Sample records for model standard error

  1. Estimating standard errors in feature network models.

    PubMed

    Frank, Laurence E; Heiser, Willem J

    2007-05-01

    Feature network models are graphical structures that represent proximity data in a discrete space while using the same formalism that is the basis of least squares methods employed in multidimensional scaling. Existing methods to derive a network model from empirical data only give the best-fitting network and yield no standard errors for the parameter estimates. The additivity properties of networks make it possible to consider the model as a univariate (multiple) linear regression problem with positivity restrictions on the parameters. In the present study, both theoretical and empirical standard errors are obtained for the constrained regression parameters of a network model with known features. The performance of both types of standard error is evaluated using Monte Carlo techniques.

  2. Implementing parallel spreadsheet models for health policy decisions: The impact of unintentional errors on model projections

    PubMed Central

    Bailey, Stephanie L.; Bono, Rose S.; Nash, Denis; Kimmel, April D.

    2018-01-01

    Background Spreadsheet software is increasingly used to implement systems science models informing health policy decisions, both in academia and in practice where technical capacity may be limited. However, spreadsheet models are prone to unintentional errors that may not always be identified using standard error-checking techniques. Our objective was to illustrate, through a methodologic case study analysis, the impact of unintentional errors on model projections by implementing parallel model versions. Methods We leveraged a real-world need to revise an existing spreadsheet model designed to inform HIV policy. We developed three parallel versions of a previously validated spreadsheet-based model; versions differed by the spreadsheet cell-referencing approach (named single cells; column/row references; named matrices). For each version, we implemented three model revisions (re-entry into care; guideline-concordant treatment initiation; immediate treatment initiation). After standard error-checking, we identified unintentional errors by comparing model output across the three versions. Concordant model output across all versions was considered error-free. We calculated the impact of unintentional errors as the percentage difference in model projections between model versions with and without unintentional errors, using +/-5% difference to define a material error. Results We identified 58 original and 4,331 propagated unintentional errors across all model versions and revisions. Over 40% (24/58) of original unintentional errors occurred in the column/row reference model version; most (23/24) were due to incorrect cell references. Overall, >20% of model spreadsheet cells had material unintentional errors. When examining error impact along the HIV care continuum, the percentage difference between versions with and without unintentional errors ranged from +3% to +16% (named single cells), +26% to +76% (column/row reference), and 0% (named matrices). Conclusions Standard error-checking techniques may not identify all errors in spreadsheet-based models. Comparing parallel model versions can aid in identifying unintentional errors and promoting reliable model projections, particularly when resources are limited. PMID:29570737

  3. Implementing parallel spreadsheet models for health policy decisions: The impact of unintentional errors on model projections.

    PubMed

    Bailey, Stephanie L; Bono, Rose S; Nash, Denis; Kimmel, April D

    2018-01-01

    Spreadsheet software is increasingly used to implement systems science models informing health policy decisions, both in academia and in practice where technical capacity may be limited. However, spreadsheet models are prone to unintentional errors that may not always be identified using standard error-checking techniques. Our objective was to illustrate, through a methodologic case study analysis, the impact of unintentional errors on model projections by implementing parallel model versions. We leveraged a real-world need to revise an existing spreadsheet model designed to inform HIV policy. We developed three parallel versions of a previously validated spreadsheet-based model; versions differed by the spreadsheet cell-referencing approach (named single cells; column/row references; named matrices). For each version, we implemented three model revisions (re-entry into care; guideline-concordant treatment initiation; immediate treatment initiation). After standard error-checking, we identified unintentional errors by comparing model output across the three versions. Concordant model output across all versions was considered error-free. We calculated the impact of unintentional errors as the percentage difference in model projections between model versions with and without unintentional errors, using +/-5% difference to define a material error. We identified 58 original and 4,331 propagated unintentional errors across all model versions and revisions. Over 40% (24/58) of original unintentional errors occurred in the column/row reference model version; most (23/24) were due to incorrect cell references. Overall, >20% of model spreadsheet cells had material unintentional errors. When examining error impact along the HIV care continuum, the percentage difference between versions with and without unintentional errors ranged from +3% to +16% (named single cells), +26% to +76% (column/row reference), and 0% (named matrices). Standard error-checking techniques may not identify all errors in spreadsheet-based models. Comparing parallel model versions can aid in identifying unintentional errors and promoting reliable model projections, particularly when resources are limited.

  4. Role-modeling and medical error disclosure: a national survey of trainees.

    PubMed

    Martinez, William; Hickson, Gerald B; Miller, Bonnie M; Doukas, David J; Buckley, John D; Song, John; Sehgal, Niraj L; Deitz, Jennifer; Braddock, Clarence H; Lehmann, Lisa Soleymani

    2014-03-01

    To measure trainees' exposure to negative and positive role-modeling for responding to medical errors and to examine the association between that exposure and trainees' attitudes and behaviors regarding error disclosure. Between May 2011 and June 2012, 435 residents at two large academic medical centers and 1,187 medical students from seven U.S. medical schools received anonymous, electronic questionnaires. The questionnaire asked respondents about (1) experiences with errors, (2) training for responding to errors, (3) behaviors related to error disclosure, (4) exposure to role-modeling for responding to errors, and (5) attitudes regarding disclosure. Using multivariate regression, the authors analyzed whether frequency of exposure to negative and positive role-modeling independently predicted two primary outcomes: (1) attitudes regarding disclosure and (2) nontransparent behavior in response to a harmful error. The response rate was 55% (884/1,622). Training on how to respond to errors had the largest independent, positive effect on attitudes (standardized effect estimate, 0.32, P < .001); negative role-modeling had the largest independent, negative effect (standardized effect estimate, -0.26, P < .001). Positive role-modeling had a positive effect on attitudes (standardized effect estimate, 0.26, P < .001). Exposure to negative role-modeling was independently associated with an increased likelihood of trainees' nontransparent behavior in response to an error (OR 1.37, 95% CI 1.15-1.64; P < .001). Exposure to role-modeling predicts trainees' attitudes and behavior regarding the disclosure of harmful errors. Negative role models may be a significant impediment to disclosure among trainees.

