evolutionary constraint. By contrast, the random-effects Bayesian approach systematically underestimates the strength of natural selection, particularly for slowly evolving sites. We also find that, despite the strong differences between their inferred selection coefficient distributions, the fixed- and random-effects approaches yield surprisingly similar inferences of site-specific selective constraint. We conclude that the fixed-effects mutation-selection framework provides the more reliable software platform for model application and future development. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Robust Decision-making Applied to Model Selection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemez, Francois M.
2012-08-06
The scientific and engineering communities are relying more and more on numerical models to simulate ever-increasingly complex phenomena. Selecting a model, from among a family of models that meets the simulation requirements, presents a challenge to modern-day analysts. To address this concern, a framework is adopted anchored in info-gap decision theory. The framework proposes to select models by examining the trade-offs between prediction accuracy and sensitivity to epistemic uncertainty. The framework is demonstrated on two structural engineering applications by asking the following question: Which model, of several numerical models, approximates the behavior of a structure when parameters that define eachmore » of those models are unknown? One observation is that models that are nominally more accurate are not necessarily more robust, and their accuracy can deteriorate greatly depending upon the assumptions made. It is posited that, as reliance on numerical models increases, establishing robustness will become as important as demonstrating accuracy.« less
Random forest feature selection approach for image segmentation
NASA Astrophysics Data System (ADS)
Lefkovits, László; Lefkovits, Szidónia; Emerich, Simina; Vaida, Mircea Florin
2017-03-01
In the field of image segmentation, discriminative models have shown promising performance. Generally, every such model begins with the extraction of numerous features from annotated images. Most authors create their discriminative model by using many features without using any selection criteria. A more reliable model can be built by using a framework that selects the important variables, from the point of view of the classification, and eliminates the unimportant once. In this article we present a framework for feature selection and data dimensionality reduction. The methodology is built around the random forest (RF) algorithm and its variable importance evaluation. In order to deal with datasets so large as to be practically unmanageable, we propose an algorithm based on RF that reduces the dimension of the database by eliminating irrelevant features. Furthermore, this framework is applied to optimize our discriminative model for brain tumor segmentation.
Discriminative least squares regression for multiclass classification and feature selection.
Xiang, Shiming; Nie, Feiping; Meng, Gaofeng; Pan, Chunhong; Zhang, Changshui
2012-11-01
This paper presents a framework of discriminative least squares regression (LSR) for multiclass classification and feature selection. The core idea is to enlarge the distance between different classes under the conceptual framework of LSR. First, a technique called ε-dragging is introduced to force the regression targets of different classes moving along opposite directions such that the distances between classes can be enlarged. Then, the ε-draggings are integrated into the LSR model for multiclass classification. Our learning framework, referred to as discriminative LSR, has a compact model form, where there is no need to train two-class machines that are independent of each other. With its compact form, this model can be naturally extended for feature selection. This goal is achieved in terms of L2,1 norm of matrix, generating a sparse learning model for feature selection. The model for multiclass classification and its extension for feature selection are finally solved elegantly and efficiently. Experimental evaluation over a range of benchmark datasets indicates the validity of our method.
Liu, Y F; Yu, H; Wang, W N; Gao, B
2017-06-09
Objective: To evaluate the processing accuracy, internal quality and suitability of the titanium alloy frameworks of removable partial denture (RPD) fabricated by selective laser melting (SLM) technique, and to provide reference for clinical application. Methods: The plaster model of one clinical patient was used as the working model, and was scanned and reconstructed into a digital working model. A RPD framework was designed on it. Then, eight corresponding RPD frameworks were fabricated using SLM technique. Three-dimensional (3D) optical scanner was used to scan and obtain the 3D data of the frameworks and the data was compared with the original computer aided design (CAD) model to evaluate their processing precision. The traditional casting pure titanium frameworks was used as the control group, and the internal quality was analyzed by X-ray examination. Finally, the fitness of the frameworks was examined on the plaster model. Results: The overall average deviation of the titanium alloy RPD framework fabricated by SLM technology was (0.089±0.076) mm, the root mean square error was 0.103 mm. No visible pores, cracks and other internal defects was detected in the frameworks. The framework fits on the plaster model completely, and its tissue surface fitted on the plaster model well. There was no obvious movement. Conclusions: The titanium alloy RPD framework fabricated by SLM technology is of good quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margevicius, Kristen J.; Generous, Nicholas; Abeyta, Esteban
Epidemiological modeling for infectious disease is important for disease management and its routine implementation needs to be facilitated through better description of models in an operational context. A standardized model characterization process that allows selection or making manual comparisons of available models and their results is currently lacking. A key need is a universal framework to facilitate model description and understanding of its features. Los Alamos National Laboratory (LANL) has developed a comprehensive framework that can be used to characterize an infectious disease model in an operational context. The framework was developed through a consensus among a panel of subjectmore » matter experts. In this paper, we describe the framework, its application to model characterization, and the development of the Biosurveillance Analytics Resource Directory (BARD; http://brd.bsvgateway.org/brd/), to facilitate the rapid selection of operational models for specific infectious/communicable diseases. We offer this framework and associated database to stakeholders of the infectious disease modeling field as a tool for standardizing model description and facilitating the use of epidemiological models.« less
Margevicius, Kristen J; Generous, Nicholas; Abeyta, Esteban; Althouse, Ben; Burkom, Howard; Castro, Lauren; Daughton, Ashlynn; Del Valle, Sara Y.; Fairchild, Geoffrey; Hyman, James M.; Kiang, Richard; Morse, Andrew P.; Pancerella, Carmen M.; Pullum, Laura; Ramanathan, Arvind; Schlegelmilch, Jeffrey; Scott, Aaron; Taylor-McCabe, Kirsten J; Vespignani, Alessandro; Deshpande, Alina
2016-01-01
Epidemiological modeling for infectious disease is important for disease management and its routine implementation needs to be facilitated through better description of models in an operational context. A standardized model characterization process that allows selection or making manual comparisons of available models and their results is currently lacking. A key need is a universal framework to facilitate model description and understanding of its features. Los Alamos National Laboratory (LANL) has developed a comprehensive framework that can be used to characterize an infectious disease model in an operational context. The framework was developed through a consensus among a panel of subject matter experts. In this paper, we describe the framework, its application to model characterization, and the development of the Biosurveillance Analytics Resource Directory (BARD; http://brd.bsvgateway.org/brd/), to facilitate the rapid selection of operational models for specific infectious/communicable diseases. We offer this framework and associated database to stakeholders of the infectious disease modeling field as a tool for standardizing model description and facilitating the use of epidemiological models. PMID:26820405
Margevicius, Kristen J; Generous, Nicholas; Abeyta, Esteban; Althouse, Ben; Burkom, Howard; Castro, Lauren; Daughton, Ashlynn; Del Valle, Sara Y; Fairchild, Geoffrey; Hyman, James M; Kiang, Richard; Morse, Andrew P; Pancerella, Carmen M; Pullum, Laura; Ramanathan, Arvind; Schlegelmilch, Jeffrey; Scott, Aaron; Taylor-McCabe, Kirsten J; Vespignani, Alessandro; Deshpande, Alina
2016-01-01
Epidemiological modeling for infectious disease is important for disease management and its routine implementation needs to be facilitated through better description of models in an operational context. A standardized model characterization process that allows selection or making manual comparisons of available models and their results is currently lacking. A key need is a universal framework to facilitate model description and understanding of its features. Los Alamos National Laboratory (LANL) has developed a comprehensive framework that can be used to characterize an infectious disease model in an operational context. The framework was developed through a consensus among a panel of subject matter experts. In this paper, we describe the framework, its application to model characterization, and the development of the Biosurveillance Analytics Resource Directory (BARD; http://brd.bsvgateway.org/brd/), to facilitate the rapid selection of operational models for specific infectious/communicable diseases. We offer this framework and associated database to stakeholders of the infectious disease modeling field as a tool for standardizing model description and facilitating the use of epidemiological models.
Margevicius, Kristen J.; Generous, Nicholas; Abeyta, Esteban; ...
2016-01-28
Epidemiological modeling for infectious disease is important for disease management and its routine implementation needs to be facilitated through better description of models in an operational context. A standardized model characterization process that allows selection or making manual comparisons of available models and their results is currently lacking. A key need is a universal framework to facilitate model description and understanding of its features. Los Alamos National Laboratory (LANL) has developed a comprehensive framework that can be used to characterize an infectious disease model in an operational context. The framework was developed through a consensus among a panel of subjectmore » matter experts. In this paper, we describe the framework, its application to model characterization, and the development of the Biosurveillance Analytics Resource Directory (BARD; http://brd.bsvgateway.org/brd/), to facilitate the rapid selection of operational models for specific infectious/communicable diseases. We offer this framework and associated database to stakeholders of the infectious disease modeling field as a tool for standardizing model description and facilitating the use of epidemiological models.« less
ERIC Educational Resources Information Center
Baxa, Julie; Christ, Tanya
2018-01-01
Selecting and integrating the use of digital texts/tools in literacy lessons are complex tasks. The DigiLit framework provides a succinct model to guide planning, reflection, coaching, and formative evaluation of teachers' successful digital text/tool selection and integration for literacy lessons. For digital text/tool selection, teachers need to…
A unifying framework for quantifying the nature of animal interactions.
Potts, Jonathan R; Mokross, Karl; Lewis, Mark A
2014-07-06
Collective phenomena, whereby agent-agent interactions determine spatial patterns, are ubiquitous in the animal kingdom. On the other hand, movement and space use are also greatly influenced by the interactions between animals and their environment. Despite both types of interaction fundamentally influencing animal behaviour, there has hitherto been no unifying framework for the models proposed in both areas. Here, we construct a general method for inferring population-level spatial patterns from underlying individual movement and interaction processes, a key ingredient in building a statistical mechanics for ecological systems. We show that resource selection functions, as well as several examples of collective motion models, arise as special cases of our framework, thus bringing together resource selection analysis and collective animal behaviour into a single theory. In particular, we focus on combining the various mechanistic models of territorial interactions in the literature with step selection functions, by incorporating interactions into the step selection framework and demonstrating how to derive territorial patterns from the resulting models. We demonstrate the efficacy of our model by application to a population of insectivore birds in the Amazon rainforest. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Penalized regression procedures for variable selection in the potential outcomes framework
Ghosh, Debashis; Zhu, Yeying; Coffman, Donna L.
2015-01-01
A recent topic of much interest in causal inference is model selection. In this article, we describe a framework in which to consider penalized regression approaches to variable selection for causal effects. The framework leads to a simple ‘impute, then select’ class of procedures that is agnostic to the type of imputation algorithm as well as penalized regression used. It also clarifies how model selection involves a multivariate regression model for causal inference problems, and that these methods can be applied for identifying subgroups in which treatment effects are homogeneous. Analogies and links with the literature on machine learning methods, missing data and imputation are drawn. A difference LASSO algorithm is defined, along with its multiple imputation analogues. The procedures are illustrated using a well-known right heart catheterization dataset. PMID:25628185
Raut, Savita V; Yadav, Dinkar M
2018-03-28
This paper presents an fMRI signal analysis methodology using geometric mean curve decomposition (GMCD) and mutual information-based voxel selection framework. Previously, the fMRI signal analysis has been conducted using empirical mean curve decomposition (EMCD) model and voxel selection on raw fMRI signal. The erstwhile methodology loses frequency component, while the latter methodology suffers from signal redundancy. Both challenges are addressed by our methodology in which the frequency component is considered by decomposing the raw fMRI signal using geometric mean rather than arithmetic mean and the voxels are selected from EMCD signal using GMCD components, rather than raw fMRI signal. The proposed methodologies are adopted for predicting the neural response. Experimentations are conducted in the openly available fMRI data of six subjects, and comparisons are made with existing decomposition models and voxel selection frameworks. Subsequently, the effect of degree of selected voxels and the selection constraints are analyzed. The comparative results and the analysis demonstrate the superiority and the reliability of the proposed methodology.
Bayesian Parameter Inference and Model Selection by Population Annealing in Systems Biology
Murakami, Yohei
2014-01-01
Parameter inference and model selection are very important for mathematical modeling in systems biology. Bayesian statistics can be used to conduct both parameter inference and model selection. Especially, the framework named approximate Bayesian computation is often used for parameter inference and model selection in systems biology. However, Monte Carlo methods needs to be used to compute Bayesian posterior distributions. In addition, the posterior distributions of parameters are sometimes almost uniform or very similar to their prior distributions. In such cases, it is difficult to choose one specific value of parameter with high credibility as the representative value of the distribution. To overcome the problems, we introduced one of the population Monte Carlo algorithms, population annealing. Although population annealing is usually used in statistical mechanics, we showed that population annealing can be used to compute Bayesian posterior distributions in the approximate Bayesian computation framework. To deal with un-identifiability of the representative values of parameters, we proposed to run the simulations with the parameter ensemble sampled from the posterior distribution, named “posterior parameter ensemble”. We showed that population annealing is an efficient and convenient algorithm to generate posterior parameter ensemble. We also showed that the simulations with the posterior parameter ensemble can, not only reproduce the data used for parameter inference, but also capture and predict the data which was not used for parameter inference. Lastly, we introduced the marginal likelihood in the approximate Bayesian computation framework for Bayesian model selection. We showed that population annealing enables us to compute the marginal likelihood in the approximate Bayesian computation framework and conduct model selection depending on the Bayes factor. PMID:25089832
NASA Technical Reports Server (NTRS)
Plitau, Denis; Prasad, Narasimha S.
2012-01-01
The Active Sensing of CO2 Emissions over Nights Days and Seasons (ASCENDS) mission recommended by the NRC Decadal Survey has a desired accuracy of 0.3% in carbon dioxide mixing ratio (XCO2) retrievals requiring careful selection and optimization of the instrument parameters. NASA Langley Research Center (LaRC) is investigating 1.57 micron carbon dioxide as well as the 1.26-1.27 micron oxygen bands for our proposed ASCENDS mission requirements investigation. Simulation studies are underway for these bands to select optimum instrument parameters. The simulations are based on a multi-wavelength lidar modeling framework being developed at NASA LaRC to predict the performance of CO2 and O2 sensing from space and airborne platforms. The modeling framework consists of a lidar simulation module and a line-by-line calculation component with interchangeable lineshape routines to test the performance of alternative lineshape models in the simulations. As an option the line-by-line radiative transfer model (LBLRTM) program may also be used for line-by-line calculations. The modeling framework is being used to perform error analysis, establish optimum measurement wavelengths as well as to identify the best lineshape models to be used in CO2 and O2 retrievals. Several additional programs for HITRAN database management and related simulations are planned to be included in the framework. The description of the modeling framework with selected results of the simulation studies for CO2 and O2 sensing is presented in this paper.
lazar: a modular predictive toxicology framework
Maunz, Andreas; Gütlein, Martin; Rautenberg, Micha; Vorgrimmler, David; Gebele, Denis; Helma, Christoph
2013-01-01
lazar (lazy structure–activity relationships) is a modular framework for predictive toxicology. Similar to the read across procedure in toxicological risk assessment, lazar creates local QSAR (quantitative structure–activity relationship) models for each compound to be predicted. Model developers can choose between a large variety of algorithms for descriptor calculation and selection, chemical similarity indices, and model building. This paper presents a high level description of the lazar framework and discusses the performance of example classification and regression models. PMID:23761761
Models of microbiome evolution incorporating host and microbial selection.
Zeng, Qinglong; Wu, Steven; Sukumaran, Jeet; Rodrigo, Allen
2017-09-25
Numerous empirical studies suggest that hosts and microbes exert reciprocal selective effects on their ecological partners. Nonetheless, we still lack an explicit framework to model the dynamics of both hosts and microbes under selection. In a previous study, we developed an agent-based forward-time computational framework to simulate the neutral evolution of host-associated microbial communities in a constant-sized, unstructured population of hosts. These neutral models allowed offspring to sample microbes randomly from parents and/or from the environment. Additionally, the environmental pool of available microbes was constituted by fixed and persistent microbial OTUs and by contributions from host individuals in the preceding generation. In this paper, we extend our neutral models to allow selection to operate on both hosts and microbes. We do this by constructing a phenome for each microbial OTU consisting of a sample of traits that influence host and microbial fitnesses independently. Microbial traits can influence the fitness of hosts ("host selection") and the fitness of microbes ("trait-mediated microbial selection"). Additionally, the fitness effects of traits on microbes can be modified by their hosts ("host-mediated microbial selection"). We simulate the effects of these three types of selection, individually or in combination, on microbiome diversities and the fitnesses of hosts and microbes over several thousand generations of hosts. We show that microbiome diversity is strongly influenced by selection acting on microbes. Selection acting on hosts only influences microbiome diversity when there is near-complete direct or indirect parental contribution to the microbiomes of offspring. Unsurprisingly, microbial fitness increases under microbial selection. Interestingly, when host selection operates, host fitness only increases under two conditions: (1) when there is a strong parental contribution to microbial communities or (2) in the absence of a strong parental contribution, when host-mediated selection acts on microbes concomitantly. We present a computational framework that integrates different selective processes acting on the evolution of microbiomes. Our framework demonstrates that selection acting on microbes can have a strong effect on microbial diversities and fitnesses, whereas selection on hosts can have weaker outcomes.
Rodrigue, Nicolas; Lartillot, Nicolas
2017-01-01
Codon substitution models have traditionally attempted to uncover signatures of adaptation within protein-coding genes by contrasting the rates of synonymous and non-synonymous substitutions. Another modeling approach, known as the mutation-selection framework, attempts to explicitly account for selective patterns at the amino acid level, with some approaches allowing for heterogeneity in these patterns across codon sites. Under such a model, substitutions at a given position occur at the neutral or nearly neutral rate when they are synonymous, or when they correspond to replacements between amino acids of similar fitness; substitutions from high to low (low to high) fitness amino acids have comparatively low (high) rates. Here, we study the use of such a mutation-selection framework as a null model for the detection of adaptation. Following previous works in this direction, we include a deviation parameter that has the effect of capturing the surplus, or deficit, in non-synonymous rates, relative to what would be expected under a mutation-selection modeling framework that includes a Dirichlet process approach to account for across-codon-site variation in amino acid fitness profiles. We use simulations, along with a few real data sets, to study the behavior of the approach, and find it to have good power with a low false-positive rate. Altogether, we emphasize the potential of recent mutation-selection models in the detection of adaptation, calling for further model refinements as well as large-scale applications. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Madden, M; Batey Pwj
1983-05-01
Some problems associated with demographic-economic forecasting include finding models appropriate for a declining economy with unemployment, using a multiregional approach in an interregional model, finding a way to show differential consumption while endogenizing unemployment, and avoiding unemployment inconsistencies. The solution to these problems involves the construction of an activity-commodity framework, locating it within a group of forecasting models, and indicating possible ratios towards dynamization of the framework. The authors demonstrate the range of impact multipliers that can be derived from the framework and show how these multipliers relate to Leontief input-output multipliers. It is shown that desired population distribution may be obtained by selecting instruments from the economic sphere to produce, through the constraints vector of an activity-commodity framework, targets selected from demographic activities. The next step in this process, empirical exploitation, was carried out by the authors in the United Kingdom, linking an input-output model with a wide selection of demographic and demographic-economic variables. The generally tenuous control which government has over any variables in systems of this type, especially in market economies, makes application in the policy field of the optimization approach a partly conjectural exercise, although the analytic capacity of the approach can provide clear indications of policy directions.
Groundwater modelling in decision support: reflections on a unified conceptual framework
NASA Astrophysics Data System (ADS)
Doherty, John; Simmons, Craig T.
2013-11-01
Groundwater models are commonly used as basis for environmental decision-making. There has been discussion and debate in recent times regarding the issue of model simplicity and complexity. This paper contributes to this ongoing discourse. The selection of an appropriate level of model structural and parameterization complexity is not a simple matter. Although the metrics on which such selection should be based are simple, there are many competing, and often unquantifiable, considerations which must be taken into account as these metrics are applied. A unified conceptual framework is introduced and described which is intended to underpin groundwater modelling in decision support with a direct focus on matters regarding model simplicity and complexity.
Liu, Zitao; Hauskrecht, Milos
2017-11-01
Building of an accurate predictive model of clinical time series for a patient is critical for understanding of the patient condition, its dynamics, and optimal patient management. Unfortunately, this process is not straightforward. First, patient-specific variations are typically large and population-based models derived or learned from many different patients are often unable to support accurate predictions for each individual patient. Moreover, time series observed for one patient at any point in time may be too short and insufficient to learn a high-quality patient-specific model just from the patient's own data. To address these problems we propose, develop and experiment with a new adaptive forecasting framework for building multivariate clinical time series models for a patient and for supporting patient-specific predictions. The framework relies on the adaptive model switching approach that at any point in time selects the most promising time series model out of the pool of many possible models, and consequently, combines advantages of the population, patient-specific and short-term individualized predictive models. We demonstrate that the adaptive model switching framework is very promising approach to support personalized time series prediction, and that it is able to outperform predictions based on pure population and patient-specific models, as well as, other patient-specific model adaptation strategies.
Prediction and Informative Risk Factor Selection of Bone Diseases.
Li, Hui; Li, Xiaoyi; Ramanathan, Murali; Zhang, Aidong
2015-01-01
With the booming of healthcare industry and the overwhelming amount of electronic health records (EHRs) shared by healthcare institutions and practitioners, we take advantage of EHR data to develop an effective disease risk management model that not only models the progression of the disease, but also predicts the risk of the disease for early disease control or prevention. Existing models for answering these questions usually fall into two categories: the expert knowledge based model or the handcrafted feature set based model. To fully utilize the whole EHR data, we will build a framework to construct an integrated representation of features from all available risk factors in the EHR data and use these integrated features to effectively predict osteoporosis and bone fractures. We will also develop a framework for informative risk factor selection of bone diseases. A pair of models for two contrast cohorts (e.g., diseased patients versus non-diseased patients) will be established to discriminate their characteristics and find the most informative risk factors. Several empirical results on a real bone disease data set show that the proposed framework can successfully predict bone diseases and select informative risk factors that are beneficial and useful to guide clinical decisions.
DOT National Transportation Integrated Search
2002-08-01
Building upon the conceptual framework developed during our year one research, a container port and multimodal transportation demand simulation model is applied. The model selects the least-cost (vessel-port-rail-truck) route from sources to markets,...
Agatha: Disentangling period signals from correlated noise in a periodogram framework
NASA Astrophysics Data System (ADS)
Feng, F.; Tuomi, M.; Jones, H. R. A.
2018-04-01
Agatha is a framework of periodograms to disentangle periodic signals from correlated noise and to solve the two-dimensional model selection problem: signal dimension and noise model dimension. These periodograms are calculated by applying likelihood maximization and marginalization and combined in a self-consistent way. Agatha can be used to select the optimal noise model and to test the consistency of signals in time and can be applied to time series analyses in other astronomical and scientific disciplines. An interactive web implementation of the software is also available at http://agatha.herts.ac.uk/.
Adam, Asrul; Shapiai, Mohd Ibrahim; Tumari, Mohd Zaidi Mohd; Mohamad, Mohd Saberi; Mubin, Marizan
2014-01-01
Electroencephalogram (EEG) signal peak detection is widely used in clinical applications. The peak point can be detected using several approaches, including time, frequency, time-frequency, and nonlinear domains depending on various peak features from several models. However, there is no study that provides the importance of every peak feature in contributing to a good and generalized model. In this study, feature selection and classifier parameters estimation based on particle swarm optimization (PSO) are proposed as a framework for peak detection on EEG signals in time domain analysis. Two versions of PSO are used in the study: (1) standard PSO and (2) random asynchronous particle swarm optimization (RA-PSO). The proposed framework tries to find the best combination of all the available features that offers good peak detection and a high classification rate from the results in the conducted experiments. The evaluation results indicate that the accuracy of the peak detection can be improved up to 99.90% and 98.59% for training and testing, respectively, as compared to the framework without feature selection adaptation. Additionally, the proposed framework based on RA-PSO offers a better and reliable classification rate as compared to standard PSO as it produces low variance model.
Frequentist Model Averaging in Structural Equation Modelling.
Jin, Shaobo; Ankargren, Sebastian
2018-06-04
Model selection from a set of candidate models plays an important role in many structural equation modelling applications. However, traditional model selection methods introduce extra randomness that is not accounted for by post-model selection inference. In the current study, we propose a model averaging technique within the frequentist statistical framework. Instead of selecting an optimal model, the contributions of all candidate models are acknowledged. Valid confidence intervals and a [Formula: see text] test statistic are proposed. A simulation study shows that the proposed method is able to produce a robust mean-squared error, a better coverage probability, and a better goodness-of-fit test compared to model selection. It is an interesting compromise between model selection and the full model.
Concept-oriented indexing of video databases: toward semantic sensitive retrieval and browsing.
Fan, Jianping; Luo, Hangzai; Elmagarmid, Ahmed K
2004-07-01
Digital video now plays an important role in medical education, health care, telemedicine and other medical applications. Several content-based video retrieval (CBVR) systems have been proposed in the past, but they still suffer from the following challenging problems: semantic gap, semantic video concept modeling, semantic video classification, and concept-oriented video database indexing and access. In this paper, we propose a novel framework to make some advances toward the final goal to solve these problems. Specifically, the framework includes: 1) a semantic-sensitive video content representation framework by using principal video shots to enhance the quality of features; 2) semantic video concept interpretation by using flexible mixture model to bridge the semantic gap; 3) a novel semantic video-classifier training framework by integrating feature selection, parameter estimation, and model selection seamlessly in a single algorithm; and 4) a concept-oriented video database organization technique through a certain domain-dependent concept hierarchy to enable semantic-sensitive video retrieval and browsing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckingsal, David; Gamblin, Todd
Modern performance portability frameworks provide application developers with a flexible way to determine how to run application kernels, however, they provide no guidance as to the best configuration for a given kernel. Apollo provides a model-generation framework that, when integrated with the RAJA library, uses lightweight decision tree models to select the fastest execution configuration on a per-kernel basis
The Influence of Intrinsic Framework Flexibility on Adsorption in Nanoporous Materials
Witman, Matthew; Ling, Sanliang; Jawahery, Sudi; ...
2017-03-30
For applications of metal–organic frameworks (MOFs) such as gas storage and separation, flexibility is often seen as a parameter that can tune material performance. In this work we aim to determine the optimal flexibility for the shape selective separation of similarly sized molecules (e.g., Xe/Kr mixtures). To obtain systematic insight into how the flexibility impacts this type of separation, we develop a simple analytical model that predicts a material’s Henry regime adsorption and selectivity as a function of flexibility. We elucidate the complex dependence of selectivity on a framework’s intrinsic flexibility whereby performance is either improved or reduced with increasingmore » flexibility, depending on the material’s pore size characteristics. However, the selectivity of a material with the pore size and chemistry that already maximizes selectivity in the rigid approximation is continuously diminished with increasing flexibility, demonstrating that the globally optimal separation exists within an entirely rigid pore. Molecular simulations show that our simple model predicts performance trends that are observed when screening the adsorption behavior of flexible MOFs. These flexible simulations provide better agreement with experimental adsorption data in a high-performance material that is not captured when modeling this framework as rigid, an approximation typically made in high-throughput screening studies. We conclude that, for shape selective adsorption applications, the globally optimal material will have the optimal pore size/chemistry and minimal intrinsic flexibility even though other nonoptimal materials’ selectivity can actually be improved by flexibility. In conclusion, equally important, we find that flexible simulations can be critical for correctly modeling adsorption in these types of systems.« less
The Influence of Intrinsic Framework Flexibility on Adsorption in Nanoporous Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witman, Matthew; Ling, Sanliang; Jawahery, Sudi
For applications of metal–organic frameworks (MOFs) such as gas storage and separation, flexibility is often seen as a parameter that can tune material performance. In this work we aim to determine the optimal flexibility for the shape selective separation of similarly sized molecules (e.g., Xe/Kr mixtures). To obtain systematic insight into how the flexibility impacts this type of separation, we develop a simple analytical model that predicts a material’s Henry regime adsorption and selectivity as a function of flexibility. We elucidate the complex dependence of selectivity on a framework’s intrinsic flexibility whereby performance is either improved or reduced with increasingmore » flexibility, depending on the material’s pore size characteristics. However, the selectivity of a material with the pore size and chemistry that already maximizes selectivity in the rigid approximation is continuously diminished with increasing flexibility, demonstrating that the globally optimal separation exists within an entirely rigid pore. Molecular simulations show that our simple model predicts performance trends that are observed when screening the adsorption behavior of flexible MOFs. These flexible simulations provide better agreement with experimental adsorption data in a high-performance material that is not captured when modeling this framework as rigid, an approximation typically made in high-throughput screening studies. We conclude that, for shape selective adsorption applications, the globally optimal material will have the optimal pore size/chemistry and minimal intrinsic flexibility even though other nonoptimal materials’ selectivity can actually be improved by flexibility. In conclusion, equally important, we find that flexible simulations can be critical for correctly modeling adsorption in these types of systems.« less
Using Response Times for Item Selection in Adaptive Testing
ERIC Educational Resources Information Center
van der Linden, Wim J.
2008-01-01
Response times on items can be used to improve item selection in adaptive testing provided that a probabilistic model for their distribution is available. In this research, the author used a hierarchical modeling framework with separate first-level models for the responses and response times and a second-level model for the distribution of the…
Chan, Connie V.; Kaufman, David R.
2009-01-01
Health information technologies (HIT) have great potential to advance health care globally. In particular, HIT can provide innovative approaches and methodologies to overcome the range of access and resource barriers specific to developing countries. However, there is a paucity of models and empirical evidence informing the technology selection process in these settings. We propose a framework for selecting patient-oriented technologies in developing countries. The selection guidance process is structured by a set of filters that impose particular constraints and serve to narrow the space of possible decisions. The framework consists of three levels of factors: 1) situational factors, 2) the technology and its relationship with health interventions and with target patients, and 3) empirical evidence. We demonstrate the utility of the framework in the context of mobile phones for behavioral health interventions to reduce risk factors for cardiovascular disease. This framework can be applied to health interventions across health domains to explore how and whether available technologies can support delivery of the associated types of interventions and with the target populations. PMID:19796709
Selective gas capture via kinetic trapping
Kundu, Joyjit; Pascal, Tod; Prendergast, David; ...
2016-07-13
Conventional approaches to the capture of CO 2 by metal-organic frameworks focus on equilibrium conditions, and frameworks that contain little CO 2 in equilibrium are often rejected as carbon-capture materials. Here we use a statistical mechanical model, parameterized by quantum mechanical data, to suggest that metal-organic frameworks can be used to separate CO 2 from a typical flue gas mixture when used under nonequilibrium conditions. The origin of this selectivity is an emergent gas-separation mechanism that results from the acquisition by different gas types of different mobilities within a crowded framework. The resulting distribution of gas types within the frameworkmore » is in general spatially and dynamically heterogeneous. Our results suggest that relaxing the requirement of equilibrium can substantially increase the parameter space of conditions and materials for which selective gas capture can be effected.« less
Adam, Asrul; Mohd Tumari, Mohd Zaidi; Mohamad, Mohd Saberi
2014-01-01
Electroencephalogram (EEG) signal peak detection is widely used in clinical applications. The peak point can be detected using several approaches, including time, frequency, time-frequency, and nonlinear domains depending on various peak features from several models. However, there is no study that provides the importance of every peak feature in contributing to a good and generalized model. In this study, feature selection and classifier parameters estimation based on particle swarm optimization (PSO) are proposed as a framework for peak detection on EEG signals in time domain analysis. Two versions of PSO are used in the study: (1) standard PSO and (2) random asynchronous particle swarm optimization (RA-PSO). The proposed framework tries to find the best combination of all the available features that offers good peak detection and a high classification rate from the results in the conducted experiments. The evaluation results indicate that the accuracy of the peak detection can be improved up to 99.90% and 98.59% for training and testing, respectively, as compared to the framework without feature selection adaptation. Additionally, the proposed framework based on RA-PSO offers a better and reliable classification rate as compared to standard PSO as it produces low variance model. PMID:25243236
A Framework for Modeling Workflow Execution by an Interdisciplinary Healthcare Team.
Kezadri-Hamiaz, Mounira; Rosu, Daniela; Wilk, Szymon; Kuziemsky, Craig; Michalowski, Wojtek; Carrier, Marc
2015-01-01
The use of business workflow models in healthcare is limited because of insufficient capture of complexities associated with behavior of interdisciplinary healthcare teams that execute healthcare workflows. In this paper we present a novel framework that builds on the well-founded business workflow model formalism and related infrastructures and introduces a formal semantic layer that describes selected aspects of team dynamics and supports their real-time operationalization.
Adopting a Resilience Practice Framework: A Case Study in What to Select and How to Implement
ERIC Educational Resources Information Center
Antcliff, Greg; Mildon, Robyn; Baldwin, Laura; Michaux, Annette; Nay, Cherie
2014-01-01
This paper describes the collaborative application of three theoretical models for supporting service planning (Hunter, 2006), programme planning (Chorpita et al, 2005a), and implementation (Meyers et al, 2012) to develop and implement a Resilience Practice Framework (RPF). Specifically, we (1) describe a theory of change framework (Hunter, 2006)…
Cameron, Kenzie A
2009-03-01
To provide a brief overview of 15 selected persuasion theories and models, and to present examples of their use in health communication research. The theories are categorized as message effects models, attitude-behavior approaches, cognitive processing theories and models, consistency theories, inoculation theory, and functional approaches. As it is often the intent of a practitioner to shape, reinforce, or change a patient's behavior, familiarity with theories of persuasion may lead to the development of novel communication approaches with existing patients. This article serves as an introductory primer to theories of persuasion with applications to health communication research. Understanding key constructs and general formulations of persuasive theories may allow practitioners to employ useful theoretical frameworks when interacting with patients.
Understanding retirement: the promise of life-span developmental frameworks.
Löckenhoff, Corinna E
2012-09-01
The impending retirement of large population cohorts creates a pressing need for practical interventions to optimize outcomes at the individual and societal level. This necessitates comprehensive theoretical models that acknowledge the multi-layered nature of the retirement process and shed light on the dynamic mechanisms that drive longitudinal patterns of adjustment. The present commentary highlights ways in which contemporary life-span developmental frameworks can inform retirement research, drawing on the specific examples of Bronfenbrenner's Ecological Model, Baltes and Baltes Selective Optimization with Compensation Framework, Schulz and Heckhausen's Motivational Theory of Life-Span Development, and Carstensen's Socioemotional Selectivity Theory. Ultimately, a life-span developmental perspective on retirement offers not only new interpretations of known phenomena but may also help to identify novel directions for future research as well as promising pathways for interventions.
ERIC Educational Resources Information Center
Prescott, Stephanie, Ed.; And Others
This resource book is designed to assist teachers in implementing California's history-social science framework at the 10th grade level. The models support implementation at the local level and may be used to plan topics and select resources for professional development and preservice education. This document provides a link between the…
Kryzanowski, Julie A; McIntyre, Lynn
2011-01-01
Mainstream environmental assessment (EA) methodologies often inadequately address health, social and cultural impacts of concern for Canadian indigenous communities affected by industrialization. Our objective is to present a holistic, culturally-appropriate framework for the selection of indigenous health indicators for baseline health assessment, impact prediction, or monitoring of impacts over time. We used a critical population health approach to explore the determinants of health and health inequities in indigenous communities and conceptualize the pathways by which industrialization affects these determinants. We integrated and extended key elements from three indigenous health frameworks into a new holistic model for the selection of indigenous EA indicators. The holistic model conceptualizes individual and community determinants of health within external social, economic and political contexts and thus provides a comprehensive framework for selecting indicators of indigenous health. Indigenous health is the product of interactions among multiple determinants of health and contexts. Potential applications are discussed using case study examples involving indigenous communities affected by industrialization. Industrialization can worsen indigenous health inequities by perpetuating the health, social and cultural impacts of historic environmental dispossession. To mitigate impacts, EA should explicitly recognize linkages between environmental dispossession and the determinants of health and health inequities and meaningfully involve indigenous communities in the process.
NASA Astrophysics Data System (ADS)
Seiller, G.; Anctil, F.; Roy, R.
2017-09-01
This paper outlines the design and experimentation of an Empirical Multistructure Framework (EMF) for lumped conceptual hydrological modeling. This concept is inspired from modular frameworks, empirical model development, and multimodel applications, and encompasses the overproduce and select paradigm. The EMF concept aims to reduce subjectivity in conceptual hydrological modeling practice and includes model selection in the optimisation steps, reducing initial assumptions on the prior perception of the dominant rainfall-runoff transformation processes. EMF generates thousands of new modeling options from, for now, twelve parent models that share their functional components and parameters. Optimisation resorts to ensemble calibration, ranking and selection of individual child time series based on optimal bias and reliability trade-offs, as well as accuracy and sharpness improvement of the ensemble. Results on 37 snow-dominated Canadian catchments and 20 climatically-diversified American catchments reveal the excellent potential of the EMF in generating new individual model alternatives, with high respective performance values, that may be pooled efficiently into ensembles of seven to sixty constitutive members, with low bias and high accuracy, sharpness, and reliability. A group of 1446 new models is highlighted to offer good potential on other catchments or applications, based on their individual and collective interests. An analysis of the preferred functional components reveals the importance of the production and total flow elements. Overall, results from this research confirm the added value of ensemble and flexible approaches for hydrological applications, especially in uncertain contexts, and open up new modeling possibilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, Kathryn, E-mail: kfarrell@ices.utexas.edu; Oden, J. Tinsley, E-mail: oden@ices.utexas.edu; Faghihi, Danial, E-mail: danial@ices.utexas.edu
A general adaptive modeling algorithm for selection and validation of coarse-grained models of atomistic systems is presented. A Bayesian framework is developed to address uncertainties in parameters, data, and model selection. Algorithms for computing output sensitivities to parameter variances, model evidence and posterior model plausibilities for given data, and for computing what are referred to as Occam Categories in reference to a rough measure of model simplicity, make up components of the overall approach. Computational results are provided for representative applications.
A SVM framework for fault detection of the braking system in a high speed train
NASA Astrophysics Data System (ADS)
Liu, Jie; Li, Yan-Fu; Zio, Enrico
2017-03-01
In April 2015, the number of operating High Speed Trains (HSTs) in the world has reached 3603. An efficient, effective and very reliable braking system is evidently very critical for trains running at a speed around 300 km/h. Failure of a highly reliable braking system is a rare event and, consequently, informative recorded data on fault conditions are scarce. This renders the fault detection problem a classification problem with highly unbalanced data. In this paper, a Support Vector Machine (SVM) framework, including feature selection, feature vector selection, model construction and decision boundary optimization, is proposed for tackling this problem. Feature vector selection can largely reduce the data size and, thus, the computational burden. The constructed model is a modified version of the least square SVM, in which a higher cost is assigned to the error of classification of faulty conditions than the error of classification of normal conditions. The proposed framework is successfully validated on a number of public unbalanced datasets. Then, it is applied for the fault detection of braking systems in HST: in comparison with several SVM approaches for unbalanced datasets, the proposed framework gives better results.
Climatic Models Ensemble-based Mid-21st Century Runoff Projections: A Bayesian Framework
NASA Astrophysics Data System (ADS)
Achieng, K. O.; Zhu, J.
2017-12-01
There are a number of North American Regional Climate Change Assessment Program (NARCCAP) climatic models that have been used to project surface runoff in the mid-21st century. Statistical model selection techniques are often used to select the model that best fits data. However, model selection techniques often lead to different conclusions. In this study, ten models are averaged in Bayesian paradigm to project runoff. Bayesian Model Averaging (BMA) is used to project and identify effect of model uncertainty on future runoff projections. Baseflow separation - a two-digital filter which is also called Eckhardt filter - is used to separate USGS streamflow (total runoff) into two components: baseflow and surface runoff. We use this surface runoff as the a priori runoff when conducting BMA of runoff simulated from the ten RCM models. The primary objective of this study is to evaluate how well RCM multi-model ensembles simulate surface runoff, in a Bayesian framework. Specifically, we investigate and discuss the following questions: How well do ten RCM models ensemble jointly simulate surface runoff by averaging over all the models using BMA, given a priori surface runoff? What are the effects of model uncertainty on surface runoff simulation?
A data-driven multi-model methodology with deep feature selection for short-term wind forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Cong; Cui, Mingjian; Hodge, Bri-Mathias
With the growing wind penetration into the power system worldwide, improving wind power forecasting accuracy is becoming increasingly important to ensure continued economic and reliable power system operations. In this paper, a data-driven multi-model wind forecasting methodology is developed with a two-layer ensemble machine learning technique. The first layer is composed of multiple machine learning models that generate individual forecasts. A deep feature selection framework is developed to determine the most suitable inputs to the first layer machine learning models. Then, a blending algorithm is applied in the second layer to create an ensemble of the forecasts produced by firstmore » layer models and generate both deterministic and probabilistic forecasts. This two-layer model seeks to utilize the statistically different characteristics of each machine learning algorithm. A number of machine learning algorithms are selected and compared in both layers. This developed multi-model wind forecasting methodology is compared to several benchmarks. The effectiveness of the proposed methodology is evaluated to provide 1-hour-ahead wind speed forecasting at seven locations of the Surface Radiation network. Numerical results show that comparing to the single-algorithm models, the developed multi-model framework with deep feature selection procedure has improved the forecasting accuracy by up to 30%.« less
IT vendor selection model by using structural equation model & analytical hierarchy process
NASA Astrophysics Data System (ADS)
Maitra, Sarit; Dominic, P. D. D.
2012-11-01
Selecting and evaluating the right vendors is imperative for an organization's global marketplace competitiveness. Improper selection and evaluation of potential vendors can dwarf an organization's supply chain performance. Numerous studies have demonstrated that firms consider multiple criteria when selecting key vendors. This research intends to develop a new hybrid model for vendor selection process with better decision making. The new proposed model provides a suitable tool for assisting decision makers and managers to make the right decisions and select the most suitable vendor. This paper proposes a Hybrid model based on Structural Equation Model (SEM) and Analytical Hierarchy Process (AHP) for long-term strategic vendor selection problems. The five steps framework of the model has been designed after the thorough literature study. The proposed hybrid model will be applied using a real life case study to assess its effectiveness. In addition, What-if analysis technique will be used for model validation purpose.
Wavelet neural networks: a practical guide.
Alexandridis, Antonios K; Zapranis, Achilleas D
2013-06-01
Wavelet networks (WNs) are a new class of networks which have been used with great success in a wide range of applications. However a general accepted framework for applying WNs is missing from the literature. In this study, we present a complete statistical model identification framework in order to apply WNs in various applications. The following subjects were thoroughly examined: the structure of a WN, training methods, initialization algorithms, variable significance and variable selection algorithms, model selection methods and finally methods to construct confidence and prediction intervals. In addition the complexity of each algorithm is discussed. Our proposed framework was tested in two simulated cases, in one chaotic time series described by the Mackey-Glass equation and in three real datasets described by daily temperatures in Berlin, daily wind speeds in New York and breast cancer classification. Our results have shown that the proposed algorithms produce stable and robust results indicating that our proposed framework can be applied in various applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Neonatal physical therapy. Part II: Practice frameworks and evidence-based practice guidelines.
Sweeney, Jane K; Heriza, Carolyn B; Blanchard, Yvette; Dusing, Stacey C
2010-01-01
(1) To outline frameworks for neonatal physical therapy based on 3 theoretical models, (2) to describe emerging literature supporting neonatal physical therapy practice, and (3) to identify evidence-based practice recommendations. Three models are presented as a framework for neonatal practice: (1) dynamic systems theory including synactive theory and the theory of neuronal group selection, (2) the International Classification of Functioning, Disability and Health, and (3) family-centered care. Literature is summarized to support neonatal physical therapists in the areas of examination, developmental care, intervention, and parent education. Practice recommendations are offered with levels of evidence identified. Neonatal physical therapy practice has a theoretical and evidence-based structure, and evidence is emerging for selected clinical procedures. Continued research to expand the science of neonatal physical therapy is critical to elevate the evidence and support practice recommendations.
Bayesian Group Bridge for Bi-level Variable Selection.
Mallick, Himel; Yi, Nengjun
2017-06-01
A Bayesian bi-level variable selection method (BAGB: Bayesian Analysis of Group Bridge) is developed for regularized regression and classification. This new development is motivated by grouped data, where generic variables can be divided into multiple groups, with variables in the same group being mechanistically related or statistically correlated. As an alternative to frequentist group variable selection methods, BAGB incorporates structural information among predictors through a group-wise shrinkage prior. Posterior computation proceeds via an efficient MCMC algorithm. In addition to the usual ease-of-interpretation of hierarchical linear models, the Bayesian formulation produces valid standard errors, a feature that is notably absent in the frequentist framework. Empirical evidence of the attractiveness of the method is illustrated by extensive Monte Carlo simulations and real data analysis. Finally, several extensions of this new approach are presented, providing a unified framework for bi-level variable selection in general models with flexible penalties.
An analytical framework to assist decision makers in the use of forest ecosystem model predictions
Larocque, Guy R.; Bhatti, Jagtar S.; Ascough, J.C.; Liu, J.; Luckai, N.; Mailly, D.; Archambault, L.; Gordon, Andrew M.
2011-01-01
The predictions from most forest ecosystem models originate from deterministic simulations. However, few evaluation exercises for model outputs are performed by either model developers or users. This issue has important consequences for decision makers using these models to develop natural resource management policies, as they cannot evaluate the extent to which predictions stemming from the simulation of alternative management scenarios may result in significant environmental or economic differences. Various numerical methods, such as sensitivity/uncertainty analyses, or bootstrap methods, may be used to evaluate models and the errors associated with their outputs. However, the application of each of these methods carries unique challenges which decision makers do not necessarily understand; guidance is required when interpreting the output generated from each model. This paper proposes a decision flow chart in the form of an analytical framework to help decision makers apply, in an orderly fashion, different steps involved in examining the model outputs. The analytical framework is discussed with regard to the definition of problems and objectives and includes the following topics: model selection, identification of alternatives, modelling tasks and selecting alternatives for developing policy or implementing management scenarios. Its application is illustrated using an on-going exercise in developing silvicultural guidelines for a forest management enterprise in Ontario, Canada.
Plasma Model V&V of Collisionless Electrostatic Shock
NASA Astrophysics Data System (ADS)
Martin, Robert; Le, Hai; Bilyeu, David; Gildea, Stephen
2014-10-01
A simple 1D electrostatic collisionless shock was selected as an initial validation and verification test case for a new plasma modeling framework under development at the Air Force Research Laboratory's In-Space Propulsion branch (AFRL/RQRS). Cross verification between PIC, Vlasov, and Fluid plasma models within the framework along with expected theoretical results will be shown. The non-equilibrium velocity distributions (VDF) captured by PIC and Vlasov will be compared to each other and the assumed VDF of the fluid model at selected points. Validation against experimental data from the University of California, Los Angeles double-plasma device will also be presented along with current work in progress at AFRL/RQRS towards reproducing the experimental results using higher fidelity diagnostics to help elucidate differences between model results and between the models and original experiment. DISTRIBUTION A: Approved for public release; unlimited distribution; PA (Public Affairs) Clearance Number 14332.
Universal Darwinism As a Process of Bayesian Inference.
Campbell, John O
2016-01-01
Many of the mathematical frameworks describing natural selection are equivalent to Bayes' Theorem, also known as Bayesian updating. By definition, a process of Bayesian Inference is one which involves a Bayesian update, so we may conclude that these frameworks describe natural selection as a process of Bayesian inference. Thus, natural selection serves as a counter example to a widely-held interpretation that restricts Bayesian Inference to human mental processes (including the endeavors of statisticians). As Bayesian inference can always be cast in terms of (variational) free energy minimization, natural selection can be viewed as comprising two components: a generative model of an "experiment" in the external world environment, and the results of that "experiment" or the "surprise" entailed by predicted and actual outcomes of the "experiment." Minimization of free energy implies that the implicit measure of "surprise" experienced serves to update the generative model in a Bayesian manner. This description closely accords with the mechanisms of generalized Darwinian process proposed both by Dawkins, in terms of replicators and vehicles, and Campbell, in terms of inferential systems. Bayesian inference is an algorithm for the accumulation of evidence-based knowledge. This algorithm is now seen to operate over a wide range of evolutionary processes, including natural selection, the evolution of mental models and cultural evolutionary processes, notably including science itself. The variational principle of free energy minimization may thus serve as a unifying mathematical framework for universal Darwinism, the study of evolutionary processes operating throughout nature.
Universal Darwinism As a Process of Bayesian Inference
Campbell, John O.
2016-01-01
Many of the mathematical frameworks describing natural selection are equivalent to Bayes' Theorem, also known as Bayesian updating. By definition, a process of Bayesian Inference is one which involves a Bayesian update, so we may conclude that these frameworks describe natural selection as a process of Bayesian inference. Thus, natural selection serves as a counter example to a widely-held interpretation that restricts Bayesian Inference to human mental processes (including the endeavors of statisticians). As Bayesian inference can always be cast in terms of (variational) free energy minimization, natural selection can be viewed as comprising two components: a generative model of an “experiment” in the external world environment, and the results of that “experiment” or the “surprise” entailed by predicted and actual outcomes of the “experiment.” Minimization of free energy implies that the implicit measure of “surprise” experienced serves to update the generative model in a Bayesian manner. This description closely accords with the mechanisms of generalized Darwinian process proposed both by Dawkins, in terms of replicators and vehicles, and Campbell, in terms of inferential systems. Bayesian inference is an algorithm for the accumulation of evidence-based knowledge. This algorithm is now seen to operate over a wide range of evolutionary processes, including natural selection, the evolution of mental models and cultural evolutionary processes, notably including science itself. The variational principle of free energy minimization may thus serve as a unifying mathematical framework for universal Darwinism, the study of evolutionary processes operating throughout nature. PMID:27375438
Faculty Salary Equity: Issues in Regression Model Selection. AIR 1992 Annual Forum Paper.
ERIC Educational Resources Information Center
Moore, Nelle
This paper discusses the determination of college faculty salary inequity and identifies the areas in which human judgment must be used in order to conduct a statistical analysis of salary equity. In addition, it provides some informed guidelines for making those judgments. The paper provides a framework for selecting salary equity models, based…
Kaack, Lorraine; Bender, Miriam; Finch, Michael; Borns, Linda; Grasham, Katherine; Avolio, Alice; Clausen, Shawna; Terese, Nadine A; Johnstone, Diane; Williams, Marjory
The Veterans Health Administration (VHA) Office of Nursing Services (ONS) was an early adopter of Clinical Nurse Leader (CNL) practice, generating some of the earliest pilot data of CNL practice effectiveness. In 2011 the VHA ONS CNL Implementation & Evaluation Service (CNL I&E) piloted a curriculum to facilitate CNL transition to effective practice at local VHA settings. In 2015, the CNL I&E and local VHA setting stakeholders collaborated to refine the program, based on lessons learned at the national and local level. The workgroup reviewed the literature to identify theoretical frameworks for CNL practice and practice development. The workgroup selected Benner et al.'s Novice-to-Expert model as the defining framework for CNL practice development, and Bender et al.'s CNL Practice Model as the defining framework for CNL practice integration. The selected frameworks were cross-walked against existing curriculum elements to identify and clarify additional practice development needs. The work generated key insights into: core stages of transition to effective practice; CNL progress and expectations for each stage; and organizational support structures necessary for CNL success at each stage. The refined CNL development model is a robust tool that can be applied to support consistent and effective integration of CNL practice into care delivery. Published by Elsevier Inc.
Page, Tessa; Nguyen, Huong Thi Huynh; Hilts, Lindsey; Ramos, Lorena; Hanrahan, Grady
2012-06-01
This work reveals a computational framework for parallel electrophoretic separation of complex biological macromolecules and model urinary metabolites. More specifically, the implementation of a particle swarm optimization (PSO) algorithm on a neural network platform for multiparameter optimization of multiplexed 24-capillary electrophoresis technology with UV detection is highlighted. Two experimental systems were examined: (1) separation of purified rabbit metallothioneins and (2) separation of model toluene urinary metabolites and selected organic acids. Results proved superior to the use of neural networks employing standard back propagation when examining training error, fitting response, and predictive abilities. Simulation runs were obtained as a result of metaheuristic examination of the global search space with experimental responses in good agreement with predicted values. Full separation of selected analytes was realized after employing optimal model conditions. This framework provides guidance for the application of metaheuristic computational tools to aid in future studies involving parallel chemical separation and screening. Adaptable pseudo-code is provided to enable users of varied software packages and modeling framework to implement the PSO algorithm for their desired use.
Leung, Leanne; de Lemos, Mário L; Kovacic, Laurel
2017-01-01
Background With the rising cost of new oncology treatments, it is no longer sustainable to base initial drug funding decisions primarily on prospective clinical trials as their performance in real-life populations are often difficult to determine. In British Columbia, an approach in evidence building is to retrospectively analyse patient outcomes using observational research on an ad hoc basis. Methods The deliberative framework was constructed in three stages: framework design, framework validation and treatment programme characterization, and key informant interview. Framework design was informed through a literature review and analyses of provincial and national decision-making processes. Treatment programmes funded between 2010 and 2013 were used for framework validation. A selection concordance rate of 80% amongst three reviewers was considered to be a validation of the framework. Key informant interviews were conducted to determine the utility of this deliberative framework. Results A multi-domain deliberative framework with 15 assessment parameters was developed. A selection concordance rate of 84.2% was achieved for content validation of the framework. Nine treatment programmes from five different tumour groups were selected for retrospective outcomes analysis. Five contributory factors to funding uncertainties were identified. Key informants agreed that the framework is a comprehensive tool that targets the key areas involved in the funding decision-making process. Conclusions The oncology-based deliberative framework can be routinely used to assess treatment programmes from the major tumour sites for retrospective outcomes analysis. Key informants indicate this is a value-added tool and will provide insight to the current prospective funding model.
Stress distribution in Co-Cr implant frameworks after laser or TIG welding.
de Castro, Gabriela Cassaro; de Araújo, Cleudmar Amaral; Mesquita, Marcelo Ferraz; Consani, Rafael Leonardo Xediek; Nóbilo, Mauro Antônio de Arruda
2013-01-01
Lack of passivity has been associated with biomechanical problems in implant-supported prosthesis. The aim of this study was to evaluate the passivity of three techniques to fabricate an implant framework from a Co-Cr alloy by photoelasticity. The model was obtained from a steel die simulating an edentulous mandible with 4 external hexagon analog implants with a standard platform. On this model, five frameworks were fabricated for each group: a monoblock framework (control), laser and TIG welding frameworks. The photoelastic model was made from a flexible epoxy resin. On the photoelastic analysis, the frameworks were bolted onto the model for the verification of maximum shear stress at 34 selected points around the implants and 5 points in the middle of the model. The stresses were compared all over the photoelastic model, between the right, left, and center regions and between the cervical and apical regions. The values were subjected to two-way ANOVA, and Tukey's test (α=0.05). There was no significant difference among the groups and studied areas (p>0.05). It was concluded that the stresses generated around the implants were similar for all techniques.
A universal deep learning approach for modeling the flow of patients under different severities.
Jiang, Shancheng; Chin, Kwai-Sang; Tsui, Kwok L
2018-02-01
The Accident and Emergency Department (A&ED) is the frontline for providing emergency care in hospitals. Unfortunately, relative A&ED resources have failed to keep up with continuously increasing demand in recent years, which leads to overcrowding in A&ED. Knowing the fluctuation of patient arrival volume in advance is a significant premise to relieve this pressure. Based on this motivation, the objective of this study is to explore an integrated framework with high accuracy for predicting A&ED patient flow under different triage levels, by combining a novel feature selection process with deep neural networks. Administrative data is collected from an actual A&ED and categorized into five groups based on different triage levels. A genetic algorithm (GA)-based feature selection algorithm is improved and implemented as a pre-processing step for this time-series prediction problem, in order to explore key features affecting patient flow. In our improved GA, a fitness-based crossover is proposed to maintain the joint information of multiple features during iterative process, instead of traditional point-based crossover. Deep neural networks (DNN) is employed as the prediction model to utilize their universal adaptability and high flexibility. In the model-training process, the learning algorithm is well-configured based on a parallel stochastic gradient descent algorithm. Two effective regularization strategies are integrated in one DNN framework to avoid overfitting. All introduced hyper-parameters are optimized efficiently by grid-search in one pass. As for feature selection, our improved GA-based feature selection algorithm has outperformed a typical GA and four state-of-the-art feature selection algorithms (mRMR, SAFS, VIFR, and CFR). As for the prediction accuracy of proposed integrated framework, compared with other frequently used statistical models (GLM, seasonal-ARIMA, ARIMAX, and ANN) and modern machine models (SVM-RBF, SVM-linear, RF, and R-LASSO), the proposed integrated "DNN-I-GA" framework achieves higher prediction accuracy on both MAPE and RMSE metrics in pairwise comparisons. The contribution of our study is two-fold. Theoretically, the traditional GA-based feature selection process is improved to have less hyper-parameters and higher efficiency, and the joint information of multiple features is maintained by fitness-based crossover operator. The universal property of DNN is further enhanced by merging different regularization strategies. Practically, features selected by our improved GA can be used to acquire an underlying relationship between patient flows and input features. Predictive values are significant indicators of patients' demand and can be used by A&ED managers to make resource planning and allocation. High accuracy achieved by the present framework in different cases enhances the reliability of downstream decision makings. Copyright © 2017 Elsevier B.V. All rights reserved.
RRegrs: an R package for computer-aided model selection with multiple regression models.
Tsiliki, Georgia; Munteanu, Cristian R; Seoane, Jose A; Fernandez-Lozano, Carlos; Sarimveis, Haralambos; Willighagen, Egon L
2015-01-01
Predictive regression models can be created with many different modelling approaches. Choices need to be made for data set splitting, cross-validation methods, specific regression parameters and best model criteria, as they all affect the accuracy and efficiency of the produced predictive models, and therefore, raising model reproducibility and comparison issues. Cheminformatics and bioinformatics are extensively using predictive modelling and exhibit a need for standardization of these methodologies in order to assist model selection and speed up the process of predictive model development. A tool accessible to all users, irrespectively of their statistical knowledge, would be valuable if it tests several simple and complex regression models and validation schemes, produce unified reports, and offer the option to be integrated into more extensive studies. Additionally, such methodology should be implemented as a free programming package, in order to be continuously adapted and redistributed by others. We propose an integrated framework for creating multiple regression models, called RRegrs. The tool offers the option of ten simple and complex regression methods combined with repeated 10-fold and leave-one-out cross-validation. Methods include Multiple Linear regression, Generalized Linear Model with Stepwise Feature Selection, Partial Least Squares regression, Lasso regression, and Support Vector Machines Recursive Feature Elimination. The new framework is an automated fully validated procedure which produces standardized reports to quickly oversee the impact of choices in modelling algorithms and assess the model and cross-validation results. The methodology was implemented as an open source R package, available at https://www.github.com/enanomapper/RRegrs, by reusing and extending on the caret package. The universality of the new methodology is demonstrated using five standard data sets from different scientific fields. Its efficiency in cheminformatics and QSAR modelling is shown with three use cases: proteomics data for surface-modified gold nanoparticles, nano-metal oxides descriptor data, and molecular descriptors for acute aquatic toxicity data. The results show that for all data sets RRegrs reports models with equal or better performance for both training and test sets than those reported in the original publications. Its good performance as well as its adaptability in terms of parameter optimization could make RRegrs a popular framework to assist the initial exploration of predictive models, and with that, the design of more comprehensive in silico screening applications.Graphical abstractRRegrs is a computer-aided model selection framework for R multiple regression models; this is a fully validated procedure with application to QSAR modelling.
A new fit-for-purpose model testing framework: Decision Crash Tests
NASA Astrophysics Data System (ADS)
Tolson, Bryan; Craig, James
2016-04-01
Decision-makers in water resources are often burdened with selecting appropriate multi-million dollar strategies to mitigate the impacts of climate or land use change. Unfortunately, the suitability of existing hydrologic simulation models to accurately inform decision-making is in doubt because the testing procedures used to evaluate model utility (i.e., model validation) are insufficient. For example, many authors have identified that a good standard framework for model testing called the Klemes Crash Tests (KCTs), which are the classic model validation procedures from Klemeš (1986) that Andréassian et al. (2009) rename as KCTs, have yet to become common practice in hydrology. Furthermore, Andréassian et al. (2009) claim that the progression of hydrological science requires widespread use of KCT and the development of new crash tests. Existing simulation (not forecasting) model testing procedures such as KCTs look backwards (checking for consistency between simulations and past observations) rather than forwards (explicitly assessing if the model is likely to support future decisions). We propose a fundamentally different, forward-looking, decision-oriented hydrologic model testing framework based upon the concept of fit-for-purpose model testing that we call Decision Crash Tests or DCTs. Key DCT elements are i) the model purpose (i.e., decision the model is meant to support) must be identified so that model outputs can be mapped to management decisions ii) the framework evaluates not just the selected hydrologic model but the entire suite of model-building decisions associated with model discretization, calibration etc. The framework is constructed to directly and quantitatively evaluate model suitability. The DCT framework is applied to a model building case study on the Grand River in Ontario, Canada. A hypothetical binary decision scenario is analysed (upgrade or not upgrade the existing flood control structure) under two different sets of model building decisions. In one case, we show the set of model building decisions has a low probability to correctly support the upgrade decision. In the other case, we show evidence suggesting another set of model building decisions has a high probability to correctly support the decision. The proposed DCT framework focuses on what model users typically care about: the management decision in question. The DCT framework will often be very strict and will produce easy to interpret results enabling clear unsuitability determinations. In the past, hydrologic modelling progress has necessarily meant new models and model building methods. Continued progress in hydrologic modelling requires finding clear evidence to motivate researchers to disregard unproductive models and methods and the DCT framework is built to produce this kind of evidence. References: Andréassian, V., C. Perrin, L. Berthet, N. Le Moine, J. Lerat, C. Loumagne, L. Oudin, T. Mathevet, M.-H. Ramos, and A. Valéry (2009), Crash tests for a standardized evaluation of hydrological models. Hydrology and Earth System Sciences, 13, 1757-1764. Klemeš, V. (1986), Operational testing of hydrological simulation models. Hydrological Sciences Journal, 31 (1), 13-24.
A penalized framework for distributed lag non-linear models.
Gasparrini, Antonio; Scheipl, Fabian; Armstrong, Ben; Kenward, Michael G
2017-09-01
Distributed lag non-linear models (DLNMs) are a modelling tool for describing potentially non-linear and delayed dependencies. Here, we illustrate an extension of the DLNM framework through the use of penalized splines within generalized additive models (GAM). This extension offers built-in model selection procedures and the possibility of accommodating assumptions on the shape of the lag structure through specific penalties. In addition, this framework includes, as special cases, simpler models previously proposed for linear relationships (DLMs). Alternative versions of penalized DLNMs are compared with each other and with the standard unpenalized version in a simulation study. Results show that this penalized extension to the DLNM class provides greater flexibility and improved inferential properties. The framework exploits recent theoretical developments of GAMs and is implemented using efficient routines within freely available software. Real-data applications are illustrated through two reproducible examples in time series and survival analysis. © 2017 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.
Dyadic brain modelling, mirror systems and the ontogenetic ritualization of ape gesture
Arbib, Michael; Ganesh, Varsha; Gasser, Brad
2014-01-01
The paper introduces dyadic brain modelling, offering both a framework for modelling the brains of interacting agents and a general framework for simulating and visualizing the interactions generated when the brains (and the two bodies) are each coded up in computational detail. It models selected neural mechanisms in ape brains supportive of social interactions, including putative mirror neuron systems inspired by macaque neurophysiology but augmented by increased access to proprioceptive state. Simulation results for a reduced version of the model show ritualized gesture emerging from interactions between a simulated child and mother ape. PMID:24778382
Dyadic brain modelling, mirror systems and the ontogenetic ritualization of ape gesture.
Arbib, Michael; Ganesh, Varsha; Gasser, Brad
2014-01-01
The paper introduces dyadic brain modelling, offering both a framework for modelling the brains of interacting agents and a general framework for simulating and visualizing the interactions generated when the brains (and the two bodies) are each coded up in computational detail. It models selected neural mechanisms in ape brains supportive of social interactions, including putative mirror neuron systems inspired by macaque neurophysiology but augmented by increased access to proprioceptive state. Simulation results for a reduced version of the model show ritualized gesture emerging from interactions between a simulated child and mother ape.
