Input variable selection and calibration data selection for storm water quality regression models.
Sun, Siao; Bertrand-Krajewski, Jean-Luc
2013-01-01
Storm water quality models are useful tools in storm water management. Interest has been growing in analyzing existing data for developing models for urban storm water quality evaluations. It is important to select appropriate model inputs when many candidate explanatory variables are available. Model calibration and verification are essential steps in any storm water quality modeling. This study investigates input variable selection and calibration data selection in storm water quality regression models. The two selection problems are mutually interacted. A procedure is developed in order to fulfil the two selection tasks in order. The procedure firstly selects model input variables using a cross validation method. An appropriate number of variables are identified as model inputs to ensure that a model is neither overfitted nor underfitted. Based on the model input selection results, calibration data selection is studied. Uncertainty of model performances due to calibration data selection is investigated with a random selection method. An approach using the cluster method is applied in order to enhance model calibration practice based on the principle of selecting representative data for calibration. The comparison between results from the cluster selection method and random selection shows that the former can significantly improve performances of calibrated models. It is found that the information content in calibration data is important in addition to the size of calibration data.
A Selective Review of Group Selection in High-Dimensional Models
Huang, Jian; Breheny, Patrick; Ma, Shuangge
2013-01-01
Grouping structures arise naturally in many statistical modeling problems. Several methods have been proposed for variable selection that respect grouping structure in variables. Examples include the group LASSO and several concave group selection methods. In this article, we give a selective review of group selection concerning methodological developments, theoretical properties and computational algorithms. We pay particular attention to group selection methods involving concave penalties. We address both group selection and bi-level selection methods. We describe several applications of these methods in nonparametric additive models, semiparametric regression, seemingly unrelated regressions, genomic data analysis and genome wide association studies. We also highlight some issues that require further study. PMID:24174707
NASA Astrophysics Data System (ADS)
Song, Yunquan; Lin, Lu; Jian, Ling
2016-07-01
Single-index varying-coefficient model is an important mathematical modeling method to model nonlinear phenomena in science and engineering. In this paper, we develop a variable selection method for high-dimensional single-index varying-coefficient models using a shrinkage idea. The proposed procedure can simultaneously select significant nonparametric components and parametric components. Under defined regularity conditions, with appropriate selection of tuning parameters, the consistency of the variable selection procedure and the oracle property of the estimators are established. Moreover, due to the robustness of the check loss function to outliers in the finite samples, our proposed variable selection method is more robust than the ones based on the least squares criterion. Finally, the method is illustrated with numerical simulations.
Xu, Cheng-Jian; van der Schaaf, Arjen; Schilstra, Cornelis; Langendijk, Johannes A; van't Veld, Aart A
2012-03-15
To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator (LASSO), and Bayesian model averaging (BMA), were used to build NTCP models of xerostomia following radiotherapy treatment for head and neck cancer. Performance of each learning method was evaluated by a repeated cross-validation scheme in order to obtain a fair comparison among methods. It was found that the LASSO and BMA methods produced models with significantly better predictive power than that of the stepwise selection method. Furthermore, the LASSO method yields an easily interpretable model as the stepwise method does, in contrast to the less intuitive BMA method. The commonly used stepwise selection method, which is simple to execute, may be insufficient for NTCP modeling. The LASSO method is recommended. Copyright © 2012 Elsevier Inc. All rights reserved.
Exploring Several Methods of Groundwater Model Selection
NASA Astrophysics Data System (ADS)
Samani, Saeideh; Ye, Ming; Asghari Moghaddam, Asghar
2017-04-01
Selecting reliable models for simulating groundwater flow and solute transport is essential to groundwater resources management and protection. This work is to explore several model selection methods for avoiding over-complex and/or over-parameterized groundwater models. We consider six groundwater flow models with different numbers (6, 10, 10, 13, 13 and 15) of model parameters. These models represent alternative geological interpretations, recharge estimates, and boundary conditions at a study site in Iran. The models were developed with Model Muse, and calibrated against observations of hydraulic head using UCODE. Model selection was conducted by using the following four approaches: (1) Rank the models using their root mean square error (RMSE) obtained after UCODE-based model calibration, (2) Calculate model probability using GLUE method, (3) Evaluate model probability using model selection criteria (AIC, AICc, BIC, and KIC), and (4) Evaluate model weights using the Fuzzy Multi-Criteria-Decision-Making (MCDM) approach. MCDM is based on the fuzzy analytical hierarchy process (AHP) and fuzzy technique for order performance, which is to identify the ideal solution by a gradual expansion from the local to the global scale of model parameters. The KIC and MCDM methods are superior to other methods, as they consider not only the fit between observed and simulated data and the number of parameter, but also uncertainty in model parameters. Considering these factors can prevent from occurring over-complexity and over-parameterization, when selecting the appropriate groundwater flow models. These methods selected, as the best model, one with average complexity (10 parameters) and the best parameter estimation (model 3).
Jun, Gyuchan T; Morris, Zoe; Eldabi, Tillal; Harper, Paul; Naseer, Aisha; Patel, Brijesh; Clarkson, John P
2011-05-19
There is an increasing recognition that modelling and simulation can assist in the process of designing health care policies, strategies and operations. However, the current use is limited and answers to questions such as what methods to use and when remain somewhat underdeveloped. The aim of this study is to provide a mechanism for decision makers in health services planning and management to compare a broad range of modelling and simulation methods so that they can better select and use them or better commission relevant modelling and simulation work. This paper proposes a modelling and simulation method comparison and selection tool developed from a comprehensive literature review, the research team's extensive expertise and inputs from potential users. Twenty-eight different methods were identified, characterised by their relevance to different application areas, project life cycle stages, types of output and levels of insight, and four input resources required (time, money, knowledge and data). The characterisation is presented in matrix forms to allow quick comparison and selection. This paper also highlights significant knowledge gaps in the existing literature when assessing the applicability of particular approaches to health services management, where modelling and simulation skills are scarce let alone money and time. A modelling and simulation method comparison and selection tool is developed to assist with the selection of methods appropriate to supporting specific decision making processes. In particular it addresses the issue of which method is most appropriate to which specific health services management problem, what the user might expect to be obtained from the method, and what is required to use the method. In summary, we believe the tool adds value to the scarce existing literature on methods comparison and selection.
Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J
2015-03-01
We consider model selection and estimation in a context where there are competing ordinary differential equation (ODE) models, and all the models are special cases of a "full" model. We propose a computationally inexpensive approach that employs statistical estimation of the full model, followed by a combination of a least squares approximation (LSA) and the adaptive Lasso. We show the resulting method, here called the LSA method, to be an (asymptotically) oracle model selection method. The finite sample performance of the proposed LSA method is investigated with Monte Carlo simulations, in which we examine the percentage of selecting true ODE models, the efficiency of the parameter estimation compared to simply using the full and true models, and coverage probabilities of the estimated confidence intervals for ODE parameters, all of which have satisfactory performances. Our method is also demonstrated by selecting the best predator-prey ODE to model a lynx and hare population dynamical system among some well-known and biologically interpretable ODE models. © 2014, The International Biometric Society.
Adaptive Modeling Procedure Selection by Data Perturbation.
Zhang, Yongli; Shen, Xiaotong
2015-10-01
Many procedures have been developed to deal with the high-dimensional problem that is emerging in various business and economics areas. To evaluate and compare these procedures, modeling uncertainty caused by model selection and parameter estimation has to be assessed and integrated into a modeling process. To do this, a data perturbation method estimates the modeling uncertainty inherited in a selection process by perturbing the data. Critical to data perturbation is the size of perturbation, as the perturbed data should resemble the original dataset. To account for the modeling uncertainty, we derive the optimal size of perturbation, which adapts to the data, the model space, and other relevant factors in the context of linear regression. On this basis, we develop an adaptive data-perturbation method that, unlike its nonadaptive counterpart, performs well in different situations. This leads to a data-adaptive model selection method. Both theoretical and numerical analysis suggest that the data-adaptive model selection method adapts to distinct situations in that it yields consistent model selection and optimal prediction, without knowing which situation exists a priori. The proposed method is applied to real data from the commodity market and outperforms its competitors in terms of price forecasting accuracy.
Sale, Mark; Sherer, Eric A
2015-01-01
The current algorithm for selecting a population pharmacokinetic/pharmacodynamic model is based on the well-established forward addition/backward elimination method. A central strength of this approach is the opportunity for a modeller to continuously examine the data and postulate new hypotheses to explain observed biases. This algorithm has served the modelling community well, but the model selection process has essentially remained unchanged for the last 30 years. During this time, more robust approaches to model selection have been made feasible by new technology and dramatic increases in computation speed. We review these methods, with emphasis on genetic algorithm approaches and discuss the role these methods may play in population pharmacokinetic/pharmacodynamic model selection. PMID:23772792
Frequentist Model Averaging in Structural Equation Modelling.
Jin, Shaobo; Ankargren, Sebastian
2018-06-04
Model selection from a set of candidate models plays an important role in many structural equation modelling applications. However, traditional model selection methods introduce extra randomness that is not accounted for by post-model selection inference. In the current study, we propose a model averaging technique within the frequentist statistical framework. Instead of selecting an optimal model, the contributions of all candidate models are acknowledged. Valid confidence intervals and a [Formula: see text] test statistic are proposed. A simulation study shows that the proposed method is able to produce a robust mean-squared error, a better coverage probability, and a better goodness-of-fit test compared to model selection. It is an interesting compromise between model selection and the full model.
IRT Model Selection Methods for Dichotomous Items
ERIC Educational Resources Information Center
Kang, Taehoon; Cohen, Allan S.
2007-01-01
Fit of the model to the data is important if the benefits of item response theory (IRT) are to be obtained. In this study, the authors compared model selection results using the likelihood ratio test, two information-based criteria, and two Bayesian methods. An example illustrated the potential for inconsistency in model selection depending on…
Howard B. Stauffer; Cynthia J. Zabel; Jeffrey R. Dunk
2005-01-01
We compared a set of competing logistic regression habitat selection models for Northern Spotted Owls (Strix occidentalis caurina) in California. The habitat selection models were estimated, compared, evaluated, and tested using multiple sample datasets collected on federal forestlands in northern California. We used Bayesian methods in interpreting...
Estimation of selection intensity under overdominance by Bayesian methods.
Buzbas, Erkan Ozge; Joyce, Paul; Abdo, Zaid
2009-01-01
A balanced pattern in the allele frequencies of polymorphic loci is a potential sign of selection, particularly of overdominance. Although this type of selection is of some interest in population genetics, there exists no likelihood based approaches specifically tailored to make inference on selection intensity. To fill this gap, we present Bayesian methods to estimate selection intensity under k-allele models with overdominance. Our model allows for an arbitrary number of loci and alleles within a locus. The neutral and selected variability within each locus are modeled with corresponding k-allele models. To estimate the posterior distribution of the mean selection intensity in a multilocus region, a hierarchical setup between loci is used. The methods are demonstrated with data at the Human Leukocyte Antigen loci from world-wide populations.
Tymur Sydor; Richard A. Kluender; Rodney L. Busby; Matthew Pelkki
2004-01-01
An activity algorithm was developed for standard marking methods for natural pine stands in Arkansas. For the two types of marking methods examined, thinning (selection from below) and single-tree selection (selection from above), cycle time and cost models were developed. Basal area (BA) removed was the major influencing factor in both models. Marking method was...
Cross-validation to select Bayesian hierarchical models in phylogenetics.
Duchêne, Sebastián; Duchêne, David A; Di Giallonardo, Francesca; Eden, John-Sebastian; Geoghegan, Jemma L; Holt, Kathryn E; Ho, Simon Y W; Holmes, Edward C
2016-05-26
Recent developments in Bayesian phylogenetic models have increased the range of inferences that can be drawn from molecular sequence data. Accordingly, model selection has become an important component of phylogenetic analysis. Methods of model selection generally consider the likelihood of the data under the model in question. In the context of Bayesian phylogenetics, the most common approach involves estimating the marginal likelihood, which is typically done by integrating the likelihood across model parameters, weighted by the prior. Although this method is accurate, it is sensitive to the presence of improper priors. We explored an alternative approach based on cross-validation that is widely used in evolutionary analysis. This involves comparing models according to their predictive performance. We analysed simulated data and a range of viral and bacterial data sets using a cross-validation approach to compare a variety of molecular clock and demographic models. Our results show that cross-validation can be effective in distinguishing between strict- and relaxed-clock models and in identifying demographic models that allow growth in population size over time. In most of our empirical data analyses, the model selected using cross-validation was able to match that selected using marginal-likelihood estimation. The accuracy of cross-validation appears to improve with longer sequence data, particularly when distinguishing between relaxed-clock models. Cross-validation is a useful method for Bayesian phylogenetic model selection. This method can be readily implemented even when considering complex models where selecting an appropriate prior for all parameters may be difficult.
Covariate Selection for Multilevel Models with Missing Data
Marino, Miguel; Buxton, Orfeu M.; Li, Yi
2017-01-01
Missing covariate data hampers variable selection in multilevel regression settings. Current variable selection techniques for multiply-imputed data commonly address missingness in the predictors through list-wise deletion and stepwise-selection methods which are problematic. Moreover, most variable selection methods are developed for independent linear regression models and do not accommodate multilevel mixed effects regression models with incomplete covariate data. We develop a novel methodology that is able to perform covariate selection across multiply-imputed data for multilevel random effects models when missing data is present. Specifically, we propose to stack the multiply-imputed data sets from a multiple imputation procedure and to apply a group variable selection procedure through group lasso regularization to assess the overall impact of each predictor on the outcome across the imputed data sets. Simulations confirm the advantageous performance of the proposed method compared with the competing methods. We applied the method to reanalyze the Healthy Directions-Small Business cancer prevention study, which evaluated a behavioral intervention program targeting multiple risk-related behaviors in a working-class, multi-ethnic population. PMID:28239457
Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological datasets there is limited guidance on variable selection methods for RF modeling. Typically, e...
[Measurement of Water COD Based on UV-Vis Spectroscopy Technology].
Wang, Xiao-ming; Zhang, Hai-liang; Luo, Wei; Liu, Xue-mei
2016-01-01
Ultraviolet/visible (UV/Vis) spectroscopy technology was used to measure water COD. A total of 135 water samples were collected from Zhejiang province. Raw spectra with 3 different pretreatment methods (Multiplicative Scatter Correction (MSC), Standard Normal Variate (SNV) and 1st Derivatives were compared to determine the optimal pretreatment method for analysis. Spectral variable selection is an important strategy in spectrum modeling analysis, because it tends to parsimonious data representation and can lead to multivariate models with better performance. In order to simply calibration models, the preprocessed spectra were then used to select sensitive wavelengths by competitive adaptive reweighted sampling (CARS), Random frog and Successive Genetic Algorithm (GA) methods. Different numbers of sensitive wavelengths were selected by different variable selection methods with SNV preprocessing method. Partial least squares (PLS) was used to build models with the full spectra, and Extreme Learning Machine (ELM) was applied to build models with the selected wavelength variables. The overall results showed that ELM model performed better than PLS model, and the ELM model with the selected wavelengths based on CARS obtained the best results with the determination coefficient (R2), RMSEP and RPD were 0.82, 14.48 and 2.34 for prediction set. The results indicated that it was feasible to use UV/Vis with characteristic wavelengths which were obtained by CARS variable selection method, combined with ELM calibration could apply for the rapid and accurate determination of COD in aquaculture water. Moreover, this study laid the foundation for further implementation of online analysis of aquaculture water and rapid determination of other water quality parameters.
A guide to Bayesian model selection for ecologists
Hooten, Mevin B.; Hobbs, N.T.
2015-01-01
The steady upward trend in the use of model selection and Bayesian methods in ecological research has made it clear that both approaches to inference are important for modern analysis of models and data. However, in teaching Bayesian methods and in working with our research colleagues, we have noticed a general dissatisfaction with the available literature on Bayesian model selection and multimodel inference. Students and researchers new to Bayesian methods quickly find that the published advice on model selection is often preferential in its treatment of options for analysis, frequently advocating one particular method above others. The recent appearance of many articles and textbooks on Bayesian modeling has provided welcome background on relevant approaches to model selection in the Bayesian framework, but most of these are either very narrowly focused in scope or inaccessible to ecologists. Moreover, the methodological details of Bayesian model selection approaches are spread thinly throughout the literature, appearing in journals from many different fields. Our aim with this guide is to condense the large body of literature on Bayesian approaches to model selection and multimodel inference and present it specifically for quantitative ecologists as neutrally as possible. We also bring to light a few important and fundamental concepts relating directly to model selection that seem to have gone unnoticed in the ecological literature. Throughout, we provide only a minimal discussion of philosophy, preferring instead to examine the breadth of approaches as well as their practical advantages and disadvantages. This guide serves as a reference for ecologists using Bayesian methods, so that they can better understand their options and can make an informed choice that is best aligned with their goals for inference.
Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai
2015-01-01
The use of wavelength variable selection before partial least squares discriminant analysis (PLS-DA) for qualitative identification of solid state fermentation degree by FT-NIR spectroscopy technique was investigated in this study. Two wavelength variable selection methods including competitive adaptive reweighted sampling (CARS) and stability competitive adaptive reweighted sampling (SCARS) were employed to select the important wavelengths. PLS-DA was applied to calibrate identified model using selected wavelength variables by CARS and SCARS for identification of solid state fermentation degree. Experimental results showed that the number of selected wavelength variables by CARS and SCARS were 58 and 47, respectively, from the 1557 original wavelength variables. Compared with the results of full-spectrum PLS-DA, the two wavelength variable selection methods both could enhance the performance of identified models. Meanwhile, compared with CARS-PLS-DA model, the SCARS-PLS-DA model achieved better results with the identification rate of 91.43% in the validation process. The overall results sufficiently demonstrate the PLS-DA model constructed using selected wavelength variables by a proper wavelength variable method can be more accurate identification of solid state fermentation degree. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai
2015-10-01
The use of wavelength variable selection before partial least squares discriminant analysis (PLS-DA) for qualitative identification of solid state fermentation degree by FT-NIR spectroscopy technique was investigated in this study. Two wavelength variable selection methods including competitive adaptive reweighted sampling (CARS) and stability competitive adaptive reweighted sampling (SCARS) were employed to select the important wavelengths. PLS-DA was applied to calibrate identified model using selected wavelength variables by CARS and SCARS for identification of solid state fermentation degree. Experimental results showed that the number of selected wavelength variables by CARS and SCARS were 58 and 47, respectively, from the 1557 original wavelength variables. Compared with the results of full-spectrum PLS-DA, the two wavelength variable selection methods both could enhance the performance of identified models. Meanwhile, compared with CARS-PLS-DA model, the SCARS-PLS-DA model achieved better results with the identification rate of 91.43% in the validation process. The overall results sufficiently demonstrate the PLS-DA model constructed using selected wavelength variables by a proper wavelength variable method can be more accurate identification of solid state fermentation degree.
Generative model selection using a scalable and size-independent complex network classifier
NASA Astrophysics Data System (ADS)
Motallebi, Sadegh; Aliakbary, Sadegh; Habibi, Jafar
2013-12-01
Real networks exhibit nontrivial topological features, such as heavy-tailed degree distribution, high clustering, and small-worldness. Researchers have developed several generative models for synthesizing artificial networks that are structurally similar to real networks. An important research problem is to identify the generative model that best fits to a target network. In this paper, we investigate this problem and our goal is to select the model that is able to generate graphs similar to a given network instance. By the means of generating synthetic networks with seven outstanding generative models, we have utilized machine learning methods to develop a decision tree for model selection. Our proposed method, which is named "Generative Model Selection for Complex Networks," outperforms existing methods with respect to accuracy, scalability, and size-independence.
A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method.
Yang, Jun-He; Cheng, Ching-Hsue; Chan, Chia-Pan
2017-01-01
Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir's water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.
Zeng, Xueqiang; Luo, Gang
2017-12-01
Machine learning is broadly used for clinical data analysis. Before training a model, a machine learning algorithm must be selected. Also, the values of one or more model parameters termed hyper-parameters must be set. Selecting algorithms and hyper-parameter values requires advanced machine learning knowledge and many labor-intensive manual iterations. To lower the bar to machine learning, miscellaneous automatic selection methods for algorithms and/or hyper-parameter values have been proposed. Existing automatic selection methods are inefficient on large data sets. This poses a challenge for using machine learning in the clinical big data era. To address the challenge, this paper presents progressive sampling-based Bayesian optimization, an efficient and automatic selection method for both algorithms and hyper-parameter values. We report an implementation of the method. We show that compared to a state of the art automatic selection method, our method can significantly reduce search time, classification error rate, and standard deviation of error rate due to randomization. This is major progress towards enabling fast turnaround in identifying high-quality solutions required by many machine learning-based clinical data analysis tasks.
Wu, Jing-zhu; Wang, Feng-zhu; Wang, Li-li; Zhang, Xiao-chao; Mao, Wen-hua
2015-01-01
In order to improve the accuracy and robustness of detecting tomato seedlings nitrogen content based on near-infrared spectroscopy (NIR), 4 kinds of characteristic spectrum selecting methods were studied in the present paper, i. e. competitive adaptive reweighted sampling (CARS), Monte Carlo uninformative variables elimination (MCUVE), backward interval partial least squares (BiPLS) and synergy interval partial least squares (SiPLS). There were totally 60 tomato seedlings cultivated at 10 different nitrogen-treatment levels (urea concentration from 0 to 120 mg . L-1), with 6 samples at each nitrogen-treatment level. They are in different degrees of over nitrogen, moderate nitrogen, lack of nitrogen and no nitrogen status. Each sample leaves were collected to scan near-infrared spectroscopy from 12 500 to 3 600 cm-1. The quantitative models based on the above 4 methods were established. According to the experimental result, the calibration model based on CARS and MCUVE selecting methods show better performance than those based on BiPLS and SiPLS selecting methods, but their prediction ability is much lower than that of the latter. Among them, the model built by BiPLS has the best prediction performance. The correlation coefficient (r), root mean square error of prediction (RMSEP) and ratio of performance to standard derivate (RPD) is 0. 952 7, 0. 118 3 and 3. 291, respectively. Therefore, NIR technology combined with characteristic spectrum selecting methods can improve the model performance. But the characteristic spectrum selecting methods are not universal. For the built model based or single wavelength variables selection is more sensitive, it is more suitable for the uniform object. While the anti-interference ability of the model built based on wavelength interval selection is much stronger, it is more suitable for the uneven and poor reproducibility object. Therefore, the characteristic spectrum selection will only play a better role in building model, combined with the consideration of sample state and the model indexes.
Automatic selection of arterial input function using tri-exponential models
NASA Astrophysics Data System (ADS)
Yao, Jianhua; Chen, Jeremy; Castro, Marcelo; Thomasson, David
2009-02-01
Dynamic Contrast Enhanced MRI (DCE-MRI) is one method for drug and tumor assessment. Selecting a consistent arterial input function (AIF) is necessary to calculate tissue and tumor pharmacokinetic parameters in DCE-MRI. This paper presents an automatic and robust method to select the AIF. The first stage is artery detection and segmentation, where knowledge about artery structure and dynamic signal intensity temporal properties of DCE-MRI is employed. The second stage is AIF model fitting and selection. A tri-exponential model is fitted for every candidate AIF using the Levenberg-Marquardt method, and the best fitted AIF is selected. Our method has been applied in DCE-MRIs of four different body parts: breast, brain, liver and prostate. The success rates in artery segmentation for 19 cases are 89.6%+/-15.9%. The pharmacokinetic parameters computed from the automatically selected AIFs are highly correlated with those from manually determined AIFs (R2=0.946, P(T<=t)=0.09). Our imaging-based tri-exponential AIF model demonstrated significant improvement over a previously proposed bi-exponential model.
A Feature and Algorithm Selection Method for Improving the Prediction of Protein Structural Class.
Ni, Qianwu; Chen, Lei
2017-01-01
Correct prediction of protein structural class is beneficial to investigation on protein functions, regulations and interactions. In recent years, several computational methods have been proposed in this regard. However, based on various features, it is still a great challenge to select proper classification algorithm and extract essential features to participate in classification. In this study, a feature and algorithm selection method was presented for improving the accuracy of protein structural class prediction. The amino acid compositions and physiochemical features were adopted to represent features and thirty-eight machine learning algorithms collected in Weka were employed. All features were first analyzed by a feature selection method, minimum redundancy maximum relevance (mRMR), producing a feature list. Then, several feature sets were constructed by adding features in the list one by one. For each feature set, thirtyeight algorithms were executed on a dataset, in which proteins were represented by features in the set. The predicted classes yielded by these algorithms and true class of each protein were collected to construct a dataset, which were analyzed by mRMR method, yielding an algorithm list. From the algorithm list, the algorithm was taken one by one to build an ensemble prediction model. Finally, we selected the ensemble prediction model with the best performance as the optimal ensemble prediction model. Experimental results indicate that the constructed model is much superior to models using single algorithm and other models that only adopt feature selection procedure or algorithm selection procedure. The feature selection procedure or algorithm selection procedure are really helpful for building an ensemble prediction model that can yield a better performance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Ramadan, Ahmed; Boss, Connor; Choi, Jongeun; Peter Reeves, N; Cholewicki, Jacek; Popovich, John M; Radcliffe, Clark J
2018-07-01
Estimating many parameters of biomechanical systems with limited data may achieve good fit but may also increase 95% confidence intervals in parameter estimates. This results in poor identifiability in the estimation problem. Therefore, we propose a novel method to select sensitive biomechanical model parameters that should be estimated, while fixing the remaining parameters to values obtained from preliminary estimation. Our method relies on identifying the parameters to which the measurement output is most sensitive. The proposed method is based on the Fisher information matrix (FIM). It was compared against the nonlinear least absolute shrinkage and selection operator (LASSO) method to guide modelers on the pros and cons of our FIM method. We present an application identifying a biomechanical parametric model of a head position-tracking task for ten human subjects. Using measured data, our method (1) reduced model complexity by only requiring five out of twelve parameters to be estimated, (2) significantly reduced parameter 95% confidence intervals by up to 89% of the original confidence interval, (3) maintained goodness of fit measured by variance accounted for (VAF) at 82%, (4) reduced computation time, where our FIM method was 164 times faster than the LASSO method, and (5) selected similar sensitive parameters to the LASSO method, where three out of five selected sensitive parameters were shared by FIM and LASSO methods.
Generative model selection using a scalable and size-independent complex network classifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motallebi, Sadegh, E-mail: motallebi@ce.sharif.edu; Aliakbary, Sadegh, E-mail: aliakbary@ce.sharif.edu; Habibi, Jafar, E-mail: jhabibi@sharif.edu
2013-12-15
Real networks exhibit nontrivial topological features, such as heavy-tailed degree distribution, high clustering, and small-worldness. Researchers have developed several generative models for synthesizing artificial networks that are structurally similar to real networks. An important research problem is to identify the generative model that best fits to a target network. In this paper, we investigate this problem and our goal is to select the model that is able to generate graphs similar to a given network instance. By the means of generating synthetic networks with seven outstanding generative models, we have utilized machine learning methods to develop a decision tree formore » model selection. Our proposed method, which is named “Generative Model Selection for Complex Networks,” outperforms existing methods with respect to accuracy, scalability, and size-independence.« less
Inference on the Strength of Balancing Selection for Epistatically Interacting Loci
Buzbas, Erkan Ozge; Joyce, Paul; Rosenberg, Noah A.
2011-01-01
Existing inference methods for estimating the strength of balancing selection in multi-locus genotypes rely on the assumption that there are no epistatic interactions between loci. Complex systems in which balancing selection is prevalent, such as sets of human immune system genes, are known to contain components that interact epistatically. Therefore, current methods may not produce reliable inference on the strength of selection at these loci. In this paper, we address this problem by presenting statistical methods that can account for epistatic interactions in making inference about balancing selection. A theoretical result due to Fearnhead (2006) is used to build a multi-locus Wright-Fisher model of balancing selection, allowing for epistatic interactions among loci. Antagonistic and synergistic types of interactions are examined. The joint posterior distribution of the selection and mutation parameters is sampled by Markov chain Monte Carlo methods, and the plausibility of models is assessed via Bayes factors. As a component of the inference process, an algorithm to generate multi-locus allele frequencies under balancing selection models with epistasis is also presented. Recent evidence on interactions among a set of human immune system genes is introduced as a motivating biological system for the epistatic model, and data on these genes are used to demonstrate the methods. PMID:21277883
Near-optimal experimental design for model selection in systems biology.
Busetto, Alberto Giovanni; Hauser, Alain; Krummenacher, Gabriel; Sunnåker, Mikael; Dimopoulos, Sotiris; Ong, Cheng Soon; Stelling, Jörg; Buhmann, Joachim M
2013-10-15
Biological systems are understood through iterations of modeling and experimentation. Not all experiments, however, are equally valuable for predictive modeling. This study introduces an efficient method for experimental design aimed at selecting dynamical models from data. Motivated by biological applications, the method enables the design of crucial experiments: it determines a highly informative selection of measurement readouts and time points. We demonstrate formal guarantees of design efficiency on the basis of previous results. By reducing our task to the setting of graphical models, we prove that the method finds a near-optimal design selection with a polynomial number of evaluations. Moreover, the method exhibits the best polynomial-complexity constant approximation factor, unless P = NP. We measure the performance of the method in comparison with established alternatives, such as ensemble non-centrality, on example models of different complexity. Efficient design accelerates the loop between modeling and experimentation: it enables the inference of complex mechanisms, such as those controlling central metabolic operation. Toolbox 'NearOED' available with source code under GPL on the Machine Learning Open Source Software Web site (mloss.org).
Valizade Hasanloei, Mohammad Amin; Sheikhpour, Razieh; Sarram, Mehdi Agha; Sheikhpour, Elnaz; Sharifi, Hamdollah
2018-02-01
Quantitative structure-activity relationship (QSAR) is an effective computational technique for drug design that relates the chemical structures of compounds to their biological activities. Feature selection is an important step in QSAR based drug design to select the most relevant descriptors. One of the most popular feature selection methods for classification problems is Fisher score which aim is to minimize the within-class distance and maximize the between-class distance. In this study, the properties of Fisher criterion were extended for QSAR models to define the new distance metrics based on the continuous activity values of compounds with known activities. Then, a semi-supervised feature selection method was proposed based on the combination of Fisher and Laplacian criteria which exploits both compounds with known and unknown activities to select the relevant descriptors. To demonstrate the efficiency of the proposed semi-supervised feature selection method in selecting the relevant descriptors, we applied the method and other feature selection methods on three QSAR data sets such as serine/threonine-protein kinase PLK3 inhibitors, ROCK inhibitors and phenol compounds. The results demonstrated that the QSAR models built on the selected descriptors by the proposed semi-supervised method have better performance than other models. This indicates the efficiency of the proposed method in selecting the relevant descriptors using the compounds with known and unknown activities. The results of this study showed that the compounds with known and unknown activities can be helpful to improve the performance of the combined Fisher and Laplacian based feature selection methods.
NASA Astrophysics Data System (ADS)
Valizade Hasanloei, Mohammad Amin; Sheikhpour, Razieh; Sarram, Mehdi Agha; Sheikhpour, Elnaz; Sharifi, Hamdollah
2018-02-01
Quantitative structure-activity relationship (QSAR) is an effective computational technique for drug design that relates the chemical structures of compounds to their biological activities. Feature selection is an important step in QSAR based drug design to select the most relevant descriptors. One of the most popular feature selection methods for classification problems is Fisher score which aim is to minimize the within-class distance and maximize the between-class distance. In this study, the properties of Fisher criterion were extended for QSAR models to define the new distance metrics based on the continuous activity values of compounds with known activities. Then, a semi-supervised feature selection method was proposed based on the combination of Fisher and Laplacian criteria which exploits both compounds with known and unknown activities to select the relevant descriptors. To demonstrate the efficiency of the proposed semi-supervised feature selection method in selecting the relevant descriptors, we applied the method and other feature selection methods on three QSAR data sets such as serine/threonine-protein kinase PLK3 inhibitors, ROCK inhibitors and phenol compounds. The results demonstrated that the QSAR models built on the selected descriptors by the proposed semi-supervised method have better performance than other models. This indicates the efficiency of the proposed method in selecting the relevant descriptors using the compounds with known and unknown activities. The results of this study showed that the compounds with known and unknown activities can be helpful to improve the performance of the combined Fisher and Laplacian based feature selection methods.
Large-scale model quality assessment for improving protein tertiary structure prediction.
Cao, Renzhi; Bhattacharya, Debswapna; Adhikari, Badri; Li, Jilong; Cheng, Jianlin
2015-06-15
Sampling structural models and ranking them are the two major challenges of protein structure prediction. Traditional protein structure prediction methods generally use one or a few quality assessment (QA) methods to select the best-predicted models, which cannot consistently select relatively better models and rank a large number of models well. Here, we develop a novel large-scale model QA method in conjunction with model clustering to rank and select protein structural models. It unprecedentedly applied 14 model QA methods to generate consensus model rankings, followed by model refinement based on model combination (i.e. averaging). Our experiment demonstrates that the large-scale model QA approach is more consistent and robust in selecting models of better quality than any individual QA method. Our method was blindly tested during the 11th Critical Assessment of Techniques for Protein Structure Prediction (CASP11) as MULTICOM group. It was officially ranked third out of all 143 human and server predictors according to the total scores of the first models predicted for 78 CASP11 protein domains and second according to the total scores of the best of the five models predicted for these domains. MULTICOM's outstanding performance in the extremely competitive 2014 CASP11 experiment proves that our large-scale QA approach together with model clustering is a promising solution to one of the two major problems in protein structure modeling. The web server is available at: http://sysbio.rnet.missouri.edu/multicom_cluster/human/. © The Author 2015. Published by Oxford University Press.
Bayesian model selection applied to artificial neural networks used for water resources modeling
NASA Astrophysics Data System (ADS)
Kingston, Greer B.; Maier, Holger R.; Lambert, Martin F.
2008-04-01
Artificial neural networks (ANNs) have proven to be extremely valuable tools in the field of water resources engineering. However, one of the most difficult tasks in developing an ANN is determining the optimum level of complexity required to model a given problem, as there is no formal systematic model selection method. This paper presents a Bayesian model selection (BMS) method for ANNs that provides an objective approach for comparing models of varying complexity in order to select the most appropriate ANN structure. The approach uses Markov Chain Monte Carlo posterior simulations to estimate the evidence in favor of competing models and, in this study, three known methods for doing this are compared in terms of their suitability for being incorporated into the proposed BMS framework for ANNs. However, it is acknowledged that it can be particularly difficult to accurately estimate the evidence of ANN models. Therefore, the proposed BMS approach for ANNs incorporates a further check of the evidence results by inspecting the marginal posterior distributions of the hidden-to-output layer weights, which unambiguously indicate any redundancies in the hidden layer nodes. The fact that this check is available is one of the greatest advantages of the proposed approach over conventional model selection methods, which do not provide such a test and instead rely on the modeler's subjective choice of selection criterion. The advantages of a total Bayesian approach to ANN development, including training and model selection, are demonstrated on two synthetic and one real world water resources case study.
The discounting model selector: Statistical software for delay discounting applications.
Gilroy, Shawn P; Franck, Christopher T; Hantula, Donald A
2017-05-01
Original, open-source computer software was developed and validated against established delay discounting methods in the literature. The software executed approximate Bayesian model selection methods from user-supplied temporal discounting data and computed the effective delay 50 (ED50) from the best performing model. Software was custom-designed to enable behavior analysts to conveniently apply recent statistical methods to temporal discounting data with the aid of a graphical user interface (GUI). The results of independent validation of the approximate Bayesian model selection methods indicated that the program provided results identical to that of the original source paper and its methods. Monte Carlo simulation (n = 50,000) confirmed that true model was selected most often in each setting. Simulation code and data for this study were posted to an online repository for use by other researchers. The model selection approach was applied to three existing delay discounting data sets from the literature in addition to the data from the source paper. Comparisons of model selected ED50 were consistent with traditional indices of discounting. Conceptual issues related to the development and use of computer software by behavior analysts and the opportunities afforded by free and open-sourced software are discussed and a review of possible expansions of this software are provided. © 2017 Society for the Experimental Analysis of Behavior.
NASA Astrophysics Data System (ADS)
Chen, Jie; Brissette, François P.; Lucas-Picher, Philippe
2016-11-01
Given the ever increasing number of climate change simulations being carried out, it has become impractical to use all of them to cover the uncertainty of climate change impacts. Various methods have been proposed to optimally select subsets of a large ensemble of climate simulations for impact studies. However, the behaviour of optimally-selected subsets of climate simulations for climate change impacts is unknown, since the transfer process from climate projections to the impact study world is usually highly non-linear. Consequently, this study investigates the transferability of optimally-selected subsets of climate simulations in the case of hydrological impacts. Two different methods were used for the optimal selection of subsets of climate scenarios, and both were found to be capable of adequately representing the spread of selected climate model variables contained in the original large ensemble. However, in both cases, the optimal subsets had limited transferability to hydrological impacts. To capture a similar variability in the impact model world, many more simulations have to be used than those that are needed to simply cover variability from the climate model variables' perspective. Overall, both optimal subset selection methods were better than random selection when small subsets were selected from a large ensemble for impact studies. However, as the number of selected simulations increased, random selection often performed better than the two optimal methods. To ensure adequate uncertainty coverage, the results of this study imply that selecting as many climate change simulations as possible is the best avenue. Where this was not possible, the two optimal methods were found to perform adequately.
A Primer for Model Selection: The Decisive Role of Model Complexity
NASA Astrophysics Data System (ADS)
Höge, Marvin; Wöhling, Thomas; Nowak, Wolfgang
2018-03-01
Selecting a "best" model among several competing candidate models poses an often encountered problem in water resources modeling (and other disciplines which employ models). For a modeler, the best model fulfills a certain purpose best (e.g., flood prediction), which is typically assessed by comparing model simulations to data (e.g., stream flow). Model selection methods find the "best" trade-off between good fit with data and model complexity. In this context, the interpretations of model complexity implied by different model selection methods are crucial, because they represent different underlying goals of modeling. Over the last decades, numerous model selection criteria have been proposed, but modelers who primarily want to apply a model selection criterion often face a lack of guidance for choosing the right criterion that matches their goal. We propose a classification scheme for model selection criteria that helps to find the right criterion for a specific goal, i.e., which employs the correct complexity interpretation. We identify four model selection classes which seek to achieve high predictive density, low predictive error, high model probability, or shortest compression of data. These goals can be achieved by following either nonconsistent or consistent model selection and by either incorporating a Bayesian parameter prior or not. We allocate commonly used criteria to these four classes, analyze how they represent model complexity and what this means for the model selection task. Finally, we provide guidance on choosing the right type of criteria for specific model selection tasks. (A quick guide through all key points is given at the end of the introduction.)
EFS: an ensemble feature selection tool implemented as R-package and web-application.
Neumann, Ursula; Genze, Nikita; Heider, Dominik
2017-01-01
Feature selection methods aim at identifying a subset of features that improve the prediction performance of subsequent classification models and thereby also simplify their interpretability. Preceding studies demonstrated that single feature selection methods can have specific biases, whereas an ensemble feature selection has the advantage to alleviate and compensate for these biases. The software EFS (Ensemble Feature Selection) makes use of multiple feature selection methods and combines their normalized outputs to a quantitative ensemble importance. Currently, eight different feature selection methods have been integrated in EFS, which can be used separately or combined in an ensemble. EFS identifies relevant features while compensating specific biases of single methods due to an ensemble approach. Thereby, EFS can improve the prediction accuracy and interpretability in subsequent binary classification models. EFS can be downloaded as an R-package from CRAN or used via a web application at http://EFS.heiderlab.de.
Mathieu, Amélie; Vidal, Tiphaine; Jullien, Alexandra; Wu, QiongLi; Chambon, Camille; Bayol, Benoit; Cournède, Paul-Henry
2018-06-19
Functional-structural plant models (FSPMs) describe explicitly the interactions between plants and their environment at organ to plant scale. However, the high level of description of the structure or model mechanisms makes this type of model very complex and hard to calibrate. A two-step methodology to facilitate the calibration process is proposed here. First, a global sensitivity analysis method was applied to the calibration loss function. It provided first-order and total-order sensitivity indexes that allow parameters to be ranked by importance in order to select the most influential ones. Second, the Akaike information criterion (AIC) was used to quantify the model's quality of fit after calibration with different combinations of selected parameters. The model with the lowest AIC gives the best combination of parameters to select. This methodology was validated by calibrating the model on an independent data set (same cultivar, another year) with the parameters selected in the second step. All the parameters were set to their nominal value; only the most influential ones were re-estimated. Sensitivity analysis applied to the calibration loss function is a relevant method to underline the most significant parameters in the estimation process. For the studied winter oilseed rape model, 11 out of 26 estimated parameters were selected. Then, the model could be recalibrated for a different data set by re-estimating only three parameters selected with the model selection method. Fitting only a small number of parameters dramatically increases the efficiency of recalibration, increases the robustness of the model and helps identify the principal sources of variation in varying environmental conditions. This innovative method still needs to be more widely validated but already gives interesting avenues to improve the calibration of FSPMs.
Fox, Eric W; Hill, Ryan A; Leibowitz, Scott G; Olsen, Anthony R; Thornbrugh, Darren J; Weber, Marc H
2017-07-01
Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological data sets, there is limited guidance on variable selection methods for RF modeling. Typically, either a preselected set of predictor variables are used or stepwise procedures are employed which iteratively remove variables according to their importance measures. This paper investigates the application of variable selection methods to RF models for predicting probable biological stream condition. Our motivating data set consists of the good/poor condition of n = 1365 stream survey sites from the 2008/2009 National Rivers and Stream Assessment, and a large set (p = 212) of landscape features from the StreamCat data set as potential predictors. We compare two types of RF models: a full variable set model with all 212 predictors and a reduced variable set model selected using a backward elimination approach. We assess model accuracy using RF's internal out-of-bag estimate, and a cross-validation procedure with validation folds external to the variable selection process. We also assess the stability of the spatial predictions generated by the RF models to changes in the number of predictors and argue that model selection needs to consider both accuracy and stability. The results suggest that RF modeling is robust to the inclusion of many variables of moderate to low importance. We found no substantial improvement in cross-validated accuracy as a result of variable reduction. Moreover, the backward elimination procedure tended to select too few variables and exhibited numerous issues such as upwardly biased out-of-bag accuracy estimates and instabilities in the spatial predictions. We use simulations to further support and generalize results from the analysis of real data. A main purpose of this work is to elucidate issues of model selection bias and instability to ecologists interested in using RF to develop predictive models with large environmental data sets.
Xu, Rengyi; Mesaros, Clementina; Weng, Liwei; Snyder, Nathaniel W; Vachani, Anil; Blair, Ian A; Hwang, Wei-Ting
2017-07-01
We compared three statistical methods in selecting a panel of serum lipid biomarkers for mesothelioma and asbestos exposure. Serum samples from mesothelioma, asbestos-exposed subjects and controls (40 per group) were analyzed. Three variable selection methods were considered: top-ranked predictors from univariate model, stepwise and least absolute shrinkage and selection operator. Crossed-validated area under the receiver operating characteristic curve was used to compare the prediction performance. Lipids with high crossed-validated area under the curve were identified. Lipid with mass-to-charge ratio of 372.31 was selected by all three methods comparing mesothelioma versus control. Lipids with mass-to-charge ratio of 1464.80 and 329.21 were selected by two models for asbestos exposure versus control. Different methods selected a similar set of serum lipids. Combining candidate biomarkers can improve prediction.
Adaptive selection and validation of models of complex systems in the presence of uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell-Maupin, Kathryn; Oden, J. T.
This study describes versions of OPAL, the Occam-Plausibility Algorithm in which the use of Bayesian model plausibilities is replaced with information theoretic methods, such as the Akaike Information Criterion and the Bayes Information Criterion. Applications to complex systems of coarse-grained molecular models approximating atomistic models of polyethylene materials are described. All of these model selection methods take into account uncertainties in the model, the observational data, the model parameters, and the predicted quantities of interest. A comparison of the models chosen by Bayesian model selection criteria and those chosen by the information-theoretic criteria is given.
Adaptive selection and validation of models of complex systems in the presence of uncertainty
Farrell-Maupin, Kathryn; Oden, J. T.
2017-08-01
This study describes versions of OPAL, the Occam-Plausibility Algorithm in which the use of Bayesian model plausibilities is replaced with information theoretic methods, such as the Akaike Information Criterion and the Bayes Information Criterion. Applications to complex systems of coarse-grained molecular models approximating atomistic models of polyethylene materials are described. All of these model selection methods take into account uncertainties in the model, the observational data, the model parameters, and the predicted quantities of interest. A comparison of the models chosen by Bayesian model selection criteria and those chosen by the information-theoretic criteria is given.
Yang, Ziheng; Zhu, Tianqi
2018-02-20
The Bayesian method is noted to produce spuriously high posterior probabilities for phylogenetic trees in analysis of large datasets, but the precise reasons for this overconfidence are unknown. In general, the performance of Bayesian selection of misspecified models is poorly understood, even though this is of great scientific interest since models are never true in real data analysis. Here we characterize the asymptotic behavior of Bayesian model selection and show that when the competing models are equally wrong, Bayesian model selection exhibits surprising and polarized behaviors in large datasets, supporting one model with full force while rejecting the others. If one model is slightly less wrong than the other, the less wrong model will eventually win when the amount of data increases, but the method may become overconfident before it becomes reliable. We suggest that this extreme behavior may be a major factor for the spuriously high posterior probabilities for evolutionary trees. The philosophical implications of our results to the application of Bayesian model selection to evaluate opposing scientific hypotheses are yet to be explored, as are the behaviors of non-Bayesian methods in similar situations.
Testing Different Model Building Procedures Using Multiple Regression.
ERIC Educational Resources Information Center
Thayer, Jerome D.
The stepwise regression method of selecting predictors for computer assisted multiple regression analysis was compared with forward, backward, and best subsets regression, using 16 data sets. The results indicated the stepwise method was preferred because of its practical nature, when the models chosen by different selection methods were similar…
NASA Astrophysics Data System (ADS)
Rocha, Alby D.; Groen, Thomas A.; Skidmore, Andrew K.; Darvishzadeh, Roshanak; Willemen, Louise
2017-11-01
The growing number of narrow spectral bands in hyperspectral remote sensing improves the capacity to describe and predict biological processes in ecosystems. But it also poses a challenge to fit empirical models based on such high dimensional data, which often contain correlated and noisy predictors. As sample sizes, to train and validate empirical models, seem not to be increasing at the same rate, overfitting has become a serious concern. Overly complex models lead to overfitting by capturing more than the underlying relationship, and also through fitting random noise in the data. Many regression techniques claim to overcome these problems by using different strategies to constrain complexity, such as limiting the number of terms in the model, by creating latent variables or by shrinking parameter coefficients. This paper is proposing a new method, named Naïve Overfitting Index Selection (NOIS), which makes use of artificially generated spectra, to quantify the relative model overfitting and to select an optimal model complexity supported by the data. The robustness of this new method is assessed by comparing it to a traditional model selection based on cross-validation. The optimal model complexity is determined for seven different regression techniques, such as partial least squares regression, support vector machine, artificial neural network and tree-based regressions using five hyperspectral datasets. The NOIS method selects less complex models, which present accuracies similar to the cross-validation method. The NOIS method reduces the chance of overfitting, thereby avoiding models that present accurate predictions that are only valid for the data used, and too complex to make inferences about the underlying process.
Variable selection in subdistribution hazard frailty models with competing risks data
Do Ha, Il; Lee, Minjung; Oh, Seungyoung; Jeong, Jong-Hyeon; Sylvester, Richard; Lee, Youngjo
2014-01-01
The proportional subdistribution hazards model (i.e. Fine-Gray model) has been widely used for analyzing univariate competing risks data. Recently, this model has been extended to clustered competing risks data via frailty. To the best of our knowledge, however, there has been no literature on variable selection method for such competing risks frailty models. In this paper, we propose a simple but unified procedure via a penalized h-likelihood (HL) for variable selection of fixed effects in a general class of subdistribution hazard frailty models, in which random effects may be shared or correlated. We consider three penalty functions (LASSO, SCAD and HL) in our variable selection procedure. We show that the proposed method can be easily implemented using a slight modification to existing h-likelihood estimation approaches. Numerical studies demonstrate that the proposed procedure using the HL penalty performs well, providing a higher probability of choosing the true model than LASSO and SCAD methods without losing prediction accuracy. The usefulness of the new method is illustrated using two actual data sets from multi-center clinical trials. PMID:25042872
Model Selection for Monitoring CO2 Plume during Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-12-31
The model selection method developed as part of this project mainly includes four steps: (1) assessing the connectivity/dynamic characteristics of a large prior ensemble of models, (2) model clustering using multidimensional scaling coupled with k-mean clustering, (3) model selection using the Bayes' rule in the reduced model space, (4) model expansion using iterative resampling of the posterior models. The fourth step expresses one of the advantages of the method: it provides a built-in means of quantifying the uncertainty in predictions made with the selected models. In our application to plume monitoring, by expanding the posterior space of models, the finalmore » ensemble of representations of geological model can be used to assess the uncertainty in predicting the future displacement of the CO2 plume. The software implementation of this approach is attached here.« less
A Heckman selection model for the safety analysis of signalized intersections
Wong, S. C.; Zhu, Feng; Pei, Xin; Huang, Helai; Liu, Youjun
2017-01-01
Purpose The objective of this paper is to provide a new method for estimating crash rate and severity simultaneously. Methods This study explores a Heckman selection model of the crash rate and severity simultaneously at different levels and a two-step procedure is used to investigate the crash rate and severity levels. The first step uses a probit regression model to determine the sample selection process, and the second step develops a multiple regression model to simultaneously evaluate the crash rate and severity for slight injury/kill or serious injury (KSI), respectively. The model uses 555 observations from 262 signalized intersections in the Hong Kong metropolitan area, integrated with information on the traffic flow, geometric road design, road environment, traffic control and any crashes that occurred during two years. Results The results of the proposed two-step Heckman selection model illustrate the necessity of different crash rates for different crash severity levels. Conclusions A comparison with the existing approaches suggests that the Heckman selection model offers an efficient and convenient alternative method for evaluating the safety performance at signalized intersections. PMID:28732050
Goodarzi, Mohammad; Jensen, Richard; Vander Heyden, Yvan
2012-12-01
A Quantitative Structure-Retention Relationship (QSRR) is proposed to estimate the chromatographic retention of 83 diverse drugs on a Unisphere poly butadiene (PBD) column, using isocratic elutions at pH 11.7. Previous work has generated QSRR models for them using Classification And Regression Trees (CART). In this work, Ant Colony Optimization is used as a feature selection method to find the best molecular descriptors from a large pool. In addition, several other selection methods have been applied, such as Genetic Algorithms, Stepwise Regression and the Relief method, not only to evaluate Ant Colony Optimization as a feature selection method but also to investigate its ability to find the important descriptors in QSRR. Multiple Linear Regression (MLR) and Support Vector Machines (SVMs) were applied as linear and nonlinear regression methods, respectively, giving excellent correlation between the experimental, i.e. extrapolated to a mobile phase consisting of pure water, and predicted logarithms of the retention factors of the drugs (logk(w)). The overall best model was the SVM one built using descriptors selected by ACO. Copyright © 2012 Elsevier B.V. All rights reserved.
Zou, W; Ouyang, H
2016-02-01
We propose a multiple estimation adjustment (MEA) method to correct effect overestimation due to selection bias from a hypothesis-generating study (HGS) in pharmacogenetics. MEA uses a hierarchical Bayesian approach to model individual effect estimates from maximal likelihood estimation (MLE) in a region jointly and shrinks them toward the regional effect. Unlike many methods that model a fixed selection scheme, MEA capitalizes on local multiplicity independent of selection. We compared mean square errors (MSEs) in simulated HGSs from naive MLE, MEA and a conditional likelihood adjustment (CLA) method that model threshold selection bias. We observed that MEA effectively reduced MSE from MLE on null effects with or without selection, and had a clear advantage over CLA on extreme MLE estimates from null effects under lenient threshold selection in small samples, which are common among 'top' associations from a pharmacogenetics HGS.
Assessing the accuracy and stability of variable selection ...
Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological datasets there is limited guidance on variable selection methods for RF modeling. Typically, either a preselected set of predictor variables are used, or stepwise procedures are employed which iteratively add/remove variables according to their importance measures. This paper investigates the application of variable selection methods to RF models for predicting probable biological stream condition. Our motivating dataset consists of the good/poor condition of n=1365 stream survey sites from the 2008/2009 National Rivers and Stream Assessment, and a large set (p=212) of landscape features from the StreamCat dataset. Two types of RF models are compared: a full variable set model with all 212 predictors, and a reduced variable set model selected using a backwards elimination approach. We assess model accuracy using RF's internal out-of-bag estimate, and a cross-validation procedure with validation folds external to the variable selection process. We also assess the stability of the spatial predictions generated by the RF models to changes in the number of predictors, and argue that model selection needs to consider both accuracy and stability. The results suggest that RF modeling is robust to the inclusion of many variables of moderate to low importance. We found no substanti
Posada, David; Buckley, Thomas R
2004-10-01
Model selection is a topic of special relevance in molecular phylogenetics that affects many, if not all, stages of phylogenetic inference. Here we discuss some fundamental concepts and techniques of model selection in the context of phylogenetics. We start by reviewing different aspects of the selection of substitution models in phylogenetics from a theoretical, philosophical and practical point of view, and summarize this comparison in table format. We argue that the most commonly implemented model selection approach, the hierarchical likelihood ratio test, is not the optimal strategy for model selection in phylogenetics, and that approaches like the Akaike Information Criterion (AIC) and Bayesian methods offer important advantages. In particular, the latter two methods are able to simultaneously compare multiple nested or nonnested models, assess model selection uncertainty, and allow for the estimation of phylogenies and model parameters using all available models (model-averaged inference or multimodel inference). We also describe how the relative importance of the different parameters included in substitution models can be depicted. To illustrate some of these points, we have applied AIC-based model averaging to 37 mitochondrial DNA sequences from the subgenus Ohomopterus(genus Carabus) ground beetles described by Sota and Vogler (2001).
Wang, Jie; Feng, Zuren; Lu, Na; Luo, Jing
2018-06-01
Feature selection plays an important role in the field of EEG signals based motor imagery pattern classification. It is a process that aims to select an optimal feature subset from the original set. Two significant advantages involved are: lowering the computational burden so as to speed up the learning procedure and removing redundant and irrelevant features so as to improve the classification performance. Therefore, feature selection is widely employed in the classification of EEG signals in practical brain-computer interface systems. In this paper, we present a novel statistical model to select the optimal feature subset based on the Kullback-Leibler divergence measure, and automatically select the optimal subject-specific time segment. The proposed method comprises four successive stages: a broad frequency band filtering and common spatial pattern enhancement as preprocessing, features extraction by autoregressive model and log-variance, the Kullback-Leibler divergence based optimal feature and time segment selection and linear discriminate analysis classification. More importantly, this paper provides a potential framework for combining other feature extraction models and classification algorithms with the proposed method for EEG signals classification. Experiments on single-trial EEG signals from two public competition datasets not only demonstrate that the proposed method is effective in selecting discriminative features and time segment, but also show that the proposed method yields relatively better classification results in comparison with other competitive methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
Teutsch, T; Mesch, M; Giessen, H; Tarin, C
2015-01-01
In this contribution, a method to select discrete wavelengths that allow an accurate estimation of the glucose concentration in a biosensing system based on metamaterials is presented. The sensing concept is adapted to the particular application of ophthalmic glucose sensing by covering the metamaterial with a glucose-sensitive hydrogel and the sensor readout is performed optically. Due to the fact that in a mobile context a spectrometer is not suitable, few discrete wavelengths must be selected to estimate the glucose concentration. The developed selection methods are based on nonlinear support vector regression (SVR) models. Two selection methods are compared and it is shown that wavelengths selected by a sequential forward feature selection algorithm achieves an estimation improvement. The presented method can be easily applied to different metamaterial layouts and hydrogel configurations.
Lam, Lun Tak; Sun, Yi; Davey, Neil; Adams, Rod; Prapopoulou, Maria; Brown, Marc B; Moss, Gary P
2010-06-01
The aim was to employ Gaussian processes to assess mathematically the nature of a skin permeability dataset and to employ these methods, particularly feature selection, to determine the key physicochemical descriptors which exert the most significant influence on percutaneous absorption, and to compare such models with established existing models. Gaussian processes, including automatic relevance detection (GPRARD) methods, were employed to develop models of percutaneous absorption that identified key physicochemical descriptors of percutaneous absorption. Using MatLab software, the statistical performance of these models was compared with single linear networks (SLN) and quantitative structure-permeability relationships (QSPRs). Feature selection methods were used to examine in more detail the physicochemical parameters used in this study. A range of statistical measures to determine model quality were used. The inherently nonlinear nature of the skin data set was confirmed. The Gaussian process regression (GPR) methods yielded predictive models that offered statistically significant improvements over SLN and QSPR models with regard to predictivity (where the rank order was: GPR > SLN > QSPR). Feature selection analysis determined that the best GPR models were those that contained log P, melting point and the number of hydrogen bond donor groups as significant descriptors. Further statistical analysis also found that great synergy existed between certain parameters. It suggested that a number of the descriptors employed were effectively interchangeable, thus questioning the use of models where discrete variables are output, usually in the form of an equation. The use of a nonlinear GPR method produced models with significantly improved predictivity, compared with SLN or QSPR models. Feature selection methods were able to provide important mechanistic information. However, it was also shown that significant synergy existed between certain parameters, and as such it was possible to interchange certain descriptors (i.e. molecular weight and melting point) without incurring a loss of model quality. Such synergy suggested that a model constructed from discrete terms in an equation may not be the most appropriate way of representing mechanistic understandings of skin absorption.
Liang, Ja-Der; Ping, Xiao-Ou; Tseng, Yi-Ju; Huang, Guan-Tarn; Lai, Feipei; Yang, Pei-Ming
2014-12-01
Recurrence of hepatocellular carcinoma (HCC) is an important issue despite effective treatments with tumor eradication. Identification of patients who are at high risk for recurrence may provide more efficacious screening and detection of tumor recurrence. The aim of this study was to develop recurrence predictive models for HCC patients who received radiofrequency ablation (RFA) treatment. From January 2007 to December 2009, 83 newly diagnosed HCC patients receiving RFA as their first treatment were enrolled. Five feature selection methods including genetic algorithm (GA), simulated annealing (SA) algorithm, random forests (RF) and hybrid methods (GA+RF and SA+RF) were utilized for selecting an important subset of features from a total of 16 clinical features. These feature selection methods were combined with support vector machine (SVM) for developing predictive models with better performance. Five-fold cross-validation was used to train and test SVM models. The developed SVM-based predictive models with hybrid feature selection methods and 5-fold cross-validation had averages of the sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and area under the ROC curve as 67%, 86%, 82%, 69%, 90%, and 0.69, respectively. The SVM derived predictive model can provide suggestive high-risk recurrent patients, who should be closely followed up after complete RFA treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Variable selection in discrete survival models including heterogeneity.
Groll, Andreas; Tutz, Gerhard
2017-04-01
Several variable selection procedures are available for continuous time-to-event data. However, if time is measured in a discrete way and therefore many ties occur models for continuous time are inadequate. We propose penalized likelihood methods that perform efficient variable selection in discrete survival modeling with explicit modeling of the heterogeneity in the population. The method is based on a combination of ridge and lasso type penalties that are tailored to the case of discrete survival. The performance is studied in simulation studies and an application to the birth of the first child.
Population genetics inference for longitudinally-sampled mutants under strong selection.
Lacerda, Miguel; Seoighe, Cathal
2014-11-01
Longitudinal allele frequency data are becoming increasingly prevalent. Such samples permit statistical inference of the population genetics parameters that influence the fate of mutant variants. To infer these parameters by maximum likelihood, the mutant frequency is often assumed to evolve according to the Wright-Fisher model. For computational reasons, this discrete model is commonly approximated by a diffusion process that requires the assumption that the forces of natural selection and mutation are weak. This assumption is not always appropriate. For example, mutations that impart drug resistance in pathogens may evolve under strong selective pressure. Here, we present an alternative approximation to the mutant-frequency distribution that does not make any assumptions about the magnitude of selection or mutation and is much more computationally efficient than the standard diffusion approximation. Simulation studies are used to compare the performance of our method to that of the Wright-Fisher and Gaussian diffusion approximations. For large populations, our method is found to provide a much better approximation to the mutant-frequency distribution when selection is strong, while all three methods perform comparably when selection is weak. Importantly, maximum-likelihood estimates of the selection coefficient are severely attenuated when selection is strong under the two diffusion models, but not when our method is used. This is further demonstrated with an application to mutant-frequency data from an experimental study of bacteriophage evolution. We therefore recommend our method for estimating the selection coefficient when the effective population size is too large to utilize the discrete Wright-Fisher model. Copyright © 2014 by the Genetics Society of America.
NASA Astrophysics Data System (ADS)
Wang, Lijuan; Yan, Yong; Wang, Xue; Wang, Tao
2017-03-01
Input variable selection is an essential step in the development of data-driven models for environmental, biological and industrial applications. Through input variable selection to eliminate the irrelevant or redundant variables, a suitable subset of variables is identified as the input of a model. Meanwhile, through input variable selection the complexity of the model structure is simplified and the computational efficiency is improved. This paper describes the procedures of the input variable selection for the data-driven models for the measurement of liquid mass flowrate and gas volume fraction under two-phase flow conditions using Coriolis flowmeters. Three advanced input variable selection methods, including partial mutual information (PMI), genetic algorithm-artificial neural network (GA-ANN) and tree-based iterative input selection (IIS) are applied in this study. Typical data-driven models incorporating support vector machine (SVM) are established individually based on the input candidates resulting from the selection methods. The validity of the selection outcomes is assessed through an output performance comparison of the SVM based data-driven models and sensitivity analysis. The validation and analysis results suggest that the input variables selected from the PMI algorithm provide more effective information for the models to measure liquid mass flowrate while the IIS algorithm provides a fewer but more effective variables for the models to predict gas volume fraction.
Posterior Predictive Bayesian Phylogenetic Model Selection
Lewis, Paul O.; Xie, Wangang; Chen, Ming-Hui; Fan, Yu; Kuo, Lynn
2014-01-01
We present two distinctly different posterior predictive approaches to Bayesian phylogenetic model selection and illustrate these methods using examples from green algal protein-coding cpDNA sequences and flowering plant rDNA sequences. The Gelfand–Ghosh (GG) approach allows dissection of an overall measure of model fit into components due to posterior predictive variance (GGp) and goodness-of-fit (GGg), which distinguishes this method from the posterior predictive P-value approach. The conditional predictive ordinate (CPO) method provides a site-specific measure of model fit useful for exploratory analyses and can be combined over sites yielding the log pseudomarginal likelihood (LPML) which is useful as an overall measure of model fit. CPO provides a useful cross-validation approach that is computationally efficient, requiring only a sample from the posterior distribution (no additional simulation is required). Both GG and CPO add new perspectives to Bayesian phylogenetic model selection based on the predictive abilities of models and complement the perspective provided by the marginal likelihood (including Bayes Factor comparisons) based solely on the fit of competing models to observed data. [Bayesian; conditional predictive ordinate; CPO; L-measure; LPML; model selection; phylogenetics; posterior predictive.] PMID:24193892
Novel harmonic regularization approach for variable selection in Cox's proportional hazards model.
Chu, Ge-Jin; Liang, Yong; Wang, Jia-Xuan
2014-01-01
Variable selection is an important issue in regression and a number of variable selection methods have been proposed involving nonconvex penalty functions. In this paper, we investigate a novel harmonic regularization method, which can approximate nonconvex Lq (1/2 < q < 1) regularizations, to select key risk factors in the Cox's proportional hazards model using microarray gene expression data. The harmonic regularization method can be efficiently solved using our proposed direct path seeking approach, which can produce solutions that closely approximate those for the convex loss function and the nonconvex regularization. Simulation results based on the artificial datasets and four real microarray gene expression datasets, such as real diffuse large B-cell lymphoma (DCBCL), the lung cancer, and the AML datasets, show that the harmonic regularization method can be more accurate for variable selection than existing Lasso series methods.
The Hull Method for Selecting the Number of Common Factors
ERIC Educational Resources Information Center
Lorenzo-Seva, Urbano; Timmerman, Marieke E.; Kiers, Henk A. L.
2011-01-01
A common problem in exploratory factor analysis is how many factors need to be extracted from a particular data set. We propose a new method for selecting the number of major common factors: the Hull method, which aims to find a model with an optimal balance between model fit and number of parameters. We examine the performance of the method in an…
Predicting the accuracy of ligand overlay methods with Random Forest models.
Nandigam, Ravi K; Evans, David A; Erickson, Jon A; Kim, Sangtae; Sutherland, Jeffrey J
2008-12-01
The accuracy of binding mode prediction using standard molecular overlay methods (ROCS, FlexS, Phase, and FieldCompare) is studied. Previous work has shown that simple decision tree modeling can be used to improve accuracy by selection of the best overlay template. This concept is extended to the use of Random Forest (RF) modeling for template and algorithm selection. An extensive data set of 815 ligand-bound X-ray structures representing 5 gene families was used for generating ca. 70,000 overlays using four programs. RF models, trained using standard measures of ligand and protein similarity and Lipinski-related descriptors, are used for automatically selecting the reference ligand and overlay method maximizing the probability of reproducing the overlay deduced from X-ray structures (i.e., using rmsd < or = 2 A as the criteria for success). RF model scores are highly predictive of overlay accuracy, and their use in template and method selection produces correct overlays in 57% of cases for 349 overlay ligands not used for training RF models. The inclusion in the models of protein sequence similarity enables the use of templates bound to related protein structures, yielding useful results even for proteins having no available X-ray structures.
Reply to Efford on ‘Integrating resource selection information with spatial capture-recapture’
Royle, Andy; Chandler, Richard; Sun, Catherine C.; Fuller, Angela K.
2014-01-01
3. A key point of Royle et al. (Methods in Ecology and Evolution, 2013, 4) was that active resource selection induces heterogeneity in encounter probability which, if unaccounted for, should bias estimates of population size or density. The models of Royle et al. (Methods in Ecology and Evolution, 2013, 4) and Efford (Methods in Ecology and Evolution, 2014, 000, 000) merely amount to alternative models of resource selection, and hence varying amounts of heterogeneity in encounter probability.