  5. When do latent class models overstate accuracy for diagnostic and other classifiers in the absence of a gold standard?

    PubMed

    Spencer, Bruce D

    2012-06-01

    Latent class models are increasingly used to assess the accuracy of medical diagnostic tests and other classifications when no gold standard is available and the true state is unknown. When the latent class is treated as the true class, the latent class models provide measures of components of accuracy including specificity and sensitivity and their complements, type I and type II error rates. The error rates according to the latent class model differ from the true error rates, however, and empirical comparisons with a gold standard suggest the true error rates often are larger. We investigate conditions under which the true type I and type II error rates are larger than those provided by the latent class models. Results from Uebersax (1988, Psychological Bulletin 104, 405-416) are extended to accommodate random effects and covariates affecting the responses. The results are important for interpreting the results of latent class analyses. An error decomposition is presented that incorporates an error component from invalidity of the latent class model. © 2011, The International Biometric Society.

  6. Statistical models for estimating daily streamflow in Michigan

    USGS Publications Warehouse

    Holtschlag, D.J.; Salehi, Habib

    1992-01-01

    Statistical models for estimating daily streamflow were analyzed for 25 pairs of streamflow-gaging stations in Michigan. Stations were paired by randomly choosing a station operated in 1989 at which 10 or more years of continuous flow data had been collected and at which flow is virtually unregulated; a nearby station was chosen where flow characteristics are similar. Streamflow data from the 25 randomly selected stations were used as the response variables; streamflow data at the nearby stations were used to generate a set of explanatory variables. Ordinary-least squares regression (OLSR) equations, autoregressive integrated moving-average (ARIMA) equations, and transfer function-noise (TFN) equations were developed to estimate the log transform of flow for the 25 randomly selected stations. The precision of each type of equation was evaluated on the basis of the standard deviation of the estimation errors. OLSR equations produce one set of estimation errors; ARIMA and TFN models each produce l sets of estimation errors corresponding to the forecast lead. The lead-l forecast is the estimate of flow l days ahead of the most recent streamflow used as a response variable in the estimation. In this analysis, the standard deviation of lead l ARIMA and TFN forecast errors were generally lower than the standard deviation of OLSR errors for l < 2 days and l < 9 days, respectively. Composite estimates were computed as a weighted average of forecasts based on TFN equations and backcasts (forecasts of the reverse-ordered series) based on ARIMA equations. The standard deviation of composite errors varied throughout the length of the estimation interval and generally was at maximum near the center of the interval. For comparison with OLSR errors, the mean standard deviation of composite errors were computed for intervals of length 1 to 40 days. The mean standard deviation of length-l composite errors were generally less than the standard deviation of the OLSR errors for l < 32 days. In addition, the composite estimates ensure a gradual transition between periods of estimated and measured flows. Model performance among stations of differing model error magnitudes were compared by computing ratios of the mean standard deviation of the length l composite errors to the standard deviation of OLSR errors. The mean error ratio for the set of 25 selected stations was less than 1 for intervals l < 32 days. Considering the frequency characteristics of the length of intervals of estimated record in Michigan, the effective mean error ratio for intervals < 30 days was 0.52. Thus, for intervals of estimation of 1 month or less, the error of the composite estimate is substantially lower than error of the OLSR estimate.

  7. Hedonic price models with omitted variables and measurement errors: a constrained autoregression-structural equation modeling approach with application to urban Indonesia

    NASA Astrophysics Data System (ADS)

    Suparman, Yusep; Folmer, Henk; Oud, Johan H. L.

    2014-01-01

    Omitted variables and measurement errors in explanatory variables frequently occur in hedonic price models. Ignoring these problems leads to biased estimators. In this paper, we develop a constrained autoregression-structural equation model (ASEM) to handle both types of problems. Standard panel data models to handle omitted variables bias are based on the assumption that the omitted variables are time-invariant. ASEM allows handling of both time-varying and time-invariant omitted variables by constrained autoregression. In the case of measurement error, standard approaches require additional external information which is usually difficult to obtain. ASEM exploits the fact that panel data are repeatedly measured which allows decomposing the variance of a variable into the true variance and the variance due to measurement error. We apply ASEM to estimate a hedonic housing model for urban Indonesia. To get insight into the consequences of measurement error and omitted variables, we compare the ASEM estimates with the outcomes of (1) a standard SEM, which does not account for omitted variables, (2) a constrained autoregression model, which does not account for measurement error, and (3) a fixed effects hedonic model, which ignores measurement error and time-varying omitted variables. The differences between the ASEM estimates and the outcomes of the three alternative approaches are substantial.

  8. Scaled test statistics and robust standard errors for non-normal data in covariance structure analysis: a Monte Carlo study.

    PubMed

    Chou, C P; Bentler, P M; Satorra, A

    1991-11-01

    Research studying robustness of maximum likelihood (ML) statistics in covariance structure analysis has concluded that test statistics and standard errors are biased under severe non-normality. An estimation procedure known as asymptotic distribution free (ADF), making no distributional assumption, has been suggested to avoid these biases. Corrections to the normal theory statistics to yield more adequate performance have also been proposed. This study compares the performance of a scaled test statistic and robust standard errors for two models under several non-normal conditions and also compares these with the results from ML and ADF methods. Both ML and ADF test statistics performed rather well in one model and considerably worse in the other. In general, the scaled test statistic seemed to behave better than the ML test statistic and the ADF statistic performed the worst. The robust and ADF standard errors yielded more appropriate estimates of sampling variability than the ML standard errors, which were usually downward biased, in both models under most of the non-normal conditions. ML test statistics and standard errors were found to be quite robust to the violation of the normality assumption when data had either symmetric and platykurtic distributions, or non-symmetric and zero kurtotic distributions.