On spatial mutation-selection models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondratiev, Yuri, E-mail: kondrat@math.uni-bielefeld.de; Kutoviy, Oleksandr, E-mail: kutoviy@math.uni-bielefeld.de, E-mail: kutovyi@mit.edu; Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
2013-11-15
We discuss the selection procedure in the framework of mutation models. We study the regulation for stochastically developing systems based on a transformation of the initial Markov process which includes a cost functional. The transformation of initial Markov process by cost functional has an analytic realization in terms of a Kimura-Maruyama type equation for the time evolution of states or in terms of the corresponding Feynman-Kac formula on the path space. The state evolution of the system including the limiting behavior is studied for two types of mutation-selection models.
Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin
2017-01-01
There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation. PMID:28225811
Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin
2017-01-01
There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation.
[Computer aided design and rapid manufacturing of removable partial denture frameworks].
Han, Jing; Lü, Pei-jun; Wang, Yong
2010-08-01
To introduce a method of digital modeling and fabricating removable partial denture (RPD) frameworks using self-developed software for RPD design and rapid manufacturing system. The three-dimensional data of two partially dentate dental casts were obtained using a three-dimensional crossing section scanner. Self-developed software package for RPD design was used to decide the path of insertion and to design different components of RPD frameworks. The components included occlusal rest, clasp, lingual bar, polymeric retention framework and maxillary major connector. The design procedure for the components was as following: first, determine the outline of the component. Second, build the tissue surface of the component using the scanned data within the outline. Third, preset cross section was used to produce the polished surface. Finally, different RPD components were modeled respectively and connected by minor connectors to form an integrated RPD framework. The finished data were imported into a self-developed selective laser melting (SLM) machine and metal frameworks were fabricated directly. RPD frameworks for the two scanned dental casts were modeled with this self-developed program and metal RPD frameworks were successfully fabricated using SLM method. The finished metal frameworks fit well on the plaster models. The self-developed computer aided design and computer aided manufacture (CAD-CAM) system for RPD design and fabrication has completely independent intellectual property rights. It provides a new method of manufacturing metal RPD frameworks.
An Existential Framework for Understanding the Counseling Needs of Clients
ERIC Educational Resources Information Center
Spillers, Cindy S.
2007-01-01
Purpose: To offer an existential framework for understanding some of the emotional and grieving issues that can accompany communication disorders. Method: A narrative review of selected existential psychology literature is provided. I. Yalom's (1980, 1986) model is used as a foundation to explore the 4 existential issues of death,…
Yu, Yinan; Diamantaras, Konstantinos I; McKelvey, Tomas; Kung, Sun-Yuan
2018-02-01
In kernel-based classification models, given limited computational power and storage capacity, operations over the full kernel matrix becomes prohibitive. In this paper, we propose a new supervised learning framework using kernel models for sequential data processing. The framework is based on two components that both aim at enhancing the classification capability with a subset selection scheme. The first part is a subspace projection technique in the reproducing kernel Hilbert space using a CLAss-specific Subspace Kernel representation for kernel approximation. In the second part, we propose a novel structural risk minimization algorithm called the adaptive margin slack minimization to iteratively improve the classification accuracy by an adaptive data selection. We motivate each part separately, and then integrate them into learning frameworks for large scale data. We propose two such frameworks: the memory efficient sequential processing for sequential data processing and the parallelized sequential processing for distributed computing with sequential data acquisition. We test our methods on several benchmark data sets and compared with the state-of-the-art techniques to verify the validity of the proposed techniques.
NASA Astrophysics Data System (ADS)
Alipour, M.; Kibler, K. M.
2017-12-01
Despite advances in flow prediction, managers of ungauged rivers located within broad regions of sparse hydrometeorologic observation still lack prescriptive methods robust to the data challenges of such regions. We propose a multi-objective streamflow prediction framework for regions of minimum observation to select models that balance runoff efficiency with choice of accurate parameter values. We supplement sparse observed data with uncertain or low-resolution information incorporated as `soft' a priori parameter estimates. The performance of the proposed framework is tested against traditional single-objective and constrained single-objective calibrations in two catchments in a remote area of southwestern China. We find that the multi-objective approach performs well with respect to runoff efficiency in both catchments (NSE = 0.74 and 0.72), within the range of efficiencies returned by other models (NSE = 0.67 - 0.78). However, soil moisture capacity estimated by the multi-objective model resonates with a priori estimates (parameter residuals of 61 cm versus 289 and 518 cm for maximum soil moisture capacity in one catchment, and 20 cm versus 246 and 475 cm in the other; parameter residuals of 0.48 versus 0.65 and 0.7 for soil moisture distribution shape factor in one catchment, and 0.91 versus 0.79 and 1.24 in the other). Thus, optimization to a multi-criteria objective function led to very different representations of soil moisture capacity as compared to models selected by single-objective calibration, without compromising runoff efficiency. These different soil moisture representations may translate into considerably different hydrological behaviors. The proposed approach thus offers a preliminary step towards greater process understanding in regions of severe data limitations. For instance, the multi-objective framework may be an adept tool to discern between models of similar efficiency to select models that provide the "right answers for the right reasons". Managers may feel more confident to utilize such models to predict flows in fully ungauged areas.
Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Cepeda-Negrete, Jonathan; Ibarra-Manzano, Mario Alberto; Chalopin, Claire
2017-12-01
Brain tumor segmentation is a routine process in a clinical setting and provides useful information for diagnosis and treatment planning. Manual segmentation, performed by physicians or radiologists, is a time-consuming task due to the large quantity of medical data generated presently. Hence, automatic segmentation methods are needed, and several approaches have been introduced in recent years including the Localized Region-based Active Contour Model (LRACM). There are many popular LRACM, but each of them presents strong and weak points. In this paper, the automatic selection of LRACM based on image content and its application on brain tumor segmentation is presented. Thereby, a framework to select one of three LRACM, i.e., Local Gaussian Distribution Fitting (LGDF), localized Chan-Vese (C-V) and Localized Active Contour Model with Background Intensity Compensation (LACM-BIC), is proposed. Twelve visual features are extracted to properly select the method that may process a given input image. The system is based on a supervised approach. Applied specifically to Magnetic Resonance Imaging (MRI) images, the experiments showed that the proposed system is able to correctly select the suitable LRACM to handle a specific image. Consequently, the selection framework achieves better accuracy performance than the three LRACM separately. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Deliparaschos, Kyriakos M.; Michail, Konstantinos; Zolotas, Argyrios C.; Tzafestas, Spyros G.
2016-05-01
This work presents a field programmable gate array (FPGA)-based embedded software platform coupled with a software-based plant, forming a hardware-in-the-loop (HIL) that is used to validate a systematic sensor selection framework. The systematic sensor selection framework combines multi-objective optimization, linear-quadratic-Gaussian (LQG)-type control, and the nonlinear model of a maglev suspension. A robustness analysis of the closed-loop is followed (prior to implementation) supporting the appropriateness of the solution under parametric variation. The analysis also shows that quantization is robust under different controller gains. While the LQG controller is implemented on an FPGA, the physical process is realized in a high-level system modeling environment. FPGA technology enables rapid evaluation of the algorithms and test designs under realistic scenarios avoiding heavy time penalty associated with hardware description language (HDL) simulators. The HIL technique facilitates significant speed-up in the required execution time when compared to its software-based counterpart model.
Borycki, E M; Kushniruk, A W; Bellwood, P; Brender, J
2012-01-01
The objective of this paper is to examine the extent, range and scope to which frameworks, models and theories dealing with technology-induced error have arisen in the biomedical and life sciences literature as indexed by Medline®. To better understand the state of work in the area of technology-induced error involving frameworks, models and theories, the authors conducted a search of Medline® using selected key words identified from seminal articles in this research area. Articles were reviewed and those pertaining to frameworks, models or theories dealing with technology-induced error were further reviewed by two researchers. All articles from Medline® from its inception to April of 2011 were searched using the above outlined strategy. 239 citations were returned. Each of the abstracts for the 239 citations were reviewed by two researchers. Eleven articles met the criteria based on abstract review. These 11 articles were downloaded for further in-depth review. The majority of the articles obtained describe frameworks and models with reference to theories developed in other literatures outside of healthcare. The papers were grouped into several areas. It was found that articles drew mainly from three literatures: 1) the human factors literature (including human-computer interaction and cognition), 2) the organizational behavior/sociotechnical literature, and 3) the software engineering literature. A variety of frameworks and models were found in the biomedical and life sciences literatures. These frameworks and models drew upon and extended frameworks, models and theoretical perspectives that have emerged in other literatures. These frameworks and models are informing an emerging line of research in health and biomedical informatics involving technology-induced errors in healthcare.
Cognitive niches: an ecological model of strategy selection.
Marewski, Julian N; Schooler, Lael J
2011-07-01
How do people select among different strategies to accomplish a given task? Across disciplines, the strategy selection problem represents a major challenge. We propose a quantitative model that predicts how selection emerges through the interplay among strategies, cognitive capacities, and the environment. This interplay carves out for each strategy a cognitive niche, that is, a limited number of situations in which the strategy can be applied, simplifying strategy selection. To illustrate our proposal, we consider selection in the context of 2 theories: the simple heuristics framework and the ACT-R (adaptive control of thought-rational) architecture of cognition. From the heuristics framework, we adopt the thesis that people make decisions by selecting from a repertoire of simple decision strategies that exploit regularities in the environment and draw on cognitive capacities, such as memory and time perception. ACT-R provides a quantitative theory of how these capacities adapt to the environment. In 14 simulations and 10 experiments, we consider the choice between strategies that operate on the accessibility of memories and those that depend on elaborate knowledge about the world. Based on Internet statistics, our model quantitatively predicts people's familiarity with and knowledge of real-world objects, the distributional characteristics of the associated speed of memory retrieval, and the cognitive niches of classic decision strategies, including those of the fluency, recognition, integration, lexicographic, and sequential-sampling heuristics. In doing so, the model specifies when people will be able to apply different strategies and how accurate, fast, and effortless people's decisions will be.
Assessing risk to birds from industrial wind energy development via paired resource selection nodels
Tricia A. Miller; Robert P. Brooks; Michael Lanzone; David Brandes; Jeff Cooper; Kieran O' malley; Charles Maisonneuve; Junior Tremblay; Adam Duerr; Todd Katzner
2014-01-01
When wildlife habitat overlaps with industrial development animals may be harmed. Because wildlife and people select resources to maximize biological fitness and economic return, respectively, we estimated risk, the probability of eagles encountering and being affected by turbines, by overlaying models of resource selection for each entity. This conceptual framework...
USING MM5 VERSION 2 WITH CMAQ AND MODELS-3, A USER'S GUIDE AND TUTORIAL
Meteorological data are important in many of the processes simulated in the Community Multi-Scale Air Quality (CMAQ) model and the Models-3 framework. The first meteorology model that has been selected and evaluated with CMAQ is the Fifth-Generation Pennsylvania State University...
Conceptual framework for describing selected urban and community impacts of federal energy policies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, F.A,; Marcus, A.A.; Keller, D.
1980-06-01
A conceptual framework is presented for describing selected urban and community impacts of Federal energy policies. The framework depends on a simple causal model. The outputs of the model are impacts, changes in the state of the world of particular interest to policymakers. At any given time, a set of determinants account for the state of the world with respect to an impact category. Application of the model to a particular impact category requires: establishing a definition and measure for the impact category and identifying the determinants of these impacts. Analysis of the impact of a particular policy requires themore » following: identifying the policy and its effects (as estimated by others), isolating any effects that themselves constitute an urban and community impact, identifying any effects that change the value of determinants, and describing the impact with reference to the new values of determinants. This report provides a framework for these steps. Three impacts addressed are: neighborhood stability, housing availability, and quality and availability of public services. In each chapter, a definition and measure for the impact are specified; its principal determinants are identified; how the causal model can be used to estimate impacts by applying it to three illustrative Federal policies (domestic oil price decontrol, building energy performance standards, and increased Federal aid for mass transit) is demonstrated. (MCW)« less
Tian, Yuxi; Schuemie, Martijn J; Suchard, Marc A
2018-06-22
Propensity score adjustment is a popular approach for confounding control in observational studies. Reliable frameworks are needed to determine relative propensity score performance in large-scale studies, and to establish optimal propensity score model selection methods. We detail a propensity score evaluation framework that includes synthetic and real-world data experiments. Our synthetic experimental design extends the 'plasmode' framework and simulates survival data under known effect sizes, and our real-world experiments use a set of negative control outcomes with presumed null effect sizes. In reproductions of two published cohort studies, we compare two propensity score estimation methods that contrast in their model selection approach: L1-regularized regression that conducts a penalized likelihood regression, and the 'high-dimensional propensity score' (hdPS) that employs a univariate covariate screen. We evaluate methods on a range of outcome-dependent and outcome-independent metrics. L1-regularization propensity score methods achieve superior model fit, covariate balance and negative control bias reduction compared with the hdPS. Simulation results are mixed and fluctuate with simulation parameters, revealing a limitation of simulation under the proportional hazards framework. Including regularization with the hdPS reduces commonly reported non-convergence issues but has little effect on propensity score performance. L1-regularization incorporates all covariates simultaneously into the propensity score model and offers propensity score performance superior to the hdPS marginal screen.
Jane, Nancy Yesudhas; Nehemiah, Khanna Harichandran; Arputharaj, Kannan
2016-01-01
Clinical time-series data acquired from electronic health records (EHR) are liable to temporal complexities such as irregular observations, missing values and time constrained attributes that make the knowledge discovery process challenging. This paper presents a temporal rough set induced neuro-fuzzy (TRiNF) mining framework that handles these complexities and builds an effective clinical decision-making system. TRiNF provides two functionalities namely temporal data acquisition (TDA) and temporal classification. In TDA, a time-series forecasting model is constructed by adopting an improved double exponential smoothing method. The forecasting model is used in missing value imputation and temporal pattern extraction. The relevant attributes are selected using a temporal pattern based rough set approach. In temporal classification, a classification model is built with the selected attributes using a temporal pattern induced neuro-fuzzy classifier. For experimentation, this work uses two clinical time series dataset of hepatitis and thrombosis patients. The experimental result shows that with the proposed TRiNF framework, there is a significant reduction in the error rate, thereby obtaining the classification accuracy on an average of 92.59% for hepatitis and 91.69% for thrombosis dataset. The obtained classification results prove the efficiency of the proposed framework in terms of its improved classification accuracy.
Iseki, Ryuta
2004-12-01
This article reviewed research on construction of situation models during reading. To position variety of research in overall process appropriately, an unitary framework was devised in terms of three theories for on-line processing: resonance process, event-indexing model, and constructionist theory. Resonance process was treated as a basic activation mechanism in the framework. Event-indexing model was regarded as a screening system which selected and encoded activated information in situation models along with situational dimensions. Constructionist theory was considered to have a supervisory role based on coherence and explanation. From a view of the unitary framework, some problems concerning each theory were examined and possible interpretations were given. Finally, it was pointed out that there were little theoretical arguments on associative processing at global level and encoding text- and inference-information into long-term memory.
Learning in the model space for cognitive fault diagnosis.
Chen, Huanhuan; Tino, Peter; Rodan, Ali; Yao, Xin
2014-01-01
The emergence of large sensor networks has facilitated the collection of large amounts of real-time data to monitor and control complex engineering systems. However, in many cases the collected data may be incomplete or inconsistent, while the underlying environment may be time-varying or unformulated. In this paper, we develop an innovative cognitive fault diagnosis framework that tackles the above challenges. This framework investigates fault diagnosis in the model space instead of the signal space. Learning in the model space is implemented by fitting a series of models using a series of signal segments selected with a sliding window. By investigating the learning techniques in the fitted model space, faulty models can be discriminated from healthy models using a one-class learning algorithm. The framework enables us to construct a fault library when unknown faults occur, which can be regarded as cognitive fault isolation. This paper also theoretically investigates how to measure the pairwise distance between two models in the model space and incorporates the model distance into the learning algorithm in the model space. The results on three benchmark applications and one simulated model for the Barcelona water distribution network confirm the effectiveness of the proposed framework.
Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy
Rosewater, David; Ferreira, Summer; Schoenwald, David; ...
2018-01-25
Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less
Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosewater, David; Ferreira, Summer; Schoenwald, David
Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less
A modular approach for item response theory modeling with the R package flirt.
Jeon, Minjeong; Rijmen, Frank
2016-06-01
The new R package flirt is introduced for flexible item response theory (IRT) modeling of psychological, educational, and behavior assessment data. flirt integrates a generalized linear and nonlinear mixed modeling framework with graphical model theory. The graphical model framework allows for efficient maximum likelihood estimation. The key feature of flirt is its modular approach to facilitate convenient and flexible model specifications. Researchers can construct customized IRT models by simply selecting various modeling modules, such as parametric forms, number of dimensions, item and person covariates, person groups, link functions, etc. In this paper, we describe major features of flirt and provide examples to illustrate how flirt works in practice.
GAMES II Project: a general architecture for medical knowledge-based systems.
Bruno, F; Kindler, H; Leaning, M; Moustakis, V; Scherrer, J R; Schreiber, G; Stefanelli, M
1994-10-01
GAMES II aims at developing a comprehensive and commercially viable methodology to avoid problems ordinarily occurring in KBS development. GAMES II methodology proposes to design a KBS starting from an epistemological model of medical reasoning (the Select and Test Model). The design is viewed as a process of adding symbol level information to the epistemological model. The architectural framework provided by GAMES II integrates the use of different formalisms and techniques providing a large set of tools. The user can select the most suitable one for representing a piece of knowledge after a careful analysis of its epistemological characteristics. Special attention is devoted to the tools dealing with knowledge acquisition (both manual and automatic). A panel of practicing physicians are assessing the medical value of such a framework and its related tools by using it in a practical application.
NASA Astrophysics Data System (ADS)
Roslindar Yaziz, Siti; Zakaria, Roslinazairimah; Hura Ahmad, Maizah
2017-09-01
The model of Box-Jenkins - GARCH has been shown to be a promising tool for forecasting higher volatile time series. In this study, the framework of determining the optimal sample size using Box-Jenkins model with GARCH is proposed for practical application in analysing and forecasting higher volatile data. The proposed framework is employed to daily world gold price series from year 1971 to 2013. The data is divided into 12 different sample sizes (from 30 to 10200). Each sample is tested using different combination of the hybrid Box-Jenkins - GARCH model. Our study shows that the optimal sample size to forecast gold price using the framework of the hybrid model is 1250 data of 5-year sample. Hence, the empirical results of model selection criteria and 1-step-ahead forecasting evaluations suggest that the latest 12.25% (5-year data) of 10200 data is sufficient enough to be employed in the model of Box-Jenkins - GARCH with similar forecasting performance as by using 41-year data.
Yang, Guoxiang; Best, Elly P H
2015-09-15
Best management practices (BMPs) can be used effectively to reduce nutrient loads transported from non-point sources to receiving water bodies. However, methodologies of BMP selection and placement in a cost-effective way are needed to assist watershed management planners and stakeholders. We developed a novel modeling-optimization framework that can be used to find cost-effective solutions of BMP placement to attain nutrient load reduction targets. This was accomplished by integrating a GIS-based BMP siting method, a WQM-TMDL-N modeling approach to estimate total nitrogen (TN) loading, and a multi-objective optimization algorithm. Wetland restoration and buffer strip implementation were the two BMP categories used to explore the performance of this framework, both differing greatly in complexity of spatial analysis for site identification. Minimizing TN load and BMP cost were the two objective functions for the optimization process. The performance of this framework was demonstrated in the Tippecanoe River watershed, Indiana, USA. Optimized scenario-based load reduction indicated that the wetland subset selected by the minimum scenario had the greatest N removal efficiency. Buffer strips were more effective for load removal than wetlands. The optimized solutions provided a range of trade-offs between the two objective functions for both BMPs. This framework can be expanded conveniently to a regional scale because the NHDPlus catchment serves as its spatial computational unit. The present study demonstrated the potential of this framework to find cost-effective solutions to meet a water quality target, such as a 20% TN load reduction, under different conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reasons Preventing Teachers from Acting within the Framework of Ethical Principles
ERIC Educational Resources Information Center
Dag, Nilgün; Arslantas, Halis Adnan
2015-01-01
This study aims at putting forth the reasons preventing teachers from acting ethically, acting within the framework of ethical principles and having an ethical tendency. This study featuring a qualitative research model taking as a basis the case study approach followed a path of selecting people that can be a rich source of information for…
A Fast, Open EEG Classification Framework Based on Feature Compression and Channel Ranking
Han, Jiuqi; Zhao, Yuwei; Sun, Hongji; Chen, Jiayun; Ke, Ang; Xu, Gesen; Zhang, Hualiang; Zhou, Jin; Wang, Changyong
2018-01-01
Superior feature extraction, channel selection and classification methods are essential for designing electroencephalography (EEG) classification frameworks. However, the performance of most frameworks is limited by their improper channel selection methods and too specifical design, leading to high computational complexity, non-convergent procedure and narrow expansibility. In this paper, to remedy these drawbacks, we propose a fast, open EEG classification framework centralized by EEG feature compression, low-dimensional representation, and convergent iterative channel ranking. First, to reduce the complexity, we use data clustering to compress the EEG features channel-wise, packing the high-dimensional EEG signal, and endowing them with numerical signatures. Second, to provide easy access to alternative superior methods, we structurally represent each EEG trial in a feature vector with its corresponding numerical signature. Thus, the recorded signals of many trials shrink to a low-dimensional structural matrix compatible with most pattern recognition methods. Third, a series of effective iterative feature selection approaches with theoretical convergence is introduced to rank the EEG channels and remove redundant ones, further accelerating the EEG classification process and ensuring its stability. Finally, a classical linear discriminant analysis (LDA) model is employed to classify a single EEG trial with selected channels. Experimental results on two real world brain-computer interface (BCI) competition datasets demonstrate the promising performance of the proposed framework over state-of-the-art methods. PMID:29713262
NASA Astrophysics Data System (ADS)
Alipour, M. H.; Kibler, Kelly M.
2018-02-01
A framework methodology is proposed for streamflow prediction in poorly-gauged rivers located within large-scale regions of sparse hydrometeorologic observation. A multi-criteria model evaluation is developed to select models that balance runoff efficiency with selection of accurate parameter values. Sparse observed data are supplemented by uncertain or low-resolution information, incorporated as 'soft' data, to estimate parameter values a priori. Model performance is tested in two catchments within a data-poor region of southwestern China, and results are compared to models selected using alternative calibration methods. While all models perform consistently with respect to runoff efficiency (NSE range of 0.67-0.78), models selected using the proposed multi-objective method may incorporate more representative parameter values than those selected by traditional calibration. Notably, parameter values estimated by the proposed method resonate with direct estimates of catchment subsurface storage capacity (parameter residuals of 20 and 61 mm for maximum soil moisture capacity (Cmax), and 0.91 and 0.48 for soil moisture distribution shape factor (B); where a parameter residual is equal to the centroid of a soft parameter value minus the calibrated parameter value). A model more traditionally calibrated to observed data only (single-objective model) estimates a much lower soil moisture capacity (residuals of Cmax = 475 and 518 mm and B = 1.24 and 0.7). A constrained single-objective model also underestimates maximum soil moisture capacity relative to a priori estimates (residuals of Cmax = 246 and 289 mm). The proposed method may allow managers to more confidently transfer calibrated models to ungauged catchments for streamflow predictions, even in the world's most data-limited regions.
Journal selection decisions: a biomedical library operations research model. I. The framework.
Kraft, D H; Polacsek, R A; Soergel, L; Burns, K; Klair, A
1976-01-01
The problem of deciding which journal titles to select for acquisition in a biomedical library is modeled. The approach taken is based on cost/benefit ratios. Measures of journal worth, methods of data collection, and journal cost data are considered. The emphasis is on the development of a practical process for selecting journal titles, based on the objectivity and rationality of the model; and on the collection of the approprate data and library statistics in a reasonable manner. The implications of this process towards an overall management information system (MIS) for biomedical serials handling are discussed. PMID:820391
NASA Astrophysics Data System (ADS)
Cook, L. M.; Samaras, C.; Anderson, C.
2016-12-01
Engineers generally use historical precipitation trends to inform assumptions and parameters for long-lived infrastructure designs. However, resilient design calls for the adjustment of current engineering practice to incorporate a range of future climate conditions that are likely to be different than the past. Despite the availability of future projections from downscaled climate models, there remains a considerable mismatch between climate model outputs and the inputs needed in the engineering community to incorporate climate resiliency. These factors include differences in temporal and spatial scales, model uncertainties, and a lack of criteria for selection of an ensemble of models. This research addresses the limitations to working with climate data by providing a framework for the use of publicly available downscaled climate projections to inform engineering resiliency. The framework consists of five steps: 1) selecting the data source based on the engineering application, 2) extracting the data at a specific location, 3) validating for performance against observed data, 4) post-processing for bias or scale, and 5) selecting the ensemble and calculating statistics. The framework is illustrated with an example application to extreme precipitation-frequency statistics, the 25-year daily precipitation depth, using four publically available climate data sources: NARCCAP, USGS, Reclamation, and MACA. The attached figure presents the results for step 5 from the framework, analyzing how the 24H25Y depth changes when the model ensemble is culled based on model performance against observed data, for both post-processing techniques: bias-correction and change factor. Culling the model ensemble increases both the mean and median values for all data sources, and reduces range for NARCCAP and MACA ensembles due to elimination of poorer performing models, and in some cases, those that predict a decrease in future 24H25Y precipitation volumes. This result is especially relevant to engineers who wish to reduce the range of the ensemble and remove contradicting models; however, this result is not generalizable for all cases. Finally, this research highlights the need for the formation of an intermediate entity that is able to translate climate projections into relevant engineering information.
Observed Characteristics and Teacher Quality: Impacts of Sample Selection on a Value Added Model
ERIC Educational Resources Information Center
Winters, Marcus A.; Dixon, Bruce L.; Greene, Jay P.
2012-01-01
We measure the impact of observed teacher characteristics on student math and reading proficiency using a rich dataset from Florida. We expand upon prior work by accounting directly for nonrandom attrition of teachers from the classroom in a sample selection framework. We find evidence that sample selection is present in the estimation of the…
Computer-Aided Group Problem Solving for Unified Life Cycle Engineering (ULCE)
1989-02-01
defining the problem, generating alternative solutions, evaluating alternatives, selecting alternatives, and implementing the solution. Systems...specialist in group dynamics, assists the group in formulating the problem and selecting a model framework. The analyst provides the group with computer...allocating resources, evaluating and selecting options, making judgments explicit, and analyzing dynamic systems. c. University of Rhode Island Drs. Geoffery
Hierarchy of Gambling Choices: A Framework for Examining EGM Gambling Environment Preferences.
Thorne, Hannah Briony; Rockloff, Matthew Justus; Langham, Erika; Li, En
2016-12-01
This paper presents the Hierarchy of Gambling Choices (HGC), which is a consumer-oriented framework for understanding the key environmental and contextual features that influence peoples' selections of online and venue-based electronic gaming machines (EGMs). The HGC framework proposes that EGM gamblers make choices in selection of EGM gambling experiences utilising Tversky's (Psychol Rev 79(4):281-299, 1972). Elimination-by-Aspects model, and organise their choice in a hierarchical manner by virtue of EGMs being an "experience good" (Nelson in J Polit Econ 78(2):311-329, 1970). EGM features are divided into three levels: the platform-including, online, mobile or land-based; the provider or specific venue in which the gambling occurs; and the game or machine characteristics, such as graphical themes and bonus features. This framework will contribute to the gambling field by providing a manner in which to systematically explore the environment surrounding EGM gambling and how it affects behaviour.
McClintock, B.T.; White, Gary C.; Burnham, K.P.; Pryde, M.A.; Thomson, David L.; Cooch, Evan G.; Conroy, Michael J.
2009-01-01
In recent years, the mark-resight method for estimating abundance when the number of marked individuals is known has become increasingly popular. By using field-readable bands that may be resighted from a distance, these techniques can be applied to many species, and are particularly useful for relatively small, closed populations. However, due to the different assumptions and general rigidity of the available estimators, researchers must often commit to a particular model without rigorous quantitative justification for model selection based on the data. Here we introduce a nonlinear logit-normal mixed effects model addressing this need for a more generalized framework. Similar to models available for mark-recapture studies, the estimator allows a wide variety of sampling conditions to be parameterized efficiently under a robust sampling design. Resighting rates may be modeled simply or with more complexity by including fixed temporal and random individual heterogeneity effects. Using information theory, the model(s) best supported by the data may be selected from the candidate models proposed. Under this generalized framework, we hope the uncertainty associated with mark-resight model selection will be reduced substantially. We compare our model to other mark-resight abundance estimators when applied to mainland New Zealand robin (Petroica australis) data recently collected in Eglinton Valley, Fiordland National Park and summarize its performance in simulation experiments.
Computational intelligence in earth sciences and environmental applications: issues and challenges.
Cherkassky, V; Krasnopolsky, V; Solomatine, D P; Valdes, J
2006-03-01
This paper introduces a generic theoretical framework for predictive learning, and relates it to data-driven and learning applications in earth and environmental sciences. The issues of data quality, selection of the error function, incorporation of the predictive learning methods into the existing modeling frameworks, expert knowledge, model uncertainty, and other application-domain specific problems are discussed. A brief overview of the papers in the Special Issue is provided, followed by discussion of open issues and directions for future research.
Bayes factors and multimodel inference
Link, W.A.; Barker, R.J.; Thomson, David L.; Cooch, Evan G.; Conroy, Michael J.
2009-01-01
Multimodel inference has two main themes: model selection, and model averaging. Model averaging is a means of making inference conditional on a model set, rather than on a selected model, allowing formal recognition of the uncertainty associated with model choice. The Bayesian paradigm provides a natural framework for model averaging, and provides a context for evaluation of the commonly used AIC weights. We review Bayesian multimodel inference, noting the importance of Bayes factors. Noting the sensitivity of Bayes factors to the choice of priors on parameters, we define and propose nonpreferential priors as offering a reasonable standard for objective multimodel inference.
Applications of Heider's p-o-x Balance Model to Classroom Situations
ERIC Educational Resources Information Center
Richey, Harold; Richey, Marjorie H.
1975-01-01
Some selected principles of Heider's balance theory are presented and the p-o-x model is explained as a theoretical framework for predicting responses to interpersonal situations in which the participants are in attitudinal agreement or disagreement. (Author)
An integrated analysis of phenotypic selection on insect body size and development time.
Eck, Daniel J; Shaw, Ruth G; Geyer, Charles J; Kingsolver, Joel G
2015-09-01
Most studies of phenotypic selection do not estimate selection or fitness surfaces for multiple components of fitness within a unified statistical framework. This makes it difficult or impossible to assess how selection operates on traits through variation in multiple components of fitness. We describe a new generation of aster models that can evaluate phenotypic selection by accounting for timing of life-history transitions and their effect on population growth rate, in addition to survival and reproductive output. We use this approach to estimate selection on body size and development time for a field population of the herbivorous insect, Manduca sexta (Lepidoptera: Sphingidae). Estimated fitness surfaces revealed strong and significant directional selection favoring both larger adult size (via effects on egg counts) and more rapid rates of early larval development (via effects on larval survival). Incorporating the timing of reproduction and its influence on population growth rate into the analysis resulted in larger values for size in early larval development at which fitness is maximized, and weaker selection on size in early larval development. These results illustrate how the interplay of different components of fitness can influence selection on size and development time. This integrated modeling framework can be readily applied to studies of phenotypic selection via multiple fitness components in other systems. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Automated Predictive Big Data Analytics Using Ontology Based Semantics.
Nural, Mustafa V; Cotterell, Michael E; Peng, Hao; Xie, Rui; Ma, Ping; Miller, John A
2015-10-01
Predictive analytics in the big data era is taking on an ever increasingly important role. Issues related to choice on modeling technique, estimation procedure (or algorithm) and efficient execution can present significant challenges. For example, selection of appropriate and optimal models for big data analytics often requires careful investigation and considerable expertise which might not always be readily available. In this paper, we propose to use semantic technology to assist data analysts and data scientists in selecting appropriate modeling techniques and building specific models as well as the rationale for the techniques and models selected. To formally describe the modeling techniques, models and results, we developed the Analytics Ontology that supports inferencing for semi-automated model selection. The SCALATION framework, which currently supports over thirty modeling techniques for predictive big data analytics is used as a testbed for evaluating the use of semantic technology.
Automated Predictive Big Data Analytics Using Ontology Based Semantics
Nural, Mustafa V.; Cotterell, Michael E.; Peng, Hao; Xie, Rui; Ma, Ping; Miller, John A.
2017-01-01
Predictive analytics in the big data era is taking on an ever increasingly important role. Issues related to choice on modeling technique, estimation procedure (or algorithm) and efficient execution can present significant challenges. For example, selection of appropriate and optimal models for big data analytics often requires careful investigation and considerable expertise which might not always be readily available. In this paper, we propose to use semantic technology to assist data analysts and data scientists in selecting appropriate modeling techniques and building specific models as well as the rationale for the techniques and models selected. To formally describe the modeling techniques, models and results, we developed the Analytics Ontology that supports inferencing for semi-automated model selection. The SCALATION framework, which currently supports over thirty modeling techniques for predictive big data analytics is used as a testbed for evaluating the use of semantic technology. PMID:29657954
Computer-aided solvent selection for multiple scenarios operation of limited-known properties solute
NASA Astrophysics Data System (ADS)
Anantpinijwatna, Amata
2017-12-01
Solvents have been applied for both production and separation of the complex chemical substance such as the pyrrolidine-2-carbonyl chloride (C5H8ClNO). Since the properties of the target substance itself are largely unknown, the selection of the solvent is limited by experiment only. However, the reaction carried out in conventional solvents are either afforded low yields or obtained slow reaction rates. Moreover, the solvents are also highly toxic and environmental unfriendly. Alternative solvents are required to enhance the production and lessen the harmful effect toward both organism and environment. A costly, time-consuming, and laborious experiments are required for acquiring a better solvent suite for production and separation of these complex compounds; whereas, a limited improvement can be obtained. On the other hand, the combination of the state-of-the-art thermodynamic models can provide faster and more robust solutions to this solvent selection problem. In this work, a framework for solvents selection in complex chemical production process is presented. The framework combines a group-contribution thermodynamic model and a segment activity coefficient model for predicting chemical properties and solubilities of the target chemical in newly formulated solvents. A guideline for solvent selection is also included. The potential of the selected solvents is then analysed and verified. The improvement toward the production yield, production rate, and product separation is then discussed.
Nowlin, Jon O.; Brown, W.M.; Smith, L.H.; Hoffman, R.J.
1980-01-01
The objectives of the Geological Survey 's river-quality assessment in the Truckee and Carson River basins in California and Nevada are to identify the significant resource management problems; to develop techniques to assess the problems; and to effectively communicate results to responsible managers. Six major elements of the assessment to be completed by October 1981 are (1) a detailing of the legal, institutional, and structural development of water resources in the basins and the current problems and conflicts; (2) a compilation and synthesis of the physical hydrology of the basins; (3) development of a special workshop approach to involve local management in the direction and results of the study; (4) development of a comprehensive streamflow model emcompassing both basins to provide a quantitative hydrologic framework for water-quality analysis; (5) development of a water-quality transport model for selected constituents and characteristics on selected reaches of the Truckee River; and (6) a detailed examination of selected fish habitats for specified reaches of the Truckee River. Progress will be periodically reported in reports, maps, computer data files, mathematical models, a bibliography, and public presentations. In building a basic framework to develop techniques, the basins were viewed as a single hydrologic unit because of interconnecting diversion structures. The framework comprises 13 hydrographic subunits to facilitate modeling and sampling. Several significant issues beyond the scope of the assessment were considered as supplementary proposals; water-quality loadings in Truckee and Carson Rivers, urban runoff in Reno and management alternatives, and a model of limnological processes in Lahontan Reservoir. (USGS)
Use of Annotations for Component and Framework Interoperability
NASA Astrophysics Data System (ADS)
David, O.; Lloyd, W.; Carlson, J.; Leavesley, G. H.; Geter, F.
2009-12-01
The popular programming languages Java and C# provide annotations, a form of meta-data construct. Software frameworks for web integration, web services, database access, and unit testing now take advantage of annotations to reduce the complexity of APIs and the quantity of integration code between the application and framework infrastructure. Adopting annotation features in frameworks has been observed to lead to cleaner and leaner application code. The USDA Object Modeling System (OMS) version 3.0 fully embraces the annotation approach and additionally defines a meta-data standard for components and models. In version 3.0 framework/model integration previously accomplished using API calls is now achieved using descriptive annotations. This enables the framework to provide additional functionality non-invasively such as implicit multithreading, and auto-documenting capabilities while achieving a significant reduction in the size of the model source code. Using a non-invasive methodology leads to models and modeling components with only minimal dependencies on the modeling framework. Since models and modeling components are not directly bound to framework by the use of specific APIs and/or data types they can more easily be reused both within the framework as well as outside of it. To study the effectiveness of an annotation based framework approach with other modeling frameworks, a framework-invasiveness study was conducted to evaluate the effects of framework design on model code quality. A monthly water balance model was implemented across several modeling frameworks and several software metrics were collected. The metrics selected were measures of non-invasive design methods for modeling frameworks from a software engineering perspective. It appears that the use of annotations positively impacts several software quality measures. In a next step, the PRMS model was implemented in OMS 3.0 and is currently being implemented for water supply forecasting in the western United States at the USDA NRCS National Water and Climate Center. PRMS is a component based modular precipitation-runoff model developed to evaluate the impacts of various combinations of precipitation, climate, and land use on streamflow and general basin hydrology. The new OMS 3.0 PRMS model source code is more concise and flexible as a result of using the new framework’s annotation based approach. The fully annotated components are now providing information directly for (i) model assembly and building, (ii) dataflow analysis for implicit multithreading, (iii) automated and comprehensive model documentation of component dependencies, physical data properties, (iv) automated model and component testing, and (v) automated audit-traceability to account for all model resources leading to a particular simulation result. Experience to date has demonstrated the multi-purpose value of using annotations. Annotations are also a feasible and practical method to enable interoperability among models and modeling frameworks. As a prototype example, model code annotations were used to generate binding and mediation code to allow the use of OMS 3.0 model components within the OpenMI context.
Model and Interoperability using Meta Data Annotations
NASA Astrophysics Data System (ADS)
David, O.
2011-12-01
Software frameworks and architectures are in need for meta data to efficiently support model integration. Modelers have to know the context of a model, often stepping into modeling semantics and auxiliary information usually not provided in a concise structure and universal format, consumable by a range of (modeling) tools. XML often seems the obvious solution for capturing meta data, but its wide adoption to facilitate model interoperability is limited by XML schema fragmentation, complexity, and verbosity outside of a data-automation process. Ontologies seem to overcome those shortcomings, however the practical significance of their use remains to be demonstrated. OMS version 3 took a different approach for meta data representation. The fundamental building block of a modular model in OMS is a software component representing a single physical process, calibration method, or data access approach. Here, programing language features known as Annotations or Attributes were adopted. Within other (non-modeling) frameworks it has been observed that annotations lead to cleaner and leaner application code. Framework-supported model integration, traditionally accomplished using Application Programming Interfaces (API) calls is now achieved using descriptive code annotations. Fully annotated components for various hydrological and Ag-system models now provide information directly for (i) model assembly and building, (ii) data flow analysis for implicit multi-threading or visualization, (iii) automated and comprehensive model documentation of component dependencies, physical data properties, (iv) automated model and component testing, calibration, and optimization, and (v) automated audit-traceability to account for all model resources leading to a particular simulation result. Such a non-invasive methodology leads to models and modeling components with only minimal dependencies on the modeling framework but a strong reference to its originating code. Since models and modeling components are not directly bound to framework by the use of specific APIs and/or data types they can more easily be reused both within the framework as well as outside. While providing all those capabilities, a significant reduction in the size of the model source code was achieved. To support the benefit of annotations for a modeler, studies were conducted to evaluate the effectiveness of an annotation based framework approach with other modeling frameworks and libraries, a framework-invasiveness study was conducted to evaluate the effects of framework design on model code quality. A typical hydrological model was implemented across several modeling frameworks and several software metrics were collected. The metrics selected were measures of non-invasive design methods for modeling frameworks from a software engineering perspective. It appears that the use of annotations positively impacts several software quality measures. Experience to date has demonstrated the multi-purpose value of using annotations. Annotations are also a feasible and practical method to enable interoperability among models and modeling frameworks.
Selective O 2 sorption at ambient temperatures via node distortions in Sc-MIL-100
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sava Gallis, Dorina F.; Chapman, Karena W.; Rodriguez, Mark A.
2016-04-14
In this study, oxygen selectivity in metal-organic frameworks (MOFs) at exceptionally high temperatures originally predicted by Density Functional Theory (DFT) and Grand Canonical Monte Carlo (GCMC) modeling is now confirmed by synthesis, sorption metal center access, in particular Sc and Fe. Based on DFT M-O 2 binding energies, we chose the large pored MIL-100 framework for metal center access, in particular Sc and Fe. Both resulted in preferential O 2 and N 2 gas uptake at temperatures ranging from 77 K to ambient temperatures (258 K, 298 K and 313 K).
A Semiautomated Framework for Integrating Expert Knowledge into Disease Marker Identification
Wang, Jing; Webb-Robertson, Bobbie-Jo M.; Matzke, Melissa M.; ...
2013-01-01
Background . The availability of large complex data sets generated by high throughput technologies has enabled the recent proliferation of disease biomarker studies. However, a recurring problem in deriving biological information from large data sets is how to best incorporate expert knowledge into the biomarker selection process. Objective . To develop a generalizable framework that can incorporate expert knowledge into data-driven processes in a semiautomated way while providing a metric for optimization in a biomarker selection scheme. Methods . The framework was implemented as a pipeline consisting of five components for the identification of signatures from integrated clustering (ISIC). Expertmore » knowledge was integrated into the biomarker identification process using the combination of two distinct approaches; a distance-based clustering approach and an expert knowledge-driven functional selection. Results . The utility of the developed framework ISIC was demonstrated on proteomics data from a study of chronic obstructive pulmonary disease (COPD). Biomarker candidates were identified in a mouse model using ISIC and validated in a study of a human cohort. Conclusions . Expert knowledge can be introduced into a biomarker discovery process in different ways to enhance the robustness of selected marker candidates. Developing strategies for extracting orthogonal and robust features from large data sets increases the chances of success in biomarker identification.« less
A Semiautomated Framework for Integrating Expert Knowledge into Disease Marker Identification
Wang, Jing; Webb-Robertson, Bobbie-Jo M.; Matzke, Melissa M.; Varnum, Susan M.; Brown, Joseph N.; Riensche, Roderick M.; Adkins, Joshua N.; Jacobs, Jon M.; Hoidal, John R.; Scholand, Mary Beth; Pounds, Joel G.; Blackburn, Michael R.; Rodland, Karin D.; McDermott, Jason E.
2013-01-01
Background. The availability of large complex data sets generated by high throughput technologies has enabled the recent proliferation of disease biomarker studies. However, a recurring problem in deriving biological information from large data sets is how to best incorporate expert knowledge into the biomarker selection process. Objective. To develop a generalizable framework that can incorporate expert knowledge into data-driven processes in a semiautomated way while providing a metric for optimization in a biomarker selection scheme. Methods. The framework was implemented as a pipeline consisting of five components for the identification of signatures from integrated clustering (ISIC). Expert knowledge was integrated into the biomarker identification process using the combination of two distinct approaches; a distance-based clustering approach and an expert knowledge-driven functional selection. Results. The utility of the developed framework ISIC was demonstrated on proteomics data from a study of chronic obstructive pulmonary disease (COPD). Biomarker candidates were identified in a mouse model using ISIC and validated in a study of a human cohort. Conclusions. Expert knowledge can be introduced into a biomarker discovery process in different ways to enhance the robustness of selected marker candidates. Developing strategies for extracting orthogonal and robust features from large data sets increases the chances of success in biomarker identification. PMID:24223463
A Semiautomated Framework for Integrating Expert Knowledge into Disease Marker Identification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Webb-Robertson, Bobbie-Jo M.; Matzke, Melissa M.
2013-10-01
Background. The availability of large complex data sets generated by high throughput technologies has enabled the recent proliferation of disease biomarker studies. However, a recurring problem in deriving biological information from large data sets is how to best incorporate expert knowledge into the biomarker selection process. Objective. To develop a generalizable framework that can incorporate expert knowledge into data-driven processes in a semiautomated way while providing a metric for optimization in a biomarker selection scheme. Methods. The framework was implemented as a pipeline consisting of five components for the identification of signatures from integrated clustering (ISIC). Expert knowledge was integratedmore » into the biomarker identification process using the combination of two distinct approaches; a distance-based clustering approach and an expert knowledge-driven functional selection. Results. The utility of the developed framework ISIC was demonstrated on proteomics data from a study of chronic obstructive pulmonary disease (COPD). Biomarker candidates were identified in a mouse model using ISIC and validated in a study of a human cohort. Conclusions. Expert knowledge can be introduced into a biomarker discovery process in different ways to enhance the robustness of selected marker candidates. Developing strategies for extracting orthogonal and robust features from large data sets increases the chances of success in biomarker identification.« less
Possibilities: A framework for modeling students' deductive reasoning in physics
NASA Astrophysics Data System (ADS)
Gaffney, Jonathan David Housley
Students often make errors when trying to solve qualitative or conceptual physics problems, and while many successful instructional interventions have been generated to prevent such errors, the process of deduction that students use when solving physics problems has not been thoroughly studied. In an effort to better understand that reasoning process, I have developed a new framework, which is based on the mental models framework in psychology championed by P. N. Johnson-Laird. My new framework models how students search possibility space when thinking about conceptual physics problems and suggests that errors arise from failing to flesh out all possibilities. It further suggests that instructional interventions should focus on making apparent those possibilities, as well as all physical consequences those possibilities would incur. The possibilities framework emerged from the analysis of data from a unique research project specifically invented for the purpose of understanding how students use deductive reasoning. In the selection task, participants were given a physics problem along with three written possible solutions with the goal of identifying which one of the three possible solutions was correct. Each participant was also asked to identify the errors in the incorrect solutions. For the study presented in this dissertation, participants not only performed the selection task individually on four problems, but they were also placed into groups of two or three and asked to discuss with each other the reasoning they used in making their choices and attempt to reach a consensus about which solution was correct. Finally, those groups were asked to work together to perform the selection task on three new problems. The possibilities framework appropriately models the reasoning that students use, and it makes useful predictions about potentially helpful instructional interventions. The study reported in this dissertation emphasizes the useful insight the possibilities framework provides. For example, this framework allows us to detect subtle differences in students' reasoning errors, even when those errors result in the same final answer. It also illuminates how simply mentioning overlooked quantities can instigate new lines of student reasoning. It allows us to better understand how well-known psychological biases, such as the belief bias, affect the reasoning process by preventing reasoners from fleshing out all of the possibilities. The possibilities framework also allows us to track student discussions about physics, revealing the need for all parties in communication to use the same set of possibilities in the conversations to facilitate successful understanding. The framework also suggests some of the influences that affect how reasoners choose between possible solutions to a given problem. This new framework for understanding how students reason when solving conceptual physics problems opens the door to a significant field of research. The framework itself needs to be further tested and developed, but it provides substantial suggestions for instructional interventions. If we hope to improve student reasoning in physics, the possibilities framework suggests that we are perhaps best served by teaching students how to fully flesh out the possibilities in every situation. This implies that we need to ensure students have a deep understanding of all of the implied possibilities afforded by the fundamental principles that are the cornerstones of the models we teach in physics classes.
Structured functional additive regression in reproducing kernel Hilbert spaces.
Zhu, Hongxiao; Yao, Fang; Zhang, Hao Helen
2014-06-01
Functional additive models (FAMs) provide a flexible yet simple framework for regressions involving functional predictors. The utilization of data-driven basis in an additive rather than linear structure naturally extends the classical functional linear model. However, the critical issue of selecting nonlinear additive components has been less studied. In this work, we propose a new regularization framework for the structure estimation in the context of Reproducing Kernel Hilbert Spaces. The proposed approach takes advantage of the functional principal components which greatly facilitates the implementation and the theoretical analysis. The selection and estimation are achieved by penalized least squares using a penalty which encourages the sparse structure of the additive components. Theoretical properties such as the rate of convergence are investigated. The empirical performance is demonstrated through simulation studies and a real data application.
Nahum-Shani, Inbal; Hekler, Eric B.; Spruijt-Metz, Donna
2016-01-01
Advances in wireless devices and mobile technology offer many opportunities for delivering just-in-time adaptive interventions (JITAIs)--suites of interventions that adapt over time to an individual’s changing status and circumstances with the goal to address the individual’s need for support, whenever this need arises. A major challenge confronting behavioral scientists aiming to develop a JITAI concerns the selection and integration of existing empirical, theoretical and practical evidence into a scientific model that can inform the construction of a JITAI and help identify scientific gaps. The purpose of this paper is to establish a pragmatic framework that can be used to organize existing evidence into a useful model for JITAI construction. This framework involves clarifying the conceptual purpose of a JITAI, namely the provision of just-in-time support via adaptation, as well as describing the components of a JITAI and articulating a list of concrete questions to guide the establishment of a useful model for JITAI construction. The proposed framework includes an organizing scheme for translating the relatively static scientific models underlying many health behavior interventions into a more dynamic model that better incorporates the element of time. This framework will help to guide the next generation of empirical work to support the creation of effective JITAIs. PMID:26651462
Unified reduction principle for the evolution of mutation, migration, and recombination
Altenberg, Lee; Liberman, Uri; Feldman, Marcus W.
2017-01-01
Modifier-gene models for the evolution of genetic information transmission between generations of organisms exhibit the reduction principle: Selection favors reduction in the rate of variation production in populations near equilibrium under a balance of constant viability selection and variation production. Whereas this outcome has been proven for a variety of genetic models, it has not been proven in general for multiallelic genetic models of mutation, migration, and recombination modification with arbitrary linkage between the modifier and major genes under viability selection. We show that the reduction principle holds for all of these cases by developing a unifying mathematical framework that characterizes all of these evolutionary models. PMID:28265103
Data-driven discovery of partial differential equations.
Rudy, Samuel H; Brunton, Steven L; Proctor, Joshua L; Kutz, J Nathan
2017-04-01
We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg-de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable.
A physiologically based pharmacokinetic (PBPK) model was developed within the Exposure Related Dose Estimating Model (ERDEM) framework to investigate selected exposure inputs related to recognized exposure scenarios of infants and children to N-methyl carbamate pesticides as spec...
Delaney, Declan T.; O’Hare, Gregory M. P.
2016-01-01
No single network solution for Internet of Things (IoT) networks can provide the required level of Quality of Service (QoS) for all applications in all environments. This leads to an increasing number of solutions created to fit particular scenarios. Given the increasing number and complexity of solutions available, it becomes difficult for an application developer to choose the solution which is best suited for an application. This article introduces a framework which autonomously chooses the best solution for the application given the current deployed environment. The framework utilises a performance model to predict the expected performance of a particular solution in a given environment. The framework can then choose an apt solution for the application from a set of available solutions. This article presents the framework with a set of models built using data collected from simulation. The modelling technique can determine with up to 85% accuracy the solution which performs the best for a particular performance metric given a set of solutions. The article highlights the fractured and disjointed practice currently in place for examining and comparing communication solutions and aims to open a discussion on harmonising testing procedures so that different solutions can be directly compared and offers a framework to achieve this within IoT networks. PMID:27916929
Delaney, Declan T; O'Hare, Gregory M P
2016-12-01
No single network solution for Internet of Things (IoT) networks can provide the required level of Quality of Service (QoS) for all applications in all environments. This leads to an increasing number of solutions created to fit particular scenarios. Given the increasing number and complexity of solutions available, it becomes difficult for an application developer to choose the solution which is best suited for an application. This article introduces a framework which autonomously chooses the best solution for the application given the current deployed environment. The framework utilises a performance model to predict the expected performance of a particular solution in a given environment. The framework can then choose an apt solution for the application from a set of available solutions. This article presents the framework with a set of models built using data collected from simulation. The modelling technique can determine with up to 85% accuracy the solution which performs the best for a particular performance metric given a set of solutions. The article highlights the fractured and disjointed practice currently in place for examining and comparing communication solutions and aims to open a discussion on harmonising testing procedures so that different solutions can be directly compared and offers a framework to achieve this within IoT networks.
From Metaphors to Formalism: A Heuristic Approach to Holistic Assessments of Ecosystem Health.
Fock, Heino O; Kraus, Gerd
2016-01-01
Environmental policies employ metaphoric objectives such as ecosystem health, resilience and sustainable provision of ecosystem services, which influence corresponding sustainability assessments by means of normative settings such as assumptions on system description, indicator selection, aggregation of information and target setting. A heuristic approach is developed for sustainability assessments to avoid ambiguity and applications to the EU Marine Strategy Framework Directive (MSFD) and OSPAR assessments are presented. For MSFD, nineteen different assessment procedures have been proposed, but at present no agreed assessment procedure is available. The heuristic assessment framework is a functional-holistic approach comprising an ex-ante/ex-post assessment framework with specifically defined normative and systemic dimensions (EAEPNS). The outer normative dimension defines the ex-ante/ex-post framework, of which the latter branch delivers one measure of ecosystem health based on indicators and the former allows to account for the multi-dimensional nature of sustainability (social, economic, ecological) in terms of modeling approaches. For MSFD, the ex-ante/ex-post framework replaces the current distinction between assessments based on pressure and state descriptors. The ex-ante and the ex-post branch each comprise an inner normative and a systemic dimension. The inner normative dimension in the ex-post branch considers additive utility models and likelihood functions to standardize variables normalized with Bayesian modeling. Likelihood functions allow precautionary target setting. The ex-post systemic dimension considers a posteriori indicator selection by means of analysis of indicator space to avoid redundant indicator information as opposed to a priori indicator selection in deconstructive-structural approaches. Indicator information is expressed in terms of ecosystem variability by means of multivariate analysis procedures. The application to the OSPAR assessment for the southern North Sea showed, that with the selected 36 indicators 48% of ecosystem variability could be explained. Tools for the ex-ante branch are risk and ecosystem models with the capability to analyze trade-offs, generating model output for each of the pressure chains to allow for a phasing-out of human pressures. The Bayesian measure of ecosystem health is sensitive to trends in environmental features, but robust to ecosystem variability in line with state space models. The combination of the ex-ante and ex-post branch is essential to evaluate ecosystem resilience and to adopt adaptive management. Based on requirements of the heuristic approach, three possible developments of this concept can be envisioned, i.e. a governance driven approach built upon participatory processes, a science driven functional-holistic approach requiring extensive monitoring to analyze complete ecosystem variability, and an approach with emphasis on ex-ante modeling and ex-post assessment of well-studied subsystems.
From Metaphors to Formalism: A Heuristic Approach to Holistic Assessments of Ecosystem Health
Kraus, Gerd
2016-01-01
Environmental policies employ metaphoric objectives such as ecosystem health, resilience and sustainable provision of ecosystem services, which influence corresponding sustainability assessments by means of normative settings such as assumptions on system description, indicator selection, aggregation of information and target setting. A heuristic approach is developed for sustainability assessments to avoid ambiguity and applications to the EU Marine Strategy Framework Directive (MSFD) and OSPAR assessments are presented. For MSFD, nineteen different assessment procedures have been proposed, but at present no agreed assessment procedure is available. The heuristic assessment framework is a functional-holistic approach comprising an ex-ante/ex-post assessment framework with specifically defined normative and systemic dimensions (EAEPNS). The outer normative dimension defines the ex-ante/ex-post framework, of which the latter branch delivers one measure of ecosystem health based on indicators and the former allows to account for the multi-dimensional nature of sustainability (social, economic, ecological) in terms of modeling approaches. For MSFD, the ex-ante/ex-post framework replaces the current distinction between assessments based on pressure and state descriptors. The ex-ante and the ex-post branch each comprise an inner normative and a systemic dimension. The inner normative dimension in the ex-post branch considers additive utility models and likelihood functions to standardize variables normalized with Bayesian modeling. Likelihood functions allow precautionary target setting. The ex-post systemic dimension considers a posteriori indicator selection by means of analysis of indicator space to avoid redundant indicator information as opposed to a priori indicator selection in deconstructive-structural approaches. Indicator information is expressed in terms of ecosystem variability by means of multivariate analysis procedures. The application to the OSPAR assessment for the southern North Sea showed, that with the selected 36 indicators 48% of ecosystem variability could be explained. Tools for the ex-ante branch are risk and ecosystem models with the capability to analyze trade-offs, generating model output for each of the pressure chains to allow for a phasing-out of human pressures. The Bayesian measure of ecosystem health is sensitive to trends in environmental features, but robust to ecosystem variability in line with state space models. The combination of the ex-ante and ex-post branch is essential to evaluate ecosystem resilience and to adopt adaptive management. Based on requirements of the heuristic approach, three possible developments of this concept can be envisioned, i.e. a governance driven approach built upon participatory processes, a science driven functional-holistic approach requiring extensive monitoring to analyze complete ecosystem variability, and an approach with emphasis on ex-ante modeling and ex-post assessment of well-studied subsystems. PMID:27509185
Group sparse multiview patch alignment framework with view consistency for image classification.
Gui, Jie; Tao, Dacheng; Sun, Zhenan; Luo, Yong; You, Xinge; Tang, Yuan Yan
2014-07-01
No single feature can satisfactorily characterize the semantic concepts of an image. Multiview learning aims to unify different kinds of features to produce a consensual and efficient representation. This paper redefines part optimization in the patch alignment framework (PAF) and develops a group sparse multiview patch alignment framework (GSM-PAF). The new part optimization considers not only the complementary properties of different views, but also view consistency. In particular, view consistency models the correlations between all possible combinations of any two kinds of view. In contrast to conventional dimensionality reduction algorithms that perform feature extraction and feature selection independently, GSM-PAF enjoys joint feature extraction and feature selection by exploiting l(2,1)-norm on the projection matrix to achieve row sparsity, which leads to the simultaneous selection of relevant features and learning transformation, and thus makes the algorithm more discriminative. Experiments on two real-world image data sets demonstrate the effectiveness of GSM-PAF for image classification.
A machine learning-based framework to identify type 2 diabetes through electronic health records
Zheng, Tao; Xie, Wei; Xu, Liling; He, Xiaoying; Zhang, Ya; You, Mingrong; Yang, Gong; Chen, You
2016-01-01
Objective To discover diverse genotype-phenotype associations affiliated with Type 2 Diabetes Mellitus (T2DM) via genome-wide association study (GWAS) and phenome-wide association study (PheWAS), more cases (T2DM subjects) and controls (subjects without T2DM) are required to be identified (e.g., via Electronic Health Records (EHR)). However, existing expert based identification algorithms often suffer in a low recall rate and could miss a large number of valuable samples under conservative filtering standards. The goal of this work is to develop a semi-automated framework based on machine learning as a pilot study to liberalize filtering criteria to improve recall rate with a keeping of low false positive rate. Materials and methods We propose a data informed framework for identifying subjects with and without T2DM from EHR via feature engineering and machine learning. We evaluate and contrast the identification performance of widely-used machine learning models within our framework, including k-Nearest-Neighbors, Naïve Bayes, Decision Tree, Random Forest, Support Vector Machine and Logistic Regression. Our framework was conducted on 300 patient samples (161 cases, 60 controls and 79 unconfirmed subjects), randomly selected from 23,281 diabetes related cohort retrieved from a regional distributed EHR repository ranging from 2012 to 2014. Results We apply top-performing machine learning algorithms on the engineered features. We benchmark and contrast the accuracy, precision, AUC, sensitivity and specificity of classification models against the state-of-the-art expert algorithm for identification of T2DM subjects. Our results indicate that the framework achieved high identification performances (∼0.98 in average AUC), which are much higher than the state-of-the-art algorithm (0.71 in AUC). Discussion Expert algorithm-based identification of T2DM subjects from EHR is often hampered by the high missing rates due to their conservative selection criteria. Our framework leverages machine learning and feature engineering to loosen such selection criteria to achieve a high identification rate of cases and controls. Conclusions Our proposed framework demonstrates a more accurate and efficient approach for identifying subjects with and without T2DM from EHR. PMID:27919371
A machine learning-based framework to identify type 2 diabetes through electronic health records.
Zheng, Tao; Xie, Wei; Xu, Liling; He, Xiaoying; Zhang, Ya; You, Mingrong; Yang, Gong; Chen, You
2017-01-01
To discover diverse genotype-phenotype associations affiliated with Type 2 Diabetes Mellitus (T2DM) via genome-wide association study (GWAS) and phenome-wide association study (PheWAS), more cases (T2DM subjects) and controls (subjects without T2DM) are required to be identified (e.g., via Electronic Health Records (EHR)). However, existing expert based identification algorithms often suffer in a low recall rate and could miss a large number of valuable samples under conservative filtering standards. The goal of this work is to develop a semi-automated framework based on machine learning as a pilot study to liberalize filtering criteria to improve recall rate with a keeping of low false positive rate. We propose a data informed framework for identifying subjects with and without T2DM from EHR via feature engineering and machine learning. We evaluate and contrast the identification performance of widely-used machine learning models within our framework, including k-Nearest-Neighbors, Naïve Bayes, Decision Tree, Random Forest, Support Vector Machine and Logistic Regression. Our framework was conducted on 300 patient samples (161 cases, 60 controls and 79 unconfirmed subjects), randomly selected from 23,281 diabetes related cohort retrieved from a regional distributed EHR repository ranging from 2012 to 2014. We apply top-performing machine learning algorithms on the engineered features. We benchmark and contrast the accuracy, precision, AUC, sensitivity and specificity of classification models against the state-of-the-art expert algorithm for identification of T2DM subjects. Our results indicate that the framework achieved high identification performances (∼0.98 in average AUC), which are much higher than the state-of-the-art algorithm (0.71 in AUC). Expert algorithm-based identification of T2DM subjects from EHR is often hampered by the high missing rates due to their conservative selection criteria. Our framework leverages machine learning and feature engineering to loosen such selection criteria to achieve a high identification rate of cases and controls. Our proposed framework demonstrates a more accurate and efficient approach for identifying subjects with and without T2DM from EHR. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A probabilistic framework to infer brain functional connectivity from anatomical connections.
Deligianni, Fani; Varoquaux, Gael; Thirion, Bertrand; Robinson, Emma; Sharp, David J; Edwards, A David; Rueckert, Daniel
2011-01-01
We present a novel probabilistic framework to learn across several subjects a mapping from brain anatomical connectivity to functional connectivity, i.e. the covariance structure of brain activity. This prediction problem must be formulated as a structured-output learning task, as the predicted parameters are strongly correlated. We introduce a model selection framework based on cross-validation with a parametrization-independent loss function suitable to the manifold of covariance matrices. Our model is based on constraining the conditional independence structure of functional activity by the anatomical connectivity. Subsequently, we learn a linear predictor of a stationary multivariate autoregressive model. This natural parameterization of functional connectivity also enforces the positive-definiteness of the predicted covariance and thus matches the structure of the output space. Our results show that functional connectivity can be explained by anatomical connectivity on a rigorous statistical basis, and that a proper model of functional connectivity is essential to assess this link.
Frequency Spectrum Neutrality Tests: One for All and All for One
Achaz, Guillaume
2009-01-01
Neutrality tests based on the frequency spectrum (e.g., Tajima's D or Fu and Li's F) are commonly used by population geneticists as routine tests to assess the goodness-of-fit of the standard neutral model on their data sets. Here, I show that these neutrality tests are specific instances of a general model that encompasses them all. I illustrate how this general framework can be taken advantage of to devise new more powerful tests that better detect deviations from the standard model. Finally, I exemplify the usefulness of the framework on SNP data by showing how it supports the selection hypothesis in the lactase human gene by overcoming the ascertainment bias. The framework presented here paves the way for constructing novel tests optimized for specific violations of the standard model that ultimately will help to unravel scenarios of evolution. PMID:19546320
Observing System Simulation Experiments for Fun and Profit
NASA Technical Reports Server (NTRS)
Prive, Nikki C.