Perturbation Selection and Local Influence Analysis for Nonlinear Structural Equation Model
ERIC Educational Resources Information Center
Chen, Fei; Zhu, Hong-Tu; Lee, Sik-Yum
2009-01-01
Local influence analysis is an important statistical method for studying the sensitivity of a proposed model to model inputs. One of its important issues is related to the appropriate choice of a perturbation vector. In this paper, we develop a general method to select an appropriate perturbation vector and a second-order local influence measure…
DeepQA: improving the estimation of single protein model quality with deep belief networks.
Cao, Renzhi; Bhattacharya, Debswapna; Hou, Jie; Cheng, Jianlin
2016-12-05
Protein quality assessment (QA) useful for ranking and selecting protein models has long been viewed as one of the major challenges for protein tertiary structure prediction. Especially, estimating the quality of a single protein model, which is important for selecting a few good models out of a large model pool consisting of mostly low-quality models, is still a largely unsolved problem. We introduce a novel single-model quality assessment method DeepQA based on deep belief network that utilizes a number of selected features describing the quality of a model from different perspectives, such as energy, physio-chemical characteristics, and structural information. The deep belief network is trained on several large datasets consisting of models from the Critical Assessment of Protein Structure Prediction (CASP) experiments, several publicly available datasets, and models generated by our in-house ab initio method. Our experiments demonstrate that deep belief network has better performance compared to Support Vector Machines and Neural Networks on the protein model quality assessment problem, and our method DeepQA achieves the state-of-the-art performance on CASP11 dataset. It also outperformed two well-established methods in selecting good outlier models from a large set of models of mostly low quality generated by ab initio modeling methods. DeepQA is a useful deep learning tool for protein single model quality assessment and protein structure prediction. The source code, executable, document and training/test datasets of DeepQA for Linux is freely available to non-commercial users at http://cactus.rnet.missouri.edu/DeepQA/ .
A Model-Based Approach for Identifying Signatures of Ancient Balancing Selection in Genetic Data
DeGiorgio, Michael; Lohmueller, Kirk E.; Nielsen, Rasmus
2014-01-01
While much effort has focused on detecting positive and negative directional selection in the human genome, relatively little work has been devoted to balancing selection. This lack of attention is likely due to the paucity of sophisticated methods for identifying sites under balancing selection. Here we develop two composite likelihood ratio tests for detecting balancing selection. Using simulations, we show that these methods outperform competing methods under a variety of assumptions and demographic models. We apply the new methods to whole-genome human data, and find a number of previously-identified loci with strong evidence of balancing selection, including several HLA genes. Additionally, we find evidence for many novel candidates, the strongest of which is FANK1, an imprinted gene that suppresses apoptosis, is expressed during meiosis in males, and displays marginal signs of segregation distortion. We hypothesize that balancing selection acts on this locus to stabilize the segregation distortion and negative fitness effects of the distorter allele. Thus, our methods are able to reproduce many previously-hypothesized signals of balancing selection, as well as discover novel interesting candidates. PMID:25144706
A model-based approach for identifying signatures of ancient balancing selection in genetic data.
DeGiorgio, Michael; Lohmueller, Kirk E; Nielsen, Rasmus
2014-08-01
While much effort has focused on detecting positive and negative directional selection in the human genome, relatively little work has been devoted to balancing selection. This lack of attention is likely due to the paucity of sophisticated methods for identifying sites under balancing selection. Here we develop two composite likelihood ratio tests for detecting balancing selection. Using simulations, we show that these methods outperform competing methods under a variety of assumptions and demographic models. We apply the new methods to whole-genome human data, and find a number of previously-identified loci with strong evidence of balancing selection, including several HLA genes. Additionally, we find evidence for many novel candidates, the strongest of which is FANK1, an imprinted gene that suppresses apoptosis, is expressed during meiosis in males, and displays marginal signs of segregation distortion. We hypothesize that balancing selection acts on this locus to stabilize the segregation distortion and negative fitness effects of the distorter allele. Thus, our methods are able to reproduce many previously-hypothesized signals of balancing selection, as well as discover novel interesting candidates.
Selection of Thermal Worst-Case Orbits via Modified Efficient Global Optimization
NASA Technical Reports Server (NTRS)
Moeller, Timothy M.; Wilhite, Alan W.; Liles, Kaitlin A.
2014-01-01
Efficient Global Optimization (EGO) was used to select orbits with worst-case hot and cold thermal environments for the Stratospheric Aerosol and Gas Experiment (SAGE) III. The SAGE III system thermal model changed substantially since the previous selection of worst-case orbits (which did not use the EGO method), so the selections were revised to ensure the worst cases are being captured. The EGO method consists of first conducting an initial set of parametric runs, generated with a space-filling Design of Experiments (DoE) method, then fitting a surrogate model to the data and searching for points of maximum Expected Improvement (EI) to conduct additional runs. The general EGO method was modified by using a multi-start optimizer to identify multiple new test points at each iteration. This modification facilitates parallel computing and decreases the burden of user interaction when the optimizer code is not integrated with the model. Thermal worst-case orbits for SAGE III were successfully identified and shown by direct comparison to be more severe than those identified in the previous selection. The EGO method is a useful tool for this application and can result in computational savings if the initial Design of Experiments (DoE) is selected appropriately.
Relevance popularity: A term event model based feature selection scheme for text classification.
Feng, Guozhong; An, Baiguo; Yang, Fengqin; Wang, Han; Zhang, Libiao
2017-01-01
Feature selection is a practical approach for improving the performance of text classification methods by optimizing the feature subsets input to classifiers. In traditional feature selection methods such as information gain and chi-square, the number of documents that contain a particular term (i.e. the document frequency) is often used. However, the frequency of a given term appearing in each document has not been fully investigated, even though it is a promising feature to produce accurate classifications. In this paper, we propose a new feature selection scheme based on a term event Multinomial naive Bayes probabilistic model. According to the model assumptions, the matching score function, which is based on the prediction probability ratio, can be factorized. Finally, we derive a feature selection measurement for each term after replacing inner parameters by their estimators. On a benchmark English text datasets (20 Newsgroups) and a Chinese text dataset (MPH-20), our numerical experiment results obtained from using two widely used text classifiers (naive Bayes and support vector machine) demonstrate that our method outperformed the representative feature selection methods.
Text Summarization Model based on Facility Location Problem
NASA Astrophysics Data System (ADS)
Takamura, Hiroya; Okumura, Manabu
e propose a novel multi-document generic summarization model based on the budgeted median problem, which is a facility location problem. The summarization method based on our model is an extractive method, which selects sentences from the given document cluster and generates a summary. Each sentence in the document cluster will be assigned to one of the selected sentences, where the former sentece is supposed to be represented by the latter. Our method selects sentences to generate a summary that yields a good sentence assignment and hence covers the whole content of the document cluster. An advantage of this method is that it can incorporate asymmetric relations between sentences such as textual entailment. Through experiments, we showed that the proposed method yields good summaries on the dataset of DUC'04.
Stephan, Wolfgang
2016-01-01
In the past 15 years, numerous methods have been developed to detect selective sweeps underlying adaptations. These methods are based on relatively simple population genetic models, including one or two loci at which positive directional selection occurs, and one or two marker loci at which the impact of selection on linked neutral variation is quantified. Information about the phenotype under selection is not included in these models (except for fitness). In contrast, in the quantitative genetic models of adaptation, selection acts on one or more phenotypic traits, such that a genotype-phenotype map is required to bridge the gap to population genetics theory. Here I describe the range of population genetic models from selective sweeps in a panmictic population of constant size to evolutionary traffic when simultaneous sweeps at multiple loci interfere, and I also consider the case of polygenic selection characterized by subtle allele frequency shifts at many loci. Furthermore, I present an overview of the statistical tests that have been proposed based on these population genetics models to detect evidence for positive selection in the genome. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wentworth, Mami Tonoe
Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification techniques for model calibration. For Bayesian model calibration, we employ adaptive Metropolis algorithms to construct densities for input parameters in the heat model and the HIV model. To quantify the uncertainty in the parameters, we employ two MCMC algorithms: Delayed Rejection Adaptive Metropolis (DRAM) [33] and Differential Evolution Adaptive Metropolis (DREAM) [66, 68]. The densities obtained using these methods are compared to those obtained through the direct numerical evaluation of the Bayes' formula. We also combine uncertainties in input parameters and measurement errors to construct predictive estimates for a model response. A significant emphasis is on the development and illustration of techniques to verify the accuracy of sampling-based Metropolis algorithms. We verify the accuracy of DRAM and DREAM by comparing chains, densities and correlations obtained using DRAM, DREAM and the direct evaluation of Bayes formula. We also perform similar analysis for credible and prediction intervals for responses. Once the parameters are estimated, we employ energy statistics test [63, 64] to compare the densities obtained by different methods for the HIV model. The energy statistics are used to test the equality of distributions. We also consider parameter selection and verification techniques for models having one or more parameters that are noninfluential in the sense that they minimally impact model outputs. We illustrate these techniques for a dynamic HIV model but note that the parameter selection and verification framework is applicable to a wide range of biological and physical models. To accommodate the nonlinear input to output relations, which are typical for such models, we focus on global sensitivity analysis techniques, including those based on partial correlations, Sobol indices based on second-order model representations, and Morris indices, as well as a parameter selection technique based on standard errors. A significant objective is to provide verification strategies to assess the accuracy of those techniques, which we illustrate in the context of the HIV model. Finally, we examine active subspace methods as an alternative to parameter subset selection techniques. The objective of active subspace methods is to determine the subspace of inputs that most strongly affect the model response, and to reduce the dimension of the input space. The major difference between active subspace methods and parameter selection techniques is that parameter selection identifies influential parameters whereas subspace selection identifies a linear combination of parameters that impacts the model responses significantly. We employ active subspace methods discussed in [22] for the HIV model and present a verification that the active subspace successfully reduces the input dimensions.
Methodological development for selection of significant predictors explaining fatal road accidents.
Dadashova, Bahar; Arenas-Ramírez, Blanca; Mira-McWilliams, José; Aparicio-Izquierdo, Francisco
2016-05-01
Identification of the most relevant factors for explaining road accident occurrence is an important issue in road safety research, particularly for future decision-making processes in transport policy. However model selection for this particular purpose is still an ongoing research. In this paper we propose a methodological development for model selection which addresses both explanatory variable and adequate model selection issues. A variable selection procedure, TIM (two-input model) method is carried out by combining neural network design and statistical approaches. The error structure of the fitted model is assumed to follow an autoregressive process. All models are estimated using Markov Chain Monte Carlo method where the model parameters are assigned non-informative prior distributions. The final model is built using the results of the variable selection. For the application of the proposed methodology the number of fatal accidents in Spain during 2000-2011 was used. This indicator has experienced the maximum reduction internationally during the indicated years thus making it an interesting time series from a road safety policy perspective. Hence the identification of the variables that have affected this reduction is of particular interest for future decision making. The results of the variable selection process show that the selected variables are main subjects of road safety policy measures. Published by Elsevier Ltd.
Novel Harmonic Regularization Approach for Variable Selection in Cox's Proportional Hazards Model
Chu, Ge-Jin; Liang, Yong; Wang, Jia-Xuan
2014-01-01
Variable selection is an important issue in regression and a number of variable selection methods have been proposed involving nonconvex penalty functions. In this paper, we investigate a novel harmonic regularization method, which can approximate nonconvex Lq (1/2 < q < 1) regularizations, to select key risk factors in the Cox's proportional hazards model using microarray gene expression data. The harmonic regularization method can be efficiently solved using our proposed direct path seeking approach, which can produce solutions that closely approximate those for the convex loss function and the nonconvex regularization. Simulation results based on the artificial datasets and four real microarray gene expression datasets, such as real diffuse large B-cell lymphoma (DCBCL), the lung cancer, and the AML datasets, show that the harmonic regularization method can be more accurate for variable selection than existing Lasso series methods. PMID:25506389
Tehran Air Pollutants Prediction Based on Random Forest Feature Selection Method
NASA Astrophysics Data System (ADS)
Shamsoddini, A.; Aboodi, M. R.; Karami, J.
2017-09-01
Air pollution as one of the most serious forms of environmental pollutions poses huge threat to human life. Air pollution leads to environmental instability, and has harmful and undesirable effects on the environment. Modern prediction methods of the pollutant concentration are able to improve decision making and provide appropriate solutions. This study examines the performance of the Random Forest feature selection in combination with multiple-linear regression and Multilayer Perceptron Artificial Neural Networks methods, in order to achieve an efficient model to estimate carbon monoxide and nitrogen dioxide, sulfur dioxide and PM2.5 contents in the air. The results indicated that Artificial Neural Networks fed by the attributes selected by Random Forest feature selection method performed more accurate than other models for the modeling of all pollutants. The estimation accuracy of sulfur dioxide emissions was lower than the other air contaminants whereas the nitrogen dioxide was predicted more accurate than the other pollutants.
A Developed Meta-model for Selection of Cotton Fabrics Using Design of Experiments and TOPSIS Method
NASA Astrophysics Data System (ADS)
Chakraborty, Shankar; Chatterjee, Prasenjit
2017-12-01
Selection of cotton fabrics for providing optimal clothing comfort is often considered as a multi-criteria decision making problem consisting of an array of candidate alternatives to be evaluated based of several conflicting properties. In this paper, design of experiments and technique for order preference by similarity to ideal solution (TOPSIS) are integrated so as to develop regression meta-models for identifying the most suitable cotton fabrics with respect to the computed TOPSIS scores. The applicability of the adopted method is demonstrated using two real time examples. These developed models can also identify the statistically significant fabric properties and their interactions affecting the measured TOPSIS scores and final selection decisions. There exists good degree of congruence between the ranking patterns as derived using these meta-models and the existing methods for cotton fabric ranking and subsequent selection.
NASA Astrophysics Data System (ADS)
Li, Li-Na; Ma, Chang-Ming; Chang, Ming; Zhang, Ren-Cheng
2017-12-01
A novel method based on SIMPLe-to-use Interactive Self-modeling Mixture Analysis (SIMPLISMA) and Kernel Partial Least Square (KPLS), named as SIMPLISMA-KPLS, is proposed in this paper for selection of outlier samples and informative samples simultaneously. It is a quick algorithm used to model standardization (or named as model transfer) in near infrared (NIR) spectroscopy. The NIR experiment data of the corn for analysis of the protein content is introduced to evaluate the proposed method. Piecewise direct standardization (PDS) is employed in model transfer. And the comparison of SIMPLISMA-PDS-KPLS and KS-PDS-KPLS is given in this research by discussion of the prediction accuracy of protein content and calculation speed of each algorithm. The conclusions include that SIMPLISMA-KPLS can be utilized as an alternative sample selection method for model transfer. Although it has similar accuracy to Kennard-Stone (KS), it is different from KS as it employs concentration information in selection program. This means that it ensures analyte information is involved in analysis, and the spectra (X) of the selected samples is interrelated with concentration (y). And it can be used for outlier sample elimination simultaneously by validation of calibration. According to the statistical data results of running time, it is clear that the sample selection process is more rapid when using KPLS. The quick algorithm of SIMPLISMA-KPLS is beneficial to improve the speed of online measurement using NIR spectroscopy.
Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.
Yabe, Shiori; Yamasaki, Masanori; Ebana, Kaworu; Hayashi, Takeshi; Iwata, Hiroyoshi
2016-01-01
Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS), which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an "island model" inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the potential of genomic selection in autogamous crops, especially bringing long-term improvement.
NASA Astrophysics Data System (ADS)
Määttä, A.; Laine, M.; Tamminen, J.; Veefkind, J. P.
2013-09-01
We study uncertainty quantification in remote sensing of aerosols in the atmosphere with top of the atmosphere reflectance measurements from the nadir-viewing Ozone Monitoring Instrument (OMI). Focus is on the uncertainty in aerosol model selection of pre-calculated aerosol models and on the statistical modelling of the model inadequacies. The aim is to apply statistical methodologies that improve the uncertainty estimates of the aerosol optical thickness (AOT) retrieval by propagating model selection and model error related uncertainties more realistically. We utilise Bayesian model selection and model averaging methods for the model selection problem and use Gaussian processes to model the smooth systematic discrepancies from the modelled to observed reflectance. The systematic model error is learned from an ensemble of operational retrievals. The operational OMI multi-wavelength aerosol retrieval algorithm OMAERO is used for cloud free, over land pixels of the OMI instrument with the additional Bayesian model selection and model discrepancy techniques. The method is demonstrated with four examples with different aerosol properties: weakly absorbing aerosols, forest fires over Greece and Russia, and Sahara dessert dust. The presented statistical methodology is general; it is not restricted to this particular satellite retrieval application.
Tučník, Petr; Bureš, Vladimír
2016-01-01
Multi-criteria decision-making (MCDM) can be formally implemented by various methods. This study compares suitability of four selected MCDM methods, namely WPM, TOPSIS, VIKOR, and PROMETHEE, for future applications in agent-based computational economic (ACE) models of larger scale (i.e., over 10 000 agents in one geographical region). These four MCDM methods were selected according to their appropriateness for computational processing in ACE applications. Tests of the selected methods were conducted on four hardware configurations. For each method, 100 tests were performed, which represented one testing iteration. With four testing iterations conducted on each hardware setting and separated testing of all configurations with the-server parameter de/activated, altogether, 12800 data points were collected and consequently analyzed. An illustrational decision-making scenario was used which allows the mutual comparison of all of the selected decision making methods. Our test results suggest that although all methods are convenient and can be used in practice, the VIKOR method accomplished the tests with the best results and thus can be recommended as the most suitable for simulations of large-scale agent-based models.
Variance Component Selection With Applications to Microbiome Taxonomic Data.
Zhai, Jing; Kim, Juhyun; Knox, Kenneth S; Twigg, Homer L; Zhou, Hua; Zhou, Jin J
2018-01-01
High-throughput sequencing technology has enabled population-based studies of the role of the human microbiome in disease etiology and exposure response. Microbiome data are summarized as counts or composition of the bacterial taxa at different taxonomic levels. An important problem is to identify the bacterial taxa that are associated with a response. One method is to test the association of specific taxon with phenotypes in a linear mixed effect model, which incorporates phylogenetic information among bacterial communities. Another type of approaches consider all taxa in a joint model and achieves selection via penalization method, which ignores phylogenetic information. In this paper, we consider regression analysis by treating bacterial taxa at different level as multiple random effects. For each taxon, a kernel matrix is calculated based on distance measures in the phylogenetic tree and acts as one variance component in the joint model. Then taxonomic selection is achieved by the lasso (least absolute shrinkage and selection operator) penalty on variance components. Our method integrates biological information into the variable selection problem and greatly improves selection accuracies. Simulation studies demonstrate the superiority of our methods versus existing methods, for example, group-lasso. Finally, we apply our method to a longitudinal microbiome study of Human Immunodeficiency Virus (HIV) infected patients. We implement our method using the high performance computing language Julia. Software and detailed documentation are freely available at https://github.com/JingZhai63/VCselection.
Best Design for Multidimensional Computerized Adaptive Testing With the Bifactor Model
Seo, Dong Gi; Weiss, David J.
2015-01-01
Most computerized adaptive tests (CATs) have been studied using the framework of unidimensional item response theory. However, many psychological variables are multidimensional and might benefit from using a multidimensional approach to CATs. This study investigated the accuracy, fidelity, and efficiency of a fully multidimensional CAT algorithm (MCAT) with a bifactor model using simulated data. Four item selection methods in MCAT were examined for three bifactor pattern designs using two multidimensional item response theory models. To compare MCAT item selection and estimation methods, a fixed test length was used. The Ds-optimality item selection improved θ estimates with respect to a general factor, and either D- or A-optimality improved estimates of the group factors in three bifactor pattern designs under two multidimensional item response theory models. The MCAT model without a guessing parameter functioned better than the MCAT model with a guessing parameter. The MAP (maximum a posteriori) estimation method provided more accurate θ estimates than the EAP (expected a posteriori) method under most conditions, and MAP showed lower observed standard errors than EAP under most conditions, except for a general factor condition using Ds-optimality item selection. PMID:29795848
NASA Astrophysics Data System (ADS)
Goudarzi, Nasser
2016-04-01
In this work, two new and powerful chemometrics methods are applied for the modeling and prediction of the 19F chemical shift values of some fluorinated organic compounds. The radial basis function-partial least square (RBF-PLS) and random forest (RF) are employed to construct the models to predict the 19F chemical shifts. In this study, we didn't used from any variable selection method and RF method can be used as variable selection and modeling technique. Effects of the important parameters affecting the ability of the RF prediction power such as the number of trees (nt) and the number of randomly selected variables to split each node (m) were investigated. The root-mean-square errors of prediction (RMSEP) for the training set and the prediction set for the RBF-PLS and RF models were 44.70, 23.86, 29.77, and 23.69, respectively. Also, the correlation coefficients of the prediction set for the RBF-PLS and RF models were 0.8684 and 0.9313, respectively. The results obtained reveal that the RF model can be used as a powerful chemometrics tool for the quantitative structure-property relationship (QSPR) studies.
Ni, Ai; Cai, Jianwen
2018-07-01
Case-cohort designs are commonly used in large epidemiological studies to reduce the cost associated with covariate measurement. In many such studies the number of covariates is very large. An efficient variable selection method is needed for case-cohort studies where the covariates are only observed in a subset of the sample. Current literature on this topic has been focused on the proportional hazards model. However, in many studies the additive hazards model is preferred over the proportional hazards model either because the proportional hazards assumption is violated or the additive hazards model provides more relevent information to the research question. Motivated by one such study, the Atherosclerosis Risk in Communities (ARIC) study, we investigate the properties of a regularized variable selection procedure in stratified case-cohort design under an additive hazards model with a diverging number of parameters. We establish the consistency and asymptotic normality of the penalized estimator and prove its oracle property. Simulation studies are conducted to assess the finite sample performance of the proposed method with a modified cross-validation tuning parameter selection methods. We apply the variable selection procedure to the ARIC study to demonstrate its practical use.
Brandt, Laura A.; Benscoter, Allison; Harvey, Rebecca G.; Speroterra, Carolina; Bucklin, David N.; Romañach, Stephanie; Watling, James I.; Mazzotti, Frank J.
2017-01-01
Climate envelope models are widely used to describe potential future distribution of species under different climate change scenarios. It is broadly recognized that there are both strengths and limitations to using climate envelope models and that outcomes are sensitive to initial assumptions, inputs, and modeling methods Selection of predictor variables, a central step in modeling, is one of the areas where different techniques can yield varying results. Selection of climate variables to use as predictors is often done using statistical approaches that develop correlations between occurrences and climate data. These approaches have received criticism in that they rely on the statistical properties of the data rather than directly incorporating biological information about species responses to temperature and precipitation. We evaluated and compared models and prediction maps for 15 threatened or endangered species in Florida based on two variable selection techniques: expert opinion and a statistical method. We compared model performance between these two approaches for contemporary predictions, and the spatial correlation, spatial overlap and area predicted for contemporary and future climate predictions. In general, experts identified more variables as being important than the statistical method and there was low overlap in the variable sets (<40%) between the two methods Despite these differences in variable sets (expert versus statistical), models had high performance metrics (>0.9 for area under the curve (AUC) and >0.7 for true skill statistic (TSS). Spatial overlap, which compares the spatial configuration between maps constructed using the different variable selection techniques, was only moderate overall (about 60%), with a great deal of variability across species. Difference in spatial overlap was even greater under future climate projections, indicating additional divergence of model outputs from different variable selection techniques. Our work is in agreement with other studies which have found that for broad-scale species distribution modeling, using statistical methods of variable selection is a useful first step, especially when there is a need to model a large number of species or expert knowledge of the species is limited. Expert input can then be used to refine models that seem unrealistic or for species that experts believe are particularly sensitive to change. It also emphasizes the importance of using multiple models to reduce uncertainty and improve map outputs for conservation planning. Where outputs overlap or show the same direction of change there is greater certainty in the predictions. Areas of disagreement can be used for learning by asking why the models do not agree, and may highlight areas where additional on-the-ground data collection could improve the models.
Stabilizing l1-norm prediction models by supervised feature grouping.
Kamkar, Iman; Gupta, Sunil Kumar; Phung, Dinh; Venkatesh, Svetha
2016-02-01
Emerging Electronic Medical Records (EMRs) have reformed the modern healthcare. These records have great potential to be used for building clinical prediction models. However, a problem in using them is their high dimensionality. Since a lot of information may not be relevant for prediction, the underlying complexity of the prediction models may not be high. A popular way to deal with this problem is to employ feature selection. Lasso and l1-norm based feature selection methods have shown promising results. But, in presence of correlated features, these methods select features that change considerably with small changes in data. This prevents clinicians to obtain a stable feature set, which is crucial for clinical decision making. Grouping correlated variables together can improve the stability of feature selection, however, such grouping is usually not known and needs to be estimated for optimal performance. Addressing this problem, we propose a new model that can simultaneously learn the grouping of correlated features and perform stable feature selection. We formulate the model as a constrained optimization problem and provide an efficient solution with guaranteed convergence. Our experiments with both synthetic and real-world datasets show that the proposed model is significantly more stable than Lasso and many existing state-of-the-art shrinkage and classification methods. We further show that in terms of prediction performance, the proposed method consistently outperforms Lasso and other baselines. Our model can be used for selecting stable risk factors for a variety of healthcare problems, so it can assist clinicians toward accurate decision making. Copyright © 2015 Elsevier Inc. All rights reserved.
Adaptive Greedy Dictionary Selection for Web Media Summarization.
Cong, Yang; Liu, Ji; Sun, Gan; You, Quanzeng; Li, Yuncheng; Luo, Jiebo
2017-01-01
Initializing an effective dictionary is an indispensable step for sparse representation. In this paper, we focus on the dictionary selection problem with the objective to select a compact subset of basis from original training data instead of learning a new dictionary matrix as dictionary learning models do. We first design a new dictionary selection model via l 2,0 norm. For model optimization, we propose two methods: one is the standard forward-backward greedy algorithm, which is not suitable for large-scale problems; the other is based on the gradient cues at each forward iteration and speeds up the process dramatically. In comparison with the state-of-the-art dictionary selection models, our model is not only more effective and efficient, but also can control the sparsity. To evaluate the performance of our new model, we select two practical web media summarization problems: 1) we build a new data set consisting of around 500 users, 3000 albums, and 1 million images, and achieve effective assisted albuming based on our model and 2) by formulating the video summarization problem as a dictionary selection issue, we employ our model to extract keyframes from a video sequence in a more flexible way. Generally, our model outperforms the state-of-the-art methods in both these two tasks.
Liu, Xiang; Peng, Yingwei; Tu, Dongsheng; Liang, Hua
2012-10-30
Survival data with a sizable cure fraction are commonly encountered in cancer research. The semiparametric proportional hazards cure model has been recently used to analyze such data. As seen in the analysis of data from a breast cancer study, a variable selection approach is needed to identify important factors in predicting the cure status and risk of breast cancer recurrence. However, no specific variable selection method for the cure model is available. In this paper, we present a variable selection approach with penalized likelihood for the cure model. The estimation can be implemented easily by combining the computational methods for penalized logistic regression and the penalized Cox proportional hazards models with the expectation-maximization algorithm. We illustrate the proposed approach on data from a breast cancer study. We conducted Monte Carlo simulations to evaluate the performance of the proposed method. We used and compared different penalty functions in the simulation studies. Copyright © 2012 John Wiley & Sons, Ltd.
Diversified models for portfolio selection based on uncertain semivariance
NASA Astrophysics Data System (ADS)
Chen, Lin; Peng, Jin; Zhang, Bo; Rosyida, Isnaini
2017-02-01
Since the financial markets are complex, sometimes the future security returns are represented mainly based on experts' estimations due to lack of historical data. This paper proposes a semivariance method for diversified portfolio selection, in which the security returns are given subjective to experts' estimations and depicted as uncertain variables. In the paper, three properties of the semivariance of uncertain variables are verified. Based on the concept of semivariance of uncertain variables, two types of mean-semivariance diversified models for uncertain portfolio selection are proposed. Since the models are complex, a hybrid intelligent algorithm which is based on 99-method and genetic algorithm is designed to solve the models. In this hybrid intelligent algorithm, 99-method is applied to compute the expected value and semivariance of uncertain variables, and genetic algorithm is employed to seek the best allocation plan for portfolio selection. At last, several numerical examples are presented to illustrate the modelling idea and the effectiveness of the algorithm.
Comparisons of Means Using Exploratory and Confirmatory Approaches
ERIC Educational Resources Information Center
Kuiper, Rebecca M.; Hoijtink, Herbert
2010-01-01
This article discusses comparisons of means using exploratory and confirmatory approaches. Three methods are discussed: hypothesis testing, model selection based on information criteria, and Bayesian model selection. Throughout the article, an example is used to illustrate and evaluate the two approaches and the three methods. We demonstrate that…
Selecting Single Model in Combination Forecasting Based on Cointegration Test and Encompassing Test
Jiang, Chuanjin; Zhang, Jing; Song, Fugen
2014-01-01
Combination forecasting takes all characters of each single forecasting method into consideration, and combines them to form a composite, which increases forecasting accuracy. The existing researches on combination forecasting select single model randomly, neglecting the internal characters of the forecasting object. After discussing the function of cointegration test and encompassing test in the selection of single model, supplemented by empirical analysis, the paper gives the single model selection guidance: no more than five suitable single models can be selected from many alternative single models for a certain forecasting target, which increases accuracy and stability. PMID:24892061
Selecting single model in combination forecasting based on cointegration test and encompassing test.
Jiang, Chuanjin; Zhang, Jing; Song, Fugen
2014-01-01
Combination forecasting takes all characters of each single forecasting method into consideration, and combines them to form a composite, which increases forecasting accuracy. The existing researches on combination forecasting select single model randomly, neglecting the internal characters of the forecasting object. After discussing the function of cointegration test and encompassing test in the selection of single model, supplemented by empirical analysis, the paper gives the single model selection guidance: no more than five suitable single models can be selected from many alternative single models for a certain forecasting target, which increases accuracy and stability.
NASA Astrophysics Data System (ADS)
Zhang, Linna; Li, Gang; Sun, Meixiu; Li, Hongxiao; Wang, Zhennan; Li, Yingxin; Lin, Ling
2017-11-01
Identifying whole bloods to be either human or nonhuman is an important responsibility for import-export ports and inspection and quarantine departments. Analytical methods and DNA testing methods are usually destructive. Previous studies demonstrated that visible diffuse reflectance spectroscopy method can realize noncontact human and nonhuman blood discrimination. An appropriate method for calibration set selection was very important for a robust quantitative model. In this paper, Random Selection (RS) method and Kennard-Stone (KS) method was applied in selecting samples for calibration set. Moreover, proper stoichiometry method can be greatly beneficial for improving the performance of classification model or quantification model. Partial Least Square Discrimination Analysis (PLSDA) method was commonly used in identification of blood species with spectroscopy methods. Least Square Support Vector Machine (LSSVM) was proved to be perfect for discrimination analysis. In this research, PLSDA method and LSSVM method was used for human blood discrimination. Compared with the results of PLSDA method, this method could enhance the performance of identified models. The overall results convinced that LSSVM method was more feasible for identifying human and animal blood species, and sufficiently demonstrated LSSVM method was a reliable and robust method for human blood identification, and can be more effective and accurate.
A non-linear data mining parameter selection algorithm for continuous variables
Razavi, Marianne; Brady, Sean
2017-01-01
In this article, we propose a new data mining algorithm, by which one can both capture the non-linearity in data and also find the best subset model. To produce an enhanced subset of the original variables, a preferred selection method should have the potential of adding a supplementary level of regression analysis that would capture complex relationships in the data via mathematical transformation of the predictors and exploration of synergistic effects of combined variables. The method that we present here has the potential to produce an optimal subset of variables, rendering the overall process of model selection more efficient. This algorithm introduces interpretable parameters by transforming the original inputs and also a faithful fit to the data. The core objective of this paper is to introduce a new estimation technique for the classical least square regression framework. This new automatic variable transformation and model selection method could offer an optimal and stable model that minimizes the mean square error and variability, while combining all possible subset selection methodology with the inclusion variable transformations and interactions. Moreover, this method controls multicollinearity, leading to an optimal set of explanatory variables. PMID:29131829
NASA Astrophysics Data System (ADS)
Duan, Fajie; Fu, Xiao; Jiang, Jiajia; Huang, Tingting; Ma, Ling; Zhang, Cong
2018-05-01
In this work, an automatic variable selection method for quantitative analysis of soil samples using laser-induced breakdown spectroscopy (LIBS) is proposed, which is based on full spectrum correction (FSC) and modified iterative predictor weighting-partial least squares (mIPW-PLS). The method features automatic selection without artificial processes. To illustrate the feasibility and effectiveness of the method, a comparison with genetic algorithm (GA) and successive projections algorithm (SPA) for different elements (copper, barium and chromium) detection in soil was implemented. The experimental results showed that all the three methods could accomplish variable selection effectively, among which FSC-mIPW-PLS required significantly shorter computation time (12 s approximately for 40,000 initial variables) than the others. Moreover, improved quantification models were got with variable selection approaches. The root mean square errors of prediction (RMSEP) of models utilizing the new method were 27.47 (copper), 37.15 (barium) and 39.70 (chromium) mg/kg, which showed comparable prediction effect with GA and SPA.
Model selection and assessment for multi-species occupancy models
Broms, Kristin M.; Hooten, Mevin B.; Fitzpatrick, Ryan M.
2016-01-01
While multi-species occupancy models (MSOMs) are emerging as a popular method for analyzing biodiversity data, formal checking and validation approaches for this class of models have lagged behind. Concurrent with the rise in application of MSOMs among ecologists, a quiet regime shift is occurring in Bayesian statistics where predictive model comparison approaches are experiencing a resurgence. Unlike single-species occupancy models that use integrated likelihoods, MSOMs are usually couched in a Bayesian framework and contain multiple levels. Standard model checking and selection methods are often unreliable in this setting and there is only limited guidance in the ecological literature for this class of models. We examined several different contemporary Bayesian hierarchical approaches for checking and validating MSOMs and applied these methods to a freshwater aquatic study system in Colorado, USA, to better understand the diversity and distributions of plains fishes. Our findings indicated distinct differences among model selection approaches, with cross-validation techniques performing the best in terms of prediction.
Model Selection Methods for Mixture Dichotomous IRT Models
ERIC Educational Resources Information Center
Li, Feiming; Cohen, Allan S.; Kim, Seock-Ho; Cho, Sun-Joo
2009-01-01
This study examines model selection indices for use with dichotomous mixture item response theory (IRT) models. Five indices are considered: Akaike's information coefficient (AIC), Bayesian information coefficient (BIC), deviance information coefficient (DIC), pseudo-Bayes factor (PsBF), and posterior predictive model checks (PPMC). The five…
Algamal, Z Y; Lee, M H
2017-01-01
A high-dimensional quantitative structure-activity relationship (QSAR) classification model typically contains a large number of irrelevant and redundant descriptors. In this paper, a new design of descriptor selection for the QSAR classification model estimation method is proposed by adding a new weight inside L1-norm. The experimental results of classifying the anti-hepatitis C virus activity of thiourea derivatives demonstrate that the proposed descriptor selection method in the QSAR classification model performs effectively and competitively compared with other existing penalized methods in terms of classification performance on both the training and the testing datasets. Moreover, it is noteworthy that the results obtained in terms of stability test and applicability domain provide a robust QSAR classification model. It is evident from the results that the developed QSAR classification model could conceivably be employed for further high-dimensional QSAR classification studies.
Shi, Xiaohu; Zhang, Jingfen; He, Zhiquan; Shang, Yi; Xu, Dong
2011-09-01
One of the major challenges in protein tertiary structure prediction is structure quality assessment. In many cases, protein structure prediction tools generate good structural models, but fail to select the best models from a huge number of candidates as the final output. In this study, we developed a sampling-based machine-learning method to rank protein structural models by integrating multiple scores and features. First, features such as predicted secondary structure, solvent accessibility and residue-residue contact information are integrated by two Radial Basis Function (RBF) models trained from different datasets. Then, the two RBF scores and five selected scoring functions developed by others, i.e., Opus-CA, Opus-PSP, DFIRE, RAPDF, and Cheng Score are synthesized by a sampling method. At last, another integrated RBF model ranks the structural models according to the features of sampling distribution. We tested the proposed method by using two different datasets, including the CASP server prediction models of all CASP8 targets and a set of models generated by our in-house software MUFOLD. The test result shows that our method outperforms any individual scoring function on both best model selection, and overall correlation between the predicted ranking and the actual ranking of structural quality.
System and method of designing models in a feedback loop
Gosink, Luke C.; Pulsipher, Trenton C.; Sego, Landon H.
2017-02-14
A method and system for designing models is disclosed. The method includes selecting a plurality of models for modeling a common event of interest. The method further includes aggregating the results of the models and analyzing each model compared to the aggregate result to obtain comparative information. The method also includes providing the information back to the plurality of models to design more accurate models through a feedback loop.
NASA Astrophysics Data System (ADS)
Müller, Aline Lima Hermes; Picoloto, Rochele Sogari; Mello, Paola de Azevedo; Ferrão, Marco Flores; dos Santos, Maria de Fátima Pereira; Guimarães, Regina Célia Lourenço; Müller, Edson Irineu; Flores, Erico Marlon Moraes
2012-04-01
Total sulfur concentration was determined in atmospheric residue (AR) and vacuum residue (VR) samples obtained from petroleum distillation process by Fourier transform infrared spectroscopy with attenuated total reflectance (FT-IR/ATR) in association with chemometric methods. Calibration and prediction set consisted of 40 and 20 samples, respectively. Calibration models were developed using two variable selection models: interval partial least squares (iPLS) and synergy interval partial least squares (siPLS). Different treatments and pre-processing steps were also evaluated for the development of models. The pre-treatment based on multiplicative scatter correction (MSC) and the mean centered data were selected for models construction. The use of siPLS as variable selection method provided a model with root mean square error of prediction (RMSEP) values significantly better than those obtained by PLS model using all variables. The best model was obtained using siPLS algorithm with spectra divided in 20 intervals and combinations of 3 intervals (911-824, 823-736 and 737-650 cm-1). This model produced a RMSECV of 400 mg kg-1 S and RMSEP of 420 mg kg-1 S, showing a correlation coefficient of 0.990.
Yang, Mingxing; Li, Xiumin; Li, Zhibin; Ou, Zhimin; Liu, Ming; Liu, Suhuan; Li, Xuejun; Yang, Shuyu
2013-01-01
DNA microarray analysis is characterized by obtaining a large number of gene variables from a small number of observations. Cluster analysis is widely used to analyze DNA microarray data to make classification and diagnosis of disease. Because there are so many irrelevant and insignificant genes in a dataset, a feature selection approach must be employed in data analysis. The performance of cluster analysis of this high-throughput data depends on whether the feature selection approach chooses the most relevant genes associated with disease classes. Here we proposed a new method using multiple Orthogonal Partial Least Squares-Discriminant Analysis (mOPLS-DA) models and S-plots to select the most relevant genes to conduct three-class disease classification and prediction. We tested our method using Golub's leukemia microarray data. For three classes with subtypes, we proposed hierarchical orthogonal partial least squares-discriminant analysis (OPLS-DA) models and S-plots to select features for two main classes and their subtypes. For three classes in parallel, we employed three OPLS-DA models and S-plots to choose marker genes for each class. The power of feature selection to classify and predict three-class disease was evaluated using cluster analysis. Further, the general performance of our method was tested using four public datasets and compared with those of four other feature selection methods. The results revealed that our method effectively selected the most relevant features for disease classification and prediction, and its performance was better than that of the other methods.
Multimodel Ensemble Methods for Prediction of Wake-Vortex Transport and Decay Originating NASA
NASA Technical Reports Server (NTRS)
Korner, Stephan; Ahmad, Nashat N.; Holzapfel, Frank; VanValkenburg, Randal L.
2017-01-01
Several multimodel ensemble methods are selected and further developed to improve the deterministic and probabilistic prediction skills of individual wake-vortex transport and decay models. The different multimodel ensemble methods are introduced, and their suitability for wake applications is demonstrated. The selected methods include direct ensemble averaging, Bayesian model averaging, and Monte Carlo simulation. The different methodologies are evaluated employing data from wake-vortex field measurement campaigns conducted in the United States and Germany.
Muddukrishna, B S; Pai, Vasudev; Lobo, Richard; Pai, Aravinda
2017-11-22
In the present study, five important binary fingerprinting techniques were used to model novel flavones for the selective inhibition of Tankyrase I. From the fingerprints used: the fingerprint atom pairs resulted in a statistically significant 2D QSAR model using a kernel-based partial least square regression method. This model indicates that the presence of electron-donating groups positively contributes to activity, whereas the presence of electron withdrawing groups negatively contributes to activity. This model could be used to develop more potent as well as selective analogues for the inhibition of Tankyrase I. Schematic representation of 2D QSAR work flow.
Brenn, T; Arnesen, E
1985-01-01
For comparative evaluation, discriminant analysis, logistic regression and Cox's model were used to select risk factors for total and coronary deaths among 6595 men aged 20-49 followed for 9 years. Groups with mortality between 5 and 93 per 1000 were considered. Discriminant analysis selected variable sets only marginally different from the logistic and Cox methods which always selected the same sets. A time-saving option, offered for both the logistic and Cox selection, showed no advantage compared with discriminant analysis. Analysing more than 3800 subjects, the logistic and Cox methods consumed, respectively, 80 and 10 times more computer time than discriminant analysis. When including the same set of variables in non-stepwise analyses, all methods estimated coefficients that in most cases were almost identical. In conclusion, discriminant analysis is advocated for preliminary or stepwise analysis, otherwise Cox's method should be used.
NASA Astrophysics Data System (ADS)
Alipour, M. H.; Kibler, Kelly M.
2018-02-01
A framework methodology is proposed for streamflow prediction in poorly-gauged rivers located within large-scale regions of sparse hydrometeorologic observation. A multi-criteria model evaluation is developed to select models that balance runoff efficiency with selection of accurate parameter values. Sparse observed data are supplemented by uncertain or low-resolution information, incorporated as 'soft' data, to estimate parameter values a priori. Model performance is tested in two catchments within a data-poor region of southwestern China, and results are compared to models selected using alternative calibration methods. While all models perform consistently with respect to runoff efficiency (NSE range of 0.67-0.78), models selected using the proposed multi-objective method may incorporate more representative parameter values than those selected by traditional calibration. Notably, parameter values estimated by the proposed method resonate with direct estimates of catchment subsurface storage capacity (parameter residuals of 20 and 61 mm for maximum soil moisture capacity (Cmax), and 0.91 and 0.48 for soil moisture distribution shape factor (B); where a parameter residual is equal to the centroid of a soft parameter value minus the calibrated parameter value). A model more traditionally calibrated to observed data only (single-objective model) estimates a much lower soil moisture capacity (residuals of Cmax = 475 and 518 mm and B = 1.24 and 0.7). A constrained single-objective model also underestimates maximum soil moisture capacity relative to a priori estimates (residuals of Cmax = 246 and 289 mm). The proposed method may allow managers to more confidently transfer calibrated models to ungauged catchments for streamflow predictions, even in the world's most data-limited regions.
The cross-validated AUC for MCP-logistic regression with high-dimensional data.
Jiang, Dingfeng; Huang, Jian; Zhang, Ying
2013-10-01
We propose a cross-validated area under the receiving operator characteristic (ROC) curve (CV-AUC) criterion for tuning parameter selection for penalized methods in sparse, high-dimensional logistic regression models. We use this criterion in combination with the minimax concave penalty (MCP) method for variable selection. The CV-AUC criterion is specifically designed for optimizing the classification performance for binary outcome data. To implement the proposed approach, we derive an efficient coordinate descent algorithm to compute the MCP-logistic regression solution surface. Simulation studies are conducted to evaluate the finite sample performance of the proposed method and its comparison with the existing methods including the Akaike information criterion (AIC), Bayesian information criterion (BIC) or Extended BIC (EBIC). The model selected based on the CV-AUC criterion tends to have a larger predictive AUC and smaller classification error than those with tuning parameters selected using the AIC, BIC or EBIC. We illustrate the application of the MCP-logistic regression with the CV-AUC criterion on three microarray datasets from the studies that attempt to identify genes related to cancers. Our simulation studies and data examples demonstrate that the CV-AUC is an attractive method for tuning parameter selection for penalized methods in high-dimensional logistic regression models.
Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops
Yabe, Shiori; Yamasaki, Masanori; Ebana, Kaworu; Hayashi, Takeshi; Iwata, Hiroyoshi
2016-01-01
Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS), which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an “island model” inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the potential of genomic selection in autogamous crops, especially bringing long-term improvement. PMID:27115872
A Ranking Approach to Genomic Selection.
Blondel, Mathieu; Onogi, Akio; Iwata, Hiroyoshi; Ueda, Naonori
2015-01-01
Genomic selection (GS) is a recent selective breeding method which uses predictive models based on whole-genome molecular markers. Until now, existing studies formulated GS as the problem of modeling an individual's breeding value for a particular trait of interest, i.e., as a regression problem. To assess predictive accuracy of the model, the Pearson correlation between observed and predicted trait values was used. In this paper, we propose to formulate GS as the problem of ranking individuals according to their breeding value. Our proposed framework allows us to employ machine learning methods for ranking which had previously not been considered in the GS literature. To assess ranking accuracy of a model, we introduce a new measure originating from the information retrieval literature called normalized discounted cumulative gain (NDCG). NDCG rewards more strongly models which assign a high rank to individuals with high breeding value. Therefore, NDCG reflects a prerequisite objective in selective breeding: accurate selection of individuals with high breeding value. We conducted a comparison of 10 existing regression methods and 3 new ranking methods on 6 datasets, consisting of 4 plant species and 25 traits. Our experimental results suggest that tree-based ensemble methods including McRank, Random Forests and Gradient Boosting Regression Trees achieve excellent ranking accuracy. RKHS regression and RankSVM also achieve good accuracy when used with an RBF kernel. Traditional regression methods such as Bayesian lasso, wBSR and BayesC were found less suitable for ranking. Pearson correlation was found to correlate poorly with NDCG. Our study suggests two important messages. First, ranking methods are a promising research direction in GS. Second, NDCG can be a useful evaluation measure for GS.
Model-Averaged ℓ1 Regularization using Markov Chain Monte Carlo Model Composition
Fraley, Chris; Percival, Daniel
2014-01-01
Bayesian Model Averaging (BMA) is an effective technique for addressing model uncertainty in variable selection problems. However, current BMA approaches have computational difficulty dealing with data in which there are many more measurements (variables) than samples. This paper presents a method for combining ℓ1 regularization and Markov chain Monte Carlo model composition techniques for BMA. By treating the ℓ1 regularization path as a model space, we propose a method to resolve the model uncertainty issues arising in model averaging from solution path point selection. We show that this method is computationally and empirically effective for regression and classification in high-dimensional datasets. We apply our technique in simulations, as well as to some applications that arise in genomics. PMID:25642001
Two methods for parameter estimation using multiple-trait models and beef cattle field data.
Bertrand, J K; Kriese, L A
1990-08-01
Two methods are presented for estimating variances and covariances from beef cattle field data using multiple-trait sire models. Both methods require that the first trait have no missing records and that the contemporary groups for the second trait be subsets of the contemporary groups for the first trait; however, the second trait may have missing records. One method uses pseudo expectations involving quadratics composed of the solutions and the right-hand sides of the mixed model equations. The other method is an extension of Henderson's Simple Method to the multiple trait case. Neither of these methods requires any inversions of large matrices in the computation of the parameters; therefore, both methods can handle very large sets of data. Four simulated data sets were generated to evaluate the methods. In general, both methods estimated genetic correlations and heritabilities that were close to the Restricted Maximum Likelihood estimates and the true data set values, even when selection within contemporary groups was practiced. The estimates of residual correlations by both methods, however, were biased by selection. These two methods can be useful in estimating variances and covariances from multiple-trait models in large populations that have undergone a minimal amount of selection within contemporary groups.
Bao, Le; Gu, Hong; Dunn, Katherine A; Bielawski, Joseph P
2007-02-08
Models of codon evolution have proven useful for investigating the strength and direction of natural selection. In some cases, a priori biological knowledge has been used successfully to model heterogeneous evolutionary dynamics among codon sites. These are called fixed-effect models, and they require that all codon sites are assigned to one of several partitions which are permitted to have independent parameters for selection pressure, evolutionary rate, transition to transversion ratio or codon frequencies. For single gene analysis, partitions might be defined according to protein tertiary structure, and for multiple gene analysis partitions might be defined according to a gene's functional category. Given a set of related fixed-effect models, the task of selecting the model that best fits the data is not trivial. In this study, we implement a set of fixed-effect codon models which allow for different levels of heterogeneity among partitions in the substitution process. We describe strategies for selecting among these models by a backward elimination procedure, Akaike information criterion (AIC) or a corrected Akaike information criterion (AICc). We evaluate the performance of these model selection methods via a simulation study, and make several recommendations for real data analysis. Our simulation study indicates that the backward elimination procedure can provide a reliable method for model selection in this setting. We also demonstrate the utility of these models by application to a single-gene dataset partitioned according to tertiary structure (abalone sperm lysin), and a multi-gene dataset partitioned according to the functional category of the gene (flagellar-related proteins of Listeria). Fixed-effect models have advantages and disadvantages. Fixed-effect models are desirable when data partitions are known to exhibit significant heterogeneity or when a statistical test of such heterogeneity is desired. They have the disadvantage of requiring a priori knowledge for partitioning sites. We recommend: (i) selection of models by using backward elimination rather than AIC or AICc, (ii) use a stringent cut-off, e.g., p = 0.0001, and (iii) conduct sensitivity analysis of results. With thoughtful application, fixed-effect codon models should provide a useful tool for large scale multi-gene analyses.
2016-01-01
Multi-criteria decision-making (MCDM) can be formally implemented by various methods. This study compares suitability of four selected MCDM methods, namely WPM, TOPSIS, VIKOR, and PROMETHEE, for future applications in agent-based computational economic (ACE) models of larger scale (i.e., over 10 000 agents in one geographical region). These four MCDM methods were selected according to their appropriateness for computational processing in ACE applications. Tests of the selected methods were conducted on four hardware configurations. For each method, 100 tests were performed, which represented one testing iteration. With four testing iterations conducted on each hardware setting and separated testing of all configurations with the–server parameter de/activated, altogether, 12800 data points were collected and consequently analyzed. An illustrational decision-making scenario was used which allows the mutual comparison of all of the selected decision making methods. Our test results suggest that although all methods are convenient and can be used in practice, the VIKOR method accomplished the tests with the best results and thus can be recommended as the most suitable for simulations of large-scale agent-based models. PMID:27806061
Hao, Yong; Sun, Xu-Dong; Yang, Qiang
2012-12-01
Variables selection strategy combined with local linear embedding (LLE) was introduced for the analysis of complex samples by using near infrared spectroscopy (NIRS). Three methods include Monte Carlo uninformation variable elimination (MCUVE), successive projections algorithm (SPA) and MCUVE connected with SPA were used for eliminating redundancy spectral variables. Partial least squares regression (PLSR) and LLE-PLSR were used for modeling complex samples. The results shown that MCUVE can both extract effective informative variables and improve the precision of models. Compared with PLSR models, LLE-PLSR models can achieve more accurate analysis results. MCUVE combined with LLE-PLSR is an effective modeling method for NIRS quantitative analysis.
Schöniger, Anneli; Wöhling, Thomas; Samaniego, Luis; Nowak, Wolfgang
2014-01-01
Bayesian model selection or averaging objectively ranks a number of plausible, competing conceptual models based on Bayes' theorem. It implicitly performs an optimal trade-off between performance in fitting available data and minimum model complexity. The procedure requires determining Bayesian model evidence (BME), which is the likelihood of the observed data integrated over each model's parameter space. The computation of this integral is highly challenging because it is as high-dimensional as the number of model parameters. Three classes of techniques to compute BME are available, each with its own challenges and limitations: (1) Exact and fast analytical solutions are limited by strong assumptions. (2) Numerical evaluation quickly becomes unfeasible for expensive models. (3) Approximations known as information criteria (ICs) such as the AIC, BIC, or KIC (Akaike, Bayesian, or Kashyap information criterion, respectively) yield contradicting results with regard to model ranking. Our study features a theory-based intercomparison of these techniques. We further assess their accuracy in a simplistic synthetic example where for some scenarios an exact analytical solution exists. In more challenging scenarios, we use a brute-force Monte Carlo integration method as reference. We continue this analysis with a real-world application of hydrological model selection. This is a first-time benchmarking of the various methods for BME evaluation against true solutions. Results show that BME values from ICs are often heavily biased and that the choice of approximation method substantially influences the accuracy of model ranking. For reliable model selection, bias-free numerical methods should be preferred over ICs whenever computationally feasible. PMID:25745272
Rahman, Anisur; Faqeerzada, Mohammad A; Cho, Byoung-Kwan
2018-03-14
Allicin and soluble solid content (SSC) in garlic is the responsible for its pungent flavor and odor. However, current conventional methods such as the use of high-pressure liquid chromatography and a refractometer have critical drawbacks in that they are time-consuming, labor-intensive and destructive procedures. The present study aimed to predict allicin and SSC in garlic using hyperspectral imaging in combination with variable selection algorithms and calibration models. Hyperspectral images of 100 garlic cloves were acquired that covered two spectral ranges, from which the mean spectra of each clove were extracted. The calibration models included partial least squares (PLS) and least squares-support vector machine (LS-SVM) regression, as well as different spectral pre-processing techniques, from which the highest performing spectral preprocessing technique and spectral range were selected. Then, variable selection methods, such as regression coefficients, variable importance in projection (VIP) and the successive projections algorithm (SPA), were evaluated for the selection of effective wavelengths (EWs). Furthermore, PLS and LS-SVM regression methods were applied to quantitatively predict the quality attributes of garlic using the selected EWs. Of the established models, the SPA-LS-SVM model obtained an Rpred2 of 0.90 and standard error of prediction (SEP) of 1.01% for SSC prediction, whereas the VIP-LS-SVM model produced the best result with an Rpred2 of 0.83 and SEP of 0.19 mg g -1 for allicin prediction in the range 1000-1700 nm. Furthermore, chemical images of garlic were developed using the best predictive model to facilitate visualization of the spatial distributions of allicin and SSC. The present study clearly demonstrates that hyperspectral imaging combined with an appropriate chemometrics method can potentially be employed as a fast, non-invasive method to predict the allicin and SSC in garlic. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Benkert, Pascal; Schwede, Torsten; Tosatto, Silvio Ce
2009-05-20
The selection of the most accurate protein model from a set of alternatives is a crucial step in protein structure prediction both in template-based and ab initio approaches. Scoring functions have been developed which can either return a quality estimate for a single model or derive a score from the information contained in the ensemble of models for a given sequence. Local structural features occurring more frequently in the ensemble have a greater probability of being correct. Within the context of the CASP experiment, these so called consensus methods have been shown to perform considerably better in selecting good candidate models, but tend to fail if the best models are far from the dominant structural cluster. In this paper we show that model selection can be improved if both approaches are combined by pre-filtering the models used during the calculation of the structural consensus. Our recently published QMEAN composite scoring function has been improved by including an all-atom interaction potential term. The preliminary model ranking based on the new QMEAN score is used to select a subset of reliable models against which the structural consensus score is calculated. This scoring function called QMEANclust achieves a correlation coefficient of predicted quality score and GDT_TS of 0.9 averaged over the 98 CASP7 targets and perform significantly better in selecting good models from the ensemble of server models than any other groups participating in the quality estimation category of CASP7. Both scoring functions are also benchmarked on the MOULDER test set consisting of 20 target proteins each with 300 alternatives models generated by MODELLER. QMEAN outperforms all other tested scoring functions operating on individual models, while the consensus method QMEANclust only works properly on decoy sets containing a certain fraction of near-native conformations. We also present a local version of QMEAN for the per-residue estimation of model quality (QMEANlocal) and compare it to a new local consensus-based approach. Improved model selection is obtained by using a composite scoring function operating on single models in order to enrich higher quality models which are subsequently used to calculate the structural consensus. The performance of consensus-based methods such as QMEANclust highly depends on the composition and quality of the model ensemble to be analysed. Therefore, performance estimates for consensus methods based on large meta-datasets (e.g. CASP) might overrate their applicability in more realistic modelling situations with smaller sets of models based on individual methods.
40 CFR 86.094-13 - Light-duty exhaust durability programs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled... selection methods, durability data vehicle compliance requirements, in-use verification requirements... provisions of § 86.094-25. (3) Vehicle/component selection method. Durability data vehicles shall be selected...
NASA Astrophysics Data System (ADS)
Shi, Jinfei; Zhu, Songqing; Chen, Ruwen
2017-12-01
An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.
A model of directional selection applied to the evolution of drug resistance in HIV-1.
Seoighe, Cathal; Ketwaroo, Farahnaz; Pillay, Visva; Scheffler, Konrad; Wood, Natasha; Duffet, Rodger; Zvelebil, Marketa; Martinson, Neil; McIntyre, James; Morris, Lynn; Hide, Winston
2007-04-01
Understanding how pathogens acquire resistance to drugs is important for the design of treatment strategies, particularly for rapidly evolving viruses such as HIV-1. Drug treatment can exert strong selective pressures and sites within targeted genes that confer resistance frequently evolve far more rapidly than the neutral rate. Rapid evolution at sites that confer resistance to drugs can be used to help elucidate the mechanisms of evolution of drug resistance and to discover or corroborate novel resistance mutations. We have implemented standard maximum likelihood methods that are used to detect diversifying selection and adapted them for use with serially sampled reverse transcriptase (RT) coding sequences isolated from a group of 300 HIV-1 subtype C-infected women before and after single-dose nevirapine (sdNVP) to prevent mother-to-child transmission. We have also extended the standard models of codon evolution for application to the detection of directional selection. Through simulation, we show that the directional selection model can provide a substantial improvement in sensitivity over models of diversifying selection. Five of the sites within the RT gene that are known to harbor mutations that confer resistance to nevirapine (NVP) strongly supported the directional selection model. There was no evidence that other mutations that are known to confer NVP resistance were selected in this cohort. The directional selection model, applied to serially sampled sequences, also had more power than the diversifying selection model to detect selection resulting from factors other than drug resistance. Because inference of selection from serial samples is unlikely to be adversely affected by recombination, the methods we describe may have general applicability to the analysis of positive selection affecting recombining coding sequences when serially sampled data are available.
Aggressive Adolescents in Residential Care: A Selective Review of Treatment Requirements and Models
ERIC Educational Resources Information Center
Knorth, Erik J.; Klomp, Martin; Van den Bergh, Peter M.; Noom, Marc J.
2007-01-01
This article presents a selective inventory of treatment methods of aggressive behavior. Special attention is paid to types of intervention that, according to research, are frequently used in Dutch residential youth care. These methods are based on (1) principles of (cognitive) behavior management and control, (2) the social competence model, and…
An improved swarm optimization for parameter estimation and biological model selection.
Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail
2013-01-01
One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data.
Accurate template-based modeling in CASP12 using the IntFOLD4-TS, ModFOLD6, and ReFOLD methods.
McGuffin, Liam J; Shuid, Ahmad N; Kempster, Robert; Maghrabi, Ali H A; Nealon, John O; Salehe, Bajuna R; Atkins, Jennifer D; Roche, Daniel B
2018-03-01
Our aim in CASP12 was to improve our Template-Based Modeling (TBM) methods through better model selection, accuracy self-estimate (ASE) scores and refinement. To meet this aim, we developed two new automated methods, which we used to score, rank, and improve upon the provided server models. Firstly, the ModFOLD6_rank method, for improved global Quality Assessment (QA), model ranking and the detection of local errors. Secondly, the ReFOLD method for fixing errors through iterative QA guided refinement. For our automated predictions we developed the IntFOLD4-TS protocol, which integrates the ModFOLD6_rank method for scoring the multiple-template models that were generated using a number of alternative sequence-structure alignments. Overall, our selection of top models and ASE scores using ModFOLD6_rank was an improvement on our previous approaches. In addition, it was worthwhile attempting to repair the detected errors in the top selected models using ReFOLD, which gave us an overall gain in performance. According to the assessors' formula, the IntFOLD4 server ranked 3rd/5th (average Z-score > 0.0/-2.0) on the server only targets, and our manual predictions (McGuffin group) ranked 1st/2nd (average Z-score > -2.0/0.0) compared to all other groups. © 2017 Wiley Periodicals, Inc.
Finding Direction in the Search for Selection.
Thiltgen, Grant; Dos Reis, Mario; Goldstein, Richard A
2017-01-01
Tests for positive selection have mostly been developed to look for diversifying selection where change away from the current amino acid is often favorable. However, in many cases we are interested in directional selection where there is a shift toward specific amino acids, resulting in increased fitness in the species. Recently, a few methods have been developed to detect and characterize directional selection on a molecular level. Using the results of evolutionary simulations as well as HIV drug resistance data as models of directional selection, we compare two such methods with each other, as well as against a standard method for detecting diversifying selection. We find that the method to detect diversifying selection also detects directional selection under certain conditions. One method developed for detecting directional selection is powerful and accurate for a wide range of conditions, while the other can generate an excessive number of false positives.
Aerosol-type retrieval and uncertainty quantification from OMI data
NASA Astrophysics Data System (ADS)
Kauppi, Anu; Kolmonen, Pekka; Laine, Marko; Tamminen, Johanna
2017-11-01
We discuss uncertainty quantification for aerosol-type selection in satellite-based atmospheric aerosol retrieval. The retrieval procedure uses precalculated aerosol microphysical models stored in look-up tables (LUTs) and top-of-atmosphere (TOA) spectral reflectance measurements to solve the aerosol characteristics. The forward model approximations cause systematic differences between the modelled and observed reflectance. Acknowledging this model discrepancy as a source of uncertainty allows us to produce more realistic uncertainty estimates and assists the selection of the most appropriate LUTs for each individual retrieval.This paper focuses on the aerosol microphysical model selection and characterisation of uncertainty in the retrieved aerosol type and aerosol optical depth (AOD). The concept of model evidence is used as a tool for model comparison. The method is based on Bayesian inference approach, in which all uncertainties are described as a posterior probability distribution. When there is no single best-matching aerosol microphysical model, we use a statistical technique based on Bayesian model averaging to combine AOD posterior probability densities of the best-fitting models to obtain an averaged AOD estimate. We also determine the shared evidence of the best-matching models of a certain main aerosol type in order to quantify how plausible it is that it represents the underlying atmospheric aerosol conditions.The developed method is applied to Ozone Monitoring Instrument (OMI) measurements using a multiwavelength approach for retrieving the aerosol type and AOD estimate with uncertainty quantification for cloud-free over-land pixels. Several larger pixel set areas were studied in order to investigate the robustness of the developed method. We evaluated the retrieved AOD by comparison with ground-based measurements at example sites. We found that the uncertainty of AOD expressed by posterior probability distribution reflects the difficulty in model selection. The posterior probability distribution can provide a comprehensive characterisation of the uncertainty in this kind of problem for aerosol-type selection. As a result, the proposed method can account for the model error and also include the model selection uncertainty in the total uncertainty budget.
A hybrid feature selection method using multiclass SVM for diagnosis of erythemato-squamous disease
NASA Astrophysics Data System (ADS)
Maryam, Setiawan, Noor Akhmad; Wahyunggoro, Oyas
2017-08-01
The diagnosis of erythemato-squamous disease is a complex problem and difficult to detect in dermatology. Besides that, it is a major cause of skin cancer. Data mining implementation in the medical field helps expert to diagnose precisely, accurately, and inexpensively. In this research, we use data mining technique to developed a diagnosis model based on multiclass SVM with a novel hybrid feature selection method to diagnose erythemato-squamous disease. Our hybrid feature selection method, named ChiGA (Chi Square and Genetic Algorithm), uses the advantages from filter and wrapper methods to select the optimal feature subset from original feature. Chi square used as filter method to remove redundant features and GA as wrapper method to select the ideal feature subset with SVM used as classifier. Experiment performed with 10 fold cross validation on erythemato-squamous diseases dataset taken from University of California Irvine (UCI) machine learning database. The experimental result shows that the proposed model based multiclass SVM with Chi Square and GA can give an optimum feature subset. There are 18 optimum features with 99.18% accuracy.
Method for determining gene knockouts
Maranas, Costas D [Port Matilda, PA; Burgard, Anthony R [State College, PA; Pharkya, Priti [State College, PA
2011-09-27
A method for determining candidates for gene deletions and additions using a model of a metabolic network associated with an organism, the model includes a plurality of metabolic reactions defining metabolite relationships, the method includes selecting a bioengineering objective for the organism, selecting at least one cellular objective, forming an optimization problem that couples the at least one cellular objective with the bioengineering objective, and solving the optimization problem to yield at least one candidate.
Method for determining gene knockouts
Maranas, Costa D; Burgard, Anthony R; Pharkya, Priti
2013-06-04
A method for determining candidates for gene deletions and additions using a model of a metabolic network associated with an organism, the model includes a plurality of metabolic reactions defining metabolite relationships, the method includes selecting a bioengineering objective for the organism, selecting at least one cellular objective, forming an optimization problem that couples the at least one cellular objective with the bioengineering objective, and solving the optimization problem to yield at least one candidate.
Visual attention based bag-of-words model for image classification
NASA Astrophysics Data System (ADS)
Wang, Qiwei; Wan, Shouhong; Yue, Lihua; Wang, Che
2014-04-01
Bag-of-words is a classical method for image classification. The core problem is how to count the frequency of the visual words and what visual words to select. In this paper, we propose a visual attention based bag-of-words model (VABOW model) for image classification task. The VABOW model utilizes visual attention method to generate a saliency map, and uses the saliency map as a weighted matrix to instruct the statistic process for the frequency of the visual words. On the other hand, the VABOW model combines shape, color and texture cues and uses L1 regularization logistic regression method to select the most relevant and most efficient features. We compare our approach with traditional bag-of-words based method on two datasets, and the result shows that our VABOW model outperforms the state-of-the-art method for image classification.
SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Z; Folkert, M; Wang, J
2016-06-15
Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidentialmore » reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.« less
Petersson, K M; Nichols, T E; Poline, J B; Holmes, A P
1999-01-01
Functional neuroimaging (FNI) provides experimental access to the intact living brain making it possible to study higher cognitive functions in humans. In this review and in a companion paper in this issue, we discuss some common methods used to analyse FNI data. The emphasis in both papers is on assumptions and limitations of the methods reviewed. There are several methods available to analyse FNI data indicating that none is optimal for all purposes. In order to make optimal use of the methods available it is important to know the limits of applicability. For the interpretation of FNI results it is also important to take into account the assumptions, approximations and inherent limitations of the methods used. This paper gives a brief overview over some non-inferential descriptive methods and common statistical models used in FNI. Issues relating to the complex problem of model selection are discussed. In general, proper model selection is a necessary prerequisite for the validity of the subsequent statistical inference. The non-inferential section describes methods that, combined with inspection of parameter estimates and other simple measures, can aid in the process of model selection and verification of assumptions. The section on statistical models covers approaches to global normalization and some aspects of univariate, multivariate, and Bayesian models. Finally, approaches to functional connectivity and effective connectivity are discussed. In the companion paper we review issues related to signal detection and statistical inference. PMID:10466149
Elementary Teachers' Selection and Use of Visual Models
ERIC Educational Resources Information Center
Lee, Tammy D.; Jones, M. Gail
2018-01-01
As science grows in complexity, science teachers face an increasing challenge of helping students interpret models that represent complex science systems. Little is known about how teachers select and use models when planning lessons. This mixed methods study investigated the pedagogical approaches and visual models used by elementary in-service…
Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi
2018-03-13
Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models' performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.
Müller, Aline Lima Hermes; Picoloto, Rochele Sogari; de Azevedo Mello, Paola; Ferrão, Marco Flores; de Fátima Pereira dos Santos, Maria; Guimarães, Regina Célia Lourenço; Müller, Edson Irineu; Flores, Erico Marlon Moraes
2012-04-01
Total sulfur concentration was determined in atmospheric residue (AR) and vacuum residue (VR) samples obtained from petroleum distillation process by Fourier transform infrared spectroscopy with attenuated total reflectance (FT-IR/ATR) in association with chemometric methods. Calibration and prediction set consisted of 40 and 20 samples, respectively. Calibration models were developed using two variable selection models: interval partial least squares (iPLS) and synergy interval partial least squares (siPLS). Different treatments and pre-processing steps were also evaluated for the development of models. The pre-treatment based on multiplicative scatter correction (MSC) and the mean centered data were selected for models construction. The use of siPLS as variable selection method provided a model with root mean square error of prediction (RMSEP) values significantly better than those obtained by PLS model using all variables. The best model was obtained using siPLS algorithm with spectra divided in 20 intervals and combinations of 3 intervals (911-824, 823-736 and 737-650 cm(-1)). This model produced a RMSECV of 400 mg kg(-1) S and RMSEP of 420 mg kg(-1) S, showing a correlation coefficient of 0.990. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Erener, Arzu; Sivas, A. Abdullah; Selcuk-Kestel, A. Sevtap; Düzgün, H. Sebnem
2017-07-01
All of the quantitative landslide susceptibility mapping (QLSM) methods requires two basic data types, namely, landslide inventory and factors that influence landslide occurrence (landslide influencing factors, LIF). Depending on type of landslides, nature of triggers and LIF, accuracy of the QLSM methods differs. Moreover, how to balance the number of 0 (nonoccurrence) and 1 (occurrence) in the training set obtained from the landslide inventory and how to select which one of the 1's and 0's to be included in QLSM models play critical role in the accuracy of the QLSM. Although performance of various QLSM methods is largely investigated in the literature, the challenge of training set construction is not adequately investigated for the QLSM methods. In order to tackle this challenge, in this study three different training set selection strategies along with the original data set is used for testing the performance of three different regression methods namely Logistic Regression (LR), Bayesian Logistic Regression (BLR) and Fuzzy Logistic Regression (FLR). The first sampling strategy is proportional random sampling (PRS), which takes into account a weighted selection of landslide occurrences in the sample set. The second method, namely non-selective nearby sampling (NNS), includes randomly selected sites and their surrounding neighboring points at certain preselected distances to include the impact of clustering. Selective nearby sampling (SNS) is the third method, which concentrates on the group of 1's and their surrounding neighborhood. A randomly selected group of landslide sites and their neighborhood are considered in the analyses similar to NNS parameters. It is found that LR-PRS, FLR-PRS and BLR-Whole Data set-ups, with order, yield the best fits among the other alternatives. The results indicate that in QLSM based on regression models, avoidance of spatial correlation in the data set is critical for the model's performance.
Liu, Zun-lei; Yuan, Xing-wei; Yang, Lin-lin; Yan, Li-ping; Zhang, Hui; Cheng, Jia-hua
2015-02-01
Multiple hypotheses are available to explain recruitment rate. Model selection methods can be used to identify the best model that supports a particular hypothesis. However, using a single model for estimating recruitment success is often inadequate for overexploited population because of high model uncertainty. In this study, stock-recruitment data of small yellow croaker in the East China Sea collected from fishery dependent and independent surveys between 1992 and 2012 were used to examine density-dependent effects on recruitment success. Model selection methods based on frequentist (AIC, maximum adjusted R2 and P-values) and Bayesian (Bayesian model averaging, BMA) methods were applied to identify the relationship between recruitment and environment conditions. Interannual variability of the East China Sea environment was indicated by sea surface temperature ( SST) , meridional wind stress (MWS), zonal wind stress (ZWS), sea surface pressure (SPP) and runoff of Changjiang River ( RCR). Mean absolute error, mean squared predictive error and continuous ranked probability score were calculated to evaluate the predictive performance of recruitment success. The results showed that models structures were not consistent based on three kinds of model selection methods, predictive variables of models were spawning abundance and MWS by AIC, spawning abundance by P-values, spawning abundance, MWS and RCR by maximum adjusted R2. The recruitment success decreased linearly with stock abundance (P < 0.01), suggesting overcompensation effect in the recruitment success might be due to cannibalism or food competition. Meridional wind intensity showed marginally significant and positive effects on the recruitment success (P = 0.06), while runoff of Changjiang River showed a marginally negative effect (P = 0.07). Based on mean absolute error and continuous ranked probability score, predictive error associated with models obtained from BMA was the smallest amongst different approaches, while that from models selected based on the P-value of the independent variables was the highest. However, mean squared predictive error from models selected based on the maximum adjusted R2 was highest. We found that BMA method could improve the prediction of recruitment success, derive more accurate prediction interval and quantitatively evaluate model uncertainty.
Zarei, Kobra; Atabati, Morteza; Ahmadi, Monire
2017-05-04
Bee algorithm (BA) is an optimization algorithm inspired by the natural foraging behaviour of honey bees to find the optimal solution which can be proposed to feature selection. In this paper, shuffling cross-validation-BA (CV-BA) was applied to select the best descriptors that could describe the retention factor (log k) in the biopartitioning micellar chromatography (BMC) of 79 heterogeneous pesticides. Six descriptors were obtained using BA and then the selected descriptors were applied for model development using multiple linear regression (MLR). The descriptor selection was also performed using stepwise, genetic algorithm and simulated annealing methods and MLR was applied to model development and then the results were compared with those obtained from shuffling CV-BA. The results showed that shuffling CV-BA can be applied as a powerful descriptor selection method. Support vector machine (SVM) was also applied for model development using six selected descriptors by BA. The obtained statistical results using SVM were better than those obtained using MLR, as the root mean square error (RMSE) and correlation coefficient (R) for whole data set (training and test), using shuffling CV-BA-MLR, were obtained as 0.1863 and 0.9426, respectively, while these amounts for the shuffling CV-BA-SVM method were obtained as 0.0704 and 0.9922, respectively.
Lafuente, Victoria; Herrera, Luis J; Pérez, María del Mar; Val, Jesús; Negueruela, Ignacio
2015-08-15
In this work, near infrared spectroscopy (NIR) and an acoustic measure (AWETA) (two non-destructive methods) were applied in Prunus persica fruit 'Calrico' (n = 260) to predict Magness-Taylor (MT) firmness. Separate and combined use of these measures was evaluated and compared using partial least squares (PLS) and least squares support vector machine (LS-SVM) regression methods. Also, a mutual-information-based variable selection method, seeking to find the most significant variables to produce optimal accuracy of the regression models, was applied to a joint set of variables (NIR wavelengths and AWETA measure). The newly proposed combined NIR-AWETA model gave good values of the determination coefficient (R(2)) for PLS and LS-SVM methods (0.77 and 0.78, respectively), improving the reliability of MT firmness prediction in comparison with separate NIR and AWETA predictions. The three variables selected by the variable selection method (AWETA measure plus NIR wavelengths 675 and 697 nm) achieved R(2) values 0.76 and 0.77, PLS and LS-SVM. These results indicated that the proposed mutual-information-based variable selection algorithm was a powerful tool for the selection of the most relevant variables. © 2014 Society of Chemical Industry.
Shen, Chung-Wei; Chen, Yi-Hau
2018-03-13
We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by a longitudinal study on the physical frailty outcome in the elderly, where the cluster size, that is, the number of the observed outcomes in each subject, is "informative" in the sense that it is related to the frailty outcome itself. The new proposal, called Resampling Cluster Information Criterion (RCIC), is based on the resampling idea utilized in the within-cluster resampling method (Hoffman, Sen, and Weinberg, 2001, Biometrika 88, 1121-1134) and accommodates informative cluster size. The implementation of RCIC, however, is free of performing actual resampling of the data and hence is computationally convenient. Compared with the existing model selection methods for marginal mean regression, the RCIC method incorporates an additional component accounting for variability of the model over within-cluster subsampling, and leads to remarkable improvements in selecting the correct model, regardless of whether the cluster size is informative or not. Applying the RCIC method to the longitudinal frailty study, we identify being female, old age, low income and life satisfaction, and chronic health conditions as significant risk factors for physical frailty in the elderly. © 2018, The International Biometric Society.
NASA Astrophysics Data System (ADS)
Bascetin, A.
2007-04-01
The selection of an optimal reclamation method is one of the most important factors in open-pit design and production planning. It also affects economic considerations in open-pit design as a function of plan location and depth. Furthermore, the selection is a complex multi-person, multi-criteria decision problem. The group decision-making process can be improved by applying a systematic and logical approach to assess the priorities based on the inputs of several specialists from different functional areas within the mine company. The analytical hierarchy process (AHP) can be very useful in involving several decision makers with different conflicting objectives to arrive at a consensus decision. In this paper, the selection of an optimal reclamation method using an AHP-based model was evaluated for coal production in an open-pit coal mine located at Seyitomer region in Turkey. The use of the proposed model indicates that it can be applied to improve the group decision making in selecting a reclamation method that satisfies optimal specifications. Also, it is found that the decision process is systematic and using the proposed model can reduce the time taken to select a optimal method.
Web-video-mining-supported workflow modeling for laparoscopic surgeries.
Liu, Rui; Zhang, Xiaoli; Zhang, Hao
2016-11-01
As quality assurance is of strong concern in advanced surgeries, intelligent surgical systems are expected to have knowledge such as the knowledge of the surgical workflow model (SWM) to support their intuitive cooperation with surgeons. For generating a robust and reliable SWM, a large amount of training data is required. However, training data collected by physically recording surgery operations is often limited and data collection is time-consuming and labor-intensive, severely influencing knowledge scalability of the surgical systems. The objective of this research is to solve the knowledge scalability problem in surgical workflow modeling with a low cost and labor efficient way. A novel web-video-mining-supported surgical workflow modeling (webSWM) method is developed. A novel video quality analysis method based on topic analysis and sentiment analysis techniques is developed to select high-quality videos from abundant and noisy web videos. A statistical learning method is then used to build the workflow model based on the selected videos. To test the effectiveness of the webSWM method, 250 web videos were mined to generate a surgical workflow for the robotic cholecystectomy surgery. The generated workflow was evaluated by 4 web-retrieved videos and 4 operation-room-recorded videos, respectively. The evaluation results (video selection consistency n-index ≥0.60; surgical workflow matching degree ≥0.84) proved the effectiveness of the webSWM method in generating robust and reliable SWM knowledge by mining web videos. With the webSWM method, abundant web videos were selected and a reliable SWM was modeled in a short time with low labor cost. Satisfied performances in mining web videos and learning surgery-related knowledge show that the webSWM method is promising in scaling knowledge for intelligent surgical systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Forester, James D; Im, Hae Kyung; Rathouz, Paul J
2009-12-01
Patterns of resource selection by animal populations emerge as a result of the behavior of many individuals. Statistical models that describe these population-level patterns of habitat use can miss important interactions between individual animals and characteristics of their local environment; however, identifying these interactions is difficult. One approach to this problem is to incorporate models of individual movement into resource selection models. To do this, we propose a model for step selection functions (SSF) that is composed of a resource-independent movement kernel and a resource selection function (RSF). We show that standard case-control logistic regression may be used to fit the SSF; however, the sampling scheme used to generate control points (i.e., the definition of availability) must be accommodated. We used three sampling schemes to analyze simulated movement data and found that ignoring sampling and the resource-independent movement kernel yielded biased estimates of selection. The level of bias depended on the method used to generate control locations, the strength of selection, and the spatial scale of the resource map. Using empirical or parametric methods to sample control locations produced biased estimates under stronger selection; however, we show that the addition of a distance function to the analysis substantially reduced that bias. Assuming a uniform availability within a fixed buffer yielded strongly biased selection estimates that could be corrected by including the distance function but remained inefficient relative to the empirical and parametric sampling methods. As a case study, we used location data collected from elk in Yellowstone National Park, USA, to show that selection and bias may be temporally variable. Because under constant selection the amount of bias depends on the scale at which a resource is distributed in the landscape, we suggest that distance always be included as a covariate in SSF analyses. This approach to modeling resource selection is easily implemented using common statistical tools and promises to provide deeper insight into the movement ecology of animals.
Model selection bias and Freedman's paradox
Lukacs, P.M.; Burnham, K.P.; Anderson, D.R.
2010-01-01
In situations where limited knowledge of a system exists and the ratio of data points to variables is small, variable selection methods can often be misleading. Freedman (Am Stat 37:152-155, 1983) demonstrated how common it is to select completely unrelated variables as highly "significant" when the number of data points is similar in magnitude to the number of variables. A new type of model averaging estimator based on model selection with Akaike's AIC is used with linear regression to investigate the problems of likely inclusion of spurious effects and model selection bias, the bias introduced while using the data to select a single seemingly "best" model from a (often large) set of models employing many predictor variables. The new model averaging estimator helps reduce these problems and provides confidence interval coverage at the nominal level while traditional stepwise selection has poor inferential properties. ?? The Institute of Statistical Mathematics, Tokyo 2009.
A multi-fidelity analysis selection method using a constrained discrete optimization formulation
NASA Astrophysics Data System (ADS)
Stults, Ian C.
The purpose of this research is to develop a method for selecting the fidelity of contributing analyses in computer simulations. Model uncertainty is a significant component of result validity, yet it is neglected in most conceptual design studies. When it is considered, it is done so in only a limited fashion, and therefore brings the validity of selections made based on these results into question. Neglecting model uncertainty can potentially cause costly redesigns of concepts later in the design process or can even cause program cancellation. Rather than neglecting it, if one were to instead not only realize the model uncertainty in tools being used but also use this information to select the tools for a contributing analysis, studies could be conducted more efficiently and trust in results could be quantified. Methods for performing this are generally not rigorous or traceable, and in many cases the improvement and additional time spent performing enhanced calculations are washed out by less accurate calculations performed downstream. The intent of this research is to resolve this issue by providing a method which will minimize the amount of time spent conducting computer simulations while meeting accuracy and concept resolution requirements for results. In many conceptual design programs, only limited data is available for quantifying model uncertainty. Because of this data sparsity, traditional probabilistic means for quantifying uncertainty should be reconsidered. This research proposes to instead quantify model uncertainty using an evidence theory formulation (also referred to as Dempster-Shafer theory) in lieu of the traditional probabilistic approach. Specific weaknesses in using evidence theory for quantifying model uncertainty are identified and addressed for the purposes of the Fidelity Selection Problem. A series of experiments was conducted to address these weaknesses using n-dimensional optimization test functions. These experiments found that model uncertainty present in analyses with 4 or fewer input variables could be effectively quantified using a strategic distribution creation method; if more than 4 input variables exist, a Frontier Finding Particle Swarm Optimization should instead be used. Once model uncertainty in contributing analysis code choices has been quantified, a selection method is required to determine which of these choices should be used in simulations. Because much of the selection done for engineering problems is driven by the physics of the problem, these are poor candidate problems for testing the true fitness of a candidate selection method. Specifically moderate and high dimensional problems' variability can often be reduced to only a few dimensions and scalability often cannot be easily addressed. For these reasons a simple academic function was created for the uncertainty quantification, and a canonical form of the Fidelity Selection Problem (FSP) was created. Fifteen best- and worst-case scenarios were identified in an effort to challenge the candidate selection methods both with respect to the characteristics of the tradeoff between time cost and model uncertainty and with respect to the stringency of the constraints and problem dimensionality. The results from this experiment show that a Genetic Algorithm (GA) was able to consistently find the correct answer, but under certain circumstances, a discrete form of Particle Swarm Optimization (PSO) was able to find the correct answer more quickly. To better illustrate how the uncertainty quantification and discrete optimization might be conducted for a "real world" problem, an illustrative example was conducted using gas turbine engines.
Xu, G; Hughes-Oliver, J M; Brooks, J D; Yeatts, J L; Baynes, R E
2013-01-01
Quantitative structure-activity relationship (QSAR) models are being used increasingly in skin permeation studies. The main idea of QSAR modelling is to quantify the relationship between biological activities and chemical properties, and thus to predict the activity of chemical solutes. As a key step, the selection of a representative and structurally diverse training set is critical to the prediction power of a QSAR model. Early QSAR models selected training sets in a subjective way and solutes in the training set were relatively homogenous. More recently, statistical methods such as D-optimal design or space-filling design have been applied but such methods are not always ideal. This paper describes a comprehensive procedure to select training sets from a large candidate set of 4534 solutes. A newly proposed 'Baynes' rule', which is a modification of Lipinski's 'rule of five', was used to screen out solutes that were not qualified for the study. U-optimality was used as the selection criterion. A principal component analysis showed that the selected training set was representative of the chemical space. Gas chromatograph amenability was verified. A model built using the training set was shown to have greater predictive power than a model built using a previous dataset [1].
Cross-validation pitfalls when selecting and assessing regression and classification models.
Krstajic, Damjan; Buturovic, Ljubomir J; Leahy, David E; Thomas, Simon
2014-03-29
We address the problem of selecting and assessing classification and regression models using cross-validation. Current state-of-the-art methods can yield models with high variance, rendering them unsuitable for a number of practical applications including QSAR. In this paper we describe and evaluate best practices which improve reliability and increase confidence in selected models. A key operational component of the proposed methods is cloud computing which enables routine use of previously infeasible approaches. We describe in detail an algorithm for repeated grid-search V-fold cross-validation for parameter tuning in classification and regression, and we define a repeated nested cross-validation algorithm for model assessment. As regards variable selection and parameter tuning we define two algorithms (repeated grid-search cross-validation and double cross-validation), and provide arguments for using the repeated grid-search in the general case. We show results of our algorithms on seven QSAR datasets. The variation of the prediction performance, which is the result of choosing different splits of the dataset in V-fold cross-validation, needs to be taken into account when selecting and assessing classification and regression models. We demonstrate the importance of repeating cross-validation when selecting an optimal model, as well as the importance of repeating nested cross-validation when assessing a prediction error.
Shirk, Andrew J; Landguth, Erin L; Cushman, Samuel A
2018-01-01
Anthropogenic migration barriers fragment many populations and limit the ability of species to respond to climate-induced biome shifts. Conservation actions designed to conserve habitat connectivity and mitigate barriers are needed to unite fragmented populations into larger, more viable metapopulations, and to allow species to track their climate envelope over time. Landscape genetic analysis provides an empirical means to infer landscape factors influencing gene flow and thereby inform such conservation actions. However, there are currently many methods available for model selection in landscape genetics, and considerable uncertainty as to which provide the greatest accuracy in identifying the true landscape model influencing gene flow among competing alternative hypotheses. In this study, we used population genetic simulations to evaluate the performance of seven regression-based model selection methods on a broad array of landscapes that varied by the number and type of variables contributing to resistance, the magnitude and cohesion of resistance, as well as the functional relationship between variables and resistance. We also assessed the effect of transformations designed to linearize the relationship between genetic and landscape distances. We found that linear mixed effects models had the highest accuracy in every way we evaluated model performance; however, other methods also performed well in many circumstances, particularly when landscape resistance was high and the correlation among competing hypotheses was limited. Our results provide guidance for which regression-based model selection methods provide the most accurate inferences in landscape genetic analysis and thereby best inform connectivity conservation actions. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Variable Selection in the Presence of Missing Data: Imputation-based Methods.
Zhao, Yize; Long, Qi
2017-01-01
Variable selection plays an essential role in regression analysis as it identifies important variables that associated with outcomes and is known to improve predictive accuracy of resulting models. Variable selection methods have been widely investigated for fully observed data. However, in the presence of missing data, methods for variable selection need to be carefully designed to account for missing data mechanisms and statistical techniques used for handling missing data. Since imputation is arguably the most popular method for handling missing data due to its ease of use, statistical methods for variable selection that are combined with imputation are of particular interest. These methods, valid used under the assumptions of missing at random (MAR) and missing completely at random (MCAR), largely fall into three general strategies. The first strategy applies existing variable selection methods to each imputed dataset and then combine variable selection results across all imputed datasets. The second strategy applies existing variable selection methods to stacked imputed datasets. The third variable selection strategy combines resampling techniques such as bootstrap with imputation. Despite recent advances, this area remains under-developed and offers fertile ground for further research.
Graves, Tabitha A.; Royle, J. Andrew; Kendall, Katherine C.; Beier, Paul; Stetz, Jeffrey B.; Macleod, Amy C.
2012-01-01
Using multiple detection methods can increase the number, kind, and distribution of individuals sampled, which may increase accuracy and precision and reduce cost of population abundance estimates. However, when variables influencing abundance are of interest, if individuals detected via different methods are influenced by the landscape differently, separate analysis of multiple detection methods may be more appropriate. We evaluated the effects of combining two detection methods on the identification of variables important to local abundance using detections of grizzly bears with hair traps (systematic) and bear rubs (opportunistic). We used hierarchical abundance models (N-mixture models) with separate model components for each detection method. If both methods sample the same population, the use of either data set alone should (1) lead to the selection of the same variables as important and (2) provide similar estimates of relative local abundance. We hypothesized that the inclusion of 2 detection methods versus either method alone should (3) yield more support for variables identified in single method analyses (i.e. fewer variables and models with greater weight), and (4) improve precision of covariate estimates for variables selected in both separate and combined analyses because sample size is larger. As expected, joint analysis of both methods increased precision as well as certainty in variable and model selection. However, the single-method analyses identified different variables and the resulting predicted abundances had different spatial distributions. We recommend comparing single-method and jointly modeled results to identify the presence of individual heterogeneity between detection methods in N-mixture models, along with consideration of detection probabilities, correlations among variables, and tolerance to risk of failing to identify variables important to a subset of the population. The benefits of increased precision should be weighed against those risks. The analysis framework presented here will be useful for other species exhibiting heterogeneity by detection method.
Model Selection in Historical Research Using Approximate Bayesian Computation
Rubio-Campillo, Xavier
2016-01-01
Formal Models and History Computational models are increasingly being used to study historical dynamics. This new trend, which could be named Model-Based History, makes use of recently published datasets and innovative quantitative methods to improve our understanding of past societies based on their written sources. The extensive use of formal models allows historians to re-evaluate hypotheses formulated decades ago and still subject to debate due to the lack of an adequate quantitative framework. The initiative has the potential to transform the discipline if it solves the challenges posed by the study of historical dynamics. These difficulties are based on the complexities of modelling social interaction, and the methodological issues raised by the evaluation of formal models against data with low sample size, high variance and strong fragmentation. Case Study This work examines an alternate approach to this evaluation based on a Bayesian-inspired model selection method. The validity of the classical Lanchester’s laws of combat is examined against a dataset comprising over a thousand battles spanning 300 years. Four variations of the basic equations are discussed, including the three most common formulations (linear, squared, and logarithmic) and a new variant introducing fatigue. Approximate Bayesian Computation is then used to infer both parameter values and model selection via Bayes Factors. Impact Results indicate decisive evidence favouring the new fatigue model. The interpretation of both parameter estimations and model selection provides new insights into the factors guiding the evolution of warfare. At a methodological level, the case study shows how model selection methods can be used to guide historical research through the comparison between existing hypotheses and empirical evidence. PMID:26730953
Zhou, Hongyi; Skolnick, Jeffrey
2010-01-01
In this work, we develop a method called FTCOM for assessing the global quality of protein structural models for targets of medium and hard difficulty (remote homology) produced by structure prediction approaches such as threading or ab initio structure prediction. FTCOM requires the Cα coordinates of full length models and assesses model quality based on fragment comparison and a score derived from comparison of the model to top threading templates. On a set of 361 medium/hard targets, FTCOM was applied to and assessed for its ability to improve upon the results from the SP3, SPARKS, PROSPECTOR_3, and PRO-SP3-TASSER threading algorithms. The average TM-score improves by 5%–10% for the first selected model by the new method over models obtained by the original selection procedure in the respective threading methods. Moreover the number of foldable targets (TM-score ≥0.4) increases from least 7.6% for SP3 to 54% for SPARKS. Thus, FTCOM is a promising approach to template selection. PMID:20455261
Identification of Coffee Varieties Using Laser-Induced Breakdown Spectroscopy and Chemometrics.
Zhang, Chu; Shen, Tingting; Liu, Fei; He, Yong
2017-12-31
We linked coffee quality to its different varieties. This is of interest because the identification of coffee varieties should help coffee trading and consumption. Laser-induced breakdown spectroscopy (LIBS) combined with chemometric methods was used to identify coffee varieties. Wavelet transform (WT) was used to reduce LIBS spectra noise. Partial least squares-discriminant analysis (PLS-DA), radial basis function neural network (RBFNN), and support vector machine (SVM) were used to build classification models. Loadings of principal component analysis (PCA) were used to select the spectral variables contributing most to the identification of coffee varieties. Twenty wavelength variables corresponding to C I, Mg I, Mg II, Al II, CN, H, Ca II, Fe I, K I, Na I, N I, and O I were selected. PLS-DA, RBFNN, and SVM models on selected wavelength variables showed acceptable results. SVM and RBFNN models performed better with a classification accuracy of over 80% in the prediction set, for both full spectra and the selected variables. The overall results indicated that it was feasible to use LIBS and chemometric methods to identify coffee varieties. For further studies, more samples are needed to produce robust classification models, research should be conducted on which methods to use to select spectral peaks that correspond to the elements contributing most to identification, and the methods for acquiring stable spectra should also be studied.
Knüppel, Sven; Meidtner, Karina; Arregui, Maria; Holzhütter, Hermann-Georg; Boeing, Heiner
2015-07-01
Analyzing multiple single nucleotide polymorphisms (SNPs) is a promising approach to finding genetic effects beyond single-locus associations. We proposed the use of multilocus stepwise regression (MSR) to screen for allele combinations as a method to model joint effects, and compared the results with the often used genetic risk score (GRS), conventional stepwise selection, and the shrinkage method LASSO. In contrast to MSR, the GRS, conventional stepwise selection, and LASSO model each genotype by the risk allele doses. We reanalyzed 20 unlinked SNPs related to type 2 diabetes (T2D) in the EPIC-Potsdam case-cohort study (760 cases, 2193 noncases). No SNP-SNP interactions and no nonlinear effects were found. Two SNP combinations selected by MSR (Nagelkerke's R² = 0.050 and 0.048) included eight SNPs with mean allele combination frequency of 2%. GRS and stepwise selection selected nearly the same SNP combinations consisting of 12 and 13 SNPs (Nagelkerke's R² ranged from 0.020 to 0.029). LASSO showed similar results. The MSR method showed the best model fit measured by Nagelkerke's R² suggesting that further improvement may render this method a useful tool in genetic research. However, our comparison suggests that the GRS is a simple way to model genetic effects since it does not consider linkage, SNP-SNP interactions, and no non-linear effects. © 2015 John Wiley & Sons Ltd/University College London.
Identification of Coffee Varieties Using Laser-Induced Breakdown Spectroscopy and Chemometrics
Zhang, Chu; Shen, Tingting
2017-01-01
We linked coffee quality to its different varieties. This is of interest because the identification of coffee varieties should help coffee trading and consumption. Laser-induced breakdown spectroscopy (LIBS) combined with chemometric methods was used to identify coffee varieties. Wavelet transform (WT) was used to reduce LIBS spectra noise. Partial least squares-discriminant analysis (PLS-DA), radial basis function neural network (RBFNN), and support vector machine (SVM) were used to build classification models. Loadings of principal component analysis (PCA) were used to select the spectral variables contributing most to the identification of coffee varieties. Twenty wavelength variables corresponding to C I, Mg I, Mg II, Al II, CN, H, Ca II, Fe I, K I, Na I, N I, and O I were selected. PLS-DA, RBFNN, and SVM models on selected wavelength variables showed acceptable results. SVM and RBFNN models performed better with a classification accuracy of over 80% in the prediction set, for both full spectra and the selected variables. The overall results indicated that it was feasible to use LIBS and chemometric methods to identify coffee varieties. For further studies, more samples are needed to produce robust classification models, research should be conducted on which methods to use to select spectral peaks that correspond to the elements contributing most to identification, and the methods for acquiring stable spectra should also be studied. PMID:29301228
Model-Selection Theory: The Need for a More Nuanced Picture of Use-Novelty and Double-Counting.
Steele, Katie; Werndl, Charlotte
2018-06-01
This article argues that common intuitions regarding (a) the specialness of 'use-novel' data for confirmation and (b) that this specialness implies the 'no-double-counting rule', which says that data used in 'constructing' (calibrating) a model cannot also play a role in confirming the model's predictions, are too crude. The intuitions in question are pertinent in all the sciences, but we appeal to a climate science case study to illustrate what is at stake. Our strategy is to analyse the intuitive claims in light of prominent accounts of confirmation of model predictions. We show that on the Bayesian account of confirmation, and also on the standard classical hypothesis-testing account, claims (a) and (b) are not generally true; but for some select cases, it is possible to distinguish data used for calibration from use-novel data, where only the latter confirm. The more specialized classical model-selection methods, on the other hand, uphold a nuanced version of claim (a), but this comes apart from (b), which must be rejected in favour of a more refined account of the relationship between calibration and confirmation. Thus, depending on the framework of confirmation, either the scope or the simplicity of the intuitive position must be revised. 1 Introduction 2 A Climate Case Study 3 The Bayesian Method vis-à-vis Intuitions 4 Classical Tests vis-à-vis Intuitions 5 Classical Model-Selection Methods vis-à-vis Intuitions 5.1 Introducing classical model-selection methods 5.2 Two cases 6 Re-examining Our Case Study 7 Conclusion .
Model selection for the North American Breeding Bird Survey: A comparison of methods
Link, William; Sauer, John; Niven, Daniel
2017-01-01
The North American Breeding Bird Survey (BBS) provides data for >420 bird species at multiple geographic scales over 5 decades. Modern computational methods have facilitated the fitting of complex hierarchical models to these data. It is easy to propose and fit new models, but little attention has been given to model selection. Here, we discuss and illustrate model selection using leave-one-out cross validation, and the Bayesian Predictive Information Criterion (BPIC). Cross-validation is enormously computationally intensive; we thus evaluate the performance of the Watanabe-Akaike Information Criterion (WAIC) as a computationally efficient approximation to the BPIC. Our evaluation is based on analyses of 4 models as applied to 20 species covered by the BBS. Model selection based on BPIC provided no strong evidence of one model being consistently superior to the others; for 14/20 species, none of the models emerged as superior. For the remaining 6 species, a first-difference model of population trajectory was always among the best fitting. Our results show that WAIC is not reliable as a surrogate for BPIC. Development of appropriate model sets and their evaluation using BPIC is an important innovation for the analysis of BBS data.
NASA Astrophysics Data System (ADS)
Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi
2018-04-01
Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models’ performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.
Wang, Zhu; Shuangge, Ma; Wang, Ching-Yun
2017-01-01
In health services and outcome research, count outcomes are frequently encountered and often have a large proportion of zeros. The zero-inflated negative binomial (ZINB) regression model has important applications for this type of data. With many possible candidate risk factors, this paper proposes new variable selection methods for the ZINB model. We consider maximum likelihood function plus a penalty including the least absolute shrinkage and selection operator (LASSO), smoothly clipped absolute deviation (SCAD) and minimax concave penalty (MCP). An EM (expectation-maximization) algorithm is proposed for estimating the model parameters and conducting variable selection simultaneously. This algorithm consists of estimating penalized weighted negative binomial models and penalized logistic models via the coordinated descent algorithm. Furthermore, statistical properties including the standard error formulae are provided. A simulation study shows that the new algorithm not only has more accurate or at least comparable estimation, also is more robust than the traditional stepwise variable selection. The proposed methods are applied to analyze the health care demand in Germany using an open-source R package mpath. PMID:26059498
Selection of climate change scenario data for impact modelling.
Sloth Madsen, M; Maule, C Fox; MacKellar, N; Olesen, J E; Christensen, J Hesselbjerg
2012-01-01
Impact models investigating climate change effects on food safety often need detailed climate data. The aim of this study was to select climate change projection data for selected crop phenology and mycotoxin impact models. Using the ENSEMBLES database of climate model output, this study illustrates how the projected climate change signal of important variables as temperature, precipitation and relative humidity depends on the choice of the climate model. Using climate change projections from at least two different climate models is recommended to account for model uncertainty. To make the climate projections suitable for impact analysis at the local scale a weather generator approach was adopted. As the weather generator did not treat all the necessary variables, an ad-hoc statistical method was developed to synthesise realistic values of missing variables. The method is presented in this paper, applied to relative humidity, but it could be adopted to other variables if needed.
Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy
Rosewater, David; Ferreira, Summer; Schoenwald, David; ...
2018-01-25
Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less
Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosewater, David; Ferreira, Summer; Schoenwald, David
Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less
Procedure for the Selection and Validation of a Calibration Model I-Description and Application.
Desharnais, Brigitte; Camirand-Lemyre, Félix; Mireault, Pascal; Skinner, Cameron D
2017-05-01
Calibration model selection is required for all quantitative methods in toxicology and more broadly in bioanalysis. This typically involves selecting the equation order (quadratic or linear) and weighting factor correctly modelizing the data. A mis-selection of the calibration model will generate lower quality control (QC) accuracy, with an error up to 154%. Unfortunately, simple tools to perform this selection and tests to validate the resulting model are lacking. We present a stepwise, analyst-independent scheme for selection and validation of calibration models. The success rate of this scheme is on average 40% higher than a traditional "fit and check the QCs accuracy" method of selecting the calibration model. Moreover, the process was completely automated through a script (available in Supplemental Data 3) running in RStudio (free, open-source software). The need for weighting was assessed through an F-test using the variances of the upper limit of quantification and lower limit of quantification replicate measurements. When weighting was required, the choice between 1/x and 1/x2 was determined by calculating which option generated the smallest spread of weighted normalized variances. Finally, model order was selected through a partial F-test. The chosen calibration model was validated through Cramer-von Mises or Kolmogorov-Smirnov normality testing of the standardized residuals. Performance of the different tests was assessed using 50 simulated data sets per possible calibration model (e.g., linear-no weight, quadratic-no weight, linear-1/x, etc.). This first of two papers describes the tests, procedures and outcomes of the developed procedure using real LC-MS-MS results for the quantification of cocaine and naltrexone. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Reduction in training time of a deep learning model in detection of lesions in CT
NASA Astrophysics Data System (ADS)
Makkinejad, Nazanin; Tajbakhsh, Nima; Zarshenas, Amin; Khokhar, Ashfaq; Suzuki, Kenji
2018-02-01
Deep learning (DL) emerged as a powerful tool for object detection and classification in medical images. Building a well-performing DL model, however, requires a huge number of images for training, and it takes days to train a DL model even on a cutting edge high-performance computing platform. This study is aimed at developing a method for selecting a "small" number of representative samples from a large collection of training samples to train a DL model for the could be used to detect polyps in CT colonography (CTC), without compromising the classification performance. Our proposed method for representative sample selection (RSS) consists of a K-means clustering algorithm. For the performance evaluation, we applied the proposed method to select samples for the training of a massive training artificial neural network based DL model, to be used for the classification of polyps and non-polyps in CTC. Our results show that the proposed method reduce the training time by a factor of 15, while maintaining the classification performance equivalent to the model trained using the full training set. We compare the performance using area under the receiveroperating- characteristic curve (AUC).
Mao, Fangjie; Zhou, Guomo; Li, Pingheng; Du, Huaqiang; Xu, Xiaojun; Shi, Yongjun; Mo, Lufeng; Zhou, Yufeng; Tu, Guoqing
2017-04-15
The selective cutting method currently used in Moso bamboo forests has resulted in a reduction of stand productivity and carbon sequestration capacity. Given the time and labor expense involved in addressing this problem manually, simulation using an ecosystem model is the most suitable approach. The BIOME-BGC model was improved to suit managed Moso bamboo forests, which was adapted to include age structure, specific ecological processes and management measures of Moso bamboo forest. A field selective cutting experiment was done in nine plots with three cutting intensities (high-intensity, moderate-intensity and low-intensity) during 2010-2013, and biomass of these plots was measured for model validation. Then four selective cutting scenarios were simulated by the improved BIOME-BGC model to optimize the selective cutting timings, intervals, retained ages and intensities. The improved model matched the observed aboveground carbon density and yield of different plots, with a range of relative error from 9.83% to 15.74%. The results of different selective cutting scenarios suggested that the optimal selective cutting measure should be cutting 30% culms of age 6, 80% culms of age 7, and all culms thereafter (above age 8) in winter every other year. The vegetation carbon density and harvested carbon density of this selective cutting method can increase by 74.63% and 21.5%, respectively, compared with the current selective cutting measure. The optimized selective cutting measure developed in this study can significantly promote carbon density, yield, and carbon sink capacity in Moso bamboo forests. Copyright © 2017 Elsevier Ltd. All rights reserved.
Real-time flood forecasts & risk assessment using a possibility-theory based fuzzy neural network
NASA Astrophysics Data System (ADS)
Khan, U. T.
2016-12-01
Globally floods are one of the most devastating natural disasters and improved flood forecasting methods are essential for better flood protection in urban areas. Given the availability of high resolution real-time datasets for flood variables (e.g. streamflow and precipitation) in many urban areas, data-driven models have been effectively used to predict peak flow rates in river; however, the selection of input parameters for these types of models is often subjective. Additionally, the inherit uncertainty associated with data models along with errors in extreme event observations means that uncertainty quantification is essential. Addressing these concerns will enable improved flood forecasting methods and provide more accurate flood risk assessments. In this research, a new type of data-driven model, a quasi-real-time updating fuzzy neural network is developed to predict peak flow rates in urban riverine watersheds. A possibility-to-probability transformation is first used to convert observed data into fuzzy numbers. A possibility theory based training regime is them used to construct the fuzzy parameters and the outputs. A new entropy-based optimisation criterion is used to train the network. Two existing methods to select the optimum input parameters are modified to account for fuzzy number inputs, and compared. These methods are: Entropy-Wavelet-based Artificial Neural Network (EWANN) and Combined Neural Pathway Strength Analysis (CNPSA). Finally, an automated algorithm design to select the optimum structure of the neural network is implemented. The overall impact of each component of training this network is to replace the traditional ad hoc network configuration methods, with one based on objective criteria. Ten years of data from the Bow River in Calgary, Canada (including two major floods in 2005 and 2013) are used to calibrate and test the network. The EWANN method selected lagged peak flow as a candidate input, whereas the CNPSA method selected lagged precipitation and lagged mean daily flow as candidate inputs. Model performance metric show that the CNPSA method had higher performance (with an efficiency of 0.76). Model output was used to assess the risk of extreme peak flows for a given day using an inverse possibility-to-probability transformation.
Wan, Jian; Chen, Yi-Chieh; Morris, A Julian; Thennadil, Suresh N
2017-07-01
Near-infrared (NIR) spectroscopy is being widely used in various fields ranging from pharmaceutics to the food industry for analyzing chemical and physical properties of the substances concerned. Its advantages over other analytical techniques include available physical interpretation of spectral data, nondestructive nature and high speed of measurements, and little or no need for sample preparation. The successful application of NIR spectroscopy relies on three main aspects: pre-processing of spectral data to eliminate nonlinear variations due to temperature, light scattering effects and many others, selection of those wavelengths that contribute useful information, and identification of suitable calibration models using linear/nonlinear regression . Several methods have been developed for each of these three aspects and many comparative studies of different methods exist for an individual aspect or some combinations. However, there is still a lack of comparative studies for the interactions among these three aspects, which can shed light on what role each aspect plays in the calibration and how to combine various methods of each aspect together to obtain the best calibration model. This paper aims to provide such a comparative study based on four benchmark data sets using three typical pre-processing methods, namely, orthogonal signal correction (OSC), extended multiplicative signal correction (EMSC) and optical path-length estimation and correction (OPLEC); two existing wavelength selection methods, namely, stepwise forward selection (SFS) and genetic algorithm optimization combined with partial least squares regression for spectral data (GAPLSSP); four popular regression methods, namely, partial least squares (PLS), least absolute shrinkage and selection operator (LASSO), least squares support vector machine (LS-SVM), and Gaussian process regression (GPR). The comparative study indicates that, in general, pre-processing of spectral data can play a significant role in the calibration while wavelength selection plays a marginal role and the combination of certain pre-processing, wavelength selection, and nonlinear regression methods can achieve superior performance over traditional linear regression-based calibration.
The Performance of IRT Model Selection Methods with Mixed-Format Tests
ERIC Educational Resources Information Center
Whittaker, Tiffany A.; Chang, Wanchen; Dodd, Barbara G.
2012-01-01
When tests consist of multiple-choice and constructed-response items, researchers are confronted with the question of which item response theory (IRT) model combination will appropriately represent the data collected from these mixed-format tests. This simulation study examined the performance of six model selection criteria, including the…
Sustainable Supplier Performance Evaluation and Selection with Neofuzzy TOPSIS Method
Chaharsooghi, S. K.; Ashrafi, Mehdi
2014-01-01
Supplier selection plays an important role in the supply chain management and traditional criteria such as price, quality, and flexibility are considered for supplier performance evaluation in researches. In recent years sustainability has received more attention in the supply chain management literature with triple bottom line (TBL) describing the sustainability in supply chain management with social, environmental, and economic initiatives. This paper explores sustainability in supply chain management and examines the problem of identifying a new model for supplier selection based on extended model of TBL approach in supply chain by presenting fuzzy multicriteria method. Linguistic values of experts' subjective preferences are expressed with fuzzy numbers and Neofuzzy TOPSIS is proposed for finding the best solution of supplier selection problem. Numerical results show that the proposed model is efficient for integrating sustainability in supplier selection problem. The importance of using complimentary aspects of sustainability and Neofuzzy TOPSIS concept in sustainable supplier selection process is shown with sensitivity analysis. PMID:27379267
Sustainable Supplier Performance Evaluation and Selection with Neofuzzy TOPSIS Method.
Chaharsooghi, S K; Ashrafi, Mehdi
2014-01-01
Supplier selection plays an important role in the supply chain management and traditional criteria such as price, quality, and flexibility are considered for supplier performance evaluation in researches. In recent years sustainability has received more attention in the supply chain management literature with triple bottom line (TBL) describing the sustainability in supply chain management with social, environmental, and economic initiatives. This paper explores sustainability in supply chain management and examines the problem of identifying a new model for supplier selection based on extended model of TBL approach in supply chain by presenting fuzzy multicriteria method. Linguistic values of experts' subjective preferences are expressed with fuzzy numbers and Neofuzzy TOPSIS is proposed for finding the best solution of supplier selection problem. Numerical results show that the proposed model is efficient for integrating sustainability in supplier selection problem. The importance of using complimentary aspects of sustainability and Neofuzzy TOPSIS concept in sustainable supplier selection process is shown with sensitivity analysis.
USDA-ARS?s Scientific Manuscript database
Currently, sugarcane selection begins at the seedling stage with visual selection for cane yield and other yield-related traits. Although subjective and inefficient, visual selection remains the primary method for selection. Visual selection is inefficient because of the confounding effect of genoty...
An adaptive model order reduction by proper snapshot selection for nonlinear dynamical problems
NASA Astrophysics Data System (ADS)
Nigro, P. S. B.; Anndif, M.; Teixeira, Y.; Pimenta, P. M.; Wriggers, P.
2016-04-01
Model Order Reduction (MOR) methods are employed in many fields of Engineering in order to reduce the processing time of complex computational simulations. A usual approach to achieve this is the application of Galerkin projection to generate representative subspaces (reduced spaces). However, when strong nonlinearities in a dynamical system are present and this technique is employed several times along the simulation, it can be very inefficient. This work proposes a new adaptive strategy, which ensures low computational cost and small error to deal with this problem. This work also presents a new method to select snapshots named Proper Snapshot Selection (PSS). The objective of the PSS is to obtain a good balance between accuracy and computational cost by improving the adaptive strategy through a better snapshot selection in real time (online analysis). With this method, it is possible a substantial reduction of the subspace, keeping the quality of the model without the use of the Proper Orthogonal Decomposition (POD).
A Review of System Identification Methods Applied to Aircraft
NASA Technical Reports Server (NTRS)
Klein, V.
1983-01-01
Airplane identification, equation error method, maximum likelihood method, parameter estimation in frequency domain, extended Kalman filter, aircraft equations of motion, aerodynamic model equations, criteria for the selection of a parsimonious model, and online aircraft identification are addressed.
Torija, Antonio J; Ruiz, Diego P
2015-02-01
The prediction of environmental noise in urban environments requires the solution of a complex and non-linear problem, since there are complex relationships among the multitude of variables involved in the characterization and modelling of environmental noise and environmental-noise magnitudes. Moreover, the inclusion of the great spatial heterogeneity characteristic of urban environments seems to be essential in order to achieve an accurate environmental-noise prediction in cities. This problem is addressed in this paper, where a procedure based on feature-selection techniques and machine-learning regression methods is proposed and applied to this environmental problem. Three machine-learning regression methods, which are considered very robust in solving non-linear problems, are used to estimate the energy-equivalent sound-pressure level descriptor (LAeq). These three methods are: (i) multilayer perceptron (MLP), (ii) sequential minimal optimisation (SMO), and (iii) Gaussian processes for regression (GPR). In addition, because of the high number of input variables involved in environmental-noise modelling and estimation in urban environments, which make LAeq prediction models quite complex and costly in terms of time and resources for application to real situations, three different techniques are used to approach feature selection or data reduction. The feature-selection techniques used are: (i) correlation-based feature-subset selection (CFS), (ii) wrapper for feature-subset selection (WFS), and the data reduction technique is principal-component analysis (PCA). The subsequent analysis leads to a proposal of different schemes, depending on the needs regarding data collection and accuracy. The use of WFS as the feature-selection technique with the implementation of SMO or GPR as regression algorithm provides the best LAeq estimation (R(2)=0.94 and mean absolute error (MAE)=1.14-1.16 dB(A)). Copyright © 2014 Elsevier B.V. All rights reserved.
A Comparison of the One-and Three-Parameter Logistic Models on Measures of Test Efficiency.
ERIC Educational Resources Information Center
Benson, Jeri
Two methods of item selection were used to select sets of 40 items from a 50-item verbal analogies test, and the resulting item sets were compared for relative efficiency. The BICAL program was used to select the 40 items having the best mean square fit to the one parameter logistic (Rasch) model. The LOGIST program was used to select the 40 items…
An Improved Swarm Optimization for Parameter Estimation and Biological Model Selection
Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail
2013-01-01
One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data. PMID:23593445
Lu, Dan; Ye, Ming; Meyer, Philip D.; Curtis, Gary P.; Shi, Xiaoqing; Niu, Xu-Feng; Yabusaki, Steve B.
2013-01-01
When conducting model averaging for assessing groundwater conceptual model uncertainty, the averaging weights are often evaluated using model selection criteria such as AIC, AICc, BIC, and KIC (Akaike Information Criterion, Corrected Akaike Information Criterion, Bayesian Information Criterion, and Kashyap Information Criterion, respectively). However, this method often leads to an unrealistic situation in which the best model receives overwhelmingly large averaging weight (close to 100%), which cannot be justified by available data and knowledge. It was found in this study that this problem was caused by using the covariance matrix, CE, of measurement errors for estimating the negative log likelihood function common to all the model selection criteria. This problem can be resolved by using the covariance matrix, Cek, of total errors (including model errors and measurement errors) to account for the correlation between the total errors. An iterative two-stage method was developed in the context of maximum likelihood inverse modeling to iteratively infer the unknown Cek from the residuals during model calibration. The inferred Cek was then used in the evaluation of model selection criteria and model averaging weights. While this method was limited to serial data using time series techniques in this study, it can be extended to spatial data using geostatistical techniques. The method was first evaluated in a synthetic study and then applied to an experimental study, in which alternative surface complexation models were developed to simulate column experiments of uranium reactive transport. It was found that the total errors of the alternative models were temporally correlated due to the model errors. The iterative two-stage method using Cekresolved the problem that the best model receives 100% model averaging weight, and the resulting model averaging weights were supported by the calibration results and physical understanding of the alternative models. Using Cek obtained from the iterative two-stage method also improved predictive performance of the individual models and model averaging in both synthetic and experimental studies.
Efficient least angle regression for identification of linear-in-the-parameters models
Beach, Thomas H.; Rezgui, Yacine
2017-01-01
Least angle regression, as a promising model selection method, differentiates itself from conventional stepwise and stagewise methods, in that it is neither too greedy nor too slow. It is closely related to L1 norm optimization, which has the advantage of low prediction variance through sacrificing part of model bias property in order to enhance model generalization capability. In this paper, we propose an efficient least angle regression algorithm for model selection for a large class of linear-in-the-parameters models with the purpose of accelerating the model selection process. The entire algorithm works completely in a recursive manner, where the correlations between model terms and residuals, the evolving directions and other pertinent variables are derived explicitly and updated successively at every subset selection step. The model coefficients are only computed when the algorithm finishes. The direct involvement of matrix inversions is thereby relieved. A detailed computational complexity analysis indicates that the proposed algorithm possesses significant computational efficiency, compared with the original approach where the well-known efficient Cholesky decomposition is involved in solving least angle regression. Three artificial and real-world examples are employed to demonstrate the effectiveness, efficiency and numerical stability of the proposed algorithm. PMID:28293140
Li, Jin; Tran, Maggie; Siwabessy, Justy
2016-01-01
Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia’s marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to ‘small p and large n’ problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and caution should be taken when applying filter FS methods in selecting predictive models. PMID:26890307
Li, Jin; Tran, Maggie; Siwabessy, Justy
2016-01-01
Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia's marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to 'small p and large n' problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and caution should be taken when applying filter FS methods in selecting predictive models.
Integrative Analysis of High-throughput Cancer Studies with Contrasted Penalization
Shi, Xingjie; Liu, Jin; Huang, Jian; Zhou, Yong; Shia, BenChang; Ma, Shuangge
2015-01-01
In cancer studies with high-throughput genetic and genomic measurements, integrative analysis provides a way to effectively pool and analyze heterogeneous raw data from multiple independent studies and outperforms “classic” meta-analysis and single-dataset analysis. When marker selection is of interest, the genetic basis of multiple datasets can be described using the homogeneity model or the heterogeneity model. In this study, we consider marker selection under the heterogeneity model, which includes the homogeneity model as a special case and can be more flexible. Penalization methods have been developed in the literature for marker selection. This study advances from the published ones by introducing the contrast penalties, which can accommodate the within- and across-dataset structures of covariates/regression coefficients and, by doing so, further improve marker selection performance. Specifically, we develop a penalization method that accommodates the across-dataset structures by smoothing over regression coefficients. An effective iterative algorithm, which calls an inner coordinate descent iteration, is developed. Simulation shows that the proposed method outperforms the benchmark with more accurate marker identification. The analysis of breast cancer and lung cancer prognosis studies with gene expression measurements shows that the proposed method identifies genes different from those using the benchmark and has better prediction performance. PMID:24395534
Selectivity Mechanism of ATP-Competitive Inhibitors for PKB and PKA.
Wu, Ke; Pang, Jingzhi; Song, Dong; Zhu, Ying; Wu, Congwen; Shao, Tianqu; Chen, Haifeng
2015-07-01
Protein kinase B (PKB) acts as a central node on the PI3K kinase pathway. Constitutive activation and overexpression of PKB have been identified to involve in various cancers. However, protein kinase A (PKA) sharing high homology with PKB is essential for metabolic regulation. Therefore, specific targeting on PKB is crucial strategy in drug design and development for antitumor. Here, we had revealed the selectivity mechanism for PKB inhibitors with molecular dynamics simulation and 3D-QSAR methods. Selective inhibitors of PKB could form more hydrogen bonds and hydrophobic contacts with PKB than those with PKA. This could explain that selective inhibitor M128 is more potent to PKB than to PKA. Then, 3D-QSAR models were constructed for these selective inhibitors and evaluated by test set compounds. 3D-QSAR model comparison of PKB inhibitors and PKA inhibitors reveals possible methods to improve the selectivity of inhibitors. These models can be used to design new chemical entities and make quantitative prediction of the specific selective inhibitors before resorting to in vitro and in vivo experiment. © 2014 John Wiley & Sons A/S.
A quantitative model of optimal data selection in Wason's selection task.
Hattori, Masasi
2002-10-01
The optimal data selection model proposed by Oaksford and Chater (1994) successfully formalized Wason's selection task (Wason, 1966). The model, however, involved some questionable assumptions and was also not sufficient as a model of the task because it could not provide quantitative predictions of the card selection frequencies. In this paper, the model was revised to provide quantitative fits to the data. The model can predict the selection frequencies of cards based on a selection tendency function (STF), or conversely, it enables the estimation of subjective probabilities from data. Past experimental data were first re-analysed based on the model. In Experiment 1, the superiority of the revised model was shown. However, when the relationship between antecedent and consequent was forced to deviate from the biconditional form, the model was not supported. In Experiment 2, it was shown that sufficient emphasis on probabilistic information can affect participants' performance. A detailed experimental method to sort participants by probabilistic strategies was introduced. Here, the model was supported by a subgroup of participants who used the probabilistic strategy. Finally, the results were discussed from the viewpoint of adaptive rationality.
Linear and nonlinear variable selection in competing risks data.
Ren, Xiaowei; Li, Shanshan; Shen, Changyu; Yu, Zhangsheng
2018-06-15
Subdistribution hazard model for competing risks data has been applied extensively in clinical researches. Variable selection methods of linear effects for competing risks data have been studied in the past decade. There is no existing work on selection of potential nonlinear effects for subdistribution hazard model. We propose a two-stage procedure to select the linear and nonlinear covariate(s) simultaneously and estimate the selected covariate effect(s). We use spectral decomposition approach to distinguish the linear and nonlinear parts of each covariate and adaptive LASSO to select each of the 2 components. Extensive numerical studies are conducted to demonstrate that the proposed procedure can achieve good selection accuracy in the first stage and small estimation biases in the second stage. The proposed method is applied to analyze a cardiovascular disease data set with competing death causes. Copyright © 2018 John Wiley & Sons, Ltd.
Dierker, Lisa; Rose, Jennifer; Tan, Xianming; Li, Runze
2010-12-01
This paper describes and compares a selection of available modeling techniques for identifying homogeneous population subgroups in the interest of informing targeted substance use intervention. We present a nontechnical review of the common and unique features of three methods: (a) trajectory analysis, (b) functional hierarchical linear modeling (FHLM), and (c) decision tree methods. Differences among the techniques are described, including required data features, strengths and limitations in terms of the flexibility with which outcomes and predictors can be modeled, and the potential of each technique for helping to inform the selection of targets and timing of substance intervention programs.
Spatio-temporal Bayesian model selection for disease mapping
Carroll, R; Lawson, AB; Faes, C; Kirby, RS; Aregay, M; Watjou, K
2016-01-01
Spatio-temporal analysis of small area health data often involves choosing a fixed set of predictors prior to the final model fit. In this paper, we propose a spatio-temporal approach of Bayesian model selection to implement model selection for certain areas of the study region as well as certain years in the study time line. Here, we examine the usefulness of this approach by way of a large-scale simulation study accompanied by a case study. Our results suggest that a special case of the model selection methods, a mixture model allowing a weight parameter to indicate if the appropriate linear predictor is spatial, spatio-temporal, or a mixture of the two, offers the best option to fitting these spatio-temporal models. In addition, the case study illustrates the effectiveness of this mixture model within the model selection setting by easily accommodating lifestyle, socio-economic, and physical environmental variables to select a predominantly spatio-temporal linear predictor. PMID:28070156
A comparison of linear interpolation models for iterative CT reconstruction.
Hahn, Katharina; Schöndube, Harald; Stierstorfer, Karl; Hornegger, Joachim; Noo, Frédéric
2016-12-01
Recent reports indicate that model-based iterative reconstruction methods may improve image quality in computed tomography (CT). One difficulty with these methods is the number of options available to implement them, including the selection of the forward projection model and the penalty term. Currently, the literature is fairly scarce in terms of guidance regarding this selection step, whereas these options impact image quality. Here, the authors investigate the merits of three forward projection models that rely on linear interpolation: the distance-driven method, Joseph's method, and the bilinear method. The authors' selection is motivated by three factors: (1) in CT, linear interpolation is often seen as a suitable trade-off between discretization errors and computational cost, (2) the first two methods are popular with manufacturers, and (3) the third method enables assessing the importance of a key assumption in the other methods. One approach to evaluate forward projection models is to inspect their effect on discretized images, as well as the effect of their transpose on data sets, but significance of such studies is unclear since the matrix and its transpose are always jointly used in iterative reconstruction. Another approach is to investigate the models in the context they are used, i.e., together with statistical weights and a penalty term. Unfortunately, this approach requires the selection of a preferred objective function and does not provide clear information on features that are intrinsic to the model. The authors adopted the following two-stage methodology. First, the authors analyze images that progressively include components of the singular value decomposition of the model in a reconstructed image without statistical weights and penalty term. Next, the authors examine the impact of weights and penalty on observed differences. Image quality metrics were investigated for 16 different fan-beam imaging scenarios that enabled probing various aspects of all models. The metrics include a surrogate for computational cost, as well as bias, noise, and an estimation task, all at matched resolution. The analysis revealed fundamental differences in terms of both bias and noise. Task-based assessment appears to be required to appreciate the differences in noise; the estimation task the authors selected showed that these differences balance out to yield similar performance. Some scenarios highlighted merits for the distance-driven method in terms of bias but with an increase in computational cost. Three combinations of statistical weights and penalty term showed that the observed differences remain the same, but strong edge-preserving penalty can dramatically reduce the magnitude of these differences. In many scenarios, Joseph's method seems to offer an interesting compromise between cost and computational effort. The distance-driven method offers the possibility to reduce bias but with an increase in computational cost. The bilinear method indicated that a key assumption in the other two methods is highly robust. Last, strong edge-preserving penalty can act as a compensator for insufficiencies in the forward projection model, bringing all models to similar levels in the most challenging imaging scenarios. Also, the authors find that their evaluation methodology helps appreciating how model, statistical weights, and penalty term interplay together.
Penalized regression procedures for variable selection in the potential outcomes framework
Ghosh, Debashis; Zhu, Yeying; Coffman, Donna L.
2015-01-01
A recent topic of much interest in causal inference is model selection. In this article, we describe a framework in which to consider penalized regression approaches to variable selection for causal effects. The framework leads to a simple ‘impute, then select’ class of procedures that is agnostic to the type of imputation algorithm as well as penalized regression used. It also clarifies how model selection involves a multivariate regression model for causal inference problems, and that these methods can be applied for identifying subgroups in which treatment effects are homogeneous. Analogies and links with the literature on machine learning methods, missing data and imputation are drawn. A difference LASSO algorithm is defined, along with its multiple imputation analogues. The procedures are illustrated using a well-known right heart catheterization dataset. PMID:25628185
A semiparametric graphical modelling approach for large-scale equity selection.
Liu, Han; Mulvey, John; Zhao, Tianqi
2016-01-01
We propose a new stock selection strategy that exploits rebalancing returns and improves portfolio performance. To effectively harvest rebalancing gains, we apply ideas from elliptical-copula graphical modelling and stability inference to select stocks that are as independent as possible. The proposed elliptical-copula graphical model has a latent Gaussian representation; its structure can be effectively inferred using the regularized rank-based estimators. The resulting algorithm is computationally efficient and scales to large data-sets. To show the efficacy of the proposed method, we apply it to conduct equity selection based on a 16-year health care stock data-set and a large 34-year stock data-set. Empirical tests show that the proposed method is superior to alternative strategies including a principal component analysis-based approach and the classical Markowitz strategy based on the traditional buy-and-hold assumption.
A probabilistic union model with automatic order selection for noisy speech recognition.
Jancovic, P; Ming, J
2001-09-01
A critical issue in exploiting the potential of the sub-band-based approach to robust speech recognition is the method of combining the sub-band observations, for selecting the bands unaffected by noise. A new method for this purpose, i.e., the probabilistic union model, was recently introduced. This model has been shown to be capable of dealing with band-limited corruption, requiring no knowledge about the band position and statistical distribution of the noise. A parameter within the model, which we call its order, gives the best results when it equals the number of noisy bands. Since this information may not be available in practice, in this paper we introduce an automatic algorithm for selecting the order, based on the state duration pattern generated by the hidden Markov model (HMM). The algorithm has been tested on the TIDIGITS database corrupted by various types of additive band-limited noise with unknown noisy bands. The results have shown that the union model equipped with the new algorithm can achieve a recognition performance similar to that achieved when the number of noisy bands is known. The results show a very significant improvement over the traditional full-band model, without requiring prior information on either the position or the number of noisy bands. The principle of the algorithm for selecting the order based on state duration may also be applied to other sub-band combination methods.
Spectroscopic Diagnosis of Arsenic Contamination in Agricultural Soils
Shi, Tiezhu; Liu, Huizeng; Chen, Yiyun; Fei, Teng; Wang, Junjie; Wu, Guofeng
2017-01-01
This study investigated the abilities of pre-processing, feature selection and machine-learning methods for the spectroscopic diagnosis of soil arsenic contamination. The spectral data were pre-processed by using Savitzky-Golay smoothing, first and second derivatives, multiplicative scatter correction, standard normal variate, and mean centering. Principle component analysis (PCA) and the RELIEF algorithm were used to extract spectral features. Machine-learning methods, including random forests (RF), artificial neural network (ANN), radial basis function- and linear function- based support vector machine (RBF- and LF-SVM) were employed for establishing diagnosis models. The model accuracies were evaluated and compared by using overall accuracies (OAs). The statistical significance of the difference between models was evaluated by using McNemar’s test (Z value). The results showed that the OAs varied with the different combinations of pre-processing, feature selection, and classification methods. Feature selection methods could improve the modeling efficiencies and diagnosis accuracies, and RELIEF often outperformed PCA. The optimal models established by RF (OA = 86%), ANN (OA = 89%), RBF- (OA = 89%) and LF-SVM (OA = 87%) had no statistical difference in diagnosis accuracies (Z < 1.96, p < 0.05). These results indicated that it was feasible to diagnose soil arsenic contamination using reflectance spectroscopy. The appropriate combination of multivariate methods was important to improve diagnosis accuracies. PMID:28471412
Stochastic model search with binary outcomes for genome-wide association studies.
Russu, Alberto; Malovini, Alberto; Puca, Annibale A; Bellazzi, Riccardo
2012-06-01
The spread of case-control genome-wide association studies (GWASs) has stimulated the development of new variable selection methods and predictive models. We introduce a novel Bayesian model search algorithm, Binary Outcome Stochastic Search (BOSS), which addresses the model selection problem when the number of predictors far exceeds the number of binary responses. Our method is based on a latent variable model that links the observed outcomes to the underlying genetic variables. A Markov Chain Monte Carlo approach is used for model search and to evaluate the posterior probability of each predictor. BOSS is compared with three established methods (stepwise regression, logistic lasso, and elastic net) in a simulated benchmark. Two real case studies are also investigated: a GWAS on the genetic bases of longevity, and the type 2 diabetes study from the Wellcome Trust Case Control Consortium. Simulations show that BOSS achieves higher precisions than the reference methods while preserving good recall rates. In both experimental studies, BOSS successfully detects genetic polymorphisms previously reported to be associated with the analyzed phenotypes. BOSS outperforms the other methods in terms of F-measure on simulated data. In the two real studies, BOSS successfully detects biologically relevant features, some of which are missed by univariate analysis and the three reference techniques. The proposed algorithm is an advance in the methodology for model selection with a large number of features. Our simulated and experimental results showed that BOSS proves effective in detecting relevant markers while providing a parsimonious model.