  9. Toward Joint Hypothesis-Tests Seismic Event Screening Analysis: Ms|mb and Event Depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Dale; Selby, Neil

    2012-08-14

    Well established theory can be used to combine single-phenomenology hypothesis tests into a multi-phenomenology event screening hypothesis test (Fisher's and Tippett's tests). Commonly used standard error in Ms:mb event screening hypothesis test is not fully consistent with physical basis. Improved standard error - Better agreement with physical basis, and correctly partitions error to include Model Error as a component of variance, correctly reduces station noise variance through network averaging. For 2009 DPRK test - Commonly used standard error 'rejects' H0 even with better scaling slope ({beta} = 1, Selby et al.), improved standard error 'fails to rejects' H0.

  10. Error model for the SAO 1969 standard earth.

    NASA Technical Reports Server (NTRS)

    Martin, C. F.; Roy, N. A.

    1972-01-01

    A method is developed for estimating an error model for geopotential coefficients using satellite tracking data. A single station's apparent timing error for each pass is attributed to geopotential errors. The root sum of the residuals for each station also depends on the geopotential errors, and these are used to select an error model. The model chosen is 1/4 of the difference between the SAO M1 and the APL 3.5 geopotential.

  11. Analyzing Multilevel Data: An Empirical Comparison of Parameter Estimates of Hierarchical Linear Modeling and Ordinary Least Squares Regression

    ERIC Educational Resources Information Center

    Rocconi, Louis M.

    2011-01-01

    Hierarchical linear models (HLM) solve the problems associated with the unit of analysis problem such as misestimated standard errors, heterogeneity of regression and aggregation bias by modeling all levels of interest simultaneously. Hierarchical linear modeling resolves the problem of misestimated standard errors by incorporating a unique random…

  12. A Sandwich-Type Standard Error Estimator of SEM Models with Multivariate Time Series

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Chow, Sy-Miin; Ong, Anthony D.

    2011-01-01

    Structural equation models are increasingly used as a modeling tool for multivariate time series data in the social and behavioral sciences. Standard error estimators of SEM models, originally developed for independent data, require modifications to accommodate the fact that time series data are inherently dependent. In this article, we extend a…

  13. Hypothesis Testing Using Factor Score Regression

    PubMed Central

    Devlieger, Ines; Mayer, Axel; Rosseel, Yves

    2015-01-01

    In this article, an overview is given of four methods to perform factor score regression (FSR), namely regression FSR, Bartlett FSR, the bias avoiding method of Skrondal and Laake, and the bias correcting method of Croon. The bias correcting method is extended to include a reliable standard error. The four methods are compared with each other and with structural equation modeling (SEM) by using analytic calculations and two Monte Carlo simulation studies to examine their finite sample characteristics. Several performance criteria are used, such as the bias using the unstandardized and standardized parameterization, efficiency, mean square error, standard error bias, type I error rate, and power. The results show that the bias correcting method, with the newly developed standard error, is the only suitable alternative for SEM. While it has a higher standard error bias than SEM, it has a comparable bias, efficiency, mean square error, power, and type I error rate. PMID:29795886

  14. A Criterion to Control Nonlinear Error in the Mixed-Mode Bending Test

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2002-01-01

    The mixed-mode bending test ha: been widely used to measure delamination toughness and was recently standardized by ASTM as Standard Test Method D6671-01. This simple test is a combination of the standard Mode I (opening) test and a Mode II (sliding) test. This test uses a unidirectional composite test specimen with an artificial delamination subjected to bending loads to characterize when a delamination will extend. When the displacements become large, the linear theory used to analyze the results of the test yields errors in the calcu1ated toughness values. The current standard places no limit on the specimen loading and therefore test data can be created using the standard that are significantly in error. A method of limiting the error that can be incurred in the calculated toughness values is needed. In this paper, nonlinear models of the MMB test are refined. One of the nonlinear models is then used to develop a simple criterion for prescribing conditions where thc nonlinear error will remain below 5%.

  15. Conditional Standard Errors, Reliability and Decision Consistency of Performance Levels Using Polytomous IRT.

    ERIC Educational Resources Information Center

    Wang, Tianyou; And Others

    M. J. Kolen, B. A. Hanson, and R. L. Brennan (1992) presented a procedure for assessing the conditional standard error of measurement (CSEM) of scale scores using a strong true-score model. They also investigated the ways of using nonlinear transformation from number-correct raw score to scale score to equalize the conditional standard error along…

  16. Determinants of Standard Errors of MLEs in Confirmatory Factor Analysis

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Cheng, Ying; Zhang, Wei

    2010-01-01

    This paper studies changes of standard errors (SE) of the normal-distribution-based maximum likelihood estimates (MLE) for confirmatory factor models as model parameters vary. Using logical analysis, simplified formulas and numerical verification, monotonic relationships between SEs and factor loadings as well as unique variances are found.…

  17. Ensemble-type numerical uncertainty information from single model integrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauser, Florian, E-mail: florian.rauser@mpimet.mpg.de; Marotzke, Jochem; Korn, Peter

    2015-07-01

    We suggest an algorithm that quantifies the discretization error of time-dependent physical quantities of interest (goals) for numerical models of geophysical fluid dynamics. The goal discretization error is estimated using a sum of weighted local discretization errors. The key feature of our algorithm is that these local discretization errors are interpreted as realizations of a random process. The random process is determined by the model and the flow state. From a class of local error random processes we select a suitable specific random process by integrating the model over a short time interval at different resolutions. The weights of themore » influences of the local discretization errors on the goal are modeled as goal sensitivities, which are calculated via automatic differentiation. The integration of the weighted realizations of local error random processes yields a posterior ensemble of goal approximations from a single run of the numerical model. From the posterior ensemble we derive the uncertainty information of the goal discretization error. This algorithm bypasses the requirement of detailed knowledge about the models discretization to generate numerical error estimates. The algorithm is evaluated for the spherical shallow-water equations. For two standard test cases we successfully estimate the error of regional potential energy, track its evolution, and compare it to standard ensemble techniques. The posterior ensemble shares linear-error-growth properties with ensembles of multiple model integrations when comparably perturbed. The posterior ensemble numerical error estimates are of comparable size as those of a stochastic physics ensemble.« less

  18. MASTER: a model to improve and standardize clinical breakpoints for antimicrobial susceptibility testing using forecast probabilities.