2015-01-01
Observing System Simulation Experiments can be powerful tools for evaluating and exploring both the behavior of data assimilation systems and the potential impacts of future observing systems. With great power comes great responsibility - given a pure modeling framework, how can we be sure our results are meaningful? The challenges and pitfalls of OSSE calibration and validation will be addressed, as well as issues of incestuousness, selection of appropriate metrics, and experiment design. The use of idealized observational networks to investigate theoretical ideas in a fully complex modeling framework will also be discussed
Getting inside acupuncture trials - Exploring intervention theory and rationale
2011-01-01
Background Acupuncture can be described as a complex intervention. In reports of clinical trials the mechanism of acupuncture (that is, the process by which change is effected) is often left unstated or not known. This is problematic in assisting understanding of how acupuncture might work and in drawing together evidence on the potential benefits of acupuncture. Our aim was to aid the identification of the assumed mechanisms underlying the acupuncture interventions in clinical trials by developing an analytical framework to differentiate two contrasting approaches to acupuncture (traditional acupuncture and Western medical acupuncture). Methods Based on the principles of realist review, an analytical framework to differentiate these two contrasting approaches was developed. In order to see how useful the framework was in uncovering the theoretical rationale, it was applied to a set of trials of acupuncture for fatigue and vasomotor symptoms, identified from a wider literature review of acupuncture and early stage breast cancer. Results When examined for the degree to which a study demonstrated adherence to a theoretical model, two of the fourteen selected studies could be considered TA, five MA, with the remaining seven not fitting into any recognisable model. When examined by symptom, five of the nine vasomotor studies, all from one group of researchers, are arguably in the MA category, and two a TA model; in contrast, none of the five fatigue studies could be classed as either MA or TA and all studies had a weak rationale for the chosen treatment for fatigue. Conclusion Our application of the framework to the selected studies suggests that it is a useful tool to help uncover the therapeutic rationale of acupuncture interventions in clinical trials, for distinguishing between TA and MA approaches and for exploring issues of model validity. English language acupuncture trials frequently fail to report enough detail relating to the intervention. We advocate using this framework to aid reporting, along with further testing and refinement of the framework. PMID:21414187
A model for communication skills assessment across the undergraduate curriculum.
Rider, Elizabeth A; Hinrichs, Margaret M; Lown, Beth A
2006-08-01
Physicians' interpersonal and communication skills have a significant impact on patient care and correlate with improved healthcare outcomes. Some studies suggest, however, that communication skills decline during the four years of medical school. Regulatory and other medical organizations, recognizing the importance of interpersonal and communication skills in the practice of medicine, now require competence in communication skills. Two challenges exist: to select a framework of interpersonal and communication skills to teach across undergraduate medical education, and to develop and implement a uniform model for the assessment of these skills. The authors describe a process and model for developing and institutionalizing the assessment of communication skills across the undergraduate curriculum. Consensus was built regarding communication skill competencies by working with course leaders and examination directors, a uniform framework of competencies was selected to both teach and assess communication skills, and the framework was implemented across the Harvard Medical School undergraduate curriculum. The authors adapted an assessment framework based on the Bayer-Fetzer Kalamazoo Consensus Statement adapted a patient and added and satisfaction tool to bring patients' perspectives into the assessment of the learners. The core communication competencies and evaluation instruments were implemented in school-wide courses and assessment exercises including the first-year Patient-Doctor I Clinical Assessment, second-year Objective Structured Clinical Exam (OSCE), third-year Patient-Doctor III Clinical Assessment, fourth-year Comprehensive Clinical Practice Examination and the Core Medicine Clerkships. Faculty were offered workshops and interactive web-based teaching to become familiar with the framework, and students used the framework with repeated opportunities for faculty feedback on these skills. A model is offered for educational leaders and others who are involved in designing assessment in communication skills. By presenting an approach for implementation, the authors hope to provide guidance for the successful integration of communication skills assessment in undergraduate medical education.
Information measures for terrain visualization
NASA Astrophysics Data System (ADS)
Bonaventura, Xavier; Sima, Aleksandra A.; Feixas, Miquel; Buckley, Simon J.; Sbert, Mateu; Howell, John A.
2017-02-01
Many quantitative and qualitative studies in geoscience research are based on digital elevation models (DEMs) and 3D surfaces to aid understanding of natural and anthropogenically-influenced topography. As well as their quantitative uses, the visual representation of DEMs can add valuable information for identifying and interpreting topographic features. However, choice of viewpoints and rendering styles may not always be intuitive, especially when terrain data are augmented with digital image texture. In this paper, an information-theoretic framework for object understanding is applied to terrain visualization and terrain view selection. From a visibility channel between a set of viewpoints and the component polygons of a 3D terrain model, we obtain three polygonal information measures. These measures are used to visualize the information associated with each polygon of the terrain model. In order to enhance the perception of the terrain's shape, we explore the effect of combining the calculated information measures with the supplementary digital image texture. From polygonal information, we also introduce a method to select a set of representative views of the terrain model. Finally, we evaluate the behaviour of the proposed techniques using example datasets. A publicly available framework for both the visualization and the view selection of a terrain has been created in order to provide the possibility to analyse any terrain model.
Li, Bin; Shin, Hyunjin; Gulbekyan, Georgy; Pustovalova, Olga; Nikolsky, Yuri; Hope, Andrew; Bessarabova, Marina; Schu, Matthew; Kolpakova-Hart, Elona; Merberg, David; Dorner, Andrew; Trepicchio, William L.
2015-01-01
Development of drug responsive biomarkers from pre-clinical data is a critical step in drug discovery, as it enables patient stratification in clinical trial design. Such translational biomarkers can be validated in early clinical trial phases and utilized as a patient inclusion parameter in later stage trials. Here we present a study on building accurate and selective drug sensitivity models for Erlotinib or Sorafenib from pre-clinical in vitro data, followed by validation of individual models on corresponding treatment arms from patient data generated in the BATTLE clinical trial. A Partial Least Squares Regression (PLSR) based modeling framework was designed and implemented, using a special splitting strategy and canonical pathways to capture robust information for model building. Erlotinib and Sorafenib predictive models could be used to identify a sub-group of patients that respond better to the corresponding treatment, and these models are specific to the corresponding drugs. The model derived signature genes reflect each drug’s known mechanism of action. Also, the models predict each drug’s potential cancer indications consistent with clinical trial results from a selection of globally normalized GEO expression datasets. PMID:26107615
Li, Bin; Shin, Hyunjin; Gulbekyan, Georgy; Pustovalova, Olga; Nikolsky, Yuri; Hope, Andrew; Bessarabova, Marina; Schu, Matthew; Kolpakova-Hart, Elona; Merberg, David; Dorner, Andrew; Trepicchio, William L
2015-01-01
Development of drug responsive biomarkers from pre-clinical data is a critical step in drug discovery, as it enables patient stratification in clinical trial design. Such translational biomarkers can be validated in early clinical trial phases and utilized as a patient inclusion parameter in later stage trials. Here we present a study on building accurate and selective drug sensitivity models for Erlotinib or Sorafenib from pre-clinical in vitro data, followed by validation of individual models on corresponding treatment arms from patient data generated in the BATTLE clinical trial. A Partial Least Squares Regression (PLSR) based modeling framework was designed and implemented, using a special splitting strategy and canonical pathways to capture robust information for model building. Erlotinib and Sorafenib predictive models could be used to identify a sub-group of patients that respond better to the corresponding treatment, and these models are specific to the corresponding drugs. The model derived signature genes reflect each drug's known mechanism of action. Also, the models predict each drug's potential cancer indications consistent with clinical trial results from a selection of globally normalized GEO expression datasets.
NASA Astrophysics Data System (ADS)
Lowe, Rachel; Bailey, Trevor C.; Stephenson, David B.; Graham, Richard J.; Coelho, Caio A. S.; Sá Carvalho, Marilia; Barcellos, Christovam
2011-03-01
This paper considers the potential for using seasonal climate forecasts in developing an early warning system for dengue fever epidemics in Brazil. In the first instance, a generalised linear model (GLM) is used to select climate and other covariates which are both readily available and prove significant in prediction of confirmed monthly dengue cases based on data collected across the whole of Brazil for the period January 2001 to December 2008 at the microregion level (typically consisting of one large city and several smaller municipalities). The covariates explored include temperature and precipitation data on a 2.5°×2.5° longitude-latitude grid with time lags relevant to dengue transmission, an El Niño Southern Oscillation index and other relevant socio-economic and environmental variables. A negative binomial model formulation is adopted in this model selection to allow for extra-Poisson variation (overdispersion) in the observed dengue counts caused by unknown/unobserved confounding factors and possible correlations in these effects in both time and space. Subsequently, the selected global model is refined in the context of the South East region of Brazil, where dengue predominates, by reverting to a Poisson framework and explicitly modelling the overdispersion through a combination of unstructured and spatio-temporal structured random effects. The resulting spatio-temporal hierarchical model (or GLMM—generalised linear mixed model) is implemented via a Bayesian framework using Markov Chain Monte Carlo (MCMC). Dengue predictions are found to be enhanced both spatially and temporally when using the GLMM and the Bayesian framework allows posterior predictive distributions for dengue cases to be derived, which can be useful for developing a dengue alert system. Using this model, we conclude that seasonal climate forecasts could have potential value in helping to predict dengue incidence months in advance of an epidemic in South East Brazil.
Scott, Finlay; Jardim, Ernesto; Millar, Colin P; Cerviño, Santiago
2016-01-01
Estimating fish stock status is very challenging given the many sources and high levels of uncertainty surrounding the biological processes (e.g. natural variability in the demographic rates), model selection (e.g. choosing growth or stock assessment models) and parameter estimation. Incorporating multiple sources of uncertainty in a stock assessment allows advice to better account for the risks associated with proposed management options, promoting decisions that are more robust to such uncertainty. However, a typical assessment only reports the model fit and variance of estimated parameters, thereby underreporting the overall uncertainty. Additionally, although multiple candidate models may be considered, only one is selected as the 'best' result, effectively rejecting the plausible assumptions behind the other models. We present an applied framework to integrate multiple sources of uncertainty in the stock assessment process. The first step is the generation and conditioning of a suite of stock assessment models that contain different assumptions about the stock and the fishery. The second step is the estimation of parameters, including fitting of the stock assessment models. The final step integrates across all of the results to reconcile the multi-model outcome. The framework is flexible enough to be tailored to particular stocks and fisheries and can draw on information from multiple sources to implement a broad variety of assumptions, making it applicable to stocks with varying levels of data availability The Iberian hake stock in International Council for the Exploration of the Sea (ICES) Divisions VIIIc and IXa is used to demonstrate the framework, starting from length-based stock and indices data. Process and model uncertainty are considered through the growth, natural mortality, fishing mortality, survey catchability and stock-recruitment relationship. Estimation uncertainty is included as part of the fitting process. Simple model averaging is used to integrate across the results and produce a single assessment that considers the multiple sources of uncertainty.
Van Pilsum Rasmussen, S E; Henderson, M L; Kahn, J; Segev, D
2017-10-01
From its infancy, live donor transplantation has operated within a framework of acceptable risk to donors. Such a framework presumes that risks of living donation are experienced by the donor while all benefits are realized by the recipient, creating an inequitable distribution that demands minimization of donor risk. We suggest that this risk-tolerance framework ignores tangible benefits to the donor. A previously proposed framework more fully considers potential benefits to the donor and argues that risks and benefits must be balanced. We expand on this approach, and posit that donors sharing a household with and/or caring for a potential transplant patient may realize tangible benefits that are absent in a more distantly related donation (e.g. cousin, nondirected). We term these donors, whose well-being is closely tied to their recipient, "interdependent donors." A flexible risk-benefit model that combines risk assessment with benefits to interdependent donors will contribute to donor evaluation and selection that more accurately reflects what is at stake for donors. In so doing, a risk-benefit framework may allow some donors to accept greater risk in donation decisions. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Automatising the analysis of stochastic biochemical time-series
2015-01-01
Background Mathematical and computational modelling of biochemical systems has seen a lot of effort devoted to the definition and implementation of high-performance mechanistic simulation frameworks. Within these frameworks it is possible to analyse complex models under a variety of configurations, eventually selecting the best setting of, e.g., parameters for a target system. Motivation This operational pipeline relies on the ability to interpret the predictions of a model, often represented as simulation time-series. Thus, an efficient data analysis pipeline is crucial to automatise time-series analyses, bearing in mind that errors in this phase might mislead the modeller's conclusions. Results For this reason we have developed an intuitive framework-independent Python tool to automate analyses common to a variety of modelling approaches. These include assessment of useful non-trivial statistics for simulation ensembles, e.g., estimation of master equations. Intuitive and domain-independent batch scripts will allow the researcher to automatically prepare reports, thus speeding up the usual model-definition, testing and refinement pipeline. PMID:26051821
a Framework for Voxel-Based Global Scale Modeling of Urban Environments
NASA Astrophysics Data System (ADS)
Gehrung, Joachim; Hebel, Marcus; Arens, Michael; Stilla, Uwe
2016-10-01
The generation of 3D city models is a very active field of research. Modeling environments as point clouds may be fast, but has disadvantages. These are easily solvable by using volumetric representations, especially when considering selective data acquisition, change detection and fast changing environments. Therefore, this paper proposes a framework for the volumetric modeling and visualization of large scale urban environments. Beside an architecture and the right mix of algorithms for the task, two compression strategies for volumetric models as well as a data quality based approach for the import of range measurements are proposed. The capabilities of the framework are shown on a mobile laser scanning dataset of the Technical University of Munich. Furthermore the loss of the compression techniques is evaluated and their memory consumption is compared to that of raw point clouds. The presented results show that generation, storage and real-time rendering of even large urban models are feasible, even with off-the-shelf hardware.
Before the U.S. Environmental Protection Agency issued the 1988 Guidelines for Estimating Exposures, it published proposed guidelines in the Federal Register for public review and comment. he guidelines are intended to give risk analysis a basic framework and the tools they need ...
Appraising Teacher Performance: A Quantitative Approach.
ERIC Educational Resources Information Center
Wingate, James G.; Bowers, Fred
Following a brief research review regarding the relationship between teacher behavior and student outcomes, a model is proposed for identifying those teaching behaviors that are significantly related to high-quality student performance. The model's stages include: (1) delineation of questions; (2) establishment of a framework; (3) selection of an…
Gerber, Brian D.; Kendall, William L.; Hooten, Mevin B.; Dubovsky, James A.; Drewien, Roderick C.
2015-01-01
Prediction is fundamental to scientific enquiry and application; however, ecologists tend to favour explanatory modelling. We discuss a predictive modelling framework to evaluate ecological hypotheses and to explore novel/unobserved environmental scenarios to assist conservation and management decision-makers. We apply this framework to develop an optimal predictive model for juvenile (<1 year old) sandhill crane Grus canadensis recruitment of the Rocky Mountain Population (RMP). We consider spatial climate predictors motivated by hypotheses of how drought across multiple time-scales and spring/summer weather affects recruitment.Our predictive modelling framework focuses on developing a single model that includes all relevant predictor variables, regardless of collinearity. This model is then optimized for prediction by controlling model complexity using a data-driven approach that marginalizes or removes irrelevant predictors from the model. Specifically, we highlight two approaches of statistical regularization, Bayesian least absolute shrinkage and selection operator (LASSO) and ridge regression.Our optimal predictive Bayesian LASSO and ridge regression models were similar and on average 37% superior in predictive accuracy to an explanatory modelling approach. Our predictive models confirmed a priori hypotheses that drought and cold summers negatively affect juvenile recruitment in the RMP. The effects of long-term drought can be alleviated by short-term wet spring–summer months; however, the alleviation of long-term drought has a much greater positive effect on juvenile recruitment. The number of freezing days and snowpack during the summer months can also negatively affect recruitment, while spring snowpack has a positive effect.Breeding habitat, mediated through climate, is a limiting factor on population growth of sandhill cranes in the RMP, which could become more limiting with a changing climate (i.e. increased drought). These effects are likely not unique to cranes. The alteration of hydrological patterns and water levels by drought may impact many migratory, wetland nesting birds in the Rocky Mountains and beyond.Generalizable predictive models (trained by out-of-sample fit and based on ecological hypotheses) are needed by conservation and management decision-makers. Statistical regularization improves predictions and provides a general framework for fitting models with a large number of predictors, even those with collinearity, to simultaneously identify an optimal predictive model while conducting rigorous Bayesian model selection. Our framework is important for understanding population dynamics under a changing climate and has direct applications for making harvest and habitat management decisions.
NASA Astrophysics Data System (ADS)
Burlatsky, S. F.; Gummalla, M.; O'Neill, J.; Atrazhev, V. V.; Varyukhin, A. N.; Dmitriev, D. V.; Erikhman, N. S.
2012-10-01
Under typical Polymer Electrolyte Membrane Fuel Cell (PEMFC) fuel cell operating conditions, part of the membrane electrode assembly is subjected to humidity cycling due to variation of inlet gas RH and/or flow rate. Cyclic membrane hydration/dehydration would cause cyclic swelling/shrinking of the unconstrained membrane. In a constrained membrane, it causes cyclic stress resulting in mechanical failure in the area adjacent to the gas inlet. A mathematical modeling framework for prediction of the lifetime of a PEMFC membrane subjected to hydration cycling is developed in this paper. The model predicts membrane lifetime as a function of RH cycling amplitude and membrane mechanical properties. The modeling framework consists of three model components: a fuel cell RH distribution model, a hydration/dehydration induced stress model that predicts stress distribution in the membrane, and a damage accrual model that predicts membrane lifetime. Short descriptions of the model components along with overall framework are presented in the paper. The model was used for lifetime prediction of a GORE-SELECT membrane.
Rapid performance modeling and parameter regression of geodynamic models
NASA Astrophysics Data System (ADS)
Brown, J.; Duplyakin, D.
2016-12-01
Geodynamic models run in a parallel environment have many parameters with complicated effects on performance and scientifically-relevant functionals. Manually choosing an efficient machine configuration and mapping out the parameter space requires a great deal of expert knowledge and time-consuming experiments. We propose an active learning technique based on Gaussion Process Regression to automatically select experiments to map out the performance landscape with respect to scientific and machine parameters. The resulting performance model is then used to select optimal experiments for improving the accuracy of a reduced order model per unit of computational cost. We present the framework and evaluate its quality and capability using popular lithospheric dynamics models.
Schlägel, Ulrike E; Lewis, Mark A
2016-12-01
Discrete-time random walks and their extensions are common tools for analyzing animal movement data. In these analyses, resolution of temporal discretization is a critical feature. Ideally, a model both mirrors the relevant temporal scale of the biological process of interest and matches the data sampling rate. Challenges arise when resolution of data is too coarse due to technological constraints, or when we wish to extrapolate results or compare results obtained from data with different resolutions. Drawing loosely on the concept of robustness in statistics, we propose a rigorous mathematical framework for studying movement models' robustness against changes in temporal resolution. In this framework, we define varying levels of robustness as formal model properties, focusing on random walk models with spatially-explicit component. With the new framework, we can investigate whether models can validly be applied to data across varying temporal resolutions and how we can account for these different resolutions in statistical inference results. We apply the new framework to movement-based resource selection models, demonstrating both analytical and numerical calculations, as well as a Monte Carlo simulation approach. While exact robustness is rare, the concept of approximate robustness provides a promising new direction for analyzing movement models.
Airborne electromagnetic mapping of the base of aquifer in areas of western Nebraska
Abraham, Jared D.; Cannia, James C.; Bedrosian, Paul A.; Johnson, Michaela R.; Ball, Lyndsay B.; Sibray, Steven S.
2012-01-01
Airborne geophysical surveys of selected areas of the North and South Platte River valleys of Nebraska, including Lodgepole Creek valley, collected data to map aquifers and bedrock topography and thus improve the understanding of groundwater - surface-water relationships to be used in water-management decisions. Frequency-domain helicopter electromagnetic surveys, using a unique survey flight-line design, collected resistivity data that can be related to lithologic information for refinement of groundwater model inputs. To make the geophysical data useful to multidimensional groundwater models, numerical inversion converted measured data into a depth-dependent subsurface resistivity model. The inverted resistivity model, along with sensitivity analyses and test-hole information, is used to identify hydrogeologic features such as bedrock highs and paleochannels, to improve estimates of groundwater storage. The two- and three-dimensional interpretations provide the groundwater modeler with a high-resolution hydrogeologic framework and a quantitative estimate of framework uncertainty. The new hydrogeologic frameworks improve understanding of the flow-path orientation by refining the location of paleochannels and associated base of aquifer highs. These interpretations provide resource managers high-resolution hydrogeologic frameworks and quantitative estimates of framework uncertainty. The improved base of aquifer configuration represents the hydrogeology at a level of detail not achievable with previously available data.
Quality Attribute Techniques Framework
NASA Astrophysics Data System (ADS)
Chiam, Yin Kia; Zhu, Liming; Staples, Mark
The quality of software is achieved during its development. Development teams use various techniques to investigate, evaluate and control potential quality problems in their systems. These “Quality Attribute Techniques” target specific product qualities such as safety or security. This paper proposes a framework to capture important characteristics of these techniques. The framework is intended to support process tailoring, by facilitating the selection of techniques for inclusion into process models that target specific product qualities. We use risk management as a theory to accommodate techniques for many product qualities and lifecycle phases. Safety techniques have motivated the framework, and safety and performance techniques have been used to evaluate the framework. The evaluation demonstrates the ability of quality risk management to cover the development lifecycle and to accommodate two different product qualities. We identify advantages and limitations of the framework, and discuss future research on the framework.
NASA Astrophysics Data System (ADS)
Noh, S. J.; Tachikawa, Y.; Shiiba, M.; Yorozu, K.; Kim, S.
2012-04-01
Data assimilation methods have received increased attention to accomplish uncertainty assessment and enhancement of forecasting capability in various areas. Despite of their potentials, applicable software frameworks to probabilistic approaches and data assimilation are still limited because the most of hydrologic modeling software are based on a deterministic approach. In this study, we developed a hydrological modeling framework for sequential data assimilation, so called MPI-OHyMoS. MPI-OHyMoS allows user to develop his/her own element models and to easily build a total simulation system model for hydrological simulations. Unlike process-based modeling framework, this software framework benefits from its object-oriented feature to flexibly represent hydrological processes without any change of the main library. Sequential data assimilation based on the particle filters is available for any hydrologic models based on MPI-OHyMoS considering various sources of uncertainty originated from input forcing, parameters and observations. The particle filters are a Bayesian learning process in which the propagation of all uncertainties is carried out by a suitable selection of randomly generated particles without any assumptions about the nature of the distributions. In MPI-OHyMoS, ensemble simulations are parallelized, which can take advantage of high performance computing (HPC) system. We applied this software framework for short-term streamflow forecasting of several catchments in Japan using a distributed hydrologic model. Uncertainty of model parameters and remotely-sensed rainfall data such as X-band or C-band radar is estimated and mitigated in the sequential data assimilation.
An Examination of Factors Influencing Students Selection of Business Majors Using TRA Framework
ERIC Educational Resources Information Center
Kumar, Anil; Kumar, Poonam
2013-01-01
Making decisions regarding the selection of a business major is both very important and challenging for students. An understanding of this decision-making process can be valuable for students, parents, and university programs. The current study applies the Theory of Reasoned Action (TRA) consumer decision-making model to examine factors that…
Redman, Sally; Turner, Tari; Davies, Huw; Williamson, Anna; Haynes, Abby; Brennan, Sue; Milat, Andrew; O'Connor, Denise; Blyth, Fiona; Jorm, Louisa; Green, Sally
2015-07-01
The recent proliferation of strategies designed to increase the use of research in health policy (knowledge exchange) demands better application of contemporary conceptual understandings of how research shapes policy. Predictive models, or action frameworks, are needed to organise existing knowledge and enable a more systematic approach to the selection and testing of intervention strategies. Useful action frameworks need to meet four criteria: have a clearly articulated purpose; be informed by existing knowledge; provide an organising structure to build new knowledge; and be capable of guiding the development and testing of interventions. This paper describes the development of the SPIRIT Action Framework. A literature search and interviews with policy makers identified modifiable factors likely to influence the use of research in policy. An iterative process was used to combine these factors into a pragmatic tool which meets the four criteria. The SPIRIT Action Framework can guide conceptually-informed practical decisions in the selection and testing of interventions to increase the use of research in policy. The SPIRIT Action Framework hypothesises that a catalyst is required for the use of research, the response to which is determined by the capacity of the organisation to engage with research. Where there is sufficient capacity, a series of research engagement actions might occur that facilitate research use. These hypotheses are being tested in ongoing empirical work. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
A new framework for evaluating the impacts of drought on net primary productivity of grassland.
Lei, Tianjie; Wu, Jianjun; Li, Xiaohan; Geng, Guangpo; Shao, Changliang; Zhou, Hongkui; Wang, Qianfeng; Liu, Leizhen
2015-12-01
This paper presented a valuable framework for evaluating the impacts of droughts (single factor) on grassland ecosystems. This framework was defined as the quantitative magnitude of drought impact that unacceptable short-term and long-term effects on ecosystems may experience relative to the reference standard. Long-term effects on ecosystems may occur relative to the reference standard. Net primary productivity (NPP) was selected as the response indicator of drought to assess the quantitative impact of drought on Inner Mongolia grassland based on the Standardized Precipitation Index (SPI) and BIOME-BGC model. The framework consists of six main steps: 1) clearly defining drought scenarios, such as moderate, severe and extreme drought; 2) selecting an appropriate indicator of drought impact; 3) selecting an appropriate ecosystem model and verifying its capabilities, calibrating the bias and assessing the uncertainty; 4) assigning a level of unacceptable impact of drought on the indicator; 5) determining the response of the indicator to drought and normal weather state under global-change; and 6) investigating the unacceptable impact of drought at different spatial scales. We found NPP losses assessed using the new framework were more sensitive to drought and had higher precision than the long-term average method. Moreover, the total and average losses of NPP are different in different grassland types during the drought years from 1961-2009. NPP loss was significantly increased along a gradient of increasing drought levels. Meanwhile, NPP loss variation under the same drought level was different in different grassland types. The operational framework was particularly suited for integrative assessing the effects of different drought events and long-term droughts at multiple spatial scales, which provided essential insights for sciences and societies that must develop coping strategies for ecosystems for such events. Copyright © 2015 Elsevier B.V. All rights reserved.
Structured functional additive regression in reproducing kernel Hilbert spaces
Zhu, Hongxiao; Yao, Fang; Zhang, Hao Helen
2013-01-01
Summary Functional additive models (FAMs) provide a flexible yet simple framework for regressions involving functional predictors. The utilization of data-driven basis in an additive rather than linear structure naturally extends the classical functional linear model. However, the critical issue of selecting nonlinear additive components has been less studied. In this work, we propose a new regularization framework for the structure estimation in the context of Reproducing Kernel Hilbert Spaces. The proposed approach takes advantage of the functional principal components which greatly facilitates the implementation and the theoretical analysis. The selection and estimation are achieved by penalized least squares using a penalty which encourages the sparse structure of the additive components. Theoretical properties such as the rate of convergence are investigated. The empirical performance is demonstrated through simulation studies and a real data application. PMID:25013362
Rapid prototyping--when virtual meets reality.
Beguma, Zubeda; Chhedat, Pratik
2014-01-01
Rapid prototyping (RP) describes the customized production of solid models using 3D computer data. Over the past decade, advances in RP have continued to evolve, resulting in the development of new techniques that have been applied to the fabrication of various prostheses. RP fabrication technologies include stereolithography (SLA), fused deposition modeling (FDM), computer numerical controlled (CNC) milling, and, more recently, selective laser sintering (SLS). The applications of RP techniques for dentistry include wax pattern fabrication for dental prostheses, dental (facial) prostheses mold (shell) fabrication, and removable dental prostheses framework fabrication. In the past, a physical plastic shape of the removable partial denture (RPD) framework was produced using an RP machine, and then used as a sacrificial pattern. Yet with the advent of the selective laser melting (SLM) technique, RPD metal frameworks can be directly fabricated, thereby omitting the casting stage. This new approach can also generate the wax pattern for facial prostheses directly, thereby reducing labor-intensive laboratory procedures. Many people stand to benefit from these new RP techniques for producing various forms of dental prostheses, which in the near future could transform traditional prosthodontic practices.
Networks and games for precision medicine.
Biane, Célia; Delaplace, Franck; Klaudel, Hanna
2016-12-01
Recent advances in omics technologies provide the leverage for the emergence of precision medicine that aims at personalizing therapy to patient. In this undertaking, computational methods play a central role for assisting physicians in their clinical decision-making by combining data analysis and systems biology modelling. Complex diseases such as cancer or diabetes arise from the intricate interplay of various biological molecules. Therefore, assessing drug efficiency requires to study the effects of elementary perturbations caused by diseases on relevant biological networks. In this paper, we propose a computational framework called Network-Action Game applied to best drug selection problem combining Game Theory and discrete models of dynamics (Boolean networks). Decision-making is modelled using Game Theory that defines the process of drug selection among alternative possibilities, while Boolean networks are used to model the effects of the interplay between disease and drugs actions on the patient's molecular system. The actions/strategies of disease and drugs are focused on arc alterations of the interactome. The efficiency of this framework has been evaluated for drug prediction on a model of breast cancer signalling. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sridhar, Vivek Kumar Rangarajan; Bangalore, Srinivas; Narayanan, Shrikanth S.
2009-01-01
In this paper, we describe a maximum entropy-based automatic prosody labeling framework that exploits both language and speech information. We apply the proposed framework to both prominence and phrase structure detection within the Tones and Break Indices (ToBI) annotation scheme. Our framework utilizes novel syntactic features in the form of supertags and a quantized acoustic–prosodic feature representation that is similar to linear parameterizations of the prosodic contour. The proposed model is trained discriminatively and is robust in the selection of appropriate features for the task of prosody detection. The proposed maximum entropy acoustic–syntactic model achieves pitch accent and boundary tone detection accuracies of 86.0% and 93.1% on the Boston University Radio News corpus, and, 79.8% and 90.3% on the Boston Directions corpus. The phrase structure detection through prosodic break index labeling provides accuracies of 84% and 87% on the two corpora, respectively. The reported results are significantly better than previously reported results and demonstrate the strength of maximum entropy model in jointly modeling simple lexical, syntactic, and acoustic features for automatic prosody labeling. PMID:19603083
Helbling, Damian E; Johnson, David R; Lee, Tae Kwon; Scheidegger, Andreas; Fenner, Kathrin
2015-03-01
The rates at which wastewater treatment plant (WWTP) microbial communities biotransform specific substrates can differ by orders of magnitude among WWTP communities. Differences in taxonomic compositions among WWTP communities may predict differences in the rates of some types of biotransformations. In this work, we present a novel framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates. We selected ten WWTPs with substantial variation in their environmental and operational metrics and measured the in situ ammonia biotransformation rate constants in nine of them. We isolated total RNA from samples from each WWTP and analyzed 16S rRNA sequence reads. We then developed multivariate models between the measured abundances of specific bacterial 16S rRNA sequence reads and the ammonia biotransformation rate constants. We constructed model scenarios that systematically explored the effects of model regularization, model linearity and non-linearity, and aggregation of 16S rRNA sequences into operational taxonomic units (OTUs) as a function of sequence dissimilarity threshold (SDT). A large percentage (greater than 80%) of model scenarios resulted in well-performing and significant models at intermediate SDTs of 0.13-0.14 and 0.26. The 16S rRNA sequences consistently selected into the well-performing and significant models at those SDTs were classified as Nitrosomonas and Nitrospira groups. We then extend the framework by applying it to the biotransformation rate constants of ten micropollutants measured in batch reactors seeded with the ten WWTP communities. We identified phylogenetic groups that were robustly selected into all well-performing and significant models constructed with biotransformation rates of isoproturon, propachlor, ranitidine, and venlafaxine. These phylogenetic groups can be used as predictive biomarkers of WWTP microbial community activity towards these specific micropollutants. This work is an important step towards developing tools to predict biotransformation rates in WWTPs based on taxonomic composition. Copyright © 2014 Elsevier Ltd. All rights reserved.
2017-01-01
Understanding how individual photoreceptor cells factor in the spectral sensitivity of a visual system is essential to explain how they contribute to the visual ecology of the animal in question. Existing methods that model the absorption of visual pigments use templates which correspond closely to data from thin cross-sections of photoreceptor cells. However, few modeling approaches use a single framework to incorporate physical parameters of real photoreceptors, which can be fused, and can form vertical tiers. Akaike’s information criterion (AICc) was used here to select absorptance models of multiple classes of photoreceptor cells that maximize information, given visual system spectral sensitivity data obtained using extracellular electroretinograms and structural parameters obtained by histological methods. This framework was first used to select among alternative hypotheses of photoreceptor number. It identified spectral classes from a range of dark-adapted visual systems which have between one and four spectral photoreceptor classes. These were the velvet worm, Principapillatus hitoyensis, the branchiopod water flea, Daphnia magna, normal humans, and humans with enhanced S-cone syndrome, a condition in which S-cone frequency is increased due to mutations in a transcription factor that controls photoreceptor expression. Data from the Asian swallowtail, Papilio xuthus, which has at least five main spectral photoreceptor classes in its compound eyes, were included to illustrate potential effects of model over-simplification on multi-model inference. The multi-model framework was then used with parameters of spectral photoreceptor classes and the structural photoreceptor array kept constant. The goal was to map relative opsin expression to visual pigment concentration. It identified relative opsin expression differences for two populations of the bluefin killifish, Lucania goodei. The modeling approach presented here will be useful in selecting the most likely alternative hypotheses of opsin-based spectral photoreceptor classes, using relative opsin expression and extracellular electroretinography. PMID:28740757
Lessios, Nicolas
2017-01-01
Understanding how individual photoreceptor cells factor in the spectral sensitivity of a visual system is essential to explain how they contribute to the visual ecology of the animal in question. Existing methods that model the absorption of visual pigments use templates which correspond closely to data from thin cross-sections of photoreceptor cells. However, few modeling approaches use a single framework to incorporate physical parameters of real photoreceptors, which can be fused, and can form vertical tiers. Akaike's information criterion (AIC c ) was used here to select absorptance models of multiple classes of photoreceptor cells that maximize information, given visual system spectral sensitivity data obtained using extracellular electroretinograms and structural parameters obtained by histological methods. This framework was first used to select among alternative hypotheses of photoreceptor number. It identified spectral classes from a range of dark-adapted visual systems which have between one and four spectral photoreceptor classes. These were the velvet worm, Principapillatus hitoyensis , the branchiopod water flea, Daphnia magna , normal humans, and humans with enhanced S-cone syndrome, a condition in which S-cone frequency is increased due to mutations in a transcription factor that controls photoreceptor expression. Data from the Asian swallowtail, Papilio xuthus , which has at least five main spectral photoreceptor classes in its compound eyes, were included to illustrate potential effects of model over-simplification on multi-model inference. The multi-model framework was then used with parameters of spectral photoreceptor classes and the structural photoreceptor array kept constant. The goal was to map relative opsin expression to visual pigment concentration. It identified relative opsin expression differences for two populations of the bluefin killifish, Lucania goodei . The modeling approach presented here will be useful in selecting the most likely alternative hypotheses of opsin-based spectral photoreceptor classes, using relative opsin expression and extracellular electroretinography.
Ander, Bradley P.; Zhang, Xiaoshuai; Xue, Fuzhong; Sharp, Frank R.; Yang, Xiaowei
2013-01-01
The discovery of genetic or genomic markers plays a central role in the development of personalized medicine. A notable challenge exists when dealing with the high dimensionality of the data sets, as thousands of genes or millions of genetic variants are collected on a relatively small number of subjects. Traditional gene-wise selection methods using univariate analyses face difficulty to incorporate correlational, structural, or functional structures amongst the molecular measures. For microarray gene expression data, we first summarize solutions in dealing with ‘large p, small n’ problems, and then propose an integrative Bayesian variable selection (iBVS) framework for simultaneously identifying causal or marker genes and regulatory pathways. A novel partial least squares (PLS) g-prior for iBVS is developed to allow the incorporation of prior knowledge on gene-gene interactions or functional relationships. From the point view of systems biology, iBVS enables user to directly target the joint effects of multiple genes and pathways in a hierarchical modeling diagram to predict disease status or phenotype. The estimated posterior selection probabilities offer probabilitic and biological interpretations. Both simulated data and a set of microarray data in predicting stroke status are used in validating the performance of iBVS in a Probit model with binary outcomes. iBVS offers a general framework for effective discovery of various molecular biomarkers by combining data-based statistics and knowledge-based priors. Guidelines on making posterior inferences, determining Bayesian significance levels, and improving computational efficiencies are also discussed. PMID:23844055
Peng, Bin; Zhu, Dianwen; Ander, Bradley P; Zhang, Xiaoshuai; Xue, Fuzhong; Sharp, Frank R; Yang, Xiaowei
2013-01-01
The discovery of genetic or genomic markers plays a central role in the development of personalized medicine. A notable challenge exists when dealing with the high dimensionality of the data sets, as thousands of genes or millions of genetic variants are collected on a relatively small number of subjects. Traditional gene-wise selection methods using univariate analyses face difficulty to incorporate correlational, structural, or functional structures amongst the molecular measures. For microarray gene expression data, we first summarize solutions in dealing with 'large p, small n' problems, and then propose an integrative Bayesian variable selection (iBVS) framework for simultaneously identifying causal or marker genes and regulatory pathways. A novel partial least squares (PLS) g-prior for iBVS is developed to allow the incorporation of prior knowledge on gene-gene interactions or functional relationships. From the point view of systems biology, iBVS enables user to directly target the joint effects of multiple genes and pathways in a hierarchical modeling diagram to predict disease status or phenotype. The estimated posterior selection probabilities offer probabilitic and biological interpretations. Both simulated data and a set of microarray data in predicting stroke status are used in validating the performance of iBVS in a Probit model with binary outcomes. iBVS offers a general framework for effective discovery of various molecular biomarkers by combining data-based statistics and knowledge-based priors. Guidelines on making posterior inferences, determining Bayesian significance levels, and improving computational efficiencies are also discussed.
ERIC Educational Resources Information Center
Wang, Xueli
2012-01-01
This study draws upon social cognitive career theory and higher education literature to propose and test a conceptual framework for understanding the selection of postsecondary STEM fields of study by recent high school graduates who attend four-year institutions. Results suggest that high school math achievement, exposure to math and science…
Directional selection can drive the evolution of modularity in complex traits
Melo, Diogo; Marroig, Gabriel
2015-01-01
Modularity is a central concept in modern biology, providing a powerful framework for the study of living organisms on many organizational levels. Two central and related questions can be posed in regard to modularity: How does modularity appear in the first place, and what forces are responsible for keeping and/or changing modular patterns? We approached these questions using a quantitative genetics simulation framework, building on previous results obtained with bivariate systems and extending them to multivariate systems. We developed an individual-based model capable of simulating many traits controlled by many loci with variable pleiotropic relations between them, expressed in populations subject to mutation, recombination, drift, and selection. We used this model to study the problem of the emergence of modularity, and hereby show that drift and stabilizing selection are inefficient at creating modular variational structures. We also demonstrate that directional selection can have marked effects on the modular structure between traits, actively promoting a restructuring of genetic variation in the selected population and potentially facilitating the response to selection. Furthermore, we give examples of complex covariation created by simple regimes of combined directional and stabilizing selection and show that stabilizing selection is important in the maintenance of established covariation patterns. Our results are in full agreement with previous results for two-trait systems and further extend them to include scenarios of greater complexity. Finally, we discuss the evolutionary consequences of modular patterns being molded by directional selection. PMID:25548154
Directional selection can drive the evolution of modularity in complex traits.
Melo, Diogo; Marroig, Gabriel
2015-01-13
Modularity is a central concept in modern biology, providing a powerful framework for the study of living organisms on many organizational levels. Two central and related questions can be posed in regard to modularity: How does modularity appear in the first place, and what forces are responsible for keeping and/or changing modular patterns? We approached these questions using a quantitative genetics simulation framework, building on previous results obtained with bivariate systems and extending them to multivariate systems. We developed an individual-based model capable of simulating many traits controlled by many loci with variable pleiotropic relations between them, expressed in populations subject to mutation, recombination, drift, and selection. We used this model to study the problem of the emergence of modularity, and hereby show that drift and stabilizing selection are inefficient at creating modular variational structures. We also demonstrate that directional selection can have marked effects on the modular structure between traits, actively promoting a restructuring of genetic variation in the selected population and potentially facilitating the response to selection. Furthermore, we give examples of complex covariation created by simple regimes of combined directional and stabilizing selection and show that stabilizing selection is important in the maintenance of established covariation patterns. Our results are in full agreement with previous results for two-trait systems and further extend them to include scenarios of greater complexity. Finally, we discuss the evolutionary consequences of modular patterns being molded by directional selection.
CAN A MODEL TRANSFERABILITY FRAMEWORK IMPROVE ...
Budget constraints and policies that limit primary data collection have fueled a practice of transferring estimates (or models to generate estimates) of ecological endpoints from sites where primary data exists to sites where little to no primary data were collected. Whereas benefit transfer has been well studied; there is no comparable framework for evaluating whether model transfer between sites is justifiable. We developed and applied a transferability assessment framework to a case study involving forest carbon sequestration for soils in Tillamook Bay, Oregon. The carbon sequestration capacity of forested watersheds is an important ecosystem service in the effort to reduce atmospheric greenhouse gas emissions. We used our framework, incorporating three basic steps (model selection, defining context variables, assessing logistical constraints) for evaluating model transferability, to compare estimates of carbon storage capacity derived from two models, COMET-Farm and Yasso. We applied each model to Tillamook Bay and compared results to data extracted from the Soil Survey Geographic Database (SSURGO) using ArcGIS. Context variables considered were: geographic proximity to Tillamook, dominant tree species, climate and soil type. Preliminary analyses showed that estimates from COMET-Farm were more similar to SSURGO data, likely because model context variables (e.g. proximity to Tillamook and dominant tree species) were identical to those in Tillamook. In contras
Montijn, Jorrit Steven; Klink, P Christaan; van Wezel, Richard J A
2012-01-01
Divisive normalization models of covert attention commonly use spike rate modulations as indicators of the effect of top-down attention. In addition, an increasing number of studies have shown that top-down attention increases the synchronization of neuronal oscillations as well, particularly in gamma-band frequencies (25-100 Hz). Although modulations of spike rate and synchronous oscillations are not mutually exclusive as mechanisms of attention, there has thus far been little effort to integrate these concepts into a single framework of attention. Here, we aim to provide such a unified framework by expanding the normalization model of attention with a multi-level hierarchical structure and a time dimension; allowing the simulation of a recently reported backward progression of attentional effects along the visual cortical hierarchy. A simple cascade of normalization models simulating different cortical areas is shown to cause signal degradation and a loss of stimulus discriminability over time. To negate this degradation and ensure stable neuronal stimulus representations, we incorporate a kind of oscillatory phase entrainment into our model that has previously been proposed as the "communication-through-coherence" (CTC) hypothesis. Our analysis shows that divisive normalization and oscillation models can complement each other in a unified account of the neural mechanisms of selective visual attention. The resulting hierarchical normalization and oscillation (HNO) model reproduces several additional spatial and temporal aspects of attentional modulation and predicts a latency effect on neuronal responses as a result of cued attention.
Montijn, Jorrit Steven; Klink, P. Christaan; van Wezel, Richard J. A.
2012-01-01
Divisive normalization models of covert attention commonly use spike rate modulations as indicators of the effect of top-down attention. In addition, an increasing number of studies have shown that top-down attention increases the synchronization of neuronal oscillations as well, particularly in gamma-band frequencies (25–100 Hz). Although modulations of spike rate and synchronous oscillations are not mutually exclusive as mechanisms of attention, there has thus far been little effort to integrate these concepts into a single framework of attention. Here, we aim to provide such a unified framework by expanding the normalization model of attention with a multi-level hierarchical structure and a time dimension; allowing the simulation of a recently reported backward progression of attentional effects along the visual cortical hierarchy. A simple cascade of normalization models simulating different cortical areas is shown to cause signal degradation and a loss of stimulus discriminability over time. To negate this degradation and ensure stable neuronal stimulus representations, we incorporate a kind of oscillatory phase entrainment into our model that has previously been proposed as the “communication-through-coherence” (CTC) hypothesis. Our analysis shows that divisive normalization and oscillation models can complement each other in a unified account of the neural mechanisms of selective visual attention. The resulting hierarchical normalization and oscillation (HNO) model reproduces several additional spatial and temporal aspects of attentional modulation and predicts a latency effect on neuronal responses as a result of cued attention. PMID:22586372
Multi-atlas learner fusion: An efficient segmentation approach for large-scale data.
Asman, Andrew J; Huo, Yuankai; Plassard, Andrew J; Landman, Bennett A
2015-12-01
We propose multi-atlas learner fusion (MLF), a framework for rapidly and accurately replicating the highly accurate, yet computationally expensive, multi-atlas segmentation framework based on fusing local learners. In the largest whole-brain multi-atlas study yet reported, multi-atlas segmentations are estimated for a training set of 3464 MR brain images. Using these multi-atlas estimates we (1) estimate a low-dimensional representation for selecting locally appropriate example images, and (2) build AdaBoost learners that map a weak initial segmentation to the multi-atlas segmentation result. Thus, to segment a new target image we project the image into the low-dimensional space, construct a weak initial segmentation, and fuse the trained, locally selected, learners. The MLF framework cuts the runtime on a modern computer from 36 h down to 3-8 min - a 270× speedup - by completely bypassing the need for deformable atlas-target registrations. Additionally, we (1) describe a technique for optimizing the weak initial segmentation and the AdaBoost learning parameters, (2) quantify the ability to replicate the multi-atlas result with mean accuracies approaching the multi-atlas intra-subject reproducibility on a testing set of 380 images, (3) demonstrate significant increases in the reproducibility of intra-subject segmentations when compared to a state-of-the-art multi-atlas framework on a separate reproducibility dataset, (4) show that under the MLF framework the large-scale data model significantly improve the segmentation over the small-scale model under the MLF framework, and (5) indicate that the MLF framework has comparable performance as state-of-the-art multi-atlas segmentation algorithms without using non-local information. Copyright © 2015 Elsevier B.V. All rights reserved.
Steinmetz, Nicholas A.; Moore, Tirin; Knudsen, Eric I.
2017-01-01
Distinct networks in the forebrain and the midbrain coordinate to control spatial attention. The critical involvement of the superior colliculus (SC)—the central structure in the midbrain network—in visuospatial attention has been shown by four seminal, published studies in monkeys (Macaca mulatta) performing multialternative tasks. However, due to the lack of a mechanistic framework for interpreting behavioral data in such tasks, the nature of the SC's contribution to attention remains unclear. Here we present and validate a novel decision framework for analyzing behavioral data in multialternative attention tasks. We apply this framework to re-examine the behavioral evidence from these published studies. Our model is a multidimensional extension to signal detection theory that distinguishes between two major classes of attentional mechanisms: those that alter the quality of sensory information or “sensitivity,” and those that alter the selective gating of sensory information or “choice bias.” Model-based simulations and model-based analyses of data from these published studies revealed a converging pattern of results that indicated that choice-bias changes, rather than sensitivity changes, were the primary outcome of SC manipulation. Our results suggest that the SC contributes to attentional performance predominantly by generating a spatial choice bias for stimuli at a selected location, and that this bias operates downstream of forebrain mechanisms that enhance sensitivity. The findings lead to a testable mechanistic framework of how the midbrain and forebrain networks interact to control spatial attention. SIGNIFICANCE STATEMENT Attention involves the selection of the most relevant information for differential sensory processing and decision making. While the mechanisms by which attention alters sensory encoding (sensitivity control) are well studied, the mechanisms by which attention alters decisional weighting of sensory evidence (choice-bias control) are poorly understood. Here, we introduce a model of multialternative decision making that distinguishes bias from sensitivity effects in attention tasks. With our model, we simulate experimental data from four seminal studies that microstimulated or inactivated a key attention-related midbrain structure, the superior colliculus (SC). We demonstrate that the experimental effects of SC manipulation are entirely consistent with the SC controlling attention by changing choice bias, thereby shedding new light on how the brain mediates attention. PMID:28100734
Sridharan, Devarajan; Steinmetz, Nicholas A; Moore, Tirin; Knudsen, Eric I
2017-01-18
Distinct networks in the forebrain and the midbrain coordinate to control spatial attention. The critical involvement of the superior colliculus (SC)-the central structure in the midbrain network-in visuospatial attention has been shown by four seminal, published studies in monkeys (Macaca mulatta) performing multialternative tasks. However, due to the lack of a mechanistic framework for interpreting behavioral data in such tasks, the nature of the SC's contribution to attention remains unclear. Here we present and validate a novel decision framework for analyzing behavioral data in multialternative attention tasks. We apply this framework to re-examine the behavioral evidence from these published studies. Our model is a multidimensional extension to signal detection theory that distinguishes between two major classes of attentional mechanisms: those that alter the quality of sensory information or "sensitivity," and those that alter the selective gating of sensory information or "choice bias." Model-based simulations and model-based analyses of data from these published studies revealed a converging pattern of results that indicated that choice-bias changes, rather than sensitivity changes, were the primary outcome of SC manipulation. Our results suggest that the SC contributes to attentional performance predominantly by generating a spatial choice bias for stimuli at a selected location, and that this bias operates downstream of forebrain mechanisms that enhance sensitivity. The findings lead to a testable mechanistic framework of how the midbrain and forebrain networks interact to control spatial attention. Attention involves the selection of the most relevant information for differential sensory processing and decision making. While the mechanisms by which attention alters sensory encoding (sensitivity control) are well studied, the mechanisms by which attention alters decisional weighting of sensory evidence (choice-bias control) are poorly understood. Here, we introduce a model of multialternative decision making that distinguishes bias from sensitivity effects in attention tasks. With our model, we simulate experimental data from four seminal studies that microstimulated or inactivated a key attention-related midbrain structure, the superior colliculus (SC). We demonstrate that the experimental effects of SC manipulation are entirely consistent with the SC controlling attention by changing choice bias, thereby shedding new light on how the brain mediates attention. Copyright © 2017 the authors 0270-6474/17/370480-32$15.00/0.
Digest: Demographic inferences accounting for selection at linked sites†.
Simon, Alexis; Duranton, Maud
2018-05-16
Complex demography and selection at linked sites can generate spurious signatures of divergent selection. Unfortunately, many attempts at demographic inference consider overly simple models and neglect the effect of selection at linked sites. In this issue, Rougemont and Bernatchez (2018) applied an approximate Bayesian computation (ABC) framework that accounts for indirect selection to reveal a complex history of secondary contacts in Atlantic salmon (Salmo salar) that might explain a high rate of latitudinal clines in this species. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Model Selection in Systems Biology Depends on Experimental Design
Silk, Daniel; Kirk, Paul D. W.; Barnes, Chris P.; Toni, Tina; Stumpf, Michael P. H.
2014-01-01
Experimental design attempts to maximise the information available for modelling tasks. An optimal experiment allows the inferred models or parameters to be chosen with the highest expected degree of confidence. If the true system is faithfully reproduced by one of the models, the merit of this approach is clear - we simply wish to identify it and the true parameters with the most certainty. However, in the more realistic situation where all models are incorrect or incomplete, the interpretation of model selection outcomes and the role of experimental design needs to be examined more carefully. Using a novel experimental design and model selection framework for stochastic state-space models, we perform high-throughput in-silico analyses on families of gene regulatory cascade models, to show that the selected model can depend on the experiment performed. We observe that experimental design thus makes confidence a criterion for model choice, but that this does not necessarily correlate with a model's predictive power or correctness. Finally, in the special case of linear ordinary differential equation (ODE) models, we explore how wrong a model has to be before it influences the conclusions of a model selection analysis. PMID:24922483
Model selection in systems biology depends on experimental design.
Silk, Daniel; Kirk, Paul D W; Barnes, Chris P; Toni, Tina; Stumpf, Michael P H
2014-06-01
Experimental design attempts to maximise the information available for modelling tasks. An optimal experiment allows the inferred models or parameters to be chosen with the highest expected degree of confidence. If the true system is faithfully reproduced by one of the models, the merit of this approach is clear - we simply wish to identify it and the true parameters with the most certainty. However, in the more realistic situation where all models are incorrect or incomplete, the interpretation of model selection outcomes and the role of experimental design needs to be examined more carefully. Using a novel experimental design and model selection framework for stochastic state-space models, we perform high-throughput in-silico analyses on families of gene regulatory cascade models, to show that the selected model can depend on the experiment performed. We observe that experimental design thus makes confidence a criterion for model choice, but that this does not necessarily correlate with a model's predictive power or correctness. Finally, in the special case of linear ordinary differential equation (ODE) models, we explore how wrong a model has to be before it influences the conclusions of a model selection analysis.
Optimal Decision Stimuli for Risky Choice Experiments: An Adaptive Approach.
Cavagnaro, Daniel R; Gonzalez, Richard; Myung, Jay I; Pitt, Mark A
2013-02-01
Collecting data to discriminate between models of risky choice requires careful selection of decision stimuli. Models of decision making aim to predict decisions across a wide range of possible stimuli, but practical limitations force experimenters to select only a handful of them for actual testing. Some stimuli are more diagnostic between models than others, so the choice of stimuli is critical. This paper provides the theoretical background and a methodological framework for adaptive selection of optimal stimuli for discriminating among models of risky choice. The approach, called Adaptive Design Optimization (ADO), adapts the stimulus in each experimental trial based on the results of the preceding trials. We demonstrate the validity of the approach with simulation studies aiming to discriminate Expected Utility, Weighted Expected Utility, Original Prospect Theory, and Cumulative Prospect Theory models.
Nahum-Shani, Inbal; Hekler, Eric B; Spruijt-Metz, Donna
2015-12-01
Advances in wireless devices and mobile technology offer many opportunities for delivering just-in-time adaptive interventions (JITAIs)-suites of interventions that adapt over time to an individual's changing status and circumstances with the goal to address the individual's need for support, whenever this need arises. A major challenge confronting behavioral scientists aiming to develop a JITAI concerns the selection and integration of existing empirical, theoretical and practical evidence into a scientific model that can inform the construction of a JITAI and help identify scientific gaps. The purpose of this paper is to establish a pragmatic framework that can be used to organize existing evidence into a useful model for JITAI construction. This framework involves clarifying the conceptual purpose of a JITAI, namely, the provision of just-in-time support via adaptation, as well as describing the components of a JITAI and articulating a list of concrete questions to guide the establishment of a useful model for JITAI construction. The proposed framework includes an organizing scheme for translating the relatively static scientific models underlying many health behavior interventions into a more dynamic model that better incorporates the element of time. This framework will help to guide the next generation of empirical work to support the creation of effective JITAIs. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Lee, Ki-Sun; Shin, Sang-Wan; Lee, Sang-Pyo; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Jeong-Yol
The purpose of this pilot study was to evaluate and compare polyetherketoneketone (PEKK) with different framework materials for implant-supported prostheses by means of a three-dimensional finite element analysis (3D-FEA) based on cone beam computed tomography (CBCT) and computer-aided design (CAD) data. A geometric model that consisted of four maxillary implants supporting a prosthesis framework was constructed from CBCT and CAD data of a treated patient. Three different materials (zirconia, titanium, and PEKK) were selected, and their material properties were simulated using FEA software in the generated geometric model. In the PEKK framework (ie, low elastic modulus) group, the stress transferred to the implant and simulated adjacent tissue was reduced when compressive stress was dominant, but increased when tensile stress was dominant. This study suggests that the shock-absorbing effects of a resilient implant-supported framework are limited in some areas and that rigid framework material shows a favorable stress distribution and safety of overall components of the prosthesis.
Shtandel', S A; Gopkalova, I V; Khaziev, V V; Dubovik, V N; Svetlova-Kovalenko, E A
2009-01-01
On genealogic data about 242 Gravers disease patients, fertility parameters of 2105 healthy and 369 Grave's disease women peculiarities of genetic determination and natural selection of disease were studied. Results of the genetic analysis have revealed conformity of Grave's disease inheritance to alternative model parameters. Homozygote penetrance within the framework of this model was 78.8%, heterozygote--17.3%. For one generation in the Kharkov area population frequency of a gene to Grave's disease predisposition increases 0.8%.
Bayesian multimodel inference for dose-response studies
Link, W.A.; Albers, P.H.
2007-01-01
Statistical inference in dose?response studies is model-based: The analyst posits a mathematical model of the relation between exposure and response, estimates parameters of the model, and reports conclusions conditional on the model. Such analyses rarely include any accounting for the uncertainties associated with model selection. The Bayesian inferential system provides a convenient framework for model selection and multimodel inference. In this paper we briefly describe the Bayesian paradigm and Bayesian multimodel inference. We then present a family of models for multinomial dose?response data and apply Bayesian multimodel inferential methods to the analysis of data on the reproductive success of American kestrels (Falco sparveriuss) exposed to various sublethal dietary concentrations of methylmercury.
A framework for the selection and ensemble development of flood vulnerability models
NASA Astrophysics Data System (ADS)
Figueiredo, Rui; Schröter, Kai; Kreibich, Heidi; Martina, Mario
2017-04-01
Effective understanding and management of flood risk requires comprehensive risk assessment studies that consider not only the hazard component, but also the impacts that the phenomena may have on the built environment, economy and society. This integrated approach has gained importance over recent decades, and with it so has the scientific attention given to flood vulnerability models describing the relationships between flood intensity metrics and damage to physical assets, also known as flood loss models. Despite considerable progress in this field, many challenges persist. Flood damage mechanisms are complex and depend on multiple variables, which can have different degrees of importance depending on the application setting. In addition, data required for the development and validation of such models tend to be scarce, particularly in data poor regions. These issues are reflected in the large amount of flood vulnerability models that are available in the literature today, as well as in their high heterogeneity: they are built with different modelling approaches, in different geographic contexts, utilizing different explanatory variables, and with varying levels of complexity. Notwithstanding recent developments in this area, uncertainty remains high, and large disparities exist among models. For these reasons, identifying which model or models, given their properties, are appropriate for a given context is not straightforward. In the present study, we propose a framework that guides the structured selection of flood vulnerability models and enables ranking them according to their suitability for a certain application, based on expert judgement. The approach takes advantage of current state of the art and most up-to-date knowledge on flood vulnerability processes. Given the heterogeneity and uncertainty currently present in flood vulnerability models, we propose the use of a model ensemble. With this in mind, the proposed approach is based on a weighting scheme within a logic-tree framework that enables the generation of such ensembles in a logically consistent manner. We test and discuss the results by applying the framework to the case study of the 2002 floods along the Mulde River in Germany. Applications of individual models and model ensembles are compared and discussed.
Protein construct storage: Bayesian variable selection and prediction with mixtures.
Clyde, M A; Parmigiani, G
1998-07-01
Determining optimal conditions for protein storage while maintaining a high level of protein activity is an important question in pharmaceutical research. A designed experiment based on a space-filling design was conducted to understand the effects of factors affecting protein storage and to establish optimal storage conditions. Different model-selection strategies to identify important factors may lead to very different answers about optimal conditions. Uncertainty about which factors are important, or model uncertainty, can be a critical issue in decision-making. We use Bayesian variable selection methods for linear models to identify important variables in the protein storage data, while accounting for model uncertainty. We also use the Bayesian framework to build predictions based on a large family of models, rather than an individual model, and to evaluate the probability that certain candidate storage conditions are optimal.
The Role of Short-Term Memory in Operator Workload
1988-04-01
Craik , F.I. and Lockhart , R.S., 1972, Levels of processing : A framework for memory research...examples of postcategorical selction models. Precategorical Selection Models Sperling’s Model. Unlike Craik and Lockhart’s levels -of- processing model...subdivided to contain a primary memory unit and a mechanism for the direction of conscious attention. Levels -of- Processing . Craik and Lockhart’s levels
An Ontology of Power: Perception and Reality in Conflict
2016-12-01
synthetic model was developed as the constant comparative analysis was resumed through the application of selected theory toward the original source...The synthetic model represents a series of maxims for the analysis of a complex social system, developed through a study of contemporary national...and categories. A model of strategic agency is proposed as an alternative framework for developing security strategy. The strategic agency model draws
Research on classified real-time flood forecasting framework based on K-means cluster and rough set.
Xu, Wei; Peng, Yong
2015-01-01
This research presents a new classified real-time flood forecasting framework. In this framework, historical floods are classified by a K-means cluster according to the spatial and temporal distribution of precipitation, the time variance of precipitation intensity and other hydrological factors. Based on the classified results, a rough set is used to extract the identification rules for real-time flood forecasting. Then, the parameters of different categories within the conceptual hydrological model are calibrated using a genetic algorithm. In real-time forecasting, the corresponding category of parameters is selected for flood forecasting according to the obtained flood information. This research tests the new classified framework on Guanyinge Reservoir and compares the framework with the traditional flood forecasting method. It finds that the performance of the new classified framework is significantly better in terms of accuracy. Furthermore, the framework can be considered in a catchment with fewer historical floods.
Modulation Depth Estimation and Variable Selection in State-Space Models for Neural Interfaces
Hochberg, Leigh R.; Donoghue, John P.; Brown, Emery N.
2015-01-01
Rapid developments in neural interface technology are making it possible to record increasingly large signal sets of neural activity. Various factors such as asymmetrical information distribution and across-channel redundancy may, however, limit the benefit of high-dimensional signal sets, and the increased computational complexity may not yield corresponding improvement in system performance. High-dimensional system models may also lead to overfitting and lack of generalizability. To address these issues, we present a generalized modulation depth measure using the state-space framework that quantifies the tuning of a neural signal channel to relevant behavioral covariates. For a dynamical system, we develop computationally efficient procedures for estimating modulation depth from multivariate data. We show that this measure can be used to rank neural signals and select an optimal channel subset for inclusion in the neural decoding algorithm. We present a scheme for choosing the optimal subset based on model order selection criteria. We apply this method to neuronal ensemble spike-rate decoding in neural interfaces, using our framework to relate motor cortical activity with intended movement kinematics. With offline analysis of intracortical motor imagery data obtained from individuals with tetraplegia using the BrainGate neural interface, we demonstrate that our variable selection scheme is useful for identifying and ranking the most information-rich neural signals. We demonstrate that our approach offers several orders of magnitude lower complexity but virtually identical decoding performance compared to greedy search and other selection schemes. Our statistical analysis shows that the modulation depth of human motor cortical single-unit signals is well characterized by the generalized Pareto distribution. Our variable selection scheme has wide applicability in problems involving multisensor signal modeling and estimation in biomedical engineering systems. PMID:25265627
NASA Astrophysics Data System (ADS)
Olson, R.; Evans, J. P.; Fan, Y.
2015-12-01
NARCliM (NSW/ACT Regional Climate Modelling Project) is a regional climate project for Australia and the surrounding region. It dynamically downscales 4 General Circulation Models (GCMs) using three Regional Climate Models (RCMs) to provide climate projections for the CORDEX-AustralAsia region at 50 km resolution, and for south-east Australia at 10 km resolution. The project differs from previous work in the level of sophistication of model selection. Specifically, the selection process for GCMs included (i) conducting literature review to evaluate model performance, (ii) analysing model independence, and (iii) selecting models that span future temperature and precipitation change space. RCMs for downscaling the GCMs were chosen based on their performance for several precipitation events over South-East Australia, and on model independence.Bayesian Model Averaging (BMA) provides a statistically consistent framework for weighing the models based on their likelihood given the available observations. These weights are used to provide probability distribution functions (pdfs) for model projections. We develop a BMA framework for constructing probabilistic climate projections for spatially-averaged variables from the NARCliM project. The first step in the procedure is smoothing model output in order to exclude the influence of internal climate variability. Our statistical model for model-observations residuals is a homoskedastic iid process. Comparing RCMs with Australian Water Availability Project (AWAP) observations is used to determine model weights through Monte Carlo integration. Posterior pdfs of statistical parameters of model-data residuals are obtained using Markov Chain Monte Carlo. The uncertainty in the properties of the model-data residuals is fully accounted for when constructing the projections. We present the preliminary results of the BMA analysis for yearly maximum temperature for New South Wales state planning regions for the period 2060-2079.