Stochastic model search with binary outcomes for genome-wide association studies
Malovini, Alberto; Puca, Annibale A; Bellazzi, Riccardo
2012-01-01
Objective The spread of case–control genome-wide association studies (GWASs) has stimulated the development of new variable selection methods and predictive models. We introduce a novel Bayesian model search algorithm, Binary Outcome Stochastic Search (BOSS), which addresses the model selection problem when the number of predictors far exceeds the number of binary responses. Materials and methods Our method is based on a latent variable model that links the observed outcomes to the underlying genetic variables. A Markov Chain Monte Carlo approach is used for model search and to evaluate the posterior probability of each predictor. Results BOSS is compared with three established methods (stepwise regression, logistic lasso, and elastic net) in a simulated benchmark. Two real case studies are also investigated: a GWAS on the genetic bases of longevity, and the type 2 diabetes study from the Wellcome Trust Case Control Consortium. Simulations show that BOSS achieves higher precisions than the reference methods while preserving good recall rates. In both experimental studies, BOSS successfully detects genetic polymorphisms previously reported to be associated with the analyzed phenotypes. Discussion BOSS outperforms the other methods in terms of F-measure on simulated data. In the two real studies, BOSS successfully detects biologically relevant features, some of which are missed by univariate analysis and the three reference techniques. Conclusion The proposed algorithm is an advance in the methodology for model selection with a large number of features. Our simulated and experimental results showed that BOSS proves effective in detecting relevant markers while providing a parsimonious model. PMID:22534080
Dempsey, Steven J; Gese, Eric M; Kluever, Bryan M; Lonsinger, Robert C; Waits, Lisette P
2015-01-01
Development and evaluation of noninvasive methods for monitoring species distribution and abundance is a growing area of ecological research. While noninvasive methods have the advantage of reduced risk of negative factors associated with capture, comparisons to methods using more traditional invasive sampling is lacking. Historically kit foxes (Vulpes macrotis) occupied the desert and semi-arid regions of southwestern North America. Once the most abundant carnivore in the Great Basin Desert of Utah, the species is now considered rare. In recent decades, attempts have been made to model the environmental variables influencing kit fox distribution. Using noninvasive scat deposition surveys for determination of kit fox presence, we modeled resource selection functions to predict kit fox distribution using three popular techniques (Maxent, fixed-effects, and mixed-effects generalized linear models) and compared these with similar models developed from invasive sampling (telemetry locations from radio-collared foxes). Resource selection functions were developed using a combination of landscape variables including elevation, slope, aspect, vegetation height, and soil type. All models were tested against subsequent scat collections as a method of model validation. We demonstrate the importance of comparing multiple model types for development of resource selection functions used to predict a species distribution, and evaluating the importance of environmental variables on species distribution. All models we examined showed a large effect of elevation on kit fox presence, followed by slope and vegetation height. However, the invasive sampling method (i.e., radio-telemetry) appeared to be better at determining resource selection, and therefore may be more robust in predicting kit fox distribution. In contrast, the distribution maps created from the noninvasive sampling (i.e., scat transects) were significantly different than the invasive method, thus scat transects may be appropriate when used in an occupancy framework to predict species distribution. We concluded that while scat deposition transects may be useful for monitoring kit fox abundance and possibly occupancy, they do not appear to be appropriate for determining resource selection. On our study area, scat transects were biased to roadways, while data collected using radio-telemetry was dictated by movements of the kit foxes themselves. We recommend that future studies applying noninvasive scat sampling should consider a more robust random sampling design across the landscape (e.g., random transects or more complete road coverage) that would then provide a more accurate and unbiased depiction of resource selection useful to predict kit fox distribution.
NASA Astrophysics Data System (ADS)
Lü, Chengxu; Jiang, Xunpeng; Zhou, Xingfan; Zhang, Yinqiao; Zhang, Naiqian; Wei, Chongfeng; Mao, Wenhua
2017-10-01
Wet gluten is a useful quality indicator for wheat, and short wave near infrared spectroscopy (NIRS) is a high performance technique with the advantage of economic rapid and nondestructive test. To study the feasibility of short wave NIRS analyzing wet gluten directly from wheat seed, 54 representative wheat seed samples were collected and scanned by spectrometer. 8 spectral pretreatment method and genetic algorithm (GA) variable selection method were used to optimize analysis. Both quantitative and qualitative model of wet gluten were built by partial least squares regression and discriminate analysis. For quantitative analysis, normalization is the optimized pretreatment method, 17 wet gluten sensitive variables are selected by GA, and GA model performs a better result than that of all variable model, with R2V=0.88, and RMSEV=1.47. For qualitative analysis, automatic weighted least squares baseline is the optimized pretreatment method, all variable models perform better results than those of GA models. The correct classification rates of 3 class of <24%, 24-30%, >30% wet gluten content are 95.45, 84.52, and 90.00%, respectively. The short wave NIRS technique shows potential for both quantitative and qualitative analysis of wet gluten for wheat seed.
Variable selection for distribution-free models for longitudinal zero-inflated count responses.
Chen, Tian; Wu, Pan; Tang, Wan; Zhang, Hui; Feng, Changyong; Kowalski, Jeanne; Tu, Xin M
2016-07-20
Zero-inflated count outcomes arise quite often in research and practice. Parametric models such as the zero-inflated Poisson and zero-inflated negative binomial are widely used to model such responses. Like most parametric models, they are quite sensitive to departures from assumed distributions. Recently, new approaches have been proposed to provide distribution-free, or semi-parametric, alternatives. These methods extend the generalized estimating equations to provide robust inference for population mixtures defined by zero-inflated count outcomes. In this paper, we propose methods to extend smoothly clipped absolute deviation (SCAD)-based variable selection methods to these new models. Variable selection has been gaining popularity in modern clinical research studies, as determining differential treatment effects of interventions for different subgroups has become the norm, rather the exception, in the era of patent-centered outcome research. Such moderation analysis in general creates many explanatory variables in regression analysis, and the advantages of SCAD-based methods over their traditional counterparts render them a great choice for addressing this important and timely issues in clinical research. We illustrate the proposed approach with both simulated and real study data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Selecting long-term care facilities with high use of acute hospitalisations: issues and options
2014-01-01
Background This paper considers approaches to the question “Which long-term care facilities have residents with high use of acute hospitalisations?” It compares four methods of identifying long-term care facilities with high use of acute hospitalisations by demonstrating four selection methods, identifies key factors to be resolved when deciding which methods to employ, and discusses their appropriateness for different research questions. Methods OPAL was a census-type survey of aged care facilities and residents in Auckland, New Zealand, in 2008. It collected information about facility management and resident demographics, needs and care. Survey records (149 aged care facilities, 6271 residents) were linked to hospital and mortality records routinely assembled by health authorities. The main ranking endpoint was acute hospitalisations for diagnoses that were classified as potentially avoidable. Facilities were ranked using 1) simple event counts per person, 2) event rates per year of resident follow-up, 3) statistical model of rates using four predictors, and 4) change in ranks between methods 2) and 3). A generalized mixed model was used for Method 3 to handle the clustered nature of the data. Results 3048 potentially avoidable hospitalisations were observed during 22 months’ follow-up. The same “top ten” facilities were selected by Methods 1 and 2. The statistical model (Method 3), predicting rates from resident and facility characteristics, ranked facilities differently than these two simple methods. The change-in-ranks method identified a very different set of “top ten” facilities. All methods showed a continuum of use, with no clear distinction between facilities with higher use. Conclusion Choice of selection method should depend upon the purpose of selection. To monitor performance during a period of change, a recent simple rate, count per resident, or even count per bed, may suffice. To find high–use facilities regardless of resident needs, recent history of admissions is highly predictive. To target a few high-use facilities that have high rates after considering facility and resident characteristics, model residuals or a large increase in rank may be preferable. PMID:25052433
Cao, Renzhi; Bhattacharya, Debswapna; Adhikari, Badri; Li, Jilong; Cheng, Jianlin
2015-01-01
Model evaluation and selection is an important step and a big challenge in template-based protein structure prediction. Individual model quality assessment methods designed for recognizing some specific properties of protein structures often fail to consistently select good models from a model pool because of their limitations. Therefore, combining multiple complimentary quality assessment methods is useful for improving model ranking and consequently tertiary structure prediction. Here, we report the performance and analysis of our human tertiary structure predictor (MULTICOM) based on the massive integration of 14 diverse complementary quality assessment methods that was successfully benchmarked in the 11th Critical Assessment of Techniques of Protein Structure prediction (CASP11). The predictions of MULTICOM for 39 template-based domains were rigorously assessed by six scoring metrics covering global topology of Cα trace, local all-atom fitness, side chain quality, and physical reasonableness of the model. The results show that the massive integration of complementary, diverse single-model and multi-model quality assessment methods can effectively leverage the strength of single-model methods in distinguishing quality variation among similar good models and the advantage of multi-model quality assessment methods of identifying reasonable average-quality models. The overall excellent performance of the MULTICOM predictor demonstrates that integrating a large number of model quality assessment methods in conjunction with model clustering is a useful approach to improve the accuracy, diversity, and consequently robustness of template-based protein structure prediction. PMID:26369671
USDA-ARS?s Scientific Manuscript database
Breeding and selection for the traits with polygenic inheritance is a challenging task that can be done by phenotypic selection, by marker-assisted selection or by genome wide selection. We tested predictive ability of four selection models in a biparental population genotyped with 95 SNP markers an...
Exploring and accounting for publication bias in mental health: a brief overview of methods.
Mavridis, Dimitris; Salanti, Georgia
2014-02-01
OBJECTIVE Publication bias undermines the integrity of published research. The aim of this paper is to present a synopsis of methods for exploring and accounting for publication bias. METHODS We discussed the main features of the following methods to assess publication bias: funnel plot analysis; trim-and-fill methods; regression techniques and selection models. We applied these methods to a well-known example of antidepressants trials that compared trials submitted to the Food and Drug Administration (FDA) for regulatory approval. RESULTS The funnel plot-related methods (visual inspection, trim-and-fill, regression models) revealed an association between effect size and SE. Contours of statistical significance showed that asymmetry in the funnel plot is probably due to publication bias. Selection model found a significant correlation between effect size and propensity for publication. CONCLUSIONS Researchers should always consider the possible impact of publication bias. Funnel plot-related methods should be seen as a means of examining for small-study effects and not be directly equated with publication bias. Possible causes for funnel plot asymmetry should be explored. Contours of statistical significance may help disentangle whether asymmetry in a funnel plot is caused by publication bias or not. Selection models, although underused, could be useful resource when publication bias and heterogeneity are suspected because they address directly the problem of publication bias and not that of small-study effects.
Discrete Biogeography Based Optimization for Feature Selection in Molecular Signatures.
Liu, Bo; Tian, Meihong; Zhang, Chunhua; Li, Xiangtao
2015-04-01
Biomarker discovery from high-dimensional data is a complex task in the development of efficient cancer diagnoses and classification. However, these data are usually redundant and noisy, and only a subset of them present distinct profiles for different classes of samples. Thus, selecting high discriminative genes from gene expression data has become increasingly interesting in the field of bioinformatics. In this paper, a discrete biogeography based optimization is proposed to select the good subset of informative gene relevant to the classification. In the proposed algorithm, firstly, the fisher-markov selector is used to choose fixed number of gene data. Secondly, to make biogeography based optimization suitable for the feature selection problem; discrete migration model and discrete mutation model are proposed to balance the exploration and exploitation ability. Then, discrete biogeography based optimization, as we called DBBO, is proposed by integrating discrete migration model and discrete mutation model. Finally, the DBBO method is used for feature selection, and three classifiers are used as the classifier with the 10 fold cross-validation method. In order to show the effective and efficiency of the algorithm, the proposed algorithm is tested on four breast cancer dataset benchmarks. Comparison with genetic algorithm, particle swarm optimization, differential evolution algorithm and hybrid biogeography based optimization, experimental results demonstrate that the proposed method is better or at least comparable with previous method from literature when considering the quality of the solutions obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multicriteria Personnel Selection by the Modified Fuzzy VIKOR Method
Alguliyev, Rasim M.; Aliguliyev, Ramiz M.; Mahmudova, Rasmiyya S.
2015-01-01
Personnel evaluation is an important process in human resource management. The multicriteria nature and the presence of both qualitative and quantitative factors make it considerably more complex. In this study, a fuzzy hybrid multicriteria decision-making (MCDM) model is proposed to personnel evaluation. This model solves personnel evaluation problem in a fuzzy environment where both criteria and weights could be fuzzy sets. The triangular fuzzy numbers are used to evaluate the suitability of personnel and the approximate reasoning of linguistic values. For evaluation, we have selected five information culture criteria. The weights of the criteria were calculated using worst-case method. After that, modified fuzzy VIKOR is proposed to rank the alternatives. The outcome of this research is ranking and selecting best alternative with the help of fuzzy VIKOR and modified fuzzy VIKOR techniques. A comparative analysis of results by fuzzy VIKOR and modified fuzzy VIKOR methods is presented. Experiments showed that the proposed modified fuzzy VIKOR method has some advantages over fuzzy VIKOR method. Firstly, from a computational complexity point of view, the presented model is effective. Secondly, compared to fuzzy VIKOR method, it has high acceptable advantage compared to fuzzy VIKOR method. PMID:26516634
NASA Astrophysics Data System (ADS)
Tang, Jian; Qiao, Junfei; Wu, ZhiWei; Chai, Tianyou; Zhang, Jian; Yu, Wen
2018-01-01
Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex industrial processes. A selective ensemble (SEN) algorithm can be used to build a soft sensor model of these process parameters by fusing valued information selectively from different perspectives. However, a combination of several optimized ensemble sub-models with SEN cannot guarantee the best prediction model. In this study, we use several techniques to construct mechanical vibration and acoustic frequency spectra of a data-driven industrial process parameter model based on selective fusion multi-condition samples and multi-source features. Multi-layer SEN (MLSEN) strategy is used to simulate the domain expert cognitive process. Genetic algorithm and kernel partial least squares are used to construct the inside-layer SEN sub-model based on each mechanical vibration and acoustic frequency spectral feature subset. Branch-and-bound and adaptive weighted fusion algorithms are integrated to select and combine outputs of the inside-layer SEN sub-models. Then, the outside-layer SEN is constructed. Thus, "sub-sampling training examples"-based and "manipulating input features"-based ensemble construction methods are integrated, thereby realizing the selective information fusion process based on multi-condition history samples and multi-source input features. This novel approach is applied to a laboratory-scale ball mill grinding process. A comparison with other methods indicates that the proposed MLSEN approach effectively models mechanical vibration and acoustic signals.
NASA Astrophysics Data System (ADS)
Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed
2016-03-01
Different chemometric models were applied for the quantitative analysis of amoxicillin (AMX), and flucloxacillin (FLX) in their binary mixtures, namely, partial least squares (PLS), spectral residual augmented classical least squares (SRACLS), concentration residual augmented classical least squares (CRACLS) and artificial neural networks (ANNs). All methods were applied with and without variable selection procedure (genetic algorithm GA). The methods were used for the quantitative analysis of the drugs in laboratory prepared mixtures and real market sample via handling the UV spectral data. Robust and simpler models were obtained by applying GA. The proposed methods were found to be rapid, simple and required no preliminary separation steps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaczmarski, Krzysztof; Guiochon, Georges A
The adsorption isotherms of selected compounds are our main source of information on the mechanisms of adsorption processes. Thus, the selection of the methods used to determine adsorption isotherm data and to evaluate the errors made is critical. Three chromatographic methods were evaluated, frontal analysis (FA), frontal analysis by characteristic point (FACP), and the pulse or perturbation method (PM), and their accuracies were compared. Using the equilibrium-dispersive (ED) model of chromatography, breakthrough curves of single components were generated corresponding to three different adsorption isotherm models: the Langmuir, the bi-Langmuir, and the Moreau isotherms. For each breakthrough curve, the best conventionalmore » procedures of each method (FA, FACP, PM) were used to calculate the corresponding data point, using typical values of the parameters of each isotherm model, for four different values of the column efficiency (N = 500, 1000, 2000, and 10,000). Then, the data points were fitted to each isotherm model and the corresponding isotherm parameters were compared to those of the initial isotherm model. When isotherm data are derived with a chromatographic method, they may suffer from two types of errors: (1) the errors made in deriving the experimental data points from the chromatographic records; (2) the errors made in selecting an incorrect isotherm model and fitting to it the experimental data. Both errors decrease significantly with increasing column efficiency with FA and FACP, but not with PM.« less
Sparse Bayesian Learning for Identifying Imaging Biomarkers in AD Prediction
Shen, Li; Qi, Yuan; Kim, Sungeun; Nho, Kwangsik; Wan, Jing; Risacher, Shannon L.; Saykin, Andrew J.
2010-01-01
We apply sparse Bayesian learning methods, automatic relevance determination (ARD) and predictive ARD (PARD), to Alzheimer’s disease (AD) classification to make accurate prediction and identify critical imaging markers relevant to AD at the same time. ARD is one of the most successful Bayesian feature selection methods. PARD is a powerful Bayesian feature selection method, and provides sparse models that is easy to interpret. PARD selects the model with the best estimate of the predictive performance instead of choosing the one with the largest marginal model likelihood. Comparative study with support vector machine (SVM) shows that ARD/PARD in general outperform SVM in terms of prediction accuracy. Additional comparison with surface-based general linear model (GLM) analysis shows that regions with strongest signals are identified by both GLM and ARD/PARD. While GLM P-map returns significant regions all over the cortex, ARD/PARD provide a small number of relevant and meaningful imaging markers with predictive power, including both cortical and subcortical measures. PMID:20879451
Safari, Parviz; Danyali, Syyedeh Fatemeh; Rahimi, Mehdi
2018-06-02
Drought is the main abiotic stress seriously influencing wheat production. Information about the inheritance of drought tolerance is necessary to determine the most appropriate strategy to develop tolerant cultivars and populations. In this study, generation means analysis to identify the genetic effects controlling grain yield inheritance in water deficit and normal conditions was considered as a model selection problem in a Bayesian framework. Stochastic search variable selection (SSVS) was applied to identify the most important genetic effects and the best fitted models using different generations obtained from two crosses applying two water regimes in two growing seasons. The SSVS is used to evaluate the effect of each variable on the dependent variable via posterior variable inclusion probabilities. The model with the highest posterior probability is selected as the best model. In this study, the grain yield was controlled by the main effects (additive and non-additive effects) and epistatic. The results demonstrate that breeding methods such as recurrent selection and subsequent pedigree method and hybrid production can be useful to improve grain yield.
Jewett, Ethan M.; Steinrücken, Matthias; Song, Yun S.
2016-01-01
Many approaches have been developed for inferring selection coefficients from time series data while accounting for genetic drift. These approaches have been motivated by the intuition that properly accounting for the population size history can significantly improve estimates of selective strengths. However, the improvement in inference accuracy that can be attained by modeling drift has not been characterized. Here, by comparing maximum likelihood estimates of selection coefficients that account for the true population size history with estimates that ignore drift by assuming allele frequencies evolve deterministically in a population of infinite size, we address the following questions: how much can modeling the population size history improve estimates of selection coefficients? How much can mis-inferred population sizes hurt inferences of selection coefficients? We conduct our analysis under the discrete Wright–Fisher model by deriving the exact probability of an allele frequency trajectory in a population of time-varying size and we replicate our results under the diffusion model. For both models, we find that ignoring drift leads to estimates of selection coefficients that are nearly as accurate as estimates that account for the true population history, even when population sizes are small and drift is high. This result is of interest because inference methods that ignore drift are widely used in evolutionary studies and can be many orders of magnitude faster than methods that account for population sizes. PMID:27550904
Andrzejewska, Anna; Kaczmarski, Krzysztof; Guiochon, Georges
2009-02-13
The adsorption isotherms of selected compounds are our main source of information on the mechanisms of adsorption processes. Thus, the selection of the methods used to determine adsorption isotherm data and to evaluate the errors made is critical. Three chromatographic methods were evaluated, frontal analysis (FA), frontal analysis by characteristic point (FACP), and the pulse or perturbation method (PM), and their accuracies were compared. Using the equilibrium-dispersive (ED) model of chromatography, breakthrough curves of single components were generated corresponding to three different adsorption isotherm models: the Langmuir, the bi-Langmuir, and the Moreau isotherms. For each breakthrough curve, the best conventional procedures of each method (FA, FACP, PM) were used to calculate the corresponding data point, using typical values of the parameters of each isotherm model, for four different values of the column efficiency (N=500, 1000, 2000, and 10,000). Then, the data points were fitted to each isotherm model and the corresponding isotherm parameters were compared to those of the initial isotherm model. When isotherm data are derived with a chromatographic method, they may suffer from two types of errors: (1) the errors made in deriving the experimental data points from the chromatographic records; (2) the errors made in selecting an incorrect isotherm model and fitting to it the experimental data. Both errors decrease significantly with increasing column efficiency with FA and FACP, but not with PM.
Some effects of quiet geomagnetic field changes upon values used for main field modeling
Campbell, W.H.
1987-01-01
The effects of three methods of data selection upon the assumed main field levels for geomagnetic observatory records used in main field modeling were investigated for a year of very low solar-terrestrial activity. The first method concerned the differences between the year's average of quiet day field values and the average of all values during the year. For H these differences were 2-3 gammas, for D they were -0.04 to -0.12???, for Z the differences were negligible. The second method of selection concerned the effects of the daytime internal Sq variations upon the daily mean values of field. The midnight field levels when the Sq currents were a minimum deviated from the daily mean levels by as much as 4-7 gammas in H and Z but were negligible for D. The third method of selection was designed to avoid the annual and semi-annual quiet level changes of field caused by the seasonal changes in the magnetosphere. Contributions from these changes were found to be as much as 4-7 gammas in quiet years and expected to be greater than 10 gammas in active years. Suggestions for improved methods of improved data selection in main field modeling are given. ?? 1987.
A Parameter Subset Selection Algorithm for Mixed-Effects Models
Schmidt, Kathleen L.; Smith, Ralph C.
2016-01-01
Mixed-effects models are commonly used to statistically model phenomena that include attributes associated with a population or general underlying mechanism as well as effects specific to individuals or components of the general mechanism. This can include individual effects associated with data from multiple experiments. However, the parameterizations used to incorporate the population and individual effects are often unidentifiable in the sense that parameters are not uniquely specified by the data. As a result, the current literature focuses on model selection, by which insensitive parameters are fixed or removed from the model. Model selection methods that employ information criteria are applicablemore » to both linear and nonlinear mixed-effects models, but such techniques are limited in that they are computationally prohibitive for large problems due to the number of possible models that must be tested. To limit the scope of possible models for model selection via information criteria, we introduce a parameter subset selection (PSS) algorithm for mixed-effects models, which orders the parameters by their significance. In conclusion, we provide examples to verify the effectiveness of the PSS algorithm and to test the performance of mixed-effects model selection that makes use of parameter subset selection.« less
1985-09-01
personal and telephone interviews. Ten individuals from each of the four AFWAL Laboratories were interrviewed. The results illustrated that few of the...680). Aaker and Tyebee. 1978. The authors constructed a model that dealt with the selection of interdependent R&D projects. The model covers three...of this research effort. Scope * The data collection method used in this study consisted of a combination of personal and telephone interviews. The
Wang, Zhu; Ma, Shuangge; Wang, Ching-Yun
2015-09-01
In health services and outcome research, count outcomes are frequently encountered and often have a large proportion of zeros. The zero-inflated negative binomial (ZINB) regression model has important applications for this type of data. With many possible candidate risk factors, this paper proposes new variable selection methods for the ZINB model. We consider maximum likelihood function plus a penalty including the least absolute shrinkage and selection operator (LASSO), smoothly clipped absolute deviation (SCAD), and minimax concave penalty (MCP). An EM (expectation-maximization) algorithm is proposed for estimating the model parameters and conducting variable selection simultaneously. This algorithm consists of estimating penalized weighted negative binomial models and penalized logistic models via the coordinated descent algorithm. Furthermore, statistical properties including the standard error formulae are provided. A simulation study shows that the new algorithm not only has more accurate or at least comparable estimation, but also is more robust than the traditional stepwise variable selection. The proposed methods are applied to analyze the health care demand in Germany using the open-source R package mpath. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A time domain frequency-selective multivariate Granger causality approach.
Leistritz, Lutz; Witte, Herbert
2016-08-01
The investigation of effective connectivity is one of the major topics in computational neuroscience to understand the interaction between spatially distributed neuronal units of the brain. Thus, a wide variety of methods has been developed during the last decades to investigate functional and effective connectivity in multivariate systems. Their spectrum ranges from model-based to model-free approaches with a clear separation into time and frequency range methods. We present in this simulation study a novel time domain approach based on Granger's principle of predictability, which allows frequency-selective considerations of directed interactions. It is based on a comparison of prediction errors of multivariate autoregressive models fitted to systematically modified time series. These modifications are based on signal decompositions, which enable a targeted cancellation of specific signal components with specific spectral properties. Depending on the embedded signal decomposition method, a frequency-selective or data-driven signal-adaptive Granger Causality Index may be derived.
Discriminative Projection Selection Based Face Image Hashing
NASA Astrophysics Data System (ADS)
Karabat, Cagatay; Erdogan, Hakan
Face image hashing is an emerging method used in biometric verification systems. In this paper, we propose a novel face image hashing method based on a new technique called discriminative projection selection. We apply the Fisher criterion for selecting the rows of a random projection matrix in a user-dependent fashion. Moreover, another contribution of this paper is to employ a bimodal Gaussian mixture model at the quantization step. Our simulation results on three different databases demonstrate that the proposed method has superior performance in comparison to previously proposed random projection based methods.
Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction.
Liu, Cong; Wang, Xujun; Genchev, Georgi Z; Lu, Hui
2017-07-15
New developments in high-throughput genomic technologies have enabled the measurement of diverse types of omics biomarkers in a cost-efficient and clinically-feasible manner. Developing computational methods and tools for analysis and translation of such genomic data into clinically-relevant information is an ongoing and active area of investigation. For example, several studies have utilized an unsupervised learning framework to cluster patients by integrating omics data. Despite such recent advances, predicting cancer prognosis using integrated omics biomarkers remains a challenge. There is also a shortage of computational tools for predicting cancer prognosis by using supervised learning methods. The current standard approach is to fit a Cox regression model by concatenating the different types of omics data in a linear manner, while penalty could be added for feature selection. A more powerful approach, however, would be to incorporate data by considering relationships among omics datatypes. Here we developed two methods: a SKI-Cox method and a wLASSO-Cox method to incorporate the association among different types of omics data. Both methods fit the Cox proportional hazards model and predict a risk score based on mRNA expression profiles. SKI-Cox borrows the information generated by these additional types of omics data to guide variable selection, while wLASSO-Cox incorporates this information as a penalty factor during model fitting. We show that SKI-Cox and wLASSO-Cox models select more true variables than a LASSO-Cox model in simulation studies. We assess the performance of SKI-Cox and wLASSO-Cox using TCGA glioblastoma multiforme and lung adenocarcinoma data. In each case, mRNA expression, methylation, and copy number variation data are integrated to predict the overall survival time of cancer patients. Our methods achieve better performance in predicting patients' survival in glioblastoma and lung adenocarcinoma. Copyright © 2017. Published by Elsevier Inc.
Wickman, Jonas; Diehl, Sebastian; Blasius, Bernd; Klausmeier, Christopher A; Ryabov, Alexey B; Brännström, Åke
2017-04-01
Spatial structure can decisively influence the way evolutionary processes unfold. To date, several methods have been used to study evolution in spatial systems, including population genetics, quantitative genetics, moment-closure approximations, and individual-based models. Here we extend the study of spatial evolutionary dynamics to eco-evolutionary models based on reaction-diffusion equations and adaptive dynamics. Specifically, we derive expressions for the strength of directional and stabilizing/disruptive selection that apply both in continuous space and to metacommunities with symmetrical dispersal between patches. For directional selection on a quantitative trait, this yields a way to integrate local directional selection across space and determine whether the trait value will increase or decrease. The robustness of this prediction is validated against quantitative genetics. For stabilizing/disruptive selection, we show that spatial heterogeneity always contributes to disruptive selection and hence always promotes evolutionary branching. The expression for directional selection is numerically very efficient and hence lends itself to simulation studies of evolutionary community assembly. We illustrate the application and utility of the expressions for this purpose with two examples of the evolution of resource utilization. Finally, we outline the domain of applicability of reaction-diffusion equations as a modeling framework and discuss their limitations.
Feature Selection Methods for Zero-Shot Learning of Neural Activity.
Caceres, Carlos A; Roos, Matthew J; Rupp, Kyle M; Milsap, Griffin; Crone, Nathan E; Wolmetz, Michael E; Ratto, Christopher R
2017-01-01
Dimensionality poses a serious challenge when making predictions from human neuroimaging data. Across imaging modalities, large pools of potential neural features (e.g., responses from particular voxels, electrodes, and temporal windows) have to be related to typically limited sets of stimuli and samples. In recent years, zero-shot prediction models have been introduced for mapping between neural signals and semantic attributes, which allows for classification of stimulus classes not explicitly included in the training set. While choices about feature selection can have a substantial impact when closed-set accuracy, open-set robustness, and runtime are competing design objectives, no systematic study of feature selection for these models has been reported. Instead, a relatively straightforward feature stability approach has been adopted and successfully applied across models and imaging modalities. To characterize the tradeoffs in feature selection for zero-shot learning, we compared correlation-based stability to several other feature selection techniques on comparable data sets from two distinct imaging modalities: functional Magnetic Resonance Imaging and Electrocorticography. While most of the feature selection methods resulted in similar zero-shot prediction accuracies and spatial/spectral patterns of selected features, there was one exception; A novel feature/attribute correlation approach was able to achieve those accuracies with far fewer features, suggesting the potential for simpler prediction models that yield high zero-shot classification accuracy.
Church, Sheri A; Livingstone, Kevin; Lai, Zhao; Kozik, Alexander; Knapp, Steven J; Michelmore, Richard W; Rieseberg, Loren H
2007-02-01
Using likelihood-based variable selection models, we determined if positive selection was acting on 523 EST sequence pairs from two lineages of sunflower and lettuce. Variable rate models are generally not used for comparisons of sequence pairs due to the limited information and the inaccuracy of estimates of specific substitution rates. However, previous studies have shown that the likelihood ratio test (LRT) is reliable for detecting positive selection, even with low numbers of sequences. These analyses identified 56 genes that show a signature of selection, of which 75% were not identified by simpler models that average selection across codons. Subsequent mapping studies in sunflower show four of five of the positively selected genes identified by these methods mapped to domestication QTLs. We discuss the validity and limitations of using variable rate models for comparisons of sequence pairs, as well as the limitations of using ESTs for identification of positively selected genes.
Statistical Selection of Biological Models for Genome-Wide Association Analyses.
Bi, Wenjian; Kang, Guolian; Pounds, Stanley B
2018-05-24
Genome-wide association studies have discovered many biologically important associations of genes with phenotypes. Typically, genome-wide association analyses formally test the association of each genetic feature (SNP, CNV, etc) with the phenotype of interest and summarize the results with multiplicity-adjusted p-values. However, very small p-values only provide evidence against the null hypothesis of no association without indicating which biological model best explains the observed data. Correctly identifying a specific biological model may improve the scientific interpretation and can be used to more effectively select and design a follow-up validation study. Thus, statistical methodology to identify the correct biological model for a particular genotype-phenotype association can be very useful to investigators. Here, we propose a general statistical method to summarize how accurately each of five biological models (null, additive, dominant, recessive, co-dominant) represents the data observed for each variant in a GWAS study. We show that the new method stringently controls the false discovery rate and asymptotically selects the correct biological model. Simulations of two-stage discovery-validation studies show that the new method has these properties and that its validation power is similar to or exceeds that of simple methods that use the same statistical model for all SNPs. Example analyses of three data sets also highlight these advantages of the new method. An R package is freely available at www.stjuderesearch.org/site/depts/biostats/maew. Copyright © 2018. Published by Elsevier Inc.
Systematic wavelength selection for improved multivariate spectral analysis
Thomas, Edward V.; Robinson, Mark R.; Haaland, David M.
1995-01-01
Methods and apparatus for determining in a biological material one or more unknown values of at least one known characteristic (e.g. the concentration of an analyte such as glucose in blood or the concentration of one or more blood gas parameters) with a model based on a set of samples with known values of the known characteristics and a multivariate algorithm using several wavelength subsets. The method includes selecting multiple wavelength subsets, from the electromagnetic spectral region appropriate for determining the known characteristic, for use by an algorithm wherein the selection of wavelength subsets improves the model's fitness of the determination for the unknown values of the known characteristic. The selection process utilizes multivariate search methods that select both predictive and synergistic wavelengths within the range of wavelengths utilized. The fitness of the wavelength subsets is determined by the fitness function F=.function.(cost, performance). The method includes the steps of: (1) using one or more applications of a genetic algorithm to produce one or more count spectra, with multiple count spectra then combined to produce a combined count spectrum; (2) smoothing the count spectrum; (3) selecting a threshold count from a count spectrum to select these wavelength subsets which optimize the fitness function; and (4) eliminating a portion of the selected wavelength subsets. The determination of the unknown values can be made: (1) noninvasively and in vivo; (2) invasively and in vivo; or (3) in vitro.
Miaw, Carolina Sheng Whei; Assis, Camila; Silva, Alessandro Rangel Carolino Sales; Cunha, Maria Luísa; Sena, Marcelo Martins; de Souza, Scheilla Vitorino Carvalho
2018-07-15
Grape, orange, peach and passion fruit nectars were formulated and adulterated by dilution with syrup, apple and cashew juices at 10 levels for each adulterant. Attenuated total reflectance Fourier transform mid infrared (ATR-FTIR) spectra were obtained. Partial least squares (PLS) multivariate calibration models allied to different variable selection methods, such as interval partial least squares (iPLS), ordered predictors selection (OPS) and genetic algorithm (GA), were used to quantify the main fruits. PLS improved by iPLS-OPS variable selection showed the highest predictive capacity to quantify the main fruit contents. The selected variables in the final models varied from 72 to 100; the root mean square errors of prediction were estimated from 0.5 to 2.6%; the correlation coefficients of prediction ranged from 0.948 to 0.990; and, the mean relative errors of prediction varied from 3.0 to 6.7%. All of the developed models were validated. Copyright © 2018 Elsevier Ltd. All rights reserved.
Scalable gastroscopic video summarization via similar-inhibition dictionary selection.
Wang, Shuai; Cong, Yang; Cao, Jun; Yang, Yunsheng; Tang, Yandong; Zhao, Huaici; Yu, Haibin
2016-01-01
This paper aims at developing an automated gastroscopic video summarization algorithm to assist clinicians to more effectively go through the abnormal contents of the video. To select the most representative frames from the original video sequence, we formulate the problem of gastroscopic video summarization as a dictionary selection issue. Different from the traditional dictionary selection methods, which take into account only the number and reconstruction ability of selected key frames, our model introduces the similar-inhibition constraint to reinforce the diversity of selected key frames. We calculate the attention cost by merging both gaze and content change into a prior cue to help select the frames with more high-level semantic information. Moreover, we adopt an image quality evaluation process to eliminate the interference of the poor quality images and a segmentation process to reduce the computational complexity. For experiments, we build a new gastroscopic video dataset captured from 30 volunteers with more than 400k images and compare our method with the state-of-the-arts using the content consistency, index consistency and content-index consistency with the ground truth. Compared with all competitors, our method obtains the best results in 23 of 30 videos evaluated based on content consistency, 24 of 30 videos evaluated based on index consistency and all videos evaluated based on content-index consistency. For gastroscopic video summarization, we propose an automated annotation method via similar-inhibition dictionary selection. Our model can achieve better performance compared with other state-of-the-art models and supplies more suitable key frames for diagnosis. The developed algorithm can be automatically adapted to various real applications, such as the training of young clinicians, computer-aided diagnosis or medical report generation. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zou, Wen-bo; Chong, Xiao-meng; Wang, Yan; Hu, Chang-qin
2018-05-01
The accuracy of NIR quantitative models depends on calibration samples with concentration variability. Conventional sample collecting methods have some shortcomings especially the time-consuming which remains a bottleneck in the application of NIR models for Process Analytical Technology (PAT) control. A study was performed to solve the problem of sample selection collection for construction of NIR quantitative models. Amoxicillin and potassium clavulanate oral dosage forms were used as examples. The aim was to find a normal approach to rapidly construct NIR quantitative models using an NIR spectral library based on the idea of a universal model [2021]. The NIR spectral library of amoxicillin and potassium clavulanate oral dosage forms was defined and consisted of spectra of 377 batches of samples produced by 26 domestic pharmaceutical companies, including tablets, dispersible tablets, chewable tablets, oral suspensions, and granules. The correlation coefficient (rT) was used to indicate the similarities of the spectra. The samples’ calibration sets were selected from a spectral library according to the median rT of the samples to be analyzed. The rT of the samples selected was close to the median rT. The difference in rT of those samples was 1.0% to 1.5%. We concluded that sample selection is not a problem when constructing NIR quantitative models using a spectral library versus conventional methods of determining universal models. The sample spectra with a suitable concentration range in the NIR models were collected quickly. In addition, the models constructed through this method were more easily targeted.
Valente, Bruno D.; Morota, Gota; Peñagaricano, Francisco; Gianola, Daniel; Weigel, Kent; Rosa, Guilherme J. M.
2015-01-01
The term “effect” in additive genetic effect suggests a causal meaning. However, inferences of such quantities for selection purposes are typically viewed and conducted as a prediction task. Predictive ability as tested by cross-validation is currently the most acceptable criterion for comparing models and evaluating new methodologies. Nevertheless, it does not directly indicate if predictors reflect causal effects. Such evaluations would require causal inference methods that are not typical in genomic prediction for selection. This suggests that the usual approach to infer genetic effects contradicts the label of the quantity inferred. Here we investigate if genomic predictors for selection should be treated as standard predictors or if they must reflect a causal effect to be useful, requiring causal inference methods. Conducting the analysis as a prediction or as a causal inference task affects, for example, how covariates of the regression model are chosen, which may heavily affect the magnitude of genomic predictors and therefore selection decisions. We demonstrate that selection requires learning causal genetic effects. However, genomic predictors from some models might capture noncausal signal, providing good predictive ability but poorly representing true genetic effects. Simulated examples are used to show that aiming for predictive ability may lead to poor modeling decisions, while causal inference approaches may guide the construction of regression models that better infer the target genetic effect even when they underperform in cross-validation tests. In conclusion, genomic selection models should be constructed to aim primarily for identifiability of causal genetic effects, not for predictive ability. PMID:25908318
Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures
ERIC Educational Resources Information Center
Steinley, Douglas; Brusco, Michael J.
2008-01-01
Eight different variable selection techniques for model-based and non-model-based clustering are evaluated across a wide range of cluster structures. It is shown that several methods have difficulties when non-informative variables (i.e., random noise) are included in the model. Furthermore, the distribution of the random noise greatly impacts the…
NASA Technical Reports Server (NTRS)
Hidalgo, Homero, Jr.
2000-01-01
An innovative methodology for determining structural target mode selection and mode selection based on a specific criterion is presented. An effective approach to single out modes which interact with specific locations on a structure has been developed for the X-33 Launch Vehicle Finite Element Model (FEM). We presented Root-Sum-Square (RSS) displacement method computes resultant modal displacement for each mode at selected degrees of freedom (DOF) and sorts to locate modes with highest values. This method was used to determine modes, which most influenced specific locations/points on the X-33 flight vehicle such as avionics control components, aero-surface control actuators, propellant valve and engine points for use in flight control stability analysis and for flight POGO stability analysis. Additionally, the modal RSS method allows for primary or global target vehicle modes to also be identified in an accurate and efficient manner.
Bayesian Group Bridge for Bi-level Variable Selection.
Mallick, Himel; Yi, Nengjun
2017-06-01
A Bayesian bi-level variable selection method (BAGB: Bayesian Analysis of Group Bridge) is developed for regularized regression and classification. This new development is motivated by grouped data, where generic variables can be divided into multiple groups, with variables in the same group being mechanistically related or statistically correlated. As an alternative to frequentist group variable selection methods, BAGB incorporates structural information among predictors through a group-wise shrinkage prior. Posterior computation proceeds via an efficient MCMC algorithm. In addition to the usual ease-of-interpretation of hierarchical linear models, the Bayesian formulation produces valid standard errors, a feature that is notably absent in the frequentist framework. Empirical evidence of the attractiveness of the method is illustrated by extensive Monte Carlo simulations and real data analysis. Finally, several extensions of this new approach are presented, providing a unified framework for bi-level variable selection in general models with flexible penalties.
NASA Astrophysics Data System (ADS)
Tian, Han; Li, Ming; Wang, Yue; Sheng, Dinggao; Liu, Jun; Zhang, Linna
2017-11-01
Hemoglobin concentration is commonly used in clinical medicine to diagnose anemia, identify bleeding, and manage red blood cell transfusions. The golden standard method for determining hemoglobin concentration in blood requires reagent. Spectral methods were advantageous at fast and non-reagent measurement. However, model calibration with full spectrum is time-consuming. Moreover, it is necessary to use a few variables considering size and cost of instrumentation, especially for a portable biomedical instrument. This study presents different wavelength selection methods for optical wavelengths for total hemoglobin concentration determination in whole blood. The results showed that modelling using only two wavelengths combination (1143 nm, 1298 nm) can keep on the fine predictability with full spectrum. It appears that the proper selection of optical wavelengths can be more effective than using the whole spectra for determination hemoglobin in whole blood. We also discussed the influence of water absorptivity on the wavelength selection. This research provides valuable references for designing portable NIR instruments determining hemoglobin concentration, and may provide some experience for noninvasive hemoglobin measurement by NIR methods.
Spectral ageing in the era of big data: integrated versus resolved models
NASA Astrophysics Data System (ADS)
Harwood, Jeremy J.
2017-04-01
Continuous injection models of spectral ageing have long been used to determine the age of radio galaxies from their integrated spectrum; however, many questions about their reliability remain unanswered. With various large area surveys imminent (e.g. LOw Frequency ARray, MeerKAT, Murchison Widefield Array) and planning for the next generation of radio interferometers are well underway (e.g. next generation VLA, Square Kilometre Array), investigations of radio galaxy physics are set to shift away from studies of individual sources to the population as a whole. Determining if and how integrated models of spectral ageing can be applied in the era of big data is therefore crucial. In this paper, I compare classical integrated models of spectral ageing to recent well-resolved studies that use modern analysis techniques on small spatial scales to determine their robustness and validity as a source selection method. I find that integrated models are unable to recover key parameters and, even when known a priori, provide a poor, frequency-dependent description of a source's spectrum. I show a disparity of up to a factor of 6 in age between the integrated and resolved methods but suggest, even with these inconsistencies, such models still provide a potential method of candidate selection in the search for remnant radio galaxies and in providing a cleaner selection of high redshift radio galaxies in z - α selected samples.
Modeling HIV-1 Drug Resistance as Episodic Directional Selection
Murrell, Ben; de Oliveira, Tulio; Seebregts, Chris; Kosakovsky Pond, Sergei L.; Scheffler, Konrad
2012-01-01
The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS) which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance. PMID:22589711
Modeling HIV-1 drug resistance as episodic directional selection.
Murrell, Ben; de Oliveira, Tulio; Seebregts, Chris; Kosakovsky Pond, Sergei L; Scheffler, Konrad
2012-01-01
The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS) which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance.
Berger, Lawrence M; Bruch, Sarah K; Johnson, Elizabeth I; James, Sigrid; Rubin, David
2009-01-01
This study used data on 2,453 children aged 4-17 from the National Survey of Child and Adolescent Well-Being and 5 analytic methods that adjust for selection factors to estimate the impact of out-of-home placement on children's cognitive skills and behavior problems. Methods included ordinary least squares (OLS) regressions and residualized change, simple change, difference-in-difference, and fixed effects models. Models were estimated using the full sample and a matched sample generated by propensity scoring. Although results from the unmatched OLS and residualized change models suggested that out-of-home placement is associated with increased child behavior problems, estimates from models that more rigorously adjust for selection bias indicated that placement has little effect on children's cognitive skills or behavior problems.
Sinusoidal Analysis-Synthesis of Audio Using Perceptual Criteria
NASA Astrophysics Data System (ADS)
Painter, Ted; Spanias, Andreas
2003-12-01
This paper presents a new method for the selection of sinusoidal components for use in compact representations of narrowband audio. The method consists of ranking and selecting the most perceptually relevant sinusoids. The idea behind the method is to maximize the matching between the auditory excitation pattern associated with the original signal and the corresponding auditory excitation pattern associated with the modeled signal that is being represented by a small set of sinusoidal parameters. The proposed component-selection methodology is shown to outperform the maximum signal-to-mask ratio selection strategy in terms of subjective quality.
A semiparametric graphical modelling approach for large-scale equity selection
Liu, Han; Mulvey, John; Zhao, Tianqi
2016-01-01
We propose a new stock selection strategy that exploits rebalancing returns and improves portfolio performance. To effectively harvest rebalancing gains, we apply ideas from elliptical-copula graphical modelling and stability inference to select stocks that are as independent as possible. The proposed elliptical-copula graphical model has a latent Gaussian representation; its structure can be effectively inferred using the regularized rank-based estimators. The resulting algorithm is computationally efficient and scales to large data-sets. To show the efficacy of the proposed method, we apply it to conduct equity selection based on a 16-year health care stock data-set and a large 34-year stock data-set. Empirical tests show that the proposed method is superior to alternative strategies including a principal component analysis-based approach and the classical Markowitz strategy based on the traditional buy-and-hold assumption. PMID:28316507
Hybrid genetic algorithm-neural network: feature extraction for unpreprocessed microarray data.
Tong, Dong Ling; Schierz, Amanda C
2011-09-01
Suitable techniques for microarray analysis have been widely researched, particularly for the study of marker genes expressed to a specific type of cancer. Most of the machine learning methods that have been applied to significant gene selection focus on the classification ability rather than the selection ability of the method. These methods also require the microarray data to be preprocessed before analysis takes place. The objective of this study is to develop a hybrid genetic algorithm-neural network (GANN) model that emphasises feature selection and can operate on unpreprocessed microarray data. The GANN is a hybrid model where the fitness value of the genetic algorithm (GA) is based upon the number of samples correctly labelled by a standard feedforward artificial neural network (ANN). The model is evaluated by using two benchmark microarray datasets with different array platforms and differing number of classes (a 2-class oligonucleotide microarray data for acute leukaemia and a 4-class complementary DNA (cDNA) microarray dataset for SRBCTs (small round blue cell tumours)). The underlying concept of the GANN algorithm is to select highly informative genes by co-evolving both the GA fitness function and the ANN weights at the same time. The novel GANN selected approximately 50% of the same genes as the original studies. This may indicate that these common genes are more biologically significant than other genes in the datasets. The remaining 50% of the significant genes identified were used to build predictive models and for both datasets, the models based on the set of genes extracted by the GANN method produced more accurate results. The results also suggest that the GANN method not only can detect genes that are exclusively associated with a single cancer type but can also explore the genes that are differentially expressed in multiple cancer types. The results show that the GANN model has successfully extracted statistically significant genes from the unpreprocessed microarray data as well as extracting known biologically significant genes. We also show that assessing the biological significance of genes based on classification accuracy may be misleading and though the GANN's set of extra genes prove to be more statistically significant than those selected by other methods, a biological assessment of these genes is highly recommended to confirm their functionality. Copyright © 2011 Elsevier B.V. All rights reserved.
Ahmadi, Mehdi; Shahlaei, Mohsen
2015-01-01
P2X7 antagonist activity for a set of 49 molecules of the P2X7 receptor antagonists, derivatives of purine, was modeled with the aid of chemometric and artificial intelligence techniques. The activity of these compounds was estimated by means of combination of principal component analysis (PCA), as a well-known data reduction method, genetic algorithm (GA), as a variable selection technique, and artificial neural network (ANN), as a non-linear modeling method. First, a linear regression, combined with PCA, (principal component regression) was operated to model the structure-activity relationships, and afterwards a combination of PCA and ANN algorithm was employed to accurately predict the biological activity of the P2X7 antagonist. PCA preserves as much of the information as possible contained in the original data set. Seven most important PC's to the studied activity were selected as the inputs of ANN box by an efficient variable selection method, GA. The best computational neural network model was a fully-connected, feed-forward model with 7-7-1 architecture. The developed ANN model was fully evaluated by different validation techniques, including internal and external validation, and chemical applicability domain. All validations showed that the constructed quantitative structure-activity relationship model suggested is robust and satisfactory.
Ahmadi, Mehdi; Shahlaei, Mohsen
2015-01-01
P2X7 antagonist activity for a set of 49 molecules of the P2X7 receptor antagonists, derivatives of purine, was modeled with the aid of chemometric and artificial intelligence techniques. The activity of these compounds was estimated by means of combination of principal component analysis (PCA), as a well-known data reduction method, genetic algorithm (GA), as a variable selection technique, and artificial neural network (ANN), as a non-linear modeling method. First, a linear regression, combined with PCA, (principal component regression) was operated to model the structure–activity relationships, and afterwards a combination of PCA and ANN algorithm was employed to accurately predict the biological activity of the P2X7 antagonist. PCA preserves as much of the information as possible contained in the original data set. Seven most important PC's to the studied activity were selected as the inputs of ANN box by an efficient variable selection method, GA. The best computational neural network model was a fully-connected, feed-forward model with 7−7−1 architecture. The developed ANN model was fully evaluated by different validation techniques, including internal and external validation, and chemical applicability domain. All validations showed that the constructed quantitative structure–activity relationship model suggested is robust and satisfactory. PMID:26600858
Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network.
Li, Na; Zhao, Xinbo; Yang, Yongjia; Zou, Xiaochun
2016-01-01
Humans can easily classify different kinds of objects whereas it is quite difficult for computers. As a hot and difficult problem, objects classification has been receiving extensive interests with broad prospects. Inspired by neuroscience, deep learning concept is proposed. Convolutional neural network (CNN) as one of the methods of deep learning can be used to solve classification problem. But most of deep learning methods, including CNN, all ignore the human visual information processing mechanism when a person is classifying objects. Therefore, in this paper, inspiring the completed processing that humans classify different kinds of objects, we bring forth a new classification method which combines visual attention model and CNN. Firstly, we use the visual attention model to simulate the processing of human visual selection mechanism. Secondly, we use CNN to simulate the processing of how humans select features and extract the local features of those selected areas. Finally, not only does our classification method depend on those local features, but also it adds the human semantic features to classify objects. Our classification method has apparently advantages in biology. Experimental results demonstrated that our method made the efficiency of classification improve significantly.
Manolis, E; Holford, N; Cheung, SYA; Friberg, LE; Ogungbenro, K; Posch, M; Yates, JWT; Berry, S; Thomas, N; Corriol‐Rohou, S; Bornkamp, B; Bretz, F; Hooker, AC; Van der Graaf, PH; Standing, JF; Hay, J; Cole, S; Gigante, V; Karlsson, K; Dumortier, T; Benda, N; Serone, F; Das, S; Brochot, A; Ehmann, F; Hemmings, R; Rusten, I Skottheim
2017-01-01
Inadequate dose selection for confirmatory trials is currently still one of the most challenging issues in drug development, as illustrated by high rates of late‐stage attritions in clinical development and postmarketing commitments required by regulatory institutions. In an effort to shift the current paradigm in dose and regimen selection and highlight the availability and usefulness of well‐established and regulatory‐acceptable methods, the European Medicines Agency (EMA) in collaboration with the European Federation of Pharmaceutical Industries Association (EFPIA) hosted a multistakeholder workshop on dose finding (London 4–5 December 2014). Some methodologies that could constitute a toolkit for drug developers and regulators were presented. These methods are described in the present report: they include five advanced methods for data analysis (empirical regression models, pharmacometrics models, quantitative systems pharmacology models, MCP‐Mod, and model averaging) and three methods for study design optimization (Fisher information matrix (FIM)‐based methods, clinical trial simulations, and adaptive studies). Pairwise comparisons were also discussed during the workshop; however, mostly for historical reasons. This paper discusses the added value and limitations of these methods as well as challenges for their implementation. Some applications in different therapeutic areas are also summarized, in line with the discussions at the workshop. There was agreement at the workshop on the fact that selection of dose for phase III is an estimation problem and should not be addressed via hypothesis testing. Dose selection for phase III trials should be informed by well‐designed dose‐finding studies; however, the specific choice of method(s) will depend on several aspects and it is not possible to recommend a generalized decision tree. There are many valuable methods available, the methods are not mutually exclusive, and they should be used in conjunction to ensure a scientifically rigorous understanding of the dosing rationale. PMID:28722322
Classification of complex networks based on similarity of topological network features
NASA Astrophysics Data System (ADS)
Attar, Niousha; Aliakbary, Sadegh
2017-09-01
Over the past few decades, networks have been widely used to model real-world phenomena. Real-world networks exhibit nontrivial topological characteristics and therefore, many network models are proposed in the literature for generating graphs that are similar to real networks. Network models reproduce nontrivial properties such as long-tail degree distributions or high clustering coefficients. In this context, we encounter the problem of selecting the network model that best fits a given real-world network. The need for a model selection method reveals the network classification problem, in which a target-network is classified into one of the candidate network models. In this paper, we propose a novel network classification method which is independent of the network size and employs an alignment-free metric of network comparison. The proposed method is based on supervised machine learning algorithms and utilizes the topological similarities of networks for the classification task. The experiments show that the proposed method outperforms state-of-the-art methods with respect to classification accuracy, time efficiency, and robustness to noise.
Bill, J S; Reuther, J F
2004-05-01
The aim was to define the indications for use of rapid prototyping models based on data of patients treated with this technique. Since 1987 our department has been developing methods of rapid prototyping in surgery planning. During the study, first the statistical and reproducible anatomical precision of rapid prototyping models was determined on pig skull measurements depending on CT parameters and method of rapid prototyping. Measurements on stereolithography models and on selective laser sintered models confirmed an accuracy of +/-0.88 mm or 2.7% (maximum deviation: -3.0 mm to +3.2 mm) independently from CT parameters or method of rapid prototyping, respectively. With the same precision of models multilayer helical CT with a higher rate is the preferable method of data acquisition compared to conventional helical CT. From 1990 to 2002 in atotal of 122 patients, 127 rapid prototyping models were manufactured: in 112 patients stereolithography models, in 2 patients an additional stereolithography model, in 2 patients an additional selective laser sinter model, in 1 patient an additional milled model, and in 10 patients just a selective laser sinter model. Reconstructive surgery, distraction osteogenesis including midface distraction, and dental implantology are proven to be the major indications for rapid prototyping as confirmed in a review of the literature. Surgery planning on rapid prototyping models should only be used in individual cases due to radiation dose and high costs. Routine use of this technique only seems to be indicated in skull reconstruction and distraction osteogenesis.
Identifying Loci Under Selection Against Gene Flow in Isolation-with-Migration Models
Sousa, Vitor C.; Carneiro, Miguel; Ferrand, Nuno; Hey, Jody
2013-01-01
When divergence occurs in the presence of gene flow, there can arise an interesting dynamic in which selection against gene flow, at sites associated with population-specific adaptations or genetic incompatibilities, can cause net gene flow to vary across the genome. Loci linked to sites under selection may experience reduced gene flow and may experience genetic bottlenecks by the action of nearby selective sweeps. Data from histories such as these may be poorly fitted by conventional neutral model approaches to demographic inference, which treat all loci as equally subject to forces of genetic drift and gene flow. To allow for demographic inference in the face of such histories, as well as the identification of loci affected by selection, we developed an isolation-with-migration model that explicitly provides for variation among genomic regions in migration rates and/or rates of genetic drift. The method allows for loci to fall into any of multiple groups, each characterized by a different set of parameters, thus relaxing the assumption that all loci share the same demography. By grouping loci, the method can be applied to data with multiple loci and still have tractable dimensionality and statistical power. We studied the performance of the method using simulated data, and we applied the method to study the divergence of two subspecies of European rabbits (Oryctolagus cuniculus). PMID:23457232
Cao, Renzhi; Bhattacharya, Debswapna; Adhikari, Badri; Li, Jilong; Cheng, Jianlin
2016-09-01
Model evaluation and selection is an important step and a big challenge in template-based protein structure prediction. Individual model quality assessment methods designed for recognizing some specific properties of protein structures often fail to consistently select good models from a model pool because of their limitations. Therefore, combining multiple complimentary quality assessment methods is useful for improving model ranking and consequently tertiary structure prediction. Here, we report the performance and analysis of our human tertiary structure predictor (MULTICOM) based on the massive integration of 14 diverse complementary quality assessment methods that was successfully benchmarked in the 11th Critical Assessment of Techniques of Protein Structure prediction (CASP11). The predictions of MULTICOM for 39 template-based domains were rigorously assessed by six scoring metrics covering global topology of Cα trace, local all-atom fitness, side chain quality, and physical reasonableness of the model. The results show that the massive integration of complementary, diverse single-model and multi-model quality assessment methods can effectively leverage the strength of single-model methods in distinguishing quality variation among similar good models and the advantage of multi-model quality assessment methods of identifying reasonable average-quality models. The overall excellent performance of the MULTICOM predictor demonstrates that integrating a large number of model quality assessment methods in conjunction with model clustering is a useful approach to improve the accuracy, diversity, and consequently robustness of template-based protein structure prediction. Proteins 2016; 84(Suppl 1):247-259. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Improving predicted protein loop structure ranking using a Pareto-optimality consensus method.
Li, Yaohang; Rata, Ionel; Chiu, See-wing; Jakobsson, Eric
2010-07-20
Accurate protein loop structure models are important to understand functions of many proteins. Identifying the native or near-native models by distinguishing them from the misfolded ones is a critical step in protein loop structure prediction. We have developed a Pareto Optimal Consensus (POC) method, which is a consensus model ranking approach to integrate multiple knowledge- or physics-based scoring functions. The procedure of identifying the models of best quality in a model set includes: 1) identifying the models at the Pareto optimal front with respect to a set of scoring functions, and 2) ranking them based on the fuzzy dominance relationship to the rest of the models. We apply the POC method to a large number of decoy sets for loops of 4- to 12-residue in length using a functional space composed of several carefully-selected scoring functions: Rosetta, DOPE, DDFIRE, OPLS-AA, and a triplet backbone dihedral potential developed in our lab. Our computational results show that the sets of Pareto-optimal decoys, which are typically composed of approximately 20% or less of the overall decoys in a set, have a good coverage of the best or near-best decoys in more than 99% of the loop targets. Compared to the individual scoring function yielding best selection accuracy in the decoy sets, the POC method yields 23%, 37%, and 64% less false positives in distinguishing the native conformation, indentifying a near-native model (RMSD < 0.5A from the native) as top-ranked, and selecting at least one near-native model in the top-5-ranked models, respectively. Similar effectiveness of the POC method is also found in the decoy sets from membrane protein loops. Furthermore, the POC method outperforms the other popularly-used consensus strategies in model ranking, such as rank-by-number, rank-by-rank, rank-by-vote, and regression-based methods. By integrating multiple knowledge- and physics-based scoring functions based on Pareto optimality and fuzzy dominance, the POC method is effective in distinguishing the best loop models from the other ones within a loop model set.
Improving predicted protein loop structure ranking using a Pareto-optimality consensus method
2010-01-01
Background Accurate protein loop structure models are important to understand functions of many proteins. Identifying the native or near-native models by distinguishing them from the misfolded ones is a critical step in protein loop structure prediction. Results We have developed a Pareto Optimal Consensus (POC) method, which is a consensus model ranking approach to integrate multiple knowledge- or physics-based scoring functions. The procedure of identifying the models of best quality in a model set includes: 1) identifying the models at the Pareto optimal front with respect to a set of scoring functions, and 2) ranking them based on the fuzzy dominance relationship to the rest of the models. We apply the POC method to a large number of decoy sets for loops of 4- to 12-residue in length using a functional space composed of several carefully-selected scoring functions: Rosetta, DOPE, DDFIRE, OPLS-AA, and a triplet backbone dihedral potential developed in our lab. Our computational results show that the sets of Pareto-optimal decoys, which are typically composed of ~20% or less of the overall decoys in a set, have a good coverage of the best or near-best decoys in more than 99% of the loop targets. Compared to the individual scoring function yielding best selection accuracy in the decoy sets, the POC method yields 23%, 37%, and 64% less false positives in distinguishing the native conformation, indentifying a near-native model (RMSD < 0.5A from the native) as top-ranked, and selecting at least one near-native model in the top-5-ranked models, respectively. Similar effectiveness of the POC method is also found in the decoy sets from membrane protein loops. Furthermore, the POC method outperforms the other popularly-used consensus strategies in model ranking, such as rank-by-number, rank-by-rank, rank-by-vote, and regression-based methods. Conclusions By integrating multiple knowledge- and physics-based scoring functions based on Pareto optimality and fuzzy dominance, the POC method is effective in distinguishing the best loop models from the other ones within a loop model set. PMID:20642859
Covariate selection with group lasso and doubly robust estimation of causal effects
Koch, Brandon; Vock, David M.; Wolfson, Julian
2017-01-01
Summary The efficiency of doubly robust estimators of the average causal effect (ACE) of a treatment can be improved by including in the treatment and outcome models only those covariates which are related to both treatment and outcome (i.e., confounders) or related only to the outcome. However, it is often challenging to identify such covariates among the large number that may be measured in a given study. In this paper, we propose GLiDeR (Group Lasso and Doubly Robust Estimation), a novel variable selection technique for identifying confounders and predictors of outcome using an adaptive group lasso approach that simultaneously performs coefficient selection, regularization, and estimation across the treatment and outcome models. The selected variables and corresponding coefficient estimates are used in a standard doubly robust ACE estimator. We provide asymptotic results showing that, for a broad class of data generating mechanisms, GLiDeR yields a consistent estimator of the ACE when either the outcome or treatment model is correctly specified. A comprehensive simulation study shows that GLiDeR is more efficient than doubly robust methods using standard variable selection techniques and has substantial computational advantages over a recently proposed doubly robust Bayesian model averaging method. We illustrate our method by estimating the causal treatment effect of bilateral versus single-lung transplant on forced expiratory volume in one year after transplant using an observational registry. PMID:28636276
Covariate selection with group lasso and doubly robust estimation of causal effects.
Koch, Brandon; Vock, David M; Wolfson, Julian
2018-03-01
The efficiency of doubly robust estimators of the average causal effect (ACE) of a treatment can be improved by including in the treatment and outcome models only those covariates which are related to both treatment and outcome (i.e., confounders) or related only to the outcome. However, it is often challenging to identify such covariates among the large number that may be measured in a given study. In this article, we propose GLiDeR (Group Lasso and Doubly Robust Estimation), a novel variable selection technique for identifying confounders and predictors of outcome using an adaptive group lasso approach that simultaneously performs coefficient selection, regularization, and estimation across the treatment and outcome models. The selected variables and corresponding coefficient estimates are used in a standard doubly robust ACE estimator. We provide asymptotic results showing that, for a broad class of data generating mechanisms, GLiDeR yields a consistent estimator of the ACE when either the outcome or treatment model is correctly specified. A comprehensive simulation study shows that GLiDeR is more efficient than doubly robust methods using standard variable selection techniques and has substantial computational advantages over a recently proposed doubly robust Bayesian model averaging method. We illustrate our method by estimating the causal treatment effect of bilateral versus single-lung transplant on forced expiratory volume in one year after transplant using an observational registry. © 2017, The International Biometric Society.
Guo, Pi; Zeng, Fangfang; Hu, Xiaomin; Zhang, Dingmei; Zhu, Shuming; Deng, Yu; Hao, Yuantao
2015-01-01
Objectives In epidemiological studies, it is important to identify independent associations between collective exposures and a health outcome. The current stepwise selection technique ignores stochastic errors and suffers from a lack of stability. The alternative LASSO-penalized regression model can be applied to detect significant predictors from a pool of candidate variables. However, this technique is prone to false positives and tends to create excessive biases. It remains challenging to develop robust variable selection methods and enhance predictability. Material and methods Two improved algorithms denoted the two-stage hybrid and bootstrap ranking procedures, both using a LASSO-type penalty, were developed for epidemiological association analysis. The performance of the proposed procedures and other methods including conventional LASSO, Bolasso, stepwise and stability selection models were evaluated using intensive simulation. In addition, methods were compared by using an empirical analysis based on large-scale survey data of hepatitis B infection-relevant factors among Guangdong residents. Results The proposed procedures produced comparable or less biased selection results when compared to conventional variable selection models. In total, the two newly proposed procedures were stable with respect to various scenarios of simulation, demonstrating a higher power and a lower false positive rate during variable selection than the compared methods. In empirical analysis, the proposed procedures yielding a sparse set of hepatitis B infection-relevant factors gave the best predictive performance and showed that the procedures were able to select a more stringent set of factors. The individual history of hepatitis B vaccination, family and individual history of hepatitis B infection were associated with hepatitis B infection in the studied residents according to the proposed procedures. Conclusions The newly proposed procedures improve the identification of significant variables and enable us to derive a new insight into epidemiological association analysis. PMID:26214802
Research on filter’s parameter selection based on PROMETHEE method
NASA Astrophysics Data System (ADS)
Zhu, Hui-min; Wang, Hang-yu; Sun, Shi-yan
2018-03-01
The selection of filter’s parameters in target recognition was studied in this paper. The PROMETHEE method was applied to the optimization problem of Gabor filter parameters decision, the correspondence model of the elemental relation between two methods was established. The author took the identification of military target as an example, problem about the filter’s parameter decision was simulated and calculated by PROMETHEE. The result showed that using PROMETHEE method for the selection of filter’s parameters was more scientific. The human disturbance caused by the experts method and empirical method could be avoided by this way. The method can provide reference for the parameter configuration scheme decision of the filter.
Model selection for logistic regression models
NASA Astrophysics Data System (ADS)
Duller, Christine
2012-09-01
Model selection for logistic regression models decides which of some given potential regressors have an effect and hence should be included in the final model. The second interesting question is whether a certain factor is heterogeneous among some subsets, i.e. whether the model should include a random intercept or not. In this paper these questions will be answered with classical as well as with Bayesian methods. The application show some results of recent research projects in medicine and business administration.
Johnson, Brent A
2009-10-01
We consider estimation and variable selection in the partial linear model for censored data. The partial linear model for censored data is a direct extension of the accelerated failure time model, the latter of which is a very important alternative model to the proportional hazards model. We extend rank-based lasso-type estimators to a model that may contain nonlinear effects. Variable selection in such partial linear model has direct application to high-dimensional survival analyses that attempt to adjust for clinical predictors. In the microarray setting, previous methods can adjust for other clinical predictors by assuming that clinical and gene expression data enter the model linearly in the same fashion. Here, we select important variables after adjusting for prognostic clinical variables but the clinical effects are assumed nonlinear. Our estimator is based on stratification and can be extended naturally to account for multiple nonlinear effects. We illustrate the utility of our method through simulation studies and application to the Wisconsin prognostic breast cancer data set.
Campbell, Rebecca; Pierce, Steven J; Sharma, Dhruv B; Shaw, Jessica; Feeney, Hannah; Nye, Jeffrey; Schelling, Kristin; Fehler-Cabral, Giannina
2017-01-01
A growing number of U.S. cities have large numbers of untested sexual assault kits (SAKs) in police property facilities. Testing older kits and maintaining current case work will be challenging for forensic laboratories, creating a need for more efficient testing methods. We evaluated selective degradation methods for DNA extraction using actual case work from a sample of previously unsubmitted SAKs in Detroit, Michigan. We randomly assigned 350 kits to either standard or selective degradation testing methods and then compared DNA testing rates and CODIS entry rates between the two groups. Continuation-ratio modeling showed no significant differences, indicating that the selective degradation method had no decrement in performance relative to customary methods. Follow-up equivalence tests indicated that CODIS entry rates for the two methods could differ by more than ±5%. Selective degradation methods required less personnel time for testing and scientific review than standard testing. © 2016 American Academy of Forensic Sciences.