    PubMed

    Blöchliger, Nicolas; Keller, Peter M; Böttger, Erik C; Hombach, Michael

    2017-09-01

    The procedure for setting clinical breakpoints (CBPs) for antimicrobial susceptibility has been poorly standardized with respect to population data, pharmacokinetic parameters and clinical outcome. Tools to standardize CBP setting could result in improved antibiogram forecast probabilities. We propose a model to estimate probabilities for methodological categorization errors and defined zones of methodological uncertainty (ZMUs), i.e. ranges of zone diameters that cannot reliably be classified. The impact of ZMUs on methodological error rates was used for CBP optimization. The model distinguishes theoretical true inhibition zone diameters from observed diameters, which suffer from methodological variation. True diameter distributions are described with a normal mixture model. The model was fitted to observed inhibition zone diameters of clinical Escherichia coli strains. Repeated measurements for a quality control strain were used to quantify methodological variation. For 9 of 13 antibiotics analysed, our model predicted error rates of < 0.1% applying current EUCAST CBPs. Error rates were > 0.1% for ampicillin, cefoxitin, cefuroxime and amoxicillin/clavulanic acid. Increasing the susceptible CBP (cefoxitin) and introducing ZMUs (ampicillin, cefuroxime, amoxicillin/clavulanic acid) decreased error rates to < 0.1%. ZMUs contained low numbers of isolates for ampicillin and cefuroxime (3% and 6%), whereas the ZMU for amoxicillin/clavulanic acid contained 41% of all isolates and was considered not practical. We demonstrate that CBPs can be improved and standardized by minimizing methodological categorization error rates. ZMUs may be introduced if an intermediate zone is not appropriate for pharmacokinetic/pharmacodynamic or drug dosing reasons. Optimized CBPs will provide a standardized antibiotic susceptibility testing interpretation at a defined level of probability. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Evaluation of seasonal and spatial variations of lumped water balance model sensitivity to precipitation data errors

    NASA Astrophysics Data System (ADS)

    Xu, Chong-yu; Tunemar, Liselotte; Chen, Yongqin David; Singh, V. P.

    2006-06-01

    Sensitivity of hydrological models to input data errors have been reported in the literature for particular models on a single or a few catchments. A more important issue, i.e. how model's response to input data error changes as the catchment conditions change has not been addressed previously. This study investigates the seasonal and spatial effects of precipitation data errors on the performance of conceptual hydrological models. For this study, a monthly conceptual water balance model, NOPEX-6, was applied to 26 catchments in the Mälaren basin in Central Sweden. Both systematic and random errors were considered. For the systematic errors, 5-15% of mean monthly precipitation values were added to the original precipitation to form the corrupted input scenarios. Random values were generated by Monte Carlo simulation and were assumed to be (1) independent between months, and (2) distributed according to a Gaussian law of zero mean and constant standard deviation that were taken as 5, 10, 15, 20, and 25% of the mean monthly standard deviation of precipitation. The results show that the response of the model parameters and model performance depends, among others, on the type of the error, the magnitude of the error, physical characteristics of the catchment, and the season of the year. In particular, the model appears less sensitive to the random error than to the systematic error. The catchments with smaller values of runoff coefficients were more influenced by input data errors than were the catchments with higher values. Dry months were more sensitive to precipitation errors than were wet months. Recalibration of the model with erroneous data compensated in part for the data errors by altering the model parameters.

  20. Comparison of Predictive Modeling Methods of Aircraft Landing Speed

    NASA Technical Reports Server (NTRS)

    Diallo, Ousmane H.

    2012-01-01

    Expected increases in air traffic demand have stimulated the development of air traffic control tools intended to assist the air traffic controller in accurately and precisely spacing aircraft landing at congested airports. Such tools will require an accurate landing-speed prediction to increase throughput while decreasing necessary controller interventions for avoiding separation violations. There are many practical challenges to developing an accurate landing-speed model that has acceptable prediction errors. This paper discusses the development of a near-term implementation, using readily available information, to estimate/model final approach speed from the top of the descent phase of flight to the landing runway. As a first approach, all variables found to contribute directly to the landing-speed prediction model are used to build a multi-regression technique of the response surface equation (RSE). Data obtained from operations of a major airlines for a passenger transport aircraft type to the Dallas/Fort Worth International Airport are used to predict the landing speed. The approach was promising because it decreased the standard deviation of the landing-speed error prediction by at least 18% from the standard deviation of the baseline error, depending on the gust condition at the airport. However, when the number of variables is reduced to the most likely obtainable at other major airports, the RSE model shows little improvement over the existing methods. Consequently, a neural network that relies on a nonlinear regression technique is utilized as an alternative modeling approach. For the reduced number of variables cases, the standard deviation of the neural network models errors represent over 5% reduction compared to the RSE model errors, and at least 10% reduction over the baseline predicted landing-speed error standard deviation. Overall, the constructed models predict the landing-speed more accurately and precisely than the current state-of-the-art.

  1. Progress in the improved lattice calculation of direct CP-violation in the Standard Model

    NASA Astrophysics Data System (ADS)

    Kelly, Christopher

    2018-03-01

    We discuss the ongoing effort by the RBC & UKQCD collaborations to improve our lattice calculation of the measure of Standard Model direct CP violation, ɛ', with physical kinematics. We present our progress in decreasing the (dominant) statistical error and discuss other related activities aimed at reducing the systematic errors.