ERIC Educational Resources Information Center
Brown, Dikla; Cinamon, Rachel Gali
2016-01-01
The current study focuses on the contribution of five personality traits to the development of self-efficacy and outcome expectations regarding selecting a high school major among adolescents with learning disabilities (LD). Social cognitive career theory and the Big Five personality traits model served as the theoretical framework. Participants…
ERIC Educational Resources Information Center
Christie, Michael; Penn-Edwards, Sorrel; Donnison, Sharn; Greenaway, Ruth
2018-01-01
Literature on the support of the First Year Experience (FYE) in institutions of Higher Education provides a range of modelled approaches. However, we argue that institutions still need to selectively plan which approach/es and attendant strategies are best suited to their particular contexts and institutional policy and practice frameworks and how…
Computational Design of Functionalized Metal–Organic Framework Nodes for Catalysis
2017-01-01
Recent progress in the synthesis and characterization of metal–organic frameworks (MOFs) has opened the door to an increasing number of possible catalytic applications. The great versatility of MOFs creates a large chemical space, whose thorough experimental examination becomes practically impossible. Therefore, computational modeling is a key tool to support, rationalize, and guide experimental efforts. In this outlook we survey the main methodologies employed to model MOFs for catalysis, and we review selected recent studies on the functionalization of their nodes. We pay special attention to catalytic applications involving natural gas conversion. PMID:29392172
NASA Astrophysics Data System (ADS)
Kuga, Kazuki; Tanimoto, Jun
2018-02-01
We consider two imperfect ways to protect against an infectious disease such as influenza, namely vaccination giving only partial immunity and a defense against contagion such as wearing a mask. We build up a new analytic framework considering those two cases instead of perfect vaccination, conventionally assumed as a premise, with the assumption of an infinite and well-mixed population. Our framework also considers three different strategy-updating rules based on evolutionary game theory: conventional pairwise comparison with one randomly selected agent, another concept of pairwise comparison referring to a social average, and direct alternative selection not depending on the usual copying concept. We successfully obtain a phase diagram in which vaccination coverage at equilibrium can be compared when assuming the model of either imperfect vaccination or a defense against contagion. The obtained phase diagram reveals that a defense against contagion is marginally inferior to an imperfect vaccination as long as the same coefficient value is used. Highlights - We build a new analytical framework for a vaccination game combined with the susceptible-infected-recovered (SIR) model. - Our model can evaluate imperfect provisions such as vaccination giving only partial immunity and a defense against contagion. - We obtain a phase diagram with which to compare the quantitative effects of partial vaccination and a defense against contagion.
Data-driven discovery of partial differential equations
Rudy, Samuel H.; Brunton, Steven L.; Proctor, Joshua L.; Kutz, J. Nathan
2017-01-01
We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg–de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable. PMID:28508044
Chimaera simulation of complex states of flowing matter
2016-01-01
We discuss a unified mesoscale framework (chimaera) for the simulation of complex states of flowing matter across scales of motion. The chimaera framework can deal with each of the three macro–meso–micro levels through suitable ‘mutations’ of the basic mesoscale formulation. The idea is illustrated through selected simulations of complex micro- and nanoscale flows. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698031
Tran-Duy, An; Boonen, Annelies; van de Laar, Mart A F J; Franke, Angelinus C; Severens, Johan L
2011-12-01
To develop a modelling framework which can simulate long-term quality of life, societal costs and cost-effectiveness as affected by sequential drug treatment strategies for ankylosing spondylitis (AS). Discrete event simulation paradigm was selected for model development. Drug efficacy was modelled as changes in disease activity (Bath Ankylosing Spondylitis Disease Activity Index (BASDAI)) and functional status (Bath Ankylosing Spondylitis Functional Index (BASFI)), which were linked to costs and health utility using statistical models fitted based on an observational AS cohort. Published clinical data were used to estimate drug efficacy and time to events. Two strategies were compared: (1) five available non-steroidal anti-inflammatory drugs (strategy 1) and (2) same as strategy 1 plus two tumour necrosis factor α inhibitors (strategy 2). 13,000 patients were followed up individually until death. For probability sensitivity analysis, Monte Carlo simulations were performed with 1000 sets of parameters sampled from the appropriate probability distributions. The models successfully generated valid data on treatments, BASDAI, BASFI, utility, quality-adjusted life years (QALYs) and costs at time points with intervals of 1-3 months during the simulation length of 70 years. Incremental cost per QALY gained in strategy 2 compared with strategy 1 was €35,186. At a willingness-to-pay threshold of €80,000, it was 99.9% certain that strategy 2 was cost-effective. The modelling framework provides great flexibility to implement complex algorithms representing treatment selection, disease progression and changes in costs and utilities over time of patients with AS. Results obtained from the simulation are plausible.
Upgrades, Current Capabilities and Near-Term Plans of the NASA ARC Mars Climate
NASA Technical Reports Server (NTRS)
Hollingsworth, J. L.; Kahre, Melinda April; Haberle, Robert M.; Schaeffer, James R.
2012-01-01
We describe and review recent upgrades to the ARC Mars climate modeling framework, in particular, with regards to physical parameterizations (i.e., testing, implementation, modularization and documentation); the current climate modeling capabilities; selected research topics regarding current/past climates; and then, our near-term plans related to the NASA ARC Mars general circulation modeling (GCM) project.
A modeling framework for life history-based conservation planning
Eileen S. Burns; Sandor F. Toth; Robert G. Haight
2013-01-01
Reserve site selection models can be enhanced by including habitat conditions that populations need for food, shelter, and reproduction. We present a new population protection function that determines whether minimum areas of land with desired habitat features are present within the desired spatial conditions in the protected sites. Embedding the protection function as...
Strategic outsourcing of clinical services: a model for volume-stressed academic medical centers.
Billi, John E; Pai, Chih-Wen; Spahlinger, David A
2004-01-01
Many academic medical centers have significant capacity constraints and limited ability to expand services to meet demand. Health care management should employ strategic thinking to deal with service demands. This article uses three organizational models to develop a theoretical framework to guide the selection of clinical services for outsourcing.
Quantitative Rheological Model Selection
NASA Astrophysics Data System (ADS)
Freund, Jonathan; Ewoldt, Randy
2014-11-01
The more parameters in a rheological the better it will reproduce available data, though this does not mean that it is necessarily a better justified model. Good fits are only part of model selection. We employ a Bayesian inference approach that quantifies model suitability by balancing closeness to data against both the number of model parameters and their a priori uncertainty. The penalty depends upon prior-to-calibration expectation of the viable range of values that model parameters might take, which we discuss as an essential aspect of the selection criterion. Models that are physically grounded are usually accompanied by tighter physical constraints on their respective parameters. The analysis reflects a basic principle: models grounded in physics can be expected to enjoy greater generality and perform better away from where they are calibrated. In contrast, purely empirical models can provide comparable fits, but the model selection framework penalizes their a priori uncertainty. We demonstrate the approach by selecting the best-justified number of modes in a Multi-mode Maxwell description of PVA-Borax. We also quantify relative merits of the Maxwell model relative to powerlaw fits and purely empirical fits for PVA-Borax, a viscoelastic liquid, and gluten.
Mediating mental models of metals: Acknowledging the priority of the learner's prior learning
NASA Astrophysics Data System (ADS)
Taber, Keith S.
2003-09-01
This paper describes the conceptualizations, or mental models, of the nature of the bonding and structure of metals of a group of U.K. college students. It is suggested that these mental models may be understood in terms of the students' prior learning about covalent and ionic bonding, and the prevalence of a common alternative conceptual framework for chemical bonding labeled the octet framework. This study illustrates the prominence of prior learning in channeling the interpretation of subsequent teaching, and highlights the significance of the decisions made by curriculum planners, textbook authors, and teachers on the order of presenting subject content, the degree of simplification of scientific models, and the selection and presentation of metaphors.
Sauterey, Boris; Ward, Ben A; Follows, Michael J; Bowler, Chris; Claessen, David
2015-01-01
The functional and taxonomic biogeography of marine microbial systems reflects the current state of an evolving system. Current models of marine microbial systems and biogeochemical cycles do not reflect this fundamental organizing principle. Here, we investigate the evolutionary adaptive potential of marine microbial systems under environmental change and introduce explicit Darwinian adaptation into an ocean modelling framework, simulating evolving phytoplankton communities in space and time. To this end, we adopt tools from adaptive dynamics theory, evaluating the fitness of invading mutants over annual timescales, replacing the resident if a fitter mutant arises. Using the evolutionary framework, we examine how community assembly, specifically the emergence of phytoplankton cell size diversity, reflects the combined effects of bottom-up and top-down controls. When compared with a species-selection approach, based on the paradigm that "Everything is everywhere, but the environment selects", we show that (i) the selected optimal trait values are similar; (ii) the patterns emerging from the adaptive model are more robust, but (iii) the two methods lead to different predictions in terms of emergent diversity. We demonstrate that explicitly evolutionary approaches to modelling marine microbial populations and functionality are feasible and practical in time-varying, space-resolving settings and provide a new tool for exploring evolutionary interactions on a range of timescales in the ocean.
Ning, Jing; Chen, Yong; Piao, Jin
2017-07-01
Publication bias occurs when the published research results are systematically unrepresentative of the population of studies that have been conducted, and is a potential threat to meaningful meta-analysis. The Copas selection model provides a flexible framework for correcting estimates and offers considerable insight into the publication bias. However, maximizing the observed likelihood under the Copas selection model is challenging because the observed data contain very little information on the latent variable. In this article, we study a Copas-like selection model and propose an expectation-maximization (EM) algorithm for estimation based on the full likelihood. Empirical simulation studies show that the EM algorithm and its associated inferential procedure performs well and avoids the non-convergence problem when maximizing the observed likelihood. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A data-driven dynamics simulation framework for railway vehicles
NASA Astrophysics Data System (ADS)
Nie, Yinyu; Tang, Zhao; Liu, Fengjia; Chang, Jian; Zhang, Jianjun
2018-03-01
The finite element (FE) method is essential for simulating vehicle dynamics with fine details, especially for train crash simulations. However, factors such as the complexity of meshes and the distortion involved in a large deformation would undermine its calculation efficiency. An alternative method, the multi-body (MB) dynamics simulation provides satisfying time efficiency but limited accuracy when highly nonlinear dynamic process is involved. To maintain the advantages of both methods, this paper proposes a data-driven simulation framework for dynamics simulation of railway vehicles. This framework uses machine learning techniques to extract nonlinear features from training data generated by FE simulations so that specific mesh structures can be formulated by a surrogate element (or surrogate elements) to replace the original mechanical elements, and the dynamics simulation can be implemented by co-simulation with the surrogate element(s) embedded into a MB model. This framework consists of a series of techniques including data collection, feature extraction, training data sampling, surrogate element building, and model evaluation and selection. To verify the feasibility of this framework, we present two case studies, a vertical dynamics simulation and a longitudinal dynamics simulation, based on co-simulation with MATLAB/Simulink and Simpack, and a further comparison with a popular data-driven model (the Kriging model) is provided. The simulation result shows that using the legendre polynomial regression model in building surrogate elements can largely cut down the simulation time without sacrifice in accuracy.
Leavesley, G.H.; Markstrom, S.L.; Restrepo, Pedro J.; Viger, R.J.
2002-01-01
A modular approach to model design and construction provides a flexible framework in which to focus the multidisciplinary research and operational efforts needed to facilitate the development, selection, and application of the most robust distributed modelling methods. A variety of modular approaches have been developed, but with little consideration for compatibility among systems and concepts. Several systems are proprietary, limiting any user interaction. The US Geological Survey modular modelling system (MMS) is a modular modelling framework that uses an open source software approach to enable all members of the scientific community to address collaboratively the many complex issues associated with the design, development, and application of distributed hydrological and environmental models. Implementation of a common modular concept is not a trivial task. However, it brings the resources of a larger community to bear on the problems of distributed modelling, provides a framework in which to compare alternative modelling approaches objectively, and provides a means of sharing the latest modelling advances. The concepts and components of the MMS are described and an example application of the MMS, in a decision-support system context, is presented to demonstrate current system capabilities. Copyright ?? 2002 John Wiley and Sons, Ltd.
Becan, Jennifer E; Bartkowski, John P; Knight, Danica K; Wiley, Tisha R A; DiClemente, Ralph; Ducharme, Lori; Welsh, Wayne N; Bowser, Diana; McCollister, Kathryn; Hiller, Matthew; Spaulding, Anne C; Flynn, Patrick M; Swartzendruber, Andrea; Dickson, Megan F; Fisher, Jacqueline Horan; Aarons, Gregory A
2018-04-13
This paper describes the means by which a United States National Institute on Drug Abuse (NIDA)-funded cooperative, Juvenile Justice-Translational Research on Interventions for Adolescents in the Legal System (JJ-TRIALS), utilized an established implementation science framework in conducting a multi-site, multi-research center implementation intervention initiative. The initiative aimed to bolster the ability of juvenile justice agencies to address unmet client needs related to substance use while enhancing inter-organizational relationships between juvenile justice and local behavioral health partners. The EPIS (Exploration, Preparation, Implementation, Sustainment) framework was selected and utilized as the guiding model from inception through project completion; including the mapping of implementation strategies to EPIS stages, articulation of research questions, and selection, content, and timing of measurement protocols. Among other key developments, the project led to a reconceptualization of its governing implementation science framework into cyclical form as the EPIS Wheel. The EPIS Wheel is more consistent with rapid-cycle testing principles and permits researchers to track both progressive and recursive movement through EPIS. Moreover, because this randomized controlled trial was predicated on a bundled strategy method, JJ-TRIALS was designed to rigorously test progress through the EPIS stages as promoted by facilitation of data-driven decision making principles. The project extended EPIS by (1) elucidating the role and nature of recursive activity in promoting change (yielding the circular EPIS Wheel), (2) by expanding the applicability of the EPIS framework beyond a single evidence-based practice (EBP) to address varying process improvement efforts (representing varying EBPs), and (3) by disentangling outcome measures of progression through EPIS stages from the a priori established study timeline. The utilization of EPIS in JJ-TRIALS provides a model for practical and applied use of implementation frameworks in real-world settings that span outer service system and inner organizational contexts in improving care for vulnerable populations. NCT02672150 . Retrospectively registered on 22 January 2016.
Comprehensive Assessment of Models and Events based on Library tools (CAMEL)
NASA Astrophysics Data System (ADS)
Rastaetter, L.; Boblitt, J. M.; DeZeeuw, D.; Mays, M. L.; Kuznetsova, M. M.; Wiegand, C.
2017-12-01
At the Community Coordinated Modeling Center (CCMC), the assessment of modeling skill using a library of model-data comparison metrics is taken to the next level by fully integrating the ability to request a series of runs with the same model parameters for a list of events. The CAMEL framework initiates and runs a series of selected, pre-defined simulation settings for participating models (e.g., WSA-ENLIL, SWMF-SC+IH for the heliosphere, SWMF-GM, OpenGGCM, LFM, GUMICS for the magnetosphere) and performs post-processing using existing tools for a host of different output parameters. The framework compares the resulting time series data with respective observational data and computes a suite of metrics such as Prediction Efficiency, Root Mean Square Error, Probability of Detection, Probability of False Detection, Heidke Skill Score for each model-data pair. The system then plots scores by event and aggregated over all events for all participating models and run settings. We are building on past experiences with model-data comparisons of magnetosphere and ionosphere model outputs in GEM2008, GEM-CEDAR CETI2010 and Operational Space Weather Model challenges (2010-2013). We can apply the framework also to solar-heliosphere as well as radiation belt models. The CAMEL framework takes advantage of model simulations described with Space Physics Archive Search and Extract (SPASE) metadata and a database backend design developed for a next-generation Run-on-Request system at the CCMC.
Optimal Decision Stimuli for Risky Choice Experiments: An Adaptive Approach
Cavagnaro, Daniel R.; Gonzalez, Richard; Myung, Jay I.; Pitt, Mark A.
2014-01-01
Collecting data to discriminate between models of risky choice requires careful selection of decision stimuli. Models of decision making aim to predict decisions across a wide range of possible stimuli, but practical limitations force experimenters to select only a handful of them for actual testing. Some stimuli are more diagnostic between models than others, so the choice of stimuli is critical. This paper provides the theoretical background and a methodological framework for adaptive selection of optimal stimuli for discriminating among models of risky choice. The approach, called Adaptive Design Optimization (ADO), adapts the stimulus in each experimental trial based on the results of the preceding trials. We demonstrate the validity of the approach with simulation studies aiming to discriminate Expected Utility, Weighted Expected Utility, Original Prospect Theory, and Cumulative Prospect Theory models. PMID:24532856
Hippert, Henrique S; Taylor, James W
2010-04-01
Artificial neural networks have frequently been proposed for electricity load forecasting because of their capabilities for the nonlinear modelling of large multivariate data sets. Modelling with neural networks is not an easy task though; two of the main challenges are defining the appropriate level of model complexity, and choosing the input variables. This paper evaluates techniques for automatic neural network modelling within a Bayesian framework, as applied to six samples containing daily load and weather data for four different countries. We analyse input selection as carried out by the Bayesian 'automatic relevance determination', and the usefulness of the Bayesian 'evidence' for the selection of the best structure (in terms of number of neurones), as compared to methods based on cross-validation. Copyright 2009 Elsevier Ltd. All rights reserved.
Atta Mills, Ebenezer Fiifi Emire; Yan, Dawen; Yu, Bo; Wei, Xinyuan
2016-01-01
We propose a consolidated risk measure based on variance and the safety-first principle in a mean-risk portfolio optimization framework. The safety-first principle to financial portfolio selection strategy is modified and improved. Our proposed models are subjected to norm regularization to seek near-optimal stable and sparse portfolios. We compare the cumulative wealth of our preferred proposed model to a benchmark, S&P 500 index for the same period. Our proposed portfolio strategies have better out-of-sample performance than the selected alternative portfolio rules in literature and control the downside risk of the portfolio returns.
Detecting consistent patterns of directional adaptation using differential selection codon models.
Parto, Sahar; Lartillot, Nicolas
2017-06-23
Phylogenetic codon models are often used to characterize the selective regimes acting on protein-coding sequences. Recent methodological developments have led to models explicitly accounting for the interplay between mutation and selection, by modeling the amino acid fitness landscape along the sequence. However, thus far, most of these models have assumed that the fitness landscape is constant over time. Fluctuations of the fitness landscape may often be random or depend on complex and unknown factors. However, some organisms may be subject to systematic changes in selective pressure, resulting in reproducible molecular adaptations across independent lineages subject to similar conditions. Here, we introduce a codon-based differential selection model, which aims to detect and quantify the fine-grained consistent patterns of adaptation at the protein-coding level, as a function of external conditions experienced by the organism under investigation. The model parameterizes the global mutational pressure, as well as the site- and condition-specific amino acid selective preferences. This phylogenetic model is implemented in a Bayesian MCMC framework. After validation with simulations, we applied our method to a dataset of HIV sequences from patients with known HLA genetic background. Our differential selection model detects and characterizes differentially selected coding positions specifically associated with two different HLA alleles. Our differential selection model is able to identify consistent molecular adaptations as a function of repeated changes in the environment of the organism. These models can be applied to many other problems, ranging from viral adaptation to evolution of life-history strategies in plants or animals.
Williamson, Scott; Fledel-Alon, Adi; Bustamante, Carlos D
2004-09-01
We develop a Poisson random-field model of polymorphism and divergence that allows arbitrary dominance relations in a diploid context. This model provides a maximum-likelihood framework for estimating both selection and dominance parameters of new mutations using information on the frequency spectrum of sequence polymorphisms. This is the first DNA sequence-based estimator of the dominance parameter. Our model also leads to a likelihood-ratio test for distinguishing nongenic from genic selection; simulations indicate that this test is quite powerful when a large number of segregating sites are available. We also use simulations to explore the bias in selection parameter estimates caused by unacknowledged dominance relations. When inference is based on the frequency spectrum of polymorphisms, genic selection estimates of the selection parameter can be very strongly biased even for minor deviations from the genic selection model. Surprisingly, however, when inference is based on polymorphism and divergence (McDonald-Kreitman) data, genic selection estimates of the selection parameter are nearly unbiased, even for completely dominant or recessive mutations. Further, we find that weak overdominant selection can increase, rather than decrease, the substitution rate relative to levels of polymorphism. This nonintuitive result has major implications for the interpretation of several popular tests of neutrality.
Complex multidisciplinary system composition for aerospace vehicle conceptual design
NASA Astrophysics Data System (ADS)
Gonzalez, Lex
Although, there exists a vast amount of work concerning the analysis, design, integration of aerospace vehicle systems, there is no standard for how this data and knowledge should be combined in order to create a synthesis system. Each institution creating a synthesis system has in house vehicle and hardware components they are attempting to model and proprietary methods with which to model them. This leads to the fact that synthesis systems begin as one-off creations meant to answer a specific problem. As the scope of the synthesis system grows to encompass more and more problems, so does its size and complexity; in order for a single synthesis system to answer multiple questions the number of methods and method interface must increase. As a means to curtail the requirement that the increase of an aircraft synthesis systems capability leads to an increase in its size and complexity, this research effort focuses on the idea that each problem in aerospace requires its own analysis framework. By focusing on the creation of a methodology which centers on the matching of an analysis framework towards the problem being solved, the complexity of the analysis framework is decoupled from the complexity of the system that creates it. The derived methodology allows for the composition of complex multi-disciplinary systems (CMDS) through the automatic creation and implementation of system and disciplinary method interfaces. The CMDS Composition process follows a four step methodology meant to take a problem definition and progress towards the creation of an analysis framework meant to answer said problem. The unique implementation of the CMDS Composition process take user selected disciplinary analysis methods and automatically integrates them, together in order to create a syntactically composable analysis framework. As a means of assessing the validity of the CMDS Composition process a prototype system (AVDDBMS) has been developed. AVD DBMS has been used to model the Generic Hypersonic Vehicle (GHV), an open source family of hypersonic vehicles originating from the Air Force Research Laboratory. AVDDBMS has been applied in three different ways in order to assess its validity: Verification using GHV disciplinary data, Validation using selected disciplinary analysis methods, and Application of the CMDS Composition Process to assess the design solution space for the GHV hardware. The research demonstrates the holistic effect that selection of individual disciplinary analysis methods has on the structure and integration of the analysis framework.
Gerber, Brian D; Kendall, William L; Hooten, Mevin B; Dubovsky, James A; Drewien, Roderick C
2015-09-01
1. Prediction is fundamental to scientific enquiry and application; however, ecologists tend to favour explanatory modelling. We discuss a predictive modelling framework to evaluate ecological hypotheses and to explore novel/unobserved environmental scenarios to assist conservation and management decision-makers. We apply this framework to develop an optimal predictive model for juvenile (<1 year old) sandhill crane Grus canadensis recruitment of the Rocky Mountain Population (RMP). We consider spatial climate predictors motivated by hypotheses of how drought across multiple time-scales and spring/summer weather affects recruitment. 2. Our predictive modelling framework focuses on developing a single model that includes all relevant predictor variables, regardless of collinearity. This model is then optimized for prediction by controlling model complexity using a data-driven approach that marginalizes or removes irrelevant predictors from the model. Specifically, we highlight two approaches of statistical regularization, Bayesian least absolute shrinkage and selection operator (LASSO) and ridge regression. 3. Our optimal predictive Bayesian LASSO and ridge regression models were similar and on average 37% superior in predictive accuracy to an explanatory modelling approach. Our predictive models confirmed a priori hypotheses that drought and cold summers negatively affect juvenile recruitment in the RMP. The effects of long-term drought can be alleviated by short-term wet spring-summer months; however, the alleviation of long-term drought has a much greater positive effect on juvenile recruitment. The number of freezing days and snowpack during the summer months can also negatively affect recruitment, while spring snowpack has a positive effect. 4. Breeding habitat, mediated through climate, is a limiting factor on population growth of sandhill cranes in the RMP, which could become more limiting with a changing climate (i.e. increased drought). These effects are likely not unique to cranes. The alteration of hydrological patterns and water levels by drought may impact many migratory, wetland nesting birds in the Rocky Mountains and beyond. 5. Generalizable predictive models (trained by out-of-sample fit and based on ecological hypotheses) are needed by conservation and management decision-makers. Statistical regularization improves predictions and provides a general framework for fitting models with a large number of predictors, even those with collinearity, to simultaneously identify an optimal predictive model while conducting rigorous Bayesian model selection. Our framework is important for understanding population dynamics under a changing climate and has direct applications for making harvest and habitat management decisions. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
A multiple perspective modeling and simulation approach for renewable energy policy evaluation
NASA Astrophysics Data System (ADS)
Alyamani, Talal M.
Environmental issues and reliance on fossil fuel sources, including coal, oil, and natural gas, are the two most common energy issues that are currently faced by the United States (U.S.). Incorporation of renewable energy sources, a non-economical option in electricity generation compared to conventional sources that burn fossil fuels, single handedly promises a viable solution for both of these issues. Several energy policies have concordantly been suggested to reduce the financial burden of adopting renewable energy technologies and make such technologies competitive with conventional sources throughout the U.S. This study presents a modeling and analysis approach for comprehensive evaluation of renewable energy policies with respect to their benefits to various related stakeholders--customers, utilities, governmental and environmental agencies--where the debilitating impacts, advantages, and disadvantages of such policies can be assessed and quantified at the state level. In this work, a novel simulation framework is presented to help policymakers promptly assess and evaluate policies from different perspectives of its stakeholders. The proposed framework is composed of four modules: 1) a database that collates the economic, operational, and environmental data; 2) elucidation of policy, which devises the policy for the simulation model; 3) a preliminary analysis, which makes predictions for consumption, supply, and prices; and 4) a simulation model. After the validity of the proposed framework is demonstrated, a series of planned Florida and Texas renewable energy policies are implemented into the presented framework as case studies. Two solar and one energy efficiency programs are selected as part of the Florida case study. A utility rebate and federal tax credit programs are selected as part of the Texas case study. The results obtained from the simulation and conclusions drawn on the assessment of current energy policies are presented with respect to the conflicting objectives of different stakeholders.
Agent-Based vs. Equation-based Epidemiological Models:A Model Selection Case Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukumar, Sreenivas R; Nutaro, James J
This paper is motivated by the need to design model validation strategies for epidemiological disease-spread models. We consider both agent-based and equation-based models of pandemic disease spread and study the nuances and complexities one has to consider from the perspective of model validation. For this purpose, we instantiate an equation based model and an agent based model of the 1918 Spanish flu and we leverage data published in the literature for our case- study. We present our observations from the perspective of each implementation and discuss the application of model-selection criteria to compare the risk in choosing one modeling paradigmmore » to another. We conclude with a discussion of our experience and document future ideas for a model validation framework.« less
Selective 4D modelling framework for spatial-temporal land information management system
NASA Astrophysics Data System (ADS)
Doulamis, Anastasios; Soile, Sofia; Doulamis, Nikolaos; Chrisouli, Christina; Grammalidis, Nikos; Dimitropoulos, Kosmas; Manesis, Charalambos; Potsiou, Chryssy; Ioannidis, Charalabos
2015-06-01
This paper introduces a predictive (selective) 4D modelling framework where only the spatial 3D differences are modelled at the forthcoming time instances, while regions of no significant spatial-temporal alterations remain intact. To accomplish this, initially spatial-temporal analysis is applied between 3D digital models captured at different time instances. So, the creation of dynamic change history maps is made. Change history maps indicate spatial probabilities of regions needed further 3D modelling at forthcoming instances. Thus, change history maps are good examples for a predictive assessment, that is, to localize surfaces within the objects where a high accuracy reconstruction process needs to be activated at the forthcoming time instances. The proposed 4D Land Information Management System (LIMS) is implemented using open interoperable standards based on the CityGML framework. CityGML allows the description of the semantic metadata information and the rights of the land resources. Visualization aspects are also supported to allow easy manipulation, interaction and representation of the 4D LIMS digital parcels and the respective semantic information. The open source 3DCityDB incorporating a PostgreSQL geo-database is used to manage and manipulate 3D data and their semantics. An application is made to detect the change through time of a 3D block of plots in an urban area of Athens, Greece. Starting with an accurate 3D model of the buildings in 1983, a change history map is created using automated dense image matching on aerial photos of 2010. For both time instances meshes are created and through their comparison the changes are detected.
Distinguishing between Selective Sweeps from Standing Variation and from a De Novo Mutation
Peter, Benjamin M.; Huerta-Sanchez, Emilia; Nielsen, Rasmus
2012-01-01
An outstanding question in human genetics has been the degree to which adaptation occurs from standing genetic variation or from de novo mutations. Here, we combine several common statistics used to detect selection in an Approximate Bayesian Computation (ABC) framework, with the goal of discriminating between models of selection and providing estimates of the age of selected alleles and the selection coefficients acting on them. We use simulations to assess the power and accuracy of our method and apply it to seven of the strongest sweeps currently known in humans. We identify two genes, ASPM and PSCA, that are most likely affected by selection on standing variation; and we find three genes, ADH1B, LCT, and EDAR, in which the adaptive alleles seem to have swept from a new mutation. We also confirm evidence of selection for one further gene, TRPV6. In one gene, G6PD, neither neutral models nor models of selective sweeps fit the data, presumably because this locus has been subject to balancing selection. PMID:23071458
A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns
NASA Astrophysics Data System (ADS)
Li, Xiang; Zhang, Yang; Wong, Hau-San; Qin, Zhongfeng
2009-11-01
Portfolio selection theory with fuzzy returns has been well developed and widely applied. Within the framework of credibility theory, several fuzzy portfolio selection models have been proposed such as mean-variance model, entropy optimization model, chance constrained programming model and so on. In order to solve these nonlinear optimization models, a hybrid intelligent algorithm is designed by integrating simulated annealing algorithm, neural network and fuzzy simulation techniques, where the neural network is used to approximate the expected value and variance for fuzzy returns and the fuzzy simulation is used to generate the training data for neural network. Since these models are used to be solved by genetic algorithm, some comparisons between the hybrid intelligent algorithm and genetic algorithm are given in terms of numerical examples, which imply that the hybrid intelligent algorithm is robust and more effective. In particular, it reduces the running time significantly for large size problems.
Uncertain programming models for portfolio selection with uncertain returns
NASA Astrophysics Data System (ADS)
Zhang, Bo; Peng, Jin; Li, Shengguo
2015-10-01
In an indeterminacy economic environment, experts' knowledge about the returns of securities consists of much uncertainty instead of randomness. This paper discusses portfolio selection problem in uncertain environment in which security returns cannot be well reflected by historical data, but can be evaluated by the experts. In the paper, returns of securities are assumed to be given by uncertain variables. According to various decision criteria, the portfolio selection problem in uncertain environment is formulated as expected-variance-chance model and chance-expected-variance model by using the uncertainty programming. Within the framework of uncertainty theory, for the convenience of solving the models, some crisp equivalents are discussed under different conditions. In addition, a hybrid intelligent algorithm is designed in the paper to provide a general method for solving the new models in general cases. At last, two numerical examples are provided to show the performance and applications of the models and algorithm.
NASA Astrophysics Data System (ADS)
Anandhi, Aavudai; Kannan, Narayanan
2018-02-01
Water is an essential natural resource. Among many stressors, altered climate is exerting pressure on water resource systems, increasing its demand and creating a need for vulnerability assessments. The overall objective of this study was to develop a novel tool that can translate a theoretical concept (vulnerability of water resources (VWR)) to an operational framework mainly under altered temperature and precipitation, as well as for population change (smaller extent). The developed tool had three stages and utilized a novel systems thinking approach. Stage-1: Translating theoretical concept to characteristics identified from studies; Stage-2: Operationalizing characteristics to methodology in VWR; Stage-3: Utilizing the methodology for development of a conceptual modeling tool for VWR: WR-VISTA (Water Resource Vulnerability assessment conceptual model using Indicators selected by System's Thinking Approach). The specific novelties were: 1) The important characteristics in VWR were identified in Stage-1 (target system, system components, scale, level of detail, data source, frameworks, and indicator); 2) WR-VISTA combined two vulnerability assessments frameworks: the European's Driver-Pressure-State-Impact-Response framework (DPSIR) and the Intergovernmental Panel on Climate Change's framework (IPCC's); and 3) used systems thinking approaches in VWR for indicator selection. The developed application was demonstrated in Kansas (overlying the High Plains region/Ogallala Aquifer, considered the "breadbasket of the world"), using 26 indicators with intermediate level of detail. Our results indicate that the western part of the state is vulnerable from agricultural water use and the eastern part from urban water use. The developed tool can be easily replicated to other regions within and outside the US.
Hanson, Rochelle F; Self-Brown, Shannon; Rostad, Whitney L; Jackson, Matthew C
2016-03-01
It is widely recognized that children in the child welfare system are particularly vulnerable to the adverse health and mental effects associated with exposure to abuse and neglect, making it imperative to have broad-based availability of evidence-based practices (EBPs) that can prevent child maltreatment and reduce the negative mental health outcomes for youth who are victims. A variety of EBPs exist for reducing child maltreatment risk and addressing the associated negative mental health outcomes, but the reach of these practices is limited. An emerging literature documents factors that can enhance or inhibit the success of EBP implementation in community service agencies, including how the selection of a theory-driven conceptual framework, or model, might facilitate implementation planning by providing guidance for best practices during implementation phases. However, limited research is available to guide decision makers in the selection of implementation frameworks that can boost implementation success for EBPs that focus on preventing child welfare recidivism and serving the mental health needs of maltreated youth. The aims of this conceptual paper are to (1) provide an overview of existing implementation frameworks, beginning with a discussion of definitional issues and the selection criteria for frameworks included in the review; and (2) offer recommendations for practice and policy as applicable for professionals and systems serving victims of child maltreatment and their families. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chimaera simulation of complex states of flowing matter.
Succi, S
2016-11-13
We discuss a unified mesoscale framework (chimaera) for the simulation of complex states of flowing matter across scales of motion. The chimaera framework can deal with each of the three macro-meso-micro levels through suitable 'mutations' of the basic mesoscale formulation. The idea is illustrated through selected simulations of complex micro- and nanoscale flows.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).
Ghodsi, Seyed Hamed; Kerachian, Reza; Zahmatkesh, Zahra
2016-04-15
In this paper, an integrated framework is proposed for urban runoff management. To control and improve runoff quality and quantity, Low Impact Development (LID) practices are utilized. In order to determine the LIDs' areas and locations, the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), which considers three objective functions of minimizing runoff volume, runoff pollution and implementation cost of LIDs, is utilized. In this framework, the Storm Water Management Model (SWMM) is used for stream flow simulation. The non-dominated solutions provided by the NSGA-II are considered as management scenarios. To select the most preferred scenario, interactions among the main stakeholders in the study area with conflicting utilities are incorporated by utilizing bargaining models including a non-cooperative game, Nash model and social choice procedures of Borda count and approval voting. Moreover, a new social choice procedure, named pairwise voting method, is proposed and applied. Based on each conflict resolution approach, a scenario is identified as the ideal solution providing the LIDs' areas, locations and implementation cost. The proposed framework is applied for urban water quality and quantity management in the northern part of Tehran metropolitan city, Iran. Results show that the proposed pairwise voting method tends to select a scenario with a higher percentage of reduction in TSS (Total Suspended Solid) load and runoff volume, in comparison with the Borda count and approval voting methods. Besides, the Nash method presents a management scenario with the highest cost for LIDs' implementation and the maximum values for percentage of runoff volume reduction and TSS removal. The results also signify that selection of an appropriate management scenario by stakeholders in the study area depends on the available financial resources and the relative importance of runoff quality improvement in comparison with reducing the runoff volume. Copyright © 2016 Elsevier B.V. All rights reserved.
Bastani, Peivand; Mehralian, Gholamhossein; Dinarvand, Rasoul
2015-01-01
The aim of this study was to review the current methods of pharmaceutical purchasing by Iranian insurance organizations within the World Bank conceptual framework model so as to provide applicable pharmaceutical resource allocation and purchasing (RAP) arrangements in Iran. This qualitative study was conducted through a qualitative document analysis (QDA), applying the four-step Scott method in document selection, and conducting 20 semi-structured interviews using a triangulation method. Furthermore, the data were analyzed applying five steps framework analysis using Atlas-ti software. The QDA showed that the purchasers face many structural, financing, payment, delivery and service procurement and purchasing challenges. Moreover, the findings of interviews are provided in three sections including demand-side, supply-side and price and incentive regime. Localizing RAP arrangements as a World Bank Framework in a developing country like Iran considers the following as the prerequisite for implementing strategic purchasing in pharmaceutical sector: The improvement of accessibility, subsidiary mechanisms, reimbursement of new drugs, rational use, uniform pharmacopeia, best supplier selection, reduction of induced demand and moral hazard, payment reform. It is obvious that for Iran, these customized aspects are more various and detailed than those proposed in a World Bank model for developing countries.
Arguel, Amaël; Perez-Concha, Oscar; Li, Simon Y W; Lau, Annie Y S
2018-02-01
The aim of this review was to identify general theoretical frameworks used in online social network interventions for behavioral change. To address this research question, a PRISMA-compliant systematic review was conducted. A systematic review (PROSPERO registration number CRD42014007555) was conducted using 3 electronic databases (PsycINFO, Pubmed, and Embase). Four reviewers screened 1788 abstracts. 15 studies were selected according to the eligibility criteria. Randomized controlled trials and controlled studies were assessed using Cochrane Collaboration's "risk-of-bias" tool, and narrative synthesis. Five eligible articles used the social cognitive theory as a framework to develop interventions targeting behavioral change. Other theoretical frameworks were related to the dynamics of social networks, intention models, and community engagement theories. Only one of the studies selected in the review mentioned a well-known theory from the field of health psychology. Conclusions were that guidelines are lacking in the design of online social network interventions for behavioral change. Existing theories and models from health psychology that are traditionally used for in situ behavioral change should be considered when designing online social network interventions in a health care setting. © 2016 John Wiley & Sons, Ltd.
Development of a Prototype Decision Support System to Manage the Air Force Alternative Care Program
1990-09-01
development model was selected to structure the development process. Since it is necessary to ensure...uncertainty. Furthermore, the SDLC model provides a specific framework "by which an application is conceived, developed , and implemented" (Davis and Olson...associated with the automation of the manual ACP procedures. The SDLC Model has three stages: (1) definition, (2) development , and (3) installation
Estimating and mapping ecological processes influencing microbial community assembly
Stegen, James C.; Lin, Xueju; Fredrickson, Jim K.; Konopka, Allan E.
2015-01-01
Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recently developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth. PMID:25983725
Many-objective robust decision making for water allocation under climate change.
Yan, Dan; Ludwig, Fulco; Huang, He Qing; Werners, Saskia E
2017-12-31
Water allocation is facing profound challenges due to climate change uncertainties. To identify adaptive water allocation strategies that are robust to climate change uncertainties, a model framework combining many-objective robust decision making and biophysical modeling is developed for large rivers. The framework was applied to the Pearl River basin (PRB), China where sufficient flow to the delta is required to reduce saltwater intrusion in the dry season. Before identifying and assessing robust water allocation plans for the future, the performance of ten state-of-the-art MOEAs (multi-objective evolutionary algorithms) is evaluated for the water allocation problem in the PRB. The Borg multi-objective evolutionary algorithm (Borg MOEA), which is a self-adaptive optimization algorithm, has the best performance during the historical periods. Therefore it is selected to generate new water allocation plans for the future (2079-2099). This study shows that robust decision making using carefully selected MOEAs can help limit saltwater intrusion in the Pearl River Delta. However, the framework could perform poorly due to larger than expected climate change impacts on water availability. Results also show that subjective design choices from the researchers and/or water managers could potentially affect the ability of the model framework, and cause the most robust water allocation plans to fail under future climate change. Developing robust allocation plans in a river basin suffering from increasing water shortage requires the researchers and water managers to well characterize future climate change of the study regions and vulnerabilities of their tools. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Unger, Rhoda Kesler
1983-01-01
Discusses the relationship between conceptual frameworks and methodology in psychology. Argues that models of reality influence research in terms of question selection, causal factors hypothesized, and interpretation of data. Considers the position and role of women as objects and agents of research using a sociology of knowledge perspective.…
Modeling Fear of Crime in Dallas Neighborhoods: A Test of Social Capital Theory
ERIC Educational Resources Information Center
Ferguson, Kristin M.; Mindel, Charles H.
2007-01-01
This study tested a model of the effects of different predictors on individuals' levels of fear of crime in Dallas neighborhoods. Given its dual focus on individual perceptions and community-level interactions, social capital theory was selected as the most appropriate framework to explore fear of crime within the neighborhood milieu. A structural…
Active learning: a step towards automating medical concept extraction.
Kholghi, Mahnoosh; Sitbon, Laurianne; Zuccon, Guido; Nguyen, Anthony
2016-03-01
This paper presents an automatic, active learning-based system for the extraction of medical concepts from clinical free-text reports. Specifically, (1) the contribution of active learning in reducing the annotation effort and (2) the robustness of incremental active learning framework across different selection criteria and data sets are determined. The comparative performance of an active learning framework and a fully supervised approach were investigated to study how active learning reduces the annotation effort while achieving the same effectiveness as a supervised approach. Conditional random fields as the supervised method, and least confidence and information density as 2 selection criteria for active learning framework were used. The effect of incremental learning vs standard learning on the robustness of the models within the active learning framework with different selection criteria was also investigated. The following 2 clinical data sets were used for evaluation: the Informatics for Integrating Biology and the Bedside/Veteran Affairs (i2b2/VA) 2010 natural language processing challenge and the Shared Annotated Resources/Conference and Labs of the Evaluation Forum (ShARe/CLEF) 2013 eHealth Evaluation Lab. The annotation effort saved by active learning to achieve the same effectiveness as supervised learning is up to 77%, 57%, and 46% of the total number of sequences, tokens, and concepts, respectively. Compared with the random sampling baseline, the saving is at least doubled. Incremental active learning is a promising approach for building effective and robust medical concept extraction models while significantly reducing the burden of manual annotation. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sweetkind, Donald S.
2017-09-08
As part of a U.S. Geological Survey study in cooperation with the Bureau of Reclamation, a digital three-dimensional hydrogeologic framework model was constructed for the Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, Mexico. This model was constructed to define the aquifer system geometry and subsurface lithologic characteristics and distribution for use in a regional numerical hydrologic model. The model includes five hydrostratigraphic units: river channel alluvium, three informal subdivisions of Santa Fe Group basin fill, and an undivided pre-Santa Fe Group bedrock unit. Model input data were compiled from published cross sections, well data, structure contour maps, selected geophysical data, and contiguous compilations of surficial geology and structural features in the study area. These data were used to construct faulted surfaces that represent the upper and lower subsurface hydrostratigraphic unit boundaries. The digital three-dimensional hydrogeologic framework model is constructed through combining faults, the elevation of the tops of each hydrostratigraphic unit, and boundary lines depicting the subsurface extent of each hydrostratigraphic unit. The framework also compiles a digital representation of the distribution of sedimentary facies within each hydrostratigraphic unit. The digital three-dimensional hydrogeologic model reproduces with reasonable accuracy the previously published subsurface hydrogeologic conceptualization of the aquifer system and represents the large-scale geometry of the subsurface aquifers. The model is at a scale and resolution appropriate for use as the foundation for a numerical hydrologic model of the study area.
Fuzzy decision-making framework for treatment selection based on the combined QUALIFLEX-TODIM method
NASA Astrophysics Data System (ADS)
Ji, Pu; Zhang, Hong-yu; Wang, Jian-qiang
2017-10-01
Treatment selection is a multi-criteria decision-making problem of significant concern in the medical field. In this study, a fuzzy decision-making framework is established for treatment selection. The framework mitigates information loss by introducing single-valued trapezoidal neutrosophic numbers to denote evaluation information. Treatment selection has multiple criteria that remarkably exceed the alternatives. In consideration of this characteristic, the framework utilises the idea of the qualitative flexible multiple criteria method. Furthermore, it considers the risk-averse behaviour of a decision maker by employing a concordance index based on TODIM (an acronym in Portuguese of interactive and multi-criteria decision-making) method. A sensitivity analysis is performed to illustrate the robustness of the framework. Finally, a comparative analysis is conducted to compare the framework with several extant methods. Results indicate the advantages of the framework and its better performance compared with the extant methods.
Statistical Analysis of Complexity Generators for Cost Estimation
NASA Technical Reports Server (NTRS)
Rowell, Ginger Holmes
1999-01-01
Predicting the cost of cutting edge new technologies involved with spacecraft hardware can be quite complicated. A new feature of the NASA Air Force Cost Model (NAFCOM), called the Complexity Generator, is being developed to model the complexity factors that drive the cost of space hardware. This parametric approach is also designed to account for the differences in cost, based on factors that are unique to each system and subsystem. The cost driver categories included in this model are weight, inheritance from previous missions, technical complexity, and management factors. This paper explains the Complexity Generator framework, the statistical methods used to select the best model within this framework, and the procedures used to find the region of predictability and the prediction intervals for the cost of a mission.
Model selection and assessment for multi-species occupancy models
Broms, Kristin M.; Hooten, Mevin B.; Fitzpatrick, Ryan M.
2016-01-01
While multi-species occupancy models (MSOMs) are emerging as a popular method for analyzing biodiversity data, formal checking and validation approaches for this class of models have lagged behind. Concurrent with the rise in application of MSOMs among ecologists, a quiet regime shift is occurring in Bayesian statistics where predictive model comparison approaches are experiencing a resurgence. Unlike single-species occupancy models that use integrated likelihoods, MSOMs are usually couched in a Bayesian framework and contain multiple levels. Standard model checking and selection methods are often unreliable in this setting and there is only limited guidance in the ecological literature for this class of models. We examined several different contemporary Bayesian hierarchical approaches for checking and validating MSOMs and applied these methods to a freshwater aquatic study system in Colorado, USA, to better understand the diversity and distributions of plains fishes. Our findings indicated distinct differences among model selection approaches, with cross-validation techniques performing the best in terms of prediction.
Model-based analysis of pattern motion processing in mouse primary visual cortex
Muir, Dylan R.; Roth, Morgane M.; Helmchen, Fritjof; Kampa, Björn M.
2015-01-01
Neurons in sensory areas of neocortex exhibit responses tuned to specific features of the environment. In visual cortex, information about features such as edges or textures with particular orientations must be integrated to recognize a visual scene or object. Connectivity studies in rodent cortex have revealed that neurons make specific connections within sub-networks sharing common input tuning. In principle, this sub-network architecture enables local cortical circuits to integrate sensory information. However, whether feature integration indeed occurs locally in rodent primary sensory areas has not been examined directly. We studied local integration of sensory features in primary visual cortex (V1) of the mouse by presenting drifting grating and plaid stimuli, while recording the activity of neuronal populations with two-photon calcium imaging. Using a Bayesian model-based analysis framework, we classified single-cell responses as being selective for either individual grating components or for moving plaid patterns. Rather than relying on trial-averaged responses, our model-based framework takes into account single-trial responses and can easily be extended to consider any number of arbitrary predictive models. Our analysis method was able to successfully classify significantly more responses than traditional partial correlation (PC) analysis, and provides a rigorous statistical framework to rank any number of models and reject poorly performing models. We also found a large proportion of cells that respond strongly to only one stimulus class. In addition, a quarter of selectively responding neurons had more complex responses that could not be explained by any simple integration model. Our results show that a broad range of pattern integration processes already take place at the level of V1. This diversity of integration is consistent with processing of visual inputs by local sub-networks within V1 that are tuned to combinations of sensory features. PMID:26300738
NASA Astrophysics Data System (ADS)
Li, Xiaohui; Sun, Zhenping; Cao, Dongpu; Liu, Daxue; He, Hangen
2017-03-01
This study proposes a novel integrated local trajectory planning and tracking control (ILTPTC) framework for autonomous vehicles driving along a reference path with obstacles avoidance. For this ILTPTC framework, an efficient state-space sampling-based trajectory planning scheme is employed to smoothly follow the reference path. A model-based predictive path generation algorithm is applied to produce a set of smooth and kinematically-feasible paths connecting the initial state with the sampling terminal states. A velocity control law is then designed to assign a speed value at each of the points along the generated paths. An objective function considering both safety and comfort performance is carefully formulated for assessing the generated trajectories and selecting the optimal one. For accurately tracking the optimal trajectory while overcoming external disturbances and model uncertainties, a combined feedforward and feedback controller is developed. Both simulation analyses and vehicle testing are performed to verify the effectiveness of the proposed ILTPTC framework, and future research is also briefly discussed.
1995-03-01
advisory system provides a decision framework for selecting an appropriate model from the nuimerous available transport models conditinni-ed on...l1, T ,TV Groundwater Modeling, Contaminant Transport , Optimi2atio’ 2; Total Reliability, Remediation Si , , -J % UNCLASSIFIED UNCLASSIFIED...0 0 0 0 S 0 Sn S Even with the choice of an appropriate transport model, considlrable uncertainty is likely to be present in the analysis of
2010-01-01
Background The measurement of healthcare provider performance is becoming more widespread. Physicians have been guarded about performance measurement, in part because the methodology for comparative measurement of care quality is underdeveloped. Comprehensive quality improvement will require comprehensive measurement, implying the aggregation of multiple quality metrics into composite indicators. Objective To present a conceptual framework to develop comprehensive, robust, and transparent composite indicators of pediatric care quality, and to highlight aspects specific to quality measurement in children. Methods We reviewed the scientific literature on composite indicator development, health systems, and quality measurement in the pediatric healthcare setting. Frameworks were selected for explicitness and applicability to a hospital-based measurement system. Results We synthesized various frameworks into a comprehensive model for the development of composite indicators of quality of care. Among its key premises, the model proposes identifying structural, process, and outcome metrics for each of the Institute of Medicine's six domains of quality (safety, effectiveness, efficiency, patient-centeredness, timeliness, and equity) and presents a step-by-step framework for embedding the quality of care measurement model into composite indicator development. Conclusions The framework presented offers researchers an explicit path to composite indicator development. Without a scientifically robust and comprehensive approach to measurement of the quality of healthcare, performance measurement will ultimately fail to achieve its quality improvement goals. PMID:20181129
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kornreich, Drew E; Vaidya, Rajendra U; Ammerman, Curtt N
Integrated Computational Materials Engineering (ICME) is a novel overarching approach to bridge length and time scales in computational materials science and engineering. This approach integrates all elements of multi-scale modeling (including various empirical and science-based models) with materials informatics to provide users the opportunity to tailor material selections based on stringent application needs. Typically, materials engineering has focused on structural requirements (stress, strain, modulus, fracture toughness etc.) while multi-scale modeling has been science focused (mechanical threshold strength model, grain-size models, solid-solution strengthening models etc.). Materials informatics (mechanical property inventories) on the other hand, is extensively data focused. All of thesemore » elements are combined within the framework of ICME to create architecture for the development, selection and design new composite materials for challenging environments. We propose development of the foundations for applying ICME to composite materials development for nuclear and high-radiation environments (including nuclear-fusion energy reactors, nuclear-fission reactors, and accelerators). We expect to combine all elements of current material models (including thermo-mechanical and finite-element models) into the ICME framework. This will be accomplished through the use of a various mathematical modeling constructs. These constructs will allow the integration of constituent models, which in tum would allow us to use the adaptive strengths of using a combinatorial scheme (fabrication and computational) for creating new composite materials. A sample problem where these concepts are used is provided in this summary.« less
RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite.
Fleishman, Sarel J; Leaver-Fay, Andrew; Corn, Jacob E; Strauch, Eva-Maria; Khare, Sagar D; Koga, Nobuyasu; Ashworth, Justin; Murphy, Paul; Richter, Florian; Lemmon, Gordon; Meiler, Jens; Baker, David
2011-01-01
Macromolecular modeling and design are increasingly useful in basic research, biotechnology, and teaching. However, the absence of a user-friendly modeling framework that provides access to a wide range of modeling capabilities is hampering the wider adoption of computational methods by non-experts. RosettaScripts is an XML-like language for specifying modeling tasks in the Rosetta framework. RosettaScripts provides access to protocol-level functionalities, such as rigid-body docking and sequence redesign, and allows fast testing and deployment of complex protocols without need for modifying or recompiling the underlying C++ code. We illustrate these capabilities with RosettaScripts protocols for the stabilization of proteins, the generation of computationally constrained libraries for experimental selection of higher-affinity binding proteins, loop remodeling, small-molecule ligand docking, design of ligand-binding proteins, and specificity redesign in DNA-binding proteins.
2015-12-01
FINAL REPORT Development and Validation of a Quantitative Framework and Management Expectation Tool for the Selection of Bioremediation ...TITLE AND SUBTITLE Development and Validation of a Quantitative Framework and Management Expectation Tool for the Selection of Bioremediation ...project ER-201129 was to develop and validate a framework used to make bioremediation decisions based on site-specific physical and biogeochemical
Mean-variance model for portfolio optimization with background risk based on uncertainty theory
NASA Astrophysics Data System (ADS)
Zhai, Jia; Bai, Manying
2018-04-01
The aim of this paper is to develop a mean-variance model for portfolio optimization considering the background risk, liquidity and transaction cost based on uncertainty theory. In portfolio selection problem, returns of securities and assets liquidity are assumed as uncertain variables because of incidents or lacking of historical data, which are common in economic and social environment. We provide crisp forms of the model and a hybrid intelligent algorithm to solve it. Under a mean-variance framework, we analyze the portfolio frontier characteristic considering independently additive background risk. In addition, we discuss some effects of background risk and liquidity constraint on the portfolio selection. Finally, we demonstrate the proposed models by numerical simulations.
Care delivery for Filipino Americans using the Neuman systems model.
Angosta, Alona D; Ceria-Ulep, Clementina D; Tse, Alice M
2014-04-01
Filipino Americans are at risk of coronary heart disease due to the presence of multiple cardiometabolic factors. Selecting a framework that addresses the factors leading to coronary heart disease is vital when providing care for this population. The Neuman systems model is a comprehensive and wholistic framework that offers an innovative method of viewing clients, their families, and the healthcare system across multiple dimensions. Using the Neuman systems model, advanced practice nurses can develop and implement interventions that will help reduce the potential cardiovascular problems of clients with multiple risk factors. The authors in this article provides insight into the cardiovascular health of Filipino Americans and has implications for nurses and other healthcare providers working with various Southeast Asian groups in the United States.
NASA Technical Reports Server (NTRS)
2005-01-01
A number of titanium matrix composite (TMC) systems are currently being investigated for high-temperature air frame and propulsion system applications. As a result, numerous computational methodologies for predicting both deformation and life for this class of materials are under development. An integral part of these methodologies is an accurate and computationally efficient constitutive model for the metallic matrix constituent. Furthermore, because these systems are designed to operate at elevated temperatures, the required constitutive models must account for both time-dependent and time-independent deformations. To accomplish this, the NASA Lewis Research Center is employing a recently developed, complete, potential-based framework. This framework, which utilizes internal state variables, was put forth for the derivation of reversible and irreversible constitutive equations. The framework, and consequently the resulting constitutive model, is termed complete because the existence of the total (integrated) form of the Gibbs complementary free energy and complementary dissipation potentials are assumed a priori. The specific forms selected here for both the Gibbs and complementary dissipation potentials result in a fully associative, multiaxial, nonisothermal, unified viscoplastic model with nonlinear kinematic hardening. This model constitutes one of many models in the Generalized Viscoplasticity with Potential Structure (GVIPS) class of inelastic constitutive equations.
An Economic Framework of Microbial Trade
Mee, Michael T.
2015-01-01
A large fraction of microbial life on earth exists in complex communities where metabolic exchange is vital. Microbes trade essential resources to promote their own growth in an analogous way to countries that exchange goods in modern economic markets. Inspired by these similarities, we developed a framework based on general equilibrium theory (GET) from economics to predict the population dynamics of trading microbial communities. Our biotic GET (BGET) model provides an a priori theory of the growth benefits of microbial trade, yielding several novel insights relevant to understanding microbial ecology and engineering synthetic communities. We find that the economic concept of comparative advantage is a necessary condition for mutualistic trade. Our model suggests that microbial communities can grow faster when species are unable to produce essential resources that are obtained through trade, thereby promoting metabolic specialization and increased intercellular exchange. Furthermore, we find that species engaged in trade exhibit a fundamental tradeoff between growth rate and relative population abundance, and that different environments that put greater pressure on group selection versus individual selection will promote varying strategies along this growth-abundance spectrum. We experimentally tested this tradeoff using a synthetic consortium of Escherichia coli cells and found the results match the predictions of the model. This framework provides a foundation to study natural and engineered microbial communities through a new lens based on economic theories developed over the past century. PMID:26222307
Newbold, Stephen C; Siikamäki, Juha
2009-10-01
In recent years a large literature on reserve site selection (RSS) has developed at the interface between ecology, operations research, and environmental economics. Reserve site selection models use numerical optimization techniques to select sites for a network of nature reserves for protecting biodiversity. In this paper, we develop a population viability analysis (PVA) model for salmon and incorporate it into an RSS framework for prioritizing conservation activities in upstream watersheds. We use spawner return data for three closely related salmon stocks in the upper Columbia River basin and estimates of the economic costs of watershed protection from NOAA to illustrate the framework. We compare the relative cost-effectiveness of five alternative watershed prioritization methods, based on various combinations of biological and economic information. Prioritization based on biological benefit-economic cost comparisons and accounting for spatial interdependencies among watersheds substantially outperforms other more heuristic methods. When using this best-performing prioritization method, spending 10% of the cost of protecting all upstream watersheds yields 79% of the biological benefits (increase in stock persistence) from protecting all watersheds, compared to between 20% and 64% for the alternative methods. We also find that prioritization based on either costs or benefits alone can lead to severe reductions in cost-effectiveness.
Optimizing one-shot learning with binary synapses.
Romani, Sandro; Amit, Daniel J; Amit, Yali
2008-08-01
A network of excitatory synapses trained with a conservative version of Hebbian learning is used as a model for recognizing the familiarity of thousands of once-seen stimuli from those never seen before. Such networks were initially proposed for modeling memory retrieval (selective delay activity). We show that the same framework allows the incorporation of both familiarity recognition and memory retrieval, and estimate the network's capacity. In the case of binary neurons, we extend the analysis of Amit and Fusi (1994) to obtain capacity limits based on computations of signal-to-noise ratio of the field difference between selective and non-selective neurons of learned signals. We show that with fast learning (potentiation probability approximately 1), the most recently learned patterns can be retrieved in working memory (selective delay activity). A much higher number of once-seen learned patterns elicit a realistic familiarity signal in the presence of an external field. With potentiation probability much less than 1 (slow learning), memory retrieval disappears, whereas familiarity recognition capacity is maintained at a similarly high level. This analysis is corroborated in simulations. For analog neurons, where such analysis is more difficult, we simplify the capacity analysis by studying the excess number of potentiated synapses above the steady-state distribution. In this framework, we derive the optimal constraint between potentiation and depression probabilities that maximizes the capacity.
A framework for selecting indicators of bioenergy sustainability
Dale, Virginia H.; Efroymson, Rebecca Ann; Kline, Keith L.; ...
2015-05-11
A framework for selecting and evaluating indicators of bioenergy sustainability is presented. This framework is designed to facilitate decision-making about which indicators are useful for assessing sustainability of bioenergy systems and supporting their deployment. Efforts to develop sustainability indicators in the United States and Europe are reviewed. The first steps of the framework for indicator selection are defining the sustainability goals and other goals for a bioenergy project or program, gaining an understanding of the context, and identifying the values of stakeholders. From the goals, context, and stakeholders, the objectives for analysis and criteria for indicator selection can be developed.more » The user of the framework identifies and ranks indicators, applies them in an assessment, and then evaluates their effectiveness, while identifying gaps that prevent goals from being met, assessing lessons learned, and moving toward best practices. The framework approach emphasizes that the selection of appropriate criteria and indicators is driven by the specific purpose of an analysis. Realistic goals and measures of bioenergy sustainability can be developed systematically with the help of the framework presented here.« less
A General Cross-Layer Cloud Scheduling Framework for Multiple IoT Computer Tasks.
Wu, Guanlin; Bao, Weidong; Zhu, Xiaomin; Zhang, Xiongtao
2018-05-23
The diversity of IoT services and applications brings enormous challenges to improving the performance of multiple computer tasks' scheduling in cross-layer cloud computing systems. Unfortunately, the commonly-employed frameworks fail to adapt to the new patterns on the cross-layer cloud. To solve this issue, we design a new computer task scheduling framework for multiple IoT services in cross-layer cloud computing systems. Specifically, we first analyze the features of the cross-layer cloud and computer tasks. Then, we design the scheduling framework based on the analysis and present detailed models to illustrate the procedures of using the framework. With the proposed framework, the IoT services deployed in cross-layer cloud computing systems can dynamically select suitable algorithms and use resources more effectively to finish computer tasks with different objectives. Finally, the algorithms are given based on the framework, and extensive experiments are also given to validate its effectiveness, as well as its superiority.
NASA Astrophysics Data System (ADS)
Khazaeli, S.; Ravandi, A. G.; Banerji, S.; Bagchi, A.
2016-04-01
Recently, data-driven models for Structural Health Monitoring (SHM) have been of great interest among many researchers. In data-driven models, the sensed data are processed to determine the structural performance and evaluate the damages of an instrumented structure without necessitating the mathematical modeling of the structure. A framework of data-driven models for online assessment of the condition of a structure has been developed here. The developed framework is intended for automated evaluation of the monitoring data and structural performance by the Internet technology and resources. The main challenges in developing such framework include: (a) utilizing the sensor measurements to estimate and localize the induced damage in a structure by means of signal processing and data mining techniques, and (b) optimizing the computing and storage resources with the aid of cloud services. The main focus in this paper is to demonstrate the efficiency of the proposed framework for real-time damage detection of a multi-story shear-building structure in two damage scenarios (change in mass and stiffness) in various locations. Several features are extracted from the sensed data by signal processing techniques and statistical methods. Machine learning algorithms are deployed to select damage-sensitive features as well as classifying the data to trace the anomaly in the response of the structure. Here, the cloud computing resources from Amazon Web Services (AWS) have been used to implement the proposed framework.
Gao, Yaozong; Zhan, Yiqiang
2015-01-01
Image-guided radiotherapy (IGRT) requires fast and accurate localization of the prostate in 3-D treatment-guided radiotherapy, which is challenging due to low tissue contrast and large anatomical variation across patients. On the other hand, the IGRT workflow involves collecting a series of computed tomography (CT) images from the same patient under treatment. These images contain valuable patient-specific information yet are often neglected by previous works. In this paper, we propose a novel learning framework, namely incremental learning with selective memory (ILSM), to effectively learn the patient-specific appearance characteristics from these patient-specific images. Specifically, starting with a population-based discriminative appearance model, ILSM aims to “personalize” the model to fit patient-specific appearance characteristics. The model is personalized with two steps: backward pruning that discards obsolete population-based knowledge and forward learning that incorporates patient-specific characteristics. By effectively combining the patient-specific characteristics with the general population statistics, the incrementally learned appearance model can localize the prostate of a specific patient much more accurately. This work has three contributions: 1) the proposed incremental learning framework can capture patient-specific characteristics more effectively, compared to traditional learning schemes, such as pure patient-specific learning, population-based learning, and mixture learning with patient-specific and population data; 2) this learning framework does not have any parametric model assumption, hence, allowing the adoption of any discriminative classifier; and 3) using ILSM, we can localize the prostate in treatment CTs accurately (DSC ∼0.89) and fast (∼4 s), which satisfies the real-world clinical requirements of IGRT. PMID:24495983
NASA Astrophysics Data System (ADS)
Cucchi, K.; Kawa, N.; Hesse, F.; Rubin, Y.
2017-12-01
In order to reduce uncertainty in the prediction of subsurface flow and transport processes, practitioners should use all data available. However, classic inverse modeling frameworks typically only make use of information contained in in-situ field measurements to provide estimates of hydrogeological parameters. Such hydrogeological information about an aquifer is difficult and costly to acquire. In this data-scarce context, the transfer of ex-situ information coming from previously investigated sites can be critical for improving predictions by better constraining the estimation procedure. Bayesian inverse modeling provides a coherent framework to represent such ex-situ information by virtue of the prior distribution and combine them with in-situ information from the target site. In this study, we present an innovative data-driven approach for defining such informative priors for hydrogeological parameters at the target site. Our approach consists in two steps, both relying on statistical and machine learning methods. The first step is data selection; it consists in selecting sites similar to the target site. We use clustering methods for selecting similar sites based on observable hydrogeological features. The second step is data assimilation; it consists in assimilating data from the selected similar sites into the informative prior. We use a Bayesian hierarchical model to account for inter-site variability and to allow for the assimilation of multiple types of site-specific data. We present the application and validation of the presented methods on an established database of hydrogeological parameters. Data and methods are implemented in the form of an open-source R-package and therefore facilitate easy use by other practitioners.