Using multilevel models to quantify heterogeneity in resource selection
Wagner, Tyler; Diefenbach, Duane R.; Christensen, Sonja; Norton, Andrew S.
2011-01-01
Models of resource selection are being used increasingly to predict or model the effects of management actions rather than simply quantifying habitat selection. Multilevel, or hierarchical, models are an increasingly popular method to analyze animal resource selection because they impose a relatively weak stochastic constraint to model heterogeneity in habitat use and also account for unequal sample sizes among individuals. However, few studies have used multilevel models to model coefficients as a function of predictors that may influence habitat use at different scales or quantify differences in resource selection among groups. We used an example with white-tailed deer (Odocoileus virginianus) to illustrate how to model resource use as a function of distance to road that varies among deer by road density at the home range scale. We found that deer avoidance of roads decreased as road density increased. Also, we used multilevel models with sika deer (Cervus nippon) and white-tailed deer to examine whether resource selection differed between species. We failed to detect differences in resource use between these two species and showed how information-theoretic and graphical measures can be used to assess how resource use may have differed. Multilevel models can improve our understanding of how resource selection varies among individuals and provides an objective, quantifiable approach to assess differences or changes in resource selection.
Parameter estimation and order selection for an empirical model of VO2 on-kinetics.
Alata, O; Bernard, O
2007-04-27
In humans, VO2 on-kinetics are noisy numerical signals that reflect the pulmonary oxygen exchange kinetics at the onset of exercise. They are empirically modelled as a sum of an offset and delayed exponentials. The number of delayed exponentials; i.e. the order of the model, is commonly supposed to be 1 for low-intensity exercises and 2 for high-intensity exercises. As no ground truth has ever been provided to validate these postulates, physiologists still need statistical methods to verify their hypothesis about the number of exponentials of the VO2 on-kinetics especially in the case of high-intensity exercises. Our objectives are first to develop accurate methods for estimating the parameters of the model at a fixed order, and then, to propose statistical tests for selecting the appropriate order. In this paper, we provide, on simulated Data, performances of Simulated Annealing for estimating model parameters and performances of Information Criteria for selecting the order. These simulated Data are generated with both single-exponential and double-exponential models, and noised by white and Gaussian noise. The performances are given at various Signal to Noise Ratio (SNR). Considering parameter estimation, results show that the confidences of estimated parameters are improved by increasing the SNR of the response to be fitted. Considering model selection, results show that Information Criteria are adapted statistical criteria to select the number of exponentials.
NASA Astrophysics Data System (ADS)
Hu, Haixin
This dissertation consists of two parts. The first part studies the sample selection and spatial models of housing price index using transaction data on detached single-family houses of two California metropolitan areas from 1990 through 2008. House prices are often spatially correlated due to shared amenities, or when the properties are viewed as close substitutes in a housing submarket. There have been many studies that address spatial correlation in the context of housing markets. However, none has used spatial models to construct housing price indexes at zip code level for the entire time period analyzed in this dissertation to the best of my knowledge. In this paper, I study a first-order autoregressive spatial model with four different weighing matrix schemes. Four sets of housing price indexes are constructed accordingly. Gatzlaff and Haurin (1997, 1998) study the sample selection problem in housing index by using Heckman's two-step method. This method, however, is generally inefficient and can cause multicollinearity problem. Also, it requires data on unsold houses in order to carry out the first-step probit regression. Maximum likelihood (ML) method can be used to estimate a truncated incidental model which allows one to correct for sample selection based on transaction data only. However, convergence problem is very prevalent in practice. In this paper I adopt Lewbel's (2007) sample selection correction method which does not require one to model or estimate the selection model, except for some very general assumptions. I then extend this method to correct for spatial correlation. In the second part, I analyze the U.S. gasoline market with a disequilibrium model that allows lagged-latent variables, endogenous prices, and panel data with fixed effects. Most existing studies (see the survey of Espey, 1998, Energy Economics) of the gasoline market assume equilibrium. In practice, however, prices do not always adjust fast enough to clear the market. Equilibrium assumptions greatly simplify statistical inference, but are very restrictive and can produce conflicting estimates. For example, econometric models of markets that assume equilibrium often produce more elastic demand price elasticity than their disequilibrium counterparts (Holt and Johnson, 1989, Review of Economics and Statistics, Oczkowski, 1998, Economics Letters). The few studies that allow disequilibrium, however, have been limited to macroeconomic time-series data without lagged-latent variables. While time series data allows one to investigate national trends, it cannot be used to identify and analyze regional differences and the role of local markets. Exclusion of the lagged-latent variables is also undesirable because such variables capture adjustment costs and inter-temporal spillovers. Simulation methods offer tractable solutions to dynamic and panel data disequilibrium models (Lee, 1997, Journal of Econometrics), but assume normally distributed errors. This paper compares estimates of price/income elasticity and excess supply/demand across time periods, regions, and model specifications, using both equilibrium and disequilibrium methods. In the equilibrium model, I compare the within group estimator with Anderson and Hsiao's first-difference 2SLS estimator. In the disequilibrium model, I extend Amemiya's 2SLS by using Newey's efficient estimator with optimal instruments.
Multilevel Propensity Score Matching within and across Schools
ERIC Educational Resources Information Center
Kelcey, Benjamin
2011-01-01
A central issue in nonexperimental studies is the identification of comparable individuals (e.g. students) to remove selection bias. One such increasingly common method to identify comparable individuals and address selection bias is the propensity score (PS). PS methods rely on a model of the treatment assignment to identify comparable…
Variable selection under multiple imputation using the bootstrap in a prognostic study
Heymans, Martijn W; van Buuren, Stef; Knol, Dirk L; van Mechelen, Willem; de Vet, Henrica CW
2007-01-01
Background Missing data is a challenging problem in many prognostic studies. Multiple imputation (MI) accounts for imputation uncertainty that allows for adequate statistical testing. We developed and tested a methodology combining MI with bootstrapping techniques for studying prognostic variable selection. Method In our prospective cohort study we merged data from three different randomized controlled trials (RCTs) to assess prognostic variables for chronicity of low back pain. Among the outcome and prognostic variables data were missing in the range of 0 and 48.1%. We used four methods to investigate the influence of respectively sampling and imputation variation: MI only, bootstrap only, and two methods that combine MI and bootstrapping. Variables were selected based on the inclusion frequency of each prognostic variable, i.e. the proportion of times that the variable appeared in the model. The discriminative and calibrative abilities of prognostic models developed by the four methods were assessed at different inclusion levels. Results We found that the effect of imputation variation on the inclusion frequency was larger than the effect of sampling variation. When MI and bootstrapping were combined at the range of 0% (full model) to 90% of variable selection, bootstrap corrected c-index values of 0.70 to 0.71 and slope values of 0.64 to 0.86 were found. Conclusion We recommend to account for both imputation and sampling variation in sets of missing data. The new procedure of combining MI with bootstrapping for variable selection, results in multivariable prognostic models with good performance and is therefore attractive to apply on data sets with missing values. PMID:17629912
Kotter, Dale K [Shelley, ID; Rohrbaugh, David T [Idaho Falls, ID
2010-09-07
A frequency selective surface (FSS) and associated methods for modeling, analyzing and designing the FSS are disclosed. The FSS includes a pattern of conductive material formed on a substrate to form an array of resonance elements. At least one aspect of the frequency selective surface is determined by defining a frequency range including multiple frequency values, determining a frequency dependent permittivity across the frequency range for the substrate, determining a frequency dependent conductivity across the frequency range for the conductive material, and analyzing the frequency selective surface using a method of moments analysis at each of the multiple frequency values for an incident electromagnetic energy impinging on the frequency selective surface. The frequency dependent permittivity and the frequency dependent conductivity are included in the method of moments analysis.
NASA Astrophysics Data System (ADS)
Sung, S.; Kim, H. G.; Lee, D. K.; Park, J. H.; Mo, Y.; Kil, S.; Park, C.
2016-12-01
The impact of climate change has been observed throughout the globe. The ecosystem experiences rapid changes such as vegetation shift, species extinction. In these context, Species Distribution Model (SDM) is one of the popular method to project impact of climate change on the ecosystem. SDM basically based on the niche of certain species with means to run SDM present point data is essential to find biological niche of species. To run SDM for plants, there are certain considerations on the characteristics of vegetation. Normally, to make vegetation data in large area, remote sensing techniques are used. In other words, the exact point of presence data has high uncertainties as we select presence data set from polygons and raster dataset. Thus, sampling methods for modeling vegetation presence data should be carefully selected. In this study, we used three different sampling methods for selection of presence data of vegetation: Random sampling, Stratified sampling and Site index based sampling. We used one of the R package BIOMOD2 to access uncertainty from modeling. At the same time, we included BioCLIM variables and other environmental variables as input data. As a result of this study, despite of differences among the 10 SDMs, the sampling methods showed differences in ROC values, random sampling methods showed the lowest ROC value while site index based sampling methods showed the highest ROC value. As a result of this study the uncertainties from presence data sampling methods and SDM can be quantified.
Rosić, Miroslav; Pešić, Dalibor; Kukić, Dragoslav; Antić, Boris; Božović, Milan
2017-01-01
Concept of composite road safety index is a popular and relatively new concept among road safety experts around the world. As there is a constant need for comparison among different units (countries, municipalities, roads, etc.) there is need to choose an adequate method which will make comparison fair to all compared units. Usually comparisons using one specific indicator (parameter which describes safety or unsafety) can end up with totally different ranking of compared units which is quite complicated for decision maker to determine "real best performers". Need for composite road safety index is becoming dominant since road safety presents a complex system where more and more indicators are constantly being developed to describe it. Among wide variety of models and developed composite indexes, a decision maker can come to even bigger dilemma than choosing one adequate risk measure. As DEA and TOPSIS are well-known mathematical models and have recently been increasingly used for risk evaluation in road safety, we used efficiencies (composite indexes) obtained by different models, based on DEA and TOPSIS, to present PROMETHEE-RS model for selection of optimal method for composite index. Method for selection of optimal composite index is based on three parameters (average correlation, average rank variation and average cluster variation) inserted into a PROMETHEE MCDM method in order to choose the optimal one. The model is tested by comparing 27 police departments in Serbia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Detecting Bias in Selection for Higher Education: Three Different Methods
ERIC Educational Resources Information Center
Kennet-Cohen, Tamar; Turvall, Elliot; Oren, Carmel
2014-01-01
This study examined selection bias in Israeli university admissions with respect to test language and gender, using three approaches for the detection of such bias: Cleary's model of differential prediction, boundary conditions for differential prediction and difference between "d's" (the Constant Ratio Model). The university admissions…
Methods in Molecular Biology Mouse Genetics: Methods and Protocols | Center for Cancer Research
Mouse Genetics: Methods and Protocols provides selected mouse genetic techniques and their application in modeling varieties of human diseases. The chapters are mainly focused on the generation of different transgenic mice to accomplish the manipulation of genes of interest, tracing cell lineages, and modeling human diseases.
Jensen, Jacob S; Egebo, Max; Meyer, Anne S
2008-05-28
Accomplishment of fast tannin measurements is receiving increased interest as tannins are important for the mouthfeel and color properties of red wines. Fourier transform mid-infrared spectroscopy allows fast measurement of different wine components, but quantification of tannins is difficult due to interferences from spectral responses of other wine components. Four different variable selection tools were investigated for the identification of the most important spectral regions which would allow quantification of tannins from the spectra using partial least-squares regression. The study included the development of a new variable selection tool, iterative backward elimination of changeable size intervals PLS. The spectral regions identified by the different variable selection methods were not identical, but all included two regions (1485-1425 and 1060-995 cm(-1)), which therefore were concluded to be particularly important for tannin quantification. The spectral regions identified from the variable selection methods were used to develop calibration models. All four variable selection methods identified regions that allowed an improved quantitative prediction of tannins (RMSEP = 69-79 mg of CE/L; r = 0.93-0.94) as compared to a calibration model developed using all variables (RMSEP = 115 mg of CE/L; r = 0.87). Only minor differences in the performance of the variable selection methods were observed.
Using Deep Learning for Compound Selectivity Prediction.
Zhang, Ruisheng; Li, Juan; Lu, Jingjing; Hu, Rongjing; Yuan, Yongna; Zhao, Zhili
2016-01-01
Compound selectivity prediction plays an important role in identifying potential compounds that bind to the target of interest with high affinity. However, there is still short of efficient and accurate computational approaches to analyze and predict compound selectivity. In this paper, we propose two methods to improve the compound selectivity prediction. We employ an improved multitask learning method in Neural Networks (NNs), which not only incorporates both activity and selectivity for other targets, but also uses a probabilistic classifier with a logistic regression. We further improve the compound selectivity prediction by using the multitask learning method in Deep Belief Networks (DBNs) which can build a distributed representation model and improve the generalization of the shared tasks. In addition, we assign different weights to the auxiliary tasks that are related to the primary selectivity prediction task. In contrast to other related work, our methods greatly improve the accuracy of the compound selectivity prediction, in particular, using the multitask learning in DBNs with modified weights obtains the best performance.
Jewett, Ethan M; Steinrücken, Matthias; Song, Yun S
2016-11-01
Many approaches have been developed for inferring selection coefficients from time series data while accounting for genetic drift. These approaches have been motivated by the intuition that properly accounting for the population size history can significantly improve estimates of selective strengths. However, the improvement in inference accuracy that can be attained by modeling drift has not been characterized. Here, by comparing maximum likelihood estimates of selection coefficients that account for the true population size history with estimates that ignore drift by assuming allele frequencies evolve deterministically in a population of infinite size, we address the following questions: how much can modeling the population size history improve estimates of selection coefficients? How much can mis-inferred population sizes hurt inferences of selection coefficients? We conduct our analysis under the discrete Wright-Fisher model by deriving the exact probability of an allele frequency trajectory in a population of time-varying size and we replicate our results under the diffusion model. For both models, we find that ignoring drift leads to estimates of selection coefficients that are nearly as accurate as estimates that account for the true population history, even when population sizes are small and drift is high. This result is of interest because inference methods that ignore drift are widely used in evolutionary studies and can be many orders of magnitude faster than methods that account for population sizes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Yu, Sheng; Liao, Katherine P; Shaw, Stanley Y; Gainer, Vivian S; Churchill, Susanne E; Szolovits, Peter; Murphy, Shawn N; Kohane, Isaac S; Cai, Tianxi
2015-09-01
Analysis of narrative (text) data from electronic health records (EHRs) can improve population-scale phenotyping for clinical and genetic research. Currently, selection of text features for phenotyping algorithms is slow and laborious, requiring extensive and iterative involvement by domain experts. This paper introduces a method to develop phenotyping algorithms in an unbiased manner by automatically extracting and selecting informative features, which can be comparable to expert-curated ones in classification accuracy. Comprehensive medical concepts were collected from publicly available knowledge sources in an automated, unbiased fashion. Natural language processing (NLP) revealed the occurrence patterns of these concepts in EHR narrative notes, which enabled selection of informative features for phenotype classification. When combined with additional codified features, a penalized logistic regression model was trained to classify the target phenotype. The authors applied our method to develop algorithms to identify patients with rheumatoid arthritis and coronary artery disease cases among those with rheumatoid arthritis from a large multi-institutional EHR. The area under the receiver operating characteristic curves (AUC) for classifying RA and CAD using models trained with automated features were 0.951 and 0.929, respectively, compared to the AUCs of 0.938 and 0.929 by models trained with expert-curated features. Models trained with NLP text features selected through an unbiased, automated procedure achieved comparable or slightly higher accuracy than those trained with expert-curated features. The majority of the selected model features were interpretable. The proposed automated feature extraction method, generating highly accurate phenotyping algorithms with improved efficiency, is a significant step toward high-throughput phenotyping. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Multilocus approaches for the measurement of selection on correlated genetic loci.
Gompert, Zachariah; Egan, Scott P; Barrett, Rowan D H; Feder, Jeffrey L; Nosil, Patrik
2017-01-01
The study of ecological speciation is inherently linked to the study of selection. Methods for estimating phenotypic selection within a generation based on associations between trait values and fitness (e.g. survival) of individuals are established. These methods attempt to disentangle selection acting directly on a trait from indirect selection caused by correlations with other traits via multivariate statistical approaches (i.e. inference of selection gradients). The estimation of selection on genotypic or genomic variation could also benefit from disentangling direct and indirect selection on genetic loci. However, achieving this goal is difficult with genomic data because the number of potentially correlated genetic loci (p) is very large relative to the number of individuals sampled (n). In other words, the number of model parameters exceeds the number of observations (p ≫ n). We present simulations examining the utility of whole-genome regression approaches (i.e. Bayesian sparse linear mixed models) for quantifying direct selection in cases where p ≫ n. Such models have been used for genome-wide association mapping and are common in artificial breeding. Our results show they hold promise for studies of natural selection in the wild and thus of ecological speciation. But we also demonstrate important limitations to the approach and discuss study designs required for more robust inferences. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Määttä, A.; Laine, M.; Tamminen, J.; Veefkind, J. P.
2014-05-01
Satellite instruments are nowadays successfully utilised for measuring atmospheric aerosol in many applications as well as in research. Therefore, there is a growing need for rigorous error characterisation of the measurements. Here, we introduce a methodology for quantifying the uncertainty in the retrieval of aerosol optical thickness (AOT). In particular, we concentrate on two aspects: uncertainty due to aerosol microphysical model selection and uncertainty due to imperfect forward modelling. We apply the introduced methodology for aerosol optical thickness retrieval of the Ozone Monitoring Instrument (OMI) on board NASA's Earth Observing System (EOS) Aura satellite, launched in 2004. We apply statistical methodologies that improve the uncertainty estimates of the aerosol optical thickness retrieval by propagating aerosol microphysical model selection and forward model error more realistically. For the microphysical model selection problem, we utilise Bayesian model selection and model averaging methods. Gaussian processes are utilised to characterise the smooth systematic discrepancies between the measured and modelled reflectances (i.e. residuals). The spectral correlation is composed empirically by exploring a set of residuals. The operational OMI multi-wavelength aerosol retrieval algorithm OMAERO is used for cloud-free, over-land pixels of the OMI instrument with the additional Bayesian model selection and model discrepancy techniques introduced here. The method and improved uncertainty characterisation is demonstrated by several examples with different aerosol properties: weakly absorbing aerosols, forest fires over Greece and Russia, and Sahara desert dust. The statistical methodology presented is general; it is not restricted to this particular satellite retrieval application.
Speaker-independent phoneme recognition with a binaural auditory image model
NASA Astrophysics Data System (ADS)
Francis, Keith Ivan
1997-09-01
This dissertation presents phoneme recognition techniques based on a binaural fusion of outputs of the auditory image model and subsequent azimuth-selective phoneme recognition in a noisy environment. Background information concerning speech variations, phoneme recognition, current binaural fusion techniques and auditory modeling issues is explained. The research is constrained to sources in the frontal azimuthal plane of a simulated listener. A new method based on coincidence detection of neural activity patterns from the auditory image model of Patterson is used for azimuth-selective phoneme recognition. The method is tested in various levels of noise and the results are reported in contrast to binaural fusion methods based on various forms of correlation to demonstrate the potential of coincidence- based binaural phoneme recognition. This method overcomes smearing of fine speech detail typical of correlation based methods. Nevertheless, coincidence is able to measure similarity of left and right inputs and fuse them into useful feature vectors for phoneme recognition in noise.
Rank-based methods for modeling dependence between loss triangles.
Côté, Marie-Pier; Genest, Christian; Abdallah, Anas
2016-01-01
In order to determine the risk capital for their aggregate portfolio, property and casualty insurance companies must fit a multivariate model to the loss triangle data relating to each of their lines of business. As an inadequate choice of dependence structure may have an undesirable effect on reserve estimation, a two-stage inference strategy is proposed in this paper to assist with model selection and validation. Generalized linear models are first fitted to the margins. Standardized residuals from these models are then linked through a copula selected and validated using rank-based methods. The approach is illustrated with data from six lines of business of a large Canadian insurance company for which two hierarchical dependence models are considered, i.e., a fully nested Archimedean copula structure and a copula-based risk aggregation model.
Validation of Western North America Models based on finite-frequency and ray theory imaging methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larmat, Carene; Maceira, Monica; Porritt, Robert W.
2015-02-02
We validate seismic models developed for western North America with a focus on effect of imaging methods on data fit. We use the DNA09 models for which our collaborators provide models built with both the body-wave FF approach and the RT approach, when the data selection, processing and reference models are the same.
Fan, Shu-Xiang; Huang, Wen-Qian; Li, Jiang-Bo; Guo, Zhi-Ming; Zhaq, Chun-Jiang
2014-10-01
In order to detect the soluble solids content(SSC)of apple conveniently and rapidly, a ring fiber probe and a portable spectrometer were applied to obtain the spectroscopy of apple. Different wavelength variable selection methods, including unin- formative variable elimination (UVE), competitive adaptive reweighted sampling (CARS) and genetic algorithm (GA) were pro- posed to select effective wavelength variables of the NIR spectroscopy of the SSC in apple based on PLS. The back interval LS- SVM (BiLS-SVM) and GA were used to select effective wavelength variables based on LS-SVM. Selected wavelength variables and full wavelength range were set as input variables of PLS model and LS-SVM model, respectively. The results indicated that PLS model built using GA-CARS on 50 characteristic variables selected from full-spectrum which had 1512 wavelengths achieved the optimal performance. The correlation coefficient (Rp) and root mean square error of prediction (RMSEP) for prediction sets were 0.962, 0.403°Brix respectively for SSC. The proposed method of GA-CARS could effectively simplify the portable detection model of SSC in apple based on near infrared spectroscopy and enhance the predictive precision. The study can provide a reference for the development of portable apple soluble solids content spectrometer.
Attallah, Omneya; Karthikesalingam, Alan; Holt, Peter Je; Thompson, Matthew M; Sayers, Rob; Bown, Matthew J; Choke, Eddie C; Ma, Xianghong
2017-11-01
Feature selection is essential in medical area; however, its process becomes complicated with the presence of censoring which is the unique character of survival analysis. Most survival feature selection methods are based on Cox's proportional hazard model, though machine learning classifiers are preferred. They are less employed in survival analysis due to censoring which prevents them from directly being used to survival data. Among the few work that employed machine learning classifiers, partial logistic artificial neural network with auto-relevance determination is a well-known method that deals with censoring and perform feature selection for survival data. However, it depends on data replication to handle censoring which leads to unbalanced and biased prediction results especially in highly censored data. Other methods cannot deal with high censoring. Therefore, in this article, a new hybrid feature selection method is proposed which presents a solution to high level censoring. It combines support vector machine, neural network, and K-nearest neighbor classifiers using simple majority voting and a new weighted majority voting method based on survival metric to construct a multiple classifier system. The new hybrid feature selection process uses multiple classifier system as a wrapper method and merges it with iterated feature ranking filter method to further reduce features. Two endovascular aortic repair datasets containing 91% censored patients collected from two centers were used to construct a multicenter study to evaluate the performance of the proposed approach. The results showed the proposed technique outperformed individual classifiers and variable selection methods based on Cox's model such as Akaike and Bayesian information criterions and least absolute shrinkage and selector operator in p values of the log-rank test, sensitivity, and concordance index. This indicates that the proposed classifier is more powerful in correctly predicting the risk of re-intervention enabling doctor in selecting patients' future follow-up plan.
Dynamic data filtering system and method
Bickford, Randall L; Palnitkar, Rahul M
2014-04-29
A computer-implemented dynamic data filtering system and method for selectively choosing operating data of a monitored asset that modifies or expands a learned scope of an empirical model of normal operation of the monitored asset while simultaneously rejecting operating data of the monitored asset that is indicative of excessive degradation or impending failure of the monitored asset, and utilizing the selectively chosen data for adaptively recalibrating the empirical model to more accurately monitor asset aging changes or operating condition changes of the monitored asset.
Gamado, Kokouvi; Marion, Glenn; Porphyre, Thibaud
2017-01-01
Livestock epidemics have the potential to give rise to significant economic, welfare, and social costs. Incursions of emerging and re-emerging pathogens may lead to small and repeated outbreaks. Analysis of the resulting data is statistically challenging but can inform disease preparedness reducing potential future losses. We present a framework for spatial risk assessment of disease incursions based on data from small localized historic outbreaks. We focus on between-farm spread of livestock pathogens and illustrate our methods by application to data on the small outbreak of Classical Swine Fever (CSF) that occurred in 2000 in East Anglia, UK. We apply models based on continuous time semi-Markov processes, using data-augmentation Markov Chain Monte Carlo techniques within a Bayesian framework to infer disease dynamics and detection from incompletely observed outbreaks. The spatial transmission kernel describing pathogen spread between farms, and the distribution of times between infection and detection, is estimated alongside unobserved exposure times. Our results demonstrate inference is reliable even for relatively small outbreaks when the data-generating model is known. However, associated risk assessments depend strongly on the form of the fitted transmission kernel. Therefore, for real applications, methods are needed to select the most appropriate model in light of the data. We assess standard Deviance Information Criteria (DIC) model selection tools and recently introduced latent residual methods of model assessment, in selecting the functional form of the spatial transmission kernel. These methods are applied to the CSF data, and tested in simulated scenarios which represent field data, but assume the data generation mechanism is known. Analysis of simulated scenarios shows that latent residual methods enable reliable selection of the transmission kernel even for small outbreaks whereas the DIC is less reliable. Moreover, compared with DIC, model choice based on latent residual assessment correlated better with predicted risk. PMID:28293559
Model selection for clustering of pharmacokinetic responses.
Guerra, Rui P; Carvalho, Alexandra M; Mateus, Paulo
2018-08-01
Pharmacokinetics comprises the study of drug absorption, distribution, metabolism and excretion over time. Clinical pharmacokinetics, focusing on therapeutic management, offers important insights towards personalised medicine through the study of efficacy and toxicity of drug therapies. This study is hampered by subject's high variability in drug blood concentration, when starting a therapy with the same drug dosage. Clustering of pharmacokinetics responses has been addressed recently as a way to stratify subjects and provide different drug doses for each stratum. This clustering method, however, is not able to automatically determine the correct number of clusters, using an user-defined parameter for collapsing clusters that are closer than a given heuristic threshold. We aim to use information-theoretical approaches to address parameter-free model selection. We propose two model selection criteria for clustering pharmacokinetics responses, founded on the Minimum Description Length and on the Normalised Maximum Likelihood. Experimental results show the ability of model selection schemes to unveil the correct number of clusters underlying the mixture of pharmacokinetics responses. In this work we were able to devise two model selection criteria to determine the number of clusters in a mixture of pharmacokinetics curves, advancing over previous works. A cost-efficient parallel implementation in Java of the proposed method is publicly available for the community. Copyright © 2018 Elsevier B.V. All rights reserved.
Feature Selection Methods for Zero-Shot Learning of Neural Activity
Caceres, Carlos A.; Roos, Matthew J.; Rupp, Kyle M.; Milsap, Griffin; Crone, Nathan E.; Wolmetz, Michael E.; Ratto, Christopher R.
2017-01-01
Dimensionality poses a serious challenge when making predictions from human neuroimaging data. Across imaging modalities, large pools of potential neural features (e.g., responses from particular voxels, electrodes, and temporal windows) have to be related to typically limited sets of stimuli and samples. In recent years, zero-shot prediction models have been introduced for mapping between neural signals and semantic attributes, which allows for classification of stimulus classes not explicitly included in the training set. While choices about feature selection can have a substantial impact when closed-set accuracy, open-set robustness, and runtime are competing design objectives, no systematic study of feature selection for these models has been reported. Instead, a relatively straightforward feature stability approach has been adopted and successfully applied across models and imaging modalities. To characterize the tradeoffs in feature selection for zero-shot learning, we compared correlation-based stability to several other feature selection techniques on comparable data sets from two distinct imaging modalities: functional Magnetic Resonance Imaging and Electrocorticography. While most of the feature selection methods resulted in similar zero-shot prediction accuracies and spatial/spectral patterns of selected features, there was one exception; A novel feature/attribute correlation approach was able to achieve those accuracies with far fewer features, suggesting the potential for simpler prediction models that yield high zero-shot classification accuracy. PMID:28690513
Sparse High Dimensional Models in Economics
Fan, Jianqing; Lv, Jinchi; Qi, Lei
2010-01-01
This paper reviews the literature on sparse high dimensional models and discusses some applications in economics and finance. Recent developments of theory, methods, and implementations in penalized least squares and penalized likelihood methods are highlighted. These variable selection methods are proved to be effective in high dimensional sparse modeling. The limits of dimensionality that regularization methods can handle, the role of penalty functions, and their statistical properties are detailed. Some recent advances in ultra-high dimensional sparse modeling are also briefly discussed. PMID:22022635
Leger, Stefan; Zwanenburg, Alex; Pilz, Karoline; Lohaus, Fabian; Linge, Annett; Zöphel, Klaus; Kotzerke, Jörg; Schreiber, Andreas; Tinhofer, Inge; Budach, Volker; Sak, Ali; Stuschke, Martin; Balermpas, Panagiotis; Rödel, Claus; Ganswindt, Ute; Belka, Claus; Pigorsch, Steffi; Combs, Stephanie E; Mönnich, David; Zips, Daniel; Krause, Mechthild; Baumann, Michael; Troost, Esther G C; Löck, Steffen; Richter, Christian
2017-10-16
Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, we assessed the performance of 11 machine learning algorithms combined with 12 feature selection methods by the concordance index (C-Index), to predict loco-regional tumour control (LRC) and overall survival for patients with head and neck squamous cell carcinoma. The considered algorithms are able to deal with continuous time-to-event survival data. Feature selection and model building were performed on a multicentre cohort (213 patients) and validated using an independent cohort (80 patients). We found several combinations of machine learning algorithms and feature selection methods which achieve similar results, e.g. C-Index = 0.71 and BT-COX: C-Index = 0.70 in combination with Spearman feature selection. Using the best performing models, patients were stratified into groups of low and high risk of recurrence. Significant differences in LRC were obtained between both groups on the validation cohort. Based on the presented analysis, we identified a subset of algorithms which should be considered in future radiomics studies to develop stable and clinically relevant predictive models for time-to-event endpoints.
Heslot, Nicolas; Akdemir, Deniz; Sorrells, Mark E; Jannink, Jean-Luc
2014-02-01
Development of models to predict genotype by environment interactions, in unobserved environments, using environmental covariates, a crop model and genomic selection. Application to a large winter wheat dataset. Genotype by environment interaction (G*E) is one of the key issues when analyzing phenotypes. The use of environment data to model G*E has long been a subject of interest but is limited by the same problems as those addressed by genomic selection methods: a large number of correlated predictors each explaining a small amount of the total variance. In addition, non-linear responses of genotypes to stresses are expected to further complicate the analysis. Using a crop model to derive stress covariates from daily weather data for predicted crop development stages, we propose an extension of the factorial regression model to genomic selection. This model is further extended to the marker level, enabling the modeling of quantitative trait loci (QTL) by environment interaction (Q*E), on a genome-wide scale. A newly developed ensemble method, soft rule fit, was used to improve this model and capture non-linear responses of QTL to stresses. The method is tested using a large winter wheat dataset, representative of the type of data available in a large-scale commercial breeding program. Accuracy in predicting genotype performance in unobserved environments for which weather data were available increased by 11.1% on average and the variability in prediction accuracy decreased by 10.8%. By leveraging agronomic knowledge and the large historical datasets generated by breeding programs, this new model provides insight into the genetic architecture of genotype by environment interactions and could predict genotype performance based on past and future weather scenarios.
A Seasonal Time-Series Model Based on Gene Expression Programming for Predicting Financial Distress
2018-01-01
The issue of financial distress prediction plays an important and challenging research topic in the financial field. Currently, there have been many methods for predicting firm bankruptcy and financial crisis, including the artificial intelligence and the traditional statistical methods, and the past studies have shown that the prediction result of the artificial intelligence method is better than the traditional statistical method. Financial statements are quarterly reports; hence, the financial crisis of companies is seasonal time-series data, and the attribute data affecting the financial distress of companies is nonlinear and nonstationary time-series data with fluctuations. Therefore, this study employed the nonlinear attribute selection method to build a nonlinear financial distress prediction model: that is, this paper proposed a novel seasonal time-series gene expression programming model for predicting the financial distress of companies. The proposed model has several advantages including the following: (i) the proposed model is different from the previous models lacking the concept of time series; (ii) the proposed integrated attribute selection method can find the core attributes and reduce high dimensional data; and (iii) the proposed model can generate the rules and mathematical formulas of financial distress for providing references to the investors and decision makers. The result shows that the proposed method is better than the listing classifiers under three criteria; hence, the proposed model has competitive advantages in predicting the financial distress of companies. PMID:29765399
A Seasonal Time-Series Model Based on Gene Expression Programming for Predicting Financial Distress.
Cheng, Ching-Hsue; Chan, Chia-Pang; Yang, Jun-He
2018-01-01
The issue of financial distress prediction plays an important and challenging research topic in the financial field. Currently, there have been many methods for predicting firm bankruptcy and financial crisis, including the artificial intelligence and the traditional statistical methods, and the past studies have shown that the prediction result of the artificial intelligence method is better than the traditional statistical method. Financial statements are quarterly reports; hence, the financial crisis of companies is seasonal time-series data, and the attribute data affecting the financial distress of companies is nonlinear and nonstationary time-series data with fluctuations. Therefore, this study employed the nonlinear attribute selection method to build a nonlinear financial distress prediction model: that is, this paper proposed a novel seasonal time-series gene expression programming model for predicting the financial distress of companies. The proposed model has several advantages including the following: (i) the proposed model is different from the previous models lacking the concept of time series; (ii) the proposed integrated attribute selection method can find the core attributes and reduce high dimensional data; and (iii) the proposed model can generate the rules and mathematical formulas of financial distress for providing references to the investors and decision makers. The result shows that the proposed method is better than the listing classifiers under three criteria; hence, the proposed model has competitive advantages in predicting the financial distress of companies.
Mujalli, Randa Oqab; de Oña, Juan
2011-10-01
This study describes a method for reducing the number of variables frequently considered in modeling the severity of traffic accidents. The method's efficiency is assessed by constructing Bayesian networks (BN). It is based on a two stage selection process. Several variable selection algorithms, commonly used in data mining, are applied in order to select subsets of variables. BNs are built using the selected subsets and their performance is compared with the original BN (with all the variables) using five indicators. The BNs that improve the indicators' values are further analyzed for identifying the most significant variables (accident type, age, atmospheric factors, gender, lighting, number of injured, and occupant involved). A new BN is built using these variables, where the results of the indicators indicate, in most of the cases, a statistically significant improvement with respect to the original BN. It is possible to reduce the number of variables used to model traffic accidents injury severity through BNs without reducing the performance of the model. The study provides the safety analysts a methodology that could be used to minimize the number of variables used in order to determine efficiently the injury severity of traffic accidents without reducing the performance of the model. Copyright © 2011 Elsevier Ltd. All rights reserved.
Maltarollo, Vinícius G; Homem-de-Mello, Paula; Honorio, Káthia M
2011-10-01
Current researches on treatments for metabolic diseases involve a class of biological receptors called peroxisome proliferator-activated receptors (PPARs), which control the metabolism of carbohydrates and lipids. A subclass of these receptors, PPARδ, regulates several metabolic processes, and the substances that activate them are being studied as new drug candidates for the treatment of diabetes mellitus and metabolic syndrome. In this study, several PPARδ agonists with experimental biological activity were selected for a structural and chemical study. Electronic, stereochemical, lipophilic and topological descriptors were calculated for the selected compounds using various theoretical methods, such as density functional theory (DFT). Fisher's weight and principal components analysis (PCA) methods were employed to select the most relevant variables for this study. The partial least squares (PLS) method was used to construct the multivariate statistical model, and the best model obtained had 4 PCs, q ( 2 ) = 0.80 and r ( 2 ) = 0.90, indicating a good internal consistency. The prediction residues calculated for the compounds in the test set had low values, indicating the good predictive capability of our PLS model. The model obtained in this study is reliable and can be used to predict the biological activity of new untested compounds. Docking studies have also confirmed the importance of the molecular descriptors selected for this system.
Working covariance model selection for generalized estimating equations.
Carey, Vincent J; Wang, You-Gan
2011-11-20
We investigate methods for data-based selection of working covariance models in the analysis of correlated data with generalized estimating equations. We study two selection criteria: Gaussian pseudolikelihood and a geodesic distance based on discrepancy between model-sensitive and model-robust regression parameter covariance estimators. The Gaussian pseudolikelihood is found in simulation to be reasonably sensitive for several response distributions and noncanonical mean-variance relations for longitudinal data. Application is also made to a clinical dataset. Assessment of adequacy of both correlation and variance models for longitudinal data should be routine in applications, and we describe open-source software supporting this practice. Copyright © 2011 John Wiley & Sons, Ltd.
Shen, Chung-Wei; Chen, Yi-Hau
2015-10-01
Missing observations and covariate measurement error commonly arise in longitudinal data. However, existing methods for model selection in marginal regression analysis of longitudinal data fail to address the potential bias resulting from these issues. To tackle this problem, we propose a new model selection criterion, the Generalized Longitudinal Information Criterion, which is based on an approximately unbiased estimator for the expected quadratic error of a considered marginal model accounting for both data missingness and covariate measurement error. The simulation results reveal that the proposed method performs quite well in the presence of missing data and covariate measurement error. On the contrary, the naive procedures without taking care of such complexity in data may perform quite poorly. The proposed method is applied to data from the Taiwan Longitudinal Study on Aging to assess the relationship of depression with health and social status in the elderly, accommodating measurement error in the covariate as well as missing observations. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
No-Reference Image Quality Assessment by Wide-Perceptual-Domain Scorer Ensemble Method.
Liu, Tsung-Jung; Liu, Kuan-Hsien
2018-03-01
A no-reference (NR) learning-based approach to assess image quality is presented in this paper. The devised features are extracted from wide perceptual domains, including brightness, contrast, color, distortion, and texture. These features are used to train a model (scorer) which can predict scores. The scorer selection algorithms are utilized to help simplify the proposed system. In the final stage, the ensemble method is used to combine the prediction results from selected scorers. Two multiple-scale versions of the proposed approach are also presented along with the single-scale one. They turn out to have better performances than the original single-scale method. Because of having features from five different domains at multiple image scales and using the outputs (scores) from selected score prediction models as features for multi-scale or cross-scale fusion (i.e., ensemble), the proposed NR image quality assessment models are robust with respect to more than 24 image distortion types. They also can be used on the evaluation of images with authentic distortions. The extensive experiments on three well-known and representative databases confirm the performance robustness of our proposed model.
Li, Juan; Jiang, Yue; Fan, Qi; Chen, Yang; Wu, Ruanqi
2014-05-05
This paper establishes a high-throughput and high selective method to determine the impurity named oxidized glutathione (GSSG) and radial tensile strength (RTS) of reduced glutathione (GSH) tablets based on near infrared (NIR) spectroscopy and partial least squares (PLS). In order to build and evaluate the calibration models, the NIR diffuse reflectance spectra (DRS) and transmittance spectra (TS) for 330 GSH tablets were accurately measured by using the optimized parameter values. For analyzing GSSG or RTS of GSH tablets, the NIR-DRS or NIR-TS were selected, subdivided reasonably into calibration and prediction sets, and processed appropriately with chemometric techniques. After selecting spectral sub-ranges and neglecting spectrum outliers, the PLS calibration models were built and the factor numbers were optimized. Then, the PLS models were evaluated by the root mean square errors of calibration (RMSEC), cross-validation (RMSECV) and prediction (RMSEP), and by the correlation coefficients of calibration (R(c)) and prediction (R(p)). The results indicate that the proposed models have good performances. It is thus clear that the NIR-PLS can simultaneously, selectively, nondestructively and rapidly analyze the GSSG and RTS of GSH tablets, although the contents of GSSG impurity were quite low while those of GSH active pharmaceutical ingredient (API) quite high. This strategy can be an important complement to the common NIR methods used in the on-line analysis of API in pharmaceutical preparations. And this work expands the NIR applications in the high-throughput and extraordinarily selective analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Applications of information theory, genetic algorithms, and neural models to predict oil flow
NASA Astrophysics Data System (ADS)
Ludwig, Oswaldo; Nunes, Urbano; Araújo, Rui; Schnitman, Leizer; Lepikson, Herman Augusto
2009-07-01
This work introduces a new information-theoretic methodology for choosing variables and their time lags in a prediction setting, particularly when neural networks are used in non-linear modeling. The first contribution of this work is the Cross Entropy Function (XEF) proposed to select input variables and their lags in order to compose the input vector of black-box prediction models. The proposed XEF method is more appropriate than the usually applied Cross Correlation Function (XCF) when the relationship among the input and output signals comes from a non-linear dynamic system. The second contribution is a method that minimizes the Joint Conditional Entropy (JCE) between the input and output variables by means of a Genetic Algorithm (GA). The aim is to take into account the dependence among the input variables when selecting the most appropriate set of inputs for a prediction problem. In short, theses methods can be used to assist the selection of input training data that have the necessary information to predict the target data. The proposed methods are applied to a petroleum engineering problem; predicting oil production. Experimental results obtained with a real-world dataset are presented demonstrating the feasibility and effectiveness of the method.
Bayesian inference for OPC modeling
NASA Astrophysics Data System (ADS)
Burbine, Andrew; Sturtevant, John; Fryer, David; Smith, Bruce W.
2016-03-01
The use of optical proximity correction (OPC) demands increasingly accurate models of the photolithographic process. Model building and inference techniques in the data science community have seen great strides in the past two decades which make better use of available information. This paper aims to demonstrate the predictive power of Bayesian inference as a method for parameter selection in lithographic models by quantifying the uncertainty associated with model inputs and wafer data. Specifically, the method combines the model builder's prior information about each modelling assumption with the maximization of each observation's likelihood as a Student's t-distributed random variable. Through the use of a Markov chain Monte Carlo (MCMC) algorithm, a model's parameter space is explored to find the most credible parameter values. During parameter exploration, the parameters' posterior distributions are generated by applying Bayes' rule, using a likelihood function and the a priori knowledge supplied. The MCMC algorithm used, an affine invariant ensemble sampler (AIES), is implemented by initializing many walkers which semiindependently explore the space. The convergence of these walkers to global maxima of the likelihood volume determine the parameter values' highest density intervals (HDI) to reveal champion models. We show that this method of parameter selection provides insights into the data that traditional methods do not and outline continued experiments to vet the method.
Deformed exponentials and portfolio selection
NASA Astrophysics Data System (ADS)
Rodrigues, Ana Flávia P.; Guerreiro, Igor M.; Cavalcante, Charles Casimiro
In this paper, we present a method for portfolio selection based on the consideration on deformed exponentials in order to generalize the methods based on the gaussianity of the returns in portfolio, such as the Markowitz model. The proposed method generalizes the idea of optimizing mean-variance and mean-divergence models and allows a more accurate behavior for situations where heavy-tails distributions are necessary to describe the returns in a given time instant, such as those observed in economic crises. Numerical results show the proposed method outperforms the Markowitz portfolio for the cumulated returns with a good convergence rate of the weights for the assets which are searched by means of a natural gradient algorithm.
A Permutation Approach for Selecting the Penalty Parameter in Penalized Model Selection
Sabourin, Jeremy A; Valdar, William; Nobel, Andrew B
2015-01-01
Summary We describe a simple, computationally effcient, permutation-based procedure for selecting the penalty parameter in LASSO penalized regression. The procedure, permutation selection, is intended for applications where variable selection is the primary focus, and can be applied in a variety of structural settings, including that of generalized linear models. We briefly discuss connections between permutation selection and existing theory for the LASSO. In addition, we present a simulation study and an analysis of real biomedical data sets in which permutation selection is compared with selection based on the following: cross-validation (CV), the Bayesian information criterion (BIC), Scaled Sparse Linear Regression, and a selection method based on recently developed testing procedures for the LASSO. PMID:26243050
On using sample selection methods in estimating the price elasticity of firms' demand for insurance.
Marquis, M Susan; Louis, Thomas A
2002-01-01
We evaluate a technique based on sample selection models that has been used by health economists to estimate the price elasticity of firms' demand for insurance. We demonstrate that, this technique produces inflated estimates of the price elasticity. We show that alternative methods lead to valid estimates.
Parameter Selection Methods in Inverse Problem Formulation
2010-11-03
clinical data and used for prediction and a model for the reaction of the cardiovascular system to an ergometric workload. Key Words: Parameter selection...model for HIV dynamics which has been successfully validated with clinical data and used for prediction and a model for the reaction of the...recently developed in-host model for HIV dynamics which has been successfully validated with clinical data and used for prediction [4, 8]; b) a global
Model-Selection Theory: The Need for a More Nuanced Picture of Use-Novelty and Double-Counting
Steele, Katie; Werndl, Charlotte
2018-01-01
Abstract This article argues that common intuitions regarding (a) the specialness of ‘use-novel’ data for confirmation and (b) that this specialness implies the ‘no-double-counting rule’, which says that data used in ‘constructing’ (calibrating) a model cannot also play a role in confirming the model’s predictions, are too crude. The intuitions in question are pertinent in all the sciences, but we appeal to a climate science case study to illustrate what is at stake. Our strategy is to analyse the intuitive claims in light of prominent accounts of confirmation of model predictions. We show that on the Bayesian account of confirmation, and also on the standard classical hypothesis-testing account, claims (a) and (b) are not generally true; but for some select cases, it is possible to distinguish data used for calibration from use-novel data, where only the latter confirm. The more specialized classical model-selection methods, on the other hand, uphold a nuanced version of claim (a), but this comes apart from (b), which must be rejected in favour of a more refined account of the relationship between calibration and confirmation. Thus, depending on the framework of confirmation, either the scope or the simplicity of the intuitive position must be revised. 1 Introduction2 A Climate Case Study3 The Bayesian Method vis-à-vis Intuitions4 Classical Tests vis-à-vis Intuitions5 Classical Model-Selection Methods vis-à-vis Intuitions 5.1 Introducing classical model-selection methods 5.2 Two cases6 Re-examining Our Case Study7 Conclusion PMID:29780170
Estimating and Identifying Unspecified Correlation Structure for Longitudinal Data
Hu, Jianhua; Wang, Peng; Qu, Annie
2014-01-01
Identifying correlation structure is important to achieving estimation efficiency in analyzing longitudinal data, and is also crucial for drawing valid statistical inference for large size clustered data. In this paper, we propose a nonparametric method to estimate the correlation structure, which is applicable for discrete longitudinal data. We utilize eigenvector-based basis matrices to approximate the inverse of the empirical correlation matrix and determine the number of basis matrices via model selection. A penalized objective function based on the difference between the empirical and model approximation of the correlation matrices is adopted to select an informative structure for the correlation matrix. The eigenvector representation of the correlation estimation is capable of reducing the risk of model misspecification, and also provides useful information on the specific within-cluster correlation pattern of the data. We show that the proposed method possesses the oracle property and selects the true correlation structure consistently. The proposed method is illustrated through simulations and two data examples on air pollution and sonar signal studies. PMID:26361433
Detecting consistent patterns of directional adaptation using differential selection codon models.
Parto, Sahar; Lartillot, Nicolas
2017-06-23
Phylogenetic codon models are often used to characterize the selective regimes acting on protein-coding sequences. Recent methodological developments have led to models explicitly accounting for the interplay between mutation and selection, by modeling the amino acid fitness landscape along the sequence. However, thus far, most of these models have assumed that the fitness landscape is constant over time. Fluctuations of the fitness landscape may often be random or depend on complex and unknown factors. However, some organisms may be subject to systematic changes in selective pressure, resulting in reproducible molecular adaptations across independent lineages subject to similar conditions. Here, we introduce a codon-based differential selection model, which aims to detect and quantify the fine-grained consistent patterns of adaptation at the protein-coding level, as a function of external conditions experienced by the organism under investigation. The model parameterizes the global mutational pressure, as well as the site- and condition-specific amino acid selective preferences. This phylogenetic model is implemented in a Bayesian MCMC framework. After validation with simulations, we applied our method to a dataset of HIV sequences from patients with known HLA genetic background. Our differential selection model detects and characterizes differentially selected coding positions specifically associated with two different HLA alleles. Our differential selection model is able to identify consistent molecular adaptations as a function of repeated changes in the environment of the organism. These models can be applied to many other problems, ranging from viral adaptation to evolution of life-history strategies in plants or animals.
ERIC Educational Resources Information Center
Burstein, Leigh
Two specific methods of analysis in large-scale evaluations are considered: structural equation modeling and selection modeling/analysis of non-equivalent control group designs. Their utility in large-scale educational program evaluation is discussed. The examination of these methodological developments indicates how people (evaluators,…
Grane, Camilla
2018-01-01
Highly automated driving will change driver's behavioural patterns. Traditional methods used for assessing manual driving will only be applicable for the parts of human-automation interaction where the driver intervenes such as in hand-over and take-over situations. Therefore, driver behaviour assessment will need to adapt to the new driving scenarios. This paper aims at simplifying the process of selecting appropriate assessment methods. Thirty-five papers were reviewed to examine potential and relevant methods. The review showed that many studies still relies on traditional driving assessment methods. A new method, the Failure-GAM 2 E model, with purpose to aid assessment selection when planning a study, is proposed and exemplified in the paper. Failure-GAM 2 E includes a systematic step-by-step procedure defining the situation, failures (Failure), goals (G), actions (A), subjective methods (M), objective methods (M) and equipment (E). The use of Failure-GAM 2 E in a study example resulted in a well-reasoned assessment plan, a new way of measuring trust through feet movements and a proposed Optimal Risk Management Model. Failure-GAM 2 E and the Optimal Risk Management Model are believed to support the planning process for research studies in the field of human-automation interaction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Objective Model Selection for Identifying the Human Feedforward Response in Manual Control.
Drop, Frank M; Pool, Daan M; van Paassen, Marinus Rene M; Mulder, Max; Bulthoff, Heinrich H
2018-01-01
Realistic manual control tasks typically involve predictable target signals and random disturbances. The human controller (HC) is hypothesized to use a feedforward control strategy for target-following, in addition to feedback control for disturbance-rejection. Little is known about human feedforward control, partly because common system identification methods have difficulty in identifying whether, and (if so) how, the HC applies a feedforward strategy. In this paper, an identification procedure is presented that aims at an objective model selection for identifying the human feedforward response, using linear time-invariant autoregressive with exogenous input models. A new model selection criterion is proposed to decide on the model order (number of parameters) and the presence of feedforward in addition to feedback. For a range of typical control tasks, it is shown by means of Monte Carlo computer simulations that the classical Bayesian information criterion (BIC) leads to selecting models that contain a feedforward path from data generated by a pure feedback model: "false-positive" feedforward detection. To eliminate these false-positives, the modified BIC includes an additional penalty on model complexity. The appropriate weighting is found through computer simulations with a hypothesized HC model prior to performing a tracking experiment. Experimental human-in-the-loop data will be considered in future work. With appropriate weighting, the method correctly identifies the HC dynamics in a wide range of control tasks, without false-positive results.
Geng, Zhigeng; Wang, Sijian; Yu, Menggang; Monahan, Patrick O.; Champion, Victoria; Wahba, Grace
2017-01-01
Summary In many scientific and engineering applications, covariates are naturally grouped. When the group structures are available among covariates, people are usually interested in identifying both important groups and important variables within the selected groups. Among existing successful group variable selection methods, some methods fail to conduct the within group selection. Some methods are able to conduct both group and within group selection, but the corresponding objective functions are non-convex. Such a non-convexity may require extra numerical effort. In this article, we propose a novel Log-Exp-Sum(LES) penalty for group variable selection. The LES penalty is strictly convex. It can identify important groups as well as select important variables within the group. We develop an efficient group-level coordinate descent algorithm to fit the model. We also derive non-asymptotic error bounds and asymptotic group selection consistency for our method in the high-dimensional setting where the number of covariates can be much larger than the sample size. Numerical results demonstrate the good performance of our method in both variable selection and prediction. We applied the proposed method to an American Cancer Society breast cancer survivor dataset. The findings are clinically meaningful and may help design intervention programs to improve the qualify of life for breast cancer survivors. PMID:25257196
Hydraulic head interpolation using ANFIS—model selection and sensitivity analysis
NASA Astrophysics Data System (ADS)
Kurtulus, Bedri; Flipo, Nicolas
2012-01-01
The aim of this study is to investigate the efficiency of ANFIS (adaptive neuro fuzzy inference system) for interpolating hydraulic head in a 40-km 2 agricultural watershed of the Seine basin (France). Inputs of ANFIS are Cartesian coordinates and the elevation of the ground. Hydraulic head was measured at 73 locations during a snapshot campaign on September 2009, which characterizes low-water-flow regime in the aquifer unit. The dataset was then split into three subsets using a square-based selection method: a calibration one (55%), a training one (27%), and a test one (18%). First, a method is proposed to select the best ANFIS model, which corresponds to a sensitivity analysis of ANFIS to the type and number of membership functions (MF). Triangular, Gaussian, general bell, and spline-based MF are used with 2, 3, 4, and 5 MF per input node. Performance criteria on the test subset are used to select the 5 best ANFIS models among 16. Then each is used to interpolate the hydraulic head distribution on a (50×50)-m grid, which is compared to the soil elevation. The cells where the hydraulic head is higher than the soil elevation are counted as "error cells." The ANFIS model that exhibits the less "error cells" is selected as the best ANFIS model. The best model selection reveals that ANFIS models are very sensitive to the type and number of MF. Finally, a sensibility analysis of the best ANFIS model with four triangular MF is performed on the interpolation grid, which shows that ANFIS remains stable to error propagation with a higher sensitivity to soil elevation.
A Selective Overview of Variable Selection in High Dimensional Feature Space
Fan, Jianqing
2010-01-01
High dimensional statistical problems arise from diverse fields of scientific research and technological development. Variable selection plays a pivotal role in contemporary statistical learning and scientific discoveries. The traditional idea of best subset selection methods, which can be regarded as a specific form of penalized likelihood, is computationally too expensive for many modern statistical applications. Other forms of penalized likelihood methods have been successfully developed over the last decade to cope with high dimensionality. They have been widely applied for simultaneously selecting important variables and estimating their effects in high dimensional statistical inference. In this article, we present a brief account of the recent developments of theory, methods, and implementations for high dimensional variable selection. What limits of the dimensionality such methods can handle, what the role of penalty functions is, and what the statistical properties are rapidly drive the advances of the field. The properties of non-concave penalized likelihood and its roles in high dimensional statistical modeling are emphasized. We also review some recent advances in ultra-high dimensional variable selection, with emphasis on independence screening and two-scale methods. PMID:21572976
Surface Estimation, Variable Selection, and the Nonparametric Oracle Property.
Storlie, Curtis B; Bondell, Howard D; Reich, Brian J; Zhang, Hao Helen
2011-04-01
Variable selection for multivariate nonparametric regression is an important, yet challenging, problem due, in part, to the infinite dimensionality of the function space. An ideal selection procedure should be automatic, stable, easy to use, and have desirable asymptotic properties. In particular, we define a selection procedure to be nonparametric oracle (np-oracle) if it consistently selects the correct subset of predictors and at the same time estimates the smooth surface at the optimal nonparametric rate, as the sample size goes to infinity. In this paper, we propose a model selection procedure for nonparametric models, and explore the conditions under which the new method enjoys the aforementioned properties. Developed in the framework of smoothing spline ANOVA, our estimator is obtained via solving a regularization problem with a novel adaptive penalty on the sum of functional component norms. Theoretical properties of the new estimator are established. Additionally, numerous simulated and real examples further demonstrate that the new approach substantially outperforms other existing methods in the finite sample setting.
Surface Estimation, Variable Selection, and the Nonparametric Oracle Property
Storlie, Curtis B.; Bondell, Howard D.; Reich, Brian J.; Zhang, Hao Helen
2010-01-01
Variable selection for multivariate nonparametric regression is an important, yet challenging, problem due, in part, to the infinite dimensionality of the function space. An ideal selection procedure should be automatic, stable, easy to use, and have desirable asymptotic properties. In particular, we define a selection procedure to be nonparametric oracle (np-oracle) if it consistently selects the correct subset of predictors and at the same time estimates the smooth surface at the optimal nonparametric rate, as the sample size goes to infinity. In this paper, we propose a model selection procedure for nonparametric models, and explore the conditions under which the new method enjoys the aforementioned properties. Developed in the framework of smoothing spline ANOVA, our estimator is obtained via solving a regularization problem with a novel adaptive penalty on the sum of functional component norms. Theoretical properties of the new estimator are established. Additionally, numerous simulated and real examples further demonstrate that the new approach substantially outperforms other existing methods in the finite sample setting. PMID:21603586
NASA Astrophysics Data System (ADS)
Peng, Hong-Gang; Wang, Jian-Qiang
2017-11-01
In recent years, sustainable energy crop has become an important energy development strategy topic in many countries. Selecting the most sustainable energy crop is a significant problem that must be addressed during any biofuel production process. The focus of this study is the development of an innovative multi-criteria decision-making (MCDM) method to handle sustainable energy crop selection problems. Given that various uncertain data are encountered in the evaluation of sustainable energy crops, linguistic intuitionistic fuzzy numbers (LIFNs) are introduced to present the information necessary to the evaluation process. Processing qualitative concepts requires the effective support of reliable tools; then, a cloud model can be used to deal with linguistic intuitionistic information. First, LIFNs are converted and a novel concept of linguistic intuitionistic cloud (LIC) is proposed. The operations, score function and similarity measurement of the LICs are defined. Subsequently, the linguistic intuitionistic cloud density-prioritised weighted Heronian mean operator is developed, which served as the basis for the construction of an applicable MCDM model for sustainable energy crop selection. Finally, an illustrative example is provided to demonstrate the proposed method, and its feasibility and validity are further verified by comparing it with other existing methods.
Pourhoseingholi, Mohamad Amin; Kheirian, Sedigheh; Zali, Mohammad Reza
2017-12-01
Colorectal cancer (CRC) is one of the most common malignancies and cause of cancer mortality worldwide. Given the importance of predicting the survival of CRC patients and the growing use of data mining methods, this study aims to compare the performance of models for predicting 5-year survival of CRC patients using variety of basic and ensemble data mining methods. The CRC dataset from The Shahid Beheshti University of Medical Sciences Research Center for Gastroenterology and Liver Diseases were used for prediction and comparative study of the base and ensemble data mining techniques. Feature selection methods were used to select predictor attributes for classification. The WEKA toolkit and MedCalc software were respectively utilized for creating and comparing the models. The obtained results showed that the predictive performance of developed models was altogether high (all greater than 90%). Overall, the performance of ensemble models was higher than that of basic classifiers and the best result achieved by ensemble voting model in terms of area under the ROC curve (AUC= 0.96). AUC Comparison of models showed that the ensemble voting method significantly outperformed all models except for two methods of Random Forest (RF) and Bayesian Network (BN) considered the overlapping 95% confidence intervals. This result may indicate high predictive power of these two methods along with ensemble voting for predicting 5-year survival of CRC patients.
MISFITS: evaluating the goodness of fit between a phylogenetic model and an alignment.
Nguyen, Minh Anh Thi; Klaere, Steffen; von Haeseler, Arndt
2011-01-01
As models of sequence evolution become more and more complicated, many criteria for model selection have been proposed, and tools are available to select the best model for an alignment under a particular criterion. However, in many instances the selected model fails to explain the data adequately as reflected by large deviations between observed pattern frequencies and the corresponding expectation. We present MISFITS, an approach to evaluate the goodness of fit (http://www.cibiv.at/software/misfits). MISFITS introduces a minimum number of "extra substitutions" on the inferred tree to provide a biologically motivated explanation why the alignment may deviate from expectation. These extra substitutions plus the evolutionary model then fully explain the alignment. We illustrate the method on several examples and then give a survey about the goodness of fit of the selected models to the alignments in the PANDIT database.
Identification of Alfalfa Leaf Diseases Using Image Recognition Technology
Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang
2016-01-01
Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease. PMID:27977767
Identification of Alfalfa Leaf Diseases Using Image Recognition Technology.
Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang
2016-01-01
Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease.
On using surface-source downhole-receiver logging to determine seismic slownesses
Boore, D.M.; Thompson, E.M.
2007-01-01
We present a method to solve for slowness models from surface-source downhole-receiver seismic travel-times. The method estimates the slownesses in a single inversion of the travel-times from all receiver depths and accounts for refractions at layer boundaries. The number and location of layer interfaces in the model can be selected based on lithologic changes or linear trends in the travel-time data. The interfaces based on linear trends in the data can be picked manually or by an automated algorithm. We illustrate the method with example sites for which geologic descriptions of the subsurface materials and independent slowness measurements are available. At each site we present slowness models that result from different interpretations of the data. The examples were carefully selected to address the reliability of interface-selection and the ability of the inversion to identify thin layers, large slowness contrasts, and slowness gradients. Additionally, we compare the models in terms of ground-motion amplification. These plots illustrate the sensitivity of site amplifications to the uncertainties in the slowness model. We show that one-dimensional site amplifications are insensitive to thin layers in the slowness models; although slowness is variable over short ranges of depth, this variability has little affect on ground-motion amplification at frequencies up to 5 Hz.
Xue, Hongqi; Wu, Shuang; Wu, Yichao; Ramirez Idarraga, Juan C; Wu, Hulin
2018-05-02
Mechanism-driven low-dimensional ordinary differential equation (ODE) models are often used to model viral dynamics at cellular levels and epidemics of infectious diseases. However, low-dimensional mechanism-based ODE models are limited for modeling infectious diseases at molecular levels such as transcriptomic or proteomic levels, which is critical to understand pathogenesis of diseases. Although linear ODE models have been proposed for gene regulatory networks (GRNs), nonlinear regulations are common in GRNs. The reconstruction of large-scale nonlinear networks from time-course gene expression data remains an unresolved issue. Here, we use high-dimensional nonlinear additive ODEs to model GRNs and propose a 4-step procedure to efficiently perform variable selection for nonlinear ODEs. To tackle the challenge of high dimensionality, we couple the 2-stage smoothing-based estimation method for ODEs and a nonlinear independence screening method to perform variable selection for the nonlinear ODE models. We have shown that our method possesses the sure screening property and it can handle problems with non-polynomial dimensionality. Numerical performance of the proposed method is illustrated with simulated data and a real data example for identifying the dynamic GRN of Saccharomyces cerevisiae. Copyright © 2018 John Wiley & Sons, Ltd.
Link, William; Sauer, John R.
2016-01-01
The analysis of ecological data has changed in two important ways over the last 15 years. The development and easy availability of Bayesian computational methods has allowed and encouraged the fitting of complex hierarchical models. At the same time, there has been increasing emphasis on acknowledging and accounting for model uncertainty. Unfortunately, the ability to fit complex models has outstripped the development of tools for model selection and model evaluation: familiar model selection tools such as Akaike's information criterion and the deviance information criterion are widely known to be inadequate for hierarchical models. In addition, little attention has been paid to the evaluation of model adequacy in context of hierarchical modeling, i.e., to the evaluation of fit for a single model. In this paper, we describe Bayesian cross-validation, which provides tools for model selection and evaluation. We describe the Bayesian predictive information criterion and a Bayesian approximation to the BPIC known as the Watanabe-Akaike information criterion. We illustrate the use of these tools for model selection, and the use of Bayesian cross-validation as a tool for model evaluation, using three large data sets from the North American Breeding Bird Survey.
Furlanello, Cesare; Serafini, Maria; Merler, Stefano; Jurman, Giuseppe
2003-11-06
We describe the E-RFE method for gene ranking, which is useful for the identification of markers in the predictive classification of array data. The method supports a practical modeling scheme designed to avoid the construction of classification rules based on the selection of too small gene subsets (an effect known as the selection bias, in which the estimated predictive errors are too optimistic due to testing on samples already considered in the feature selection process). With E-RFE, we speed up the recursive feature elimination (RFE) with SVM classifiers by eliminating chunks of uninteresting genes using an entropy measure of the SVM weights distribution. An optimal subset of genes is selected according to a two-strata model evaluation procedure: modeling is replicated by an external stratified-partition resampling scheme, and, within each run, an internal K-fold cross-validation is used for E-RFE ranking. Also, the optimal number of genes can be estimated according to the saturation of Zipf's law profiles. Without a decrease of classification accuracy, E-RFE allows a speed-up factor of 100 with respect to standard RFE, while improving on alternative parametric RFE reduction strategies. Thus, a process for gene selection and error estimation is made practical, ensuring control of the selection bias, and providing additional diagnostic indicators of gene importance.
Entropic criterion for model selection
NASA Astrophysics Data System (ADS)
Tseng, Chih-Yuan
2006-10-01
Model or variable selection is usually achieved through ranking models according to the increasing order of preference. One of methods is applying Kullback-Leibler distance or relative entropy as a selection criterion. Yet that will raise two questions, why use this criterion and are there any other criteria. Besides, conventional approaches require a reference prior, which is usually difficult to get. Following the logic of inductive inference proposed by Caticha [Relative entropy and inductive inference, in: G. Erickson, Y. Zhai (Eds.), Bayesian Inference and Maximum Entropy Methods in Science and Engineering, AIP Conference Proceedings, vol. 707, 2004 (available from arXiv.org/abs/physics/0311093)], we show relative entropy to be a unique criterion, which requires no prior information and can be applied to different fields. We examine this criterion by considering a physical problem, simple fluids, and results are promising.
Genomic Selection in Plant Breeding: Methods, Models, and Perspectives.