  2. Comparing interval estimates for small sample ordinal CFA models

    PubMed Central

    Natesan, Prathiba

    2015-01-01

    Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research. PMID:26579002

  3. Comparing interval estimates for small sample ordinal CFA models.

    PubMed

    Natesan, Prathiba

    2015-01-01

    Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research.

  4. Parameter recovery, bias and standard errors in the linear ballistic accumulator model.

    PubMed

    Visser, Ingmar; Poessé, Rens

    2017-05-01

    The linear ballistic accumulator (LBA) model (Brown & Heathcote, , Cogn. Psychol., 57, 153) is increasingly popular in modelling response times from experimental data. An R package, glba, has been developed to fit the LBA model using maximum likelihood estimation which is validated by means of a parameter recovery study. At sufficient sample sizes parameter recovery is good, whereas at smaller sample sizes there can be large bias in parameters. In a second simulation study, two methods for computing parameter standard errors are compared. The Hessian-based method is found to be adequate and is (much) faster than the alternative bootstrap method. The use of parameter standard errors in model selection and inference is illustrated in an example using data from an implicit learning experiment (Visser et al., , Mem. Cogn., 35, 1502). It is shown that typical implicit learning effects are captured by different parameters of the LBA model. © 2017 The British Psychological Society.

  5. A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior

    DOE PAGES

    Ye, Xin; Garikapati, Venu M.; You, Daehyun; ...

    2017-11-08

    Most multinomial choice models (e.g., the multinomial logit model) adopted in practice assume an extreme-value Gumbel distribution for the random components (error terms) of utility functions. This distributional assumption offers a closed-form likelihood expression when the utility maximization principle is applied to model choice behaviors. As a result, model coefficients can be easily estimated using the standard maximum likelihood estimation method. However, maximum likelihood estimators are consistent and efficient only if distributional assumptions on the random error terms are valid. It is therefore critical to test the validity of underlying distributional assumptions on the error terms that form the basismore » of parameter estimation and policy evaluation. In this paper, a practical yet statistically rigorous method is proposed to test the validity of the distributional assumption on the random components of utility functions in both the multinomial logit (MNL) model and multiple discrete-continuous extreme value (MDCEV) model. Based on a semi-nonparametric approach, a closed-form likelihood function that nests the MNL or MDCEV model being tested is derived. The proposed method allows traditional likelihood ratio tests to be used to test violations of the standard Gumbel distribution assumption. Simulation experiments are conducted to demonstrate that the proposed test yields acceptable Type-I and Type-II error probabilities at commonly available sample sizes. The test is then applied to three real-world discrete and discrete-continuous choice models. For all three models, the proposed test rejects the validity of the standard Gumbel distribution in most utility functions, calling for the development of robust choice models that overcome adverse effects of violations of distributional assumptions on the error terms in random utility functions.« less

  6. A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Xin; Garikapati, Venu M.; You, Daehyun

    Most multinomial choice models (e.g., the multinomial logit model) adopted in practice assume an extreme-value Gumbel distribution for the random components (error terms) of utility functions. This distributional assumption offers a closed-form likelihood expression when the utility maximization principle is applied to model choice behaviors. As a result, model coefficients can be easily estimated using the standard maximum likelihood estimation method. However, maximum likelihood estimators are consistent and efficient only if distributional assumptions on the random error terms are valid. It is therefore critical to test the validity of underlying distributional assumptions on the error terms that form the basismore » of parameter estimation and policy evaluation. In this paper, a practical yet statistically rigorous method is proposed to test the validity of the distributional assumption on the random components of utility functions in both the multinomial logit (MNL) model and multiple discrete-continuous extreme value (MDCEV) model. Based on a semi-nonparametric approach, a closed-form likelihood function that nests the MNL or MDCEV model being tested is derived. The proposed method allows traditional likelihood ratio tests to be used to test violations of the standard Gumbel distribution assumption. Simulation experiments are conducted to demonstrate that the proposed test yields acceptable Type-I and Type-II error probabilities at commonly available sample sizes. The test is then applied to three real-world discrete and discrete-continuous choice models. For all three models, the proposed test rejects the validity of the standard Gumbel distribution in most utility functions, calling for the development of robust choice models that overcome adverse effects of violations of distributional assumptions on the error terms in random utility functions.« less

  7. Estimation of Standard Error of Regression Effects in Latent Regression Models Using Binder's Linearization. Research Report. ETS RR-07-09

    ERIC Educational Resources Information Center

    Li, Deping; Oranje, Andreas

    2007-01-01

    Two versions of a general method for approximating standard error of regression effect estimates within an IRT-based latent regression model are compared. The general method is based on Binder's (1983) approach, accounting for complex samples and finite populations by Taylor series linearization. In contrast, the current National Assessment of…

  8. Bootstrap Standard Errors for Maximum Likelihood Ability Estimates When Item Parameters Are Unknown

    ERIC Educational Resources Information Center

    Patton, Jeffrey M.; Cheng, Ying; Yuan, Ke-Hai; Diao, Qi

    2014-01-01

    When item parameter estimates are used to estimate the ability parameter in item response models, the standard error (SE) of the ability estimate must be corrected to reflect the error carried over from item calibration. For maximum likelihood (ML) ability estimates, a corrected asymptotic SE is available, but it requires a long test and the…

  9. Conditional Standard Errors of Measurement for Scale Scores.

    ERIC Educational Resources Information Center

    Kolen, Michael J.; And Others

    1992-01-01

    A procedure is described for estimating the reliability and conditional standard errors of measurement of scale scores incorporating the discrete transformation of raw scores to scale scores. The method is illustrated using a strong true score model, and practical applications are described. (SLD)

  10. Developing and Validating Path-Dependent Uncertainty Estimates for use with the Regional Seismic Travel Time (RSTT) Model

    NASA Astrophysics Data System (ADS)

    Begnaud, M. L.; Anderson, D. N.; Phillips, W. S.; Myers, S. C.; Ballard, S.