Effects of Cognitive Load on Driving Performance: The Cognitive Control Hypothesis.
Engström, Johan; Markkula, Gustav; Victor, Trent; Merat, Natasha
2017-08-01
The objective of this paper was to outline an explanatory framework for understanding effects of cognitive load on driving performance and to review the existing experimental literature in the light of this framework. Although there is general consensus that taking the eyes off the forward roadway significantly impairs most aspects of driving, the effects of primarily cognitively loading tasks on driving performance are not well understood. Based on existing models of driver attention, an explanatory framework was outlined. This framework can be summarized in terms of the cognitive control hypothesis: Cognitive load selectively impairs driving subtasks that rely on cognitive control but leaves automatic performance unaffected. An extensive literature review was conducted wherein existing results were reinterpreted based on the proposed framework. It was demonstrated that the general pattern of experimental results reported in the literature aligns well with the cognitive control hypothesis and that several apparent discrepancies between studies can be reconciled based on the proposed framework. More specifically, performance on nonpracticed or inherently variable tasks, relying on cognitive control, is consistently impaired by cognitive load, whereas the performance on automatized (well-practiced and consistently mapped) tasks is unaffected and sometimes even improved. Effects of cognitive load on driving are strongly selective and task dependent. The present results have important implications for the generalization of results obtained from experimental studies to real-world driving. The proposed framework can also serve to guide future research on the potential causal role of cognitive load in real-world crashes.
2011-01-01
Background The National Institute for Health Research (NIHR) was established in 2006 with the aim of creating an applied health research system embedded within the English National Health Service (NHS). NIHR sought to implement an approach for monitoring its performance that effectively linked early indicators of performance with longer-term research impacts. We attempted to develop and apply a conceptual framework for defining appropriate key performance indicators for NIHR. Method Following a review of relevant literature, a conceptual framework for defining performance indicators for NIHR was developed, based on a hybridisation of the logic model and balanced scorecard approaches. This framework was validated through interviews with key NIHR stakeholders and a pilot in one division of NIHR, before being refined and applied more widely. Indicators were then selected and aggregated to create a basket of indicators aligned to NIHR's strategic goals, which could be reported to NIHR's leadership team on a quarterly basis via an oversight dashboard. Results Senior health research system managers and practitioners endorsed the conceptual framework developed and reported satisfaction with the breadth and balance of indicators selected for reporting. Conclusions The use of the hybrid conceptual framework provides a pragmatic approach to defining performance indicators that are aligned to the strategic aims of a health research system. The particular strength of this framework is its capacity to provide an empirical link, over time, between upstream activities of a health research system and its long-term strategic objectives. PMID:21435265
Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment.
Anderson, Alexander R A; Weaver, Alissa M; Cummings, Peter T; Quaranta, Vito
2006-12-01
Emergence of invasive behavior in cancer is life-threatening, yet ill-defined due to its multifactorial nature. We present a multiscale mathematical model of cancer invasion, which considers cellular and microenvironmental factors simultaneously and interactively. Unexpectedly, the model simulations predict that harsh tumor microenvironment conditions (e.g., hypoxia, heterogenous extracellular matrix) exert a dramatic selective force on the tumor, which grows as an invasive mass with fingering margins, dominated by a few clones with aggressive traits. In contrast, mild microenvironment conditions (e.g., normoxia, homogeneous matrix) allow clones with similar aggressive traits to coexist with less aggressive phenotypes in a heterogeneous tumor mass with smooth, noninvasive margins. Thus, the genetic make-up of a cancer cell may realize its invasive potential through a clonal evolution process driven by definable microenvironmental selective forces. Our mathematical model provides a theoretical/experimental framework to quantitatively characterize this selective pressure for invasion and test ways to eliminate it.
Kan, T; Zhang, J
2018-03-01
To explore the behaviour-related factors influencing influenza vaccination among elderly people using a framework derived from the Health Belief Model (HBM) and the Theory of Reasoned Action (TRA). Systematic review. Five databases were searched using predetermined strategies in March 2016, and 1927 citations were identified. Articles were selected according to inclusion and exclusion criteria. Key information was extracted from selected studies using a predesigned sheet. Both authors assessed study quality using the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) or Critical Appraisal Skills Programme (CASP) checklist. Thirty-six articles were selected. A new framework was proposed that contributes to shared understanding of factors influencing health behaviour. Possible determinants of influenza vaccination among elderly people were knowledge, health promotion factors, all constructs of the HBM, and some concepts of the TRA. Key factors were threat perception, behavioural beliefs, subjective norms, recommendations, past behaviour and perceived barriers. This is the first systematic review to analyse the factors influencing influenza vaccination behaviour of elderly people using a framework integrating the HBM and the TRA. The framework identified key factors of influenza vaccination and presented the inter-relation of behaviour-related variables. However, further well-designed studies are required to explore the inter-relationships accurately and comprehensively. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Oral health disparities and the workforce: a framework to guide innovation.
Hilton, Irene V; Lester, Arlene M
2010-06-01
Oral health disparities currently exist in the United States, and workforce innovations have been proposed as one strategy to address these disparities. A framework is needed to logically assess the possible role of workforce as a contributor to and to analyze workforce strategies addressing the issue of oral health disparities. Using an existing framework, A Strategic Framework for Improving Racial/Ethnic Minority Health and Eliminating Racial/Ethnic Health Disparities, workforce was sequentially applied across individual, environmental/community, and system levels to identify long-term problems, contributing factors, strategies/innovation, measurable outcomes/impacts, and long-term goals. Examples of current workforce innovations were applied to the framework. Contributing factors to oral health disparities included lack of racial/ethnic diversity of the workforce, lack of appropriate training, provider distribution, and a nonuser-centered system. The framework was applied to selected workforce innovation models delineating the potential impact on contributing factors across the individual, environmental/community, and system levels. The framework helps to define expected outcomes from workforce models that would contribute to the goal of reducing oral health disparities and examine impacts across multiple levels. However, the contributing factors to oral health disparities cannot be addressed by workforce innovation alone. The Strategic Framework is a logical approach to guide workforce innovation, solutions, and identification of other aspects of the oral healthcare delivery system that need innovation in order to reduce oral health disparities.
Continuous-time discrete-space models for animal movement
Hanks, Ephraim M.; Hooten, Mevin B.; Alldredge, Mat W.
2015-01-01
The processes influencing animal movement and resource selection are complex and varied. Past efforts to model behavioral changes over time used Bayesian statistical models with variable parameter space, such as reversible-jump Markov chain Monte Carlo approaches, which are computationally demanding and inaccessible to many practitioners. We present a continuous-time discrete-space (CTDS) model of animal movement that can be fit using standard generalized linear modeling (GLM) methods. This CTDS approach allows for the joint modeling of location-based as well as directional drivers of movement. Changing behavior over time is modeled using a varying-coefficient framework which maintains the computational simplicity of a GLM approach, and variable selection is accomplished using a group lasso penalty. We apply our approach to a study of two mountain lions (Puma concolor) in Colorado, USA.
Daemi, Mehdi; Harris, Laurence R; Crawford, J Douglas
2016-01-01
Animals try to make sense of sensory information from multiple modalities by categorizing them into perceptions of individual or multiple external objects or internal concepts. For example, the brain constructs sensory, spatial representations of the locations of visual and auditory stimuli in the visual and auditory cortices based on retinal and cochlear stimulations. Currently, it is not known how the brain compares the temporal and spatial features of these sensory representations to decide whether they originate from the same or separate sources in space. Here, we propose a computational model of how the brain might solve such a task. We reduce the visual and auditory information to time-varying, finite-dimensional signals. We introduce controlled, leaky integrators as working memory that retains the sensory information for the limited time-course of task implementation. We propose our model within an evidence-based, decision-making framework, where the alternative plan units are saliency maps of space. A spatiotemporal similarity measure, computed directly from the unimodal signals, is suggested as the criterion to infer common or separate causes. We provide simulations that (1) validate our model against behavioral, experimental results in tasks where the participants were asked to report common or separate causes for cross-modal stimuli presented with arbitrary spatial and temporal disparities. (2) Predict the behavior in novel experiments where stimuli have different combinations of spatial, temporal, and reliability features. (3) Illustrate the dynamics of the proposed internal system. These results confirm our spatiotemporal similarity measure as a viable criterion for causal inference, and our decision-making framework as a viable mechanism for target selection, which may be used by the brain in cross-modal situations. Further, we suggest that a similar approach can be extended to other cognitive problems where working memory is a limiting factor, such as target selection among higher numbers of stimuli and selections among other modality combinations.
The evolution of labile traits in sex- and age-structured populations.
Childs, Dylan Z; Sheldon, Ben C; Rees, Mark
2016-03-01
Many quantitative traits are labile (e.g. somatic growth rate, reproductive timing and investment), varying over the life cycle as a result of behavioural adaptation, developmental processes and plastic responses to the environment. At the population level, selection can alter the distribution of such traits across age classes and among generations. Despite a growing body of theoretical research exploring the evolutionary dynamics of labile traits, a data-driven framework for incorporating such traits into demographic models has not yet been developed. Integral projection models (IPMs) are increasingly being used to understand the interplay between changes in labile characters, life histories and population dynamics. One limitation of the IPM approach is that it relies on phenotypic associations between parents and offspring traits to capture inheritance. However, it is well-established that many different processes may drive these associations, and currently, no clear consensus has emerged on how to model micro-evolutionary dynamics in an IPM framework. We show how to embed quantitative genetic models of inheritance of labile traits into age-structured, two-sex models that resemble standard IPMs. Commonly used statistical tools such as GLMs and their mixed model counterparts can then be used for model parameterization. We illustrate the methodology through development of a simple model of egg-laying date evolution, parameterized using data from a population of Great tits (Parus major). We demonstrate how our framework can be used to project the joint dynamics of species' traits and population density. We then develop a simple extension of the age-structured Price equation (ASPE) for two-sex populations, and apply this to examine the age-specific contributions of different processes to change in the mean phenotype and breeding value. The data-driven framework we outline here has the potential to facilitate greater insight into the nature of selection and its consequences in settings where focal traits vary over the lifetime through ontogeny, behavioural adaptation and phenotypic plasticity, as well as providing a potential bridge between theoretical and empirical studies of labile trait variation. © 2016 The Authors Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
NASA Astrophysics Data System (ADS)
Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.
2012-12-01
Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis shows that terrestrial carbon and water cycle simulations in monsoon Asia were greatly improved, and the use of multiple satellite observations with this framework is an effective way for improving terrestrial biosphere models.
Bayesian Factor Analysis as a Variable Selection Problem: Alternative Priors and Consequences
Lu, Zhao-Hua; Chow, Sy-Miin; Loken, Eric
2016-01-01
Factor analysis is a popular statistical technique for multivariate data analysis. Developments in the structural equation modeling framework have enabled the use of hybrid confirmatory/exploratory approaches in which factor loading structures can be explored relatively flexibly within a confirmatory factor analysis (CFA) framework. Recently, a Bayesian structural equation modeling (BSEM) approach (Muthén & Asparouhov, 2012) has been proposed as a way to explore the presence of cross-loadings in CFA models. We show that the issue of determining factor loading patterns may be formulated as a Bayesian variable selection problem in which Muthén and Asparouhov’s approach can be regarded as a BSEM approach with ridge regression prior (BSEM-RP). We propose another Bayesian approach, denoted herein as the Bayesian structural equation modeling with spike and slab prior (BSEM-SSP), which serves as a one-stage alternative to the BSEM-RP. We review the theoretical advantages and disadvantages of both approaches and compare their empirical performance relative to two modification indices-based approaches and exploratory factor analysis with target rotation. A teacher stress scale data set (Byrne, 2012; Pettegrew & Wolf, 1982) is used to demonstrate our approach. PMID:27314566
NASA Astrophysics Data System (ADS)
Lee, J.-H.; Houk, R. T. J.; Robinson, A.; Greathouse, J. A.; Thornberg, S. M.; Allendorf, M. D.; Hesketh, P. J.
2010-04-01
In this paper we demonstrate the potential for novel nanoporous framework materials (NFM) such as metal-organic frameworks (MOFs) to provide selectivity and sensitivity to a broad range of analytes including explosives, nerve agents, and volatile organic compounds (VOCs). NFM are highly ordered, crystalline materials with considerable synthetic flexibility resulting from the presence of both organic and inorganic components within their structure. Detection of chemical weapons of mass destruction (CWMD), explosives, toxic industrial chemicals (TICs), and volatile organic compounds (VOCs) using micro-electro-mechanical-systems (MEMS) devices, such as microcantilevers and surface acoustic wave sensors, requires the use of recognition layers to impart selectivity. Traditional organic polymers are dense, impeding analyte uptake and slowing sensor response. The nanoporosity and ultrahigh surface areas of NFM enhance transport into and out of the NFM layer, improving response times, and their ordered structure enables structural tuning to impart selectivity. Here we describe experiments and modeling aimed at creating NFM layers tailored to the detection of water vapor, explosives, CWMD, and VOCs, and their integration with the surfaces of MEMS devices. Force field models show that a high degree of chemical selectivity is feasible. For example, using a suite of MOFs it should be possible to select for explosives vs. CWMD, VM vs. GA (nerve agents), and anthracene vs. naphthalene (VOCs). We will also demonstrate the integration of various NFM with the surfaces of MEMS devices and describe new synthetic methods developed to improve the quality of VFM coatings. Finally, MOF-coated MEMS devices show how temperature changes can be tuned to improve response times, selectivity, and sensitivity.
On the performance of Cu-BTC metal organic framework for carbon tetrachloride gas removal.
Calero, Sofía; Martín-Calvo, Ana; Hamad, Said; García-Pérez, Elena
2011-01-07
The performance of Cu-BTC metal organic framework for carbon tetrachloride removal from air has been studied using molecular simulations. According to our results, this material shows extremely high adsorption selectivity in favour of carbon tetrachloride. We demonstrate that this selectivity can be further enhanced by selective blockage of the framework.
A general framework to learn surrogate relevance criterion for atlas based image segmentation
NASA Astrophysics Data System (ADS)
Zhao, Tingting; Ruan, Dan
2016-09-01
Multi-atlas based image segmentation sees great opportunities in the big data era but also faces unprecedented challenges in identifying positive contributors from extensive heterogeneous data. To assess data relevance, image similarity criteria based on various image features widely serve as surrogates for the inaccessible geometric agreement criteria. This paper proposes a general framework to learn image based surrogate relevance criteria to better mimic the behaviors of segmentation based oracle geometric relevance. The validity of its general rationale is verified in the specific context of fusion set selection for image segmentation. More specifically, we first present a unified formulation for surrogate relevance criteria and model the neighborhood relationship among atlases based on the oracle relevance knowledge. Surrogates are then trained to be small for geometrically relevant neighbors and large for irrelevant remotes to the given targets. The proposed surrogate learning framework is verified in corpus callosum segmentation. The learned surrogates demonstrate superiority in inferring the underlying oracle value and selecting relevant fusion set, compared to benchmark surrogates.
Trapping gases in metal-organic frameworks with a selective surface molecular barrier layer
Tan, Kui; Zuluaga, Sebastian; Fuentes, Erika; ...
2016-12-13
The main challenge for gas storage and separation in nanoporous materials is that many molecules of interest adsorb too weakly to be effectively retained. Instead of synthetically modifying the internal surface structure of the entire bulk—as is typically done to enhance adsorption—here we show that post exposure of a prototypical porous metal-organic framework to ethylenediamine can effectively retain a variety of weakly adsorbing molecules (for example, CO, CO 2, SO 2, C 2H 4, NO) inside the materials by forming a monolayer-thick cap at the external surface of microcrystals. Furthermore, this capping mechanism, based on hydrogen bonding as explained bymore » ab initio modelling, opens the door for potential selectivity. For example, water molecules are shown to disrupt the hydrogen-bonded amine network and diffuse through the cap without hindrance and fully displace/release the retained small molecules out of the metal-organic framework at room temperature. Lastly, these findings may provide alternative strategies for gas storage, delivery and separation.« less
Niche construction game cancer cells play
NASA Astrophysics Data System (ADS)
Bergman, Aviv; Gligorijevic, Bojana
2015-10-01
Niche construction concept was originally defined in evolutionary biology as the continuous interplay between natural selection via environmental conditions and the modification of these conditions by the organism itself. Processes unraveling during cancer metastasis include construction of niches, which cancer cells use towards more efficient survival, transport into new environments and preparation of the remote sites for their arrival. Many elegant experiments were done lately illustrating, for example, the premetastatic niche construction, but there is practically no mathematical modeling done which would apply the niche construction framework. To create models useful for understanding niche construction role in cancer progression, we argue that a) genetic, b) phenotypic and c) ecological levels are to be included. While the model proposed here is phenomenological in its current form, it can be converted into a predictive outcome model via experimental measurement of the model parameters. Here we give an overview of an experimentally formulated problem in cancer metastasis and propose how niche construction framework can be utilized and broadened to model it. Other life science disciplines, such as host-parasite coevolution, may also benefit from niche construction framework adaptation, to satisfy growing need for theoretical considerations of data collected by experimental biology.
Niche construction game cancer cells play.
Bergman, Aviv; Gligorijevic, Bojana
2015-10-01
Niche construction concept was originally defined in evolutionary biology as the continuous interplay between natural selection via environmental conditions and the modification of these conditions by the organism itself. Processes unraveling during cancer metastasis include construction of niches, which cancer cells use towards more efficient survival, transport into new environments and preparation of the remote sites for their arrival. Many elegant experiments were done lately illustrating, for example, the premetastatic niche construction, but there is practically no mathematical modeling done which would apply the niche construction framework. To create models useful for understanding niche construction role in cancer progression, we argue that a) genetic, b) phenotypic and c) ecological levels are to be included. While the model proposed here is phenomenological in its current form, it can be converted into a predictive outcome model via experimental measurement of the model parameters. Here we give an overview of an experimentally formulated problem in cancer metastasis and propose how niche construction framework can be utilized and broadened to model it. Other life science disciplines, such as host-parasite coevolution, may also benefit from niche construction framework adaptation, to satisfy growing need for theoretical considerations of data collected by experimental biology.
Towards a Framework for Modeling Space Systems Architectures
NASA Technical Reports Server (NTRS)
Shames, Peter; Skipper, Joseph
2006-01-01
Topics covered include: 1) Statement of the problem: a) Space system architecture is complex; b) Existing terrestrial approaches must be adapted for space; c) Need a common architecture methodology and information model; d) Need appropriate set of viewpoints. 2) Requirements on a space systems model. 3) Model Based Engineering and Design (MBED) project: a) Evaluated different methods; b) Adapted and utilized RASDS & RM-ODP; c) Identified useful set of viewpoints; d) Did actual model exchanges among selected subset of tools. 4) Lessons learned & future vision.
MPTinR: analysis of multinomial processing tree models in R.
Singmann, Henrik; Kellen, David
2013-06-01
We introduce MPTinR, a software package developed for the analysis of multinomial processing tree (MPT) models. MPT models represent a prominent class of cognitive measurement models for categorical data with applications in a wide variety of fields. MPTinR is the first software for the analysis of MPT models in the statistical programming language R, providing a modeling framework that is more flexible than standalone software packages. MPTinR also introduces important features such as (1) the ability to calculate the Fisher information approximation measure of model complexity for MPT models, (2) the ability to fit models for categorical data outside the MPT model class, such as signal detection models, (3) a function for model selection across a set of nested and nonnested candidate models (using several model selection indices), and (4) multicore fitting. MPTinR is available from the Comprehensive R Archive Network at http://cran.r-project.org/web/packages/MPTinR/ .
Defining and Assessing Quality Improvement Outcomes: A Framework for Public Health
Nawaz, Saira; Thomas, Craig; Young, Andrea
2015-01-01
We describe an evidence-based framework to define and assess the impact of quality improvement (QI) in public health. Developed to address programmatic and research-identified needs for articulating the value of public health QI in aggregate, this framework proposes a standardized set of measures to monitor and improve the efficiency and effectiveness of public health programs and operations. We reviewed the scientific literature and analyzed QI initiatives implemented through the Centers for Disease Control and Prevention’s National Public Health Improvement Initiative to inform the selection of 5 efficiency and 8 effectiveness measures. This framework provides a model for identifying the types of improvement outcomes targeted by public health QI efforts and a means to understand QI’s impact on the practice of public health. PMID:25689185
Moullin, Joanna C; Sabater-Hernández, Daniel; Fernandez-Llimos, Fernando; Benrimoj, Shalom I
2015-03-14
Implementation science and knowledge translation have developed across multiple disciplines with the common aim of bringing innovations to practice. Numerous implementation frameworks, models, and theories have been developed to target a diverse array of innovations. As such, it is plausible that not all frameworks include the full range of concepts now thought to be involved in implementation. Users face the decision of selecting a single or combining multiple implementation frameworks. To aid this decision, the aim of this review was to assess the comprehensiveness of existing frameworks. A systematic search was undertaken in PubMed to identify implementation frameworks of innovations in healthcare published from 2004 to May 2013. Additionally, titles and abstracts from Implementation Science journal and references from identified papers were reviewed. The orientation, type, and presence of stages and domains, along with the degree of inclusion and depth of analysis of factors, strategies, and evaluations of implementation of included frameworks were analysed. Frameworks were assessed individually and grouped according to their targeted innovation. Frameworks for particular innovations had similar settings, end-users, and 'type' (descriptive, prescriptive, explanatory, or predictive). On the whole, frameworks were descriptive and explanatory more often than prescriptive and predictive. A small number of the reviewed frameworks covered an implementation concept(s) in detail, however, overall, there was limited degree and depth of analysis of implementation concepts. The core implementation concepts across the frameworks were collated to form a Generic Implementation Framework, which includes the process of implementation (often portrayed as a series of stages and/or steps), the innovation to be implemented, the context in which the implementation is to occur (divided into a range of domains), and influencing factors, strategies, and evaluations. The selection of implementation framework(s) should be based not solely on the healthcare innovation to be implemented, but include other aspects of the framework's orientation, e.g., the setting and end-user, as well as the degree of inclusion and depth of analysis of the implementation concepts. The resulting generic structure provides researchers, policy-makers, health administrators, and practitioners a base that can be used as guidance for their implementation efforts.
The Modular Modeling System (MMS): User's Manual
Leavesley, G.H.; Restrepo, Pedro J.; Markstrom, S.L.; Dixon, M.; Stannard, L.G.
1996-01-01
The Modular Modeling System (MMS) is an integrated system of computer software that has been developed to provide the research and operational framework needed to support development, testing, and evaluation of physical-process algorithms and to facilitate integration of user-selected sets of algorithms into operational physical-process models. MMS uses a module library that contains modules for simulating a variety of water, energy, and biogeochemical processes. A model is created by selectively coupling the most appropriate modules from the library to create a 'suitable' model for the desired application. Where existing modules do not provide appropriate process algorithms, new modules can be developed. The MMS user's manual provides installation instructions and a detailed discussion of system concepts, module development, and model development and application using the MMS graphical user interface.
Numerical algebraic geometry for model selection and its application to the life sciences
Gross, Elizabeth; Davis, Brent; Ho, Kenneth L.; Bates, Daniel J.
2016-01-01
Researchers working with mathematical models are often confronted by the related problems of parameter estimation, model validation and model selection. These are all optimization problems, well known to be challenging due to nonlinearity, non-convexity and multiple local optima. Furthermore, the challenges are compounded when only partial data are available. Here, we consider polynomial models (e.g. mass-action chemical reaction networks at steady state) and describe a framework for their analysis based on optimization using numerical algebraic geometry. Specifically, we use probability-one polynomial homotopy continuation methods to compute all critical points of the objective function, then filter to recover the global optima. Our approach exploits the geometrical structures relating models and data, and we demonstrate its utility on examples from cell signalling, synthetic biology and epidemiology. PMID:27733697
Liu, Jie; Guo, Liang; Jiang, Jiping; Jiang, Dexun; Liu, Rentao; Wang, Peng
2016-06-05
In the emergency management relevant to pollution accidents, efficiency emergency rescues can be deeply influenced by a reasonable assignment of the available emergency materials to the related risk sources. In this study, a two-stage optimization framework is developed for emergency material reserve layout planning under uncertainty to identify material warehouse locations and emergency material reserve schemes in pre-accident phase coping with potential environmental accidents. This framework is based on an integration of Hierarchical clustering analysis - improved center of gravity (HCA-ICG) model and material warehouse location - emergency material allocation (MWL-EMA) model. First, decision alternatives are generated using HCA-ICG to identify newly-built emergency material warehouses for risk sources which cannot be satisfied by existing ones with a time-effective manner. Second, emergency material reserve planning is obtained using MWL-EMA to make emergency materials be prepared in advance with a cost-effective manner. The optimization framework is then applied to emergency management system planning in Jiangsu province, China. The results demonstrate that the developed framework not only could facilitate material warehouse selection but also effectively provide emergency material for emergency operations in a quick response. Copyright © 2016. Published by Elsevier B.V.
Estimating and mapping ecological processes influencing microbial community assembly
Stegen, James C.; Lin, Xueju; Fredrickson, Jim K.; ...
2015-05-01
Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recentlymore » developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth.« less
Availability-Based Importance Framework for Supplier Selection
2015-04-30
IMA Journal of Management Math, 15(2), 161– 174. Chen, C . -T., Lin, C . -T., & Huang, S. -F. (2006). A fuzzy approach for supplier evaluation and...reliability modeling: Principles and applications. Hoboken, NJ: Wiley. Liao, C . -N., & Kao, H. -P. (2011). An integrated fuzzy TOPSIS and MCGP approach to...5307–5326. Wang, J. -W., Cheng, C . -H., & Huang, K.- C . (2009). Fuzzy hierarchical TOPSIS for supplier selection. Applied Soft Computing, 9(1), 377
ERIC Educational Resources Information Center
Stuckey, Marc; Eilks, Ingo
2014-01-01
This paper presents a study on tattooing as a topic for chemistry education. The selection of the topic was inspired by a newly suggested framework, which focuses on the question of relevance of science education. The aim of this case was to get evidence on how topics selected based on the suggested model of relevance of science education affect…
Yazaydin, A Ozgür; Snurr, Randall Q; Park, Tae-Hong; Koh, Kyoungmoo; Liu, Jian; Levan, M Douglas; Benin, Annabelle I; Jakubczak, Paulina; Lanuza, Mary; Galloway, Douglas B; Low, John J; Willis, Richard R
2009-12-30
A diverse collection of 14 metal-organic frameworks (MOFs) was screened for CO(2) capture from flue gas using a combined experimental and modeling approach. Adsorption measurements are reported for the screened MOFs at room temperature up to 1 bar. These data are used to validate a generalized strategy for molecular modeling of CO(2) and other small molecules in MOFs. MOFs possessing a high density of open metal sites are found to adsorb significant amounts of CO(2) even at low pressure. An excellent correlation is found between the heat of adsorption and the amount of CO(2) adsorbed below 1 bar. Molecular modeling can aid in selection of adsorbents for CO(2) capture from flue gas by screening a large number of MOFs.
Albarracin, Dolores; Tannenbaum, Melanie B; Glasman, Laura R; Rothman, Alexander J
2010-12-01
Changing HIV-related behaviors requires addressing the individual, dyadic, and structural influences that shape them. This supplement of AIDS & Behavior presents frameworks that integrate these three influences on behavior. Concepts from these frameworks were selected to model the processes by which structural factors affect individual HIV-related behavior. In the Inclusion/Exclusion Model, material and symbolic inclusions and exclusions (sharing versus denying resources) regulate individuals' ability and motivation to detect, prevent, and treat HIV. Structural interventions create inclusions that increase one's ability or motivation to perform these behaviors or exclusions that hinder one's ability or motivation to execute counterproductive behaviors. The need to expand research regarding multilevel influences on HIV-related behavior is also discussed, particularly concerning further understanding of sustained behavior change and effective dissemination of evidence-based intervention strategies.
Safari, Parviz; Danyali, Syyedeh Fatemeh; Rahimi, Mehdi
2018-06-02
Drought is the main abiotic stress seriously influencing wheat production. Information about the inheritance of drought tolerance is necessary to determine the most appropriate strategy to develop tolerant cultivars and populations. In this study, generation means analysis to identify the genetic effects controlling grain yield inheritance in water deficit and normal conditions was considered as a model selection problem in a Bayesian framework. Stochastic search variable selection (SSVS) was applied to identify the most important genetic effects and the best fitted models using different generations obtained from two crosses applying two water regimes in two growing seasons. The SSVS is used to evaluate the effect of each variable on the dependent variable via posterior variable inclusion probabilities. The model with the highest posterior probability is selected as the best model. In this study, the grain yield was controlled by the main effects (additive and non-additive effects) and epistatic. The results demonstrate that breeding methods such as recurrent selection and subsequent pedigree method and hybrid production can be useful to improve grain yield.
NASA Astrophysics Data System (ADS)
Jafarzadeh Ghoushchi, Saeid; Dodkanloi Milan, Mehran; Jahangoshai Rezaee, Mustafa
2017-11-01
Nowadays, with respect to knowledge growth about enterprise sustainability, sustainable supplier selection is considered a vital factor in sustainable supply chain management. On the other hand, usually in real problems, the data are imprecise. One method that is helpful for the evaluation and selection of the sustainable supplier and has the ability to use a variety of data types is data envelopment analysis (DEA). In the present article, first, the supplier efficiency is measured with respect to all economic, social and environmental dimensions using DEA and applying imprecise data. Then, to have a general evaluation of the suppliers, the DEA model is developed using imprecise data based on goal programming (GP). Integrating the set of criteria changes the new model into a coherent framework for sustainable supplier selection. Moreover, employing this model in a multilateral sustainable supplier selection can be an incentive for the suppliers to move towards environmental, social and economic activities. Improving environmental, economic and social performance will mean improving the supply chain performance. Finally, the application of the proposed approach is presented with a real dataset.
A dynamic water-quality modeling framework for the Neuse River estuary, North Carolina
Bales, Jerad D.; Robbins, Jeanne C.
1999-01-01
As a result of fish kills in the Neuse River estuary in 1995, nutrient reduction strategies were developed for point and nonpoint sources in the basin. However, because of the interannual variability in the natural system and the resulting complex hydrologic-nutrient inter- actions, it is difficult to detect through a short-term observational program the effects of management activities on Neuse River estuary water quality and aquatic health. A properly constructed water-quality model can be used to evaluate some of the potential effects of manage- ment actions on estuarine water quality. Such a model can be used to predict estuarine response to present and proposed nutrient strategies under the same set of meteorological and hydrologic conditions, thus removing the vagaries of weather and streamflow from the analysis. A two-dimensional, laterally averaged hydrodynamic and water-quality modeling framework was developed for the Neuse River estuary by using previously collected data. Development of the modeling framework consisted of (1) computational grid development, (2) assembly of data for model boundary conditions and model testing, (3) selection of initial values of model parameters, and (4) limited model testing. The model domain extends from Streets Ferry to Oriental, N.C., includes seven lateral embayments that have continual exchange with the main- stem of the estuary, three point-source discharges, and three tributary streams. Thirty-five computational segments represent the mainstem of the estuary, and the entire framework contains a total of 60 computa- tional segments. Each computational cell is 0.5 meter thick; segment lengths range from 500 meters to 7,125 meters. Data that were used to develop the modeling framework were collected during March through October 1991 and represent the most comprehensive data set available prior to 1997. Most of the data were collected by the North Carolina Division of Water Quality, the University of North Carolina Institute of Marine Sciences, and the U.S. Geological Survey. Limitations in the modeling framework were clearly identified. These limitations formed the basis for a set of suggestions to refine the Neuse River estuary water-quality model.
Basu, Sanjay; Kiernan, Michaela
2016-01-01
While increasingly popular among mid- to large-size employers, using financial incentives to induce health behavior change among employees has been controversial, in part due to poor quality and generalizability of studies to date. Thus, fundamental questions have been left unanswered: To generate positive economic returns on investment, what level of incentive should be offered for any given type of incentive program and among which employees? We constructed a novel modeling framework that systematically identifies how to optimize marginal return on investment from programs incentivizing behavior change by integrating commonly collected data on health behaviors and associated costs. We integrated "demand curves" capturing individual differences in response to any given incentive with employee demographic and risk factor data. We also estimated the degree of self-selection that could be tolerated: that is, the maximum percentage of already-healthy employees who could enroll in a wellness program while still maintaining positive absolute return on investment. In a demonstration analysis, the modeling framework was applied to data from 3000 worksite physical activity programs across the nation. For physical activity programs, the incentive levels that would optimize marginal return on investment ($367/employee/year) were higher than average incentive levels currently offered ($143/employee/year). Yet a high degree of self-selection could undermine the economic benefits of the program; if more than 17% of participants came from the top 10% of the physical activity distribution, the cost of the program would be expected to always be greater than its benefits. Our generalizable framework integrates individual differences in behavior and risk to systematically estimate the incentive level that optimizes marginal return on investment. © The Author(s) 2015.
Thomas, Russell S.
2013-01-01
Based on existing data and previous work, a series of studies is proposed as a basis toward a pragmatic early step in transforming toxicity testing. These studies were assembled into a data-driven framework that invokes successive tiers of testing with margin of exposure (MOE) as the primary metric. The first tier of the framework integrates data from high-throughput in vitro assays, in vitro-to-in vivo extrapolation (IVIVE) pharmacokinetic modeling, and exposure modeling. The in vitro assays are used to separate chemicals based on their relative selectivity in interacting with biological targets and identify the concentration at which these interactions occur. The IVIVE modeling converts in vitro concentrations into external dose for calculation of the point of departure (POD) and comparisons to human exposure estimates to yield a MOE. The second tier involves short-term in vivo studies, expanded pharmacokinetic evaluations, and refined human exposure estimates. The results from the second tier studies provide more accurate estimates of the POD and the MOE. The third tier contains the traditional animal studies currently used to assess chemical safety. In each tier, the POD for selective chemicals is based primarily on endpoints associated with a proposed mode of action, whereas the POD for nonselective chemicals is based on potential biological perturbation. Based on the MOE, a significant percentage of chemicals evaluated in the first 2 tiers could be eliminated from further testing. The framework provides a risk-based and animal-sparing approach to evaluate chemical safety, drawing broadly from previous experience but incorporating technological advances to increase efficiency. PMID:23958734
Basu, Sanjay; Kiernan, Michaela
2015-01-01
Introduction While increasingly popular among mid- to large-size employers, using financial incentives to induce health behavior change among employees has been controversial, in part due to poor quality and generalizability of studies to date. Thus, fundamental questions have been left unanswered: to generate positive economic returns on investment, what level of incentive should be offered for any given type of incentive program and among which employees? Methods We constructed a novel modeling framework that systematically identifies how to optimize marginal return on investment from programs incentivizing behavior change by integrating commonly-collected data on health behaviors and associated costs. We integrated “demand curves” capturing individual differences in response to any given incentive with employee demographic and risk factor data. We also estimated the degree of self-selection that could be tolerated, i.e., the maximum percentage of already-healthy employees who could enroll in a wellness program while still maintaining positive absolute return on investment. In a demonstration analysis, the modeling framework was applied to data from 3,000 worksite physical activity programs across the nation. Results For physical activity programs, the incentive levels that would optimize marginal return on investment ($367/employee/year) were higher than average incentive levels currently offered ($143/employee/year). Yet a high degree of self-selection could undermine the economic benefits of the program; if more than 17% of participants came from the top 10% of the physical activity distribution, the cost of the program would be expected to always be greater than its benefits. Discussion Our generalizable framework integrates individual differences in behavior and risk to systematically estimate the incentive level that optimizes marginal return on investment. PMID:25977362
Selective advantage of tolerant cultural traits in the Axelrod-Schelling model
NASA Astrophysics Data System (ADS)
Gracia-Lázaro, C.; Floría, L. M.; Moreno, Y.
2011-05-01
The Axelrod-Schelling model incorporates into the original Axelrod’s model of cultural dissemination the possibility that cultural agents placed in culturally dissimilar environments move to other places, the strength of this mobility being controlled by an intolerance parameter. By allowing heterogeneity in the intolerance of cultural agents, and considering it as a cultural feature, i.e., susceptible of cultural transmission (thus breaking the original symmetry of Axelrod-Schelling dynamics), we address here the question of whether tolerant or intolerant traits are more likely to become dominant in the long-term cultural dynamics. Our results show that tolerant traits possess a clear selective advantage in the framework of the Axelrod-Schelling model. We show that the reason for this selective advantage is the development, as time evolves, of a positive correlation between the number of neighbors that an agent has in its environment and its tolerant character.
Selective advantage of tolerant cultural traits in the Axelrod-Schelling model.
Gracia-Lázaro, C; Floría, L M; Moreno, Y
2011-05-01
The Axelrod-Schelling model incorporates into the original Axelrod's model of cultural dissemination the possibility that cultural agents placed in culturally dissimilar environments move to other places, the strength of this mobility being controlled by an intolerance parameter. By allowing heterogeneity in the intolerance of cultural agents, and considering it as a cultural feature, i.e., susceptible of cultural transmission (thus breaking the original symmetry of Axelrod-Schelling dynamics), we address here the question of whether tolerant or intolerant traits are more likely to become dominant in the long-term cultural dynamics. Our results show that tolerant traits possess a clear selective advantage in the framework of the Axelrod-Schelling model. We show that the reason for this selective advantage is the development, as time evolves, of a positive correlation between the number of neighbors that an agent has in its environment and its tolerant character. © 2011 American Physical Society
Demonstration of reduced-order urban scale building energy models
Heidarinejad, Mohammad; Mattise, Nicholas; Dahlhausen, Matthew; ...
2017-09-08
The aim of this study is to demonstrate a developed framework to rapidly create urban scale reduced-order building energy models using a systematic summary of the simplifications required for the representation of building exterior and thermal zones. These urban scale reduced-order models rely on the contribution of influential variables to the internal, external, and system thermal loads. OpenStudio Application Programming Interface (API) serves as a tool to automate the process of model creation and demonstrate the developed framework. The results of this study show that the accuracy of the developed reduced-order building energy models varies only up to 10% withmore » the selection of different thermal zones. In addition, to assess complexity of the developed reduced-order building energy models, this study develops a novel framework to quantify complexity of the building energy models. Consequently, this study empowers the building energy modelers to quantify their building energy model systematically in order to report the model complexity alongside the building energy model accuracy. An exhaustive analysis on four university campuses suggests that the urban neighborhood buildings lend themselves to simplified typical shapes. Specifically, building energy modelers can utilize the developed typical shapes to represent more than 80% of the U.S. buildings documented in the CBECS database. One main benefits of this developed framework is the opportunity for different models including airflow and solar radiation models to share the same exterior representation, allowing a unifying exchange data. Altogether, the results of this study have implications for a large-scale modeling of buildings in support of urban energy consumption analyses or assessment of a large number of alternative solutions in support of retrofit decision-making in the building industry.« less
Demonstration of reduced-order urban scale building energy models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidarinejad, Mohammad; Mattise, Nicholas; Dahlhausen, Matthew
The aim of this study is to demonstrate a developed framework to rapidly create urban scale reduced-order building energy models using a systematic summary of the simplifications required for the representation of building exterior and thermal zones. These urban scale reduced-order models rely on the contribution of influential variables to the internal, external, and system thermal loads. OpenStudio Application Programming Interface (API) serves as a tool to automate the process of model creation and demonstrate the developed framework. The results of this study show that the accuracy of the developed reduced-order building energy models varies only up to 10% withmore » the selection of different thermal zones. In addition, to assess complexity of the developed reduced-order building energy models, this study develops a novel framework to quantify complexity of the building energy models. Consequently, this study empowers the building energy modelers to quantify their building energy model systematically in order to report the model complexity alongside the building energy model accuracy. An exhaustive analysis on four university campuses suggests that the urban neighborhood buildings lend themselves to simplified typical shapes. Specifically, building energy modelers can utilize the developed typical shapes to represent more than 80% of the U.S. buildings documented in the CBECS database. One main benefits of this developed framework is the opportunity for different models including airflow and solar radiation models to share the same exterior representation, allowing a unifying exchange data. Altogether, the results of this study have implications for a large-scale modeling of buildings in support of urban energy consumption analyses or assessment of a large number of alternative solutions in support of retrofit decision-making in the building industry.« less
2012-09-01
make end of life ( EOL ) and remaining useful life (RUL) estimations. Model-based prognostics approaches perform these tasks with the help of first...in parameters Degradation Modeling Parameter estimation Prediction Thermal / Electrical Stress Experimental Data State Space model RUL EOL ...distribution at given single time point kP , and use this for multi-step predictions to EOL . There are several methods which exits for selecting the sigma
Changing pattern in the basal ganglia: motor switching under reduced dopaminergic drive
Fiore, Vincenzo G.; Rigoli, Francesco; Stenner, Max-Philipp; Zaehle, Tino; Hirth, Frank; Heinze, Hans-Jochen; Dolan, Raymond J.
2016-01-01
Action selection in the basal ganglia is often described within the framework of a standard model, associating low dopaminergic drive with motor suppression. Whilst powerful, this model does not explain several clinical and experimental data, including varying therapeutic efficacy across movement disorders. We tested the predictions of this model in patients with Parkinson’s disease, on and off subthalamic deep brain stimulation (DBS), focussing on adaptive sensory-motor responses to a changing environment and maintenance of an action until it is no longer suitable. Surprisingly, we observed prolonged perseverance under on-stimulation, and high inter-individual variability in terms of the motor selections performed when comparing the two conditions. To account for these data, we revised the standard model exploring its space of parameters and associated motor functions and found that, depending on effective connectivity between external and internal parts of the globus pallidus and saliency of the sensory input, a low dopaminergic drive can result in increased, dysfunctional, motor switching, besides motor suppression. This new framework provides insight into the biophysical mechanisms underlying DBS, allowing a description in terms of alteration of the signal-to-baseline ratio in the indirect pathway, which better account of known electrophysiological data in comparison with the standard model. PMID:27004463
Analysis and Modeling of DIII-D Experiments With OMFIT and Neural Networks
NASA Astrophysics Data System (ADS)
Meneghini, O.; Luna, C.; Smith, S. P.; Lao, L. L.; GA Theory Team
2013-10-01
The OMFIT integrated modeling framework is designed to facilitate experimental data analysis and enable integrated simulations. This talk introduces this framework and presents a selection of its applications to the DIII-D experiment. Examples include kinetic equilibrium reconstruction analysis; evaluation of MHD stability in the core and in the edge; and self-consistent predictive steady-state transport modeling. The OMFIT framework also provides the platform for an innovative approach based on neural networks to predict electron and ion energy fluxes. In our study a multi-layer feed-forward back-propagation neural network is built and trained over a database of DIII-D data. It is found that given the same parameters that the highest fidelity models use, the neural network model is able to predict to a large degree the heat transport profiles observed in the DIII-D experiments. Once the network is built, the numerical cost of evaluating the transport coefficients is virtually nonexistent, thus making the neural network model particularly well suited for plasma control and quick exploration of operational scenarios. The implementation of the neural network model and benchmark with experimental results and gyro-kinetic models will be discussed. Work supported in part by the US DOE under DE-FG02-95ER54309.
Bastani, Peivand; Mehralian, Gholamhossein; Dinarvand, Rasoul
2015-01-01
Objective: The aim of this study was to review the current methods of pharmaceutical purchasing by Iranian insurance organizations within the World Bank conceptual framework model so as to provide applicable pharmaceutical resource allocation and purchasing (RAP) arrangements in Iran. Methods: This qualitative study was conducted through a qualitative document analysis (QDA), applying the four-step Scott method in document selection, and conducting 20 semi-structured interviews using a triangulation method. Furthermore, the data were analyzed applying five steps framework analysis using Atlas-ti software. Findings: The QDA showed that the purchasers face many structural, financing, payment, delivery and service procurement and purchasing challenges. Moreover, the findings of interviews are provided in three sections including demand-side, supply-side and price and incentive regime. Conclusion: Localizing RAP arrangements as a World Bank Framework in a developing country like Iran considers the following as the prerequisite for implementing strategic purchasing in pharmaceutical sector: The improvement of accessibility, subsidiary mechanisms, reimbursement of new drugs, rational use, uniform pharmacopeia, best supplier selection, reduction of induced demand and moral hazard, payment reform. It is obvious that for Iran, these customized aspects are more various and detailed than those proposed in a World Bank model for developing countries. PMID:25710045
Liu, Xiao-Wei; Guo, Ya; Tao, Andi; Fischer, Michael; Sun, Tian-Jun; Moghadam, Peyman Z; Fairen-Jimenez, David; Wang, Shu-Dong
2017-10-17
In this work, we show a solvent-free "explosive" synthesis (SFES) method for the ultrafast and low-cost synthesis of metal-formate frameworks (MFFs). A combination of experiments and in-depth molecular modelling analysis - using grand canonical Monte Carlo (GCMC) simulations - of the adsorption performance of the synthesized nickel-formate framework (Ni-FA) revealed extremely high quality products with permanent porosity, prominent CH 4 /N 2 selectivity (ca. 6.0), and good CH 4 adsorption capacity (ca. 0.80 mmol g -1 or 33.97 cm 3 cm -3 ) at 1 bar and 298 K. This performance is superior to those of many other state-of-the-art porous materials.
An Active RBSE Framework to Generate Optimal Stimulus Sequences in a BCI for Spelling
NASA Astrophysics Data System (ADS)
Moghadamfalahi, Mohammad; Akcakaya, Murat; Nezamfar, Hooman; Sourati, Jamshid; Erdogmus, Deniz
2017-10-01
A class of brain computer interfaces (BCIs) employs noninvasive recordings of electroencephalography (EEG) signals to enable users with severe speech and motor impairments to interact with their environment and social network. For example, EEG based BCIs for typing popularly utilize event related potentials (ERPs) for inference. Presentation paradigm design in current ERP-based letter by letter typing BCIs typically query the user with an arbitrary subset characters. However, the typing accuracy and also typing speed can potentially be enhanced with more informed subset selection and flash assignment. In this manuscript, we introduce the active recursive Bayesian state estimation (active-RBSE) framework for inference and sequence optimization. Prior to presentation in each iteration, rather than showing a subset of randomly selected characters, the developed framework optimally selects a subset based on a query function. Selected queries are made adaptively specialized for users during each intent detection. Through a simulation-based study, we assess the effect of active-RBSE on the performance of a language-model assisted typing BCI in terms of typing speed and accuracy. To provide a baseline for comparison, we also utilize standard presentation paradigms namely, row and column matrix presentation paradigm and also random rapid serial visual presentation paradigms. The results show that utilization of active-RBSE can enhance the online performance of the system, both in terms of typing accuracy and speed.
Care Delivery for Filipino Americans Using the Neuman Systems Model
Angosta, Alona D.; Ceria-Ulep, Clementina D.; Tse, Alice M.
2016-01-01
Filipino Americans are at risk of coronary heart disease due to the presence of multiple cardiometabolic factors. Selecting a framework that addresses the factors leading to coronary heart disease is vital when providing care for this population. The Neuman systems model is a comprehensive and wholistic framework that offers an innovative method of viewing clients, their families, and the healthcare system across multiple dimensions. Using the Neuman systems model, advanced practice nurses can develop and implement interventions that will help reduce the potential cardiovascular problems of clients with multiple risk factors. The authors in this article provides insight into the cardiovascular health of Filipino Americans and has implications for nurses and other healthcare providers working with various Southeast Asian groups in the United States. PMID:24740949
Aymerich, I; Rieger, L; Sobhani, R; Rosso, D; Corominas, Ll
2015-09-15
The objective of this paper is to demonstrate the importance of incorporating more realistic energy cost models (based on current energy tariff structures) into existing water resource recovery facilities (WRRFs) process models when evaluating technologies and cost-saving control strategies. In this paper, we first introduce a systematic framework to model energy usage at WRRFs and a generalized structure to describe energy tariffs including the most common billing terms. Secondly, this paper introduces a detailed energy cost model based on a Spanish energy tariff structure coupled with a WRRF process model to evaluate several control strategies and provide insights into the selection of the contracted power structure. The results for a 1-year evaluation on a 115,000 population-equivalent WRRF showed monthly cost differences ranging from 7 to 30% when comparing the detailed energy cost model to an average energy price. The evaluation of different aeration control strategies also showed that using average energy prices and neglecting energy tariff structures may lead to biased conclusions when selecting operating strategies or comparing technologies or equipment. The proposed framework demonstrated that for cost minimization, control strategies should be paired with a specific optimal contracted power. Hence, the design of operational and control strategies must take into account the local energy tariff. Copyright © 2015 Elsevier Ltd. All rights reserved.
Framework for adaptive multiscale analysis of nonhomogeneous point processes.
Helgason, Hannes; Bartroff, Jay; Abry, Patrice
2011-01-01
We develop the methodology for hypothesis testing and model selection in nonhomogeneous Poisson processes, with an eye toward the application of modeling and variability detection in heart beat data. Modeling the process' non-constant rate function using templates of simple basis functions, we develop the generalized likelihood ratio statistic for a given template and a multiple testing scheme to model-select from a family of templates. A dynamic programming algorithm inspired by network flows is used to compute the maximum likelihood template in a multiscale manner. In a numerical example, the proposed procedure is nearly as powerful as the super-optimal procedures that know the true template size and true partition, respectively. Extensions to general history-dependent point processes is discussed.
Gamado, Kokouvi; Marion, Glenn; Porphyre, Thibaud
2017-01-01
Livestock epidemics have the potential to give rise to significant economic, welfare, and social costs. Incursions of emerging and re-emerging pathogens may lead to small and repeated outbreaks. Analysis of the resulting data is statistically challenging but can inform disease preparedness reducing potential future losses. We present a framework for spatial risk assessment of disease incursions based on data from small localized historic outbreaks. We focus on between-farm spread of livestock pathogens and illustrate our methods by application to data on the small outbreak of Classical Swine Fever (CSF) that occurred in 2000 in East Anglia, UK. We apply models based on continuous time semi-Markov processes, using data-augmentation Markov Chain Monte Carlo techniques within a Bayesian framework to infer disease dynamics and detection from incompletely observed outbreaks. The spatial transmission kernel describing pathogen spread between farms, and the distribution of times between infection and detection, is estimated alongside unobserved exposure times. Our results demonstrate inference is reliable even for relatively small outbreaks when the data-generating model is known. However, associated risk assessments depend strongly on the form of the fitted transmission kernel. Therefore, for real applications, methods are needed to select the most appropriate model in light of the data. We assess standard Deviance Information Criteria (DIC) model selection tools and recently introduced latent residual methods of model assessment, in selecting the functional form of the spatial transmission kernel. These methods are applied to the CSF data, and tested in simulated scenarios which represent field data, but assume the data generation mechanism is known. Analysis of simulated scenarios shows that latent residual methods enable reliable selection of the transmission kernel even for small outbreaks whereas the DIC is less reliable. Moreover, compared with DIC, model choice based on latent residual assessment correlated better with predicted risk. PMID:28293559
Optimizing Experimental Design for Comparing Models of Brain Function
Daunizeau, Jean; Preuschoff, Kerstin; Friston, Karl; Stephan, Klaas
2011-01-01
This article presents the first attempt to formalize the optimization of experimental design with the aim of comparing models of brain function based on neuroimaging data. We demonstrate our approach in the context of Dynamic Causal Modelling (DCM), which relates experimental manipulations to observed network dynamics (via hidden neuronal states) and provides an inference framework for selecting among candidate models. Here, we show how to optimize the sensitivity of model selection by choosing among experimental designs according to their respective model selection accuracy. Using Bayesian decision theory, we (i) derive the Laplace-Chernoff risk for model selection, (ii) disclose its relationship with classical design optimality criteria and (iii) assess its sensitivity to basic modelling assumptions. We then evaluate the approach when identifying brain networks using DCM. Monte-Carlo simulations and empirical analyses of fMRI data from a simple bimanual motor task in humans serve to demonstrate the relationship between network identification and the optimal experimental design. For example, we show that deciding whether there is a feedback connection requires shorter epoch durations, relative to asking whether there is experimentally induced change in a connection that is known to be present. Finally, we discuss limitations and potential extensions of this work. PMID:22125485
Custers, Thomas; Hurley, Jeremiah; Klazinga, Niek S; Brown, Adalsteinn D
2008-01-01
Background The Ontario health care system is devolving planning and funding authority to community based organizations and moving from steering through rules and regulations to steering on performance. As part of this transformation, the Ontario Ministry of Health and Long-Term Care (MOHLTC) are interested in using incentives as a strategy to ensure alignment – that is, health service providers' goals are in accord with the goals of the health system. The objective of the study was to develop a decision framework to assist policymakers in choosing and designing effective incentive systems. Methods The first part of the study was an extensive review of the literature to identify incentives models that are used in the various health care systems and their effectiveness. The second part was the development of policy principles to ensure that the used incentive models are congruent with the values of the Ontario health care system. The principles were developed by reviewing the Ontario policy documents and through discussions with policymakers. The validation of the principles and the suggested incentive models for use in Ontario took place at two meetings. The first meeting was with experts from the research and policy community, the second with senior policymakers from the MOHLTC. Based on the outcome of those two meetings, the researchers built a decision framework for incentives. The framework was send to the participants of both meetings and four additional experts for validation. Results We identified several models that have proven, with a varying degree of evidence, to be effective in changing or enabling a health provider's performance. Overall, the literature suggests that there is no single best approach to create incentives yet and the ability of financial and non-financial incentives to achieve results depends on a number of contextual elements. After assessing the initial set of incentive models on their congruence with the four policy principles we defined nine incentive models to be appropriate for use in Ontario and potentially other health care systems that want to introduce incentives to improve performance. Subsequently, the models were incorporated in the resulting decision framework. Conclusion The design of an incentive must reflect the values and goals of the health care system, be well matched to the performance objectives and reflect a range of contextual factors that can influence the effectiveness of even well-designed incentives. As a consequence, a single policy recommendation around incentives is inappropriate. The decision framework provides health care policymakers and purchasers with a tool to support the selection of an incentive model that is the most appropriate to improve the targeted performance. PMID:18371198
LISA Framework for Enhancing Gravitational Wave Signal Extraction Techniques
NASA Technical Reports Server (NTRS)
Thompson, David E.; Thirumalainambi, Rajkumar
2006-01-01
This paper describes the development of a Framework for benchmarking and comparing signal-extraction and noise-interference-removal methods that are applicable to interferometric Gravitational Wave detector systems. The primary use is towards comparing signal and noise extraction techniques at LISA frequencies from multiple (possibly confused) ,gravitational wave sources. The Framework includes extensive hybrid learning/classification algorithms, as well as post-processing regularization methods, and is based on a unique plug-and-play (component) architecture. Published methods for signal extraction and interference removal at LISA Frequencies are being encoded, as well as multiple source noise models, so that the stiffness of GW Sensitivity Space can be explored under each combination of methods. Furthermore, synthetic datasets and source models can be created and imported into the Framework, and specific degraded numerical experiments can be run to test the flexibility of the analysis methods. The Framework also supports use of full current LISA Testbeds, Synthetic data systems, and Simulators already in existence through plug-ins and wrappers, thus preserving those legacy codes and systems in tact. Because of the component-based architecture, all selected procedures can be registered or de-registered at run-time, and are completely reusable, reconfigurable, and modular.
ERIC Educational Resources Information Center
Harrison, Gary, Ed.; Mirkes, Donna Z., Ed.
Intended for educators who direct federally funded model projects, the booklet provides a framework for special education product development. In "Making Media Decisions," G. Richman explores procedures for selecting the most appropriate medium to carry the message of a given product. The fundamental questions are addressed: what is the goal; who…
Clay Caterpillars: A Tool for Ecology & Evolution Laboratories
ERIC Educational Resources Information Center
Barber, Nicholas A.
2012-01-01
I present a framework for ecology and evolution laboratory exercises using artificial caterpillars made from modeling clay. Students generate and test hypotheses about predation rates on caterpillars that differ in appearance or "behavior" to understand how natural selection by predators shapes distribution and physical characteristics of…
Developing a Framework for Communication Management Competencies
ERIC Educational Resources Information Center
Jeffrey, Lynn Maud; Brunton, Margaret Ann
2011-01-01
Using a hierarchical needs assessment model developed by Hunt we identified the essential competencies of communication management practitioners for the purpose of curriculum development and selection. We found that the underlying values of the profession were embodied in two superordinate goals. Six major competencies were identified, which were…
Hospital enterprise Architecture Framework (Study of Iranian University Hospital Organization).
Haghighathoseini, Atefehsadat; Bobarshad, Hossein; Saghafi, Fatehmeh; Rezaei, Mohammad Sadegh; Bagherzadeh, Nader
2018-06-01
Nowadays developing smart and fast services for patients and transforming hospitals to modern hospitals is considered a necessity. Living in the world inundated with information systems, designing services based on information technology entails a suitable architecture framework. This paper aims to present a localized enterprise architecture framework for the Iranian university hospital. Using two dimensions of implementation and having appropriate characteristics, the best 17 enterprises frameworks were chosen. As part of this effort, five criteria were selected according to experts' inputs. According to these criteria, five frameworks which had the highest rank were chosen. Then 44 general characteristics were extracted from the existing 17 frameworks after careful studying. Then a questionnaire was written accordingly to distinguish the necessity of those characteristics using expert's opinions and Delphi method. The result showed eight important criteria. In the next step, using AHP method, TOGAF was chosen regarding having appropriate characteristics and the ability to be implemented among reference formats. In the next step, enterprise architecture framework was designed by TOGAF in a conceptual model and its layers. For determining architecture framework parts, a questionnaire with 145 questions was written based on literature review and expert's opinions. The results showed during localization of TOGAF for Iran, 111 of 145 parts were chosen and certified to be used in the hospital. The results showed that TOGAF could be suitable for use in the hospital. So, a localized Hospital Enterprise Architecture Modelling is developed by customizing TOGAF for an Iranian hospital at eight levels and 11 parts. This new model could be used to be performed in other Iranian hospitals. Copyright © 2018 Elsevier B.V. All rights reserved.
Model weights and the foundations of multimodel inference
Link, W.A.; Barker, R.J.
2006-01-01
Statistical thinking in wildlife biology and ecology has been profoundly influenced by the introduction of AIC (Akaike?s information criterion) as a tool for model selection and as a basis for model averaging. In this paper, we advocate the Bayesian paradigm as a broader framework for multimodel inference, one in which model averaging and model selection are naturally linked, and in which the performance of AIC-based tools is naturally evaluated. Prior model weights implicitly associated with the use of AIC are seen to highly favor complex models: in some cases, all but the most highly parameterized models in the model set are virtually ignored a priori. We suggest the usefulness of the weighted BIC (Bayesian information criterion) as a computationally simple alternative to AIC, based on explicit selection of prior model probabilities rather than acceptance of default priors associated with AIC. We note, however, that both procedures are only approximate to the use of exact Bayes factors. We discuss and illustrate technical difficulties associated with Bayes factors, and suggest approaches to avoiding these difficulties in the context of model selection for a logistic regression. Our example highlights the predisposition of AIC weighting to favor complex models and suggests a need for caution in using the BIC for computing approximate posterior model weights.
Kantarevic, Jasmin; Kralj, Boris
2016-10-01
We develop a stylized principal-agent model with moral hazard and adverse selection to provide a unified framework for understanding some of the most salient features of the recent physician payment reform in Ontario and its impact on physician behavior. These features include the following: (i) physicians can choose a payment contract from a menu that includes an enhanced fee-for-service contract and a blended capitation contract; (ii) the capitation rate is higher, and the cost-reimbursement rate is lower in the blended capitation contract; (iii) physicians sort selectively into the contracts based on their preferences; and (iv) physicians in the blended capitation model provide fewer services than physicians in the enhanced fee-for-service model. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
3D geospatial visualizations: Animation and motion effects on spatial objects
NASA Astrophysics Data System (ADS)
Evangelidis, Konstantinos; Papadopoulos, Theofilos; Papatheodorou, Konstantinos; Mastorokostas, Paris; Hilas, Constantinos
2018-02-01
Digital Elevation Models (DEMs), in combination with high quality raster graphics provide realistic three-dimensional (3D) representations of the globe (virtual globe) and amazing navigation experience over the terrain through earth browsers. In addition, the adoption of interoperable geospatial mark-up languages (e.g. KML) and open programming libraries (Javascript) makes it also possible to create 3D spatial objects and convey on them the sensation of any type of texture by utilizing open 3D representation models (e.g. Collada). One step beyond, by employing WebGL frameworks (e.g. Cesium.js, three.js) animation and motion effects are attributed on 3D models. However, major GIS-based functionalities in combination with all the above mentioned visualization capabilities such as for example animation effects on selected areas of the terrain texture (e.g. sea waves) as well as motion effects on 3D objects moving in dynamically defined georeferenced terrain paths (e.g. the motion of an animal over a hill, or of a big fish in an ocean etc.) are not widely supported at least by open geospatial applications or development frameworks. Towards this we developed and made available to the research community, an open geospatial software application prototype that provides high level capabilities for dynamically creating user defined virtual geospatial worlds populated by selected animated and moving 3D models on user specified locations, paths and areas. At the same time, the generated code may enhance existing open visualization frameworks and programming libraries dealing with 3D simulations, with the geospatial aspect of a virtual world.
A computational approach to compare regression modelling strategies in prediction research.
Pajouheshnia, Romin; Pestman, Wiebe R; Teerenstra, Steven; Groenwold, Rolf H H
2016-08-25
It is often unclear which approach to fit, assess and adjust a model will yield the most accurate prediction model. We present an extension of an approach for comparing modelling strategies in linear regression to the setting of logistic regression and demonstrate its application in clinical prediction research. A framework for comparing logistic regression modelling strategies by their likelihoods was formulated using a wrapper approach. Five different strategies for modelling, including simple shrinkage methods, were compared in four empirical data sets to illustrate the concept of a priori strategy comparison. Simulations were performed in both randomly generated data and empirical data to investigate the influence of data characteristics on strategy performance. We applied the comparison framework in a case study setting. Optimal strategies were selected based on the results of a priori comparisons in a clinical data set and the performance of models built according to each strategy was assessed using the Brier score and calibration plots. The performance of modelling strategies was highly dependent on the characteristics of the development data in both linear and logistic regression settings. A priori comparisons in four empirical data sets found that no strategy consistently outperformed the others. The percentage of times that a model adjustment strategy outperformed a logistic model ranged from 3.9 to 94.9 %, depending on the strategy and data set. However, in our case study setting the a priori selection of optimal methods did not result in detectable improvement in model performance when assessed in an external data set. The performance of prediction modelling strategies is a data-dependent process and can be highly variable between data sets within the same clinical domain. A priori strategy comparison can be used to determine an optimal logistic regression modelling strategy for a given data set before selecting a final modelling approach.
Models of Cultural Niche Construction with Selection and Assortative Mating
Feldman, Marcus W.
2012-01-01
Niche construction is a process through which organisms modify their environment and, as a result, alter the selection pressures on themselves and other species. In cultural niche construction, one or more cultural traits can influence the evolution of other cultural or biological traits by affecting the social environment in which the latter traits may evolve. Cultural niche construction may include either gene-culture or culture-culture interactions. Here we develop a model of this process and suggest some applications of this model. We examine the interactions between cultural transmission, selection, and assorting, paying particular attention to the complexities that arise when selection and assorting are both present, in which case stable polymorphisms of all cultural phenotypes are possible. We compare our model to a recent model for the joint evolution of religion and fertility and discuss other potential applications of cultural niche construction theory, including the evolution and maintenance of large-scale human conflict and the relationship between sex ratio bias and marriage customs. The evolutionary framework we introduce begins to address complexities that arise in the quantitative analysis of multiple interacting cultural traits. PMID:22905167
A Conceptual Framework for Predicting Error in Complex Human-Machine Environments
NASA Technical Reports Server (NTRS)
Freed, Michael; Remington, Roger; Null, Cynthia H. (Technical Monitor)
1998-01-01
We present a Goals, Operators, Methods, and Selection Rules-Model Human Processor (GOMS-MHP) style model-based approach to the problem of predicting human habit capture errors. Habit captures occur when the model fails to allocate limited cognitive resources to retrieve task-relevant information from memory. Lacking the unretrieved information, decision mechanisms act in accordance with implicit default assumptions, resulting in error when relied upon assumptions prove incorrect. The model helps interface designers identify situations in which such failures are especially likely.