Crossa, José; Pérez-Rodríguez, Paulino; Cuevas, Jaime; Montesinos-López, Osval; Jarquín, Diego; de Los Campos, Gustavo; Burgueño, Juan; González-Camacho, Juan M; Pérez-Elizalde, Sergio; Beyene, Yoseph; Dreisigacker, Susanne; Singh, Ravi; Zhang, Xuecai; Gowda, Manje; Roorkiwal, Manish; Rutkoski, Jessica; Varshney, Rajeev K
2017-11-01
Genomic selection (GS) facilitates the rapid selection of superior genotypes and accelerates the breeding cycle. In this review, we discuss the history, principles, and basis of GS and genomic-enabled prediction (GP) as well as the genetics and statistical complexities of GP models, including genomic genotype×environment (G×E) interactions. We also examine the accuracy of GP models and methods for two cereal crops and two legume crops based on random cross-validation. GS applied to maize breeding has shown tangible genetic gains. Based on GP results, we speculate how GS in germplasm enhancement (i.e., prebreeding) programs could accelerate the flow of genes from gene bank accessions to elite lines. Recent advances in hyperspectral image technology could be combined with GS and pedigree-assisted breeding. Copyright © 2017 Elsevier Ltd. All rights reserved.
A parallel optimization method for product configuration and supplier selection based on interval
NASA Astrophysics Data System (ADS)
Zheng, Jian; Zhang, Meng; Li, Guoxi
2017-06-01
In the process of design and manufacturing, product configuration is an important way of product development, and supplier selection is an essential component of supply chain management. To reduce the risk of procurement and maximize the profits of enterprises, this study proposes to combine the product configuration and supplier selection, and express the multiple uncertainties as interval numbers. An integrated optimization model of interval product configuration and supplier selection was established, and NSGA-II was put forward to locate the Pareto-optimal solutions to the interval multiobjective optimization model.
Fully Bayesian tests of neutrality using genealogical summary statistics.
Drummond, Alexei J; Suchard, Marc A
2008-10-31
Many data summary statistics have been developed to detect departures from neutral expectations of evolutionary models. However questions about the neutrality of the evolution of genetic loci within natural populations remain difficult to assess. One critical cause of this difficulty is that most methods for testing neutrality make simplifying assumptions simultaneously about the mutational model and the population size model. Consequentially, rejecting the null hypothesis of neutrality under these methods could result from violations of either or both assumptions, making interpretation troublesome. Here we harness posterior predictive simulation to exploit summary statistics of both the data and model parameters to test the goodness-of-fit of standard models of evolution. We apply the method to test the selective neutrality of molecular evolution in non-recombining gene genealogies and we demonstrate the utility of our method on four real data sets, identifying significant departures of neutrality in human influenza A virus, even after controlling for variation in population size. Importantly, by employing a full model-based Bayesian analysis, our method separates the effects of demography from the effects of selection. The method also allows multiple summary statistics to be used in concert, thus potentially increasing sensitivity. Furthermore, our method remains useful in situations where analytical expectations and variances of summary statistics are not available. This aspect has great potential for the analysis of temporally spaced data, an expanding area previously ignored for limited availability of theory and methods.
Kaye, T.N.; Pyke, David A.
2003-01-01
Population viability analysis is an important tool for conservation biologists, and matrix models that incorporate stochasticity are commonly used for this purpose. However, stochastic simulations may require assumptions about the distribution of matrix parameters, and modelers often select a statistical distribution that seems reasonable without sufficient data to test its fit. We used data from long-term (5a??10 year) studies with 27 populations of five perennial plant species to compare seven methods of incorporating environmental stochasticity. We estimated stochastic population growth rate (a measure of viability) using a matrix-selection method, in which whole observed matrices were selected at random at each time step of the model. In addition, we drew matrix elements (transition probabilities) at random using various statistical distributions: beta, truncated-gamma, truncated-normal, triangular, uniform, or discontinuous/observed. Recruitment rates were held constant at their observed mean values. Two methods of constraining stage-specific survival to a??100% were also compared. Different methods of incorporating stochasticity and constraining matrix column sums interacted in their effects and resulted in different estimates of stochastic growth rate (differing by up to 16%). Modelers should be aware that when constraining stage-specific survival to 100%, different methods may introduce different levels of bias in transition element means, and when this happens, different distributions for generating random transition elements may result in different viability estimates. There was no species effect on the results and the growth rates derived from all methods were highly correlated with one another. We conclude that the absolute value of population viability estimates is sensitive to model assumptions, but the relative ranking of populations (and management treatments) is robust. Furthermore, these results are applicable to a range of perennial plants and possibly other life histories.
Schnitzer, Mireille E.; Lok, Judith J.; Gruber, Susan
2015-01-01
This paper investigates the appropriateness of the integration of flexible propensity score modeling (nonparametric or machine learning approaches) in semiparametric models for the estimation of a causal quantity, such as the mean outcome under treatment. We begin with an overview of some of the issues involved in knowledge-based and statistical variable selection in causal inference and the potential pitfalls of automated selection based on the fit of the propensity score. Using a simple example, we directly show the consequences of adjusting for pure causes of the exposure when using inverse probability of treatment weighting (IPTW). Such variables are likely to be selected when using a naive approach to model selection for the propensity score. We describe how the method of Collaborative Targeted minimum loss-based estimation (C-TMLE; van der Laan and Gruber, 2010) capitalizes on the collaborative double robustness property of semiparametric efficient estimators to select covariates for the propensity score based on the error in the conditional outcome model. Finally, we compare several approaches to automated variable selection in low-and high-dimensional settings through a simulation study. From this simulation study, we conclude that using IPTW with flexible prediction for the propensity score can result in inferior estimation, while Targeted minimum loss-based estimation and C-TMLE may benefit from flexible prediction and remain robust to the presence of variables that are highly correlated with treatment. However, in our study, standard influence function-based methods for the variance underestimated the standard errors, resulting in poor coverage under certain data-generating scenarios. PMID:26226129
Schnitzer, Mireille E; Lok, Judith J; Gruber, Susan
2016-05-01
This paper investigates the appropriateness of the integration of flexible propensity score modeling (nonparametric or machine learning approaches) in semiparametric models for the estimation of a causal quantity, such as the mean outcome under treatment. We begin with an overview of some of the issues involved in knowledge-based and statistical variable selection in causal inference and the potential pitfalls of automated selection based on the fit of the propensity score. Using a simple example, we directly show the consequences of adjusting for pure causes of the exposure when using inverse probability of treatment weighting (IPTW). Such variables are likely to be selected when using a naive approach to model selection for the propensity score. We describe how the method of Collaborative Targeted minimum loss-based estimation (C-TMLE; van der Laan and Gruber, 2010 [27]) capitalizes on the collaborative double robustness property of semiparametric efficient estimators to select covariates for the propensity score based on the error in the conditional outcome model. Finally, we compare several approaches to automated variable selection in low- and high-dimensional settings through a simulation study. From this simulation study, we conclude that using IPTW with flexible prediction for the propensity score can result in inferior estimation, while Targeted minimum loss-based estimation and C-TMLE may benefit from flexible prediction and remain robust to the presence of variables that are highly correlated with treatment. However, in our study, standard influence function-based methods for the variance underestimated the standard errors, resulting in poor coverage under certain data-generating scenarios.
NASA Astrophysics Data System (ADS)
Adeniyi, D. A.; Wei, Z.; Yang, Y.
2017-10-01
Recommendation problem has been extensively studied by researchers in the field of data mining, database and information retrieval. This study presents the design and realisation of an automated, personalised news recommendations system based on Chi-square statistics-based K-nearest neighbour (χ2SB-KNN) model. The proposed χ2SB-KNN model has the potential to overcome computational complexity and information overloading problems, reduces runtime and speeds up execution process through the use of critical value of χ2 distribution. The proposed recommendation engine can alleviate scalability challenges through combined online pattern discovery and pattern matching for real-time recommendations. This work also showcases the development of a novel method of feature selection referred to as Data Discretisation-Based feature selection method. This is used for selecting the best features for the proposed χ2SB-KNN algorithm at the preprocessing stage of the classification procedures. The implementation of the proposed χ2SB-KNN model is achieved through the use of a developed in-house Java program on an experimental website called OUC newsreaders' website. Finally, we compared the performance of our system with two baseline methods which are traditional Euclidean distance K-nearest neighbour and Naive Bayesian techniques. The result shows a significant improvement of our method over the baseline methods studied.
Bayesian inference of selection in a heterogeneous environment from genetic time-series data.
Gompert, Zachariah
2016-01-01
Evolutionary geneticists have sought to characterize the causes and molecular targets of selection in natural populations for many years. Although this research programme has been somewhat successful, most statistical methods employed were designed to detect consistent, weak to moderate selection. In contrast, phenotypic studies in nature show that selection varies in time and that individual bouts of selection can be strong. Measurements of the genomic consequences of such fluctuating selection could help test and refine hypotheses concerning the causes of ecological specialization and the maintenance of genetic variation in populations. Herein, I proposed a Bayesian nonhomogeneous hidden Markov model to estimate effective population sizes and quantify variable selection in heterogeneous environments from genetic time-series data. The model is described and then evaluated using a series of simulated data, including cases where selection occurs on a trait with a simple or polygenic molecular basis. The proposed method accurately distinguished neutral loci from non-neutral loci under strong selection, but not from those under weak selection. Selection coefficients were accurately estimated when selection was constant or when the fitness values of genotypes varied linearly with the environment, but these estimates were less accurate when fitness was polygenic or the relationship between the environment and the fitness of genotypes was nonlinear. Past studies of temporal evolutionary dynamics in laboratory populations have been remarkably successful. The proposed method makes similar analyses of genetic time-series data from natural populations more feasible and thereby could help answer fundamental questions about the causes and consequences of evolution in the wild. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Zhu, Jing; Zhou, Zebo; Li, Yong; Rizos, Chris; Wang, Xingshu
2016-07-01
An improvement of the attitude difference method (ADM) to estimate deflections of the vertical (DOV) in real time is described in this paper. The ADM without offline processing estimates the DOV with a limited accuracy due to the response delay. The proposed model selection-based self-adaptive delay feedback (SDF) method takes the results of the ADM as the a priori information, then uses fitting and extrapolation to estimate the DOV at the current epoch. The active region selection factor F th is used to take full advantage of the Earth model EGM2008 and the SDF with different DOV exhibitions. The factors which affect the DOV estimation accuracy are analyzed and modeled. An external observation which is specified by the velocity difference between the global navigation satellite system (GNSS) and the inertial navigation system (INS) with DOV compensated is used to select the optimal model. The response delay induced by the weak observability of an integrated INS/GNSS to the violent DOV disturbances in the ADM is compensated. The DOV estimation accuracy of the SDF method is improved by approximately 40% and 50% respectively compared to that of the EGM2008 and the ADM. With an increase in GNSS accuracy, the DOV estimation accuracy could improve further.
Mei, Suyu; Zhu, Hao
2015-01-26
Protein-protein interaction (PPI) prediction is generally treated as a problem of binary classification wherein negative data sampling is still an open problem to be addressed. The commonly used random sampling is prone to yield less representative negative data with considerable false negatives. Meanwhile rational constraints are seldom exerted on model selection to reduce the risk of false positive predictions for most of the existing computational methods. In this work, we propose a novel negative data sampling method based on one-class SVM (support vector machine, SVM) to predict proteome-wide protein interactions between HTLV retrovirus and Homo sapiens, wherein one-class SVM is used to choose reliable and representative negative data, and two-class SVM is used to yield proteome-wide outcomes as predictive feedback for rational model selection. Computational results suggest that one-class SVM is more suited to be used as negative data sampling method than two-class PPI predictor, and the predictive feedback constrained model selection helps to yield a rational predictive model that reduces the risk of false positive predictions. Some predictions have been validated by the recent literature. Lastly, gene ontology based clustering of the predicted PPI networks is conducted to provide valuable cues for the pathogenesis of HTLV retrovirus.
A model for the sustainable selection of building envelope assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huedo, Patricia, E-mail: huedo@uji.es; Mulet, Elena, E-mail: emulet@uji.es; López-Mesa, Belinda, E-mail: belinda@unizar.es
2016-02-15
The aim of this article is to define an evaluation model for the environmental impacts of building envelopes to support planners in the early phases of materials selection. The model is intended to estimate environmental impacts for different combinations of building envelope assemblies based on scientifically recognised sustainability indicators. These indicators will increase the amount of information that existing catalogues show to support planners in the selection of building assemblies. To define the model, first the environmental indicators were selected based on the specific aims of the intended sustainability assessment. Then, a simplified LCA methodology was developed to estimate themore » impacts applicable to three types of dwellings considering different envelope assemblies, building orientations and climate zones. This methodology takes into account the manufacturing, installation, maintenance and use phases of the building. Finally, the model was validated and a matrix in Excel was created as implementation of the model. - Highlights: • Method to assess the envelope impacts based on a simplified LCA • To be used at an earlier phase than the existing methods in a simple way. • It assigns a score by means of known sustainability indicators. • It estimates data about the embodied and operating environmental impacts. • It compares the investment costs with the costs of the consumed energy.« less
Zhang, Xiaoshuai; Xue, Fuzhong; Liu, Hong; Zhu, Dianwen; Peng, Bin; Wiemels, Joseph L; Yang, Xiaowei
2014-12-10
Genome-wide Association Studies (GWAS) are typically designed to identify phenotype-associated single nucleotide polymorphisms (SNPs) individually using univariate analysis methods. Though providing valuable insights into genetic risks of common diseases, the genetic variants identified by GWAS generally account for only a small proportion of the total heritability for complex diseases. To solve this "missing heritability" problem, we implemented a strategy called integrative Bayesian Variable Selection (iBVS), which is based on a hierarchical model that incorporates an informative prior by considering the gene interrelationship as a network. It was applied here to both simulated and real data sets. Simulation studies indicated that the iBVS method was advantageous in its performance with highest AUC in both variable selection and outcome prediction, when compared to Stepwise and LASSO based strategies. In an analysis of a leprosy case-control study, iBVS selected 94 SNPs as predictors, while LASSO selected 100 SNPs. The Stepwise regression yielded a more parsimonious model with only 3 SNPs. The prediction results demonstrated that the iBVS method had comparable performance with that of LASSO, but better than Stepwise strategies. The proposed iBVS strategy is a novel and valid method for Genome-wide Association Studies, with the additional advantage in that it produces more interpretable posterior probabilities for each variable unlike LASSO and other penalized regression methods.
NASA Astrophysics Data System (ADS)
Najafi, Amir Abbas; Pourahmadi, Zahra
2016-04-01
Selecting the optimal combination of assets in a portfolio is one of the most important decisions in investment management. As investment is a long term concept, looking into a portfolio optimization problem just in a single period may cause loss of some opportunities that could be exploited in a long term view. Hence, it is tried to extend the problem from single to multi-period model. We include trading costs and uncertain conditions to this model which made it more realistic and complex. Hence, we propose an efficient heuristic method to tackle this problem. The efficiency of the method is examined and compared with the results of the rolling single-period optimization and the buy and hold method which shows the superiority of the proposed method.
Remote sensing image ship target detection method based on visual attention model
NASA Astrophysics Data System (ADS)
Sun, Yuejiao; Lei, Wuhu; Ren, Xiaodong
2017-11-01
The traditional methods of detecting ship targets in remote sensing images mostly use sliding window to search the whole image comprehensively. However, the target usually occupies only a small fraction of the image. This method has high computational complexity for large format visible image data. The bottom-up selective attention mechanism can selectively allocate computing resources according to visual stimuli, thus improving the computational efficiency and reducing the difficulty of analysis. Considering of that, a method of ship target detection in remote sensing images based on visual attention model was proposed in this paper. The experimental results show that the proposed method can reduce the computational complexity while improving the detection accuracy, and improve the detection efficiency of ship targets in remote sensing images.
Statistical Analysis of Big Data on Pharmacogenomics
Fan, Jianqing; Liu, Han
2013-01-01
This paper discusses statistical methods for estimating complex correlation structure from large pharmacogenomic datasets. We selectively review several prominent statistical methods for estimating large covariance matrix for understanding correlation structure, inverse covariance matrix for network modeling, large-scale simultaneous tests for selecting significantly differently expressed genes and proteins and genetic markers for complex diseases, and high dimensional variable selection for identifying important molecules for understanding molecule mechanisms in pharmacogenomics. Their applications to gene network estimation and biomarker selection are used to illustrate the methodological power. Several new challenges of Big data analysis, including complex data distribution, missing data, measurement error, spurious correlation, endogeneity, and the need for robust statistical methods, are also discussed. PMID:23602905
How to determine an optimal threshold to classify real-time crash-prone traffic conditions?
Yang, Kui; Yu, Rongjie; Wang, Xuesong; Quddus, Mohammed; Xue, Lifang
2018-08-01
One of the proactive approaches in reducing traffic crashes is to identify hazardous traffic conditions that may lead to a traffic crash, known as real-time crash prediction. Threshold selection is one of the essential steps of real-time crash prediction. And it provides the cut-off point for the posterior probability which is used to separate potential crash warnings against normal traffic conditions, after the outcome of the probability of a crash occurring given a specific traffic condition on the basis of crash risk evaluation models. There is however a dearth of research that focuses on how to effectively determine an optimal threshold. And only when discussing the predictive performance of the models, a few studies utilized subjective methods to choose the threshold. The subjective methods cannot automatically identify the optimal thresholds in different traffic and weather conditions in real application. Thus, a theoretical method to select the threshold value is necessary for the sake of avoiding subjective judgments. The purpose of this study is to provide a theoretical method for automatically identifying the optimal threshold. Considering the random effects of variable factors across all roadway segments, the mixed logit model was utilized to develop the crash risk evaluation model and further evaluate the crash risk. Cross-entropy, between-class variance and other theories were employed and investigated to empirically identify the optimal threshold. And K-fold cross-validation was used to validate the performance of proposed threshold selection methods with the help of several evaluation criteria. The results indicate that (i) the mixed logit model can obtain a good performance; (ii) the classification performance of the threshold selected by the minimum cross-entropy method outperforms the other methods according to the criteria. This method can be well-behaved to automatically identify thresholds in crash prediction, by minimizing the cross entropy between the original dataset with continuous probability of a crash occurring and the binarized dataset after using the thresholds to separate potential crash warnings against normal traffic conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Musuamba, F T; Manolis, E; Holford, N; Cheung, Sya; Friberg, L E; Ogungbenro, K; Posch, M; Yates, Jwt; Berry, S; Thomas, N; Corriol-Rohou, S; Bornkamp, B; Bretz, F; Hooker, A C; Van der Graaf, P H; Standing, J F; Hay, J; Cole, S; Gigante, V; Karlsson, K; Dumortier, T; Benda, N; Serone, F; Das, S; Brochot, A; Ehmann, F; Hemmings, R; Rusten, I Skottheim
2017-07-01
Inadequate dose selection for confirmatory trials is currently still one of the most challenging issues in drug development, as illustrated by high rates of late-stage attritions in clinical development and postmarketing commitments required by regulatory institutions. In an effort to shift the current paradigm in dose and regimen selection and highlight the availability and usefulness of well-established and regulatory-acceptable methods, the European Medicines Agency (EMA) in collaboration with the European Federation of Pharmaceutical Industries Association (EFPIA) hosted a multistakeholder workshop on dose finding (London 4-5 December 2014). Some methodologies that could constitute a toolkit for drug developers and regulators were presented. These methods are described in the present report: they include five advanced methods for data analysis (empirical regression models, pharmacometrics models, quantitative systems pharmacology models, MCP-Mod, and model averaging) and three methods for study design optimization (Fisher information matrix (FIM)-based methods, clinical trial simulations, and adaptive studies). Pairwise comparisons were also discussed during the workshop; however, mostly for historical reasons. This paper discusses the added value and limitations of these methods as well as challenges for their implementation. Some applications in different therapeutic areas are also summarized, in line with the discussions at the workshop. There was agreement at the workshop on the fact that selection of dose for phase III is an estimation problem and should not be addressed via hypothesis testing. Dose selection for phase III trials should be informed by well-designed dose-finding studies; however, the specific choice of method(s) will depend on several aspects and it is not possible to recommend a generalized decision tree. There are many valuable methods available, the methods are not mutually exclusive, and they should be used in conjunction to ensure a scientifically rigorous understanding of the dosing rationale. © 2017 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
Grizzly bear habitat selection is scale dependent.
Ciarniello, Lana M; Boyce, Mark S; Seip, Dale R; Heard, Douglas C
2007-07-01
The purpose of our study is to show how ecologists' interpretation of habitat selection by grizzly bears (Ursus arctos) is altered by the scale of observation and also how management questions would be best addressed using predetermined scales of analysis. Using resource selection functions (RSF) we examined how variation in the spatial extent of availability affected our interpretation of habitat selection by grizzly bears inhabiting mountain and plateau landscapes. We estimated separate models for females and males using three spatial extents: within the study area, within the home range, and within predetermined movement buffers. We employed two methods for evaluating the effects of scale on our RSF designs. First, we chose a priori six candidate models, estimated at each scale, and ranked them using Akaike Information Criteria. Using this method, results changed among scales for males but not for females. For female bears, models that included the full suite of covariates predicted habitat use best at each scale. For male bears that resided in the mountains, models based on forest successional stages ranked highest at the study-wide and home range extents, whereas models containing covariates based on terrain features ranked highest at the buffer extent. For male bears on the plateau, each scale estimated a different highest-ranked model. Second, we examined differences among model coefficients across the three scales for one candidate model. We found that both the magnitude and direction of coefficients were dependent upon the scale examined; results varied between landscapes, scales, and sexes. Greenness, reflecting lush green vegetation, was a strong predictor of the presence of female bears in both landscapes and males that resided in the mountains. Male bears on the plateau were the only animals to select areas that exposed them to a high risk of mortality by humans. Our results show that grizzly bear habitat selection is scale dependent. Further, the selection of resources can be dependent upon the availability of a particular vegetation type on the landscape. From a management perspective, decisions should be based on a hierarchical process of habitat selection, recognizing that selection patterns vary across scales.
Size reduction techniques for vital compliant VHDL simulation models
Rich, Marvin J.; Misra, Ashutosh
2006-08-01
A method and system select delay values from a VHDL standard delay file that correspond to an instance of a logic gate in a logic model. Then the system collects all the delay values of the selected instance and builds super generics for the rise-time and the fall-time of the selected instance. Then, the system repeats this process for every delay value in the standard delay file (310) that correspond to every instance of every logic gate in the logic model. The system then outputs a reduced size standard delay file (314) containing the super generics for every instance of every logic gate in the logic model.
Model Identification of Integrated ARMA Processes
ERIC Educational Resources Information Center
Stadnytska, Tetiana; Braun, Simone; Werner, Joachim
2008-01-01
This article evaluates the Smallest Canonical Correlation Method (SCAN) and the Extended Sample Autocorrelation Function (ESACF), automated methods for the Autoregressive Integrated Moving-Average (ARIMA) model selection commonly available in current versions of SAS for Windows, as identification tools for integrated processes. SCAN and ESACF can…
McLaren, Christine E.; Chen, Wen-Pin; Nie, Ke; Su, Min-Ying
2009-01-01
Rationale and Objectives Dynamic contrast enhanced MRI (DCE-MRI) is a clinical imaging modality for detection and diagnosis of breast lesions. Analytical methods were compared for diagnostic feature selection and performance of lesion classification to differentiate between malignant and benign lesions in patients. Materials and Methods The study included 43 malignant and 28 benign histologically-proven lesions. Eight morphological parameters, ten gray level co-occurrence matrices (GLCM) texture features, and fourteen Laws’ texture features were obtained using automated lesion segmentation and quantitative feature extraction. Artificial neural network (ANN) and logistic regression analysis were compared for selection of the best predictors of malignant lesions among the normalized features. Results Using ANN, the final four selected features were compactness, energy, homogeneity, and Law_LS, with area under the receiver operating characteristic curve (AUC) = 0.82, and accuracy = 0.76. The diagnostic performance of these 4-features computed on the basis of logistic regression yielded AUC = 0.80 (95% CI, 0.688 to 0.905), similar to that of ANN. The analysis also shows that the odds of a malignant lesion decreased by 48% (95% CI, 25% to 92%) for every increase of 1 SD in the Law_LS feature, adjusted for differences in compactness, energy, and homogeneity. Using logistic regression with z-score transformation, a model comprised of compactness, NRL entropy, and gray level sum average was selected, and it had the highest overall accuracy of 0.75 among all models, with AUC = 0.77 (95% CI, 0.660 to 0.880). When logistic modeling of transformations using the Box-Cox method was performed, the most parsimonious model with predictors, compactness and Law_LS, had an AUC of 0.79 (95% CI, 0.672 to 0.898). Conclusion The diagnostic performance of models selected by ANN and logistic regression was similar. The analytic methods were found to be roughly equivalent in terms of predictive ability when a small number of variables were chosen. The robust ANN methodology utilizes a sophisticated non-linear model, while logistic regression analysis provides insightful information to enhance interpretation of the model features. PMID:19409817
NASA Astrophysics Data System (ADS)
Kurchatkin, I. V.; Gorshkalev, A. A.; Blagin, E. V.
2017-01-01
This article deals with developed methods of the working processes modelling in the combustion chamber of an internal combustion engine (ICE). Methods includes description of the preparation of a combustion chamber 3-d model, setting of the finite-element mesh, boundary condition setting and solution customization. Aircraft radial engine M-14 was selected for modelling. The cycle of cold blowdown in the ANSYS IC Engine software was carried out. The obtained data were compared to results of known calculation methods. A method of engine’s induction port improvement was suggested.
Multi-locus analysis of genomic time series data from experimental evolution.
Terhorst, Jonathan; Schlötterer, Christian; Song, Yun S
2015-04-01
Genomic time series data generated by evolve-and-resequence (E&R) experiments offer a powerful window into the mechanisms that drive evolution. However, standard population genetic inference procedures do not account for sampling serially over time, and new methods are needed to make full use of modern experimental evolution data. To address this problem, we develop a Gaussian process approximation to the multi-locus Wright-Fisher process with selection over a time course of tens of generations. The mean and covariance structure of the Gaussian process are obtained by computing the corresponding moments in discrete-time Wright-Fisher models conditioned on the presence of a linked selected site. This enables our method to account for the effects of linkage and selection, both along the genome and across sampled time points, in an approximate but principled manner. We first use simulated data to demonstrate the power of our method to correctly detect, locate and estimate the fitness of a selected allele from among several linked sites. We study how this power changes for different values of selection strength, initial haplotypic diversity, population size, sampling frequency, experimental duration, number of replicates, and sequencing coverage depth. In addition to providing quantitative estimates of selection parameters from experimental evolution data, our model can be used by practitioners to design E&R experiments with requisite power. We also explore how our likelihood-based approach can be used to infer other model parameters, including effective population size and recombination rate. Then, we apply our method to analyze genome-wide data from a real E&R experiment designed to study the adaptation of D. melanogaster to a new laboratory environment with alternating cold and hot temperatures.
An Integrated DEMATEL-VIKOR Method-Based Approach for Cotton Fibre Selection and Evaluation
NASA Astrophysics Data System (ADS)
Chakraborty, Shankar; Chatterjee, Prasenjit; Prasad, Kanika
2018-01-01
Selection of the most appropriate cotton fibre type for yarn manufacturing is often treated as a multi-criteria decision-making (MCDM) problem as the optimal selection decision needs to be taken in presence of several conflicting fibre properties. In this paper, two popular MCDM methods in the form of decision making trial and evaluation laboratory (DEMATEL) and VIse Kriterijumska Optimizacija kompromisno Resenje (VIKOR) are integrated to aid the cotton fibre selection decision. DEMATEL method addresses the interrelationships between various physical properties of cotton fibres while segregating them into cause and effect groups, whereas, VIKOR method helps in ranking all the considered 17 cotton fibres from the best to the worst. The derived ranking of cotton fibre alternatives closely matches with that obtained by the past researchers. This model can assist the spinning industry personnel in the blending process while making accurate fibre selection decision when cotton fibre properties are numerous and interrelated.
An Integrated DEMATEL-VIKOR Method-Based Approach for Cotton Fibre Selection and Evaluation
NASA Astrophysics Data System (ADS)
Chakraborty, Shankar; Chatterjee, Prasenjit; Prasad, Kanika
2018-06-01
Selection of the most appropriate cotton fibre type for yarn manufacturing is often treated as a multi-criteria decision-making (MCDM) problem as the optimal selection decision needs to be taken in presence of several conflicting fibre properties. In this paper, two popular MCDM methods in the form of decision making trial and evaluation laboratory (DEMATEL) and VIse Kriterijumska Optimizacija kompromisno Resenje (VIKOR) are integrated to aid the cotton fibre selection decision. DEMATEL method addresses the interrelationships between various physical properties of cotton fibres while segregating them into cause and effect groups, whereas, VIKOR method helps in ranking all the considered 17 cotton fibres from the best to the worst. The derived ranking of cotton fibre alternatives closely matches with that obtained by the past researchers. This model can assist the spinning industry personnel in the blending process while making accurate fibre selection decision when cotton fibre properties are numerous and interrelated.
NASA Astrophysics Data System (ADS)
Feng, Ximeng; Li, Gang; Yu, Haixia; Wang, Shaohui; Yi, Xiaoqing; Lin, Ling
2018-03-01
Noninvasive blood component analysis by spectroscopy has been a hotspot in biomedical engineering in recent years. Dynamic spectrum provides an excellent idea for noninvasive blood component measurement, but studies have been limited to the application of broadband light sources and high-resolution spectroscopy instruments. In order to remove redundant information, a more effective wavelength selection method has been presented in this paper. In contrast to many common wavelength selection methods, this method is based on sensing mechanism which has a clear mechanism and can effectively avoid the noise from acquisition system. The spectral difference coefficient was theoretically proved to have a guiding significance for wavelength selection. After theoretical analysis, the multi-band spectral difference coefficient-wavelength selection method combining with the dynamic spectrum was proposed. An experimental analysis based on clinical trial data from 200 volunteers has been conducted to illustrate the effectiveness of this method. The extreme learning machine was used to develop the calibration models between the dynamic spectrum data and hemoglobin concentration. The experiment result shows that the prediction precision of hemoglobin concentration using multi-band spectral difference coefficient-wavelength selection method is higher compared with other methods.
Selection methods regulate evolution of cooperation in digital evolution
Lichocki, Paweł; Floreano, Dario; Keller, Laurent
2014-01-01
A key, yet often neglected, component of digital evolution and evolutionary models is the ‘selection method’ which assigns fitness (number of offspring) to individuals based on their performance scores (efficiency in performing tasks). Here, we study with formal analysis and numerical experiments the evolution of cooperation under the five most common selection methods (proportionate, rank, truncation-proportionate, truncation-uniform and tournament). We consider related individuals engaging in a Prisoner's Dilemma game where individuals can either cooperate or defect. A cooperator pays a cost, whereas its partner receives a benefit, which affect their performance scores. These performance scores are translated into fitness by one of the five selection methods. We show that cooperation is positively associated with the relatedness between individuals under all selection methods. By contrast, the change in the performance benefit of cooperation affects the populations’ average level of cooperation only under the proportionate methods. We also demonstrate that the truncation and tournament methods may introduce negative frequency-dependence and lead to the evolution of polymorphic populations. Using the example of the evolution of cooperation, we show that the choice of selection method, though it is often marginalized, can considerably affect the evolutionary dynamics. PMID:24152811
A segmentation/clustering model for the analysis of array CGH data.
Picard, F; Robin, S; Lebarbier, E; Daudin, J-J
2007-09-01
Microarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Segmentation methods constitute a natural framework for the analysis, but they do not provide a biological status for the detected segments. We propose a new model for this segmentation/clustering problem, combining a segmentation model with a mixture model. We present a new hybrid algorithm called dynamic programming-expectation maximization (DP-EM) to estimate the parameters of the model by maximum likelihood. This algorithm combines DP and the EM algorithm. We also propose a model selection heuristic to select the number of clusters and the number of segments. An example of our procedure is presented, based on publicly available data sets. We compare our method to segmentation methods and to hidden Markov models, and we show that the new segmentation/clustering model is a promising alternative that can be applied in the more general context of signal processing.
[Hyperspectral remote sensing image classification based on SVM optimized by clonal selection].
Liu, Qing-Jie; Jing, Lin-Hai; Wang, Meng-Fei; Lin, Qi-Zhong
2013-03-01
Model selection for support vector machine (SVM) involving kernel and the margin parameter values selection is usually time-consuming, impacts training efficiency of SVM model and final classification accuracies of SVM hyperspectral remote sensing image classifier greatly. Firstly, based on combinatorial optimization theory and cross-validation method, artificial immune clonal selection algorithm is introduced to the optimal selection of SVM (CSSVM) kernel parameter a and margin parameter C to improve the training efficiency of SVM model. Then an experiment of classifying AVIRIS in India Pine site of USA was performed for testing the novel CSSVM, as well as a traditional SVM classifier with general Grid Searching cross-validation method (GSSVM) for comparison. And then, evaluation indexes including SVM model training time, classification overall accuracy (OA) and Kappa index of both CSSVM and GSSVM were all analyzed quantitatively. It is demonstrated that OA of CSSVM on test samples and whole image are 85.1% and 81.58, the differences from that of GSSVM are both within 0.08% respectively; And Kappa indexes reach 0.8213 and 0.7728, the differences from that of GSSVM are both within 0.001; While the ratio of model training time of CSSVM and GSSVM is between 1/6 and 1/10. Therefore, CSSVM is fast and accurate algorithm for hyperspectral image classification and is superior to GSSVM.
A Bayesian method for assessing multiscalespecies-habitat relationships
Stuber, Erica F.; Gruber, Lutz F.; Fontaine, Joseph J.
2017-01-01
ContextScientists face several theoretical and methodological challenges in appropriately describing fundamental wildlife-habitat relationships in models. The spatial scales of habitat relationships are often unknown, and are expected to follow a multi-scale hierarchy. Typical frequentist or information theoretic approaches often suffer under collinearity in multi-scale studies, fail to converge when models are complex or represent an intractable computational burden when candidate model sets are large.ObjectivesOur objective was to implement an automated, Bayesian method for inference on the spatial scales of habitat variables that best predict animal abundance.MethodsWe introduce Bayesian latent indicator scale selection (BLISS), a Bayesian method to select spatial scales of predictors using latent scale indicator variables that are estimated with reversible-jump Markov chain Monte Carlo sampling. BLISS does not suffer from collinearity, and substantially reduces computation time of studies. We present a simulation study to validate our method and apply our method to a case-study of land cover predictors for ring-necked pheasant (Phasianus colchicus) abundance in Nebraska, USA.ResultsOur method returns accurate descriptions of the explanatory power of multiple spatial scales, and unbiased and precise parameter estimates under commonly encountered data limitations including spatial scale autocorrelation, effect size, and sample size. BLISS outperforms commonly used model selection methods including stepwise and AIC, and reduces runtime by 90%.ConclusionsGiven the pervasiveness of scale-dependency in ecology, and the implications of mismatches between the scales of analyses and ecological processes, identifying the spatial scales over which species are integrating habitat information is an important step in understanding species-habitat relationships. BLISS is a widely applicable method for identifying important spatial scales, propagating scale uncertainty, and testing hypotheses of scaling relationships.
A Systematic Comparison of Data Selection Criteria for SMT Domain Adaptation
Chao, Lidia S.; Lu, Yi; Xing, Junwen
2014-01-01
Data selection has shown significant improvements in effective use of training data by extracting sentences from large general-domain corpora to adapt statistical machine translation (SMT) systems to in-domain data. This paper performs an in-depth analysis of three different sentence selection techniques. The first one is cosine tf-idf, which comes from the realm of information retrieval (IR). The second is perplexity-based approach, which can be found in the field of language modeling. These two data selection techniques applied to SMT have been already presented in the literature. However, edit distance for this task is proposed in this paper for the first time. After investigating the individual model, a combination of all three techniques is proposed at both corpus level and model level. Comparative experiments are conducted on Hong Kong law Chinese-English corpus and the results indicate the following: (i) the constraint degree of similarity measuring is not monotonically related to domain-specific translation quality; (ii) the individual selection models fail to perform effectively and robustly; but (iii) bilingual resources and combination methods are helpful to balance out-of-vocabulary (OOV) and irrelevant data; (iv) finally, our method achieves the goal to consistently boost the overall translation performance that can ensure optimal quality of a real-life SMT system. PMID:24683356
Entropy-Based Search Algorithm for Experimental Design
NASA Astrophysics Data System (ADS)
Malakar, N. K.; Knuth, K. H.
2011-03-01
The scientific method relies on the iterated processes of inference and inquiry. The inference phase consists of selecting the most probable models based on the available data; whereas the inquiry phase consists of using what is known about the models to select the most relevant experiment. Optimizing inquiry involves searching the parameterized space of experiments to select the experiment that promises, on average, to be maximally informative. In the case where it is important to learn about each of the model parameters, the relevance of an experiment is quantified by Shannon entropy of the distribution of experimental outcomes predicted by a probable set of models. If the set of potential experiments is described by many parameters, we must search this high-dimensional entropy space. Brute force search methods will be slow and computationally expensive. We present an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment for efficient experimental design. This algorithm is inspired by Skilling's nested sampling algorithm used in inference and borrows the concept of a rising threshold while a set of experiment samples are maintained. We demonstrate that this algorithm not only selects highly relevant experiments, but also is more efficient than brute force search. Such entropic search techniques promise to greatly benefit autonomous experimental design.
Developing deterioration models for Wyoming bridges.
DOT National Transportation Integrated Search
2016-05-01
Deterioration models for the Wyoming Bridge Inventory were developed using both stochastic and deterministic models. : The selection of explanatory variables is investigated and a new method using LASSO regression to eliminate human bias : in explana...
Measurement of Outcomes in Vision-Related Rehabilitation.
ERIC Educational Resources Information Center
Head, Daniel
1998-01-01
Comments on an earlier article by Lorraine Lidoff on health insurance coverage of vision-related rehabilitation services. Urges a standard model of services involving selection of measurable outcomes that reflect treatment processes, selection of the most appropriate time to measure outcomes, and selection of the best method for collecting outcome…
2013-01-01
Background Breast cancer is one of the most critical cancers and is a major cause of cancer death among women. It is essential to know the survivability of the patients in order to ease the decision making process regarding medical treatment and financial preparation. Recently, the breast cancer data sets have been imbalanced (i.e., the number of survival patients outnumbers the number of non-survival patients) whereas the standard classifiers are not applicable for the imbalanced data sets. The methods to improve survivability prognosis of breast cancer need for study. Methods Two well-known five-year prognosis models/classifiers [i.e., logistic regression (LR) and decision tree (DT)] are constructed by combining synthetic minority over-sampling technique (SMOTE) ,cost-sensitive classifier technique (CSC), under-sampling, bagging, and boosting. The feature selection method is used to select relevant variables, while the pruning technique is applied to obtain low information-burden models. These methods are applied on data obtained from the Surveillance, Epidemiology, and End Results database. The improvements of survivability prognosis of breast cancer are investigated based on the experimental results. Results Experimental results confirm that the DT and LR models combined with SMOTE, CSC, and under-sampling generate higher predictive performance consecutively than the original ones. Most of the time, DT and LR models combined with SMOTE and CSC use less informative burden/features when a feature selection method and a pruning technique are applied. Conclusions LR is found to have better statistical power than DT in predicting five-year survivability. CSC is superior to SMOTE, under-sampling, bagging, and boosting to improve the prognostic performance of DT and LR. PMID:24207108
Cheng, Shu-Xi; Xie, Chuan-Qi; Wang, Qiao-Nan; He, Yong; Shao, Yong-Ni
2014-05-01
Identification of early blight on tomato leaves by using hyperspectral imaging technique based on different effective wavelengths selection methods (successive projections algorithm, SPA; x-loading weights, x-LW; gram-schmidt orthogonaliza-tion, GSO) was studied in the present paper. Hyperspectral images of seventy healthy and seventy infected tomato leaves were obtained by hyperspectral imaging system across the wavelength range of 380-1023 nm. Reflectance of all pixels in region of interest (ROI) was extracted by ENVI 4. 7 software. Least squares-support vector machine (LS-SVM) model was established based on the full spectral wavelengths. It obtained an excellent result with the highest identification accuracy (100%) in both calibration and prediction sets. Then, EW-LS-SVM and EW-LDA models were established based on the selected wavelengths suggested by SPA, x-LW and GSO, respectively. The results showed that all of the EW-LS-SVM and EW-LDA models performed well with the identification accuracy of 100% in EW-LS-SVM model and 100%, 100% and 97. 83% in EW-LDA model, respectively. Moreover, the number of input wavelengths of SPA-LS-SVM, x-LW-LS-SVM and GSO-LS-SVM models were four (492, 550, 633 and 680 nm), three (631, 719 and 747 nm) and two (533 and 657 nm), respectively. Fewer input variables were beneficial for the development of identification instrument. It demonstrated that it is feasible to identify early blight on tomato leaves by using hyperspectral imaging, and SPA, x-LW and GSO were effective wavelengths selection methods.
Luo, W; Chen, M; Chen, A; Dong, W; Hou, X; Pu, B
2015-04-01
To isolate lactic acid bacteria (LAB) from pao cai, a Chinese traditional fermented vegetable, with outstanding inhibitory activity against Salmonella inoculated on fresh-cut apple, using a modelling method. Four kinds of pao cai were selected. A total of 122 isolates exhibited typical LAB characteristics: Gram-positive and catalase negative, among which 104 (85·24%) colonies showed antibacterial activity against Salmonella by the well diffusion assay. Four colonies showing maximum antibacterial radius against Salmonella were selected to co-inoculate with Salmonella on fresh-cut apple and stored at 10°C, further identified as three strains of Lactobacillus plantarum and one strain of Lactobacillus brevis by 16s rRNA gene sequence analysis. The modified Gompertz model was employed to analyse the growth of the micro-organisms on apple wedges. Two of the four selected strains showed antagonistic activity against Salmonella on fresh-cut apple, one of which, RD1, exhibited best inhibitory activity (Salmonella were greatly inhibited when co-inoculated with RD1 at 10°C at 168 h). No deterioration in odour or appearance of the apple piece was observed by the triangle test when fresh-cut apple was inoculated with RD1. The mathematical modelling method is essential to select LAB with outstanding inhibitory activity against Salmonella associated with fresh-cut apple. LAB RD1 holds promise for the preservation of fresh-cut apple. This study provided a new method on fresh-cut product preservation. Besides, to make the LAB isolating procedure a more correct one, this study first added the mathematical modelling method to the isolating procedure. © 2014 The Society for Applied Microbiology.
Risk Decision Making Model for Reservoir Floodwater resources Utilization
NASA Astrophysics Data System (ADS)
Huang, X.
2017-12-01
Floodwater resources utilization(FRU) can alleviate the shortage of water resources, but there are risks. In order to safely and efficiently utilize the floodwater resources, it is necessary to study the risk of reservoir FRU. In this paper, the risk rate of exceeding the design flood water level and the risk rate of exceeding safety discharge are estimated. Based on the principle of the minimum risk and the maximum benefit of FRU, a multi-objective risk decision making model for FRU is constructed. Probability theory and mathematical statistics method is selected to calculate the risk rate; C-D production function method and emergy analysis method is selected to calculate the risk benefit; the risk loss is related to flood inundation area and unit area loss; the multi-objective decision making problem of the model is solved by the constraint method. Taking the Shilianghe reservoir in Jiangsu Province as an example, the optimal equilibrium solution of FRU of the Shilianghe reservoir is found by using the risk decision making model, and the validity and applicability of the model are verified.
Takahashi, Hiro; Kobayashi, Takeshi; Honda, Hiroyuki
2005-01-15
For establishing prognostic predictors of various diseases using DNA microarray analysis technology, it is desired to find selectively significant genes for constructing the prognostic model and it is also necessary to eliminate non-specific genes or genes with error before constructing the model. We applied projective adaptive resonance theory (PART) to gene screening for DNA microarray data. Genes selected by PART were subjected to our FNN-SWEEP modeling method for the construction of a cancer class prediction model. The model performance was evaluated through comparison with a conventional screening signal-to-noise (S2N) method or nearest shrunken centroids (NSC) method. The FNN-SWEEP predictor with PART screening could discriminate classes of acute leukemia in blinded data with 97.1% accuracy and classes of lung cancer with 90.0% accuracy, while the predictor with S2N was only 85.3 and 70.0% or the predictor with NSC was 88.2 and 90.0%, respectively. The results have proven that PART was superior for gene screening. The software is available upon request from the authors. honda@nubio.nagoya-u.ac.jp
Python package for model STructure ANalysis (pySTAN)
NASA Astrophysics Data System (ADS)
Van Hoey, Stijn; van der Kwast, Johannes; Nopens, Ingmar; Seuntjens, Piet
2013-04-01
The selection and identification of a suitable hydrological model structure is more than fitting parameters of a model structure to reproduce a measured hydrograph. The procedure is highly dependent on various criteria, i.e. the modelling objective, the characteristics and the scale of the system under investigation as well as the available data. Rigorous analysis of the candidate model structures is needed to support and objectify the selection of the most appropriate structure for a specific case (or eventually justify the use of a proposed ensemble of structures). This holds both in the situation of choosing between a limited set of different structures as well as in the framework of flexible model structures with interchangeable components. Many different methods to evaluate and analyse model structures exist. This leads to a sprawl of available methods, all characterized by different assumptions, changing conditions of application and various code implementations. Methods typically focus on optimization, sensitivity analysis or uncertainty analysis, with backgrounds from optimization, machine-learning or statistics amongst others. These methods also need an evaluation metric (objective function) to compare the model outcome with some observed data. However, for current methods described in literature, implementations are not always transparent and reproducible (if available at all). No standard procedures exist to share code and the popularity (and amount of applications) of the methods is sometimes more dependent on the availability than the merits of the method. Moreover, new implementations of existing methods are difficult to verify and the different theoretical backgrounds make it difficult for environmental scientists to decide about the usefulness of a specific method. A common and open framework with a large set of methods can support users in deciding about the most appropriate method. Hence, it enables to simultaneously apply and compare different methods on a fair basis. We developed and present pySTAN (python framework for STructure Analysis), a python package containing a set of functions for model structure evaluation to provide the analysis of (hydrological) model structures. A selected set of algorithms for optimization, uncertainty and sensitivity analysis is currently available, together with a set of evaluation (objective) functions and input distributions to sample from. The methods are implemented model-independent and the python language provides the wrapper functions to apply administer external model codes. Different objective functions can be considered simultaneously with both statistical metrics and more hydrology specific metrics. By using so-called reStructuredText (sphinx documentation generator) and Python documentation strings (docstrings), the generation of manual pages is semi-automated and a specific environment is available to enhance both the readability and transparency of the code. It thereby enables a larger group of users to apply and compare these methods and to extend the functionalities.
Modeling adverse event counts in phase I clinical trials of a cytotoxic agent.
Muenz, Daniel G; Braun, Thomas M; Taylor, Jeremy Mg
2018-05-01
Background/Aims The goal of phase I clinical trials for cytotoxic agents is to find the maximum dose with an acceptable risk of severe toxicity. The most common designs for these dose-finding trials use a binary outcome indicating whether a patient had a dose-limiting toxicity. However, a patient may experience multiple toxicities, with each toxicity assigned an ordinal severity score. The binary response is then obtained by dichotomizing a patient's richer set of data. We contribute to the growing literature on new models to exploit this richer toxicity data, with the goal of improving the efficiency in estimating the maximum tolerated dose. Methods We develop three new, related models that make use of the total number of dose-limiting and low-level toxicities a patient experiences. We use these models to estimate the probability of having at least one dose-limiting toxicity as a function of dose. In a simulation study, we evaluate how often our models select the true maximum tolerated dose, and we compare our models with the continual reassessment method, which uses binary data. Results Across a variety of simulation settings, we find that our models compare well against the continual reassessment method in terms of selecting the true optimal dose. In particular, one of our models which uses dose-limiting and low-level toxicity counts beats or ties the other models, including the continual reassessment method, in all scenarios except the one in which the true optimal dose is the highest dose available. We also find that our models, when not selecting the true optimal dose, tend to err by picking lower, safer doses, while the continual reassessment method errs more toward toxic doses. Conclusion Using dose-limiting and low-level toxicity counts, which are easily obtained from data already routinely collected, is a promising way to improve the efficiency in finding the true maximum tolerated dose in phase I trials.
Calibration of hydrological models using flow-duration curves
NASA Astrophysics Data System (ADS)
Westerberg, I. K.; Guerrero, J.-L.; Younger, P. M.; Beven, K. J.; Seibert, J.; Halldin, S.; Freer, J. E.; Xu, C.-Y.
2011-07-01
The degree of belief we have in predictions from hydrologic models will normally depend on how well they can reproduce observations. Calibrations with traditional performance measures, such as the Nash-Sutcliffe model efficiency, are challenged by problems including: (1) uncertain discharge data, (2) variable sensitivity of different performance measures to different flow magnitudes, (3) influence of unknown input/output errors and (4) inability to evaluate model performance when observation time periods for discharge and model input data do not overlap. This paper explores a calibration method using flow-duration curves (FDCs) to address these problems. The method focuses on reproducing the observed discharge frequency distribution rather than the exact hydrograph. It consists of applying limits of acceptability for selected evaluation points (EPs) on the observed uncertain FDC in the extended GLUE approach. Two ways of selecting the EPs were tested - based on equal intervals of discharge and of volume of water. The method was tested and compared to a calibration using the traditional model efficiency for the daily four-parameter WASMOD model in the Paso La Ceiba catchment in Honduras and for Dynamic TOPMODEL evaluated at an hourly time scale for the Brue catchment in Great Britain. The volume method of selecting EPs gave the best results in both catchments with better calibrated slow flow, recession and evaporation than the other criteria. Observed and simulated time series of uncertain discharges agreed better for this method both in calibration and prediction in both catchments. An advantage with the method is that the rejection criterion is based on an estimation of the uncertainty in discharge data and that the EPs of the FDC can be chosen to reflect the aims of the modelling application, e.g. using more/less EPs at high/low flows. While the method appears less sensitive to epistemic input/output errors than previous use of limits of acceptability applied directly to the time series of discharge, it still requires a reasonable representation of the distribution of inputs. Additional constraints might therefore be required in catchments subject to snow and where peak-flow timing at sub-daily time scales is of high importance. The results suggest that the calibration method can be useful when observation time periods for discharge and model input data do not overlap. The method could also be suitable for calibration to regional FDCs while taking uncertainties in the hydrological model and data into account.
Calibration of hydrological models using flow-duration curves
NASA Astrophysics Data System (ADS)
Westerberg, I. K.; Guerrero, J.-L.; Younger, P. M.; Beven, K. J.; Seibert, J.; Halldin, S.; Freer, J. E.; Xu, C.-Y.
2010-12-01
The degree of belief we have in predictions from hydrologic models depends on how well they can reproduce observations. Calibrations with traditional performance measures such as the Nash-Sutcliffe model efficiency are challenged by problems including: (1) uncertain discharge data, (2) variable importance of the performance with flow magnitudes, (3) influence of unknown input/output errors and (4) inability to evaluate model performance when observation time periods for discharge and model input data do not overlap. A new calibration method using flow-duration curves (FDCs) was developed which addresses these problems. The method focuses on reproducing the observed discharge frequency distribution rather than the exact hydrograph. It consists of applying limits of acceptability for selected evaluation points (EPs) of the observed uncertain FDC in the extended GLUE approach. Two ways of selecting the EPs were tested - based on equal intervals of discharge and of volume of water. The method was tested and compared to a calibration using the traditional model efficiency for the daily four-parameter WASMOD model in the Paso La Ceiba catchment in Honduras and for Dynamic TOPMODEL evaluated at an hourly time scale for the Brue catchment in Great Britain. The volume method of selecting EPs gave the best results in both catchments with better calibrated slow flow, recession and evaporation than the other criteria. Observed and simulated time series of uncertain discharges agreed better for this method both in calibration and prediction in both catchments without resulting in overpredicted simulated uncertainty. An advantage with the method is that the rejection criterion is based on an estimation of the uncertainty in discharge data and that the EPs of the FDC can be chosen to reflect the aims of the modelling application e.g. using more/less EPs at high/low flows. While the new method is less sensitive to epistemic input/output errors than the normal use of limits of acceptability applied directly to the time series of discharge, it still requires a reasonable representation of the distribution of inputs. Additional constraints might therefore be required in catchments subject to snow. The results suggest that the new calibration method can be useful when observation time periods for discharge and model input data do not overlap. The new method could also be suitable for calibration to regional FDCs while taking uncertainties in the hydrological model and data into account.
Natural image classification driven by human brain activity
NASA Astrophysics Data System (ADS)
Zhang, Dai; Peng, Hanyang; Wang, Jinqiao; Tang, Ming; Xue, Rong; Zuo, Zhentao
2016-03-01
Natural image classification has been a hot topic in computer vision and pattern recognition research field. Since the performance of an image classification system can be improved by feature selection, many image feature selection methods have been developed. However, the existing supervised feature selection methods are typically driven by the class label information that are identical for different samples from the same class, ignoring with-in class image variability and therefore degrading the feature selection performance. In this study, we propose a novel feature selection method, driven by human brain activity signals collected using fMRI technique when human subjects were viewing natural images of different categories. The fMRI signals associated with subjects viewing different images encode the human perception of natural images, and therefore may capture image variability within- and cross- categories. We then select image features with the guidance of fMRI signals from brain regions with active response to image viewing. Particularly, bag of words features based on GIST descriptor are extracted from natural images for classification, and a sparse regression base feature selection method is adapted to select image features that can best predict fMRI signals. Finally, a classification model is built on the select image features to classify images without fMRI signals. The validation experiments for classifying images from 4 categories of two subjects have demonstrated that our method could achieve much better classification performance than the classifiers built on image feature selected by traditional feature selection methods.
Seo, Dong Gi; Choi, Jeongwook
2018-05-17
Computerized adaptive testing (CAT) has been adopted in license examinations due to a test efficiency and accuracy. Many research about CAT have been published to prove the efficiency and accuracy of measurement. This simulation study investigated scoring method and item selection methods to implement CAT in Korean medical license examination (KMLE). This study used post-hoc (real data) simulation design. The item bank used in this study was designed with all items in a 2017 KMLE. All CAT algorithms for this study were implemented by a 'catR' package in R program. In terms of accuracy, Rasch and 2parametric logistic (PL) model performed better than 3PL model. Modal a Posteriori (MAP) or Expected a Posterior (EAP) provided more accurate estimates than MLE and WLE. Furthermore Maximum posterior weighted information (MPWI) or Minimum expected posterior variance (MEPV) performed better than other item selection methods. In terms of efficiency, Rasch model was recommended to reduce test length. Simulation study should be performed under varied test conditions before adopting a live CAT. Based on a simulation study, specific scoring and item selection methods should be predetermined before implementing a live CAT.
Variable Selection for Regression Models of Percentile Flows
NASA Astrophysics Data System (ADS)
Fouad, G.
2017-12-01
Percentile flows describe the flow magnitude equaled or exceeded for a given percent of time, and are widely used in water resource management. However, these statistics are normally unavailable since most basins are ungauged. Percentile flows of ungauged basins are often predicted using regression models based on readily observable basin characteristics, such as mean elevation. The number of these independent variables is too large to evaluate all possible models. A subset of models is typically evaluated using automatic procedures, like stepwise regression. This ignores a large variety of methods from the field of feature (variable) selection and physical understanding of percentile flows. A study of 918 basins in the United States was conducted to compare an automatic regression procedure to the following variable selection methods: (1) principal component analysis, (2) correlation analysis, (3) random forests, (4) genetic programming, (5) Bayesian networks, and (6) physical understanding. The automatic regression procedure only performed better than principal component analysis. Poor performance of the regression procedure was due to a commonly used filter for multicollinearity, which rejected the strongest models because they had cross-correlated independent variables. Multicollinearity did not decrease model performance in validation because of a representative set of calibration basins. Variable selection methods based strictly on predictive power (numbers 2-5 from above) performed similarly, likely indicating a limit to the predictive power of the variables. Similar performance was also reached using variables selected based on physical understanding, a finding that substantiates recent calls to emphasize physical understanding in modeling for predictions in ungauged basins. The strongest variables highlighted the importance of geology and land cover, whereas widely used topographic variables were the weakest predictors. Variables suffered from a high degree of multicollinearity, possibly illustrating the co-evolution of climatic and physiographic conditions. Given the ineffectiveness of many variables used here, future work should develop new variables that target specific processes associated with percentile flows.
Journal selection decisions: a biomedical library operations research model. I. The framework.
Kraft, D H; Polacsek, R A; Soergel, L; Burns, K; Klair, A
1976-01-01
The problem of deciding which journal titles to select for acquisition in a biomedical library is modeled. The approach taken is based on cost/benefit ratios. Measures of journal worth, methods of data collection, and journal cost data are considered. The emphasis is on the development of a practical process for selecting journal titles, based on the objectivity and rationality of the model; and on the collection of the approprate data and library statistics in a reasonable manner. The implications of this process towards an overall management information system (MIS) for biomedical serials handling are discussed. PMID:820391
Huang, Lei; Liao, Li; Wu, Cathy H.
2016-01-01
Revealing the underlying evolutionary mechanism plays an important role in understanding protein interaction networks in the cell. While many evolutionary models have been proposed, the problem about applying these models to real network data, especially for differentiating which model can better describe evolutionary process for the observed network urgently remains as a challenge. The traditional way is to use a model with presumed parameters to generate a network, and then evaluate the fitness by summary statistics, which however cannot capture the complete network structures information and estimate parameter distribution. In this work we developed a novel method based on Approximate Bayesian Computation and modified Differential Evolution (ABC-DEP) that is capable of conducting model selection and parameter estimation simultaneously and detecting the underlying evolutionary mechanisms more accurately. We tested our method for its power in differentiating models and estimating parameters on the simulated data and found significant improvement in performance benchmark, as compared with a previous method. We further applied our method to real data of protein interaction networks in human and yeast. Our results show Duplication Attachment model as the predominant evolutionary mechanism for human PPI networks and Scale-Free model as the predominant mechanism for yeast PPI networks. PMID:26357273
Random forest models to predict aqueous solubility.
Palmer, David S; O'Boyle, Noel M; Glen, Robert C; Mitchell, John B O
2007-01-01
Random Forest regression (RF), Partial-Least-Squares (PLS) regression, Support Vector Machines (SVM), and Artificial Neural Networks (ANN) were used to develop QSPR models for the prediction of aqueous solubility, based on experimental data for 988 organic molecules. The Random Forest regression model predicted aqueous solubility more accurately than those created by PLS, SVM, and ANN and offered methods for automatic descriptor selection, an assessment of descriptor importance, and an in-parallel measure of predictive ability, all of which serve to recommend its use. The prediction of log molar solubility for an external test set of 330 molecules that are solid at 25 degrees C gave an r2 = 0.89 and RMSE = 0.69 log S units. For a standard data set selected from the literature, the model performed well with respect to other documented methods. Finally, the diversity of the training and test sets are compared to the chemical space occupied by molecules in the MDL drug data report, on the basis of molecular descriptors selected by the regression analysis.
Validation and calibration of structural models that combine information from multiple sources.
Dahabreh, Issa J; Wong, John B; Trikalinos, Thomas A
2017-02-01
Mathematical models that attempt to capture structural relationships between their components and combine information from multiple sources are increasingly used in medicine. Areas covered: We provide an overview of methods for model validation and calibration and survey studies comparing alternative approaches. Expert commentary: Model validation entails a confrontation of models with data, background knowledge, and other models, and can inform judgments about model credibility. Calibration involves selecting parameter values to improve the agreement of model outputs with data. When the goal of modeling is quantitative inference on the effects of interventions or forecasting, calibration can be viewed as estimation. This view clarifies issues related to parameter identifiability and facilitates formal model validation and the examination of consistency among different sources of information. In contrast, when the goal of modeling is the generation of qualitative insights about the modeled phenomenon, calibration is a rather informal process for selecting inputs that result in model behavior that roughly reproduces select aspects of the modeled phenomenon and cannot be equated to an estimation procedure. Current empirical research on validation and calibration methods consists primarily of methodological appraisals or case-studies of alternative techniques and cannot address the numerous complex and multifaceted methodological decisions that modelers must make. Further research is needed on different approaches for developing and validating complex models that combine evidence from multiple sources.
Crack Path Selection in Thermally Loaded Borosilicate/Steel Bibeam Specimen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grutzik, Scott Joseph; Reedy, Jr., E. D.
Here, we have developed a novel specimen for studying crack paths in glass. Under certain conditions, the specimen reaches a state where the crack must select between multiple paths satisfying the K II = 0 condition. This path selection is a simple but challenging benchmark case for both analytical and numerical methods of predicting crack propagation. We document the development of the specimen, using an uncracked and instrumented test case to study the effect of adhesive choice and validate the accuracy of both a simple beam theory model and a finite element model. In addition, we present preliminary fracture testmore » results and provide a comparison to the path predicted by two numerical methods (mesh restructuring and XFEM). The directional stability of the crack path and differences in kink angle predicted by various crack kinking criteria is analyzed with a finite element model.« less
Crack Path Selection in Thermally Loaded Borosilicate/Steel Bibeam Specimen
Grutzik, Scott Joseph; Reedy, Jr., E. D.
2017-08-04
Here, we have developed a novel specimen for studying crack paths in glass. Under certain conditions, the specimen reaches a state where the crack must select between multiple paths satisfying the K II = 0 condition. This path selection is a simple but challenging benchmark case for both analytical and numerical methods of predicting crack propagation. We document the development of the specimen, using an uncracked and instrumented test case to study the effect of adhesive choice and validate the accuracy of both a simple beam theory model and a finite element model. In addition, we present preliminary fracture testmore » results and provide a comparison to the path predicted by two numerical methods (mesh restructuring and XFEM). The directional stability of the crack path and differences in kink angle predicted by various crack kinking criteria is analyzed with a finite element model.« less
Heuristic Bayesian segmentation for discovery of coexpressed genes within genomic regions.
Pehkonen, Petri; Wong, Garry; Törönen, Petri
2010-01-01
Segmentation aims to separate homogeneous areas from the sequential data, and plays a central role in data mining. It has applications ranging from finance to molecular biology, where bioinformatics tasks such as genome data analysis are active application fields. In this paper, we present a novel application of segmentation in locating genomic regions with coexpressed genes. We aim at automated discovery of such regions without requirement for user-given parameters. In order to perform the segmentation within a reasonable time, we use heuristics. Most of the heuristic segmentation algorithms require some decision on the number of segments. This is usually accomplished by using asymptotic model selection methods like the Bayesian information criterion. Such methods are based on some simplification, which can limit their usage. In this paper, we propose a Bayesian model selection to choose the most proper result from heuristic segmentation. Our Bayesian model presents a simple prior for the segmentation solutions with various segment numbers and a modified Dirichlet prior for modeling multinomial data. We show with various artificial data sets in our benchmark system that our model selection criterion has the best overall performance. The application of our method in yeast cell-cycle gene expression data reveals potential active and passive regions of the genome.
Polynomial order selection in random regression models via penalizing adaptively the likelihood.
Corrales, J D; Munilla, S; Cantet, R J C
2015-08-01
Orthogonal Legendre polynomials (LP) are used to model the shape of additive genetic and permanent environmental effects in random regression models (RRM). Frequently, the Akaike (AIC) and the Bayesian (BIC) information criteria are employed to select LP order. However, it has been theoretically shown that neither AIC nor BIC is simultaneously optimal in terms of consistency and efficiency. Thus, the goal was to introduce a method, 'penalizing adaptively the likelihood' (PAL), as a criterion to select LP order in RRM. Four simulated data sets and real data (60,513 records, 6675 Colombian Holstein cows) were employed. Nested models were fitted to the data, and AIC, BIC and PAL were calculated for all of them. Results showed that PAL and BIC identified with probability of one the true LP order for the additive genetic and permanent environmental effects, but AIC tended to favour over parameterized models. Conversely, when the true model was unknown, PAL selected the best model with higher probability than AIC. In the latter case, BIC never favoured the best model. To summarize, PAL selected a correct model order regardless of whether the 'true' model was within the set of candidates. © 2015 Blackwell Verlag GmbH.
A Study of Quasar Selection in the Supernova Fields of the Dark Energy Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tie, S. S.; Martini, P.; Mudd, D.
In this paper, we present a study of quasar selection using the supernova fields of the Dark Energy Survey (DES). We used a quasar catalog from an overlapping portion of the SDSS Stripe 82 region to quantify the completeness and efficiency of selection methods involving color, probabilistic modeling, variability, and combinations of color/probabilistic modeling with variability. In all cases, we considered only objects that appear as point sources in the DES images. We examine color selection methods based on the Wide-field Infrared Survey Explorer (WISE) mid-IR W1-W2 color, a mixture of WISE and DES colors (g - i and i-W1),more » and a mixture of Vista Hemisphere Survey and DES colors (g - i and i - K). For probabilistic quasar selection, we used XDQSO, an algorithm that employs an empirical multi-wavelength flux model of quasars to assign quasar probabilities. Our variability selection uses the multi-band χ 2-probability that sources are constant in the DES Year 1 griz-band light curves. The completeness and efficiency are calculated relative to an underlying sample of point sources that are detected in the required selection bands and pass our data quality and photometric error cuts. We conduct our analyses at two magnitude limits, i < 19.8 mag and i < 22 mag. For the subset of sources with W1 and W2 detections, the W1-W2 color or XDQSOz method combined with variability gives the highest completenesses of >85% for both i-band magnitude limits and efficiencies of >80% to the bright limit and >60% to the faint limit; however, the giW1 and giW1+variability methods give the highest quasar surface densities. The XDQSOz method and combinations of W1W2/giW1/XDQSOz with variability are among the better selection methods when both high completeness and high efficiency are desired. We also present the OzDES Quasar Catalog of 1263 spectroscopically confirmed quasars from three years of OzDES observation in the 30 deg 2 of the DES supernova fields. Finally, the catalog includes quasars with redshifts up to z ~ 4 and brighter than i = 22 mag, although the catalog is not complete up to this magnitude limit.« less
A Study of Quasar Selection in the Supernova Fields of the Dark Energy Survey
Tie, S. S.; Martini, P.; Mudd, D.; ...