    2016-12-01

    The Regional Seismic Travel Time (RSTT) tomography model has been developed to improve travel time predictions for regional phases (Pn, Sn, Pg, Lg) in order to increase seismic location accuracy, especially for explosion monitoring. The RSTT model is specifically designed to exploit regional phases for location, especially when combined with teleseismic arrivals. The latest RSTT model (version 201404um) has been released (http://www.sandia.gov/rstt). Travel time uncertainty estimates for RSTT are determined using one-dimensional (1D), distance-dependent error models, that have the benefit of being very fast to use in standard location algorithms, but do not account for path-dependent variations in error, and structural inadequacy of the RSTTT model (e.g., model error). Although global in extent, the RSTT tomography model is only defined in areas where data exist. A simple 1D error model does not accurately model areas where RSTT has not been calibrated. We are developing and validating a new error model for RSTT phase arrivals by mathematically deriving this multivariate model directly from a unified model of RSTT embedded into a statistical random effects model that captures distance, path and model error effects. An initial method developed is a two-dimensional path-distributed method using residuals. The goals for any RSTT uncertainty method are for it to be both readily useful for the standard RSTT user as well as improve travel time uncertainty estimates for location. We have successfully tested using the new error model for Pn phases and will demonstrate the method and validation of the error model for Sn, Pg, and Lg phases.

  11. Adjustment of regional regression models of urban-runoff quality using data for Chattanooga, Knoxville, and Nashville, Tennessee

    USGS Publications Warehouse

    Hoos, Anne B.; Patel, Anant R.

    1996-01-01

    Model-adjustment procedures were applied to the combined data bases of storm-runoff quality for Chattanooga, Knoxville, and Nashville, Tennessee, to improve predictive accuracy for storm-runoff quality for urban watersheds in these three cities and throughout Middle and East Tennessee. Data for 45 storms at 15 different sites (five sites in each city) constitute the data base. Comparison of observed values of storm-runoff load and event-mean concentration to the predicted values from the regional regression models for 10 constituents shows prediction errors, as large as 806,000 percent. Model-adjustment procedures, which combine the regional model predictions with local data, are applied to improve predictive accuracy. Standard error of estimate after model adjustment ranges from 67 to 322 percent. Calibration results may be biased due to sampling error in the Tennessee data base. The relatively large values of standard error of estimate for some of the constituent models, although representing significant reduction (at least 50 percent) in prediction error compared to estimation with unadjusted regional models, may be unacceptable for some applications. The user may wish to collect additional local data for these constituents and repeat the analysis, or calibrate an independent local regression model.

  12. Decreasing patient identification band errors by standardizing processes.

    PubMed

    Walley, Susan Chu; Berger, Stephanie; Harris, Yolanda; Gallizzi, Gina; Hayes, Leslie

    2013-04-01

    Patient identification (ID) bands are an essential component in patient ID. Quality improvement methodology has been applied as a model to reduce ID band errors although previous studies have not addressed standardization of ID bands. Our specific aim was to decrease ID band errors by 50% in a 12-month period. The Six Sigma DMAIC (define, measure, analyze, improve, and control) quality improvement model was the framework for this study. ID bands at a tertiary care pediatric hospital were audited from January 2011 to January 2012 with continued audits to June 2012 to confirm the new process was in control. After analysis, the major improvement strategy implemented was standardization of styles of ID bands and labels. Additional interventions included educational initiatives regarding the new ID band processes and disseminating institutional and nursing unit data. A total of 4556 ID bands were audited with a preimprovement ID band error average rate of 9.2%. Significant variation in the ID band process was observed, including styles of ID bands. Interventions were focused on standardization of the ID band and labels. The ID band error rate improved to 5.2% in 9 months (95% confidence interval: 2.5-5.5; P < .001) and was maintained for 8 months. Standardization of ID bands and labels in conjunction with other interventions resulted in a statistical decrease in ID band error rates. This decrease in ID band error rates was maintained over the subsequent 8 months.

  13. A visual detection model for DCT coefficient quantization

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Watson, Andrew B.

    1994-01-01

    The discrete cosine transform (DCT) is widely used in image compression and is part of the JPEG and MPEG compression standards. The degree of compression and the amount of distortion in the decompressed image are controlled by the quantization of the transform coefficients. The standards do not specify how the DCT coefficients should be quantized. One approach is to set the quantization level for each coefficient so that the quantization error is near the threshold of visibility. Results from previous work are combined to form the current best detection model for DCT coefficient quantization noise. This model predicts sensitivity as a function of display parameters, enabling quantization matrices to be designed for display situations varying in luminance, veiling light, and spatial frequency related conditions (pixel size, viewing distance, and aspect ratio). It also allows arbitrary color space directions for the representation of color. A model-based method of optimizing the quantization matrix for an individual image was developed. The model described above provides visual thresholds for each DCT frequency. These thresholds are adjusted within each block for visual light adaptation and contrast masking. For given quantization matrix, the DCT quantization errors are scaled by the adjusted thresholds to yield perceptual errors. These errors are pooled nonlinearly over the image to yield total perceptual error. With this model one may estimate the quantization matrix for a particular image that yields minimum bit rate for a given total perceptual error, or minimum perceptual error for a given bit rate. Custom matrices for a number of images show clear improvement over image-independent matrices. Custom matrices are compatible with the JPEG standard, which requires transmission of the quantization matrix.

  14. A practical method of estimating standard error of age in the fission track dating method

    USGS Publications Warehouse

    Johnson, N.M.; McGee, V.E.; Naeser, C.W.

    1979-01-01

    A first-order approximation formula for the propagation of error in the fission track age equation is given by PA = C[P2s+P2i+P2??-2rPsPi] 1 2, where PA, Ps, Pi and P?? are the percentage error of age, of spontaneous track density, of induced track density, and of neutron dose, respectively, and C is a constant. The correlation, r, between spontaneous are induced track densities is a crucial element in the error analysis, acting generally to improve the standard error of age. In addition, the correlation parameter r is instrumental is specifying the level of neutron dose, a controlled variable, which will minimize the standard error of age. The results from the approximation equation agree closely with the results from an independent statistical model for the propagation of errors in the fission-track dating method. ?? 1979.