Robust evaluation of time series classification algorithms for structural health monitoring
NASA Astrophysics Data System (ADS)
Harvey, Dustin Y.; Worden, Keith; Todd, Michael D.
2014-03-01
Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and mechanical infrastructure through analysis of structural response measurements. The supervised learning methodology for data-driven SHM involves computation of low-dimensional, damage-sensitive features from raw measurement data that are then used in conjunction with machine learning algorithms to detect, classify, and quantify damage states. However, these systems often suffer from performance degradation in real-world applications due to varying operational and environmental conditions. Probabilistic approaches to robust SHM system design suffer from incomplete knowledge of all conditions a system will experience over its lifetime. Info-gap decision theory enables nonprobabilistic evaluation of the robustness of competing models and systems in a variety of decision making applications. Previous work employed info-gap models to handle feature uncertainty when selecting various components of a supervised learning system, namely features from a pre-selected family and classifiers. In this work, the info-gap framework is extended to robust feature design and classifier selection for general time series classification through an efficient, interval arithmetic implementation of an info-gap data model. Experimental results are presented for a damage type classification problem on a ball bearing in a rotating machine. The info-gap framework in conjunction with an evolutionary feature design system allows for fully automated design of a time series classifier to meet performance requirements under maximum allowable uncertainty.
Host–parasite fluctuating selection in the absence of specificity
Ashby, Ben; White, Andy; Bowers, Roger; Buckling, Angus; Koskella, Britt
2017-01-01
Fluctuating selection driven by coevolution between hosts and parasites is important for the generation of host and parasite diversity across space and time. Theory has focused primarily on infection genetics, with highly specific ‘matching-allele’ frameworks more likely to generate fluctuating selection dynamics (FSD) than ‘gene-for-gene’ (generalist–specialist) frameworks. However, the environment, ecological feedbacks and life-history characteristics may all play a role in determining when FSD occurs. Here, we develop eco-evolutionary models with explicit ecological dynamics to explore the ecological, epidemiological and host life-history drivers of FSD. Our key result is to demonstrate for the first time, to our knowledge, that specificity between hosts and parasites is not required to generate FSD. Furthermore, highly specific host–parasite interactions produce unstable, less robust stochastic fluctuations in contrast to interactions that lack specificity altogether or those that vary from generalist to specialist, which produce predictable limit cycles. Given the ubiquity of ecological feedbacks and the variation in the nature of specificity in host–parasite interactions, our work emphasizes the underestimated potential for host–parasite coevolution to generate fluctuating selection. PMID:29093222
Analytic hierarchy process helps select site for limestone quarry expansion in Barbados.
Dey, Prasanta Kumar; Ramcharan, Eugene K
2008-09-01
Site selection is a key activity for quarry expansion to support cement production, and is governed by factors such as resource availability, logistics, costs, and socio-economic-environmental factors. Adequate consideration of all the factors facilitates both industrial productivity and sustainable economic growth. This study illustrates the site selection process that was undertaken for the expansion of limestone quarry operations to support cement production in Barbados. First, alternate sites with adequate resources to support a 25-year development horizon were identified. Second, technical and socio-economic-environmental factors were then identified. Third, a database was developed for each site with respect to each factor. Fourth, a hierarchical model in analytic hierarchy process (AHP) framework was then developed. Fifth, the relative ranking of the alternate sites was then derived through pair wise comparison in all the levels and through subsequent synthesizing of the results across the hierarchy through computer software (Expert Choice). The study reveals that an integrated framework using the AHP can help select a site for the quarry expansion project in Barbados.
Developing a framework for transferring knowledge into action: a thematic analysis of the literature
Ward, Vicky; House, Allan; Hamer, Susan
2010-01-01
Objectives Although there is widespread agreement about the importance of transferring knowledge into action, we still lack high quality information about what works, in which settings and with whom. Whilst there are a large number of models and theories for knowledge transfer interventions, they are untested meaning that their applicability and relevance is largely unknown. This paper describes the development of a conceptual framework of translating knowledge into action and discusses how it can be used for developing a useful model of the knowledge transfer process. Methods A narrative review of the knowledge transfer literature identified 28 different models which explained all or part of the knowledge transfer process. The models were subjected to a thematic analysis to identify individual components and the types of processes used when transferring knowledge into action. The results were used to build a conceptual framework of the process. Results Five common components of the knowledge transfer process were identified: problem identification and communication; knowledge/research development and selection; analysis of context; knowledge transfer activities or interventions; and knowledge/research utilization. We also identified three types of knowledge transfer processes: a linear process; a cyclical process; and a dynamic multidirectional process. From these results a conceptual framework of knowledge transfer was developed. The framework illustrates the five common components of the knowledge transfer process and shows that they are connected via a complex, multidirectional set of interactions. As such the framework allows for the individual components to occur simultaneously or in any given order and to occur more than once during the knowledge transfer process. Conclusion Our framework provides a foundation for gathering evidence from case studies of knowledge transfer interventions. We propose that future empirical work is designed to test and refine the relevant importance and applicability of each of the components in order to build more useful models of knowledge transfer which can serve as a practical checklist for planning or evaluating knowledge transfer activities. PMID:19541874
Extraction of information from major element chemical analyses of lunar basalts
NASA Technical Reports Server (NTRS)
Butler, J. C.
1985-01-01
Major element chemical analyses often form the framework within which similarities and differences of analyzed specimens are noted and used to propose or devise models. When percentages are formed the ratios of pairs of components are preserved whereas many familiar statistical and geometrical descriptors are likely to exhibit major changes. This ratio preserving aspect forms the basis for a proposed framework. An analysis of compositional variability within the data set of 42 major element analyses of lunar reference samples was selected to investigate this proposal.
Bayesian model selection applied to artificial neural networks used for water resources modeling
NASA Astrophysics Data System (ADS)
Kingston, Greer B.; Maier, Holger R.; Lambert, Martin F.
2008-04-01
Artificial neural networks (ANNs) have proven to be extremely valuable tools in the field of water resources engineering. However, one of the most difficult tasks in developing an ANN is determining the optimum level of complexity required to model a given problem, as there is no formal systematic model selection method. This paper presents a Bayesian model selection (BMS) method for ANNs that provides an objective approach for comparing models of varying complexity in order to select the most appropriate ANN structure. The approach uses Markov Chain Monte Carlo posterior simulations to estimate the evidence in favor of competing models and, in this study, three known methods for doing this are compared in terms of their suitability for being incorporated into the proposed BMS framework for ANNs. However, it is acknowledged that it can be particularly difficult to accurately estimate the evidence of ANN models. Therefore, the proposed BMS approach for ANNs incorporates a further check of the evidence results by inspecting the marginal posterior distributions of the hidden-to-output layer weights, which unambiguously indicate any redundancies in the hidden layer nodes. The fact that this check is available is one of the greatest advantages of the proposed approach over conventional model selection methods, which do not provide such a test and instead rely on the modeler's subjective choice of selection criterion. The advantages of a total Bayesian approach to ANN development, including training and model selection, are demonstrated on two synthetic and one real world water resources case study.
An Entangled Model for Sustainability Indicators
Cedano, Karla G.; Martínez, Manuel; Jensen, Henrik J.
2015-01-01
Nowadays the challenge for humanity is to find pathways towards sustainable development. Decision makers require a set of sustainability indicators to know if the sustainability strategies are following those pathways. There are more than one hundred sustainability indicators but they differ on their relative importance according to the size of the locality and change on time. The resources needed to follow these sustainability indicators are scarce and in some instances finite, especially in smaller regions. Therefore strategies to select set of these indicators are useful for decision makers responsible for monitoring sustainability. In this paper we propose a model for the identification and selection of a set of sustainability indicators that adequately represents human systems. In developing this model, we applied evolutionary dynamics in a space where sustainability indicators are fundamental entities interconnected by an interaction matrix. we used a fixed interaction that simulates the current context for the city of Cuernavaca, México as an example. We were able to identify and define relevant sets indicators for the system by using the Pareto principle. In this case we identified a set of sixteen sustainability indicators with more than 80% of the total strength. This set presents resilience to perturbations. For the Tangled Nature framework we provided a manner of treating different contexts (i.e., cities, counties, states, regions, countries, continents or the whole planet), dealing with small dimensions. This model provides decision makers with a valuable tool to select sustainability indicators set for towns, cities, regions, countries, continents or the entire planet according to a coevolutionary framework. The social legitimacy can arise from the fact that each individual indicator must be selected from those that are most important for the subject community. PMID:26295948
An Entangled Model for Sustainability Indicators.
Vázquez, Pável; Del Río, Jesús A; Cedano, Karla G; Martínez, Manuel; Jensen, Henrik J
2015-01-01
Nowadays the challenge for humanity is to find pathways towards sustainable development. Decision makers require a set of sustainability indicators to know if the sustainability strategies are following those pathways. There are more than one hundred sustainability indicators but they differ on their relative importance according to the size of the locality and change on time. The resources needed to follow these sustainability indicators are scarce and in some instances finite, especially in smaller regions. Therefore strategies to select set of these indicators are useful for decision makers responsible for monitoring sustainability. In this paper we propose a model for the identification and selection of a set of sustainability indicators that adequately represents human systems. In developing this model, we applied evolutionary dynamics in a space where sustainability indicators are fundamental entities interconnected by an interaction matrix. we used a fixed interaction that simulates the current context for the city of Cuernavaca, México as an example. We were able to identify and define relevant sets indicators for the system by using the Pareto principle. In this case we identified a set of sixteen sustainability indicators with more than 80% of the total strength. This set presents resilience to perturbations. For the Tangled Nature framework we provided a manner of treating different contexts (i.e., cities, counties, states, regions, countries, continents or the whole planet), dealing with small dimensions. This model provides decision makers with a valuable tool to select sustainability indicators set for towns, cities, regions, countries, continents or the entire planet according to a coevolutionary framework. The social legitimacy can arise from the fact that each individual indicator must be selected from those that are most important for the subject community.
From Mouth-level to Tooth-level DMFS: Conceptualizing a Theoretical Framework
Bandyopadhyay, Dipankar
2015-01-01
Objective There is no dearth of correlated count data in any biological or clinical settings, and the ability to accurately analyze and interpret such data remains an exciting area of research. In oral health epidemiology, the Decayed, Missing, Filled (DMF) index has been continuously used for over 70 years as the key measure to quantify caries experience. The DMF index projects a subject’s caries status using either the DMF(T), the total number of DMF teeth, or the DMF(S), counting the total DMF teeth surfaces, for that subject. However, surfaces within a particular tooth or a subject constitute clustered data, and the DMFS mostly overlook this clustering effect to attain an over-simplified summary index, ignoring the true tooth-level caries status. Besides, the DMFT/DMFS might exhibit excess of some specific counts (say, zeroes representing the set of relatively disease-free carious state), or can exhibit overdispersion, and accounting for the excess responses or overdispersion remains a key component is selecting the appropriate modeling strategy. Methods & Results This concept paper presents the rationale and the theoretical framework which a dental researcher might consider at the onset in order to choose a plausible statistical model for tooth-level DMFS. Various nuances related to model fitting, selection and parameter interpretation are also explained. Conclusion The author recommends conceptualizing the correct stochastic framework should serve as the guiding force to the dental researcher’s never-ending goal of assessing complex covariate-response relationships efficiently. PMID:26618183
NASA Astrophysics Data System (ADS)
Kostyuchenko, Yuriy V.; Sztoyka, Yulia; Kopachevsky, Ivan; Artemenko, Igor; Yuschenko, Maxim
2017-10-01
Multi-model approach for remote sensing data processing and interpretation is described. The problem of satellite data utilization in multi-modeling approach for socio-ecological risks assessment is formally defined. Observation, measurement and modeling data utilization method in the framework of multi-model approach is described. Methodology and models of risk assessment in framework of decision support approach are defined and described. Method of water quality assessment using satellite observation data is described. Method is based on analysis of spectral reflectance of aquifers. Spectral signatures of freshwater bodies and offshores are analyzed. Correlations between spectral reflectance, pollutions and selected water quality parameters are analyzed and quantified. Data of MODIS, MISR, AIRS and Landsat sensors received in 2002-2014 have been utilized verified by in-field spectrometry and lab measurements. Fuzzy logic based approach for decision support in field of water quality degradation risk is discussed. Decision on water quality category is making based on fuzzy algorithm using limited set of uncertain parameters. Data from satellite observations, field measurements and modeling is utilizing in the framework of the approach proposed. It is shown that this algorithm allows estimate water quality degradation rate and pollution risks. Problems of construction of spatial and temporal distribution of calculated parameters, as well as a problem of data regularization are discussed. Using proposed approach, maps of surface water pollution risk from point and diffuse sources are calculated and discussed.
VALUE - A Framework to Validate Downscaling Approaches for Climate Change Studies
NASA Astrophysics Data System (ADS)
Maraun, Douglas; Widmann, Martin; Gutiérrez, José M.; Kotlarski, Sven; Chandler, Richard E.; Hertig, Elke; Wibig, Joanna; Huth, Radan; Wilke, Renate A. I.
2015-04-01
VALUE is an open European network to validate and compare downscaling methods for climate change research. VALUE aims to foster collaboration and knowledge exchange between climatologists, impact modellers, statisticians, and stakeholders to establish an interdisciplinary downscaling community. A key deliverable of VALUE is the development of a systematic validation framework to enable the assessment and comparison of both dynamical and statistical downscaling methods. Here, we present the key ingredients of this framework. VALUE's main approach to validation is user-focused: starting from a specific user problem, a validation tree guides the selection of relevant validation indices and performance measures. Several experiments have been designed to isolate specific points in the downscaling procedure where problems may occur: what is the isolated downscaling skill? How do statistical and dynamical methods compare? How do methods perform at different spatial scales? Do methods fail in representing regional climate change? How is the overall representation of regional climate, including errors inherited from global climate models? The framework will be the basis for a comprehensive community-open downscaling intercomparison study, but is intended also to provide general guidance for other validation studies.
VALUE: A framework to validate downscaling approaches for climate change studies
NASA Astrophysics Data System (ADS)
Maraun, Douglas; Widmann, Martin; Gutiérrez, José M.; Kotlarski, Sven; Chandler, Richard E.; Hertig, Elke; Wibig, Joanna; Huth, Radan; Wilcke, Renate A. I.
2015-01-01
VALUE is an open European network to validate and compare downscaling methods for climate change research. VALUE aims to foster collaboration and knowledge exchange between climatologists, impact modellers, statisticians, and stakeholders to establish an interdisciplinary downscaling community. A key deliverable of VALUE is the development of a systematic validation framework to enable the assessment and comparison of both dynamical and statistical downscaling methods. In this paper, we present the key ingredients of this framework. VALUE's main approach to validation is user- focused: starting from a specific user problem, a validation tree guides the selection of relevant validation indices and performance measures. Several experiments have been designed to isolate specific points in the downscaling procedure where problems may occur: what is the isolated downscaling skill? How do statistical and dynamical methods compare? How do methods perform at different spatial scales? Do methods fail in representing regional climate change? How is the overall representation of regional climate, including errors inherited from global climate models? The framework will be the basis for a comprehensive community-open downscaling intercomparison study, but is intended also to provide general guidance for other validation studies.
Simultaneous Optimization of Decisions Using a Linear Utility Function.
ERIC Educational Resources Information Center
Vos, Hans J.
1990-01-01
An approach is presented to simultaneously optimize decision rules for combinations of elementary decisions through a framework derived from Bayesian decision theory. The developed linear utility model for selection-mastery decisions was applied to a sample of 43 first year medical students to illustrate the procedure. (SLD)
INTERPERSONAL RELATIONSHIPS--A REVIEW. UTAH STUDIES IN VOCATIONAL REHABILITATION.
ERIC Educational Resources Information Center
JORGENSEN, GARY Q.; RUSHLAU, PERRY J.
THIS MONOGRAPH IS A REVIEW OF SELECTED LITERATURE IN THE AREA OF INTERPERSONAL RELATIONSHIPS, WHICH HAS RELEVANCE TO THE CLIENT-COUNSELOR INTERACTION. THE STUDIES HAVE BEEN TREATED WITHIN THE FRAMEWORK OF MCGRATH'S DESCRIPTIVE MODEL FOR INTERPERSONAL RELATIONSHIPS. COMPARATIVE ANALYSIS OF THEORETICAL APPROACHES HAS YIELDED TWO LINES OF EVIDENCE…
Evaluating data worth for ground-water management under uncertainty
Wagner, B.J.
1999-01-01
A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information - i.e., the projected reduction in management costs - with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.
Nozari, Nazbanou; Hepner, Christopher R
2018-06-05
Competitive accounts of lexical selection propose that the activation of competitors slows down the selection of the target. Non-competitive accounts, on the other hand, posit that target response latencies are independent of the activation of competing items. In this paper, we propose a signal detection framework for lexical selection and show how a flexible selection criterion affects claims of competitive selection. Specifically, we review evidence from neurotypical and brain-damaged speakers and demonstrate that task goals and the state of the production system determine whether a competitive or a non-competitive selection profile arises. We end by arguing that there is conclusive evidence for a flexible criterion in lexical selection, and that integrating criterion shifts into models of language production is critical for evaluating theoretical claims regarding (non-)competitive selection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dale, Virginia H.; Efroymson, Rebecca Ann; Kline, Keith L.
A framework for selecting and evaluating indicators of bioenergy sustainability is presented. This framework is designed to facilitate decision-making about which indicators are useful for assessing sustainability of bioenergy systems and supporting their deployment. Efforts to develop sustainability indicators in the United States and Europe are reviewed. The first steps of the framework for indicator selection are defining the sustainability goals and other goals for a bioenergy project or program, gaining an understanding of the context, and identifying the values of stakeholders. From the goals, context, and stakeholders, the objectives for analysis and criteria for indicator selection can be developed.more » The user of the framework identifies and ranks indicators, applies them in an assessment, and then evaluates their effectiveness, while identifying gaps that prevent goals from being met, assessing lessons learned, and moving toward best practices. The framework approach emphasizes that the selection of appropriate criteria and indicators is driven by the specific purpose of an analysis. Realistic goals and measures of bioenergy sustainability can be developed systematically with the help of the framework presented here.« less
Martin, Jordan S; Suarez, Scott A
2017-08-01
Interest in quantifying consistent among-individual variation in primate behavior, also known as personality, has grown rapidly in recent decades. Although behavioral coding is the most frequently utilized method for assessing primate personality, limitations in current statistical practice prevent researchers' from utilizing the full potential of their coding datasets. These limitations include the use of extensive data aggregation, not modeling biologically relevant sources of individual variance during repeatability estimation, not partitioning between-individual (co)variance prior to modeling personality structure, the misuse of principal component analysis, and an over-reliance upon exploratory statistical techniques to compare personality models across populations, species, and data collection methods. In this paper, we propose a statistical framework for primate personality research designed to address these limitations. Our framework synthesizes recently developed mixed-effects modeling approaches for quantifying behavioral variation with an information-theoretic model selection paradigm for confirmatory personality research. After detailing a multi-step analytic procedure for personality assessment and model comparison, we employ this framework to evaluate seven models of personality structure in zoo-housed bonobos (Pan paniscus). We find that differences between sexes, ages, zoos, time of observation, and social group composition contributed to significant behavioral variance. Independently of these factors, however, personality nonetheless accounted for a moderate to high proportion of variance in average behavior across observational periods. A personality structure derived from past rating research receives the strongest support relative to our model set. This model suggests that personality variation across the measured behavioral traits is best described by two correlated but distinct dimensions reflecting individual differences in affiliation and sociability (Agreeableness) as well as activity level, social play, and neophilia toward non-threatening stimuli (Openness). These results underscore the utility of our framework for quantifying personality in primates and facilitating greater integration between the behavioral ecological and comparative psychological approaches to personality research. © 2017 Wiley Periodicals, Inc.
The Gtr-Model a Universal Framework for Quantum-Like Measurements
NASA Astrophysics Data System (ADS)
Aerts, Diederik; Bianchi, Massimiliano Sassoli De
We present a very general geometrico-dynamical description of physical or more abstract entities, called the general tension-reduction (GTR) model, where not only states, but also measurement-interactions can be represented, and the associated outcome probabilities calculated. Underlying the model is the hypothesis that indeterminism manifests as a consequence of unavoidable uctuations in the experimental context, in accordance with the hidden-measurements interpretation of quantum mechanics. When the structure of the state space is Hilbertian, and measurements are of the universal kind, i.e., are the result of an average over all possible ways of selecting an outcome, the GTR-model provides the same predictions of the Born rule, and therefore provides a natural completed version of quantum mechanics. However, when the structure of the state space is non-Hilbertian and/or not all possible ways of selecting an outcome are available to be actualized, the predictions of the model generally differ from the quantum ones, especially when sequential measurements are considered. Some paradigmatic examples will be discussed, taken from physics and human cognition. Particular attention will be given to some known psychological effects, like question order effects and response replicability, which we show are able to generate non-Hilbertian statistics. We also suggest a realistic interpretation of the GTR-model, when applied to human cognition and decision, which we think could become the generally adopted interpretative framework in quantum cognition research.
Consideration in selecting crops for the human-rated life support system: a Linear Programming model
NASA Technical Reports Server (NTRS)
Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.; Henninger, D. L. (Principal Investigator)
1996-01-01
A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.
Consideration in selecting crops for the human-rated life support system: a linear programming model
NASA Astrophysics Data System (ADS)
Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.
A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.
Development of a Resource Manager Framework for Adaptive Beamformer Selection
2013-12-27
DEVELOPMENT OF A RESOURCE MANAGER FRAMEWORK FOR ADAPTIVE BEAMFORMER SELECTION DISSERTATION Jeremy P. Stringer, Major, USAF AFIT-ENG-DS-13-D-01...Force, the United States Department of Defense or the United States Government. AFIT-ENG-DS-13-D-01 DEVELOPMENT OF A RESOURCE MANAGER FRAMEWORK FOR...ADAPTIVE BEAMFORMER SELECTION DISSERTATION Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of Technology Air
Research and Evaluations of the Health Aspects of Disasters, Part IX: Risk-Reduction Framework.
Birnbaum, Marvin L; Daily, Elaine K; O'Rourke, Ann P; Loretti, Alessandro
2016-06-01
A disaster is a failure of resilience to an event. Mitigating the risks that a hazard will progress into a destructive event, or increasing the resilience of a society-at-risk, requires careful analysis, planning, and execution. The Disaster Logic Model (DLM) is used to define the value (effects, costs, and outcome(s)), impacts, and benefits of interventions directed at risk reduction. A Risk-Reduction Framework, based on the DLM, details the processes involved in hazard mitigation and/or capacity-building interventions to augment the resilience of a community or to decrease the risk that a secondary event will develop. This Framework provides the structure to systematically undertake and evaluate risk-reduction interventions. It applies to all interventions aimed at hazard mitigation and/or increasing the absorbing, buffering, or response capacities of a community-at-risk for a primary or secondary event that could result in a disaster. The Framework utilizes the structure provided by the DLM and consists of 14 steps: (1) hazards and risks identification; (2) historical perspectives and predictions; (3) selection of hazard(s) to address; (4) selection of appropriate indicators; (5) identification of current resilience standards and benchmarks; (6) assessment of the current resilience status; (7) identification of resilience needs; (8) strategic planning; (9) selection of an appropriate intervention; (10) operational planning; (11) implementation; (12) assessments of outputs; (13) synthesis; and (14) feedback. Each of these steps is a transformation process that is described in detail. Emphasis is placed on the role of Coordination and Control during planning, implementation of risk-reduction/capacity building interventions, and evaluation. Birnbaum ML , Daily EK , O'Rourke AP , Loretti A . Research and evaluations of the health aspects of disasters, part IX: Risk-Reduction Framework. Prehosp Disaster Med. 2016;31(3):309-325.
Mouratiadou, Ioanna; Russell, Graham; Topp, Cairistiona; Louhichi, Kamel; Moran, Dominic
2010-01-01
Selecting cost-effective measures to regulate agricultural water pollution to conform to the Water Framework Directive presents multiple challenges. A bio-economic modelling approach is presented that has been used to explore the water quality and economic effects of the 2003 Common Agricultural Policy Reform and to assess the cost-effectiveness of input quotas and emission standards against nitrate leaching, in a representative case study catchment in Scotland. The approach combines a biophysical model (NDICEA) with a mathematical programming model (FSSIM-MP). The results indicate only small changes due to the Reform, with the main changes in farmers' decision making and the associated economic and water quality indicators depending on crop price changes, and suggest the use of target fertilisation in relation to crop and soil requirements, as opposed to measures targeting farm total or average nitrogen use.
Data-driven Analysis and Prediction of Arctic Sea Ice
NASA Astrophysics Data System (ADS)
Kondrashov, D. A.; Chekroun, M.; Ghil, M.; Yuan, X.; Ting, M.
2015-12-01
We present results of data-driven predictive analyses of sea ice over the main Arctic regions. Our approach relies on the Multilayer Stochastic Modeling (MSM) framework of Kondrashov, Chekroun and Ghil [Physica D, 2015] and it leads to prognostic models of sea ice concentration (SIC) anomalies on seasonal time scales.This approach is applied to monthly time series of leading principal components from the multivariate Empirical Orthogonal Function decomposition of SIC and selected climate variables over the Arctic. We evaluate the predictive skill of MSM models by performing retrospective forecasts with "no-look ahead" forup to 6-months ahead. It will be shown in particular that the memory effects included in our non-Markovian linear MSM models improve predictions of large-amplitude SIC anomalies in certain Arctic regions. Furtherimprovements allowed by the MSM framework will adopt a nonlinear formulation, as well as alternative data-adaptive decompositions.
Snoopy--a unifying Petri net framework to investigate biomolecular networks.
Rohr, Christian; Marwan, Wolfgang; Heiner, Monika
2010-04-01
To investigate biomolecular networks, Snoopy provides a unifying Petri net framework comprising a family of related Petri net classes. Models can be hierarchically structured, allowing for the mastering of larger networks. To move easily between the qualitative, stochastic and continuous modelling paradigms, models can be converted into each other. We get models sharing structure, but specialized by their kinetic information. The analysis and iterative reverse engineering of biomolecular networks is supported by the simultaneous use of several Petri net classes, while the graphical user interface adapts dynamically to the active one. Built-in animation and simulation are complemented by exports to various analysis tools. Snoopy facilitates the addition of new Petri net classes thanks to its generic design. Our tool with Petri net samples is available free of charge for non-commercial use at http://www-dssz.informatik.tu-cottbus.de/snoopy.html; supported operating systems: Mac OS X, Windows and Linux (selected distributions).
Wickman, Jonas; Diehl, Sebastian; Blasius, Bernd; Klausmeier, Christopher A; Ryabov, Alexey B; Brännström, Åke
2017-04-01
Spatial structure can decisively influence the way evolutionary processes unfold. To date, several methods have been used to study evolution in spatial systems, including population genetics, quantitative genetics, moment-closure approximations, and individual-based models. Here we extend the study of spatial evolutionary dynamics to eco-evolutionary models based on reaction-diffusion equations and adaptive dynamics. Specifically, we derive expressions for the strength of directional and stabilizing/disruptive selection that apply both in continuous space and to metacommunities with symmetrical dispersal between patches. For directional selection on a quantitative trait, this yields a way to integrate local directional selection across space and determine whether the trait value will increase or decrease. The robustness of this prediction is validated against quantitative genetics. For stabilizing/disruptive selection, we show that spatial heterogeneity always contributes to disruptive selection and hence always promotes evolutionary branching. The expression for directional selection is numerically very efficient and hence lends itself to simulation studies of evolutionary community assembly. We illustrate the application and utility of the expressions for this purpose with two examples of the evolution of resource utilization. Finally, we outline the domain of applicability of reaction-diffusion equations as a modeling framework and discuss their limitations.
NASA Astrophysics Data System (ADS)
Busonero, D.; Gai, M.
The goals of 21st century high angular precision experiments rely on the limiting performance associated to the selected instrumental configuration and observational strategy. Both global and narrow angle micro-arcsec space astrometry require that the instrument contributions to the overall error budget has to be less than the desired micro-arcsec level precision. Appropriate modelling of the astrometric response is required for optimal definition of the data reduction and calibration algorithms, in order to ensure high sensitivity to the astrophysical source parameters and in general high accuracy. We will refer to the framework of the SIM-Lite and the Gaia mission, the most challenging space missions of the next decade in the narrow angle and global astrometry field, respectively. We will focus our dissertation on the Gaia data reduction issues and instrument calibration implications. We describe selected topics in the framework of the Astrometric Instrument Modelling for the Gaia mission, evidencing their role in the data reduction chain and we give a brief overview of the Astrometric Instrument Model Data Analysis Software System, a Java-based pipeline under development by our team.
Evolution at the tips: Asclepias phylogenomics and new perspectives on leaf surfaces.
Fishbein, Mark; Straub, Shannon C K; Boutte, Julien; Hansen, Kimberly; Cronn, Richard C; Liston, Aaron
2018-03-01
Leaf surface traits, such as trichome density and wax production, mediate important ecological processes such as anti-herbivory defense and water-use efficiency. We present a phylogenetic analysis of Asclepias plastomes as a framework for analyzing the evolution of trichome density and presence of epicuticular waxes. We produced a maximum-likelihood phylogeny using plastomes of 103 species of Asclepias. We reconstructed ancestral states and used model comparisons in a likelihood framework to analyze character evolution across Asclepias. We resolved the backbone of Asclepias, placing the Sonoran Desert clade and Incarnatae clade as successive sisters to the remaining species. We present novel findings about leaf surface evolution of Asclepias-the ancestor is reconstructed as waxless and sparsely hairy, a macroevolutionary optimal trichome density is supported, and the rate of evolution of trichome density has accelerated. Increased sampling and selection of best-fitting models of evolution provide more resolved and robust estimates of phylogeny and character evolution than obtained in previous studies. Evolutionary inferences are more sensitive to character coding than model selection. © 2018 The Authors. American Journal of Botany is published by Wiley Periodicals, Inc. on behalf of the Botanical Society of America.
Surface Estimation, Variable Selection, and the Nonparametric Oracle Property.
Storlie, Curtis B; Bondell, Howard D; Reich, Brian J; Zhang, Hao Helen
2011-04-01
Variable selection for multivariate nonparametric regression is an important, yet challenging, problem due, in part, to the infinite dimensionality of the function space. An ideal selection procedure should be automatic, stable, easy to use, and have desirable asymptotic properties. In particular, we define a selection procedure to be nonparametric oracle (np-oracle) if it consistently selects the correct subset of predictors and at the same time estimates the smooth surface at the optimal nonparametric rate, as the sample size goes to infinity. In this paper, we propose a model selection procedure for nonparametric models, and explore the conditions under which the new method enjoys the aforementioned properties. Developed in the framework of smoothing spline ANOVA, our estimator is obtained via solving a regularization problem with a novel adaptive penalty on the sum of functional component norms. Theoretical properties of the new estimator are established. Additionally, numerous simulated and real examples further demonstrate that the new approach substantially outperforms other existing methods in the finite sample setting.
Surface Estimation, Variable Selection, and the Nonparametric Oracle Property
Storlie, Curtis B.; Bondell, Howard D.; Reich, Brian J.; Zhang, Hao Helen
2010-01-01
Variable selection for multivariate nonparametric regression is an important, yet challenging, problem due, in part, to the infinite dimensionality of the function space. An ideal selection procedure should be automatic, stable, easy to use, and have desirable asymptotic properties. In particular, we define a selection procedure to be nonparametric oracle (np-oracle) if it consistently selects the correct subset of predictors and at the same time estimates the smooth surface at the optimal nonparametric rate, as the sample size goes to infinity. In this paper, we propose a model selection procedure for nonparametric models, and explore the conditions under which the new method enjoys the aforementioned properties. Developed in the framework of smoothing spline ANOVA, our estimator is obtained via solving a regularization problem with a novel adaptive penalty on the sum of functional component norms. Theoretical properties of the new estimator are established. Additionally, numerous simulated and real examples further demonstrate that the new approach substantially outperforms other existing methods in the finite sample setting. PMID:21603586
NASA Astrophysics Data System (ADS)
Rahnamay Naeini, M.; Sadegh, M.; AghaKouchak, A.; Hsu, K. L.; Sorooshian, S.; Yang, T.
2017-12-01
Meta-Heuristic optimization algorithms have gained a great deal of attention in a wide variety of fields. Simplicity and flexibility of these algorithms, along with their robustness, make them attractive tools for solving optimization problems. Different optimization methods, however, hold algorithm-specific strengths and limitations. Performance of each individual algorithm obeys the "No-Free-Lunch" theorem, which means a single algorithm cannot consistently outperform all possible optimization problems over a variety of problems. From users' perspective, it is a tedious process to compare, validate, and select the best-performing algorithm for a specific problem or a set of test cases. In this study, we introduce a new hybrid optimization framework, entitled Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL), which combines the strengths of different evolutionary algorithms (EAs) in a parallel computing scheme, and allows users to select the most suitable algorithm tailored to the problem at hand. The concept of SC-SAHEL is to execute different EAs as separate parallel search cores, and let all participating EAs to compete during the course of the search. The newly developed SC-SAHEL algorithm is designed to automatically select, the best performing algorithm for the given optimization problem. This algorithm is rigorously effective in finding the global optimum for several strenuous benchmark test functions, and computationally efficient as compared to individual EAs. We benchmark the proposed SC-SAHEL algorithm over 29 conceptual test functions, and two real-world case studies - one hydropower reservoir model and one hydrological model (SAC-SMA). Results show that the proposed framework outperforms individual EAs in an absolute majority of the test problems, and can provide competitive results to the fittest EA algorithm with more comprehensive information during the search. The proposed framework is also flexible for merging additional EAs, boundary-handling techniques, and sampling schemes, and has good potential to be used in Water-Energy system optimal operation and management.
ERIC Educational Resources Information Center
De los Santos, Saturnino; Norland, Emmalou Van Tilburg
A study evaluated the cacao farmer training program in the Dominican Republic by testing hypothesized relationships among reactions, knowledge and skills, attitudes, aspirations, and some selected demographic characteristics of farmers who attended programs. Bennett's hierarchical model of program evaluation was used as the framework of the study.…
Force on Force Modeling with Formal Task Structures and Dynamic Geometry
2017-03-24
task framework, derived using the MMF methodology to structure a complex mission. It further demonstrated the integration of effects from a range of...application methodology was intended to support a combined developmental testing (DT) and operational testing (OT) strategy for selected systems under test... methodology to develop new or modify existing Models and Simulations (M&S) to: • Apply data from multiple, distributed sources (including test
Sahoo, S.; Russo, T. A.; Elliott, J.; ...
2017-05-13
Climate, groundwater extraction, and surface water flows have complex nonlinear relationships with groundwater level in agricultural regions. To better understand the relative importance of each driver and predict groundwater level change, we develop a new ensemble modeling framework based on spectral analysis, machine learning, and uncertainty analysis, as an alternative to complex and computationally expensive physical models. We apply and evaluate this new approach in the context of two aquifer systems supporting agricultural production in the United States: the High Plains aquifer (HPA) and the Mississippi River Valley alluvial aquifer (MRVA). We select input data sets by using a combinationmore » of mutual information, genetic algorithms, and lag analysis, and then use the selected data sets in a Multilayer Perceptron network architecture to simulate seasonal groundwater level change. As expected, model results suggest that irrigation demand has the highest influence on groundwater level change for a majority of the wells. The subset of groundwater observations not used in model training or cross-validation correlates strongly (R > 0.8) with model results for 88 and 83% of the wells in the HPA and MRVA, respectively. In both aquifer systems, the error in the modeled cumulative groundwater level change during testing (2003-2012) was less than 2 m over a majority of the area. Here, we conclude that our modeling framework can serve as an alternative approach to simulating groundwater level change and water availability, especially in regions where subsurface properties are unknown.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahoo, S.; Russo, T. A.; Elliott, J.
Climate, groundwater extraction, and surface water flows have complex nonlinear relationships with groundwater level in agricultural regions. To better understand the relative importance of each driver and predict groundwater level change, we develop a new ensemble modeling framework based on spectral analysis, machine learning, and uncertainty analysis, as an alternative to complex and computationally expensive physical models. We apply and evaluate this new approach in the context of two aquifer systems supporting agricultural production in the United States: the High Plains aquifer (HPA) and the Mississippi River Valley alluvial aquifer (MRVA). We select input data sets by using a combinationmore » of mutual information, genetic algorithms, and lag analysis, and then use the selected data sets in a Multilayer Perceptron network architecture to simulate seasonal groundwater level change. As expected, model results suggest that irrigation demand has the highest influence on groundwater level change for a majority of the wells. The subset of groundwater observations not used in model training or cross-validation correlates strongly (R > 0.8) with model results for 88 and 83% of the wells in the HPA and MRVA, respectively. In both aquifer systems, the error in the modeled cumulative groundwater level change during testing (2003-2012) was less than 2 m over a majority of the area. Here, we conclude that our modeling framework can serve as an alternative approach to simulating groundwater level change and water availability, especially in regions where subsurface properties are unknown.« less
A guide to Bayesian model selection for ecologists
Hooten, Mevin B.; Hobbs, N.T.
2015-01-01
The steady upward trend in the use of model selection and Bayesian methods in ecological research has made it clear that both approaches to inference are important for modern analysis of models and data. However, in teaching Bayesian methods and in working with our research colleagues, we have noticed a general dissatisfaction with the available literature on Bayesian model selection and multimodel inference. Students and researchers new to Bayesian methods quickly find that the published advice on model selection is often preferential in its treatment of options for analysis, frequently advocating one particular method above others. The recent appearance of many articles and textbooks on Bayesian modeling has provided welcome background on relevant approaches to model selection in the Bayesian framework, but most of these are either very narrowly focused in scope or inaccessible to ecologists. Moreover, the methodological details of Bayesian model selection approaches are spread thinly throughout the literature, appearing in journals from many different fields. Our aim with this guide is to condense the large body of literature on Bayesian approaches to model selection and multimodel inference and present it specifically for quantitative ecologists as neutrally as possible. We also bring to light a few important and fundamental concepts relating directly to model selection that seem to have gone unnoticed in the ecological literature. Throughout, we provide only a minimal discussion of philosophy, preferring instead to examine the breadth of approaches as well as their practical advantages and disadvantages. This guide serves as a reference for ecologists using Bayesian methods, so that they can better understand their options and can make an informed choice that is best aligned with their goals for inference.
The SAM framework: modeling the effects of management factors on human behavior in risk analysis.
Murphy, D M; Paté-Cornell, M E
1996-08-01
Complex engineered systems, such as nuclear reactors and chemical plants, have the potential for catastrophic failure with disastrous consequences. In recent years, human and management factors have been recognized as frequent root causes of major failures in such systems. However, classical probabilistic risk analysis (PRA) techniques do not account for the underlying causes of these errors because they focus on the physical system and do not explicitly address the link between components' performance and organizational factors. This paper describes a general approach for addressing the human and management causes of system failure, called the SAM (System-Action-Management) framework. Beginning with a quantitative risk model of the physical system, SAM expands the scope of analysis to incorporate first the decisions and actions of individuals that affect the physical system. SAM then links management factors (incentives, training, policies and procedures, selection criteria, etc.) to those decisions and actions. The focus of this paper is on four quantitative models of action that describe this last relationship. These models address the formation of intentions for action and their execution as a function of the organizational environment. Intention formation is described by three alternative models: a rational model, a bounded rationality model, and a rule-based model. The execution of intentions is then modeled separately. These four models are designed to assess the probabilities of individual actions from the perspective of management, thus reflecting the uncertainties inherent to human behavior. The SAM framework is illustrated for a hypothetical case of hazardous materials transportation. This framework can be used as a tool to increase the safety and reliability of complex technical systems by modifying the organization, rather than, or in addition to, re-designing the physical system.
NASA Astrophysics Data System (ADS)
Nowak, W.; Koch, J.
2014-12-01
Predicting DNAPL fate and transport in heterogeneous aquifers is challenging and subject to an uncertainty that needs to be quantified. Models for this task needs to be equipped with an accurate source zone description, i.e., the distribution of mass of all partitioning phases (DNAPL, water, and soil) in all possible states ((im)mobile, dissolved, and sorbed), mass-transfer algorithms, and the simulation of transport processes in the groundwater. Such detailed models tend to be computationally cumbersome when used for uncertainty quantification. Therefore, a selective choice of the relevant model states, processes, and scales are both sensitive and indispensable. We investigate the questions: what is a meaningful level of model complexity and how to obtain an efficient model framework that is still physically and statistically consistent. In our proposed model, aquifer parameters and the contaminant source architecture are conceptualized jointly as random space functions. The governing processes are simulated in a three-dimensional, highly-resolved, stochastic, and coupled model that can predict probability density functions of mass discharge and source depletion times. We apply a stochastic percolation approach as an emulator to simulate the contaminant source formation, a random walk particle tracking method to simulate DNAPL dissolution and solute transport within the aqueous phase, and a quasi-steady-state approach to solve for DNAPL depletion times. Using this novel model framework, we test whether and to which degree the desired model predictions are sensitive to simplifications often found in the literature. With this we identify that aquifer heterogeneity, groundwater flow irregularity, uncertain and physically-based contaminant source zones, and their mutual interlinkages are indispensable components of a sound model framework.
Moore, Jason H; Gilbert, Joshua C; Tsai, Chia-Ti; Chiang, Fu-Tien; Holden, Todd; Barney, Nate; White, Bill C
2006-07-21
Detecting, characterizing, and interpreting gene-gene interactions or epistasis in studies of human disease susceptibility is both a mathematical and a computational challenge. To address this problem, we have previously developed a multifactor dimensionality reduction (MDR) method for collapsing high-dimensional genetic data into a single dimension (i.e. constructive induction) thus permitting interactions to be detected in relatively small sample sizes. In this paper, we describe a comprehensive and flexible framework for detecting and interpreting gene-gene interactions that utilizes advances in information theory for selecting interesting single-nucleotide polymorphisms (SNPs), MDR for constructive induction, machine learning methods for classification, and finally graphical models for interpretation. We illustrate the usefulness of this strategy using artificial datasets simulated from several different two-locus and three-locus epistasis models. We show that the accuracy, sensitivity, specificity, and precision of a naïve Bayes classifier are significantly improved when SNPs are selected based on their information gain (i.e. class entropy removed) and reduced to a single attribute using MDR. We then apply this strategy to detecting, characterizing, and interpreting epistatic models in a genetic study (n = 500) of atrial fibrillation and show that both classification and model interpretation are significantly improved.
Shao, Chaofeng; Tian, Xiaogang; Guan, Yang; Ju, Meiting; Xie, Qiang
2013-05-21
Selecting indicators based on the characteristics and development trends of a given study area is essential for building a framework for assessing urban ecological security. However, few studies have focused on how to select the representative indicators systematically, and quantitative research is lacking. We developed an innovative quantitative modeling approach called the grey dynamic hierarchy analytic system (GDHAS) for both the procedures of indicator selection and quantitative assessment of urban ecological security. Next, a systematic methodology based on the GDHAS is developed to assess urban ecological security comprehensively and dynamically. This assessment includes indicator selection, driving force-pressure-state-impact-response (DPSIR) framework building, and quantitative evaluation. We applied this systematic methodology to assess the urban ecological security of Tianjin, which is a typical coastal super megalopolis and the industry base in China. This case study highlights the key features of our approach. First, 39 representative indicators are selected for the evaluation index system from 62 alternative ones available through the GDHAS. Second, the DPSIR framework is established based on the indicators selected, and the quantitative assessment of the eco-security of Tianjin is conducted. The results illustrate the following: urban ecological security of Tianjin in 2008 was in alert level but not very stable; the driving force and pressure subsystems were in good condition, but the eco-security levels of the remainder of the subsystems were relatively low; the pressure subsystem was the key to urban ecological security; and 10 indicators are defined as the key indicators for five subsystems. These results can be used as the basis for urban eco-environmental management.
Shao, Chaofeng; Tian, Xiaogang; Guan, Yang; Ju, Meiting; Xie, Qiang
2013-01-01
Selecting indicators based on the characteristics and development trends of a given study area is essential for building a framework for assessing urban ecological security. However, few studies have focused on how to select the representative indicators systematically, and quantitative research is lacking. We developed an innovative quantitative modeling approach called the grey dynamic hierarchy analytic system (GDHAS) for both the procedures of indicator selection and quantitative assessment of urban ecological security. Next, a systematic methodology based on the GDHAS is developed to assess urban ecological security comprehensively and dynamically. This assessment includes indicator selection, driving force-pressure-state-impact-response (DPSIR) framework building, and quantitative evaluation. We applied this systematic methodology to assess the urban ecological security of Tianjin, which is a typical coastal super megalopolis and the industry base in China. This case study highlights the key features of our approach. First, 39 representative indicators are selected for the evaluation index system from 62 alternative ones available through the GDHAS. Second, the DPSIR framework is established based on the indicators selected, and the quantitative assessment of the eco-security of Tianjin is conducted. The results illustrate the following: urban ecological security of Tianjin in 2008 was in alert level but not very stable; the driving force and pressure subsystems were in good condition, but the eco-security levels of the remainder of the subsystems were relatively low; the pressure subsystem was the key to urban ecological security; and 10 indicators are defined as the key indicators for five subsystems. These results can be used as the basis for urban eco-environmental management. PMID:23698700
High-Performance Integrated Control of water quality and quantity in urban water reservoirs
NASA Astrophysics Data System (ADS)
Galelli, S.; Castelletti, A.; Goedbloed, A.
2015-11-01
This paper contributes a novel High-Performance Integrated Control framework to support the real-time operation of urban water supply storages affected by water quality problems. We use a 3-D, high-fidelity simulation model to predict the main water quality dynamics and inform a real-time controller based on Model Predictive Control. The integration of the simulation model into the control scheme is performed by a model reduction process that identifies a low-order, dynamic emulator running 4 orders of magnitude faster. The model reduction, which relies on a semiautomatic procedural approach integrating time series clustering and variable selection algorithms, generates a compact and physically meaningful emulator that can be coupled with the controller. The framework is used to design the hourly operation of Marina Reservoir, a 3.2 Mm3 storm-water-fed reservoir located in the center of Singapore, operated for drinking water supply and flood control. Because of its recent formation from a former estuary, the reservoir suffers from high salinity levels, whose behavior is modeled with Delft3D-FLOW. Results show that our control framework reduces the minimum salinity levels by nearly 40% and cuts the average annual deficit of drinking water supply by about 2 times the active storage of the reservoir (about 4% of the total annual demand).
Interactive classification and content-based retrieval of tissue images
NASA Astrophysics Data System (ADS)
Aksoy, Selim; Marchisio, Giovanni B.; Tusk, Carsten; Koperski, Krzysztof
2002-11-01
We describe a system for interactive classification and retrieval of microscopic tissue images. Our system models tissues in pixel, region and image levels. Pixel level features are generated using unsupervised clustering of color and texture values. Region level features include shape information and statistics of pixel level feature values. Image level features include statistics and spatial relationships of regions. To reduce the gap between low-level features and high-level expert knowledge, we define the concept of prototype regions. The system learns the prototype regions in an image collection using model-based clustering and density estimation. Different tissue types are modeled using spatial relationships of these regions. Spatial relationships are represented by fuzzy membership functions. The system automatically selects significant relationships from training data and builds models which can also be updated using user relevance feedback. A Bayesian framework is used to classify tissues based on these models. Preliminary experiments show that the spatial relationship models we developed provide a flexible and powerful framework for classification and retrieval of tissue images.
Reservoir Computing Properties of Neural Dynamics in Prefrontal Cortex
Procyk, Emmanuel; Dominey, Peter Ford
2016-01-01
Primates display a remarkable ability to adapt to novel situations. Determining what is most pertinent in these situations is not always possible based only on the current sensory inputs, and often also depends on recent inputs and behavioral outputs that contribute to internal states. Thus, one can ask how cortical dynamics generate representations of these complex situations. It has been observed that mixed selectivity in cortical neurons contributes to represent diverse situations defined by a combination of the current stimuli, and that mixed selectivity is readily obtained in randomly connected recurrent networks. In this context, these reservoir networks reproduce the highly recurrent nature of local cortical connectivity. Recombining present and past inputs, random recurrent networks from the reservoir computing framework generate mixed selectivity which provides pre-coded representations of an essentially universal set of contexts. These representations can then be selectively amplified through learning to solve the task at hand. We thus explored their representational power and dynamical properties after training a reservoir to perform a complex cognitive task initially developed for monkeys. The reservoir model inherently displayed a dynamic form of mixed selectivity, key to the representation of the behavioral context over time. The pre-coded representation of context was amplified by training a feedback neuron to explicitly represent this context, thereby reproducing the effect of learning and allowing the model to perform more robustly. This second version of the model demonstrates how a hybrid dynamical regime combining spatio-temporal processing of reservoirs, and input driven attracting dynamics generated by the feedback neuron, can be used to solve a complex cognitive task. We compared reservoir activity to neural activity of dorsal anterior cingulate cortex of monkeys which revealed similar network dynamics. We argue that reservoir computing is a pertinent framework to model local cortical dynamics and their contribution to higher cognitive function. PMID:27286251
Best Design for Multidimensional Computerized Adaptive Testing With the Bifactor Model
Seo, Dong Gi; Weiss, David J.
2015-01-01
Most computerized adaptive tests (CATs) have been studied using the framework of unidimensional item response theory. However, many psychological variables are multidimensional and might benefit from using a multidimensional approach to CATs. This study investigated the accuracy, fidelity, and efficiency of a fully multidimensional CAT algorithm (MCAT) with a bifactor model using simulated data. Four item selection methods in MCAT were examined for three bifactor pattern designs using two multidimensional item response theory models. To compare MCAT item selection and estimation methods, a fixed test length was used. The Ds-optimality item selection improved θ estimates with respect to a general factor, and either D- or A-optimality improved estimates of the group factors in three bifactor pattern designs under two multidimensional item response theory models. The MCAT model without a guessing parameter functioned better than the MCAT model with a guessing parameter. The MAP (maximum a posteriori) estimation method provided more accurate θ estimates than the EAP (expected a posteriori) method under most conditions, and MAP showed lower observed standard errors than EAP under most conditions, except for a general factor condition using Ds-optimality item selection. PMID:29795848
NASA Technical Reports Server (NTRS)
Wang, Yi; Pant, Kapil; Brenner, Martin J.; Ouellette, Jeffrey A.
2018-01-01
This paper presents a data analysis and modeling framework to tailor and develop linear parameter-varying (LPV) aeroservoelastic (ASE) model database for flexible aircrafts in broad 2D flight parameter space. The Kriging surrogate model is constructed using ASE models at a fraction of grid points within the original model database, and then the ASE model at any flight condition can be obtained simply through surrogate model interpolation. The greedy sampling algorithm is developed to select the next sample point that carries the worst relative error between the surrogate model prediction and the benchmark model in the frequency domain among all input-output channels. The process is iterated to incrementally improve surrogate model accuracy till a pre-determined tolerance or iteration budget is met. The methodology is applied to the ASE model database of a flexible aircraft currently being tested at NASA/AFRC for flutter suppression and gust load alleviation. Our studies indicate that the proposed method can reduce the number of models in the original database by 67%. Even so the ASE models obtained through Kriging interpolation match the model in the original database constructed directly from the physics-based tool with the worst relative error far below 1%. The interpolated ASE model exhibits continuously-varying gains along a set of prescribed flight conditions. More importantly, the selected grid points are distributed non-uniformly in the parameter space, a) capturing the distinctly different dynamic behavior and its dependence on flight parameters, and b) reiterating the need and utility for adaptive space sampling techniques for ASE model database compaction. The present framework is directly extendible to high-dimensional flight parameter space, and can be used to guide the ASE model development, model order reduction, robust control synthesis and novel vehicle design of flexible aircraft.
Symbolic interactionism: a framework for the care of parents of preterm infants.
Edwards, L D; Saunders, R B
1990-04-01
Because of stressors surrounding preterm birth, parents can be expected to have difficulty in early interactions with their preterm infants. Care givers who work with preterm infants and their parents can positively affect the early parental experiences of these mothers and fathers. If care givers are consciously guided by a conceptual model, therapeutic care for distressed parents is more likely to be provided. A logical framework, such as symbolic interactionism, helps care givers to proceed systematically in assessing parental behaviors, in intervening appropriately, and in evaluating both the process and outcome of the care. Selected aspects of the symbolic interaction model are described in this article and applied to the care of parents of preterm infants.
Probabilistic failure assessment with application to solid rocket motors
NASA Technical Reports Server (NTRS)
Jan, Darrell L.; Davidson, Barry D.; Moore, Nicholas R.
1990-01-01
A quantitative methodology is being developed for assessment of risk of failure of solid rocket motors. This probabilistic methodology employs best available engineering models and available information in a stochastic framework. The framework accounts for incomplete knowledge of governing parameters, intrinsic variability, and failure model specification error. Earlier case studies have been conducted on several failure modes of the Space Shuttle Main Engine. Work in progress on application of this probabilistic approach to large solid rocket boosters such as the Advanced Solid Rocket Motor for the Space Shuttle is described. Failure due to debonding has been selected as the first case study for large solid rocket motors (SRMs) since it accounts for a significant number of historical SRM failures. Impact of incomplete knowledge of governing parameters and failure model specification errors is expected to be important.
Identifying demand for health resources using waiting times information.
Blundell, R; Windmeijer, F
2000-09-01
In this paper the differences in average waiting times are utilized to identify the determinants of demand for health services. The equilibrium waiting time framework is used, but the full equilibrium assumption is relaxed by selecting areas with low waiting times and by estimating a (semi-)parametric selection model. Determinants of supply are used as instruments for the endogeneity of waiting times. A model for the demand for acute services at the ward level in the UK is estimated. The model estimates, and their implications for health service allocations in the UK, are contrasted against more standard allocation models. The present results show that it is critically important to account for rationing by waiting times when identifying needs from care utilization data. Copyright 2000 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Septiani, W.; Astuti, P.
2017-12-01
Agri-food supply chain has different characteristics related to the raw materials it uses. Food supply chain has a high risk of damage, thus drawing a lot of attention from researchers in supply chain management. This research aimed to investigate the development of supply chain risk management research on agri-food industries. These reviews were arranged in steps systematically, ranging from searching related to the review of SCRM paper, reviewing the general framework of SCRM and the framework of agri-food SCRM. Selection of literature review papers in the period 2005-2017, and obtained 45 papers. The results of the identification research were illustrated in a supply chain risk management framework model. This provided insight toward future research directions and needs.
Hierarchical competitions subserving multi-attribute choice
Hunt, Laurence T; Dolan, Raymond J; Behrens, Timothy EJ
2015-01-01
Valuation is a key tenet of decision neuroscience, where it is generally assumed that different attributes of competing options are assimilated into unitary values. Such values are central to current neural models of choice. By contrast, psychological studies emphasize complex interactions between choice and valuation. Principles of neuronal selection also suggest competitive inhibition may occur in early valuation stages, before option selection. Here, we show behavior in multi-attribute choice is best explained by a model involving competition at multiple levels of representation. This hierarchical model also explains neural signals in human brain regions previously linked to valuation, including striatum, parietal and prefrontal cortex, where activity represents competition within-attribute, competition between attributes, and option selection. This multi-layered inhibition framework challenges the assumption that option values are computed before choice. Instead our results indicate a canonical competition mechanism throughout all stages of a processing hierarchy, not simply at a final choice stage. PMID:25306549
Grohn, Yrjo T; Carson, Carolee; Lanzas, Cristina; Pullum, Laura; Stanhope, Michael; Volkova, Victoriya
2017-06-01
Antimicrobial use (AMU) is increasingly threatened by antimicrobial resistance (AMR). The FDA is implementing risk mitigation measures promoting prudent AMU in food animals. Their evaluation is crucial: the AMU/AMR relationship is complex; a suitable framework to analyze interventions is unavailable. Systems science analysis, depicting variables and their associations, would help integrate mathematics/epidemiology to evaluate the relationship. This would identify informative data and models to evaluate interventions. This National Institute for Mathematical and Biological Synthesis AMR Working Group's report proposes a system framework to address the methodological gap linking livestock AMU and AMR in foodborne bacteria. It could evaluate how AMU (and interventions) impact AMR. We will evaluate pharmacokinetic/dynamic modeling techniques for projecting AMR selection pressure on enteric bacteria. We study two methods to model phenotypic AMR changes in bacteria in the food supply and evolutionary genotypic analyses determining molecular changes in phenotypic AMR. Systems science analysis integrates the methods, showing how resistance in the food supply is explained by AMU and concurrent factors influencing the whole system. This process is updated with data and techniques to improve prediction and inform improvements for AMU/AMR surveillance. Our proposed framework reflects both the AMR system's complexity, and desire for simple, reliable conclusions.
A decision modeling for phasor measurement unit location selection in smart grid systems
NASA Astrophysics Data System (ADS)
Lee, Seung Yup
As a key technology for enhancing the smart grid system, Phasor Measurement Unit (PMU) provides synchronized phasor measurements of voltages and currents of wide-area electric power grid. With various benefits from its application, one of the critical issues in utilizing PMUs is the optimal site selection of units. The main aim of this research is to develop a decision support system, which can be used in resource allocation task for smart grid system analysis. As an effort to suggest a robust decision model and standardize the decision modeling process, a harmonized modeling framework, which considers operational circumstances of component, is proposed in connection with a deterministic approach utilizing integer programming. With the results obtained from the optimal PMU placement problem, the advantages and potential that the harmonized modeling process possesses are assessed and discussed.
Selecting among competing models of electro-optic, infrared camera system range performance
Nichols, Jonathan M.; Hines, James E.; Nichols, James D.
2013-01-01
Range performance is often the key requirement around which electro-optical and infrared camera systems are designed. This work presents an objective framework for evaluating competing range performance models. Model selection based on the Akaike’s Information Criterion (AIC) is presented for the type of data collected during a typical human observer and target identification experiment. These methods are then demonstrated on observer responses to both visible and infrared imagery in which one of three maritime targets was placed at various ranges. We compare the performance of a number of different models, including those appearing previously in the literature. We conclude that our model-based approach offers substantial improvements over the traditional approach to inference, including increased precision and the ability to make predictions for some distances other than the specific set for which experimental trials were conducted.
Optimal test selection for prediction uncertainty reduction
Mullins, Joshua; Mahadevan, Sankaran; Urbina, Angel
2016-12-02
Economic factors and experimental limitations often lead to sparse and/or imprecise data used for the calibration and validation of computational models. This paper addresses resource allocation for calibration and validation experiments, in order to maximize their effectiveness within given resource constraints. When observation data are used for model calibration, the quality of the inferred parameter descriptions is directly affected by the quality and quantity of the data. This paper characterizes parameter uncertainty within a probabilistic framework, which enables the uncertainty to be systematically reduced with additional data. The validation assessment is also uncertain in the presence of sparse and imprecisemore » data; therefore, this paper proposes an approach for quantifying the resulting validation uncertainty. Since calibration and validation uncertainty affect the prediction of interest, the proposed framework explores the decision of cost versus importance of data in terms of the impact on the prediction uncertainty. Often, calibration and validation tests may be performed for different input scenarios, and this paper shows how the calibration and validation results from different conditions may be integrated into the prediction. Then, a constrained discrete optimization formulation that selects the number of tests of each type (calibration or validation at given input conditions) is proposed. Furthermore, the proposed test selection methodology is demonstrated on a microelectromechanical system (MEMS) example.« less
A non-linear data mining parameter selection algorithm for continuous variables
Razavi, Marianne; Brady, Sean
2017-01-01
In this article, we propose a new data mining algorithm, by which one can both capture the non-linearity in data and also find the best subset model. To produce an enhanced subset of the original variables, a preferred selection method should have the potential of adding a supplementary level of regression analysis that would capture complex relationships in the data via mathematical transformation of the predictors and exploration of synergistic effects of combined variables. The method that we present here has the potential to produce an optimal subset of variables, rendering the overall process of model selection more efficient. This algorithm introduces interpretable parameters by transforming the original inputs and also a faithful fit to the data. The core objective of this paper is to introduce a new estimation technique for the classical least square regression framework. This new automatic variable transformation and model selection method could offer an optimal and stable model that minimizes the mean square error and variability, while combining all possible subset selection methodology with the inclusion variable transformations and interactions. Moreover, this method controls multicollinearity, leading to an optimal set of explanatory variables. PMID:29131829
Developing a framework for energy technology portfolio selection
NASA Astrophysics Data System (ADS)
Davoudpour, Hamid; Ashrafi, Maryam
2012-11-01
Today, the increased consumption of energy in world, in addition to the risk of quick exhaustion of fossil resources, has forced industrial firms and organizations to utilize energy technology portfolio management tools viewed both as a process of diversification of energy sources and optimal use of available energy sources. Furthermore, the rapid development of technologies, their increasing complexity and variety, and market dynamics have made the task of technology portfolio selection difficult. Considering high level of competitiveness, organizations need to strategically allocate their limited resources to the best subset of possible candidates. This paper presents the results of developing a mathematical model for energy technology portfolio selection at a R&D center maximizing support of the organization's strategy and values. The model balances the cost and benefit of the entire portfolio.
Assessing the formability of metallic sheets by means of localized and diffuse necking models
NASA Astrophysics Data System (ADS)
Comşa, Dan-Sorin; Lǎzǎrescu, Lucian; Banabic, Dorel
2016-10-01
The main objective of the paper consists in elaborating a unified framework that allows the theoretical assessment of sheet metal formability. Hill's localized necking model and the Extended Maximum Force Criterion proposed by Mattiasson, Sigvant, and Larsson have been selected for this purpose. Both models are thoroughly described together with their solution procedures. A comparison of the theoretical predictions with experimental data referring to the formability of a DP600 steel sheet is also presented by the authors.
2015-05-01
Model averaging for species richness on post-agricultural sites (1000 m2) with a landscape radius of 150 m. Table 3.4.8. Model selection for species ... richness on post-agricultural sites (1000 m2) with a landscape radius of 150 m. Table 3.4.9. Model averaging for proportion of reference species on...Direct, indirect, and total standardized effects on species richness . Table 4.1.1. Species and number of seeds added to the experimental plots at
A selection model for accounting for publication bias in a full network meta-analysis.
Mavridis, Dimitris; Welton, Nicky J; Sutton, Alex; Salanti, Georgia
2014-12-30
Copas and Shi suggested a selection model to explore the potential impact of publication bias via sensitivity analysis based on assumptions for the probability of publication of trials conditional on the precision of their results. Chootrakool et al. extended this model to three-arm trials but did not fully account for the implications of the consistency assumption, and their model is difficult to generalize for complex network structures with more than three treatments. Fitting these selection models within a frequentist setting requires maximization of a complex likelihood function, and identification problems are common. We have previously presented a Bayesian implementation of the selection model when multiple treatments are compared with a common reference treatment. We now present a general model suitable for complex, full network meta-analysis that accounts for consistency when adjusting results for publication bias. We developed a design-by-treatment selection model to describe the mechanism by which studies with different designs (sets of treatments compared in a trial) and precision may be selected for publication. We fit the model in a Bayesian setting because it avoids the numerical problems encountered in the frequentist setting, it is generalizable with respect to the number of treatments and study arms, and it provides a flexible framework for sensitivity analysis using external knowledge. Our model accounts for the additional uncertainty arising from publication bias more successfully compared to the standard Copas model or its previous extensions. We illustrate the methodology using a published triangular network for the failure of vascular graft or arterial patency. Copyright © 2014 John Wiley & Sons, Ltd.
Walker, Daniel M; Hefner, Jennifer L; Sova, Lindsey N; Hilligoss, Brian; Song, Paula H; McAlearney, Ann Scheck
Accountable care organizations (ACOs) are emerging across the healthcare marketplace and now include Medicare, Medicaid, and private sector payers covering more than 24 million lives. However, little is known about the process of organizational change required to achieve cost savings and quality improvements from the ACO model. This study applies the complex innovation implementation framework to understand the challenges and facilitators associated with the ACO implementation process. We conducted four case studies of private sector ACOs, selected to achieve variation in terms of geography and organizational maturity. Across sites, we used semistructured interviews with 68 key informants to elicit information regarding ACO implementation. Our analysis found challenges and facilitators across all domains in the conceptual framework. Notably, our findings deviated from the framework in two ways. First, findings from the financial resource availability domain revealed both financial and nonfinancial (i.e., labor) resources that contributed to implementation effectiveness. Second, a new domain, patient engagement, emerged as an important factor in implementation effectiveness. We present these deviations in an adapted framework. As the ACO model proliferates, these findings can support implementation efforts, and they highlight the importance of focusing on patients throughout the process. Importantly, this study extends the complex innovation implementation framework to incorporate consumers into the implementation framework, making it more patient centered and aiding future efforts.