2017-02-15
In this paper, we present a study of quasar selection using the supernova fields of the Dark Energy Survey (DES). We used a quasar catalog from an overlapping portion of the SDSS Stripe 82 region to quantify the completeness and efficiency of selection methods involving color, probabilistic modeling, variability, and combinations of color/probabilistic modeling with variability. In all cases, we considered only objects that appear as point sources in the DES images. We examine color selection methods based on the Wide-field Infrared Survey Explorer (WISE) mid-IR W1-W2 color, a mixture of WISE and DES colors (g - i and i-W1),more » and a mixture of Vista Hemisphere Survey and DES colors (g - i and i - K). For probabilistic quasar selection, we used XDQSO, an algorithm that employs an empirical multi-wavelength flux model of quasars to assign quasar probabilities. Our variability selection uses the multi-band χ 2-probability that sources are constant in the DES Year 1 griz-band light curves. The completeness and efficiency are calculated relative to an underlying sample of point sources that are detected in the required selection bands and pass our data quality and photometric error cuts. We conduct our analyses at two magnitude limits, i < 19.8 mag and i < 22 mag. For the subset of sources with W1 and W2 detections, the W1-W2 color or XDQSOz method combined with variability gives the highest completenesses of >85% for both i-band magnitude limits and efficiencies of >80% to the bright limit and >60% to the faint limit; however, the giW1 and giW1+variability methods give the highest quasar surface densities. The XDQSOz method and combinations of W1W2/giW1/XDQSOz with variability are among the better selection methods when both high completeness and high efficiency are desired. We also present the OzDES Quasar Catalog of 1263 spectroscopically confirmed quasars from three years of OzDES observation in the 30 deg 2 of the DES supernova fields. Finally, the catalog includes quasars with redshifts up to z ~ 4 and brighter than i = 22 mag, although the catalog is not complete up to this magnitude limit.« less
HIV-1 protease cleavage site prediction based on two-stage feature selection method.
Niu, Bing; Yuan, Xiao-Cheng; Roeper, Preston; Su, Qiang; Peng, Chun-Rong; Yin, Jing-Yuan; Ding, Juan; Li, HaiPeng; Lu, Wen-Cong
2013-03-01
Knowledge of the mechanism of HIV protease cleavage specificity is critical to the design of specific and effective HIV inhibitors. Searching for an accurate, robust, and rapid method to correctly predict the cleavage sites in proteins is crucial when searching for possible HIV inhibitors. In this article, HIV-1 protease specificity was studied using the correlation-based feature subset (CfsSubset) selection method combined with Genetic Algorithms method. Thirty important biochemical features were found based on a jackknife test from the original data set containing 4,248 features. By using the AdaBoost method with the thirty selected features the prediction model yields an accuracy of 96.7% for the jackknife test and 92.1% for an independent set test, with increased accuracy over the original dataset by 6.7% and 77.4%, respectively. Our feature selection scheme could be a useful technique for finding effective competitive inhibitors of HIV protease.
Teodoro, P E; Bhering, L L; Costa, R D; Rocha, R B; Laviola, B G
2016-08-19
The aim of this study was to estimate genetic parameters via mixed models and simultaneously to select Jatropha progenies grown in three regions of Brazil that meet high adaptability and stability. From a previous phenotypic selection, three progeny tests were installed in 2008 in the municipalities of Planaltina-DF (Midwest), Nova Porteirinha-MG (Southeast), and Pelotas-RS (South). We evaluated 18 families of half-sib in a randomized block design with three replications. Genetic parameters were estimated using restricted maximum likelihood/best linear unbiased prediction. Selection was based on the harmonic mean of the relative performance of genetic values method in three strategies considering: 1) performance in each environment (with interaction effect); 2) performance in each environment (with interaction effect); and 3) simultaneous selection for grain yield, stability and adaptability. Accuracy obtained (91%) reveals excellent experimental quality and consequently safety and credibility in the selection of superior progenies for grain yield. The gain with the selection of the best five progenies was more than 20%, regardless of the selection strategy. Thus, based on the three selection strategies used in this study, the progenies 4, 11, and 3 (selected in all environments and the mean environment and by adaptability and phenotypic stability methods) are the most suitable for growing in the three regions evaluated.
NASA Astrophysics Data System (ADS)
Cucchi, K.; Kawa, N.; Hesse, F.; Rubin, Y.
2017-12-01
In order to reduce uncertainty in the prediction of subsurface flow and transport processes, practitioners should use all data available. However, classic inverse modeling frameworks typically only make use of information contained in in-situ field measurements to provide estimates of hydrogeological parameters. Such hydrogeological information about an aquifer is difficult and costly to acquire. In this data-scarce context, the transfer of ex-situ information coming from previously investigated sites can be critical for improving predictions by better constraining the estimation procedure. Bayesian inverse modeling provides a coherent framework to represent such ex-situ information by virtue of the prior distribution and combine them with in-situ information from the target site. In this study, we present an innovative data-driven approach for defining such informative priors for hydrogeological parameters at the target site. Our approach consists in two steps, both relying on statistical and machine learning methods. The first step is data selection; it consists in selecting sites similar to the target site. We use clustering methods for selecting similar sites based on observable hydrogeological features. The second step is data assimilation; it consists in assimilating data from the selected similar sites into the informative prior. We use a Bayesian hierarchical model to account for inter-site variability and to allow for the assimilation of multiple types of site-specific data. We present the application and validation of the presented methods on an established database of hydrogeological parameters. Data and methods are implemented in the form of an open-source R-package and therefore facilitate easy use by other practitioners.
Advanced Computational Methods for High-accuracy Refinement of Protein Low-quality Models
NASA Astrophysics Data System (ADS)
Zang, Tianwu
Predicting the 3-dimentional structure of protein has been a major interest in the modern computational biology. While lots of successful methods can generate models with 3˜5A root-mean-square deviation (RMSD) from the solution, the progress of refining these models is quite slow. It is therefore urgently needed to develop effective methods to bring low-quality models to higher-accuracy ranges (e.g., less than 2 A RMSD). In this thesis, I present several novel computational methods to address the high-accuracy refinement problem. First, an enhanced sampling method, named parallel continuous simulated tempering (PCST), is developed to accelerate the molecular dynamics (MD) simulation. Second, two energy biasing methods, Structure-Based Model (SBM) and Ensemble-Based Model (EBM), are introduced to perform targeted sampling around important conformations. Third, a three-step method is developed to blindly select high-quality models along the MD simulation. These methods work together to make significant refinement of low-quality models without any knowledge of the solution. The effectiveness of these methods is examined in different applications. Using the PCST-SBM method, models with higher global distance test scores (GDT_TS) are generated and selected in the MD simulation of 18 targets from the refinement category of the 10th Critical Assessment of Structure Prediction (CASP10). In addition, in the refinement test of two CASP10 targets using the PCST-EBM method, it is indicated that EBM may bring the initial model to even higher-quality levels. Furthermore, a multi-round refinement protocol of PCST-SBM improves the model quality of a protein to the level that is sufficient high for the molecular replacement in X-ray crystallography. Our results justify the crucial position of enhanced sampling in the protein structure prediction and demonstrate that a considerable improvement of low-accuracy structures is still achievable with current force fields.
Newbold, Stephen C; Siikamäki, Juha
2009-10-01
In recent years a large literature on reserve site selection (RSS) has developed at the interface between ecology, operations research, and environmental economics. Reserve site selection models use numerical optimization techniques to select sites for a network of nature reserves for protecting biodiversity. In this paper, we develop a population viability analysis (PVA) model for salmon and incorporate it into an RSS framework for prioritizing conservation activities in upstream watersheds. We use spawner return data for three closely related salmon stocks in the upper Columbia River basin and estimates of the economic costs of watershed protection from NOAA to illustrate the framework. We compare the relative cost-effectiveness of five alternative watershed prioritization methods, based on various combinations of biological and economic information. Prioritization based on biological benefit-economic cost comparisons and accounting for spatial interdependencies among watersheds substantially outperforms other more heuristic methods. When using this best-performing prioritization method, spending 10% of the cost of protecting all upstream watersheds yields 79% of the biological benefits (increase in stock persistence) from protecting all watersheds, compared to between 20% and 64% for the alternative methods. We also find that prioritization based on either costs or benefits alone can lead to severe reductions in cost-effectiveness.
Protein pharmacophore selection using hydration-site analysis
Hu, Bingjie; Lill, Markus A.
2012-01-01
Virtual screening using pharmacophore models is an efficient method to identify potential lead compounds for target proteins. Pharmacophore models based on protein structures are advantageous because a priori knowledge of active ligands is not required and the models are not biased by the chemical space of previously identified actives. However, in order to capture most potential interactions between all potentially binding ligands and the protein, the size of the pharmacophore model, i.e. number of pharmacophore elements, is typically quite large and therefore reduces the efficiency of pharmacophore based screening. We have developed a new method to select important pharmacophore elements using hydration-site information. The basic premise is that ligand functional groups that replace water molecules in the apo protein contribute strongly to the overall binding affinity of the ligand, due to the additional free energy gained from releasing the water molecule into the bulk solvent. We computed the free energy of water released from the binding site for each hydration site using thermodynamic analysis of molecular dynamics (MD) simulations. Pharmacophores which are co-localized with hydration sites with estimated favorable contributions to the free energy of binding are selected to generate a reduced pharmacophore model. We constructed reduced pharmacophore models for three protein systems and demonstrated good enrichment quality combined with high efficiency. The reduction in pharmacophore model size reduces the required screening time by a factor of 200–500 compared to using all protein pharmacophore elements. We also describe a training process using a small set of known actives to reliably select the optimal set of criteria for pharmacophore selection for each protein system. PMID:22397751
Rácz, A; Bajusz, D; Héberger, K
2015-01-01
Recent implementations of QSAR modelling software provide the user with numerous models and a wealth of information. In this work, we provide some guidance on how one should interpret the results of QSAR modelling, compare and assess the resulting models, and select the best and most consistent ones. Two QSAR datasets are applied as case studies for the comparison of model performance parameters and model selection methods. We demonstrate the capabilities of sum of ranking differences (SRD) in model selection and ranking, and identify the best performance indicators and models. While the exchange of the original training and (external) test sets does not affect the ranking of performance parameters, it provides improved models in certain cases (despite the lower number of molecules in the training set). Performance parameters for external validation are substantially separated from the other merits in SRD analyses, highlighting their value in data fusion.
Comparative Assessment of Models and Methods To Calculate Grid Electricity Emissions.
Ryan, Nicole A; Johnson, Jeremiah X; Keoleian, Gregory A
2016-09-06
Due to the complexity of power systems, tracking emissions attributable to a specific electrical load is a daunting challenge but essential for many environmental impact studies. Currently, no consensus exists on appropriate methods for quantifying emissions from particular electricity loads. This paper reviews a wide range of the existing methods, detailing their functionality, tractability, and appropriate use. We identified and reviewed 32 methods and models and classified them into two distinct categories: empirical data and relationship models and power system optimization models. To illustrate the impact of method selection, we calculate the CO2 combustion emissions factors associated with electric-vehicle charging using 10 methods at nine charging station locations around the United States. Across the methods, we found an up to 68% difference from the mean CO2 emissions factor for a given charging site among both marginal and average emissions factors and up to a 63% difference from the average across average emissions factors. Our results underscore the importance of method selection and the need for a consensus on approaches appropriate for particular loads and research questions being addressed in order to achieve results that are more consistent across studies and allow for soundly supported policy decisions. The paper addresses this issue by offering a set of recommendations for determining an appropriate model type on the basis of the load characteristics and study objectives.
Evaluating candidate reactions to selection practices using organisational justice theory.
Patterson, Fiona; Zibarras, Lara; Carr, Victoria; Irish, Bill; Gregory, Simon
2011-03-01
This study aimed to examine candidate reactions to selection practices in postgraduate medical training using organisational justice theory. We carried out three independent cross-sectional studies using samples from three consecutive annual recruitment rounds. Data were gathered from candidates applying for entry into UK general practice (GP) training during 2007, 2008 and 2009. Participants completed an evaluation questionnaire immediately after the short-listing stage and after the selection centre (interview) stage. Participants were doctors applying for GP training in the UK. Main outcome measures were participants' evaluations of the selection methods and perceptions of the overall fairness of each selection stage (short-listing and selection centre). A total of 23,855 evaluation questionnaires were completed (6893 in 2007, 10,497 in 2008 and 6465 in 2009). Absolute levels of perceptions of fairness of all the selection methods at both the short-listing and selection centre stages were consistently high over the 3years. Similarly, all selection methods were considered to be job-related by candidates. However, in general, candidates considered the selection centre stage to be significantly fairer than the short-listing stage. Of all the selection methods, the simulated patient consultation completed at the selection centre stage was rated as the most job-relevant. This is the first study to use a model of organisational justice theory to evaluate candidate reactions during selection into postgraduate specialty training. The high-fidelity selection methods are consistently viewed as more job-relevant and fairer by candidates. This has important implications for the design of recruitment systems for all specialties and, potentially, for medical school admissions. Using this approach, recruiters can systematically compare perceptions of the fairness and job relevance of various selection methods. © Blackwell Publishing Ltd 2011.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinivasan, Sanjay
2014-09-30
In-depth understanding of the long-term fate of CO₂ in the subsurface requires study and analysis of the reservoir formation, the overlaying caprock formation, and adjacent faults. Because there is significant uncertainty in predicting the location and extent of geologic heterogeneity that can impact the future migration of CO₂ in the subsurface, there is a need to develop algorithms that can reliably quantify this uncertainty in plume migration. This project is focused on the development of a model selection algorithm that refines an initial suite of subsurface models representing the prior uncertainty to create a posterior set of subsurface models thatmore » reflect injection performance consistent with that observed. Such posterior models can be used to represent uncertainty in the future migration of the CO₂ plume. Because only injection data is required, the method provides a very inexpensive method to map the migration of the plume and the associated uncertainty in migration paths. The model selection method developed as part of this project mainly consists of assessing the connectivity/dynamic characteristics of a large prior ensemble of models, grouping the models on the basis of their expected dynamic response, selecting the subgroup of models that most closely yield dynamic response closest to the observed dynamic data, and finally quantifying the uncertainty in plume migration using the selected subset of models. The main accomplishment of the project is the development of a software module within the SGEMS earth modeling software package that implements the model selection methodology. This software module was subsequently applied to analyze CO₂ plume migration in two field projects – the In Salah CO₂ Injection project in Algeria and CO₂ injection into the Utsira formation in Norway. These applications of the software revealed that the proxies developed in this project for quickly assessing the dynamic characteristics of the reservoir were highly efficient and yielded accurate grouping of reservoir models. The plume migration paths probabilistically assessed by the method were confirmed by field observations and auxiliary data. The report also documents the application of the software to answer practical questions such as the optimum location of monitoring wells to reliably assess the migration of CO₂ plume, the effect of CO₂-rock interactions on plume migration and the ability to detect the plume under those conditions and the effect of a slow, unresolved leak on the predictions of plume migration.« less
Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Cepeda-Negrete, Jonathan; Ibarra-Manzano, Mario Alberto; Chalopin, Claire
2017-12-01
Brain tumor segmentation is a routine process in a clinical setting and provides useful information for diagnosis and treatment planning. Manual segmentation, performed by physicians or radiologists, is a time-consuming task due to the large quantity of medical data generated presently. Hence, automatic segmentation methods are needed, and several approaches have been introduced in recent years including the Localized Region-based Active Contour Model (LRACM). There are many popular LRACM, but each of them presents strong and weak points. In this paper, the automatic selection of LRACM based on image content and its application on brain tumor segmentation is presented. Thereby, a framework to select one of three LRACM, i.e., Local Gaussian Distribution Fitting (LGDF), localized Chan-Vese (C-V) and Localized Active Contour Model with Background Intensity Compensation (LACM-BIC), is proposed. Twelve visual features are extracted to properly select the method that may process a given input image. The system is based on a supervised approach. Applied specifically to Magnetic Resonance Imaging (MRI) images, the experiments showed that the proposed system is able to correctly select the suitable LRACM to handle a specific image. Consequently, the selection framework achieves better accuracy performance than the three LRACM separately. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
de Oliveira, Isadora R. N.; Roque, Jussara V.; Maia, Mariza P.; Stringheta, Paulo C.; Teófilo, Reinaldo F.
2018-04-01
A new method was developed to determine the antioxidant properties of red cabbage extract (Brassica oleracea) by mid (MID) and near (NIR) infrared spectroscopies and partial least squares (PLS) regression. A 70% (v/v) ethanolic extract of red cabbage was concentrated to 9° Brix and further diluted (12 to 100%) in water. The dilutions were used as external standards for the building of PLS models. For the first time, this strategy was applied for building multivariate regression models. Reference analyses and spectral data were obtained from diluted extracts. The determinate properties were total and monomeric anthocyanins, total polyphenols and antioxidant capacity by ABTS (2,2-azino-bis(3-ethyl-benzothiazoline-6-sulfonate)) and DPPH (2,2-diphenyl-1-picrylhydrazyl) methods. Ordered predictors selection (OPS) and genetic algorithm (GA) were used for feature selection before PLS regression (PLS-1). In addition, a PLS-2 regression was applied to all properties simultaneously. PLS-1 models provided more predictive models than did PLS-2 regression. PLS-OPS and PLS-GA models presented excellent prediction results with a correlation coefficient higher than 0.98. However, the best models were obtained using PLS and variable selection with the OPS algorithm and the models based on NIR spectra were considered more predictive for all properties. Then, these models provided a simple, rapid and accurate method for determination of red cabbage extract antioxidant properties and its suitability for use in the food industry.
Magnetically separable polymer (Mag-MIP) for selective analysis of biotin in food samples.
Uzuriaga-Sánchez, Rosario Josefina; Khan, Sabir; Wong, Ademar; Picasso, Gino; Pividori, Maria Isabel; Sotomayor, Maria Del Pilar Taboada
2016-01-01
This work presents an efficient method for the preparation of magnetic nanoparticles modified with molecularly imprinted polymers (Mag-MIP) through core-shell method for the determination of biotin in milk food samples. The functional monomer acrylic acid was selected from molecular modeling, EGDMA was used as cross-linking monomer and AIBN as radical initiator. The Mag-MIP and Mag-NIP were characterized by FTIR, magnetic hysteresis, XRD, SEM and N2-sorption measurements. The capacity of Mag-MIP for biotin adsorption, its kinetics and selectivity were studied in detail. The adsorption data was well described by Freundlich isotherm model with adsorption equilibrium constant (KF) of 1.46 mL g(-1). The selectivity experiments revealed that prepared Mag-MIP had higher selectivity toward biotin compared to other molecules with different chemical structure. The material was successfully applied for the determination of biotin in diverse milk samples using HPLC for quantification of the analyte, obtaining the mean value of 87.4% recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fitting Residual Error Structures for Growth Models in SAS PROC MCMC
ERIC Educational Resources Information Center
McNeish, Daniel
2017-01-01
In behavioral sciences broadly, estimating growth models with Bayesian methods is becoming increasingly common, especially to combat small samples common with longitudinal data. Although Mplus is becoming an increasingly common program for applied research employing Bayesian methods, the limited selection of prior distributions for the elements of…
Analysis of method of polarization surveying of water surface oil pollution
NASA Technical Reports Server (NTRS)
Zhukov, B. S.
1979-01-01
A method of polarization surveying of oil films on the water surface is analyzed. Model calculations of contrasted oil and water obtained with different orientations of the analyzer are discussed. The model depends on the spectral range, water transparency and oil film, and the selection of observational direction.
Thin Cloud Detection Method by Linear Combination Model of Cloud Image
NASA Astrophysics Data System (ADS)
Liu, L.; Li, J.; Wang, Y.; Xiao, Y.; Zhang, W.; Zhang, S.
2018-04-01
The existing cloud detection methods in photogrammetry often extract the image features from remote sensing images directly, and then use them to classify images into cloud or other things. But when the cloud is thin and small, these methods will be inaccurate. In this paper, a linear combination model of cloud images is proposed, by using this model, the underlying surface information of remote sensing images can be removed. So the cloud detection result can become more accurate. Firstly, the automatic cloud detection program in this paper uses the linear combination model to split the cloud information and surface information in the transparent cloud images, then uses different image features to recognize the cloud parts. In consideration of the computational efficiency, AdaBoost Classifier was introduced to combine the different features to establish a cloud classifier. AdaBoost Classifier can select the most effective features from many normal features, so the calculation time is largely reduced. Finally, we selected a cloud detection method based on tree structure and a multiple feature detection method using SVM classifier to compare with the proposed method, the experimental data shows that the proposed cloud detection program in this paper has high accuracy and fast calculation speed.
Discriminative least squares regression for multiclass classification and feature selection.
Xiang, Shiming; Nie, Feiping; Meng, Gaofeng; Pan, Chunhong; Zhang, Changshui
2012-11-01
This paper presents a framework of discriminative least squares regression (LSR) for multiclass classification and feature selection. The core idea is to enlarge the distance between different classes under the conceptual framework of LSR. First, a technique called ε-dragging is introduced to force the regression targets of different classes moving along opposite directions such that the distances between classes can be enlarged. Then, the ε-draggings are integrated into the LSR model for multiclass classification. Our learning framework, referred to as discriminative LSR, has a compact model form, where there is no need to train two-class machines that are independent of each other. With its compact form, this model can be naturally extended for feature selection. This goal is achieved in terms of L2,1 norm of matrix, generating a sparse learning model for feature selection. The model for multiclass classification and its extension for feature selection are finally solved elegantly and efficiently. Experimental evaluation over a range of benchmark datasets indicates the validity of our method.
USDA-ARS?s Scientific Manuscript database
Bacterial cold water disease (BCWD) causes significant economic losses in salmonid aquaculture, and traditional family-based breeding programs aimed at improving BCWD resistance have been limited to exploiting only between-family variation. We used genomic selection (GS) models to predict genomic br...
A re-evaluation of a case-control model with contaminated controls for resource selection studies
Christopher T. Rota; Joshua J. Millspaugh; Dylan C. Kesler; Chad P. Lehman; Mark A. Rumble; Catherine M. B. Jachowski
2013-01-01
A common sampling design in resource selection studies involves measuring resource attributes at sample units used by an animal and at sample units considered available for use. Few models can estimate the absolute probability of using a sample unit from such data, but such approaches are generally preferred over statistical methods that estimate a relative probability...
The Environmental Geophysics website features geophysical methods, terms and references; forward and inverse geophysical models for download; and a decision support tool to guide geophysical method selection for a variety of environmental applications.
Variable Step-Size Selection Methods for Implicit Integration Schemes
2005-10-01
for ρk numerically. 23 4 Examples In this section we explore this variable step-size selection method for two problems, the Lotka - Volterra model and...the Kepler problem. 4.1 The Lotka - Volterra Model For this example we consider the Lotka - Volterra model of a simple predator- prey system from...problems. Consider this variation to the Lotka - Volterra problem: u̇ v̇ = u2v(v − 2) v2u(1− u) = f(u, v); t ∈ [0, 50
Estimating the circuit delay of FPGA with a transfer learning method
NASA Astrophysics Data System (ADS)
Cui, Xiuhai; Liu, Datong; Peng, Yu; Peng, Xiyuan
2017-10-01
With the increase of FPGA (Field Programmable Gate Array, FPGA) functionality, FPGA has become an on-chip system platform. Due to increase the complexity of FPGA, estimating the delay of FPGA is a very challenge work. To solve the problems, we propose a transfer learning estimation delay (TLED) method to simplify the delay estimation of different speed grade FPGA. In fact, the same style different speed grade FPGA comes from the same process and layout. The delay has some correlation among different speed grade FPGA. Therefore, one kind of speed grade FPGA is chosen as a basic training sample in this paper. Other training samples of different speed grade can get from the basic training samples through of transfer learning. At the same time, we also select a few target FPGA samples as training samples. A general predictive model is trained by these samples. Thus one kind of estimation model is used to estimate different speed grade FPGA circuit delay. The framework of TRED includes three phases: 1) Building a basic circuit delay library which includes multipliers, adders, shifters, and so on. These circuits are used to train and build the predictive model. 2) By contrasting experiments among different algorithms, the forest random algorithm is selected to train predictive model. 3) The target circuit delay is predicted by the predictive model. The Artix-7, Kintex-7, and Virtex-7 are selected to do experiments. Each of them includes -1, -2, -2l, and -3 different speed grade. The experiments show the delay estimation accuracy score is more than 92% with the TLED method. This result shows that the TLED method is a feasible delay assessment method, especially in the high-level synthesis stage of FPGA tool, which is an efficient and effective delay assessment method.
NASA Astrophysics Data System (ADS)
Rachmatia, H.; Kusuma, W. A.; Hasibuan, L. S.
2017-05-01
Selection in plant breeding could be more effective and more efficient if it is based on genomic data. Genomic selection (GS) is a new approach for plant-breeding selection that exploits genomic data through a mechanism called genomic prediction (GP). Most of GP models used linear methods that ignore effects of interaction among genes and effects of higher order nonlinearities. Deep belief network (DBN), one of the architectural in deep learning methods, is able to model data in high level of abstraction that involves nonlinearities effects of the data. This study implemented DBN for developing a GP model utilizing whole-genome Single Nucleotide Polymorphisms (SNPs) as data for training and testing. The case study was a set of traits in maize. The maize dataset was acquisitioned from CIMMYT’s (International Maize and Wheat Improvement Center) Global Maize program. Based on Pearson correlation, DBN is outperformed than other methods, kernel Hilbert space (RKHS) regression, Bayesian LASSO (BL), best linear unbiased predictor (BLUP), in case allegedly non-additive traits. DBN achieves correlation of 0.579 within -1 to 1 range.
Adaptive Prior Variance Calibration in the Bayesian Continual Reassessment Method
Zhang, Jin; Braun, Thomas M.; Taylor, Jeremy M.G.
2012-01-01
Use of the Continual Reassessment Method (CRM) and other model-based approaches to design in Phase I clinical trials has increased due to the ability of the CRM to identify the maximum tolerated dose (MTD) better than the 3+3 method. However, the CRM can be sensitive to the variance selected for the prior distribution of the model parameter, especially when a small number of patients are enrolled. While methods have emerged to adaptively select skeletons and to calibrate the prior variance only at the beginning of a trial, there has not been any approach developed to adaptively calibrate the prior variance throughout a trial. We propose three systematic approaches to adaptively calibrate the prior variance during a trial and compare them via simulation to methods proposed to calibrate the variance at the beginning of a trial. PMID:22987660
Cai, Rui; Wang, Shisheng; Tang, Bo; Li, Yueqing; Zhao, Weijie
2018-01-01
Sea cucumber is the major tonic seafood worldwide, and geographical origin traceability is an important part of its quality and safety control. In this work, a non-destructive method for origin traceability of sea cucumber (Apostichopus japonicus) from northern China Sea and East China Sea using near infrared spectroscopy (NIRS) and multivariate analysis methods was proposed. Total fat contents of 189 fresh sea cucumber samples were determined and partial least-squares (PLS) regression was used to establish the quantitative NIRS model. The ordered predictor selection algorithm was performed to select feasible wavelength regions for the construction of PLS and identification models. The identification model was developed by principal component analysis combined with Mahalanobis distance and scaling to the first range algorithms. In the test set of the optimum PLS models, the root mean square error of prediction was 0.45, and correlation coefficient was 0.90. The correct classification rates of 100% were obtained in both identification calibration model and test model. The overall results indicated that NIRS method combined with chemometric analysis was a suitable tool for origin traceability and identification of fresh sea cucumber samples from nine origins in China. PMID:29410795
Guo, Xiuhan; Cai, Rui; Wang, Shisheng; Tang, Bo; Li, Yueqing; Zhao, Weijie
2018-01-01
Sea cucumber is the major tonic seafood worldwide, and geographical origin traceability is an important part of its quality and safety control. In this work, a non-destructive method for origin traceability of sea cucumber ( Apostichopus japonicus ) from northern China Sea and East China Sea using near infrared spectroscopy (NIRS) and multivariate analysis methods was proposed. Total fat contents of 189 fresh sea cucumber samples were determined and partial least-squares (PLS) regression was used to establish the quantitative NIRS model. The ordered predictor selection algorithm was performed to select feasible wavelength regions for the construction of PLS and identification models. The identification model was developed by principal component analysis combined with Mahalanobis distance and scaling to the first range algorithms. In the test set of the optimum PLS models, the root mean square error of prediction was 0.45, and correlation coefficient was 0.90. The correct classification rates of 100% were obtained in both identification calibration model and test model. The overall results indicated that NIRS method combined with chemometric analysis was a suitable tool for origin traceability and identification of fresh sea cucumber samples from nine origins in China.
Data Dependent Peak Model Based Spectrum Deconvolution for Analysis of High Resolution LC-MS Data
2015-01-01
A data dependent peak model (DDPM) based spectrum deconvolution method was developed for analysis of high resolution LC-MS data. To construct the selected ion chromatogram (XIC), a clustering method, the density based spatial clustering of applications with noise (DBSCAN), is applied to all m/z values of an LC-MS data set to group the m/z values into each XIC. The DBSCAN constructs XICs without the need for a user defined m/z variation window. After the XIC construction, the peaks of molecular ions in each XIC are detected using both the first and the second derivative tests, followed by an optimized chromatographic peak model selection method for peak deconvolution. A total of six chromatographic peak models are considered, including Gaussian, log-normal, Poisson, gamma, exponentially modified Gaussian, and hybrid of exponential and Gaussian models. The abundant nonoverlapping peaks are chosen to find the optimal peak models that are both data- and retention-time-dependent. Analysis of 18 spiked-in LC-MS data demonstrates that the proposed DDPM spectrum deconvolution method outperforms the traditional method. On average, the DDPM approach not only detected 58 more chromatographic peaks from each of the testing LC-MS data but also improved the retention time and peak area 3% and 6%, respectively. PMID:24533635
Fan, Shu-xiang; Huang, Wen-qian; Li, Jiang-bo; Zhao, Chun-jiang; Zhang, Bao-hua
2014-08-01
To improve the precision and robustness of the NIR model of the soluble solid content (SSC) on pear. The total number of 160 pears was for the calibration (n=120) and prediction (n=40). Different spectral pretreatment methods, including standard normal variate (SNV) and multiplicative scatter correction (MSC) were used before further analysis. A combination of genetic algorithm (GA) and successive projections algorithm (SPA) was proposed to select most effective wavelengths after uninformative variable elimination (UVE) from original spectra, SNV pretreated spectra and MSC pretreated spectra respectively. The selected variables were used as the inputs of least squares-support vector machine (LS-SVM) model to build models for de- termining the SSC of pear. The results indicated that LS-SVM model built using SNVE-UVE-GA-SPA on 30 characteristic wavelengths selected from full-spectrum which had 3112 wavelengths achieved the optimal performance. The correlation coefficient (Rp) and root mean square error of prediction (RMSEP) for prediction sets were 0.956, 0.271 for SSC. The model is reliable and the predicted result is effective. The method can meet the requirement of quick measuring SSC of pear and might be important for the development of portable instruments and online monitoring.
2011-01-01
Background Bioinformatics data analysis is often using linear mixture model representing samples as additive mixture of components. Properly constrained blind matrix factorization methods extract those components using mixture samples only. However, automatic selection of extracted components to be retained for classification analysis remains an open issue. Results The method proposed here is applied to well-studied protein and genomic datasets of ovarian, prostate and colon cancers to extract components for disease prediction. It achieves average sensitivities of: 96.2 (sd = 2.7%), 97.6% (sd = 2.8%) and 90.8% (sd = 5.5%) and average specificities of: 93.6% (sd = 4.1%), 99% (sd = 2.2%) and 79.4% (sd = 9.8%) in 100 independent two-fold cross-validations. Conclusions We propose an additive mixture model of a sample for feature extraction using, in principle, sparseness constrained factorization on a sample-by-sample basis. As opposed to that, existing methods factorize complete dataset simultaneously. The sample model is composed of a reference sample representing control and/or case (disease) groups and a test sample. Each sample is decomposed into two or more components that are selected automatically (without using label information) as control specific, case specific and not differentially expressed (neutral). The number of components is determined by cross-validation. Automatic assignment of features (m/z ratios or genes) to particular component is based on thresholds estimated from each sample directly. Due to the locality of decomposition, the strength of the expression of each feature across the samples can vary. Yet, they will still be allocated to the related disease and/or control specific component. Since label information is not used in the selection process, case and control specific components can be used for classification. That is not the case with standard factorization methods. Moreover, the component selected by proposed method as disease specific can be interpreted as a sub-mode and retained for further analysis to identify potential biomarkers. As opposed to standard matrix factorization methods this can be achieved on a sample (experiment)-by-sample basis. Postulating one or more components with indifferent features enables their removal from disease and control specific components on a sample-by-sample basis. This yields selected components with reduced complexity and generally, it increases prediction accuracy. PMID:22208882
Liu, Guo-Ping; Yan, Jian-Jun; Wang, Yi-Qin; Fu, Jing-Jing; Xu, Zhao-Xia; Guo, Rui; Qian, Peng
2012-01-01
Background. In Traditional Chinese Medicine (TCM), most of the algorithms are used to solve problems of syndrome diagnosis that only focus on one syndrome, that is, single label learning. However, in clinical practice, patients may simultaneously have more than one syndrome, which has its own symptoms (signs). Methods. We employed a multilabel learning using the relevant feature for each label (REAL) algorithm to construct a syndrome diagnostic model for chronic gastritis (CG) in TCM. REAL combines feature selection methods to select the significant symptoms (signs) of CG. The method was tested on 919 patients using the standard scale. Results. The highest prediction accuracy was achieved when 20 features were selected. The features selected with the information gain were more consistent with the TCM theory. The lowest average accuracy was 54% using multi-label neural networks (BP-MLL), whereas the highest was 82% using REAL for constructing the diagnostic model. For coverage, hamming loss, and ranking loss, the values obtained using the REAL algorithm were the lowest at 0.160, 0.142, and 0.177, respectively. Conclusion. REAL extracts the relevant symptoms (signs) for each syndrome and improves its recognition accuracy. Moreover, the studies will provide a reference for constructing syndrome diagnostic models and guide clinical practice. PMID:22719781
A New Integrated Threshold Selection Methodology for Spatial Forecast Verification of Extreme Events
NASA Astrophysics Data System (ADS)
Kholodovsky, V.
2017-12-01
Extreme weather and climate events such as heavy precipitation, heat waves and strong winds can cause extensive damage to the society in terms of human lives and financial losses. As climate changes, it is important to understand how extreme weather events may change as a result. Climate and statistical models are often independently used to model those phenomena. To better assess performance of the climate models, a variety of spatial forecast verification methods have been developed. However, spatial verification metrics that are widely used in comparing mean states, in most cases, do not have an adequate theoretical justification to benchmark extreme weather events. We proposed a new integrated threshold selection methodology for spatial forecast verification of extreme events that couples existing pattern recognition indices with high threshold choices. This integrated approach has three main steps: 1) dimension reduction; 2) geometric domain mapping; and 3) thresholds clustering. We apply this approach to an observed precipitation dataset over CONUS. The results are evaluated by displaying threshold distribution seasonally, monthly and annually. The method offers user the flexibility of selecting a high threshold that is linked to desired geometrical properties. The proposed high threshold methodology could either complement existing spatial verification methods, where threshold selection is arbitrary, or be directly applicable in extreme value theory.
Bello, Alessandra; Bianchi, Federica; Careri, Maria; Giannetto, Marco; Mori, Giovanni; Musci, Marilena
2007-11-05
A new NIR method based on multivariate calibration for determination of ethanol in industrially packed wholemeal bread was developed and validated. GC-FID was used as reference method for the determination of actual ethanol concentration of different samples of wholemeal bread with proper content of added ethanol, ranging from 0 to 3.5% (w/w). Stepwise discriminant analysis was carried out on the NIR dataset, in order to reduce the number of original variables by selecting those that were able to discriminate between the samples of different ethanol concentrations. With the so selected variables a multivariate calibration model was then obtained by multiple linear regression. The prediction power of the linear model was optimized by a new "leave one out" method, so that the number of original variables resulted further reduced.
Simulation of tropical cyclone activity over the western North Pacific based on CMIP5 models
NASA Astrophysics Data System (ADS)
Shen, Haibo; Zhou, Weican; Zhao, Haikun
2017-09-01
Based on the Coupled Model Inter-comparison Project 5 (CMIP5) models, the tropical cyclone (TC) activity in the summers of 1965-2005 over the western North Pacific (WNP) is simulated by a TC dynamically downscaling system. In consideration of diversity among climate models, Bayesian model averaging (BMA) and equal-weighed model averaging (EMA) methods are applied to produce the ensemble large-scale environmental factors of the CMIP5 model outputs. The environmental factors generated by BMA and EMA methods are compared, as well as the corresponding TC simulations by the downscaling system. Results indicate that BMA method shows a significant advantage over the EMA. In addition, impacts of model selections on BMA method are examined. To each factor, ten models with better performance are selected from 30 CMIP5 models and then conduct BMA, respectively. As a consequence, the ensemble environmental factors and simulated TC activity are similar with the results from the 30 models' BMA, which verifies the BMA method can afford corresponding weight for each model in the ensemble based on the model's predictive skill. Thereby, the existence of poor performance models will not particularly affect the BMA effectiveness and the ensemble outcomes are improved. Finally, based upon the BMA method and downscaling system, we analyze the sensitivity of TC activity to three important environmental factors, i.e., sea surface temperature (SST), large-scale steering flow, and vertical wind shear. Among three factors, SST and large-scale steering flow greatly affect TC tracks, while average intensity distribution is sensitive to all three environmental factors. Moreover, SST and vertical wind shear jointly play a critical role in the inter-annual variability of TC lifetime maximum intensity and frequency of intense TCs.
Item Selection and Ability Estimation Procedures for a Mixed-Format Adaptive Test
ERIC Educational Resources Information Center
Ho, Tsung-Han; Dodd, Barbara G.
2012-01-01
In this study we compared five item selection procedures using three ability estimation methods in the context of a mixed-format adaptive test based on the generalized partial credit model. The item selection procedures used were maximum posterior weighted information, maximum expected information, maximum posterior weighted Kullback-Leibler…
Ensemble Feature Learning of Genomic Data Using Support Vector Machine
Anaissi, Ali; Goyal, Madhu; Catchpoole, Daniel R.; Braytee, Ali; Kennedy, Paul J.
2016-01-01
The identification of a subset of genes having the ability to capture the necessary information to distinguish classes of patients is crucial in bioinformatics applications. Ensemble and bagging methods have been shown to work effectively in the process of gene selection and classification. Testament to that is random forest which combines random decision trees with bagging to improve overall feature selection and classification accuracy. Surprisingly, the adoption of these methods in support vector machines has only recently received attention but mostly on classification not gene selection. This paper introduces an ensemble SVM-Recursive Feature Elimination (ESVM-RFE) for gene selection that follows the concepts of ensemble and bagging used in random forest but adopts the backward elimination strategy which is the rationale of RFE algorithm. The rationale behind this is, building ensemble SVM models using randomly drawn bootstrap samples from the training set, will produce different feature rankings which will be subsequently aggregated as one feature ranking. As a result, the decision for elimination of features is based upon the ranking of multiple SVM models instead of choosing one particular model. Moreover, this approach will address the problem of imbalanced datasets by constructing a nearly balanced bootstrap sample. Our experiments show that ESVM-RFE for gene selection substantially increased the classification performance on five microarray datasets compared to state-of-the-art methods. Experiments on the childhood leukaemia dataset show that an average 9% better accuracy is achieved by ESVM-RFE over SVM-RFE, and 5% over random forest based approach. The selected genes by the ESVM-RFE algorithm were further explored with Singular Value Decomposition (SVD) which reveals significant clusters with the selected data. PMID:27304923
Wolc, Anna; Stricker, Chris; Arango, Jesus; Settar, Petek; Fulton, Janet E; O'Sullivan, Neil P; Preisinger, Rudolf; Habier, David; Fernando, Rohan; Garrick, Dorian J; Lamont, Susan J; Dekkers, Jack C M
2011-01-21
Genomic selection involves breeding value estimation of selection candidates based on high-density SNP genotypes. To quantify the potential benefit of genomic selection, accuracies of estimated breeding values (EBV) obtained with different methods using pedigree or high-density SNP genotypes were evaluated and compared in a commercial layer chicken breeding line. The following traits were analyzed: egg production, egg weight, egg color, shell strength, age at sexual maturity, body weight, albumen height, and yolk weight. Predictions appropriate for early or late selection were compared. A total of 2,708 birds were genotyped for 23,356 segregating SNP, including 1,563 females with records. Phenotypes on relatives without genotypes were incorporated in the analysis (in total 13,049 production records).The data were analyzed with a Reduced Animal Model using a relationship matrix based on pedigree data or on marker genotypes and with a Bayesian method using model averaging. Using a validation set that consisted of individuals from the generation following training, these methods were compared by correlating EBV with phenotypes corrected for fixed effects, selecting the top 30 individuals based on EBV and evaluating their mean phenotype, and by regressing phenotypes on EBV. Using high-density SNP genotypes increased accuracies of EBV up to two-fold for selection at an early age and by up to 88% for selection at a later age. Accuracy increases at an early age can be mostly attributed to improved estimates of parental EBV for shell quality and egg production, while for other egg quality traits it is mostly due to improved estimates of Mendelian sampling effects. A relatively small number of markers was sufficient to explain most of the genetic variation for egg weight and body weight.
Uniting statistical and individual-based approaches for animal movement modelling.
Latombe, Guillaume; Parrott, Lael; Basille, Mathieu; Fortin, Daniel
2014-01-01
The dynamic nature of their internal states and the environment directly shape animals' spatial behaviours and give rise to emergent properties at broader scales in natural systems. However, integrating these dynamic features into habitat selection studies remains challenging, due to practically impossible field work to access internal states and the inability of current statistical models to produce dynamic outputs. To address these issues, we developed a robust method, which combines statistical and individual-based modelling. Using a statistical technique for forward modelling of the IBM has the advantage of being faster for parameterization than a pure inverse modelling technique and allows for robust selection of parameters. Using GPS locations from caribou monitored in Québec, caribou movements were modelled based on generative mechanisms accounting for dynamic variables at a low level of emergence. These variables were accessed by replicating real individuals' movements in parallel sub-models, and movement parameters were then empirically parameterized using Step Selection Functions. The final IBM model was validated using both k-fold cross-validation and emergent patterns validation and was tested for two different scenarios, with varying hardwood encroachment. Our results highlighted a functional response in habitat selection, which suggests that our method was able to capture the complexity of the natural system, and adequately provided projections on future possible states of the system in response to different management plans. This is especially relevant for testing the long-term impact of scenarios corresponding to environmental configurations that have yet to be observed in real systems.
Uniting Statistical and Individual-Based Approaches for Animal Movement Modelling
Latombe, Guillaume; Parrott, Lael; Basille, Mathieu; Fortin, Daniel
2014-01-01
The dynamic nature of their internal states and the environment directly shape animals' spatial behaviours and give rise to emergent properties at broader scales in natural systems. However, integrating these dynamic features into habitat selection studies remains challenging, due to practically impossible field work to access internal states and the inability of current statistical models to produce dynamic outputs. To address these issues, we developed a robust method, which combines statistical and individual-based modelling. Using a statistical technique for forward modelling of the IBM has the advantage of being faster for parameterization than a pure inverse modelling technique and allows for robust selection of parameters. Using GPS locations from caribou monitored in Québec, caribou movements were modelled based on generative mechanisms accounting for dynamic variables at a low level of emergence. These variables were accessed by replicating real individuals' movements in parallel sub-models, and movement parameters were then empirically parameterized using Step Selection Functions. The final IBM model was validated using both k-fold cross-validation and emergent patterns validation and was tested for two different scenarios, with varying hardwood encroachment. Our results highlighted a functional response in habitat selection, which suggests that our method was able to capture the complexity of the natural system, and adequately provided projections on future possible states of the system in response to different management plans. This is especially relevant for testing the long-term impact of scenarios corresponding to environmental configurations that have yet to be observed in real systems. PMID:24979047
Learning to Select Supplier Portfolios for Service Supply Chain
Zhang, Rui; Li, Jingfei; Wu, Shaoyu; Meng, Dabin
2016-01-01
The research on service supply chain has attracted more and more focus from both academia and industrial community. In a service supply chain, the selection of supplier portfolio is an important and difficult problem due to the fact that a supplier portfolio may include multiple suppliers from a variety of fields. To address this problem, we propose a novel supplier portfolio selection method based on a well known machine learning approach, i.e., Ranking Neural Network (RankNet). In the proposed method, we regard the problem of supplier portfolio selection as a ranking problem, which integrates a large scale of decision making features into a ranking neural network. Extensive simulation experiments are conducted, which demonstrate the feasibility and effectiveness of the proposed method. The proposed supplier portfolio selection model can be applied in a real corporation easily in the future. PMID:27195756
Roberts, Steven; Martin, Michael A
2010-01-01
Concerns have been raised about findings of associations between particulate matter (PM) air pollution and mortality that have been based on a single "best" model arising from a model selection procedure, because such a strategy may ignore model uncertainty inherently involved in searching through a set of candidate models to find the best model. Model averaging has been proposed as a method of allowing for model uncertainty in this context. To propose an extension (double BOOT) to a previously described bootstrap model-averaging procedure (BOOT) for use in time series studies of the association between PM and mortality. We compared double BOOT and BOOT with Bayesian model averaging (BMA) and a standard method of model selection [standard Akaike's information criterion (AIC)]. Actual time series data from the United States are used to conduct a simulation study to compare and contrast the performance of double BOOT, BOOT, BMA, and standard AIC. Double BOOT produced estimates of the effect of PM on mortality that have had smaller root mean squared error than did those produced by BOOT, BMA, and standard AIC. This performance boost resulted from estimates produced by double BOOT having smaller variance than those produced by BOOT and BMA. Double BOOT is a viable alternative to BOOT and BMA for producing estimates of the mortality effect of PM.
[Rapid prototyping: a very promising method].
Haverman, T M; Karagozoglu, K H; Prins, H-J; Schulten, E A J M; Forouzanfar, T
2013-03-01
Rapid prototyping is a method which makes it possible to produce a three-dimensional model based on two-dimensional imaging. Various rapid prototyping methods are available for modelling, such as stereolithography, selective laser sintering, direct laser metal sintering, two-photon polymerization, laminated object manufacturing, three-dimensional printing, three-dimensional plotting, polyjet inkjet technology,fused deposition modelling, vacuum casting and milling. The various methods currently being used in the biomedical sector differ in production, materials and properties of the three-dimensional model which is produced. Rapid prototyping is mainly usedforpreoperative planning, simulation, education, and research into and development of bioengineering possibilities.
A hybrid learning method for constructing compact rule-based fuzzy models.
Zhao, Wanqing; Niu, Qun; Li, Kang; Irwin, George W
2013-12-01
The Takagi–Sugeno–Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model with optimized model parameters which leads to satisfactory model performance. To produce a compact model, most existing approaches mainly focus on selecting an appropriate number of fuzzy rules. In contrast, this paper considers not only the selection of fuzzy rules but also the structure of each rule premise and consequent, leading to the development of a novel compact rule-based fuzzy model. Here, each fuzzy rule is associated with two sets of input attributes, in which the first is used for constructing the rule premise and the other is employed in the rule consequent. A new hybrid learning method combining the modified harmony search method with a fast recursive algorithm is hereby proposed to determine the structure and the parameters for the rule premises and consequents. This is a hard mixed-integer nonlinear optimization problem, and the proposed hybrid method solves the problem by employing an embedded framework, leading to a significantly reduced number of model parameters and a small number of fuzzy rules with each being as simple as possible. Results from three examples are presented to demonstrate the compactness (in terms of the number of model parameters and the number of rules) and the performance of the fuzzy models obtained by the proposed hybrid learning method, in comparison with other techniques from the literature.
Whole-genome regression and prediction methods applied to plant and animal breeding.
de Los Campos, Gustavo; Hickey, John M; Pong-Wong, Ricardo; Daetwyler, Hans D; Calus, Mario P L
2013-02-01
Genomic-enabled prediction is becoming increasingly important in animal and plant breeding and is also receiving attention in human genetics. Deriving accurate predictions of complex traits requires implementing whole-genome regression (WGR) models where phenotypes are regressed on thousands of markers concurrently. Methods exist that allow implementing these large-p with small-n regressions, and genome-enabled selection (GS) is being implemented in several plant and animal breeding programs. The list of available methods is long, and the relationships between them have not been fully addressed. In this article we provide an overview of available methods for implementing parametric WGR models, discuss selected topics that emerge in applications, and present a general discussion of lessons learned from simulation and empirical data analysis in the last decade.
Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding
de los Campos, Gustavo; Hickey, John M.; Pong-Wong, Ricardo; Daetwyler, Hans D.; Calus, Mario P. L.
2013-01-01
Genomic-enabled prediction is becoming increasingly important in animal and plant breeding and is also receiving attention in human genetics. Deriving accurate predictions of complex traits requires implementing whole-genome regression (WGR) models where phenotypes are regressed on thousands of markers concurrently. Methods exist that allow implementing these large-p with small-n regressions, and genome-enabled selection (GS) is being implemented in several plant and animal breeding programs. The list of available methods is long, and the relationships between them have not been fully addressed. In this article we provide an overview of available methods for implementing parametric WGR models, discuss selected topics that emerge in applications, and present a general discussion of lessons learned from simulation and empirical data analysis in the last decade. PMID:22745228
Dynamic characteristics of oxygen consumption.
Ye, Lin; Argha, Ahmadreza; Yu, Hairong; Celler, Branko G; Nguyen, Hung T; Su, Steven
2018-04-23
Previous studies have indicated that oxygen uptake ([Formula: see text]) is one of the most accurate indices for assessing the cardiorespiratory response to exercise. In most existing studies, the response of [Formula: see text] is often roughly modelled as a first-order system due to the inadequate stimulation and low signal to noise ratio. To overcome this difficulty, this paper proposes a novel nonparametric kernel-based method for the dynamic modelling of [Formula: see text] response to provide a more robust estimation. Twenty healthy non-athlete participants conducted treadmill exercises with monotonous stimulation (e.g., single step function as input). During the exercise, [Formula: see text] was measured and recorded by a popular portable gas analyser ([Formula: see text], COSMED). Based on the recorded data, a kernel-based estimation method was proposed to perform the nonparametric modelling of [Formula: see text]. For the proposed method, a properly selected kernel can represent the prior modelling information to reduce the dependence of comprehensive stimulations. Furthermore, due to the special elastic net formed by [Formula: see text] norm and kernelised [Formula: see text] norm, the estimations are smooth and concise. Additionally, the finite impulse response based nonparametric model which estimated by the proposed method can optimally select the order and fit better in terms of goodness-of-fit comparing to classical methods. Several kernels were introduced for the kernel-based [Formula: see text] modelling method. The results clearly indicated that the stable spline (SS) kernel has the best performance for [Formula: see text] modelling. Particularly, based on the experimental data from 20 participants, the estimated response from the proposed method with SS kernel was significantly better than the results from the benchmark method [i.e., prediction error method (PEM)] ([Formula: see text] vs [Formula: see text]). The proposed nonparametric modelling method is an effective method for the estimation of the impulse response of VO 2 -Speed system. Furthermore, the identified average nonparametric model method can dynamically predict [Formula: see text] response with acceptable accuracy during treadmill exercise.
Elementary Teachers' Selection and Use of Visual Models
NASA Astrophysics Data System (ADS)
Lee, Tammy D.; Gail Jones, M.
2018-02-01
As science grows in complexity, science teachers face an increasing challenge of helping students interpret models that represent complex science systems. Little is known about how teachers select and use models when planning lessons. This mixed methods study investigated the pedagogical approaches and visual models used by elementary in-service and preservice teachers in the development of a science lesson about a complex system (e.g., water cycle). Sixty-seven elementary in-service and 69 elementary preservice teachers completed a card sort task designed to document the types of visual models (e.g., images) that teachers choose when planning science instruction. Quantitative and qualitative analyses were conducted to analyze the card sort task. Semistructured interviews were conducted with a subsample of teachers to elicit the rationale for image selection. Results from this study showed that both experienced in-service teachers and novice preservice teachers tended to select similar models and use similar rationales for images to be used in lessons. Teachers tended to select models that were aesthetically pleasing and simple in design and illustrated specific elements of the water cycle. The results also showed that teachers were not likely to select images that represented the less obvious dimensions of the water cycle. Furthermore, teachers selected visual models more as a pedagogical tool to illustrate specific elements of the water cycle and less often as a tool to promote student learning related to complex systems.
NASA Astrophysics Data System (ADS)
Cao, Yang; Liu, Chun; Huang, Yuehui; Wang, Tieqiang; Sun, Chenjun; Yuan, Yue; Zhang, Xinsong; Wu, Shuyun
2017-02-01
With the development of roof photovoltaic power (PV) generation technology and the increasingly urgent need to improve supply reliability levels in remote areas, islanded microgrid with photovoltaic and energy storage systems (IMPE) is developing rapidly. The high costs of photovoltaic panel material and energy storage battery material have become the primary factors that hinder the development of IMPE. The advantages and disadvantages of different types of photovoltaic panel materials and energy storage battery materials are analyzed in this paper, and guidance is provided on material selection for IMPE planners. The time sequential simulation method is applied to optimize material demands of the IMPE. The model is solved by parallel algorithms that are provided by a commercial solver named CPLEX. Finally, to verify the model, an actual IMPE is selected as a case system. Simulation results on the case system indicate that the optimization model and corresponding algorithm is feasible. Guidance for material selection and quantity demand for IMPEs in remote areas is provided by this method.
Takahashi, Hiro; Honda, Hiroyuki
2006-07-01
Considering the recent advances in and the benefits of DNA microarray technologies, many gene filtering approaches have been employed for the diagnosis and prognosis of diseases. In our previous study, we developed a new filtering method, namely, the projective adaptive resonance theory (PART) filtering method. This method was effective in subclass discrimination. In the PART algorithm, the genes with a low variance in gene expression in either class, not both classes, were selected as important genes for modeling. Based on this concept, we developed novel simple filtering methods such as modified signal-to-noise (S2N') in the present study. The discrimination model constructed using these methods showed higher accuracy with higher reproducibility as compared with many conventional filtering methods, including the t-test, S2N, NSC and SAM. The reproducibility of prediction was evaluated based on the correlation between the sets of U-test p-values on randomly divided datasets. With respect to leukemia, lymphoma and breast cancer, the correlation was high; a difference of >0.13 was obtained by the constructed model by using <50 genes selected by S2N'. Improvement was higher in the smaller genes and such higher correlation was observed when t-test, NSC and SAM were used. These results suggest that these modified methods, such as S2N', have high potential to function as new methods for marker gene selection in cancer diagnosis using DNA microarray data. Software is available upon request.
Marques Junior, Jucelino Medeiros; Muller, Aline Lima Hermes; Foletto, Edson Luiz; da Costa, Adilson Ben; Bizzi, Cezar Augusto; Irineu Muller, Edson
2015-01-01
A method for determination of propranolol hydrochloride in pharmaceutical preparation using near infrared spectrometry with fiber optic probe (FTNIR/PROBE) and combined with chemometric methods was developed. Calibration models were developed using two variable selection models: interval partial least squares (iPLS) and synergy interval partial least squares (siPLS). The treatments based on the mean centered data and multiplicative scatter correction (MSC) were selected for models construction. A root mean square error of prediction (RMSEP) of 8.2 mg g(-1) was achieved using siPLS (s2i20PLS) algorithm with spectra divided into 20 intervals and combination of 2 intervals (8501 to 8801 and 5201 to 5501 cm(-1)). Results obtained by the proposed method were compared with those using the pharmacopoeia reference method and significant difference was not observed. Therefore, proposed method allowed a fast, precise, and accurate determination of propranolol hydrochloride in pharmaceutical preparations. Furthermore, it is possible to carry out on-line analysis of this active principle in pharmaceutical formulations with use of fiber optic probe.
Embree, William N.; Wiltshire, Denise A.
1978-01-01
Abstracts of 177 selected publications on water movement in estuaries, particularly the Hudson River estuary, are compiled for reference in Hudson River studies. Subjects represented are the hydraulic, chemical, and physical characteristics of estuarine waters, estuarine modeling techniques, and methods of water-data collection and analysis. Summaries are presented in five categories: Hudson River estuary studies; hydrodynamic-model studies; water-quality-model studies; reports on data-collection equipment and methods; and bibliographies, literature reviews, conference proceedings, and textbooks. An author index is included. Omitted are most works published before 1965, environmental-impact statements, theses and dissertations, policy or planning reports, regional or economic reports, ocean studies, studies based on physical models, and foreign studies. (Woodard-USGS)
Prediction of solvation enthalpy of gaseous organic compounds in propanol
NASA Astrophysics Data System (ADS)
Golmohammadi, Hassan; Dashtbozorgi, Zahra
2016-09-01
The purpose of this paper is to present a novel way for developing quantitative structure-property relationship (QSPR) models to predict the gas-to-propanol solvation enthalpy (Δ H solv) of 95 organic compounds. Different kinds of descriptors were calculated for each compound using the Dragon software package. The variable selection technique of replacement method (RM) was employed to select the optimal subset of solute descriptors. Our investigation reveals that the dependence of physical chemistry properties of solution on solvation enthalpy is nonlinear and that the RM method is unable to model the solvation enthalpy accurately. The results established that the calculated Δ H solv values by SVM were in good agreement with the experimental ones, and the performances of the SVM models were superior to those obtained by RM model.
Alternative Methods for Handling Attrition
Foster, E. Michael; Fang, Grace Y.
2009-01-01
Using data from the evaluation of the Fast Track intervention, this article illustrates three methods for handling attrition. Multiple imputation and ignorable maximum likelihood estimation produce estimates that are similar to those based on listwise-deleted data. A panel selection model that allows for selective dropout reveals that highly aggressive boys accumulate in the treatment group over time and produces a larger estimate of treatment effect. In contrast, this model produces a smaller treatment effect for girls. The article's conclusion discusses the strengths and weaknesses of the alternative approaches and outlines ways in which researchers might improve their handling of attrition. PMID:15358906
Concave 1-norm group selection
Jiang, Dingfeng; Huang, Jian
2015-01-01
Grouping structures arise naturally in many high-dimensional problems. Incorporation of such information can improve model fitting and variable selection. Existing group selection methods, such as the group Lasso, require correct membership. However, in practice it can be difficult to correctly specify group membership of all variables. Thus, it is important to develop group selection methods that are robust against group mis-specification. Also, it is desirable to select groups as well as individual variables in many applications. We propose a class of concave \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$1$\\end{document}-norm group penalties that is robust to grouping structure and can perform bi-level selection. A coordinate descent algorithm is developed to calculate solutions of the proposed group selection method. Theoretical convergence of the algorithm is proved under certain regularity conditions. Comparison with other methods suggests the proposed method is the most robust approach under membership mis-specification. Simulation studies and real data application indicate that the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$1$\\end{document}-norm concave group selection approach achieves better control of false discovery rates. An R package grppenalty implementing the proposed method is available at CRAN. PMID:25417206
Variability aware compact model characterization for statistical circuit design optimization
NASA Astrophysics Data System (ADS)
Qiao, Ying; Qian, Kun; Spanos, Costas J.
2012-03-01
Variability modeling at the compact transistor model level can enable statistically optimized designs in view of limitations imposed by the fabrication technology. In this work we propose an efficient variabilityaware compact model characterization methodology based on the linear propagation of variance. Hierarchical spatial variability patterns of selected compact model parameters are directly calculated from transistor array test structures. This methodology has been implemented and tested using transistor I-V measurements and the EKV-EPFL compact model. Calculation results compare well to full-wafer direct model parameter extractions. Further studies are done on the proper selection of both compact model parameters and electrical measurement metrics used in the method.
Valls, Joan; Castellà, Gerard; Dyba, Tadeusz; Clèries, Ramon
2015-06-01
Predicting the future burden of cancer is a key issue for health services planning, where a method for selecting the predictive model and the prediction base is a challenge. A method, named here Goodness-of-Fit optimal (GoF-optimal), is presented to determine the minimum prediction base of historical data to perform 5-year predictions of the number of new cancer cases or deaths. An empirical ex-post evaluation exercise for cancer mortality data in Spain and cancer incidence in Finland using simple linear and log-linear Poisson models was performed. Prediction bases were considered within the time periods 1951-2006 in Spain and 1975-2007 in Finland, and then predictions were made for 37 and 33 single years in these periods, respectively. The performance of three fixed different prediction bases (last 5, 10, and 20 years of historical data) was compared to that of the prediction base determined by the GoF-optimal method. The coverage (COV) of the 95% prediction interval and the discrepancy ratio (DR) were calculated to assess the success of the prediction. The results showed that (i) models using the prediction base selected through GoF-optimal method reached the highest COV and the lowest DR and (ii) the best alternative strategy to GoF-optimal was the one using the base of prediction of 5-years. The GoF-optimal approach can be used as a selection criterion in order to find an adequate base of prediction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Riddlesworth, Tonya D.; Kollman, Craig; Lass, Jonathan H.; Patel, Sanjay V.; Stulting, R. Doyle; Benetz, Beth Ann; Gal, Robin L.; Beck, Roy W.
2014-01-01
Purpose. We constructed several mathematical models that predict endothelial cell density (ECD) for patients after penetrating keratoplasty (PK) for a moderate-risk condition (principally Fuchs' dystrophy or pseudophakic/aphakic corneal edema). Methods. In a subset (n = 591) of Cornea Donor Study participants, postoperative ECD was determined by a central reading center. Various statistical models were considered to estimate the ECD trend longitudinally over 10 years of follow-up. A biexponential model with and without a logarithm transformation was fit using the Gauss-Newton nonlinear least squares algorithm. To account for correlated data, a log-polynomial model was fit using the restricted maximum likelihood method. A sensitivity analysis for the potential bias due to selective dropout was performed using Bayesian analysis techniques. Results. The three models using a logarithm transformation yield similar trends, whereas the model without the transform predicts higher ECD values. The adjustment for selective dropout turns out to be negligible. However, this is possibly due to the relatively low rate of graft failure in this cohort (19% at 10 years). Fuchs' dystrophy and pseudophakic/aphakic corneal edema (PACE) patients had similar ECD decay curves, with the PACE group having slightly higher cell densities by 10 years. Conclusions. Endothelial cell loss after PK can be modeled via a log-polynomial model, which accounts for the correlated data from repeated measures on the same subject. This model is not significantly affected by the selective dropout due to graft failure. Our findings warrant further study on how this may extend to ECD following endothelial keratoplasty. PMID:25425307
A probabilistic method for testing and estimating selection differences between populations
He, Yungang; Wang, Minxian; Huang, Xin; Li, Ran; Xu, Hongyang; Xu, Shuhua; Jin, Li
2015-01-01
Human populations around the world encounter various environmental challenges and, consequently, develop genetic adaptations to different selection forces. Identifying the differences in natural selection between populations is critical for understanding the roles of specific genetic variants in evolutionary adaptation. Although numerous methods have been developed to detect genetic loci under recent directional selection, a probabilistic solution for testing and quantifying selection differences between populations is lacking. Here we report the development of a probabilistic method for testing and estimating selection differences between populations. By use of a probabilistic model of genetic drift and selection, we showed that logarithm odds ratios of allele frequencies provide estimates of the differences in selection coefficients between populations. The estimates approximate a normal distribution, and variance can be estimated using genome-wide variants. This allows us to quantify differences in selection coefficients and to determine the confidence intervals of the estimate. Our work also revealed the link between genetic association testing and hypothesis testing of selection differences. It therefore supplies a solution for hypothesis testing of selection differences. This method was applied to a genome-wide data analysis of Han and Tibetan populations. The results confirmed that both the EPAS1 and EGLN1 genes are under statistically different selection in Han and Tibetan populations. We further estimated differences in the selection coefficients for genetic variants involved in melanin formation and determined their confidence intervals between continental population groups. Application of the method to empirical data demonstrated the outstanding capability of this novel approach for testing and quantifying differences in natural selection. PMID:26463656
Mapping landslide susceptibility using data-driven methods.
Zêzere, J L; Pereira, S; Melo, R; Oliveira, S C; Garcia, R A C
2017-07-01
Most epistemic uncertainty within data-driven landslide susceptibility assessment results from errors in landslide inventories, difficulty in identifying and mapping landslide causes and decisions related with the modelling procedure. In this work we evaluate and discuss differences observed on landslide susceptibility maps resulting from: (i) the selection of the statistical method; (ii) the selection of the terrain mapping unit; and (iii) the selection of the feature type to represent landslides in the model (polygon versus point). The work is performed in a single study area (Silveira Basin - 18.2km 2 - Lisbon Region, Portugal) using a unique database of geo-environmental landslide predisposing factors and an inventory of 82 shallow translational slides. The logistic regression, the discriminant analysis and two versions of the information value were used and we conclude that multivariate statistical methods perform better when computed over heterogeneous terrain units and should be selected to assess landslide susceptibility based on slope terrain units, geo-hydrological terrain units or census terrain units. However, evidence was found that the chosen terrain mapping unit can produce greater differences on final susceptibility results than those resulting from the chosen statistical method for modelling. The landslide susceptibility should be assessed over grid cell terrain units whenever the spatial accuracy of landslide inventory is good. In addition, a single point per landslide proved to be efficient to generate accurate landslide susceptibility maps, providing the landslides are of small size, thus minimizing the possible existence of heterogeneities of predisposing factors within the landslide boundary. Although during last years the ROC curves have been preferred to evaluate the susceptibility model's performance, evidence was found that the model with the highest AUC ROC is not necessarily the best landslide susceptibility model, namely when terrain mapping units are heterogeneous in size and reduced in number. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Dirks, Melanie A.; De Los Reyes, Andres; Briggs-Gowan, Margaret; Cella, David; Wakschlag, Lauren S.
2012-01-01
This paper examines the selection and use of multiple methods and informants for the assessment of disruptive behavior syndromes and attention deficit/hyperactivity disorder, providing a critical discussion of (a) the bidirectional linkages between theoretical models of childhood psychopathology and current assessment techniques; and (b) current…
How can we model selectively neutral density dependence in evolutionary games.
Argasinski, Krzysztof; Kozłowski, Jan
2008-03-01
The problem of density dependence appears in all approaches to the modelling of population dynamics. It is pertinent to classic models (i.e., Lotka-Volterra's), and also population genetics and game theoretical models related to the replicator dynamics. There is no density dependence in the classic formulation of replicator dynamics, which means that population size may grow to infinity. Therefore the question arises: How is unlimited population growth suppressed in frequency-dependent models? Two categories of solutions can be found in the literature. In the first, replicator dynamics is independent of background fitness. In the second type of solution, a multiplicative suppression coefficient is used, as in a logistic equation. Both approaches have disadvantages. The first one is incompatible with the methods of life history theory and basic probabilistic intuitions. The logistic type of suppression of per capita growth rate stops trajectories of selection when population size reaches the maximal value (carrying capacity); hence this method does not satisfy selective neutrality. To overcome these difficulties, we must explicitly consider turn-over of individuals dependent on mortality rate. This new approach leads to two interesting predictions. First, the equilibrium value of population size is lower than carrying capacity and depends on the mortality rate. Second, although the phase portrait of selection trajectories is the same as in density-independent replicator dynamics, pace of selection slows down when population size approaches equilibrium, and then remains constant and dependent on the rate of turn-over of individuals.