  15. Integrity modelling of tropospheric delay models

    NASA Astrophysics Data System (ADS)

    Rózsa, Szabolcs; Bastiaan Ober, Pieter; Mile, Máté; Ambrus, Bence; Juni, Ildikó

    2017-04-01

    The effect of the neutral atmosphere on signal propagation is routinely estimated by various tropospheric delay models in satellite navigation. Although numerous studies can be found in the literature investigating the accuracy of these models, for safety-of-life applications it is crucial to study and model the worst case performance of these models using very low recurrence frequencies. The main objective of the INTegrity of TROpospheric models (INTRO) project funded by the ESA PECS programme is to establish a model (or models) of the residual error of existing tropospheric delay models for safety-of-life applications. Such models are required to overbound rare tropospheric delays and should thus include the tails of the error distributions. Their use should lead to safe error bounds on the user position and should allow computation of protection levels for the horizontal and vertical position errors. The current tropospheric model from the RTCA SBAS Minimal Operational Standards has an associated residual error that equals 0.12 meters in the vertical direction. This value is derived by simply extrapolating the observed distribution of the residuals into the tail (where no data is present) and then taking the point where the cumulative distribution has an exceedance level would be 10-7.While the resulting standard deviation is much higher than the estimated standard variance that best fits the data (0.05 meters), it surely is conservative for most applications. In the context of the INTRO project some widely used and newly developed tropospheric delay models (e.g. RTCA MOPS, ESA GALTROPO and GPT2W) were tested using 16 years of daily ERA-INTERIM Reanalysis numerical weather model data and the raytracing technique. The results showed that the performance of some of the widely applied models have a clear seasonal dependency and it is also affected by a geographical position. In order to provide a more realistic, but still conservative estimation of the residual error of tropospheric delays, the mathematical formulation of the overbounding models are currently under development. This study introduces the main findings of the residual error analysis of the studied tropospheric delay models, and discusses the preliminary analysis of the integrity model development for safety-of-life applications.

  16. Flow interference in a variable porosity trisonic wind tunnel.

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Graham, R. F.

    1972-01-01

    Pressure data from a 20-degree cone-cylinder in a variable porosity wind tunnel for the Mach range 0.2 to 5.0 are compared to an interference free standard in order to determine wall interference effects. Four 20-degree cone-cylinder models representing an approximate range of percent blockage from one to six were compared to curve-fits of the interference free standard at each Mach number and errors determined at each pressure tap location. The average of the absolute values of the percent error over the length of the model was determined and used as the criterion for evaluating model blockage interference effects. The results are presented in the form of the percent error as a function of model blockage and Mach number.

  17. Water quality management using statistical analysis and time-series prediction model

    NASA Astrophysics Data System (ADS)

    Parmar, Kulwinder Singh; Bhardwaj, Rashmi

    2014-12-01

    This paper deals with water quality management using statistical analysis and time-series prediction model. The monthly variation of water quality standards has been used to compare statistical mean, median, mode, standard deviation, kurtosis, skewness, coefficient of variation at Yamuna River. Model validated using R-squared, root mean square error, mean absolute percentage error, maximum absolute percentage error, mean absolute error, maximum absolute error, normalized Bayesian information criterion, Ljung-Box analysis, predicted value and confidence limits. Using auto regressive integrated moving average model, future water quality parameters values have been estimated. It is observed that predictive model is useful at 95 % confidence limits and curve is platykurtic for potential of hydrogen (pH), free ammonia, total Kjeldahl nitrogen, dissolved oxygen, water temperature (WT); leptokurtic for chemical oxygen demand, biochemical oxygen demand. Also, it is observed that predicted series is close to the original series which provides a perfect fit. All parameters except pH and WT cross the prescribed limits of the World Health Organization /United States Environmental Protection Agency, and thus water is not fit for drinking, agriculture and industrial use.

  18. A GPS Phase-Locked Loop Performance Metric Based on the Phase Discriminator Output

    PubMed Central

    Stevanovic, Stefan; Pervan, Boris

    2018-01-01

    We propose a novel GPS phase-lock loop (PLL) performance metric based on the standard deviation of tracking error (defined as the discriminator’s estimate of the true phase error), and explain its advantages over the popular phase jitter metric using theory, numerical simulation, and experimental results. We derive an augmented GPS phase-lock loop (PLL) linear model, which includes the effect of coherent averaging, to be used in conjunction with this proposed metric. The augmented linear model allows more accurate calculation of tracking error standard deviation in the presence of additive white Gaussian noise (AWGN) as compared to traditional linear models. The standard deviation of tracking error, with a threshold corresponding to half of the arctangent discriminator pull-in region, is shown to be a more reliable/robust measure of PLL performance under interference conditions than the phase jitter metric. In addition, the augmented linear model is shown to be valid up until this threshold, which facilitates efficient performance prediction, so that time-consuming direct simulations and costly experimental testing can be reserved for PLL designs that are much more likely to be successful. The effect of varying receiver reference oscillator quality on the tracking error metric is also considered. PMID:29351250

  19. Incorporating Measurement Error from Modeled Air Pollution Exposures into Epidemiological Analyses.

    PubMed

    Samoli, Evangelia; Butland, Barbara K

    2017-12-01

    Outdoor air pollution exposures used in epidemiological studies are commonly predicted from spatiotemporal models incorporating limited measurements, temporal factors, geographic information system variables, and/or satellite data. Measurement error in these exposure estimates leads to imprecise estimation of health effects and their standard errors. We reviewed methods for measurement error correction that have been applied in epidemiological studies that use model-derived air pollution data. We identified seven cohort studies and one panel study that have employed measurement error correction methods. These methods included regression calibration, risk set regression calibration, regression calibration with instrumental variables, the simulation extrapolation approach (SIMEX), and methods under the non-parametric or parameter bootstrap. Corrections resulted in small increases in the absolute magnitude of the health effect estimate and its standard error under most scenarios. Limited application of measurement error correction methods in air pollution studies may be attributed to the absence of exposure validation data and the methodological complexity of the proposed methods. Future epidemiological studies should consider in their design phase the requirements for the measurement error correction method to be later applied, while methodological advances are needed under the multi-pollutants setting.