Attentional load and attentional boost: a review of data and theory.
Swallow, Khena M; Jiang, Yuhong V
2013-01-01
Both perceptual and cognitive processes are limited in capacity. As a result, attention is selective, prioritizing items and tasks that are important for adaptive behavior. However, a number of recent behavioral and neuroimaging studies suggest that, at least under some circumstances, increasing attention to one task can enhance performance in a second task (e.g., the attentional boost effect). Here we review these findings and suggest a new theoretical framework, the dual-task interaction model, that integrates these findings with current views of attentional selection. To reconcile the attentional boost effect with the effects of attentional load, we suggest that temporal selection results in a temporally specific enhancement across modalities, tasks, and spatial locations. Moreover, the effects of temporal selection may be best observed when the attentional system is optimally tuned to the temporal dynamics of incoming stimuli. Several avenues of research motivated by the dual-task interaction model are then discussed.
Selective memory generalization by spatial patterning of protein synthesis
O’Donnell, Cian; Sejnowski, Terrence J.
2014-01-01
Summary Protein synthesis is crucial for both persistent synaptic plasticity and long-term memory. De novo protein expression can be restricted to specific neurons within a population, and to specific dendrites within a single neuron. Despite its ubiquity, the functional benefits of spatial protein regulation for learning are unknown. We used computational modeling to study this problem. We found that spatially patterned protein synthesis can enable selective consolidation of some memories but forgetting of others, even for simultaneous events that are represented by the same neural population. Key factors regulating selectivity include the functional clustering of synapses on dendrites, and the sparsity and overlap of neural activity patterns at the circuit level. Based on these findings we proposed a novel two-step model for selective memory generalization during REM and slow-wave sleep. The pattern-matching framework we propose may be broadly applicable to spatial protein signaling throughout cortex and hippocampus. PMID:24742462
Jarukanont, Daungruthai; Coimbra, João T S; Bauerhenne, Bernd; Fernandes, Pedro A; Patel, Shekhar; Ramos, Maria J; Garcia, Martin E
2014-10-21
We report on the viability of breaking selected bonds in biological systems using tailored electromagnetic radiation. We first demonstrate, by performing large-scale simulations, that pulsed electric fields cannot produce selective bond breaking. Then, we present a theoretical framework for describing selective energy concentration on particular bonds of biomolecules upon application of tailored electromagnetic radiation. The theory is based on the mapping of biomolecules to a set of coupled harmonic oscillators and on optimal control schemes to describe optimization of temporal shape, the phase and polarization of the external radiation. We have applied this theory to demonstrate the possibility of selective bond breaking in the active site of bacterial DNA topoisomerase. For this purpose, we have focused on a model that was built based on a case study. Results are given as a proof of concept.
The relative age effect in sport: a developmental systems model.
Wattie, Nick; Schorer, Jörg; Baker, Joseph
2015-01-01
The policies that dictate the participation structure of many youth sport systems involve the use of a set selection date (e.g. 31 December), which invariably produces relative age differences between those within the selection year (e.g. 1 January to 31 December). Those born early in the selection year (e.g. January) are relatively older—by as much as 12 months minus 1 day—than those born later in the selection year (e.g. December). Research in the area of sport has identified a number of significant developmental effects associated with such relative age differences. However, a theoretical framework that describes the breadth and complexity of relative age effects (RAEs) in sport does not exist in the literature. This paper reviews and summarizes the existing literature on relative age in sport, and proposes a constraints-based developmental systems model for RAEs in sport.
Attentional Load and Attentional Boost: A Review of Data and Theory
Swallow, Khena M.; Jiang, Yuhong V.
2013-01-01
Both perceptual and cognitive processes are limited in capacity. As a result, attention is selective, prioritizing items and tasks that are important for adaptive behavior. However, a number of recent behavioral and neuroimaging studies suggest that, at least under some circumstances, increasing attention to one task can enhance performance in a second task (e.g., the attentional boost effect). Here we review these findings and suggest a new theoretical framework, the dual-task interaction model, that integrates these findings with current views of attentional selection. To reconcile the attentional boost effect with the effects of attentional load, we suggest that temporal selection results in a temporally specific enhancement across modalities, tasks, and spatial locations. Moreover, the effects of temporal selection may be best observed when the attentional system is optimally tuned to the temporal dynamics of incoming stimuli. Several avenues of research motivated by the dual-task interaction model are then discussed. PMID:23730294
Selective memory generalization by spatial patterning of protein synthesis.
O'Donnell, Cian; Sejnowski, Terrence J
2014-04-16
Protein synthesis is crucial for both persistent synaptic plasticity and long-term memory. De novo protein expression can be restricted to specific neurons within a population, and to specific dendrites within a single neuron. Despite its ubiquity, the functional benefits of spatial protein regulation for learning are unknown. We used computational modeling to study this problem. We found that spatially patterned protein synthesis can enable selective consolidation of some memories but forgetting of others, even for simultaneous events that are represented by the same neural population. Key factors regulating selectivity include the functional clustering of synapses on dendrites, and the sparsity and overlap of neural activity patterns at the circuit level. Based on these findings, we proposed a two-step model for selective memory generalization during REM and slow-wave sleep. The pattern-matching framework we propose may be broadly applicable to spatial protein signaling throughout cortex and hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Frost, Andrew J.; Thyer, Mark A.; Srikanthan, R.; Kuczera, George
2007-07-01
SummaryMulti-site simulation of hydrological data are required for drought risk assessment of large multi-reservoir water supply systems. In this paper, a general Bayesian framework is presented for the calibration and evaluation of multi-site hydrological data at annual timescales. Models included within this framework are the hidden Markov model (HMM) and the widely used lag-1 autoregressive (AR(1)) model. These models are extended by the inclusion of a Box-Cox transformation and a spatial correlation function in a multi-site setting. Parameter uncertainty is evaluated using Markov chain Monte Carlo techniques. Models are evaluated by their ability to reproduce a range of important extreme statistics and compared using Bayesian model selection techniques which evaluate model probabilities. The case study, using multi-site annual rainfall data situated within catchments which contribute to Sydney's main water supply, provided the following results: Firstly, in terms of model probabilities and diagnostics, the inclusion of the Box-Cox transformation was preferred. Secondly the AR(1) and HMM performed similarly, while some other proposed AR(1)/HMM models with regionally pooled parameters had greater posterior probability than these two models. The practical significance of parameter and model uncertainty was illustrated using a case study involving drought security analysis for urban water supply. It was shown that ignoring parameter uncertainty resulted in a significant overestimate of reservoir yield and an underestimation of system vulnerability to severe drought.
Automated antibody structure prediction using Accelrys tools: Results and best practices
Fasnacht, Marc; Butenhof, Ken; Goupil-Lamy, Anne; Hernandez-Guzman, Francisco; Huang, Hongwei; Yan, Lisa
2014-01-01
We describe the methodology and results from our participation in the second Antibody Modeling Assessment experiment. During the experiment we predicted the structure of eleven unpublished antibody Fv fragments. Our prediction methods centered on template-based modeling; potential templates were selected from an antibody database based on their sequence similarity to the target in the framework regions. Depending on the quality of the templates, we constructed models of the antibody framework regions either using a single, chimeric or multiple template approach. The hypervariable loop regions in the initial models were rebuilt by grafting the corresponding regions from suitable templates onto the model. For the H3 loop region, we further refined models using ab initio methods. The final models were subjected to constrained energy minimization to resolve severe local structural problems. The analysis of the models submitted show that Accelrys tools allow for the construction of quite accurate models for the framework and the canonical CDR regions, with RMSDs to the X-ray structure on average below 1 Å for most of these regions. The results show that accurate prediction of the H3 hypervariable loops remains a challenge. Furthermore, model quality assessment of the submitted models show that the models are of quite high quality, with local geometry assessment scores similar to that of the target X-ray structures. Proteins 2014; 82:1583–1598. © 2014 The Authors. Proteins published by Wiley Periodicals, Inc. PMID:24833271
Sauterey, Boris; Ward, Ben A.; Follows, Michael J.; Bowler, Chris; Claessen, David
2015-01-01
The functional and taxonomic biogeography of marine microbial systems reflects the current state of an evolving system. Current models of marine microbial systems and biogeochemical cycles do not reflect this fundamental organizing principle. Here, we investigate the evolutionary adaptive potential of marine microbial systems under environmental change and introduce explicit Darwinian adaptation into an ocean modelling framework, simulating evolving phytoplankton communities in space and time. To this end, we adopt tools from adaptive dynamics theory, evaluating the fitness of invading mutants over annual timescales, replacing the resident if a fitter mutant arises. Using the evolutionary framework, we examine how community assembly, specifically the emergence of phytoplankton cell size diversity, reflects the combined effects of bottom-up and top-down controls. When compared with a species-selection approach, based on the paradigm that “Everything is everywhere, but the environment selects”, we show that (i) the selected optimal trait values are similar; (ii) the patterns emerging from the adaptive model are more robust, but (iii) the two methods lead to different predictions in terms of emergent diversity. We demonstrate that explicitly evolutionary approaches to modelling marine microbial populations and functionality are feasible and practical in time-varying, space-resolving settings and provide a new tool for exploring evolutionary interactions on a range of timescales in the ocean. PMID:25852217
Zhao, Shuang; Qian, Xu; Liu, Xiangnan; Xu, Zhao
2018-04-17
Accurately monitoring heavy metal stress in crops is vital for food security and agricultural production. The assimilation of remote sensing images into the World Food Studies (WOFOST) model provides an efficient way to solve this problem. In this study, we aimed at investigating the key periods of the assimilation framework for continuous monitoring of heavy metal stress in rice. The Harris algorithm was used for the leaf area index (LAI) curves to select the key period for an optimized assimilation. To obtain accurate LAI values, the measured dry weight of rice roots (WRT), which have been proven to be the most stress-sensitive indicator of heavy metal stress, were incorporated into the improved WOFOST model. Finally, the key periods, which contain four dominant time points, were used to select remote sensing images for the RS-WOFOST model for continuous monitoring of heavy metal stress. Compared with the key period which contains all the available remote sensing images, the results showed that the optimal key period can significantly improve the time efficiency of the assimilation framework by shortening the model operation time by more than 50%, while maintaining its accuracy. This result is highly significant when monitoring heavy metals in rice on a large-scale. Furthermore, it can also offer a reference for the timing of field measurements in monitoring heavy metal stress in rice.
Classification and Feature Selection Algorithms for Modeling Ice Storm Climatology
NASA Astrophysics Data System (ADS)
Swaminathan, R.; Sridharan, M.; Hayhoe, K.; Dobbie, G.
2015-12-01
Ice storms account for billions of dollars of winter storm loss across the continental US and Canada. In the future, increasing concentration of human populations in areas vulnerable to ice storms such as the northeastern US will only exacerbate the impacts of these extreme events on infrastructure and society. Quantifying the potential impacts of global climate change on ice storm prevalence and frequency is challenging, as ice storm climatology is driven by complex and incompletely defined atmospheric processes, processes that are in turn influenced by a changing climate. This makes the underlying atmospheric and computational modeling of ice storm climatology a formidable task. We propose a novel computational framework that uses sophisticated stochastic classification and feature selection algorithms to model ice storm climatology and quantify storm occurrences from both reanalysis and global climate model outputs. The framework is based on an objective identification of ice storm events by key variables derived from vertical profiles of temperature, humidity and geopotential height. Historical ice storm records are used to identify days with synoptic-scale upper air and surface conditions associated with ice storms. Evaluation using NARR reanalysis and historical ice storm records corresponding to the northeastern US demonstrates that an objective computational model with standard performance measures, with a relatively high degree of accuracy, identify ice storm events based on upper-air circulation patterns and provide insights into the relationships between key climate variables associated with ice storms.
PCA based feature reduction to improve the accuracy of decision tree c4.5 classification
NASA Astrophysics Data System (ADS)
Nasution, M. Z. F.; Sitompul, O. S.; Ramli, M.
2018-03-01
Splitting attribute is a major process in Decision Tree C4.5 classification. However, this process does not give a significant impact on the establishment of the decision tree in terms of removing irrelevant features. It is a major problem in decision tree classification process called over-fitting resulting from noisy data and irrelevant features. In turns, over-fitting creates misclassification and data imbalance. Many algorithms have been proposed to overcome misclassification and overfitting on classifications Decision Tree C4.5. Feature reduction is one of important issues in classification model which is intended to remove irrelevant data in order to improve accuracy. The feature reduction framework is used to simplify high dimensional data to low dimensional data with non-correlated attributes. In this research, we proposed a framework for selecting relevant and non-correlated feature subsets. We consider principal component analysis (PCA) for feature reduction to perform non-correlated feature selection and Decision Tree C4.5 algorithm for the classification. From the experiments conducted using available data sets from UCI Cervical cancer data set repository with 858 instances and 36 attributes, we evaluated the performance of our framework based on accuracy, specificity and precision. Experimental results show that our proposed framework is robust to enhance classification accuracy with 90.70% accuracy rates.
Mesa-Frias, Marco; Chalabi, Zaid; Foss, Anna M
2014-01-01
Quantitative health impact assessment (HIA) is increasingly being used to assess the health impacts attributable to an environmental policy or intervention. As a consequence, there is a need to assess uncertainties in the assessments because of the uncertainty in the HIA models. In this paper, a framework is developed to quantify the uncertainty in the health impacts of environmental interventions and is applied to evaluate the impacts of poor housing ventilation. The paper describes the development of the framework through three steps: (i) selecting the relevant exposure metric and quantifying the evidence of potential health effects of the exposure; (ii) estimating the size of the population affected by the exposure and selecting the associated outcome measure; (iii) quantifying the health impact and its uncertainty. The framework introduces a novel application for the propagation of uncertainty in HIA, based on fuzzy set theory. Fuzzy sets are used to propagate parametric uncertainty in a non-probabilistic space and are applied to calculate the uncertainty in the morbidity burdens associated with three indoor ventilation exposure scenarios: poor, fair and adequate. The case-study example demonstrates how the framework can be used in practice, to quantify the uncertainty in health impact assessment where there is insufficient information to carry out a probabilistic uncertainty analysis. © 2013.
Ambient multi-perceptive system with electronic mail for a residential health monitoring system.
Noury, N; Villemazet, C; Fleury, A; Barralon, P; Rumeau, P; Vuillerme, N; Baghai, R
2006-01-01
Based on several years of experiments, we propose a model of information systems for residential healthcare, and technical guide to select available hard and software technologies. An implementation is described, based on Emails. The system is under experimentation within the framework of the French national project AILISA.
The Chemical Aquatic Fate and Effects (CAFE) database is a tool that facilitates assessments of accidental chemical releases into aquatic environments. CAFE contains aquatic toxicity data used in the development of species sensitivity distributions (SSDs) and the estimation of ha...
Advances in the Application of Decision Theory to Test-Based Decision Making.
ERIC Educational Resources Information Center
van der Linden, Wim J.
This paper reviews recent research in the Netherlands on the application of decision theory to test-based decision making about personnel selection and student placement. The review is based on an earlier model proposed for the classification of decision problems, and emphasizes an empirical Bayesian framework. Classification decisions with…
Digital Print Concepts: Conceptualizing a Modern Framework for Measuring Emerging Knowledge
ERIC Educational Resources Information Center
Javorsky, Kristin H.
2014-01-01
This dissertation sought to produce and empirically test a theoretical model for the literacy construct of print concepts that would take into account the unique affordances of digital picture books for emergent readers. The author used an exploratory study of twenty randomly selected digital story applications to identify print conventions, text…
Inferring landscape effects on gene flow: A new model selection framework
A. J. Shirk; D. O. Wallin; S. A. Cushman; C. G. Rice; K. I. Warheit
2010-01-01
Populations in fragmented landscapes experience reduced gene flow, lose genetic diversity over time and ultimately face greater extinction risk. Improving connectivity in fragmented landscapes is now a major focus of conservation biology. Designing effective wildlife corridors for this purpose, however, requires an accurate understanding of how landscapes shape gene...
Perceptions of Financial Aid: Black Students at a Predominantly White Institution
ERIC Educational Resources Information Center
Tichavakunda, Antar A.
2017-01-01
This study provides qualitative context for statistics concerning Black college students and financial aid. Using the financial nexus model as a framework, this research draws upon interviews with 29 Black juniors and seniors at a selective, -private, and predominantly White university. The data suggest that students -generally exhibited high…
An Examination of First-to Second-Year Persistence of First-Generation College Students
ERIC Educational Resources Information Center
Guyer, Kimberly Denise
2013-01-01
This dissertation uses a mixed-methods design to examine persistence into the second year by students' parental education level. The institution selected for this dissertation is Temple University, a large, urban, public university in the Northeast. Using Tinto's (1993) model of student departure as a conceptual framework, the quantitative…
Decisions, Decisions, Decisions: What Determines the Path Taken in Lectures?
ERIC Educational Resources Information Center
Paterson, Judy; Thomas, Mike; Taylor, Steve
2011-01-01
A group of mathematicians and mathematics educators are collaborating in the fine-grained examination of selected "slices" of video recordings of lectures, drawing on Schoenfeld's Resources, Orientations and Goals framework of teaching-in-context. In the larger project, we are exploring ways in which this model can be extended to examine…
ERIC Educational Resources Information Center
Botvinick, Matthew; Plaut, David C.
2004-01-01
In everyday tasks, selecting actions in the proper sequence requires a continuously updated representation of temporal context. Previous models have addressed this problem by positing a hierarchy of processing units, mirroring the roughly hierarchical structure of naturalistic tasks themselves. The present study considers an alternative framework,…
A Strategic Quality Assurance Framework in an African Higher Education Context
ERIC Educational Resources Information Center
Ansah, Francis
2015-01-01
This study is based on a pragmatist analysis of selected international accounts on quality assurance in higher education. A pragmatist perspective was used to conceptualise a logical internal quality assurance model to embed and support the alignment of graduate competencies in curriculum and assessment of Ghanaian polytechnics. Through focus…
Multi-Domain Transfer Learning for Early Diagnosis of Alzheimer's Disease.
Cheng, Bo; Liu, Mingxia; Shen, Dinggang; Li, Zuoyong; Zhang, Daoqiang
2017-04-01
Recently, transfer learning has been successfully applied in early diagnosis of Alzheimer's Disease (AD) based on multi-domain data. However, most of existing methods only use data from a single auxiliary domain, and thus cannot utilize the intrinsic useful correlation information from multiple domains. Accordingly, in this paper, we consider the joint learning of tasks in multi-auxiliary domains and the target domain, and propose a novel Multi-Domain Transfer Learning (MDTL) framework for early diagnosis of AD. Specifically, the proposed MDTL framework consists of two key components: 1) a multi-domain transfer feature selection (MDTFS) model that selects the most informative feature subset from multi-domain data, and 2) a multi-domain transfer classification (MDTC) model that can identify disease status for early AD detection. We evaluate our method on 807 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database using baseline magnetic resonance imaging (MRI) data. The experimental results show that the proposed MDTL method can effectively utilize multi-auxiliary domain data for improving the learning performance in the target domain, compared with several state-of-the-art methods.
Multi-Domain Transfer Learning for Early Diagnosis of Alzheimer’s Disease
Cheng, Bo; Liu, Mingxia; Li, Zuoyong
2017-01-01
Recently, transfer learning has been successfully applied in early diagnosis of Alzheimer’s Disease (AD) based on multi-domain data. However, most of existing methods only use data from a single auxiliary domain, and thus cannot utilize the intrinsic useful correlation information from multiple domains. Accordingly, in this paper, we consider the joint learning of tasks in multi-auxiliary domains and the target domain, and propose a novel Multi-Domain Transfer Learning (MDTL) framework for early diagnosis of AD. Specifically, the proposed MDTL framework consists of two key components: 1) a multi-domain transfer feature selection (MDTFS) model that selects the most informative feature subset from multi-domain data, and 2) a multidomain transfer classification (MDTC) model that can identify disease status for early AD detection. We evaluate our method on 807 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using baseline magnetic resonance imaging (MRI) data. The experimental results show that the proposed MDTL method can effectively utilize multi-auxiliary domain data for improving the learning performance in the target domain, compared with several state-of-the-art methods. PMID:27928657
LIFESPAN: A tool for the computer-aided design of longitudinal studies
Brandmaier, Andreas M.; von Oertzen, Timo; Ghisletta, Paolo; Hertzog, Christopher; Lindenberger, Ulman
2015-01-01
Researchers planning a longitudinal study typically search, more or less informally, a multivariate space of possible study designs that include dimensions such as the hypothesized true variance in change, indicator reliability, the number and spacing of measurement occasions, total study time, and sample size. The main search goal is to select a research design that best addresses the guiding questions and hypotheses of the planned study while heeding applicable external conditions and constraints, including time, money, feasibility, and ethical considerations. Because longitudinal study selection ultimately requires optimization under constraints, it is amenable to the general operating principles of optimization in computer-aided design. Based on power equivalence theory (MacCallum et al., 2010; von Oertzen, 2010), we propose a computational framework to promote more systematic searches within the study design space. Starting with an initial design, the proposed framework generates a set of alternative models with equal statistical power to detect hypothesized effects, and delineates trade-off relations among relevant parameters, such as total study time and the number of measurement occasions. We present LIFESPAN (Longitudinal Interactive Front End Study Planner), which implements this framework. LIFESPAN boosts the efficiency, breadth, and precision of the search for optimal longitudinal designs. Its initial version, which is freely available at http://www.brandmaier.de/lifespan, is geared toward the power to detect variance in change as specified in a linear latent growth curve model. PMID:25852596
Forsythe, Laura; Heckert, Andrea; Margolis, Mary Kay; Schrandt, Suzanne; Frank, Lori
2018-01-01
Since 2012, PCORI has been funding patient-centered comparative effectiveness research with a requirement for engaging patients and other stakeholders in the research, a requirement that is unique among the US funders of clinical research. This paper presents PCORI's evaluation framework for assessing the short- and long-term impacts of engagement; describes engagement in PCORI projects (types of stakeholders engaged, when in the research process they are engaged and how they are engaged, contributions of their engagement); and identifies the effects of engagement on study design, processes, and outcomes selection, as reported by both PCORI-funded investigators and patient and other stakeholder research partners. Detailed quantitative and qualitative information collected annually from investigators and their partners was analyzed via descriptive statistics and cross-sectional qualitative content and thematic analysis, and compared against the outcomes expected from the evaluation framework and its underlying conceptual model. The data support the role of engaged research partners in refinements to the research questions, selection of interventions to compare, choice of study outcomes and how they are measured, contributions to strategies for recruitment, and ensuring studies are patient-centered. The evaluation framework and the underlying conceptual model are supported by results to date. PCORI will continue to assess the effects of engagement as the funded projects progress toward completion, dissemination, and uptake into clinical decision making.
Boddez, Yannick; Haesen, Kim; Baeyens, Frank; Beckers, Tom
2014-01-01
Blocking is the most important phenomenon in the history of associative learning theory: for over 40 years, blocking has inspired a whole generation of learning models. Blocking is part of a family of effects that are typically termed “cue competition” effects. Common amongst all cue competition effects is that a cue-outcome relation is poorly learned or poorly expressed because the cue is trained in the presence of an alternative predictor or cause of the outcome. We provide an overview of the cognitive processes involved in cue competition effects in humans and propose a stage framework that brings these processes together. The framework contends that the behavioral display of cue competition is cognitively construed following three stages that include (1) an encoding stage, (2) a retention stage, and (3) a performance stage. We argue that the stage framework supports a comprehensive understanding of cue competition effects. PMID:25429280
Lee, Minhyun; Koo, Choongwan; Hong, Taehoon; Park, Hyo Seon
2014-04-15
For the effective photovoltaic (PV) system, it is necessary to accurately determine the monthly average daily solar radiation (MADSR) and to develop an accurate MADSR map, which can simplify the decision-making process for selecting the suitable location of the PV system installation. Therefore, this study aimed to develop a framework for the mapping of the MADSR using an advanced case-based reasoning (CBR) and a geostatistical technique. The proposed framework consists of the following procedures: (i) the geographic scope for the mapping of the MADSR is set, and the measured MADSR and meteorological data in the geographic scope are collected; (ii) using the collected data, the advanced CBR model is developed; (iii) using the advanced CBR model, the MADSR at unmeasured locations is estimated; and (iv) by applying the measured and estimated MADSR data to the geographic information system, the MADSR map is developed. A practical validation was conducted by applying the proposed framework to South Korea. It was determined that the MADSR map developed through the proposed framework has been improved in terms of accuracy. The developed MADSR map can be used for estimating the MADSR at unmeasured locations and for determining the optimal location for the PV system installation.
Dini-Andreote, Francisco; Stegen, James C; van Elsas, Jan Dirk; Salles, Joana Falcão
2015-03-17
Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages--which provide a larger spatiotemporal scale relative to within stage analyses--revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended--and experimentally testable--conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems.
Dini-Andreote, Francisco; Stegen, James C.; van Elsas, Jan Dirk; Salles, Joana Falcão
2015-01-01
Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages—which provide a larger spatiotemporal scale relative to within stage analyses—revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended—and experimentally testable—conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems. PMID:25733885
Conditional Selection of Genomic Alterations Dictates Cancer Evolution and Oncogenic Dependencies.
Mina, Marco; Raynaud, Franck; Tavernari, Daniele; Battistello, Elena; Sungalee, Stephanie; Saghafinia, Sadegh; Laessle, Titouan; Sanchez-Vega, Francisco; Schultz, Nikolaus; Oricchio, Elisa; Ciriello, Giovanni
2017-08-14
Cancer evolves through the emergence and selection of molecular alterations. Cancer genome profiling has revealed that specific events are more or less likely to be co-selected, suggesting that the selection of one event depends on the others. However, the nature of these evolutionary dependencies and their impact remain unclear. Here, we designed SELECT, an algorithmic approach to systematically identify evolutionary dependencies from alteration patterns. By analyzing 6,456 genomes from multiple tumor types, we constructed a map of oncogenic dependencies associated with cellular pathways, transcriptional readouts, and therapeutic response. Finally, modeling of cancer evolution shows that alteration dependencies emerge only under conditional selection. These results provide a framework for the design of strategies to predict cancer progression and therapeutic response. Copyright © 2017 Elsevier Inc. All rights reserved.
featsel: A framework for benchmarking of feature selection algorithms and cost functions
NASA Astrophysics Data System (ADS)
Reis, Marcelo S.; Estrela, Gustavo; Ferreira, Carlos Eduardo; Barrera, Junior
In this paper, we introduce featsel, a framework for benchmarking of feature selection algorithms and cost functions. This framework allows the user to deal with the search space as a Boolean lattice and has its core coded in C++ for computational efficiency purposes. Moreover, featsel includes Perl scripts to add new algorithms and/or cost functions, generate random instances, plot graphs and organize results into tables. Besides, this framework already comes with dozens of algorithms and cost functions for benchmarking experiments. We also provide illustrative examples, in which featsel outperforms the popular Weka workbench in feature selection procedures on data sets from the UCI Machine Learning Repository.
Daee, Pedram; Mirian, Maryam S; Ahmadabadi, Majid Nili
2014-01-01
In a multisensory task, human adults integrate information from different sensory modalities--behaviorally in an optimal Bayesian fashion--while children mostly rely on a single sensor modality for decision making. The reason behind this change of behavior over age and the process behind learning the required statistics for optimal integration are still unclear and have not been justified by the conventional Bayesian modeling. We propose an interactive multisensory learning framework without making any prior assumptions about the sensory models. In this framework, learning in every modality and in their joint space is done in parallel using a single-step reinforcement learning method. A simple statistical test on confidence intervals on the mean of reward distributions is used to select the most informative source of information among the individual modalities and the joint space. Analyses of the method and the simulation results on a multimodal localization task show that the learning system autonomously starts with sensory selection and gradually switches to sensory integration. This is because, relying more on modalities--i.e. selection--at early learning steps (childhood) is more rewarding than favoring decisions learned in the joint space since, smaller state-space in modalities results in faster learning in every individual modality. In contrast, after gaining sufficient experiences (adulthood), the quality of learning in the joint space matures while learning in modalities suffers from insufficient accuracy due to perceptual aliasing. It results in tighter confidence interval for the joint space and consequently causes a smooth shift from selection to integration. It suggests that sensory selection and integration are emergent behavior and both are outputs of a single reward maximization process; i.e. the transition is not a preprogrammed phenomenon.
Lihoreau, Mathieu; Buhl, Jerome; Charleston, Michael A; Sword, Gregory A; Raubenheimer, David; Simpson, Stephen J
2015-01-01
Over recent years, modelling approaches from nutritional ecology (known as Nutritional Geometry) have been increasingly used to describe how animals and some other organisms select foods and eat them in appropriate amounts in order to maintain a balanced nutritional state maximising fitness. These nutritional strategies profoundly affect the physiology, behaviour and performance of individuals, which in turn impact their social interactions within groups and societies. Here, we present a conceptual framework to study the role of nutrition as a major ecological factor influencing the development and maintenance of social life. We first illustrate some of the mechanisms by which nutritional differences among individuals mediate social interactions in a broad range of species and ecological contexts. We then explain how studying individual- and collective-level nutrition in a common conceptual framework derived from Nutritional Geometry can bring new fundamental insights into the mechanisms and evolution of social interactions, using a combination of simulation models and manipulative experiments. PMID:25586099
Dreibelbis, Robert; Winch, Peter J; Leontsini, Elli; Hulland, Kristyna R S; Ram, Pavani K; Unicomb, Leanne; Luby, Stephen P
2013-10-26
Promotion and provision of low-cost technologies that enable improved water, sanitation, and hygiene (WASH) practices are seen as viable solutions for reducing high rates of morbidity and mortality due to enteric illnesses in low-income countries. A number of theoretical models, explanatory frameworks, and decision-making models have emerged which attempt to guide behaviour change interventions related to WASH. The design and evaluation of such interventions would benefit from a synthesis of this body of theory informing WASH behaviour change and maintenance. We completed a systematic review of existing models and frameworks through a search of related articles available in PubMed and in the grey literature. Information on the organization of behavioural determinants was extracted from the references that fulfilled the selection criteria and synthesized. Results from this synthesis were combined with other relevant literature, and from feedback through concurrent formative and pilot research conducted in the context of two cluster-randomized trials on the efficacy of WASH behaviour change interventions to inform the development of a framework to guide the development and evaluation of WASH interventions: the Integrated Behavioural Model for Water, Sanitation, and Hygiene (IBM-WASH). We identified 15 WASH-specific theoretical models, behaviour change frameworks, or programmatic models, of which 9 addressed our review questions. Existing models under-represented the potential role of technology in influencing behavioural outcomes, focused on individual-level behavioural determinants, and had largely ignored the role of the physical and natural environment. IBM-WASH attempts to correct this by acknowledging three dimensions (Contextual Factors, Psychosocial Factors, and Technology Factors) that operate on five-levels (structural, community, household, individual, and habitual). A number of WASH-specific models and frameworks exist, yet with some limitations. The IBM-WASH model aims to provide both a conceptual and practical tool for improving our understanding and evaluation of the multi-level multi-dimensional factors that influence water, sanitation, and hygiene practices in infrastructure-constrained settings. We outline future applications of our proposed model as well as future research priorities needed to advance our understanding of the sustained adoption of water, sanitation, and hygiene technologies and practices.
2013-01-01
Background Promotion and provision of low-cost technologies that enable improved water, sanitation, and hygiene (WASH) practices are seen as viable solutions for reducing high rates of morbidity and mortality due to enteric illnesses in low-income countries. A number of theoretical models, explanatory frameworks, and decision-making models have emerged which attempt to guide behaviour change interventions related to WASH. The design and evaluation of such interventions would benefit from a synthesis of this body of theory informing WASH behaviour change and maintenance. Methods We completed a systematic review of existing models and frameworks through a search of related articles available in PubMed and in the grey literature. Information on the organization of behavioural determinants was extracted from the references that fulfilled the selection criteria and synthesized. Results from this synthesis were combined with other relevant literature, and from feedback through concurrent formative and pilot research conducted in the context of two cluster-randomized trials on the efficacy of WASH behaviour change interventions to inform the development of a framework to guide the development and evaluation of WASH interventions: the Integrated Behavioural Model for Water, Sanitation, and Hygiene (IBM-WASH). Results We identified 15 WASH-specific theoretical models, behaviour change frameworks, or programmatic models, of which 9 addressed our review questions. Existing models under-represented the potential role of technology in influencing behavioural outcomes, focused on individual-level behavioural determinants, and had largely ignored the role of the physical and natural environment. IBM-WASH attempts to correct this by acknowledging three dimensions (Contextual Factors, Psychosocial Factors, and Technology Factors) that operate on five-levels (structural, community, household, individual, and habitual). Conclusions A number of WASH-specific models and frameworks exist, yet with some limitations. The IBM-WASH model aims to provide both a conceptual and practical tool for improving our understanding and evaluation of the multi-level multi-dimensional factors that influence water, sanitation, and hygiene practices in infrastructure-constrained settings. We outline future applications of our proposed model as well as future research priorities needed to advance our understanding of the sustained adoption of water, sanitation, and hygiene technologies and practices. PMID:24160869
Nemo: an evolutionary and population genetics programming framework.
Guillaume, Frédéric; Rougemont, Jacques
2006-10-15
Nemo is an individual-based, genetically explicit and stochastic population computer program for the simulation of population genetics and life-history trait evolution in a metapopulation context. It comes as both a C++ programming framework and an executable program file. Its object-oriented programming design gives it the flexibility and extensibility needed to implement a large variety of forward-time evolutionary models. It provides developers with abstract models allowing them to implement their own life-history traits and life-cycle events. Nemo offers a large panel of population models, from the Island model to lattice models with demographic or environmental stochasticity and a variety of already implemented traits (deleterious mutations, neutral markers and more), life-cycle events (mating, dispersal, aging, selection, etc.) and output operators for saving data and statistics. It runs on all major computer platforms including parallel computing environments. The source code, binaries and documentation are available under the GNU General Public License at http://nemo2.sourceforge.net.
A porphyrin-based metal-organic framework as a pH-responsive drug carrier
NASA Astrophysics Data System (ADS)
Lin, Wenxin; Hu, Quan; Jiang, Ke; Yang, Yanyu; Yang, Yu; Cui, Yuanjing; Qian, Guodong
2016-05-01
A low cytotoxic porphyrin-based metal-organic framework (MOF) PCN-221, which exhibited high PC12 cell viability via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay, was selected as an oral drug carrier. Methotrexate (MTX) was chosen as the model drug molecule which was absorbed into inner pores and channels of MOFs by diffusion. PCN-221 showed high drug loading and sustained release behavior under physiological environment without "burst effect". The controlled pH-responsive release of drugs by PCN-221 revealed its promising application in oral drug delivery.
2013-03-01
framework of orientation distribution functions and crack-induced texture o Quantify effects of temperature on damage behavior and damage monitoring...measurement model was obtained from hidden Markov modeling (HMM) of joint time-frequency (TF) features extracted from the PZT sensor signals using the...considered PZT sensor signals recorded from a bolted aluminum plate. About only 20% of the samples of a signal were first randomly selected as
Predicting the Magnetic Properties of ICMEs: A Pragmatic View
NASA Astrophysics Data System (ADS)
Riley, P.; Linker, J.; Ben-Nun, M.; Torok, T.; Ulrich, R. K.; Russell, C. T.; Lai, H.; de Koning, C. A.; Pizzo, V. J.; Liu, Y.; Hoeksema, J. T.
2017-12-01
The southward component of the interplanetary magnetic field plays a crucial role in being able to successfully predict space weather phenomena. Yet, thus far, it has proven extremely difficult to forecast with any degree of accuracy. In this presentation, we describe an empirically-based modeling framework for estimating Bz values during the passage of interplanetary coronal mass ejections (ICMEs). The model includes: (1) an empirically-based estimate of the magnetic properties of the flux rope in the low corona (including helicity and field strength); (2) an empirically-based estimate of the dynamic properties of the flux rope in the high corona (including direction, speed, and mass); and (3) a physics-based estimate of the evolution of the flux rope during its passage to 1 AU driven by the output from (1) and (2). We compare model output with observations for a selection of events to estimate the accuracy of this approach. Importantly, we pay specific attention to the uncertainties introduced by the components within the framework, separating intrinsic limitations from those that can be improved upon, either by better observations or more sophisticated modeling. Our analysis suggests that current observations/modeling are insufficient for this empirically-based framework to provide reliable and actionable prediction of the magnetic properties of ICMEs. We suggest several paths that may lead to better forecasts.
Steinmann, Zoran J N; Venkatesh, Aranya; Hauck, Mara; Schipper, Aafke M; Karuppiah, Ramkumar; Laurenzi, Ian J; Huijbregts, Mark A J
2014-05-06
One of the major challenges in life cycle assessment (LCA) is the availability and quality of data used to develop models and to make appropriate recommendations. Approximations and assumptions are often made if appropriate data are not readily available. However, these proxies may introduce uncertainty into the results. A regression model framework may be employed to assess missing data in LCAs of products and processes. In this study, we develop such a regression-based framework to estimate CO2 emission factors associated with coal power plants in the absence of reported data. Our framework hypothesizes that emissions from coal power plants can be explained by plant-specific factors (predictors) that include steam pressure, total capacity, plant age, fuel type, and gross domestic product (GDP) per capita of the resident nations of those plants. Using reported emission data for 444 plants worldwide, plant level CO2 emission factors were fitted to the selected predictors by a multiple linear regression model and a local linear regression model. The validated models were then applied to 764 coal power plants worldwide, for which no reported data were available. Cumulatively, available reported data and our predictions together account for 74% of the total world's coal-fired power generation capacity.
The community ecology of pathogens: coinfection, coexistence and community composition.
Seabloom, Eric W; Borer, Elizabeth T; Gross, Kevin; Kendig, Amy E; Lacroix, Christelle; Mitchell, Charles E; Mordecai, Erin A; Power, Alison G
2015-04-01
Disease and community ecology share conceptual and theoretical lineages, and there has been a resurgence of interest in strengthening links between these fields. Building on recent syntheses focused on the effects of host community composition on single pathogen systems, we examine pathogen (microparasite) communities using a stochastic metacommunity model as a starting point to bridge community and disease ecology perspectives. Such models incorporate the effects of core community processes, such as ecological drift, selection and dispersal, but have not been extended to incorporate host-pathogen interactions, such as immunosuppression or synergistic mortality, that are central to disease ecology. We use a two-pathogen susceptible-infected (SI) model to fill these gaps in the metacommunity approach; however, SI models can be intractable for examining species-diverse, spatially structured systems. By placing disease into a framework developed for community ecology, our synthesis highlights areas ripe for progress, including a theoretical framework that incorporates host dynamics, spatial structuring and evolutionary processes, as well as the data needed to test the predictions of such a model. Our synthesis points the way for this framework and demonstrates that a deeper understanding of pathogen community dynamics will emerge from approaches working at the interface of disease and community ecology. © 2015 John Wiley & Sons Ltd/CNRS.
Shaw, Rachel L; Holland, Carol; Pattison, Helen M; Cooke, Richard
2016-05-01
This review provides a worked example of 'best fit' framework synthesis using the Theoretical Domains Framework (TDF) of health psychology theories as an a priori framework in the synthesis of qualitative evidence. Framework synthesis works best with 'policy urgent' questions. The review question selected was: what are patients' experiences of prevention programmes for cardiovascular disease (CVD) and diabetes? The significance of these conditions is clear: CVD claims more deaths worldwide than any other; diabetes is a risk factor for CVD and leading cause of death. A systematic review and framework synthesis were conducted. This novel method for synthesizing qualitative evidence aims to make health psychology theory accessible to implementation science and advance the application of qualitative research findings in evidence-based healthcare. Findings from 14 original studies were coded deductively into the TDF and subsequently an inductive thematic analysis was conducted. Synthesized findings produced six themes relating to: knowledge, beliefs, cues to (in)action, social influences, role and identity, and context. A conceptual model was generated illustrating combinations of factors that produce cues to (in)action. This model demonstrated interrelationships between individual (beliefs and knowledge) and societal (social influences, role and identity, context) factors. Several intervention points were highlighted where factors could be manipulated to produce favourable cues to action. However, a lack of transparency of behavioural components of published interventions needs to be corrected and further evaluations of acceptability in relation to patient experience are required. Further work is needed to test the comprehensiveness of the TDF as an a priori framework for 'policy urgent' questions using 'best fit' framework synthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Akhtar, Taimoor; Shoemaker, Christine
2016-04-01
Watershed model calibration is inherently a multi-criteria problem. Conflicting trade-offs exist between different quantifiable calibration criterions indicating the non-existence of a single optimal parameterization. Hence, many experts prefer a manual approach to calibration where the inherent multi-objective nature of the calibration problem is addressed through an interactive, subjective, time-intensive and complex decision making process. Multi-objective optimization can be used to efficiently identify multiple plausible calibration alternatives and assist calibration experts during the parameter estimation process. However, there are key challenges to the use of multi objective optimization in the parameter estimation process which include: 1) multi-objective optimization usually requires many model simulations, which is difficult for complex simulation models that are computationally expensive; and 2) selection of one from numerous calibration alternatives provided by multi-objective optimization is non-trivial. This study proposes a "Hybrid Automatic Manual Strategy" (HAMS) for watershed model calibration to specifically address the above-mentioned challenges. HAMS employs a 3-stage framework for parameter estimation. Stage 1 incorporates the use of an efficient surrogate multi-objective algorithm, GOMORS, for identification of numerous calibration alternatives within a limited simulation evaluation budget. The novelty of HAMS is embedded in Stages 2 and 3 where an interactive visual and metric based analytics framework is available as a decision support tool to choose a single calibration from the numerous alternatives identified in Stage 1. Stage 2 of HAMS provides a goodness-of-fit measure / metric based interactive framework for identification of a small subset (typically less than 10) of meaningful and diverse set of calibration alternatives from the numerous alternatives obtained in Stage 1. Stage 3 incorporates the use of an interactive visual analytics framework for decision support in selection of one parameter combination from the alternatives identified in Stage 2. HAMS is applied for calibration of flow parameters of a SWAT model, (Soil and Water Assessment Tool) designed to simulate flow in the Cannonsville watershed in upstate New York. Results from the application of HAMS to Cannonsville indicate that efficient multi-objective optimization and interactive visual and metric based analytics can bridge the gap between the effective use of both automatic and manual strategies for parameter estimation of computationally expensive watershed models.
NASA Astrophysics Data System (ADS)
Sahul Hameed, Ruzanna; Thiruchelvam, Sivadass; Nasharuddin Mustapha, Kamal; Che Muda, Zakaria; Mat Husin, Norhayati; Ezanee Rusli, Mohd; Yong, Lee Choon; Ghazali, Azrul; Itam, Zarina; Hakimie, Hazlinda; Beddu, Salmia; Liyana Mohd Kamal, Nur
2016-03-01
This paper proposes a conceptual framework to compare criteria/factor that influence the supplier selection. A mixed methods approach comprising qualitative and quantitative survey will be used. The study intend to identify and define the metrics that key stakeholders at Public Works Department (PWD) believed should be used for supplier. The outcomes would foresee the possible initiatives to bring procurement in PWD to a strategic level. The results will provide a deeper understanding of drivers for supplier’s selection in the construction industry. The obtained output will benefit many parties involved in the supplier selection decision-making. The findings provides useful information and greater understanding of the perceptions that PWD executives hold regarding supplier selection and the extent to which these perceptions are consistent with findings from prior studies. The findings from this paper can be utilized as input for policy makers to outline any changes in the current procurement code of practice in order to enhance the degree of transparency and integrity in decision-making.
Developing a comprehensive framework for eutrophication management in off-stream artificial lakes
NASA Astrophysics Data System (ADS)
Khorasani, Hamed; Kerachian, Reza; Malakpour-Estalaki, Siamak
2018-07-01
In this paper, a comprehensive and interdisciplinary framework for management of eutrophication in off-stream artificial lakes in semi-arid and arid regions is proposed. Identification of the lake's water resources system components and stakeholders, simulation of Phosphorus (P) export from upstream watershed, simulation of the lake water quality as well as simulation of water demands and supply, development of management scenarios for the lake and selecting the best scenario using social choice methods (i.e. discrete and fuzzy Borda counts) are the four main parts of the framework. The proposed framework is applied on Chitgar Artificial Lake (ChAL), the largest intra-urban artificial lake in Tehran which has been constructed in 2010-2013 for recreational purposes. The Load Apportionment Model (LAM) is used for the simulation of P loads from the point and non-point (diffusive) sources and the LakeMab model is used for the simulation of P dynamics in the lake. The management scenarios contain optimized rule curves for water intake/outtake blended with P management plans (i.e. removal of point sources of P load in the upstream watershed, construction of a hydroponic bio-filter or an advanced water treatment plant beside the lake for reduction of external loading of P and recycling lake water, alum treatment of lake sediments for controlling the internal loading of P as well as construction of a dry detention basin). The most preferred scenarios selected by the discrete Borda count are the low-cost alum treatment and dry detention basin, while the most preferred scenario according to fuzzy Borda count, which considers the uncertainty of model inputs, is the costly water treatment plant. In all preferred scenarios, water intake is conducted from flood flows in order to avoid conflict with downstream agricultural demands. In addition to decentralized decision making and stakeholders' participation, the proposed framework promotes the integration of the technical aspects such as the role of internal loading in lake eutrophication and separation of flood and non-flood flows in the off-stream lakes' systems.
A Conceptual Framework for SAHRA Integrated Multi-resolution Modeling in the Rio Grande Basin
NASA Astrophysics Data System (ADS)
Liu, Y.; Gupta, H.; Springer, E.; Wagener, T.; Brookshire, D.; Duffy, C.
2004-12-01
The sustainable management of water resources in a river basin requires an integrated analysis of the social, economic, environmental and institutional dimensions of the problem. Numerical models are commonly used for integration of these dimensions and for communication of the analysis results to stakeholders and policy makers. The National Science Foundation Science and Technology Center for Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA) has been developing integrated multi-resolution models to assess impacts of climate variability and land use change on water resources in the Rio Grande Basin. These models not only couple natural systems such as surface and ground waters, but will also include engineering, economic and social components that may be involved in water resources decision-making processes. This presentation will describe the conceptual framework being developed by SAHRA to guide and focus the multiple modeling efforts and to assist the modeling team in planning, data collection and interpretation, communication, evaluation, etc. One of the major components of this conceptual framework is a Conceptual Site Model (CSM), which describes the basin and its environment based on existing knowledge and identifies what additional information must be collected to develop technically sound models at various resolutions. The initial CSM is based on analyses of basin profile information that has been collected, including a physical profile (e.g., topographic and vegetative features), a man-made facility profile (e.g., dams, diversions, and pumping stations), and a land use and ecological profile (e.g., demographics, natural habitats, and endangered species). Based on the initial CSM, a Conceptual Physical Model (CPM) is developed to guide and evaluate the selection of a model code (or numerical model) for each resolution to conduct simulations and predictions. A CPM identifies, conceptually, all the physical processes and engineering and socio-economic activities occurring (or to occur) in the real system that the corresponding numerical models are required to address, such as riparian evapotranspiration responses to vegetation change and groundwater pumping impacts on soil moisture contents. Simulation results from different resolution models and observations of the real system will then be compared to evaluate the consistency among the CSM, the CPMs, and the numerical models, and feedbacks will be used to update the models. In a broad sense, the evaluation of the models (conceptual or numerical), as well as the linkages between them, can be viewed as a part of the overall conceptual framework. As new data are generated and understanding improves, the models will evolve, and the overall conceptual framework is refined. The development of the conceptual framework becomes an on-going process. We will describe the current state of this framework and the open questions that have to be addressed in the future.
Analyzing Electronic Question/Answer Services: Framework and Evaluations of Selected Services.
ERIC Educational Resources Information Center
White, Marilyn Domas, Ed.
This report develops an analytical framework based on systems analysis for evaluating electronic question/answer or AskA services operated by a wide range of types of organizations, including libraries. Version 1.0 of this framework was applied in June 1999 to a selective sample of 11 electronic question/answer services, which cover a range of…
Miller, Tricia A; Brooks, Robert P; Lanzone, Michael; Brandes, David; Cooper, Jeff; O'Malley, Kieran; Maisonneuve, Charles; Tremblay, Junior; Duerr, Adam; Katzner, Todd
2014-06-01
When wildlife habitat overlaps with industrial development animals may be harmed. Because wildlife and people select resources to maximize biological fitness and economic return, respectively, we estimated risk, the probability of eagles encountering and being affected by turbines, by overlaying models of resource selection for each entity. This conceptual framework can be applied across multiple spatial scales to understand and mitigate impacts of industry on wildlife. We estimated risk to Golden Eagles (Aquila chrysaetos) from wind energy development in 3 topographically distinct regions of the central Appalachian Mountains of Pennsylvania (United States) based on models of resource selection of wind facilities (n = 43) and of northbound migrating eagles (n = 30). Risk to eagles from wind energy was greatest in the Ridge and Valley region; all 24 eagles that passed through that region used the highest risk landscapes at least once during low altitude flight. In contrast, only half of the birds that entered the Allegheny Plateau region used highest risk landscapes and none did in the Allegheny Mountains. Likewise, in the Allegheny Mountains, the majority of wind turbines (56%) were situated in poor eagle habitat; thus, risk to eagles is lower there than in the Ridge and Valley, where only 1% of turbines are in poor eagle habitat. Risk within individual facilities was extremely variable; on average, facilities had 11% (SD 23; range = 0-100%) of turbines in highest risk landscapes and 26% (SD 30; range = 0-85%) of turbines in the lowest risk landscapes. Our results provide a mechanism for relocating high-risk turbines, and they show the feasibility of this novel and highly adaptable framework for managing risk of harm to wildlife from industrial development. © 2014 Society for Conservation Biology.
Knowledge Extraction from Atomically Resolved Images.
Vlcek, Lukas; Maksov, Artem; Pan, Minghu; Vasudevan, Rama K; Kalinin, Sergei V
2017-10-24
Tremendous strides in experimental capabilities of scanning transmission electron microscopy and scanning tunneling microscopy (STM) over the past 30 years made atomically resolved imaging routine. However, consistent integration and use of atomically resolved data with generative models is unavailable, so information on local thermodynamics and other microscopic driving forces encoded in the observed atomic configurations remains hidden. Here, we present a framework based on statistical distance minimization to consistently utilize the information available from atomic configurations obtained from an atomically resolved image and extract meaningful physical interaction parameters. We illustrate the applicability of the framework on an STM image of a FeSe x Te 1-x superconductor, with the segregation of the chalcogen atoms investigated using a nonideal interacting solid solution model. This universal method makes full use of the microscopic degrees of freedom sampled in an atomically resolved image and can be extended via Bayesian inference toward unbiased model selection with uncertainty quantification.
Bidirectional Active Learning: A Two-Way Exploration Into Unlabeled and Labeled Data Set.
Zhang, Xiao-Yu; Wang, Shupeng; Yun, Xiaochun
2015-12-01
In practical machine learning applications, human instruction is indispensable for model construction. To utilize the precious labeling effort effectively, active learning queries the user with selective sampling in an interactive way. Traditional active learning techniques merely focus on the unlabeled data set under a unidirectional exploration framework and suffer from model deterioration in the presence of noise. To address this problem, this paper proposes a novel bidirectional active learning algorithm that explores into both unlabeled and labeled data sets simultaneously in a two-way process. For the acquisition of new knowledge, forward learning queries the most informative instances from unlabeled data set. For the introspection of learned knowledge, backward learning detects the most suspiciously unreliable instances within the labeled data set. Under the two-way exploration framework, the generalization ability of the learning model can be greatly improved, which is demonstrated by the encouraging experimental results.
Fisher, Dimitry; Olasagasti, Itsaso; Tank, David W; Aksay, Emre R F; Goldman, Mark S
2013-09-04
Although many studies have identified neural correlates of memory, relatively little is known about the circuit properties connecting single-neuron physiology to behavior. Here we developed a modeling framework to bridge this gap and identify circuit interactions capable of maintaining short-term memory. Unlike typical studies that construct a phenomenological model and test whether it reproduces select aspects of neuronal data, we directly fit the synaptic connectivity of an oculomotor memory circuit to a broad range of anatomical, electrophysiological, and behavioral data. Simultaneous fits to all data, combined with sensitivity analyses, revealed complementary roles of synaptic and neuronal recruitment thresholds in providing the nonlinear interactions required to generate the observed circuit behavior. This work provides a methodology for identifying the cellular and synaptic mechanisms underlying short-term memory and demonstrates how the anatomical structure of a circuit may belie its functional organization. Copyright © 2013 Elsevier Inc. All rights reserved.
Bures, Vladimír; Otcenásková, Tereza; Cech, Pavel; Antos, Karel
2012-11-01
Biological incidents jeopardising public health require decision-making that consists of one dominant feature: complexity. Therefore, public health decision-makers necessitate appropriate support. Based on the analogy with business intelligence (BI) principles, the contextual analysis of the environment and available data resources, and conceptual modelling within systems and knowledge engineering, this paper proposes a general framework for computer-based decision support in the case of a biological incident. At the outset, the analysis of potential inputs to the framework is conducted and several resources such as demographic information, strategic documents, environmental characteristics, agent descriptors and surveillance systems are considered. Consequently, three prototypes were developed, tested and evaluated by a group of experts. Their selection was based on the overall framework scheme. Subsequently, an ontology prototype linked with an inference engine, multi-agent-based model focusing on the simulation of an environment, and expert-system prototypes were created. All prototypes proved to be utilisable support tools for decision-making in the field of public health. Nevertheless, the research revealed further issues and challenges that might be investigated by both public health focused researchers and practitioners.
Tong, Xiayu; Wang, Zhou-Jing
2016-09-19
This article develops a group decision framework with intuitionistic preference relations. An approach is first devised to rectify an inconsistent intuitionistic preference relation to derive an additive consistent one. A new aggregation operator, the so-called induced intuitionistic ordered weighted averaging (IIOWA) operator, is proposed to aggregate individual intuitionistic fuzzy judgments. By using the mean absolute deviation between the original and rectified intuitionistic preference relations as an order inducing variable, the rectified consistent intuitionistic preference relations are aggregated into a collective preference relation. This treatment is presumably able to assign different weights to different decision-makers' judgments based on the quality of their inputs (in terms of consistency of their original judgments). A solution procedure is then developed for tackling group decision problems with intuitionistic preference relations. A low carbon supplier selection case study is developed to illustrate how to apply the proposed decision model in practice.
Tong, Xiayu; Wang, Zhou-Jing
2016-01-01
This article develops a group decision framework with intuitionistic preference relations. An approach is first devised to rectify an inconsistent intuitionistic preference relation to derive an additive consistent one. A new aggregation operator, the so-called induced intuitionistic ordered weighted averaging (IIOWA) operator, is proposed to aggregate individual intuitionistic fuzzy judgments. By using the mean absolute deviation between the original and rectified intuitionistic preference relations as an order inducing variable, the rectified consistent intuitionistic preference relations are aggregated into a collective preference relation. This treatment is presumably able to assign different weights to different decision-makers’ judgments based on the quality of their inputs (in terms of consistency of their original judgments). A solution procedure is then developed for tackling group decision problems with intuitionistic preference relations. A low carbon supplier selection case study is developed to illustrate how to apply the proposed decision model in practice. PMID:27657097
Using theory to develop an exercise intervention for patients post stroke.
Shaughnessy, Marianne; Resnick, Barbara M
2009-01-01
Stroke remains a leading cause of disability for older adults. While is it well established in the literature that exercise programs can have significant benefit, many stroke survivors do not receive specific recommendations for exercise or lack the motivation to continue exercising following discharge from rehabilitation. This article describes an exercise intervention developed for subacute stroke survivors that utilizes the self-efficacy theory framework. The rationale for selection of this theoretical framework and specific examples of interventions linked to components of the model are provided. The article describes the motivational/educational program and the sequential follow-up designed to prepare stroke survivors to increase exercise behavior. Theoretical frameworks are useful tools for guiding and organizing research investigations from literature review through development and implementation of the intervention to interpretation of findings.
Integrated brokering framework for multi-disciplinary research
NASA Astrophysics Data System (ADS)
Craglia, M.; Vaccari, L.; Santoro, M.; Nativi, S.
2012-04-01
EuroGEOSS is a research project supporting the development of the GEOSS Common Infrastructure and the multi-disciplinary research efforts needed to address global sustainability research. The framework it has developed to integrate data, services, and models from different disciplines is based on a brokering approach that advances the traditional Service Oriented Architecture of spatial data infrastructures. In this paper we demonstrate the added value of this approach. The scientific question we address in this example is o identify ecosystems similar to the ones found in the protected area of "Sierra De Queixa Montes De Invernadeiro Nature Park" in Galicia, Spain. To do this, the user would identify an analytical model suitable to address the question such as the eHabitat model developed by the European Commission Joint Research Centre. It would then use the EuroGEOSS broker to look for the data necessary to run the model such boundaries of the select park, mean drought index, %forest cover, temperature and rainfall, and elevation. The eHabitat model is used to compute the likelihood to find ecosystems in the selected window that are similar to the one found in the selected protected area. The end-user would therefore run the model directly on the web as a web processing service with the data identified in the broker (no need to download the data) and use this information to draw a new area to be protected that would have similar ecological conditions to the initial protected area and display the list of endangered species (to be defined) expected to be found in the new location. Finally, the user can also mine Web 2.0 social networks via the broker to identify pictures of the selected species in the area of interest. This integrated approach based on open standards and interfaces allows the user to find, access, and use the data and models in a transparent way focusing on the research questions to be addressed rather than the technology that delivers the inputs. It is therefore a true demonstration of a service underpinning multi-disciplinary research.
Wang, Mingming; Sweetapple, Chris; Fu, Guangtao; Farmani, Raziyeh; Butler, David
2017-10-01
This paper presents a new framework for decision making in sustainable drainage system (SuDS) scheme design. It integrates resilience, hydraulic performance, pollution control, rainwater usage, energy analysis, greenhouse gas (GHG) emissions and costs, and has 12 indicators. The multi-criteria analysis methods of entropy weight and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) were selected to support SuDS scheme selection. The effectiveness of the framework is demonstrated with a SuDS case in China. Indicators used include flood volume, flood duration, a hydraulic performance indicator, cost and resilience. Resilience is an important design consideration, and it supports scheme selection in the case study. The proposed framework will help a decision maker to choose an appropriate design scheme for implementation without subjectivity. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Kandler; Shi, Ying; Santhanagopalan, Shriram
Predictive models of Li-ion battery lifetime must consider a multiplicity of electrochemical, thermal, and mechanical degradation modes experienced by batteries in application environments. To complicate matters, Li-ion batteries can experience different degradation trajectories that depend on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. We present a generalized battery life prognostic model framework for battery systems design and control. The model framework consists of trial functions that are statistically regressed to Li-ion cell life datasets wherein the cells have been aged under differentmore » levels of stress. Degradation mechanisms and rate laws dependent on temperature, storage, and cycling condition are regressed to the data, with multiple model hypotheses evaluated and the best model down-selected based on statistics. The resulting life prognostic model, implemented in state variable form, is extensible to arbitrary real-world scenarios. The model is applicable in real-time control algorithms to maximize battery life and performance. We discuss efforts to reduce lifetime prediction error and accommodate its inevitable impact in controller design.« less
Improving ontology matching with propagation strategy and user feedback
NASA Astrophysics Data System (ADS)
Li, Chunhua; Cui, Zhiming; Zhao, Pengpeng; Wu, Jian; Xin, Jie; He, Tianxu
2015-07-01
Markov logic networks which unify probabilistic graphical model and first-order logic provide an excellent framework for ontology matching. The existing approach requires a threshold to produce matching candidates and use a small set of constraints acting as filter to select the final alignments. We introduce novel match propagation strategy to model the influences between potential entity mappings across ontologies, which can help to identify the correct correspondences and produce missed correspondences. The estimation of appropriate threshold is a difficult task. We propose an interactive method for threshold selection through which we obtain an additional measurable improvement. Running experiments on a public dataset has demonstrated the effectiveness of proposed approach in terms of the quality of result alignment.
Julien, Clavel; Leandro, Aristide; Hélène, Morlon
2018-06-19
Working with high-dimensional phylogenetic comparative datasets is challenging because likelihood-based multivariate methods suffer from low statistical performances as the number of traits p approaches the number of species n and because some computational complications occur when p exceeds n. Alternative phylogenetic comparative methods have recently been proposed to deal with the large p small n scenario but their use and performances are limited. Here we develop a penalized likelihood framework to deal with high-dimensional comparative datasets. We propose various penalizations and methods for selecting the intensity of the penalties. We apply this general framework to the estimation of parameters (the evolutionary trait covariance matrix and parameters of the evolutionary model) and model comparison for the high-dimensional multivariate Brownian (BM), Early-burst (EB), Ornstein-Uhlenbeck (OU) and Pagel's lambda models. We show using simulations that our penalized likelihood approach dramatically improves the estimation of evolutionary trait covariance matrices and model parameters when p approaches n, and allows for their accurate estimation when p equals or exceeds n. In addition, we show that penalized likelihood models can be efficiently compared using Generalized Information Criterion (GIC). We implement these methods, as well as the related estimation of ancestral states and the computation of phylogenetic PCA in the R package RPANDA and mvMORPH. Finally, we illustrate the utility of the new proposed framework by evaluating evolutionary models fit, analyzing integration patterns, and reconstructing evolutionary trajectories for a high-dimensional 3-D dataset of brain shape in the New World monkeys. We find a clear support for an Early-burst model suggesting an early diversification of brain morphology during the ecological radiation of the clade. Penalized likelihood offers an efficient way to deal with high-dimensional multivariate comparative data.
Wheeler, David C.; Hickson, DeMarc A.; Waller, Lance A.
2010-01-01
Many diagnostic tools and goodness-of-fit measures, such as the Akaike information criterion (AIC) and the Bayesian deviance information criterion (DIC), are available to evaluate the overall adequacy of linear regression models. In addition, visually assessing adequacy in models has become an essential part of any regression analysis. In this paper, we focus on a spatial consideration of the local DIC measure for model selection and goodness-of-fit evaluation. We use a partitioning of the DIC into the local DIC, leverage, and deviance residuals to assess local model fit and influence for both individual observations and groups of observations in a Bayesian framework. We use visualization of the local DIC and differences in local DIC between models to assist in model selection and to visualize the global and local impacts of adding covariates or model parameters. We demonstrate the utility of the local DIC in assessing model adequacy using HIV prevalence data from pregnant women in the Butare province of Rwanda during 1989-1993 using a range of linear model specifications, from global effects only to spatially varying coefficient models, and a set of covariates related to sexual behavior. Results of applying the diagnostic visualization approach include more refined model selection and greater understanding of the models as applied to the data. PMID:21243121
NASA Astrophysics Data System (ADS)
Mikuła, Andrzej; Król, Magdalena; Mozgawa, Włodzimierz; Koleżyński, Andrzej
2018-04-01
Vibrational spectroscopy can be considered as one of the most important methods used for structural characterization of various porous aluminosilicate materials, including zeolites. On the other hand, vibrational spectra of zeolites are still difficult to interpret, particularly in the pseudolattice region, where bands related to ring oscillations can be observed. Using combination of theoretical and computational approach, a detailed analysis of these regions of spectra is possible; such analysis should be, however, carried out employing models with different level of complexity and simultaneously the same theory level. In this work, an attempt was made to identify ring oscillations in vibrational spectra of selected zeolite structures. A series of ab initio calculations focused on S4R, S6R, and as a novelty, 5-1 isolated clusters, as well as periodic siliceous frameworks built from those building units (ferrierite (FER), mordenite (MOR) and heulandite (HEU) type) have been carried out. Due to the hierarchical structure of zeolite frameworks it can be expected that the total envelope of the zeolite spectra should be with good accuracy a sum of the spectra of structural elements that build each zeolite framework. Based on the results of HF calculations, normal vibrations have been visualized and detailed analysis of pseudolattice range of resulting theoretical spectra have been carried out. Obtained results have been applied for interpretation of experimental spectra of selected zeolites.