Lu, Yuzhen; Du, Changwen; Yu, Changbing; Zhou, Jianmin
2014-08-01
Fast and non-destructive determination of rapeseed protein content carries significant implications in rapeseed production. This study presented the first attempt of using Fourier transform mid-infrared photoacoustic spectroscopy (FTIR-PAS) to quantify protein content of rapeseed. The full-spectrum model was first built using partial least squares (PLS). Interval selection methods including interval partial least squares (iPLS), synergy interval partial least squares (siPLS), backward elimination interval partial least squares (biPLS) and dynamic backward elimination interval partial least squares (dyn-biPLS) were then employed to select the relevant band or band combination for PLS modeling. The full-spectrum PLS model achieved an ratio of prediction to deviation (RPD) of 2.047. In comparison, all interval selection methods produced better results than full-spectrum modeling. siPLS achieved the best predictive accuracy with an RPD of 3.215 when the spectrum was sectioned into 25 intervals, and two intervals (1198-1335 and 1614-1753 cm(-1) ) were selected. iPLS excelled biPLS and dyn-biPLS, and dyn-biPLS performed slightly better than biPLS. FTIR-PAS was verified as a promising analytical tool to quantify rapeseed protein content. Interval selection could extract the relevant individual band or synergy band associated with the sample constituent of interest, and then improve the prediction accuracy of the full-spectrum model. © 2013 Society of Chemical Industry.
A polynomial based model for cell fate prediction in human diseases.
Ma, Lichun; Zheng, Jie
2017-12-21
Cell fate regulation directly affects tissue homeostasis and human health. Research on cell fate decision sheds light on key regulators, facilitates understanding the mechanisms, and suggests novel strategies to treat human diseases that are related to abnormal cell development. In this study, we proposed a polynomial based model to predict cell fate. This model was derived from Taylor series. As a case study, gene expression data of pancreatic cells were adopted to test and verify the model. As numerous features (genes) are available, we employed two kinds of feature selection methods, i.e. correlation based and apoptosis pathway based. Then polynomials of different degrees were used to refine the cell fate prediction function. 10-fold cross-validation was carried out to evaluate the performance of our model. In addition, we analyzed the stability of the resultant cell fate prediction model by evaluating the ranges of the parameters, as well as assessing the variances of the predicted values at randomly selected points. Results show that, within both the two considered gene selection methods, the prediction accuracies of polynomials of different degrees show little differences. Interestingly, the linear polynomial (degree 1 polynomial) is more stable than others. When comparing the linear polynomials based on the two gene selection methods, it shows that although the accuracy of the linear polynomial that uses correlation analysis outcomes is a little higher (achieves 86.62%), the one within genes of the apoptosis pathway is much more stable. Considering both the prediction accuracy and the stability of polynomial models of different degrees, the linear model is a preferred choice for cell fate prediction with gene expression data of pancreatic cells. The presented cell fate prediction model can be extended to other cells, which may be important for basic research as well as clinical study of cell development related diseases.
Jonas, Elisabeth; de Koning, Dirk Jan
Genomic Selection is an important topic in quantitative genetics and breeding. Not only does it allow the full use of current molecular genetic technologies, it stimulates also the development of new methods and models. Genomic selection, if fully implemented in commercial farming, should have a major impact on the productivity of various agricultural systems. But suggested approaches need to be applicable in commercial breeding populations. Many of the published research studies focus on methodologies. We conclude from the reviewed publications, that a stronger focus on strategies for the implementation of genomic selection in advanced breeding lines, introduction of new varieties, hybrids or multi-line crosses is needed. Efforts to find solutions for a better prediction and integration of environmental influences need to continue within applied breeding schemes. Goals of the implementation of genomic selection into crop breeding should be carefully defined and crop breeders in the private sector will play a substantial part in the decision-making process. However, the lack of published results from studies within, or in collaboration with, private companies diminishes the knowledge on the status of genomic selection within applied breeding programmes. Studies on the implementation of genomic selection in plant breeding need to evaluate models and methods with an enhanced emphasis on population-specific requirements and production environments. Adaptation of methods to breeding schemes or changes to breeding programmes for a better integration of genomic selection strategies are needed across species. More openness with a continuous exchange will contribute to successes.
Use of system identification techniques for improving airframe finite element models using test data
NASA Technical Reports Server (NTRS)
Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.
1991-01-01
A method for using system identification techniques to improve airframe finite element models was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.
PconsD: ultra rapid, accurate model quality assessment for protein structure prediction.
Skwark, Marcin J; Elofsson, Arne
2013-07-15
Clustering methods are often needed for accurately assessing the quality of modeled protein structures. Recent blind evaluation of quality assessment methods in CASP10 showed that there is little difference between many different methods as far as ranking models and selecting best model are concerned. When comparing many models, the computational cost of the model comparison can become significant. Here, we present PconsD, a fast, stream-computing method for distance-driven model quality assessment that runs on consumer hardware. PconsD is at least one order of magnitude faster than other methods of comparable accuracy. The source code for PconsD is freely available at http://d.pcons.net/. Supplementary benchmarking data are also available there. arne@bioinfo.se Supplementary data are available at Bioinformatics online.
[RESEARCH PROGRESS OF EXPERIMENTAL ANIMAL MODELS OF AVASCULAR NECROSIS OF FEMORAL HEAD].
Yu, Kaifu; Tan, Hongbo; Xu, Yongqing
2015-12-01
To summarize the current researches and progress on experimental animal models of avascular necrosis of the femoral head. Domestic and internation literature concerning experimental animal models of avascular necrosis of the femoral head was reviewed and analyzed. The methods to prepare the experimental animal models of avascular necrosis of the femoral head can be mainly concluded as traumatic methods (including surgical, physical, and chemical insult), and non-traumatic methods (including steroid, lipopolysaccharide, steroid combined with lipopolysaccharide, steroid combined with horse serum, etc). Each method has both merits and demerits, yet no ideal methods have been developed. There are many methods to prepare the experimental animal models of avascular necrosis of the femoral head, but proper model should be selected based on the aim of research. The establishment of ideal experimental animal models needs further research in future.
NASA Astrophysics Data System (ADS)
Frollo, Ivan; Krafčík, Andrej; Andris, Peter; Přibil, Jiří; Dermek, Tomáš
2015-12-01
Circular samples are the frequent objects of "in-vitro" investigation using imaging method based on magnetic resonance principles. The goal of our investigation is imaging of thin planar layers without using the slide selection procedure, thus only 2D imaging or imaging of selected layers of samples in circular vessels, eppendorf tubes,.. compulsorily using procedure "slide selection". In spite of that the standard imaging methods was used, some specificity arise when mathematical modeling of these procedure is introduced. In the paper several mathematical models were presented that were compared with real experimental results. Circular magnetic samples were placed into the homogenous magnetic field of a low field imager based on nuclear magnetic resonance. For experimental verification an MRI 0.178 Tesla ESAOTE Opera imager was used.
A study for development of aerothermodynamic test model materials and fabrication technique
NASA Technical Reports Server (NTRS)
Dean, W. G.; Connor, L. E.
1972-01-01
A literature survey, materials reformulation and tailoring, fabrication problems, and materials selection and evaluation for fabricating models to be used with the phase-change technique for obtaining quantitative aerodynamic heat transfer data are presented. The study resulted in the selection of two best materials, stycast 2762 FT, and an alumina ceramic. Characteristics of these materials and detailed fabrication methods are presented.
Integrating resource selection information with spatial capture--recapture
Royle, J. Andrew; Chandler, Richard B.; Sun, Catherine C.; Fuller, Angela K.
2013-01-01
4. Finally, we find that SCR models using standard symmetric and stationary encounter probability models may not fully explain variation in encounter probability due to space usage, and therefore produce biased estimates of density when animal space usage is related to resource selection. Consequently, it is important that space usage be taken into consideration, if possible, in studies focused on estimating density using capture–recapture methods.
NASA Astrophysics Data System (ADS)
Seo, Seung Beom; Kim, Young-Oh; Kim, Youngil; Eum, Hyung-Il
2018-04-01
When selecting a subset of climate change scenarios (GCM models), the priority is to ensure that the subset reflects the comprehensive range of possible model results for all variables concerned. Though many studies have attempted to improve the scenario selection, there is a lack of studies that discuss methods to ensure that the results from a subset of climate models contain the same range of uncertainty in hydrologic variables as when all models are considered. We applied the Katsavounidis-Kuo-Zhang (KKZ) algorithm to select a subset of climate change scenarios and demonstrated its ability to reduce the number of GCM models in an ensemble, while the ranges of multiple climate extremes indices were preserved. First, we analyzed the role of 27 ETCCDI climate extremes indices for scenario selection and selected the representative climate extreme indices. Before the selection of a subset, we excluded a few deficient GCM models that could not represent the observed climate regime. Subsequently, we discovered that a subset of GCM models selected by the KKZ algorithm with the representative climate extreme indices could not capture the full potential range of changes in hydrologic extremes (e.g., 3-day peak flow and 7-day low flow) in some regional case studies. However, the application of the KKZ algorithm with a different set of climate indices, which are correlated to the hydrologic extremes, enabled the overcoming of this limitation. Key climate indices, dependent on the hydrologic extremes to be projected, must therefore be determined prior to the selection of a subset of GCM models.
Distinguishing between Selective Sweeps from Standing Variation and from a De Novo Mutation
Peter, Benjamin M.; Huerta-Sanchez, Emilia; Nielsen, Rasmus
2012-01-01
An outstanding question in human genetics has been the degree to which adaptation occurs from standing genetic variation or from de novo mutations. Here, we combine several common statistics used to detect selection in an Approximate Bayesian Computation (ABC) framework, with the goal of discriminating between models of selection and providing estimates of the age of selected alleles and the selection coefficients acting on them. We use simulations to assess the power and accuracy of our method and apply it to seven of the strongest sweeps currently known in humans. We identify two genes, ASPM and PSCA, that are most likely affected by selection on standing variation; and we find three genes, ADH1B, LCT, and EDAR, in which the adaptive alleles seem to have swept from a new mutation. We also confirm evidence of selection for one further gene, TRPV6. In one gene, G6PD, neither neutral models nor models of selective sweeps fit the data, presumably because this locus has been subject to balancing selection. PMID:23071458
An Exploratory Study of the Role of Human Resource Management in Models of Employee Turnover
ERIC Educational Resources Information Center
Ozolina-Ozola, Iveta
2016-01-01
The purpose of this paper is to present the study results of the human resource management role in the voluntary employee turnover models. The mixed methods design was applied. On the basis of the results of the search and evaluation of publications, the 16 models of employee turnover were selected. Applying the method of content analysis, the…
A Simulation Study of Methods for Selecting Subgroup-Specific Doses in Phase I Trials
Morita, Satoshi; Thall, Peter F.; Takeda, Kentaro
2016-01-01
Summary Patient heterogeneity may complicate dose-finding in phase I clinical trials if the dose-toxicity curves differ between subgroups. Conducting separate trials within subgroups may lead to infeasibly small sample sizes in subgroups having low prevalence. Alternatively, it is not obvious how to conduct a single trial while accounting for heterogeneity. To address this problem, we consider a generalization of the continual reassessment method (O’Quigley, et al., 1990) based on a hierarchical Bayesian dose-toxicity model that borrows strength between subgroups under the assumption that the subgroups are exchangeable. We evaluate a design using this model that includes subgroup-specific dose selection and safety rules. A simulation study is presented that includes comparison of this method to three alternative approaches, based on non-hierarchical models, that make different types of assumptions about within-subgroup dose-toxicity curves. The simulations show that the hierarchical model-based method is recommended in settings where the dose-toxicity curves are exchangeable between subgroups. We present practical guidelines for application, and provide computer programs for trial simulation and conduct. PMID:28111916
Adaptive Finite Element Methods for Continuum Damage Modeling
NASA Technical Reports Server (NTRS)
Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.
1995-01-01
The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.
NASA Astrophysics Data System (ADS)
Wöhling, T.; Schöniger, A.; Geiges, A.; Nowak, W.; Gayler, S.
2013-12-01
The objective selection of appropriate models for realistic simulations of coupled soil-plant processes is a challenging task since the processes are complex, not fully understood at larger scales, and highly non-linear. Also, comprehensive data sets are scarce, and measurements are uncertain. In the past decades, a variety of different models have been developed that exhibit a wide range of complexity regarding their approximation of processes in the coupled model compartments. We present a method for evaluating experimental design for maximum confidence in the model selection task. The method considers uncertainty in parameters, measurements and model structures. Advancing the ideas behind Bayesian Model Averaging (BMA), we analyze the changes in posterior model weights and posterior model choice uncertainty when more data are made available. This allows assessing the power of different data types, data densities and data locations in identifying the best model structure from among a suite of plausible models. The models considered in this study are the crop models CERES, SUCROS, GECROS and SPASS, which are coupled to identical routines for simulating soil processes within the modelling framework Expert-N. The four models considerably differ in the degree of detail at which crop growth and root water uptake are represented. Monte-Carlo simulations were conducted for each of these models considering their uncertainty in soil hydraulic properties and selected crop model parameters. Using a Bootstrap Filter (BF), the models were then conditioned on field measurements of soil moisture, matric potential, leaf-area index, and evapotranspiration rates (from eddy-covariance measurements) during a vegetation period of winter wheat at a field site at the Swabian Alb in Southwestern Germany. Following our new method, we derived model weights when using all data or different subsets thereof. We discuss to which degree the posterior mean outperforms the prior mean and all individual posterior models, how informative the data types were for reducing prediction uncertainty of evapotranspiration and deep drainage, and how well the model structure can be identified based on the different data types and subsets. We further analyze the impact of measurement uncertainty und systematic model errors on the effective sample size of the BF and the resulting model weights.
Revisiting negative selection algorithms.
Ji, Zhou; Dasgupta, Dipankar
2007-01-01
This paper reviews the progress of negative selection algorithms, an anomaly/change detection approach in Artificial Immune Systems (AIS). Following its initial model, we try to identify the fundamental characteristics of this family of algorithms and summarize their diversities. There exist various elements in this method, including data representation, coverage estimate, affinity measure, and matching rules, which are discussed for different variations. The various negative selection algorithms are categorized by different criteria as well. The relationship and possible combinations with other AIS or other machine learning methods are discussed. Prospective development and applicability of negative selection algorithms and their influence on related areas are then speculated based on the discussion.
[Study on Application of NIR Spectral Information Screening in Identification of Maca Origin].
Wang, Yuan-zhong; Zhao, Yan-li; Zhang, Ji; Jin, Hang
2016-02-01
Medicinal and edible plant Maca is rich in various nutrients and owns great medicinal value. Based on near infrared diffuse reflectance spectra, 139 Maca samples collected from Peru and Yunnan were used to identify their geographical origins. Multiplication signal correction (MSC) coupled with second derivative (SD) and Norris derivative filter (ND) was employed in spectral pretreatment. Spectrum range (7,500-4,061 cm⁻¹) was chosen by spectrum standard deviation. Combined with principal component analysis-mahalanobis distance (PCA-MD), the appropriate number of principal components was selected as 5. Based on the spectrum range and the number of principal components selected, two abnormal samples were eliminated by modular group iterative singular sample diagnosis method. Then, four methods were used to filter spectral variable information, competitive adaptive reweighted sampling (CARS), monte carlo-uninformative variable elimination (MC-UVE), genetic algorithm (GA) and subwindow permutation analysis (SPA). The spectral variable information filtered was evaluated by model population analysis (MPA). The results showed that RMSECV(SPA) > RMSECV(CARS) > RMSECV(MC-UVE) > RMSECV(GA), were 2. 14, 2. 05, 2. 02, and 1. 98, and the spectral variables were 250, 240, 250 and 70, respectively. According to the spectral variable filtered, partial least squares discriminant analysis (PLS-DA) was used to build the model, with random selection of 97 samples as training set, and the other 40 samples as validation set. The results showed that, R²: GA > MC-UVE > CARS > SPA, RMSEC and RMSEP: GA < MC-UVE < CARS
CONSTRUCTION OF EDUCATIONAL THEORY MODELS.
ERIC Educational Resources Information Center
MACCIA, ELIZABETH S.; AND OTHERS
THIS STUDY DELINEATED MODELS WHICH HAVE POTENTIAL USE IN GENERATING EDUCATIONAL THEORY. A THEORY MODELS METHOD WAS FORMULATED. BY SELECTING AND ORDERING CONCEPTS FROM OTHER DISCIPLINES, THE INVESTIGATORS FORMULATED SEVEN THEORY MODELS. THE FINAL STEP OF DEVISING EDUCATIONAL THEORY FROM THE THEORY MODELS WAS PERFORMED ONLY TO THE EXTENT REQUIRED TO…
Use and interpretation of logistic regression in habitat-selection studies
Keating, Kim A.; Cherry, Steve
2004-01-01
Logistic regression is an important tool for wildlife habitat-selection studies, but the method frequently has been misapplied due to an inadequate understanding of the logistic model, its interpretation, and the influence of sampling design. To promote better use of this method, we review its application and interpretation under 3 sampling designs: random, case-control, and use-availability. Logistic regression is appropriate for habitat use-nonuse studies employing random sampling and can be used to directly model the conditional probability of use in such cases. Logistic regression also is appropriate for studies employing case-control sampling designs, but careful attention is required to interpret results correctly. Unless bias can be estimated or probability of use is small for all habitats, results of case-control studies should be interpreted as odds ratios, rather than probability of use or relative probability of use. When data are gathered under a use-availability design, logistic regression can be used to estimate approximate odds ratios if probability of use is small, at least on average. More generally, however, logistic regression is inappropriate for modeling habitat selection in use-availability studies. In particular, using logistic regression to fit the exponential model of Manly et al. (2002:100) does not guarantee maximum-likelihood estimates, valid probabilities, or valid likelihoods. We show that the resource selection function (RSF) commonly used for the exponential model is proportional to a logistic discriminant function. Thus, it may be used to rank habitats with respect to probability of use and to identify important habitat characteristics or their surrogates, but it is not guaranteed to be proportional to probability of use. Other problems associated with the exponential model also are discussed. We describe an alternative model based on Lancaster and Imbens (1996) that offers a method for estimating conditional probability of use in use-availability studies. Although promising, this model fails to converge to a unique solution in some important situations. Further work is needed to obtain a robust method that is broadly applicable to use-availability studies.
Reciprocity Family Counseling: A Multi-Ethnic Model.
ERIC Educational Resources Information Center
Penrose, David M.
The Reciprocity Family Counseling Method involves learning principles of behavior modification including selective reinforcement, behavioral contracting, self-correction, and over-correction. Selective reinforcement refers to the recognition and modification of parent/child responses and reinforcers. Parents and children are asked to identify…
Efficient Variable Selection Method for Exposure Variables on Binary Data
NASA Astrophysics Data System (ADS)
Ohno, Manabu; Tarumi, Tomoyuki
In this paper, we propose a new variable selection method for "robust" exposure variables. We define "robust" as property that the same variable can select among original data and perturbed data. There are few studies of effective for the selection method. The problem that selects exposure variables is almost the same as a problem that extracts correlation rules without robustness. [Brin 97] is suggested that correlation rules are possible to extract efficiently using chi-squared statistic of contingency table having monotone property on binary data. But the chi-squared value does not have monotone property, so it's is easy to judge the method to be not independent with an increase in the dimension though the variable set is completely independent, and the method is not usable in variable selection for robust exposure variables. We assume anti-monotone property for independent variables to select robust independent variables and use the apriori algorithm for it. The apriori algorithm is one of the algorithms which find association rules from the market basket data. The algorithm use anti-monotone property on the support which is defined by association rules. But independent property does not completely have anti-monotone property on the AIC of independent probability model, but the tendency to have anti-monotone property is strong. Therefore, selected variables with anti-monotone property on the AIC have robustness. Our method judges whether a certain variable is exposure variable for the independent variable using previous comparison of the AIC. Our numerical experiments show that our method can select robust exposure variables efficiently and precisely.
Optimal Tikhonov regularization for DEER spectroscopy
NASA Astrophysics Data System (ADS)
Edwards, Thomas H.; Stoll, Stefan
2018-03-01
Tikhonov regularization is the most commonly used method for extracting distance distributions from experimental double electron-electron resonance (DEER) spectroscopy data. This method requires the selection of a regularization parameter, α , and a regularization operator, L. We analyze the performance of a large set of α selection methods and several regularization operators, using a test set of over half a million synthetic noisy DEER traces. These are generated from distance distributions obtained from in silico double labeling of a protein crystal structure of T4 lysozyme with the spin label MTSSL. We compare the methods and operators based on their ability to recover the model distance distributions from the noisy time traces. The results indicate that several α selection methods perform quite well, among them the Akaike information criterion and the generalized cross validation method with either the first- or second-derivative operator. They perform significantly better than currently utilized L-curve methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blume-Kohout, Robin J; Scholten, Travis L.
Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) shouldmore » not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.« less
Sample selection in foreign similarity regions for multicrop experiments
NASA Technical Reports Server (NTRS)
Malin, J. T. (Principal Investigator)
1981-01-01
The selection of sample segments in the U.S. foreign similarity regions for development of proportion estimation procedures and error modeling for Argentina, Australia, Brazil, and USSR in AgRISTARS is described. Each sample was chosen to be similar in crop mix to the corresponding indicator region sample. Data sets, methods of selection, and resulting samples are discussed.
Simulation of unsteady flows by the DSMC macroscopic chemistry method
NASA Astrophysics Data System (ADS)
Goldsworthy, Mark; Macrossan, Michael; Abdel-jawad, Madhat
2009-03-01
In the Direct Simulation Monte-Carlo (DSMC) method, a combination of statistical and deterministic procedures applied to a finite number of 'simulator' particles are used to model rarefied gas-kinetic processes. In the macroscopic chemistry method (MCM) for DSMC, chemical reactions are decoupled from the specific particle pairs selected for collisions. Information from all of the particles within a cell, not just those selected for collisions, is used to determine a reaction rate coefficient for that cell. Unlike collision-based methods, MCM can be used with any viscosity or non-reacting collision models and any non-reacting energy exchange models. It can be used to implement any reaction rate formulations, whether these be from experimental or theoretical studies. MCM has been previously validated for steady flow DSMC simulations. Here we show how MCM can be used to model chemical kinetics in DSMC simulations of unsteady flow. Results are compared with a collision-based chemistry procedure for two binary reactions in a 1-D unsteady shock-expansion tube simulation. Close agreement is demonstrated between the two methods for instantaneous, ensemble-averaged profiles of temperature, density and species mole fractions, as well as for the accumulated number of net reactions per cell.
Application of GA-SVM method with parameter optimization for landslide development prediction
NASA Astrophysics Data System (ADS)
Li, X. Z.; Kong, J. M.
2013-10-01
Prediction of landslide development process is always a hot issue in landslide research. So far, many methods for landslide displacement series prediction have been proposed. Support vector machine (SVM) has been proved to be a novel algorithm with good performance. However, the performance strongly depends on the right selection of the parameters (C and γ) of SVM model. In this study, we presented an application of GA-SVM method with parameter optimization in landslide displacement rate prediction. We selected a typical large-scale landslide in some hydro - electrical engineering area of Southwest China as a case. On the basis of analyzing the basic characteristics and monitoring data of the landslide, a single-factor GA-SVM model and a multi-factor GA-SVM model of the landslide were built. Moreover, the models were compared with single-factor and multi-factor SVM models of the landslide. The results show that, the four models have high prediction accuracies, but the accuracies of GA-SVM models are slightly higher than those of SVM models and the accuracies of multi-factor models are slightly higher than those of single-factor models for the landslide prediction. The accuracy of the multi-factor GA-SVM models is the highest, with the smallest RSME of 0.0009 and the biggest RI of 0.9992.
Continuous Shape Estimation of Continuum Robots Using X-ray Images
Lobaton, Edgar J.; Fu, Jinghua; Torres, Luis G.; Alterovitz, Ron
2015-01-01
We present a new method for continuously and accurately estimating the shape of a continuum robot during a medical procedure using a small number of X-ray projection images (e.g., radiographs or fluoroscopy images). Continuum robots have curvilinear structure, enabling them to maneuver through constrained spaces by bending around obstacles. Accurately estimating the robot’s shape continuously over time is crucial for the success of procedures that require avoidance of anatomical obstacles and sensitive tissues. Online shape estimation of a continuum robot is complicated by uncertainty in its kinematic model, movement of the robot during the procedure, noise in X-ray images, and the clinical need to minimize the number of X-ray images acquired. Our new method integrates kinematics models of the robot with data extracted from an optimally selected set of X-ray projection images. Our method represents the shape of the continuum robot over time as a deformable surface which can be described as a linear combination of time and space basis functions. We take advantage of probabilistic priors and numeric optimization to select optimal camera configurations, thus minimizing the expected shape estimation error. We evaluate our method using simulated concentric tube robot procedures and demonstrate that obtaining between 3 and 10 images from viewpoints selected by our method enables online shape estimation with errors significantly lower than using the kinematic model alone or using randomly spaced viewpoints. PMID:26279960
Continuous Shape Estimation of Continuum Robots Using X-ray Images.
Lobaton, Edgar J; Fu, Jinghua; Torres, Luis G; Alterovitz, Ron
2013-05-06
We present a new method for continuously and accurately estimating the shape of a continuum robot during a medical procedure using a small number of X-ray projection images (e.g., radiographs or fluoroscopy images). Continuum robots have curvilinear structure, enabling them to maneuver through constrained spaces by bending around obstacles. Accurately estimating the robot's shape continuously over time is crucial for the success of procedures that require avoidance of anatomical obstacles and sensitive tissues. Online shape estimation of a continuum robot is complicated by uncertainty in its kinematic model, movement of the robot during the procedure, noise in X-ray images, and the clinical need to minimize the number of X-ray images acquired. Our new method integrates kinematics models of the robot with data extracted from an optimally selected set of X-ray projection images. Our method represents the shape of the continuum robot over time as a deformable surface which can be described as a linear combination of time and space basis functions. We take advantage of probabilistic priors and numeric optimization to select optimal camera configurations, thus minimizing the expected shape estimation error. We evaluate our method using simulated concentric tube robot procedures and demonstrate that obtaining between 3 and 10 images from viewpoints selected by our method enables online shape estimation with errors significantly lower than using the kinematic model alone or using randomly spaced viewpoints.
Ratcliffe, B; El-Dien, O G; Klápště, J; Porth, I; Chen, C; Jaquish, B; El-Kassaby, Y A
2015-01-01
Genomic selection (GS) potentially offers an unparalleled advantage over traditional pedigree-based selection (TS) methods by reducing the time commitment required to carry out a single cycle of tree improvement. This quality is particularly appealing to tree breeders, where lengthy improvement cycles are the norm. We explored the prospect of implementing GS for interior spruce (Picea engelmannii × glauca) utilizing a genotyped population of 769 trees belonging to 25 open-pollinated families. A series of repeated tree height measurements through ages 3–40 years permitted the testing of GS methods temporally. The genotyping-by-sequencing (GBS) platform was used for single nucleotide polymorphism (SNP) discovery in conjunction with three unordered imputation methods applied to a data set with 60% missing information. Further, three diverse GS models were evaluated based on predictive accuracy (PA), and their marker effects. Moderate levels of PA (0.31–0.55) were observed and were of sufficient capacity to deliver improved selection response over TS. Additionally, PA varied substantially through time accordingly with spatial competition among trees. As expected, temporal PA was well correlated with age-age genetic correlation (r=0.99), and decreased substantially with increasing difference in age between the training and validation populations (0.04–0.47). Moreover, our imputation comparisons indicate that k-nearest neighbor and singular value decomposition yielded a greater number of SNPs and gave higher predictive accuracies than imputing with the mean. Furthermore, the ridge regression (rrBLUP) and BayesCπ (BCπ) models both yielded equal, and better PA than the generalized ridge regression heteroscedastic effect model for the traits evaluated. PMID:26126540
Ratcliffe, B; El-Dien, O G; Klápště, J; Porth, I; Chen, C; Jaquish, B; El-Kassaby, Y A
2015-12-01
Genomic selection (GS) potentially offers an unparalleled advantage over traditional pedigree-based selection (TS) methods by reducing the time commitment required to carry out a single cycle of tree improvement. This quality is particularly appealing to tree breeders, where lengthy improvement cycles are the norm. We explored the prospect of implementing GS for interior spruce (Picea engelmannii × glauca) utilizing a genotyped population of 769 trees belonging to 25 open-pollinated families. A series of repeated tree height measurements through ages 3-40 years permitted the testing of GS methods temporally. The genotyping-by-sequencing (GBS) platform was used for single nucleotide polymorphism (SNP) discovery in conjunction with three unordered imputation methods applied to a data set with 60% missing information. Further, three diverse GS models were evaluated based on predictive accuracy (PA), and their marker effects. Moderate levels of PA (0.31-0.55) were observed and were of sufficient capacity to deliver improved selection response over TS. Additionally, PA varied substantially through time accordingly with spatial competition among trees. As expected, temporal PA was well correlated with age-age genetic correlation (r=0.99), and decreased substantially with increasing difference in age between the training and validation populations (0.04-0.47). Moreover, our imputation comparisons indicate that k-nearest neighbor and singular value decomposition yielded a greater number of SNPs and gave higher predictive accuracies than imputing with the mean. Furthermore, the ridge regression (rrBLUP) and BayesCπ (BCπ) models both yielded equal, and better PA than the generalized ridge regression heteroscedastic effect model for the traits evaluated.
Wang, Kung-Jeng; Makond, Bunjira; Wang, Kung-Min
2013-11-09
Breast cancer is one of the most critical cancers and is a major cause of cancer death among women. It is essential to know the survivability of the patients in order to ease the decision making process regarding medical treatment and financial preparation. Recently, the breast cancer data sets have been imbalanced (i.e., the number of survival patients outnumbers the number of non-survival patients) whereas the standard classifiers are not applicable for the imbalanced data sets. The methods to improve survivability prognosis of breast cancer need for study. Two well-known five-year prognosis models/classifiers [i.e., logistic regression (LR) and decision tree (DT)] are constructed by combining synthetic minority over-sampling technique (SMOTE), cost-sensitive classifier technique (CSC), under-sampling, bagging, and boosting. The feature selection method is used to select relevant variables, while the pruning technique is applied to obtain low information-burden models. These methods are applied on data obtained from the Surveillance, Epidemiology, and End Results database. The improvements of survivability prognosis of breast cancer are investigated based on the experimental results. Experimental results confirm that the DT and LR models combined with SMOTE, CSC, and under-sampling generate higher predictive performance consecutively than the original ones. Most of the time, DT and LR models combined with SMOTE and CSC use less informative burden/features when a feature selection method and a pruning technique are applied. LR is found to have better statistical power than DT in predicting five-year survivability. CSC is superior to SMOTE, under-sampling, bagging, and boosting to improve the prognostic performance of DT and LR.
Overview of SDCM - The Spacecraft Design and Cost Model
NASA Technical Reports Server (NTRS)
Ferebee, Melvin J.; Farmer, Jeffery T.; Andersen, Gregory C.; Flamm, Jeffery D.; Badi, Deborah M.
1988-01-01
The Spacecraft Design and Cost Model (SDCM) is a computer-aided design and analysis tool for synthesizing spacecraft configurations, integrating their subsystems, and generating information concerning on-orbit servicing and costs. SDCM uses a bottom-up method in which the cost and performance parameters for subsystem components are first calculated; the model then sums the contributions from individual components in order to obtain an estimate of sizes and costs for each candidate configuration within a selected spacecraft system. An optimum spacraft configuration can then be selected.
2016-02-10
using bolt hole eddy current (BHEC) techniques. Data was acquired for a wide range of crack sizes and shapes, including mid- bore , corner and through...to select the most appropriate VIC-3D surrogate model for subsequent crack sizing inversion step. Inversion results for select mid- bore , through and...the flaw. 15. SUBJECT TERMS Bolt hole eddy current (BHEC); mid- bore , corner and through-thickness crack types; VIC-3D generated surrogate models
NASA Technical Reports Server (NTRS)
Nakazawa, S.
1988-01-01
This annual status report presents the results of work performed during the fourth year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes permitting more accurate and efficient 3-D analysis of selected hot section components, i.e., combustor liners, turbine blades and turbine vanes. The computer codes embody a progression of math models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. Volume 1 of this report discusses the special finite element models developed during the fourth year of the contract.
Viallon, Vivian; Banerjee, Onureena; Jougla, Eric; Rey, Grégoire; Coste, Joel
2014-03-01
Looking for associations among multiple variables is a topical issue in statistics due to the increasing amount of data encountered in biology, medicine, and many other domains involving statistical applications. Graphical models have recently gained popularity for this purpose in the statistical literature. In the binary case, however, exact inference is generally very slow or even intractable because of the form of the so-called log-partition function. In this paper, we review various approximate methods for structure selection in binary graphical models that have recently been proposed in the literature and compare them through an extensive simulation study. We also propose a modification of one existing method, that is shown to achieve good performance and to be generally very fast. We conclude with an application in which we search for associations among causes of death recorded on French death certificates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
1991-01-01
The technical effort and computer code enhancements performed during the sixth year of the Probabilistic Structural Analysis Methods program are summarized. Various capabilities are described to probabilistically combine structural response and structural resistance to compute component reliability. A library of structural resistance models is implemented in the Numerical Evaluations of Stochastic Structures Under Stress (NESSUS) code that included fatigue, fracture, creep, multi-factor interaction, and other important effects. In addition, a user interface was developed for user-defined resistance models. An accurate and efficient reliability method was developed and was successfully implemented in the NESSUS code to compute component reliability based on user-selected response and resistance models. A risk module was developed to compute component risk with respect to cost, performance, or user-defined criteria. The new component risk assessment capabilities were validated and demonstrated using several examples. Various supporting methodologies were also developed in support of component risk assessment.
Protein construct storage: Bayesian variable selection and prediction with mixtures.
Clyde, M A; Parmigiani, G
1998-07-01
Determining optimal conditions for protein storage while maintaining a high level of protein activity is an important question in pharmaceutical research. A designed experiment based on a space-filling design was conducted to understand the effects of factors affecting protein storage and to establish optimal storage conditions. Different model-selection strategies to identify important factors may lead to very different answers about optimal conditions. Uncertainty about which factors are important, or model uncertainty, can be a critical issue in decision-making. We use Bayesian variable selection methods for linear models to identify important variables in the protein storage data, while accounting for model uncertainty. We also use the Bayesian framework to build predictions based on a large family of models, rather than an individual model, and to evaluate the probability that certain candidate storage conditions are optimal.
McDevitt, Roland D; Haviland, Amelia M; Lore, Ryan; Laudenberger, Laura; Eisenberg, Matthew; Sood, Neeraj
2014-01-01
Objective To identify the degree of selection into consumer-directed health plans (CDHPs) versus traditional plans over time, and factors that influence choice and temper risk selection. Data Sources/Study Setting Sixteen large employers offering both CDHP and traditional plans during the 2004–2007 period, more than 200,000 families. Study Design We model CDHP choice with logistic regression; predictors include risk scores, in addition to family, choice setting, and plan characteristics. Additional models stratify by account type or single enrollee versus family. Data Collection/Extraction Methods Risk scores, family characteristics, and enrollment decisions are derived from medical claims and enrollment files. Interviews with human resources executives provide additional data. Principal Findings CDHP risk scores were 74 percent of traditional plan scores in the first year, and this difference declined over time. Employer contributions to accounts and employee premium savings fostered CDHP enrollment and reduced risk selection. Having to make an active choice of plan increased CDHP enrollment but also increased risk selection. Risk selection was greater for singles than families and did not differ between HRA and HSA-based CDHPs. Conclusions Risk selection was not severe and it was well managed. Employers have effective methods to encourage CDHP enrollment and temper selection against traditional plans. PMID:24800305
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Y; Li, T; Yoo, S
2016-06-15
Purpose: To enable near-real-time (<20sec) and interactive planning without compromising quality for whole breast RT treatment planning using tangential fields. Methods: Whole breast RT plans from 20 patients treated with single energy (SE, 6MV, 10 patients) or mixed energy (ME, 6/15MV, 10 patients) were randomly selected for model training. Additional 20 cases were used as validation cohort. The planning process for a new case consists of three fully automated steps:1. Energy Selection. A classification model automatically selects energy level. To build the energy selection model, principle component analysis (PCA) was applied to the digital reconstructed radiographs (DRRs) of training casesmore » to extract anatomy-energy relationship.2. Fluence Estimation. Once energy is selected, a random forest (RF) model generates the initial fluence. This model summarizes the relationship between patient anatomy’s shape based features and the output fluence. 3. Fluence Fine-tuning. This step balances the overall dose contribution throughout the whole breast tissue by automatically selecting reference points and applying centrality correction. Fine-tuning works at beamlet-level until the dose distribution meets clinical objectives. Prior to finalization, physicians can also make patient-specific trade-offs between target coverage and high-dose volumes.The proposed method was validated by comparing auto-plans with manually generated clinical-plans using Wilcoxon Signed-Rank test. Results: In 19/20 cases the model suggested the same energy combination as clinical-plans. The target volume coverage V100% was 78.1±4.7% for auto-plans, and 79.3±4.8% for clinical-plans (p=0.12). Volumes receiving 105% Rx were 69.2±78.0cc for auto-plans compared to 83.9±87.2cc for clinical-plans (p=0.13). The mean V10Gy, V20Gy of the ipsilateral lung was 24.4±6.7%, 18.6±6.0% for auto plans and 24.6±6.7%, 18.9±6.1% for clinical-plans (p=0.04, <0.001). Total computational time for auto-plans was < 20s. Conclusion: We developed an automated method that generates breast radiotherapy plans with accurate energy selection, similar target volume coverage, reduced hotspot volumes, and significant reduction in planning time, allowing for near-real-time planning.« less
Semisupervised Clustering by Iterative Partition and Regression with Neuroscience Applications
Qian, Guoqi; Wu, Yuehua; Ferrari, Davide; Qiao, Puxue; Hollande, Frédéric
2016-01-01
Regression clustering is a mixture of unsupervised and supervised statistical learning and data mining method which is found in a wide range of applications including artificial intelligence and neuroscience. It performs unsupervised learning when it clusters the data according to their respective unobserved regression hyperplanes. The method also performs supervised learning when it fits regression hyperplanes to the corresponding data clusters. Applying regression clustering in practice requires means of determining the underlying number of clusters in the data, finding the cluster label of each data point, and estimating the regression coefficients of the model. In this paper, we review the estimation and selection issues in regression clustering with regard to the least squares and robust statistical methods. We also provide a model selection based technique to determine the number of regression clusters underlying the data. We further develop a computing procedure for regression clustering estimation and selection. Finally, simulation studies are presented for assessing the procedure, together with analyzing a real data set on RGB cell marking in neuroscience to illustrate and interpret the method. PMID:27212939
AbdelRahman, Samir E; Zhang, Mingyuan; Bray, Bruce E; Kawamoto, Kensaku
2014-05-27
The aim of this study was to propose an analytical approach to develop high-performing predictive models for congestive heart failure (CHF) readmission using an operational dataset with incomplete records and changing data over time. Our analytical approach involves three steps: pre-processing, systematic model development, and risk factor analysis. For pre-processing, variables that were absent in >50% of records were removed. Moreover, the dataset was divided into a validation dataset and derivation datasets which were separated into three temporal subsets based on changes to the data over time. For systematic model development, using the different temporal datasets and the remaining explanatory variables, the models were developed by combining the use of various (i) statistical analyses to explore the relationships between the validation and the derivation datasets; (ii) adjustment methods for handling missing values; (iii) classifiers; (iv) feature selection methods; and (iv) discretization methods. We then selected the best derivation dataset and the models with the highest predictive performance. For risk factor analysis, factors in the highest-performing predictive models were analyzed and ranked using (i) statistical analyses of the best derivation dataset, (ii) feature rankers, and (iii) a newly developed algorithm to categorize risk factors as being strong, regular, or weak. The analysis dataset consisted of 2,787 CHF hospitalizations at University of Utah Health Care from January 2003 to June 2013. In this study, we used the complete-case analysis and mean-based imputation adjustment methods; the wrapper subset feature selection method; and four ranking strategies based on information gain, gain ratio, symmetrical uncertainty, and wrapper subset feature evaluators. The best-performing models resulted from the use of a complete-case analysis derivation dataset combined with the Class-Attribute Contingency Coefficient discretization method and a voting classifier which averaged the results of multi-nominal logistic regression and voting feature intervals classifiers. Of 42 final model risk factors, discharge disposition, discretized age, and indicators of anemia were the most significant. This model achieved a c-statistic of 86.8%. The proposed three-step analytical approach enhanced predictive model performance for CHF readmissions. It could potentially be leveraged to improve predictive model performance in other areas of clinical medicine.
The effect of call libraries and acoustic filters on the identification of bat echolocation.
Clement, Matthew J; Murray, Kevin L; Solick, Donald I; Gruver, Jeffrey C
2014-09-01
Quantitative methods for species identification are commonly used in acoustic surveys for animals. While various identification models have been studied extensively, there has been little study of methods for selecting calls prior to modeling or methods for validating results after modeling. We obtained two call libraries with a combined 1556 pulse sequences from 11 North American bat species. We used four acoustic filters to automatically select and quantify bat calls from the combined library. For each filter, we trained a species identification model (a quadratic discriminant function analysis) and compared the classification ability of the models. In a separate analysis, we trained a classification model using just one call library. We then compared a conventional model assessment that used the training library against an alternative approach that used the second library. We found that filters differed in the share of known pulse sequences that were selected (68 to 96%), the share of non-bat noises that were excluded (37 to 100%), their measurement of various pulse parameters, and their overall correct classification rate (41% to 85%). Although the top two filters did not differ significantly in overall correct classification rate (85% and 83%), rates differed significantly for some bat species. In our assessment of call libraries, overall correct classification rates were significantly lower (15% to 23% lower) when tested on the second call library instead of the training library. Well-designed filters obviated the need for subjective and time-consuming manual selection of pulses. Accordingly, researchers should carefully design and test filters and include adequate descriptions in publications. Our results also indicate that it may not be possible to extend inferences about model accuracy beyond the training library. If so, the accuracy of acoustic-only surveys may be lower than commonly reported, which could affect ecological understanding or management decisions based on acoustic surveys.
The effect of call libraries and acoustic filters on the identification of bat echolocation
Clement, Matthew J; Murray, Kevin L; Solick, Donald I; Gruver, Jeffrey C
2014-01-01
Quantitative methods for species identification are commonly used in acoustic surveys for animals. While various identification models have been studied extensively, there has been little study of methods for selecting calls prior to modeling or methods for validating results after modeling. We obtained two call libraries with a combined 1556 pulse sequences from 11 North American bat species. We used four acoustic filters to automatically select and quantify bat calls from the combined library. For each filter, we trained a species identification model (a quadratic discriminant function analysis) and compared the classification ability of the models. In a separate analysis, we trained a classification model using just one call library. We then compared a conventional model assessment that used the training library against an alternative approach that used the second library. We found that filters differed in the share of known pulse sequences that were selected (68 to 96%), the share of non-bat noises that were excluded (37 to 100%), their measurement of various pulse parameters, and their overall correct classification rate (41% to 85%). Although the top two filters did not differ significantly in overall correct classification rate (85% and 83%), rates differed significantly for some bat species. In our assessment of call libraries, overall correct classification rates were significantly lower (15% to 23% lower) when tested on the second call library instead of the training library. Well-designed filters obviated the need for subjective and time-consuming manual selection of pulses. Accordingly, researchers should carefully design and test filters and include adequate descriptions in publications. Our results also indicate that it may not be possible to extend inferences about model accuracy beyond the training library. If so, the accuracy of acoustic-only surveys may be lower than commonly reported, which could affect ecological understanding or management decisions based on acoustic surveys. PMID:25535563
The effect of call libraries and acoustic filters on the identification of bat echolocation
Clement, Matthew; Murray, Kevin L; Solick, Donald I; Gruver, Jeffrey C
2014-01-01
Quantitative methods for species identification are commonly used in acoustic surveys for animals. While various identification models have been studied extensively, there has been little study of methods for selecting calls prior to modeling or methods for validating results after modeling. We obtained two call libraries with a combined 1556 pulse sequences from 11 North American bat species. We used four acoustic filters to automatically select and quantify bat calls from the combined library. For each filter, we trained a species identification model (a quadratic discriminant function analysis) and compared the classification ability of the models. In a separate analysis, we trained a classification model using just one call library. We then compared a conventional model assessment that used the training library against an alternative approach that used the second library. We found that filters differed in the share of known pulse sequences that were selected (68 to 96%), the share of non-bat noises that were excluded (37 to 100%), their measurement of various pulse parameters, and their overall correct classification rate (41% to 85%). Although the top two filters did not differ significantly in overall correct classification rate (85% and 83%), rates differed significantly for some bat species. In our assessment of call libraries, overall correct classification rates were significantly lower (15% to 23% lower) when tested on the second call library instead of the training library. Well-designed filters obviated the need for subjective and time-consuming manual selection of pulses. Accordingly, researchers should carefully design and test filters and include adequate descriptions in publications. Our results also indicate that it may not be possible to extend inferences about model accuracy beyond the training library. If so, the accuracy of acoustic-only surveys may be lower than commonly reported, which could affect ecological understanding or management decisions based on acoustic surveys.
Zhou, Hongyi; Skolnick, Jeffrey
2009-01-01
In this work, we develop a fully automated method for the quality assessment prediction of protein structural models generated by structure prediction approaches such as fold recognition servers, or ab initio methods. The approach is based on fragment comparisons and a consensus Cα contact potential derived from the set of models to be assessed and was tested on CASP7 server models. The average Pearson linear correlation coefficient between predicted quality and model GDT-score per target is 0.83 for the 98 targets which is better than those of other quality assessment methods that participated in CASP7. Our method also outperforms the other methods by about 3% as assessed by the total GDT-score of the selected top models. PMID:18004783
Composite load spectra for select space propulsion structural components
NASA Technical Reports Server (NTRS)
Newell, J. F.; Ho, H. W.; Kurth, R. E.
1991-01-01
The work performed to develop composite load spectra (CLS) for the Space Shuttle Main Engine (SSME) using probabilistic methods. The three methods were implemented to be the engine system influence model. RASCAL was chosen to be the principal method as most component load models were implemented with the method. Validation of RASCAL was performed. High accuracy comparable to the Monte Carlo method can be obtained if a large enough bin size is used. Generic probabilistic models were developed and implemented for load calculations using the probabilistic methods discussed above. Each engine mission, either a real fighter or a test, has three mission phases: the engine start transient phase, the steady state phase, and the engine cut off transient phase. Power level and engine operating inlet conditions change during a mission. The load calculation module provides the steady-state and quasi-steady state calculation procedures with duty-cycle-data option. The quasi-steady state procedure is for engine transient phase calculations. In addition, a few generic probabilistic load models were also developed for specific conditions. These include the fixed transient spike model, the poison arrival transient spike model, and the rare event model. These generic probabilistic load models provide sufficient latitude for simulating loads with specific conditions. For SSME components, turbine blades, transfer ducts, LOX post, and the high pressure oxidizer turbopump (HPOTP) discharge duct were selected for application of the CLS program. They include static pressure loads and dynamic pressure loads for all four components, centrifugal force for the turbine blade, temperatures of thermal loads for all four components, and structural vibration loads for the ducts and LOX posts.
NASA Astrophysics Data System (ADS)
Verfaillie, Deborah; Déqué, Michel; Morin, Samuel; Lafaysse, Matthieu
2017-11-01
We introduce the method ADAMONT v1.0 to adjust and disaggregate daily climate projections from a regional climate model (RCM) using an observational dataset at hourly time resolution. The method uses a refined quantile mapping approach for statistical adjustment and an analogous method for sub-daily disaggregation. The method ultimately produces adjusted hourly time series of temperature, precipitation, wind speed, humidity, and short- and longwave radiation, which can in turn be used to force any energy balance land surface model. While the method is generic and can be employed for any appropriate observation time series, here we focus on the description and evaluation of the method in the French mountainous regions. The observational dataset used here is the SAFRAN meteorological reanalysis, which covers the entire French Alps split into 23 massifs, within which meteorological conditions are provided for several 300 m elevation bands. In order to evaluate the skills of the method itself, it is applied to the ALADIN-Climate v5 RCM using the ERA-Interim reanalysis as boundary conditions, for the time period from 1980 to 2010. Results of the ADAMONT method are compared to the SAFRAN reanalysis itself. Various evaluation criteria are used for temperature and precipitation but also snow depth, which is computed by the SURFEX/ISBA-Crocus model using the meteorological driving data from either the adjusted RCM data or the SAFRAN reanalysis itself. The evaluation addresses in particular the time transferability of the method (using various learning/application time periods), the impact of the RCM grid point selection procedure for each massif/altitude band configuration, and the intervariable consistency of the adjusted meteorological data generated by the method. Results show that the performance of the method is satisfactory, with similar or even better evaluation metrics than alternative methods. However, results for air temperature are generally better than for precipitation. Results in terms of snow depth are satisfactory, which can be viewed as indicating a reasonably good intervariable consistency of the meteorological data produced by the method. In terms of temporal transferability (evaluated over time periods of 15 years only), results depend on the learning period. In terms of RCM grid point selection technique, the use of a complex RCM grid points selection technique, taking into account horizontal but also altitudinal proximity to SAFRAN massif centre points/altitude couples, generally degrades evaluation metrics for high altitudes compared to a simpler grid point selection method based on horizontal distance.
A novel feature ranking method for prediction of cancer stages using proteomics data
Saghapour, Ehsan; Sehhati, Mohammadreza
2017-01-01
Proteomic analysis of cancers' stages has provided new opportunities for the development of novel, highly sensitive diagnostic tools which helps early detection of cancer. This paper introduces a new feature ranking approach called FRMT. FRMT is based on the Technique for Order of Preference by Similarity to Ideal Solution method (TOPSIS) which select the most discriminative proteins from proteomics data for cancer staging. In this approach, outcomes of 10 feature selection techniques were combined by TOPSIS method, to select the final discriminative proteins from seven different proteomic databases of protein expression profiles. In the proposed workflow, feature selection methods and protein expressions have been considered as criteria and alternatives in TOPSIS, respectively. The proposed method is tested on seven various classifier models in a 10-fold cross validation procedure that repeated 30 times on the seven cancer datasets. The obtained results proved the higher stability and superior classification performance of method in comparison with other methods, and it is less sensitive to the applied classifier. Moreover, the final introduced proteins are informative and have the potential for application in the real medical practice. PMID:28934234
Estimate of within population incremental selection through branch imbalance in lineage trees
Liberman, Gilad; Benichou, Jennifer I.C.; Maman, Yaakov; Glanville, Jacob; Alter, Idan; Louzoun, Yoram
2016-01-01
Incremental selection within a population, defined as limited fitness changes following mutation, is an important aspect of many evolutionary processes. Strongly advantageous or deleterious mutations are detected using the synonymous to non-synonymous mutations ratio. However, there are currently no precise methods to estimate incremental selection. We here provide for the first time such a detailed method and show its precision in multiple cases of micro-evolution. The proposed method is a novel mixed lineage tree/sequence based method to detect within population selection as defined by the effect of mutations on the average number of offspring. Specifically, we propose to measure the log of the ratio between the number of leaves in lineage trees branches following synonymous and non-synonymous mutations. The method requires a high enough number of sequences, and a large enough number of independent mutations. It assumes that all mutations are independent events. It does not require of a baseline model and is practically not affected by sampling biases. We show the method's wide applicability by testing it on multiple cases of micro-evolution. We show that it can detect genes and inter-genic regions using the selection rate and detect selection pressures in viral proteins and in the immune response to pathogens. PMID:26586802
An analytical framework to assist decision makers in the use of forest ecosystem model predictions
Larocque, Guy R.; Bhatti, Jagtar S.; Ascough, J.C.; Liu, J.; Luckai, N.; Mailly, D.; Archambault, L.; Gordon, Andrew M.
2011-01-01
The predictions from most forest ecosystem models originate from deterministic simulations. However, few evaluation exercises for model outputs are performed by either model developers or users. This issue has important consequences for decision makers using these models to develop natural resource management policies, as they cannot evaluate the extent to which predictions stemming from the simulation of alternative management scenarios may result in significant environmental or economic differences. Various numerical methods, such as sensitivity/uncertainty analyses, or bootstrap methods, may be used to evaluate models and the errors associated with their outputs. However, the application of each of these methods carries unique challenges which decision makers do not necessarily understand; guidance is required when interpreting the output generated from each model. This paper proposes a decision flow chart in the form of an analytical framework to help decision makers apply, in an orderly fashion, different steps involved in examining the model outputs. The analytical framework is discussed with regard to the definition of problems and objectives and includes the following topics: model selection, identification of alternatives, modelling tasks and selecting alternatives for developing policy or implementing management scenarios. Its application is illustrated using an on-going exercise in developing silvicultural guidelines for a forest management enterprise in Ontario, Canada.
Parameter Estimation and Model Selection in Computational Biology
Lillacci, Gabriele; Khammash, Mustafa
2010-01-01
A central challenge in computational modeling of biological systems is the determination of the model parameters. Typically, only a fraction of the parameters (such as kinetic rate constants) are experimentally measured, while the rest are often fitted. The fitting process is usually based on experimental time course measurements of observables, which are used to assign parameter values that minimize some measure of the error between these measurements and the corresponding model prediction. The measurements, which can come from immunoblotting assays, fluorescent markers, etc., tend to be very noisy and taken at a limited number of time points. In this work we present a new approach to the problem of parameter selection of biological models. We show how one can use a dynamic recursive estimator, known as extended Kalman filter, to arrive at estimates of the model parameters. The proposed method follows. First, we use a variation of the Kalman filter that is particularly well suited to biological applications to obtain a first guess for the unknown parameters. Secondly, we employ an a posteriori identifiability test to check the reliability of the estimates. Finally, we solve an optimization problem to refine the first guess in case it should not be accurate enough. The final estimates are guaranteed to be statistically consistent with the measurements. Furthermore, we show how the same tools can be used to discriminate among alternate models of the same biological process. We demonstrate these ideas by applying our methods to two examples, namely a model of the heat shock response in E. coli, and a model of a synthetic gene regulation system. The methods presented are quite general and may be applied to a wide class of biological systems where noisy measurements are used for parameter estimation or model selection. PMID:20221262
Women's Preferences for Penis Size: A New Research Method Using Selection among 3D Models
Park, Jaymie; Leung, Shannon
2015-01-01
Women’s preferences for penis size may affect men’s comfort with their own bodies and may have implications for sexual health. Studies of women’s penis size preferences typically have relied on their abstract ratings or selecting amongst 2D, flaccid images. This study used haptic stimuli to allow assessment of women’s size recall accuracy for the first time, as well as examine their preferences for erect penis sizes in different relationship contexts. Women (N = 75) selected amongst 33, 3D models. Women recalled model size accurately using this method, although they made more errors with respect to penis length than circumference. Women preferred a penis of slightly larger circumference and length for one-time (length = 6.4 inches/16.3 cm, circumference = 5.0 inches/12.7 cm) versus long-term (length = 6.3 inches/16.0 cm, circumference = 4.8 inches/12.2 cm) sexual partners. These first estimates of erect penis size preferences using 3D models suggest women accurately recall size and prefer penises only slightly larger than average. PMID:26332467
Women's Preferences for Penis Size: A New Research Method Using Selection among 3D Models.
Prause, Nicole; Park, Jaymie; Leung, Shannon; Miller, Geoffrey
2015-01-01
Women's preferences for penis size may affect men's comfort with their own bodies and may have implications for sexual health. Studies of women's penis size preferences typically have relied on their abstract ratings or selecting amongst 2D, flaccid images. This study used haptic stimuli to allow assessment of women's size recall accuracy for the first time, as well as examine their preferences for erect penis sizes in different relationship contexts. Women (N = 75) selected amongst 33, 3D models. Women recalled model size accurately using this method, although they made more errors with respect to penis length than circumference. Women preferred a penis of slightly larger circumference and length for one-time (length = 6.4 inches/16.3 cm, circumference = 5.0 inches/12.7 cm) versus long-term (length = 6.3 inches/16.0 cm, circumference = 4.8 inches/12.2 cm) sexual partners. These first estimates of erect penis size preferences using 3D models suggest women accurately recall size and prefer penises only slightly larger than average.
A LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR (LASSO) FOR NONLINEAR SYSTEM IDENTIFICATION
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.; Lofberg, Johan; Brenner, Martin J.
2006-01-01
Identification of parametric nonlinear models involves estimating unknown parameters and detecting its underlying structure. Structure computation is concerned with selecting a subset of parameters to give a parsimonious description of the system which may afford greater insight into the functionality of the system or a simpler controller design. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of nonlinear systems. The LASSO minimises the residual sum of squares by the addition of a 1 penalty term on the parameter vector of the traditional 2 minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudolinear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. The performance of this LASSO structure detection method was evaluated by using it to estimate the structure of a nonlinear polynomial model. Applicability of the method to more complex systems such as those encountered in aerospace applications was shown by identifying a parsimonious system description of the F/A-18 Active Aeroelastic Wing using flight test data.
A modified estimation distribution algorithm based on extreme elitism.
Gao, Shujun; de Silva, Clarence W
2016-12-01
An existing estimation distribution algorithm (EDA) with univariate marginal Gaussian model was improved by designing and incorporating an extreme elitism selection method. This selection method highlighted the effect of a few top best solutions in the evolution and advanced EDA to form a primary evolution direction and obtain a fast convergence rate. Simultaneously, this selection can also keep the population diversity to make EDA avoid premature convergence. Then the modified EDA was tested by means of benchmark low-dimensional and high-dimensional optimization problems to illustrate the gains in using this extreme elitism selection. Besides, no-free-lunch theorem was implemented in the analysis of the effect of this new selection on EDAs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Genetic algorithms and their use in Geophysical Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Paul B.
1999-04-01
Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or ''fittest'' models from a ''population'' and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show thatmore » certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Optimal efficiency is usually achieved with smaller (< 50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (> 2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free parameters and with computationally expensive objective function calculations. More sophisticated techniques are presented for special problems. Niching and island model algorithms are introduced as methods to find multiple, distinct solutions to the nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are investigated as a way to improve the efficiency of the standard genetic algorithm.« less
Genetic algorithms and their use in geophysical problems
NASA Astrophysics Data System (ADS)
Parker, Paul Bradley
Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or "fittest" models from a "population" and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show that certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Also, optimal efficiency is usually achieved with smaller (<50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (>2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free parameters and with computationally expensive objective function calculations. More sophisticated techniques are presented for special problems. Niching and island model algorithms are introduced as methods to find multiple, distinct solutions to the nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are investigated as a way to improve the efficiency of the standard genetic algorithm.
V2.1.4 L2AS Detailed Release Description September 27, 2001
Atmospheric Science Data Center
2013-03-14
... 27, 2001 Algorithm Changes Change method of selecting radiance pixels to use in aerosol retrieval over ... het. surface retrieval algorithm over areas of 100% dark water. Modify algorithm for selecting a default aerosol model to use in ...
Analyzing Association Mapping in Pedigree-Based GWAS Using a Penalized Multitrait Mixed Model
Liu, Jin; Yang, Can; Shi, Xingjie; Li, Cong; Huang, Jian; Zhao, Hongyu; Ma, Shuangge
2017-01-01
Genome-wide association studies (GWAS) have led to the identification of many genetic variants associated with complex diseases in the past 10 years. Penalization methods, with significant numerical and statistical advantages, have been extensively adopted in analyzing GWAS. This study has been partly motivated by the analysis of Genetic Analysis Workshop (GAW) 18 data, which have two notable characteristics. First, the subjects are from a small number of pedigrees and hence related. Second, for each subject, multiple correlated traits have been measured. Most of the existing penalization methods assume independence between subjects and traits and can be suboptimal. There are a few methods in the literature based on mixed modeling that can accommodate correlations. However, they cannot fully accommodate the two types of correlations while conducting effective marker selection. In this study, we develop a penalized multitrait mixed modeling approach. It accommodates the two different types of correlations and includes several existing methods as special cases. Effective penalization is adopted for marker selection. Simulation demonstrates its satisfactory performance. The GAW 18 data are analyzed using the proposed method. PMID:27247027
Wójcicki, Tomasz; Nowicki, Michał
2016-01-01
The article presents a selected area of research and development concerning the methods of material analysis based on the automatic image recognition of the investigated metallographic sections. The objectives of the analyses of the materials for gas nitriding technology are described. The methods of the preparation of nitrided layers, the steps of the process and the construction and operation of devices for gas nitriding are given. We discuss the possibility of using the methods of digital images processing in the analysis of the materials, as well as their essential task groups: improving the quality of the images, segmentation, morphological transformations and image recognition. The developed analysis model of the nitrided layers formation, covering image processing and analysis techniques, as well as selected methods of artificial intelligence are presented. The model is divided into stages, which are formalized in order to better reproduce their actions. The validation of the presented method is performed. The advantages and limitations of the developed solution, as well as the possibilities of its practical use, are listed. PMID:28773389
VARIABLE SELECTION IN NONPARAMETRIC ADDITIVE MODELS
Huang, Jian; Horowitz, Joel L.; Wei, Fengrong
2010-01-01
We consider a nonparametric additive model of a conditional mean function in which the number of variables and additive components may be larger than the sample size but the number of nonzero additive components is “small” relative to the sample size. The statistical problem is to determine which additive components are nonzero. The additive components are approximated by truncated series expansions with B-spline bases. With this approximation, the problem of component selection becomes that of selecting the groups of coefficients in the expansion. We apply the adaptive group Lasso to select nonzero components, using the group Lasso to obtain an initial estimator and reduce the dimension of the problem. We give conditions under which the group Lasso selects a model whose number of components is comparable with the underlying model, and the adaptive group Lasso selects the nonzero components correctly with probability approaching one as the sample size increases and achieves the optimal rate of convergence. The results of Monte Carlo experiments show that the adaptive group Lasso procedure works well with samples of moderate size. A data example is used to illustrate the application of the proposed method. PMID:21127739
Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions
NASA Astrophysics Data System (ADS)
Tsaur, Ruey-Chyn
2015-02-01
In the finance market, a short-term investment strategy is usually applied in portfolio selection in order to reduce investment risk; however, the economy is uncertain and the investment period is short. Further, an investor has incomplete information for selecting a portfolio with crisp proportions for each chosen security. In this paper we present a new method of constructing fuzzy portfolio model for the parameters of fuzzy-input return rates and fuzzy-output proportions, based on possibilistic mean-standard deviation models. Furthermore, we consider both excess or shortage of investment in different economic periods by using fuzzy constraint for the sum of the fuzzy proportions, and we also refer to risks of securities investment and vagueness of incomplete information during the period of depression economics for the portfolio selection. Finally, we present a numerical example of a portfolio selection problem to illustrate the proposed model and a sensitivity analysis is realised based on the results.
Statistical density modification using local pattern matching
Terwilliger, Thomas C.
2007-01-23
A computer implemented method modifies an experimental electron density map. A set of selected known experimental and model electron density maps is provided and standard templates of electron density are created from the selected experimental and model electron density maps by clustering and averaging values of electron density in a spherical region about each point in a grid that defines each selected known experimental and model electron density maps. Histograms are also created from the selected experimental and model electron density maps that relate the value of electron density at the center of each of the spherical regions to a correlation coefficient of a density surrounding each corresponding grid point in each one of the standard templates. The standard templates and the histograms are applied to grid points on the experimental electron density map to form new estimates of electron density at each grid point in the experimental electron density map.
Composite Load Spectra for Select Space Propulsion Structural Components
NASA Technical Reports Server (NTRS)
Ho, Hing W.; Newell, James F.
1994-01-01
Generic load models are described with multiple levels of progressive sophistication to simulate the composite (combined) load spectra (CLS) that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades and liquid oxygen (LOX) posts. These generic (coupled) models combine the deterministic models for composite load dynamic, acoustic, high-pressure and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients are then determined using advanced probabilistic simulation methods with and without strategically selected experimental data. The entire simulation process is included in a CLS computer code. Applications of the computer code to various components in conjunction with the PSAM (Probabilistic Structural Analysis Method) to perform probabilistic load evaluation and life prediction evaluations are also described to illustrate the effectiveness of the coupled model approach.
NASA Technical Reports Server (NTRS)
Nakazawa, S.
1987-01-01
This Annual Status Report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes that permit more accurate and efficient three-dimensional analysis of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. This report is presented in two volumes. Volume 1 describes effort performed under Task 4B, Special Finite Element Special Function Models, while Volume 2 concentrates on Task 4C, Advanced Special Functions Models.
Mendes, M P; Ramalho, M A P; Abreu, A F B
2012-04-10
The objective of this study was to compare the BLUP selection method with different selection strategies in F(2:4) and assess the efficiency of this method on the early choice of the best common bean (Phaseolus vulgaris) lines. Fifty-one F(2:4) progenies were produced from a cross between the CVIII8511 x RP-26 lines. A randomized block design was used with 20 replications and one-plant field plots. Character data on plant architecture and grain yield were obtained and then the sum of the standardized variables was estimated for simultaneous selection of both traits. Analysis was carried out by mixed models (BLUP) and the least squares method to compare different selection strategies, like mass selection, stratified mass selection and between and within progeny selection. The progenies selected by BLUP were assessed in advanced generations, always selecting the greatest and smallest sum of the standardized variables. Analyses by the least squares method and BLUP procedure ranked the progenies in the same way. The coincidence of the individuals identified by BLUP and between and within progeny selection was high and of the greatest magnitude when BLUP was compared with mass selection. Although BLUP is the best estimator of genotypic value, its efficiency in the response to long term selection is not different from any of the other methods, because it is also unable to predict the future effect of the progenies x environments interaction. It was inferred that selection success will always depend on the most accurate possible progeny assessment and using alternatives to reduce the progenies x environments interaction effect.