Direct Electrical Detection of Iodine Gas by a Novel Metal-Organic-Framework-Based Sensor.
Small, Leo J; Nenoff, Tina M
2017-12-27
High-fidelity detection of iodine species is of utmost importance to the safety of the population in cases of nuclear accidents or advanced nuclear fuel reprocessing. Herein, we describe the success at using impedance spectroscopy to directly detect the real-time adsorption of I 2 by a metal-organic framework zeolitic imidazolate framework (ZIF)-8-based sensor. Methanolic suspensions of ZIF-8 were dropcast onto platinum interdigitated electrodes, dried, and exposed to gaseous I 2 at 25, 40, or 70 °C. Using an unoptimized sensor geometry, I 2 was readily detected at 25 °C in air within 720 s of exposure. The specific response is attributed to the chemical selectivity of the ZIF-8 toward I 2 . Furthermore, equivalent circuit modeling of the impedance data indicates a >10 5 × decrease in ZIF-8 resistance when 116 wt % I 2 is adsorbed by ZIF-8 at 70 °C in air. This irreversible decrease in resistance is accompanied by an irreversible loss in the long-range crystallinity, as evidenced by X-ray diffraction and infrared spectroscopy. Air, argon, methanol, and water were found to produce minimal changes in ZIF-8 impedance. This report demonstrates how selective I 2 adsorption by ZIF-8 can be leveraged to create a highly selective sensor using >10 5 × changes in impedance response to enable the direct electrical detection of environmentally relevant gaseous toxins.
ERIC Educational Resources Information Center
Tjoe, Hartono; de la Torre, Jimmy
2014-01-01
In this paper, we discuss the process of identifying and validating students' abilities to think proportionally. More specifically, we describe the methodology we used to identify these proportional reasoning attributes, beginning with the selection and review of relevant literature on proportional reasoning. We then continue with the…
Design of a Competency-Based Assessment Model in the Field of Accounting
ERIC Educational Resources Information Center
Ciudad-Gómez, Adelaida; Valverde-Berrocoso, Jesús
2012-01-01
This paper presents the phases involved in the design of a methodology to contribute both to the acquisition of competencies and to their assessment in the field of Financial Accounting, within the European Higher Education Area (EHEA) framework, which we call MANagement of COMpetence in the areas of Accounting (MANCOMA). Having selected and…
A Submodularity Framework for Data Subset Selection
2013-09-01
37 7 List of Language Modeling Corpora in thet Arabic -to-English NIST Task ............. 37 8...Task ( Arabic -to-English) ................. 39 10 Baseline BLEU (%) PER Scores on Transtac Task (English-to- Arabic ) ................. 39 11...Comparison of BLEU (%) PER Scores on Transtac Task ( Arabic -to-English) ....... 39 12 Comparison of BLEU (%) PER Scores on Transtac Task (English-to- Arabic
Contributions of cultural services to the ecosystem services agenda
Terry C. Daniel; Andreas Muhar; Arne Arnberger; Olivier Aznar; James W. Boyd; Kai M.A. Chan; Robert Costanza; Thomas Elmqvist; Courtney G. Flint; Paul H. Gobster; A. Gret-Regamey; R. Lave; S. Muhar; M. Penker; R.G. Ribe; T. Schauppenlehner; T. Sikor; I. Soloviy; M. Spierenburg; K. Taczanowska; J. Tam; A. von der Dunk
2012-01-01
Cultural ecosystem services (ES) are consistently recognized but not yet adequately defined or integrated within the ES framework. A substantial body of models, methods, and data relevant to cultural services has been developed within the social and behavioral sciences before and outside of the ES approach. A selective review of work in landscape aesthetics, cultural...
ViSA: A Neurodynamic Model for Visuo-Spatial Working Memory, Attentional Blink, and Conscious Access
ERIC Educational Resources Information Center
Simione, Luca; Raffone, Antonino; Wolters, Gezinus; Salmas, Paola; Nakatani, Chie; Belardinelli, Marta Olivetti; van Leeuwen, Cees
2012-01-01
Two separate lines of study have clarified the role of selectivity in conscious access to visual information. Both involve presenting multiple targets and distracters: one "simultaneously" in a spatially distributed fashion, the other "sequentially" at a single location. To understand their findings in a unified framework, we propose a…
A Mathematical Model for Allocation of School Resources to Optimize a Selected Output.
ERIC Educational Resources Information Center
McAfee, Jackson K.
The methodology of costing an education program by identifying the resources it utilizes places all costs within the framework of staff, equipment, materials, facilities, and services. This paper suggests that this methodology is much stronger than the more traditional budgetary and cost per pupil approach. The techniques of data collection are…
Karuppiah Ramachandran, Vignesh Raja; Alblas, Huibert J; Le, Duc V; Meratnia, Nirvana
2018-05-24
In the last decade, seizure prediction systems have gained a lot of attention because of their enormous potential to largely improve the quality-of-life of the epileptic patients. The accuracy of the prediction algorithms to detect seizure in real-world applications is largely limited because the brain signals are inherently uncertain and affected by various factors, such as environment, age, drug intake, etc., in addition to the internal artefacts that occur during the process of recording the brain signals. To deal with such ambiguity, researchers transitionally use active learning, which selects the ambiguous data to be annotated by an expert and updates the classification model dynamically. However, selecting the particular data from a pool of large ambiguous datasets to be labelled by an expert is still a challenging problem. In this paper, we propose an active learning-based prediction framework that aims to improve the accuracy of the prediction with a minimum number of labelled data. The core technique of our framework is employing the Bernoulli-Gaussian Mixture model (BGMM) to determine the feature samples that have the most ambiguity to be annotated by an expert. By doing so, our approach facilitates expert intervention as well as increasing medical reliability. We evaluate seven different classifiers in terms of the classification time and memory required. An active learning framework built on top of the best performing classifier is evaluated in terms of required annotation effort to achieve a high level of prediction accuracy. The results show that our approach can achieve the same accuracy as a Support Vector Machine (SVM) classifier using only 20 % of the labelled data and also improve the prediction accuracy even under the noisy condition.
Selection of remedial alternatives for mine sites: a multicriteria decision analysis approach.
Betrie, Getnet D; Sadiq, Rehan; Morin, Kevin A; Tesfamariam, Solomon
2013-04-15
The selection of remedial alternatives for mine sites is a complex task because it involves multiple criteria and often with conflicting objectives. However, an existing framework used to select remedial alternatives lacks multicriteria decision analysis (MCDA) aids and does not consider uncertainty in the selection of alternatives. The objective of this paper is to improve the existing framework by introducing deterministic and probabilistic MCDA methods. The Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) methods have been implemented in this study. The MCDA analysis involves processing inputs to the PROMETHEE methods that are identifying the alternatives, defining the criteria, defining the criteria weights using analytical hierarchical process (AHP), defining the probability distribution of criteria weights, and conducting Monte Carlo Simulation (MCS); running the PROMETHEE methods using these inputs; and conducting a sensitivity analysis. A case study was presented to demonstrate the improved framework at a mine site. The results showed that the improved framework provides a reliable way of selecting remedial alternatives as well as quantifying the impact of different criteria on selecting alternatives. Copyright © 2013 Elsevier Ltd. All rights reserved.
Li, Zhi; Yu, Rong; Huang, Jinglu; Shi, Yusheng; Zhang, Diyang; Zhong, Xiaoyan; Wang, Dingsheng; Wu, Yuen; Li, Yadong
2015-01-01
Developing catalysts that provide the effective activation of hydrogen and selective absorption of substrate on metal surface is crucial to simultaneously improve activity and selectivity of hydrogenation reaction. Here we present an unique in situ etching and coordination synthetic strategy for exploiting a functionalized metal-organic framework to incorporate the bimetallic platinum–nickel frames, thereby forming a frame within frame nanostructure. The as-grown metal-organic framework serves as a ‘breath shell' to enhance hydrogen enrichment and activation on platinum–nickel surface. More importantly, this framework structure with defined pores can provide the selective accessibility of molecules through its one-dimensional channels. In a mixture containing four olefins, the composite can selectively transport the substrates smaller than its pores to the platinum–nickel surface and catalyse their hydrogenation. This molecular sieve effect can be also applied to selectively produce imines, which are important intermediates in the reductive imination of nitroarene, by restraining further hydrogenation via cascade processes. PMID:26391605
Kijima, T E; Innan, Hideki
2013-11-01
A population genetic simulation framework is developed to understand the behavior and molecular evolution of DNA sequences of transposable elements. Our model incorporates random transposition and excision of transposable element (TE) copies, two modes of selection against TEs, and degeneration of transpositional activity by point mutations. We first investigated the relationships between the behavior of the copy number of TEs and these parameters. Our results show that when selection is weak, the genome can maintain a relatively large number of TEs, but most of them are less active. In contrast, with strong selection, the genome can maintain only a limited number of TEs but the proportion of active copies is large. In such a case, there could be substantial fluctuations of the copy number over generations. We also explored how DNA sequences of TEs evolve through the simulations. In general, active copies form clusters around the original sequence, while less active copies have long branches specific to themselves, exhibiting a star-shaped phylogeny. It is demonstrated that the phylogeny of TE sequences could be informative to understand the dynamics of TE evolution.
Shi, Hua; Liu, Hu-Chen; Li, Ping; Xu, Xue-Guo
2017-01-01
With increased worldwide awareness of environmental issues, healthcare waste (HCW) management has received much attention from both researchers and practitioners over the past decade. The task of selecting the optimum treatment technology for HCWs is a challenging decision making problem involving conflicting evaluation criteria and multiple stakeholders. In this paper, we develop an integrated decision making framework based on cloud model and MABAC method for evaluating and selecting the best HCW treatment technology from a multiple stakeholder perspective. The introduced framework deals with uncertain linguistic assessments of alternatives by using interval 2-tuple linguistic variables, determines decision makers' relative weights based on the uncertainty and divergence degrees of every decision maker, and obtains the ranking of all HCW disposal alternatives with the aid of an extended MABAC method. Finally, an empirical example from Shanghai, China, is provided to illustrate the feasibility and effectiveness of the proposed approach. Results indicate that the methodology being proposed is more suitable and effective to handle the HCW treatment technology selection problem under vague and uncertain information environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optimizing microstimulation using a reinforcement learning framework.
Brockmeier, Austin J; Choi, John S; Distasio, Marcello M; Francis, Joseph T; Príncipe, José C
2011-01-01
The ability to provide sensory feedback is desired to enhance the functionality of neuroprosthetics. Somatosensory feedback provides closed-loop control to the motor system, which is lacking in feedforward neuroprosthetics. In the case of existing somatosensory function, a template of the natural response can be used as a template of desired response elicited by electrical microstimulation. In the case of no initial training data, microstimulation parameters that produce responses close to the template must be selected in an online manner. We propose using reinforcement learning as a framework to balance the exploration of the parameter space and the continued selection of promising parameters for further stimulation. This approach avoids an explicit model of the neural response from stimulation. We explore a preliminary architecture--treating the task as a k-armed bandit--using offline data recorded for natural touch and thalamic microstimulation, and we examine the methods efficiency in exploring the parameter space while concentrating on promising parameter forms. The best matching stimulation parameters, from k = 68 different forms, are selected by the reinforcement learning algorithm consistently after 334 realizations.
NASA Astrophysics Data System (ADS)
Wentworth, Mami Tonoe
Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification techniques for model calibration. For Bayesian model calibration, we employ adaptive Metropolis algorithms to construct densities for input parameters in the heat model and the HIV model. To quantify the uncertainty in the parameters, we employ two MCMC algorithms: Delayed Rejection Adaptive Metropolis (DRAM) [33] and Differential Evolution Adaptive Metropolis (DREAM) [66, 68]. The densities obtained using these methods are compared to those obtained through the direct numerical evaluation of the Bayes' formula. We also combine uncertainties in input parameters and measurement errors to construct predictive estimates for a model response. A significant emphasis is on the development and illustration of techniques to verify the accuracy of sampling-based Metropolis algorithms. We verify the accuracy of DRAM and DREAM by comparing chains, densities and correlations obtained using DRAM, DREAM and the direct evaluation of Bayes formula. We also perform similar analysis for credible and prediction intervals for responses. Once the parameters are estimated, we employ energy statistics test [63, 64] to compare the densities obtained by different methods for the HIV model. The energy statistics are used to test the equality of distributions. We also consider parameter selection and verification techniques for models having one or more parameters that are noninfluential in the sense that they minimally impact model outputs. We illustrate these techniques for a dynamic HIV model but note that the parameter selection and verification framework is applicable to a wide range of biological and physical models. To accommodate the nonlinear input to output relations, which are typical for such models, we focus on global sensitivity analysis techniques, including those based on partial correlations, Sobol indices based on second-order model representations, and Morris indices, as well as a parameter selection technique based on standard errors. A significant objective is to provide verification strategies to assess the accuracy of those techniques, which we illustrate in the context of the HIV model. Finally, we examine active subspace methods as an alternative to parameter subset selection techniques. The objective of active subspace methods is to determine the subspace of inputs that most strongly affect the model response, and to reduce the dimension of the input space. The major difference between active subspace methods and parameter selection techniques is that parameter selection identifies influential parameters whereas subspace selection identifies a linear combination of parameters that impacts the model responses significantly. We employ active subspace methods discussed in [22] for the HIV model and present a verification that the active subspace successfully reduces the input dimensions.
A SWOT analysis of the organization and financing of the Danish health care system.
Christiansen, Terkel
2002-02-01
The organization and financing of the Danish health care system was evaluated within a framework of a SWOT analysis (analysis of Strengths, Weaknesses, Opportunities and Threats) by a panel of five members with a background in health economics. The present paper describes the methods and materials used for the evaluation: selection of panel members, structure of the evaluation task according to the health care triangle model, selection of background material consisting of documents and literature on the Danish health care system, and a 1-week study visit.
Horrey, William J; Lesch, Mary F; Mitsopoulos-Rubens, Eve; Lee, John D
2015-03-01
Humans often make inflated or erroneous estimates of their own ability or performance. Such errors in calibration can be due to incomplete processing, neglect of available information or due to improper weighing or integration of the information and can impact our decision-making, risk tolerance, and behaviors. In the driving context, these outcomes can have important implications for safety. The current paper discusses the notion of calibration in the context of self-appraisals and self-competence as well as in models of self-regulation in driving. We further develop a conceptual framework for calibration in the driving context borrowing from earlier models of momentary demand regulation, information processing, and lens models for information selection and utilization. Finally, using the model we describe the implications for calibration (or, more specifically, errors in calibration) for our understanding of driver distraction, in-vehicle automation and autonomous vehicles, and the training of novice and inexperienced drivers. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Planning for robust reserve networks using uncertainty analysis
Moilanen, A.; Runge, M.C.; Elith, Jane; Tyre, A.; Carmel, Y.; Fegraus, E.; Wintle, B.A.; Burgman, M.; Ben-Haim, Y.
2006-01-01
Planning land-use for biodiversity conservation frequently involves computer-assisted reserve selection algorithms. Typically such algorithms operate on matrices of species presence?absence in sites, or on species-specific distributions of model predicted probabilities of occurrence in grid cells. There are practically always errors in input data?erroneous species presence?absence data, structural and parametric uncertainty in predictive habitat models, and lack of correspondence between temporal presence and long-run persistence. Despite these uncertainties, typical reserve selection methods proceed as if there is no uncertainty in the data or models. Having two conservation options of apparently equal biological value, one would prefer the option whose value is relatively insensitive to errors in planning inputs. In this work we show how uncertainty analysis for reserve planning can be implemented within a framework of information-gap decision theory, generating reserve designs that are robust to uncertainty. Consideration of uncertainty involves modifications to the typical objective functions used in reserve selection. Search for robust-optimal reserve structures can still be implemented via typical reserve selection optimization techniques, including stepwise heuristics, integer-programming and stochastic global search.
Implementing new models of care: Lessons from the new care models programme in England.
Starling, Anna
2018-06-01
In 2014, the body that leads the National Health Service in England published a new strategic vision for the National Health Service. A major part of this strategy was a three-year-long national programme to develop new care models to coordinate care across primary care, community services and hospitals that could be replicated across the country. Local 'vanguard sites' were selected to develop five types of new care model with support from a national team. The new care models programme provided support for local leaders to enable them to collaborate to improve care for their local populations. We interviewed leaders in the vanguard sites to better understand how they made changes to care locally. Drawing on the insights from these interviews and the literature on cross-organisational change and improvement we devised a framework of 10 lessons for health and care leaders seeking to develop and implement new models of care. The framework emphasises the importance of developing relationships and building capability locally to enable areas to continuously develop and test new ideas.
A model of icebergs and sea ice in a joint continuum framework
NASA Astrophysics Data System (ADS)
Vaňková, Irena; Holland, David M.
2017-04-01
The ice mélange, a mixture of sea ice and icebergs, often present in front of tidewater glaciers in Greenland or ice shelves in Antarctica, can have a profound effect on the dynamics of the ice-ocean system. The current inability to numerically model the ice mélange motivates a new modeling approach proposed here. A continuum sea-ice model is taken as a starting point and icebergs are represented as thick and compact pieces of sea ice held together by large tensile and shear strength selectively introduced into the sea ice rheology. In order to modify the rheology correctly, a semi-Lagrangian time stepping scheme is introduced and at each time step a Lagrangian grid is constructed such that iceberg shape is preserved exactly. With the proposed treatment, sea ice and icebergs are considered a single fluid with spatially varying rheological properties, mutual interactions are thus automatically included without the need of further parametrization. An important advantage of the presented framework for an ice mélange model is its potential to be easily included in existing climate models.
A Model of Icebergs and Sea Ice in a Joint Continuum Framework
NASA Astrophysics Data System (ADS)
VaÅková, Irena; Holland, David M.
2017-11-01
The ice mélange, a mixture of sea ice and icebergs, often present in front of outlet glaciers in Greenland or ice shelves in Antarctica, can have a profound effect on the dynamics of the ice-ocean system. The current inability to numerically model the ice mélange motivates a new modeling approach proposed here. A continuum sea-ice model is taken as a starting point and icebergs are represented as thick and compact pieces of sea ice held together by large tensile and shear strength, selectively introduced into the sea-ice rheology. In order to modify the rheology correctly, an iceberg tracking procedure is implemented within a semi-Lagrangian time-stepping scheme, designed to exactly preserve iceberg shape through time. With the proposed treatment, sea ice and icebergs are considered a single fluid with spatially varying rheological properties. Mutual interactions are thus automatically included without the need for further parametrization. An important advantage of the presented framework for an ice mélange model is its potential to be easily included within sea-ice components of existing climate models.
Kim, SungHwan; Lin, Chien-Wei; Tseng, George C
2016-07-01
Supervised machine learning is widely applied to transcriptomic data to predict disease diagnosis, prognosis or survival. Robust and interpretable classifiers with high accuracy are usually favored for their clinical and translational potential. The top scoring pair (TSP) algorithm is an example that applies a simple rank-based algorithm to identify rank-altered gene pairs for classifier construction. Although many classification methods perform well in cross-validation of single expression profile, the performance usually greatly reduces in cross-study validation (i.e. the prediction model is established in the training study and applied to an independent test study) for all machine learning methods, including TSP. The failure of cross-study validation has largely diminished the potential translational and clinical values of the models. The purpose of this article is to develop a meta-analytic top scoring pair (MetaKTSP) framework that combines multiple transcriptomic studies and generates a robust prediction model applicable to independent test studies. We proposed two frameworks, by averaging TSP scores or by combining P-values from individual studies, to select the top gene pairs for model construction. We applied the proposed methods in simulated data sets and three large-scale real applications in breast cancer, idiopathic pulmonary fibrosis and pan-cancer methylation. The result showed superior performance of cross-study validation accuracy and biomarker selection for the new meta-analytic framework. In conclusion, combining multiple omics data sets in the public domain increases robustness and accuracy of the classification model that will ultimately improve disease understanding and clinical treatment decisions to benefit patients. An R package MetaKTSP is available online. (http://tsenglab.biostat.pitt.edu/software.htm). ctseng@pitt.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Reference-free error estimation for multiple measurement methods.
Madan, Hennadii; Pernuš, Franjo; Špiclin, Žiga
2018-01-01
We present a computational framework to select the most accurate and precise method of measurement of a certain quantity, when there is no access to the true value of the measurand. A typical use case is when several image analysis methods are applied to measure the value of a particular quantitative imaging biomarker from the same images. The accuracy of each measurement method is characterized by systematic error (bias), which is modeled as a polynomial in true values of measurand, and the precision as random error modeled with a Gaussian random variable. In contrast to previous works, the random errors are modeled jointly across all methods, thereby enabling the framework to analyze measurement methods based on similar principles, which may have correlated random errors. Furthermore, the posterior distribution of the error model parameters is estimated from samples obtained by Markov chain Monte-Carlo and analyzed to estimate the parameter values and the unknown true values of the measurand. The framework was validated on six synthetic and one clinical dataset containing measurements of total lesion load, a biomarker of neurodegenerative diseases, which was obtained with four automatic methods by analyzing brain magnetic resonance images. The estimates of bias and random error were in a good agreement with the corresponding least squares regression estimates against a reference.
A framework for longitudinal data analysis via shape regression
NASA Astrophysics Data System (ADS)
Fishbaugh, James; Durrleman, Stanley; Piven, Joseph; Gerig, Guido
2012-02-01
Traditional longitudinal analysis begins by extracting desired clinical measurements, such as volume or head circumference, from discrete imaging data. Typically, the continuous evolution of a scalar measurement is estimated by choosing a 1D regression model, such as kernel regression or fitting a polynomial of fixed degree. This type of analysis not only leads to separate models for each measurement, but there is no clear anatomical or biological interpretation to aid in the selection of the appropriate paradigm. In this paper, we propose a consistent framework for the analysis of longitudinal data by estimating the continuous evolution of shape over time as twice differentiable flows of deformations. In contrast to 1D regression models, one model is chosen to realistically capture the growth of anatomical structures. From the continuous evolution of shape, we can simply extract any clinical measurements of interest. We demonstrate on real anatomical surfaces that volume extracted from a continuous shape evolution is consistent with a 1D regression performed on the discrete measurements. We further show how the visualization of shape progression can aid in the search for significant measurements. Finally, we present an example on a shape complex of the brain (left hemisphere, right hemisphere, cerebellum) that demonstrates a potential clinical application for our framework.
Deng, Changjian; Lv, Kun; Shi, Debo; Yang, Bo; Yu, Song; He, Zhiyi; Yan, Jia
2018-06-12
In this paper, a novel feature selection and fusion framework is proposed to enhance the discrimination ability of gas sensor arrays for odor identification. Firstly, we put forward an efficient feature selection method based on the separability and the dissimilarity to determine the feature selection order for each type of feature when increasing the dimension of selected feature subsets. Secondly, the K-nearest neighbor (KNN) classifier is applied to determine the dimensions of the optimal feature subsets for different types of features. Finally, in the process of establishing features fusion, we come up with a classification dominance feature fusion strategy which conducts an effective basic feature. Experimental results on two datasets show that the recognition rates of Database I and Database II achieve 97.5% and 80.11%, respectively, when k = 1 for KNN classifier and the distance metric is correlation distance (COR), which demonstrates the superiority of the proposed feature selection and fusion framework in representing signal features. The novel feature selection method proposed in this paper can effectively select feature subsets that are conducive to the classification, while the feature fusion framework can fuse various features which describe the different characteristics of sensor signals, for enhancing the discrimination ability of gas sensors and, to a certain extent, suppressing drift effect.
Theoretical models for application in school health education research.
Parcel, G S
1984-01-01
Theoretical models that may be useful to research studies in school health education are reviewed. Selected, well-defined theories include social learning theory, problem-behavior theory, theory of reasoned action, communications theory, coping theory, social competence, and social and family theories. Also reviewed are multiple theory models including models of health related-behavior, the PRECEDE Framework, social-psychological approaches and the Activated Health Education Model. Two major reviews of teaching models are also discussed. The paper concludes with a brief outline of the general applications of theory to the field of school health education including applications to basic research, development and design of interventions, program evaluation, and program utilization.
Désiron, Huguette A M; Donceel, Peter; de Rijk, Angelique; Van Hoof, Elke
2013-12-01
Improved therapies and early detection have significantly increased the number of breast cancers survivors, leading to increasing needs regarding return to work (RTW). Occupational therapy (OT) interventions provide successful RTW assistance for other conditions, but are not validated in breast cancer. This paper aims to identify a theoretical framework for OT intervention by questioning how OT models can be used in OT interventions in RTW of breast cancer patients; criteria to be used to select these models and adaptations that would be necessary to match the OT model(s) to breast cancer patients' needs? Using research specific criteria derived from OT literature (conceptual OT-model, multidisciplinary, referring to the International Classification of functioning (ICF), RTW in breast cancer) a search in 9 electronic databases was conducted to select articles that describe conceptual OT models. A content analysis of those models complying to at least two of the selection criteria was realised. Checking for breast cancer specific issues, results were matched with literature of care-models regarding RTW in breast cancer. From the nine models initially identified, three [Canadian Model of Occupational Performance, Model of Human Occupation (MOHO), Person-Environment-Occupation-Performance model] were selected based on the selection criteria. The MOHO had the highest compliance rate with the criteria. To enhance usability in breast cancer, some adaptations are needed. No OT model to facilitate RTW in breast cancer could be identified, indicating a need to fill this gap. Individual and societal needs of breast cancer patients can be answered by using a MOHO-based OT model, extended with indications for better treatment, work-outcomes and longitudinal process factors.
Quantitative risk stratification in Markov chains with limiting conditional distributions.
Chan, David C; Pollett, Philip K; Weinstein, Milton C
2009-01-01
Many clinical decisions require patient risk stratification. The authors introduce the concept of limiting conditional distributions, which describe the equilibrium proportion of surviving patients occupying each disease state in a Markov chain with death. Such distributions can quantitatively describe risk stratification. The authors first establish conditions for the existence of a positive limiting conditional distribution in a general Markov chain and describe a framework for risk stratification using the limiting conditional distribution. They then apply their framework to a clinical example of a treatment indicated for high-risk patients, first to infer the risk of patients selected for treatment in clinical trials and then to predict the outcomes of expanding treatment to other populations of risk. For the general chain, a positive limiting conditional distribution exists only if patients in the earliest state have the lowest combined risk of progression or death. The authors show that in their general framework, outcomes and population risk are interchangeable. For the clinical example, they estimate that previous clinical trials have selected the upper quintile of patient risk for this treatment, but they also show that expanded treatment would weakly dominate this degree of targeted treatment, and universal treatment may be cost-effective. Limiting conditional distributions exist in most Markov models of progressive diseases and are well suited to represent risk stratification quantitatively. This framework can characterize patient risk in clinical trials and predict outcomes for other populations of risk.
A methodological framework to assess the carbon balance of tropical managed forests.
Piponiot, Camille; Cabon, Antoine; Descroix, Laurent; Dourdain, Aurélie; Mazzei, Lucas; Ouliac, Benjamin; Rutishauser, Ervan; Sist, Plinio; Hérault, Bruno
2016-12-01
Managed forests are a major component of tropical landscapes. Production forests as designated by national forest services cover up to 400 million ha, i.e. half of the forested area in the humid tropics. Forest management thus plays a major role in the global carbon budget, but with a lack of unified method to estimate carbon fluxes from tropical managed forests. In this study we propose a new time- and spatially-explicit methodology to estimate the above-ground carbon budget of selective logging at regional scale. The yearly balance of a logging unit, i.e. the elementary management unit of a forest estate, is modelled by aggregating three sub-models encompassing (i) emissions from extracted wood, (ii) emissions from logging damage and deforested areas and (iii) carbon storage from post-logging recovery. Models are parametrised and uncertainties are propagated through a MCMC algorithm. As a case study, we used 38 years of National Forest Inventories in French Guiana, northeastern Amazonia, to estimate the above-ground carbon balance (i.e. the net carbon exchange with the atmosphere) of selectively logged forests. Over this period, the net carbon balance of selective logging in the French Guianan Permanent Forest Estate is estimated to be comprised between 0.12 and 1.33 Tg C, with a median value of 0.64 Tg C. Uncertainties over the model could be diminished by improving the accuracy of both logging damage and large woody necromass decay submodels. We propose an innovating carbon accounting framework relying upon basic logging statistics. This flexible tool allows carbon budget of tropical managed forests to be estimated in a wide range of tropical regions.
Crupi, Vincenzo; Nelson, Jonathan D; Meder, Björn; Cevolani, Gustavo; Tentori, Katya
2018-06-17
Searching for information is critical in many situations. In medicine, for instance, careful choice of a diagnostic test can help narrow down the range of plausible diseases that the patient might have. In a probabilistic framework, test selection is often modeled by assuming that people's goal is to reduce uncertainty about possible states of the world. In cognitive science, psychology, and medical decision making, Shannon entropy is the most prominent and most widely used model to formalize probabilistic uncertainty and the reduction thereof. However, a variety of alternative entropy metrics (Hartley, Quadratic, Tsallis, Rényi, and more) are popular in the social and the natural sciences, computer science, and philosophy of science. Particular entropy measures have been predominant in particular research areas, and it is often an open issue whether these divergences emerge from different theoretical and practical goals or are merely due to historical accident. Cutting across disciplinary boundaries, we show that several entropy and entropy reduction measures arise as special cases in a unified formalism, the Sharma-Mittal framework. Using mathematical results, computer simulations, and analyses of published behavioral data, we discuss four key questions: How do various entropy models relate to each other? What insights can be obtained by considering diverse entropy models within a unified framework? What is the psychological plausibility of different entropy models? What new questions and insights for research on human information acquisition follow? Our work provides several new pathways for theoretical and empirical research, reconciling apparently conflicting approaches and empirical findings within a comprehensive and unified information-theoretic formalism. Copyright © 2018 Cognitive Science Society, Inc.
A model to decompose the performance of supplementary private health insurance markets.
Leidl, Reiner
2008-09-01
For an individual insurance firm offering supplementary private health insurance, a model is developed to decompose market performance in terms of insurer profits. For the individual contract, the model specifies the conditions under which adverse selection, cream skimming, and moral hazard occur, shows the impact of information on contracting, and the profit contribution. Contracts are determined by comparing willingness to pay for insurance with the individual's risk position, and information on both sides of the market. Finally, performance is aggregated up to the total market. The model provides a framework to explain the attractiveness of supplementary markets to insurers.
NASA Astrophysics Data System (ADS)
Cho, G. S.
2017-09-01
For performance optimization of Refrigerated Warehouses, design parameters are selected based on the physical parameters such as number of equipment and aisles, speeds of forklift for ease of modification. This paper provides a comprehensive framework approach for the system design of Refrigerated Warehouses. We propose a modeling approach which aims at the simulation optimization so as to meet required design specifications using the Design of Experiment (DOE) and analyze a simulation model using integrated aspect-oriented modeling approach (i-AOMA). As a result, this suggested method can evaluate the performance of a variety of Refrigerated Warehouses operations.
Python package for model STructure ANalysis (pySTAN)
NASA Astrophysics Data System (ADS)
Van Hoey, Stijn; van der Kwast, Johannes; Nopens, Ingmar; Seuntjens, Piet
2013-04-01
The selection and identification of a suitable hydrological model structure is more than fitting parameters of a model structure to reproduce a measured hydrograph. The procedure is highly dependent on various criteria, i.e. the modelling objective, the characteristics and the scale of the system under investigation as well as the available data. Rigorous analysis of the candidate model structures is needed to support and objectify the selection of the most appropriate structure for a specific case (or eventually justify the use of a proposed ensemble of structures). This holds both in the situation of choosing between a limited set of different structures as well as in the framework of flexible model structures with interchangeable components. Many different methods to evaluate and analyse model structures exist. This leads to a sprawl of available methods, all characterized by different assumptions, changing conditions of application and various code implementations. Methods typically focus on optimization, sensitivity analysis or uncertainty analysis, with backgrounds from optimization, machine-learning or statistics amongst others. These methods also need an evaluation metric (objective function) to compare the model outcome with some observed data. However, for current methods described in literature, implementations are not always transparent and reproducible (if available at all). No standard procedures exist to share code and the popularity (and amount of applications) of the methods is sometimes more dependent on the availability than the merits of the method. Moreover, new implementations of existing methods are difficult to verify and the different theoretical backgrounds make it difficult for environmental scientists to decide about the usefulness of a specific method. A common and open framework with a large set of methods can support users in deciding about the most appropriate method. Hence, it enables to simultaneously apply and compare different methods on a fair basis. We developed and present pySTAN (python framework for STructure Analysis), a python package containing a set of functions for model structure evaluation to provide the analysis of (hydrological) model structures. A selected set of algorithms for optimization, uncertainty and sensitivity analysis is currently available, together with a set of evaluation (objective) functions and input distributions to sample from. The methods are implemented model-independent and the python language provides the wrapper functions to apply administer external model codes. Different objective functions can be considered simultaneously with both statistical metrics and more hydrology specific metrics. By using so-called reStructuredText (sphinx documentation generator) and Python documentation strings (docstrings), the generation of manual pages is semi-automated and a specific environment is available to enhance both the readability and transparency of the code. It thereby enables a larger group of users to apply and compare these methods and to extend the functionalities.
Wang, Jie; Feng, Zuren; Lu, Na; Luo, Jing
2018-06-01
Feature selection plays an important role in the field of EEG signals based motor imagery pattern classification. It is a process that aims to select an optimal feature subset from the original set. Two significant advantages involved are: lowering the computational burden so as to speed up the learning procedure and removing redundant and irrelevant features so as to improve the classification performance. Therefore, feature selection is widely employed in the classification of EEG signals in practical brain-computer interface systems. In this paper, we present a novel statistical model to select the optimal feature subset based on the Kullback-Leibler divergence measure, and automatically select the optimal subject-specific time segment. The proposed method comprises four successive stages: a broad frequency band filtering and common spatial pattern enhancement as preprocessing, features extraction by autoregressive model and log-variance, the Kullback-Leibler divergence based optimal feature and time segment selection and linear discriminate analysis classification. More importantly, this paper provides a potential framework for combining other feature extraction models and classification algorithms with the proposed method for EEG signals classification. Experiments on single-trial EEG signals from two public competition datasets not only demonstrate that the proposed method is effective in selecting discriminative features and time segment, but also show that the proposed method yields relatively better classification results in comparison with other competitive methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
Random and non-random mating populations: Evolutionary dynamics in meiotic drive.
Sarkar, Bijan
2016-01-01
Game theoretic tools are utilized to analyze a one-locus continuous selection model of sex-specific meiotic drive by considering nonequivalence of the viabilities of reciprocal heterozygotes that might be noticed at an imprinted locus. The model draws attention to the role of viability selections of different types to examine the stable nature of polymorphic equilibrium. A bridge between population genetics and evolutionary game theory has been built up by applying the concept of the Fundamental Theorem of Natural Selection. In addition to pointing out the influences of male and female segregation ratios on selection, configuration structure reveals some noted results, e.g., Hardy-Weinberg frequencies hold in replicator dynamics, occurrence of faster evolution at the maximized variance fitness, existence of mixed Evolutionarily Stable Strategy (ESS) in asymmetric games, the tending evolution to follow not only a 1:1 sex ratio but also a 1:1 different alleles ratio at particular gene locus. Through construction of replicator dynamics in the group selection framework, our selection model introduces a redefining bases of game theory to incorporate non-random mating where a mating parameter associated with population structure is dependent on the social structure. Also, the model exposes the fact that the number of polymorphic equilibria will depend on the algebraic expression of population structure. Copyright © 2015 Elsevier Inc. All rights reserved.
Shaw, Sally Jane
2017-07-12
There is a range of risk factors that can lead to peripheral intravenous (IV) cannula failure, and several failed cannulation attempts can result in the patient experiencing increased pain, discomfort and delays in receiving IV therapy. The Vessel Health and Preservation (VHP) framework is a tool that can be used to improve clinical decision-making and the patient experience in relation to vascular access and IV therapy. Use of the VHP framework can ensure the right vein and right vascular access device (VAD) is selected at the right time for each patient. This article describes how healthcare practitioners can use the VHP framework to support and enhance vein assessment and VAD selection. It outlines the various types of VAD available, focusing on short-term peripheral IV cannulae, which are the most commonly used devices. It also explores the potential benefits of implementing the VHP framework in clinical areas.
NASA Astrophysics Data System (ADS)
Wang, Baijie; Wang, Xin; Chen, Zhangxin
2013-08-01
Reservoir characterization refers to the process of quantitatively assigning reservoir properties using all available field data. Artificial neural networks (ANN) have recently been introduced to solve reservoir characterization problems dealing with the complex underlying relationships inherent in well log data. Despite the utility of ANNs, the current limitation is that most existing applications simply focus on directly implementing existing ANN models instead of improving/customizing them to fit the specific reservoir characterization tasks at hand. In this paper, we propose a novel intelligent framework that integrates fuzzy ranking (FR) and multilayer perceptron (MLP) neural networks for reservoir characterization. FR can automatically identify a minimum subset of well log data as neural inputs, and the MLP is trained to learn the complex correlations from the selected well log data to a target reservoir property. FR guarantees the selection of the optimal subset of representative data from the overall well log data set for the characterization of a specific reservoir property; and, this implicitly improves the modeling and predication accuracy of the MLP. In addition, a growing number of industrial agencies are implementing geographic information systems (GIS) in field data management; and, we have designed the GFAR solution (GIS-based FR ANN Reservoir characterization solution) system, which integrates the proposed framework into a GIS system that provides an efficient characterization solution. Three separate petroleum wells from southwestern Alberta, Canada, were used in the presented case study of reservoir porosity characterization. Our experiments demonstrate that our method can generate reliable results.
Selection vector filter framework
NASA Astrophysics Data System (ADS)
Lukac, Rastislav; Plataniotis, Konstantinos N.; Smolka, Bogdan; Venetsanopoulos, Anastasios N.
2003-10-01
We provide a unified framework of nonlinear vector techniques outputting the lowest ranked vector. The proposed framework constitutes a generalized filter class for multichannel signal processing. A new class of nonlinear selection filters are based on the robust order-statistic theory and the minimization of the weighted distance function to other input samples. The proposed method can be designed to perform a variety of filtering operations including previously developed filtering techniques such as vector median, basic vector directional filter, directional distance filter, weighted vector median filters and weighted directional filters. A wide range of filtering operations is guaranteed by the filter structure with two independent weight vectors for angular and distance domains of the vector space. In order to adapt the filter parameters to varying signal and noise statistics, we provide also the generalized optimization algorithms taking the advantage of the weighted median filters and the relationship between standard median filter and vector median filter. Thus, we can deal with both statistical and deterministic aspects of the filter design process. It will be shown that the proposed method holds the required properties such as the capability of modelling the underlying system in the application at hand, the robustness with respect to errors in the model of underlying system, the availability of the training procedure and finally, the simplicity of filter representation, analysis, design and implementation. Simulation studies also indicate that the new filters are computationally attractive and have excellent performance in environments corrupted by bit errors and impulsive noise.
NASA Astrophysics Data System (ADS)
Anees, Asim; Aryal, Jagannath; O'Reilly, Małgorzata M.; Gale, Timothy J.; Wardlaw, Tim
2016-12-01
A robust non-parametric framework, based on multiple Radial Basic Function (RBF) kernels, is proposed in this study, for detecting land/forest cover changes using Landsat 7 ETM+ images. One of the widely used frameworks is to find change vectors (difference image) and use a supervised classifier to differentiate between change and no-change. The Bayesian Classifiers e.g. Maximum Likelihood Classifier (MLC), Naive Bayes (NB), are widely used probabilistic classifiers which assume parametric models, e.g. Gaussian function, for the class conditional distributions. However, their performance can be limited if the data set deviates from the assumed model. The proposed framework exploits the useful properties of Least Squares Probabilistic Classifier (LSPC) formulation i.e. non-parametric and probabilistic nature, to model class posterior probabilities of the difference image using a linear combination of a large number of Gaussian kernels. To this end, a simple technique, based on 10-fold cross-validation is also proposed for tuning model parameters automatically instead of selecting a (possibly) suboptimal combination from pre-specified lists of values. The proposed framework has been tested and compared with Support Vector Machine (SVM) and NB for detection of defoliation, caused by leaf beetles (Paropsisterna spp.) in Eucalyptus nitens and Eucalyptus globulus plantations of two test areas, in Tasmania, Australia, using raw bands and band combination indices of Landsat 7 ETM+. It was observed that due to multi-kernel non-parametric formulation and probabilistic nature, the LSPC outperforms parametric NB with Gaussian assumption in change detection framework, with Overall Accuracy (OA) ranging from 93.6% (κ = 0.87) to 97.4% (κ = 0.94) against 85.3% (κ = 0.69) to 93.4% (κ = 0.85), and is more robust to changing data distributions. Its performance was comparable to SVM, with added advantages of being probabilistic and capable of handling multi-class problems naturally with its original formulation.
Agent-Based Framework for Personalized Service Provisioning in Converged IP Networks
NASA Astrophysics Data System (ADS)
Podobnik, Vedran; Matijasevic, Maja; Lovrek, Ignac; Skorin-Kapov, Lea; Desic, Sasa
In a global multi-service and multi-provider market, the Internet Service Providers will increasingly need to differentiate in the service quality they offer and base their operation on new, consumer-centric business models. In this paper, we propose an agent-based framework for the Business-to-Consumer (B2C) electronic market, comprising the Consumer Agents, Broker Agents and Content Agents, which enable Internet consumers to select a content provider in an automated manner. We also discuss how to dynamically allocate network resources to provide end-to-end Quality of Service (QoS) for a given consumer and content provider.
Feng, Dai; Baumgartner, Richard; Svetnik, Vladimir
2018-04-05
The concordance correlation coefficient (CCC) is a widely used scaled index in the study of agreement. In this article, we propose estimating the CCC by a unified Bayesian framework that can (1) accommodate symmetric or asymmetric and light- or heavy-tailed data; (2) select model from several candidates; and (3) address other issues frequently encountered in practice such as confounding covariates and missing data. The performance of the proposal was studied and demonstrated using simulated as well as real-life biomarker data from a clinical study of an insomnia drug. The implementation of the proposal is accessible through a package in the Comprehensive R Archive Network.
Zhang, Qingxue; Zhou, Dian; Zeng, Xuan
2016-11-01
This paper proposes a novel machine learning-enabled framework to robustly monitor the instantaneous heart rate (IHR) from wrist-electrocardiography (ECG) signals continuously and heavily corrupted by random motion artifacts in wearable applications. The framework includes two stages, i.e. heartbeat identification and refinement, respectively. In the first stage, an adaptive threshold-based auto-segmentation approach is proposed to select out heartbeat candidates, including the real heartbeats and large amounts of motion-artifact-induced interferential spikes. Then twenty-six features are extracted for each candidate in time, spatial, frequency and statistical domains, and evaluated by a spare support vector machine (SVM) to select out ten critical features which can effectively reveal residual heartbeat information. Afterwards, an SVM model, created on the training data using the selected feature set, is applied to find high confident heartbeats from a large number of candidates in the testing data. In the second stage, the SVM classification results are further refined by two steps: (1) a rule-based classifier with two attributes named 'continuity check' and 'locality check' for outlier (false positives) removal, and (2) a heartbeat interpolation strategy for missing-heartbeat (false negatives) recovery. The framework is evaluated on a wrist-ECG dataset acquired by a semi-customized platform and also a public dataset. When the signal-to-noise ratio is as low as -7 dB, the mean absolute error of the estimated IHR is 1.4 beats per minute (BPM) and the root mean square error is 6.5 BPM. The proposed framework greatly outperforms well-established approaches, demonstrating that it can effectively identify the heartbeats from ECG signals continuously corrupted by intense motion artifacts and robustly estimate the IHR. This study is expected to contribute to robust long-term wearable IHR monitoring for pervasive heart health and fitness management.
A Liver-centric Multiscale Modeling Framework for Xenobiotics ...
We describe a multi-scale framework for modeling acetaminophen-induced liver toxicity. Acetaminophen is a widely used analgesic. Overdose of acetaminophen can result in liver injury via its biotransformation into toxic product, which further induce massive necrosis. Our study focuses on developing a multi-scale computational model to characterize both phase I and phase II metabolism of acetaminophen, by bridging Physiologically Based Pharmacokinetic (PBPK) modeling at the whole body level, cell movement and blood flow at the tissue level and cell signaling and drug metabolism at the sub-cellular level. To validate the model, we estimated our model parameters by fi?tting serum concentrations of acetaminophen and its glucuronide and sulfate metabolites to experiments, and carried out sensitivity analysis on 35 parameters selected from three modules. Our study focuses on developing a multi-scale computational model to characterize both phase I and phase II metabolism of acetaminophen, by bridging Physiologically Based Pharmacokinetic (PBPK) modeling at the whole body level, cell movement and blood flow at the tissue level and cell signaling and drug metabolism at the sub-cellular level. This multiscale model bridges the CompuCell3D tool used by the Virtual Tissue project with the httk tool developed by the Rapid Exposure and Dosimetry project.
Mood disorders: neurocognitive models.
Malhi, Gin S; Byrow, Yulisha; Fritz, Kristina; Das, Pritha; Baune, Bernhard T; Porter, Richard J; Outhred, Tim
2015-12-01
In recent years, a number of neurocognitive models stemming from psychiatry and psychology schools of thought have conceptualized the pathophysiology of mood disorders in terms of dysfunctional neural mechanisms that underpin and drive neurocognitive processes. Though these models have been useful for advancing our theoretical understanding and facilitating important lines of research, translation of these models and their application within the clinical arena have been limited-partly because of lack of integration and synthesis. Cognitive neuroscience provides a novel perspective for understanding and modeling mood disorders. This selective review of influential neurocognitive models develops an integrative approach that can serve as a template for future research and the development of a clinically meaningful framework for investigating, diagnosing, and treating mood disorders. A selective literature search was conducted using PubMed and PsychINFO to identify prominent neurobiological and neurocognitive models of mood disorders. Most models identify similar neural networks and brain regions and neuropsychological processes in the neurocognition of mood, however, they differ in terms of specific functions attached to neural processes and how these interact. Furthermore, cognitive biases, reward processing and motivation, rumination, and mood stability, which play significant roles in the manner in which attention, appraisal, and response processes are deployed in mood disorders, are not sufficiently integrated. The inclusion of interactions between these additional components enhances our understanding of the etiology and pathophysiology of mood disorders. Through integration of key cognitive functions and understanding of how these interface with neural functioning within neurocognitive models of mood disorders, a framework for research can be created for translation to diagnosis and treatment of mood disorders. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A unified framework for group independent component analysis for multi-subject fMRI data
Guo, Ying; Pagnoni, Giuseppe
2008-01-01
Independent component analysis (ICA) is becoming increasingly popular for analyzing functional magnetic resonance imaging (fMRI) data. While ICA has been successfully applied to single-subject analysis, the extension of ICA to group inferences is not straightforward and remains an active topic of research. Current group ICA models, such as the GIFT (Calhoun et al., 2001) and tensor PICA (Beckmann and Smith, 2005), make different assumptions about the underlying structure of the group spatio-temporal processes and are thus estimated using algorithms tailored for the assumed structure, potentially leading to diverging results. To our knowledge, there are currently no methods for assessing the validity of different model structures in real fMRI data and selecting the most appropriate one among various choices. In this paper, we propose a unified framework for estimating and comparing group ICA models with varying spatio-temporal structures. We consider a class of group ICA models that can accommodate different group structures and include existing models, such as the GIFT and tensor PICA, as special cases. We propose a maximum likelihood (ML) approach with a modified Expectation-Maximization (EM) algorithm for the estimation of the proposed class of models. Likelihood ratio tests (LRT) are presented to compare between different group ICA models. The LRT can be used to perform model comparison and selection, to assess the goodness-of-fit of a model in a particular data set, and to test group differences in the fMRI signal time courses between subject subgroups. Simulation studies are conducted to evaluate the performance of the proposed method under varying structures of group spatio-temporal processes. We illustrate our group ICA method using data from an fMRI study that investigates changes in neural processing associated with the regular practice of Zen meditation. PMID:18650105
Designing ecological climate change impact assessments to reflect key climatic drivers
Sofaer, Helen R.; Barsugli, Joseph J.; Jarnevich, Catherine S.; Abatzoglou, John T.; Talbert, Marian; Miller, Brian W.; Morisette, Jeffrey T.
2017-01-01
Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive – such as means or extremes – can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the ‘model space’ approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling.
Designing ecological climate change impact assessments to reflect key climatic drivers.
Sofaer, Helen R; Barsugli, Joseph J; Jarnevich, Catherine S; Abatzoglou, John T; Talbert, Marian K; Miller, Brian W; Morisette, Jeffrey T
2017-07-01
Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive - such as means or extremes - can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the 'model space' approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling. © 2017 John Wiley & Sons Ltd.
A Big Bang model of human colorectal tumor growth.
Sottoriva, Andrea; Kang, Haeyoun; Ma, Zhicheng; Graham, Trevor A; Salomon, Matthew P; Zhao, Junsong; Marjoram, Paul; Siegmund, Kimberly; Press, Michael F; Shibata, Darryl; Curtis, Christina
2015-03-01
What happens in early, still undetectable human malignancies is unknown because direct observations are impractical. Here we present and validate a 'Big Bang' model, whereby tumors grow predominantly as a single expansion producing numerous intermixed subclones that are not subject to stringent selection and where both public (clonal) and most detectable private (subclonal) alterations arise early during growth. Genomic profiling of 349 individual glands from 15 colorectal tumors showed an absence of selective sweeps, uniformly high intratumoral heterogeneity (ITH) and subclone mixing in distant regions, as postulated by our model. We also verified the prediction that most detectable ITH originates from early private alterations and not from later clonal expansions, thus exposing the profile of the primordial tumor. Moreover, some tumors appear 'born to be bad', with subclone mixing indicative of early malignant potential. This new model provides a quantitative framework to interpret tumor growth dynamics and the origins of ITH, with important clinical implications.
NASA Astrophysics Data System (ADS)
Lin, T.; Lin, Z.; Lim, S.
2017-12-01
We present an integrated modeling framework to simulate groundwater level change under the dramatic increase of hydraulic fracturing water use in the Bakken Shale oil production area. The framework combines the agent-based model (ABM) with the Fox Hills-Hell Creek (FH-HC) groundwater model. In development of the ABM, institution theory is used to model the regulation policies from the North Dakota State Water Commission, while evolutionary programming and cognitive maps are used to model the social structure that emerges from the behavior of competing individual water businesses. Evolutionary programming allows individuals to select an appropriate strategy when annually applying for potential water use permits; whereas cognitive maps endow agent's ability and willingness to compete for more water sales. All agents have their own influence boundaries that inhibit their competitive behavior toward their neighbors but not to non-neighbors. The decision-making process is constructed and parameterized with both quantitative and qualitative information, i.e., empirical water use data and knowledge gained from surveys with stakeholders. By linking institution theory, evolutionary programming, and cognitive maps, our approach addresses a higher complexity of the real decision making process. Furthermore, this approach is a new exploration for modeling the dynamics of Coupled Human and Natural System. After integrating ABM with the FH-HC model, drought and limited water accessibility scenarios are simulated to predict FH-HC ground water level changes in the future. The integrated modeling framework of ABM and FH-HC model can be used to support making scientifically sound policies in water allocation and management.
Connallon, Tim; Clark, Andrew G
2012-04-01
Antagonistic selection--where alleles at a locus have opposing effects on male and female fitness ("sexual antagonism") or between components of fitness ("antagonistic pleiotropy")--might play an important role in maintaining population genetic variation and in driving phylogenetic and genomic patterns of sexual dimorphism and life-history evolution. While prior theory has thoroughly characterized the conditions necessary for antagonistic balancing selection to operate, we currently know little about the evolutionary interactions between antagonistic selection, recurrent mutation, and genetic drift, which should collectively shape empirical patterns of genetic variation. To fill this void, we developed and analyzed a series of population genetic models that simultaneously incorporate these processes. Our models identify two general properties of antagonistically selected loci. First, antagonistic selection inflates heterozygosity and fitness variance across a broad parameter range--a result that applies to alleles maintained by balancing selection and by recurrent mutation. Second, effective population size and genetic drift profoundly affect the statistical frequency distributions of antagonistically selected alleles. The "efficacy" of antagonistic selection (i.e., its tendency to dominate over genetic drift) is extremely weak relative to classical models, such as directional selection and overdominance. Alleles meeting traditional criteria for strong selection (N(e)s > 1, where N(e) is the effective population size, and s is a selection coefficient for a given sex or fitness component) may nevertheless evolve as if neutral. The effects of mutation and demography may generate population differences in overall levels of antagonistic fitness variation, as well as molecular population genetic signatures of balancing selection.
Cloud Based Metalearning System for Predictive Modeling of Biomedical Data
Vukićević, Milan
2014-01-01
Rapid growth and storage of biomedical data enabled many opportunities for predictive modeling and improvement of healthcare processes. On the other side analysis of such large amounts of data is a difficult and computationally intensive task for most existing data mining algorithms. This problem is addressed by proposing a cloud based system that integrates metalearning framework for ranking and selection of best predictive algorithms for data at hand and open source big data technologies for analysis of biomedical data. PMID:24892101
ERIC Educational Resources Information Center
Burgess, Melissa Renee
2012-01-01
The purpose of this study was to examine the concept of "fit" with housing/residence life professionals at colleges and universities using Werbel and Gilliland's (1999) framework/ model of describing person-environment fit and then determine how/if this fit may be impacted by individual or institutional demographics. This purpose…
NASA Technical Reports Server (NTRS)
Wang, Nanbor; Parameswaran, Kirthika; Kircher, Michael; Schmidt, Douglas
2003-01-01
Although existing CORBA specifications, such as Real-time CORBA and CORBA Messaging, address many end-to-end quality-of service (QoS) properties, they do not define strategies for configuring these properties into applications flexibly, transparently, and adaptively. Therefore, application developers must make these configuration decisions manually and explicitly, which is tedious, error-prone, and open sub-optimal. Although the recently adopted CORBA Component Model (CCM) does define a standard configuration framework for packaging and deploying software components, conventional CCM implementations focus on functionality rather than adaptive quality-of-service, which makes them unsuitable for next-generation applications with demanding QoS requirements. This paper presents three contributions to the study of middleware for QoS-enabled component-based applications. It outlines rejective middleware techniques designed to adaptively (1) select optimal communication mechanisms, (2) manage QoS properties of CORBA components in their contain- ers, and (3) (re)con$gure selected component executors dynamically. Based on our ongoing research on CORBA and the CCM, we believe the application of rejective techniques to component middleware will provide a dynamically adaptive and (re)configurable framework for COTS software that is well-suited for the QoS demands of next-generation applications.
NASA Technical Reports Server (NTRS)
Wang, Nanbor; Kircher, Michael; Schmidt, Douglas C.
2000-01-01
Although existing CORBA specifications, such as Real-time CORBA and CORBA Messaging, address many end-to-end quality-of-service (QoS) properties, they do not define strategies for configuring these properties into applications flexibly, transparently, and adaptively. Therefore, application developers must make these configuration decisions manually and explicitly, which is tedious, error-prone, and often sub-optimal. Although the recently adopted CORBA Component Model (CCM) does define a standard configuration frame-work for packaging and deploying software components, conventional CCM implementations focus on functionality rather than adaptive quality-of service, which makes them unsuitable for next-generation applications with demanding QoS requirements. This paper presents three contributions to the study of middleware for QoS-enabled component-based applications. It outlines reflective middleware techniques designed to adaptively: (1) select optimal communication mechanisms, (2) man- age QoS properties of CORBA components in their containers, and (3) (re)configure selected component executors dynamically. Based on our ongoing research on CORBA and the CCM, we believe the application of reflective techniques to component middleware will provide a dynamically adaptive and (re)configurable framework for COTS software that is well-suited for the QoS demands of next-generation applications.
NASA Astrophysics Data System (ADS)
Benettin, P.; Queloz, P.; Bailey, S. W.; McGuire, K. J.; Rinaldo, A.; Botter, G.
2015-12-01
Water age distributions can be used to address a number of environmental challenges, such as modeling the dynamics of river water quality, quantifying the interactions between shallow and deep flow systems and understanding nutrient loading persistence. Moreover, as the travel time of a water particle is the time available for biogeochemical reactions, it can be explicitly used to predict the concentration of non-conservative solutes, as e.g. those derived by mineral weathering. In recent years, many studies acknowledged the dynamic nature of streamflow age and linked it to observed variations in stream water quality. In this new framework, water stored within a catchment can be seen as a pool that is selectively "sampled" by streams and vegetation, determining the chemical composition of discharge and evapotranspiration. We present results from a controlled lysimeter experiment and real-world catchments, where the theoretical framework has been used to reproduce water quality datasets including conservative tracers (e.g. chloride and water stable isotopes) and weathering-derived solutes (like silicon and sodium). The approach proves useful to estimate the catchment water storage involved in solute mixing and sheds light on how solutes and water of different ages are selectively removed by vegetation and soil drainage.
Manufacturing process and material selection in concurrent collaborative design of MEMS devices
NASA Astrophysics Data System (ADS)
Zha, Xuan F.; Du, H.
2003-09-01
In this paper we present knowledge of an intensive approach and system for selecting suitable manufacturing processes and materials for microelectromechanical systems (MEMS) devices in concurrent collaborative design environment. In the paper, fundamental issues on MEMS manufacturing process and material selection such as concurrent design framework, manufacturing process and material hierarchies, and selection strategy are first addressed. Then, a fuzzy decision support scheme for a multi-criteria decision-making problem is proposed for estimating, ranking and selecting possible manufacturing processes, materials and their combinations. A Web-based prototype advisory system for the MEMS manufacturing process and material selection, WebMEMS-MASS, is developed based on the client-knowledge server architecture and framework to help the designer find good processes and materials for MEMS devices. The system, as one of the important parts of an advanced simulation and modeling tool for MEMS design, is a concept level process and material selection tool, which can be used as a standalone application or a Java applet via the Web. The running sessions of the system are inter-linked with webpages of tutorials and reference pages to explain the facets, fabrication processes and material choices, and calculations and reasoning in selection are performed using process capability and material property data from a remote Web-based database and interactive knowledge base that can be maintained and updated via the Internet. The use of the developed system including operation scenario, use support, and integration with an MEMS collaborative design system is presented. Finally, an illustration example is provided.
Kotliar, Natasha B.; Wiens, John A.
1990-01-01
We develop a hierarchical model of heterogeneity that provides a framework for classifying patch structure across a range of scales. Patches at lower levels in the hierarchy are more simplistic and correspond to the traditional view of patches. At levels approaching the upper bounds of the hierarchy the internal structure becomes more heterogeneous and boundaries more ambiguous. At each level in the hierarchy, patch structure will be influenced by both contrast among patches as well as the degree of aggregation of patches at lower levels in the hierarchy. We apply this model to foraging theory, but it has wider applications as in the study of habitat selection, population dynamics, and habitat fragmentation. It may also be useful in expanding the realm of landscape ecology beyond the current focus on anthropocentric scales.
NASA Astrophysics Data System (ADS)
Fierro, Annalisa; Cocozza, Sergio; Monticelli, Antonella; Scala, Giovanni; Miele, Gennaro
2017-06-01
The presence of phenomena analogous to phase transition in Statistical Mechanics has been suggested in the evolution of a polygenic trait under stabilizing selection, mutation and genetic drift. By using numerical simulations of a model system, we analyze the evolution of a population of N diploid hermaphrodites in random mating regime. The population evolves under the effect of drift, selective pressure in form of viability on an additive polygenic trait, and mutation. The analysis allows to determine a phase diagram in the plane of mutation rate and strength of selection. The involved pattern of phase transitions is characterized by a line of critical points for weak selective pressure (smaller than a threshold), whereas discontinuous phase transitions, characterized by metastable hysteresis, are observed for strong selective pressure. A finite-size scaling analysis suggests the analogy between our system and the mean-field Ising model for selective pressure approaching the threshold from weaker values. In this framework, the mutation rate, which allows the system to explore the accessible microscopic states, is the parameter controlling the transition from large heterozygosity ( disordered phase) to small heterozygosity ( ordered one).
JTSA: an open source framework for time series abstractions.
Sacchi, Lucia; Capozzi, Davide; Bellazzi, Riccardo; Larizza, Cristiana
2015-10-01
The evaluation of the clinical status of a patient is frequently based on the temporal evolution of some parameters, making the detection of temporal patterns a priority in data analysis. Temporal abstraction (TA) is a methodology widely used in medical reasoning for summarizing and abstracting longitudinal data. This paper describes JTSA (Java Time Series Abstractor), a framework including a library of algorithms for time series preprocessing and abstraction and an engine to execute a workflow for temporal data processing. The JTSA framework is grounded on a comprehensive ontology that models temporal data processing both from the data storage and the abstraction computation perspective. The JTSA framework is designed to allow users to build their own analysis workflows by combining different algorithms. Thanks to the modular structure of a workflow, simple to highly complex patterns can be detected. The JTSA framework has been developed in Java 1.7 and is distributed under GPL as a jar file. JTSA provides: a collection of algorithms to perform temporal abstraction and preprocessing of time series, a framework for defining and executing data analysis workflows based on these algorithms, and a GUI for workflow prototyping and testing. The whole JTSA project relies on a formal model of the data types and of the algorithms included in the library. This model is the basis for the design and implementation of the software application. Taking into account this formalized structure, the user can easily extend the JTSA framework by adding new algorithms. Results are shown in the context of the EU project MOSAIC to extract relevant patterns from data coming related to the long term monitoring of diabetic patients. The proof that JTSA is a versatile tool to be adapted to different needs is given by its possible uses, both as a standalone tool for data summarization and as a module to be embedded into other architectures to select specific phenotypes based on TAs in a large dataset. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A Framework for Usability Evaluation in EHR Procurement.
Tyllinen, Mari; Kaipio, Johanna; Lääveri, Tinja
2018-01-01
Usability should be considered already by the procuring organizations when selecting future systems. In this paper, we present a framework for usability evaluation during electronic health record (EHR) system procurement. We describe the objectives of the evaluation, the procedure, selected usability attributes and the evaluation methods to measure them. We also present the emphasis usability had in the selection process. We do not elaborate on the details of the results, the application of methods or gathering of data. Instead we focus on the components of the framework to inform and give an example to other similar procurement projects.
NASA Astrophysics Data System (ADS)
Ban, Sang-Woo; Lee, Minho
2008-04-01
Knowledge-based clustering and autonomous mental development remains a high priority research topic, among which the learning techniques of neural networks are used to achieve optimal performance. In this paper, we present a new framework that can automatically generate a relevance map from sensory data that can represent knowledge regarding objects and infer new knowledge about novel objects. The proposed model is based on understating of the visual what pathway in our brain. A stereo saliency map model can selectively decide salient object areas by additionally considering local symmetry feature. The incremental object perception model makes clusters for the construction of an ontology map in the color and form domains in order to perceive an arbitrary object, which is implemented by the growing fuzzy topology adaptive resonant theory (GFTART) network. Log-polar transformed color and form features for a selected object are used as inputs of the GFTART. The clustered information is relevant to describe specific objects, and the proposed model can automatically infer an unknown object by using the learned information. Experimental results with real data have demonstrated the validity of this approach.
NASA Astrophysics Data System (ADS)
Ye, Liming; Yang, Guixia; Van Ranst, Eric; Tang, Huajun
2013-03-01
A generalized, structural, time series modeling framework was developed to analyze the monthly records of absolute surface temperature, one of the most important environmental parameters, using a deterministicstochastic combined (DSC) approach. Although the development of the framework was based on the characterization of the variation patterns of a global dataset, the methodology could be applied to any monthly absolute temperature record. Deterministic processes were used to characterize the variation patterns of the global trend and the cyclic oscillations of the temperature signal, involving polynomial functions and the Fourier method, respectively, while stochastic processes were employed to account for any remaining patterns in the temperature signal, involving seasonal autoregressive integrated moving average (SARIMA) models. A prediction of the monthly global surface temperature during the second decade of the 21st century using the DSC model shows that the global temperature will likely continue to rise at twice the average rate of the past 150 years. The evaluation of prediction accuracy shows that DSC models perform systematically well against selected models of other authors, suggesting that DSC models, when coupled with other ecoenvironmental models, can be used as a supplemental tool for short-term (˜10-year) environmental planning and decision making.