  20. The impact of statistical adjustment on conditional standard errors of measurement in the assessment of physician communication skills.

    PubMed

    Raymond, Mark R; Clauser, Brian E; Furman, Gail E

    2010-10-01

    The use of standardized patients to assess communication skills is now an essential part of assessing a physician's readiness for practice. To improve the reliability of communication scores, it has become increasingly common in recent years to use statistical models to adjust ratings provided by standardized patients. This study employed ordinary least squares regression to adjust ratings, and then used generalizability theory to evaluate the impact of these adjustments on score reliability and the overall standard error of measurement. In addition, conditional standard errors of measurement were computed for both observed and adjusted scores to determine whether the improvements in measurement precision were uniform across the score distribution. Results indicated that measurement was generally less precise for communication ratings toward the lower end of the score distribution; and the improvement in measurement precision afforded by statistical modeling varied slightly across the score distribution such that the most improvement occurred in the upper-middle range of the score scale. Possible reasons for these patterns in measurement precision are discussed, as are the limitations of the statistical models used for adjusting performance ratings.

  1. Extending the Solvation-Layer Interface Condition Continum Electrostatic Model to a Linearized Poisson-Boltzmann Solvent.

    PubMed

    Molavi Tabrizi, Amirhossein; Goossens, Spencer; Mehdizadeh Rahimi, Ali; Cooper, Christopher D; Knepley, Matthew G; Bardhan, Jaydeep P

    2017-06-13

    We extend the linearized Poisson-Boltzmann (LPB) continuum electrostatic model for molecular solvation to address charge-hydration asymmetry. Our new solvation-layer interface condition (SLIC)/LPB corrects for first-shell response by perturbing the traditional continuum-theory interface conditions at the protein-solvent and the Stern-layer interfaces. We also present a GPU-accelerated treecode implementation capable of simulating large proteins, and our results demonstrate that the new model exhibits significant accuracy improvements over traditional LPB models, while reducing the number of fitting parameters from dozens (atomic radii) to just five parameters, which have physical meanings related to first-shell water behavior at an uncharged interface. In particular, atom radii in the SLIC model are not optimized but uniformly scaled from their Lennard-Jones radii. Compared to explicit-solvent free-energy calculations of individual atoms in small molecules, SLIC/LPB is significantly more accurate than standard parametrizations (RMS error 0.55 kcal/mol for SLIC, compared to RMS error of 3.05 kcal/mol for standard LPB). On parametrizing the electrostatic model with a simple nonpolar component for total molecular solvation free energies, our model predicts octanol/water transfer free energies with an RMS error 1.07 kcal/mol. A more detailed assessment illustrates that standard continuum electrostatic models reproduce total charging free energies via a compensation of significant errors in atomic self-energies; this finding offers a window into improving the accuracy of Generalized-Born theories and other coarse-grained models. Most remarkably, the SLIC model also reproduces positive charging free energies for atoms in hydrophobic groups, whereas standard PB models are unable to generate positive charging free energies regardless of the parametrized radii. The GPU-accelerated solver is freely available online, as is a MATLAB implementation.

  2. Bootstrap-based methods for estimating standard errors in Cox's regression analyses of clustered event times.

    PubMed

    Xiao, Yongling; Abrahamowicz, Michal

    2010-03-30

    We propose two bootstrap-based methods to correct the standard errors (SEs) from Cox's model for within-cluster correlation of right-censored event times. The cluster-bootstrap method resamples, with replacement, only the clusters, whereas the two-step bootstrap method resamples (i) the clusters, and (ii) individuals within each selected cluster, with replacement. In simulations, we evaluate both methods and compare them with the existing robust variance estimator and the shared gamma frailty model, which are available in statistical software packages. We simulate clustered event time data, with latent cluster-level random effects, which are ignored in the conventional Cox's model. For cluster-level covariates, both proposed bootstrap methods yield accurate SEs, and type I error rates, and acceptable coverage rates, regardless of the true random effects distribution, and avoid serious variance under-estimation by conventional Cox-based standard errors. However, the two-step bootstrap method over-estimates the variance for individual-level covariates. We also apply the proposed bootstrap methods to obtain confidence bands around flexible estimates of time-dependent effects in a real-life analysis of cluster event times.

  3. Multicollinearity and Regression Analysis

    NASA Astrophysics Data System (ADS)

    Daoud, Jamal I.

    2017-12-01

    In regression analysis it is obvious to have a correlation between the response and predictor(s), but having correlation among predictors is something undesired. The number of predictors included in the regression model depends on many factors among which, historical data, experience, etc. At the end selection of most important predictors is something objective due to the researcher. Multicollinearity is a phenomena when two or more predictors are correlated, if this happens, the standard error of the coefficients will increase [8]. Increased standard errors means that the coefficients for some or all independent variables may be found to be significantly different from In other words, by overinflating the standard errors, multicollinearity makes some variables statistically insignificant when they should be significant. In this paper we focus on the multicollinearity, reasons and consequences on the reliability of the regression model.

  4. Safe and effective error rate monitors for SS7 signaling links

    NASA Astrophysics Data System (ADS)

    Schmidt, Douglas C.

    1994-04-01

    This paper describes SS7 error monitor characteristics, discusses the existing SUERM (Signal Unit Error Rate Monitor), and develops the recently proposed EIM (Error Interval Monitor) for higher speed SS7 links. A SS7 error monitor is considered safe if it ensures acceptable link quality and is considered effective if it is tolerant to short-term phenomena. Formal criteria for safe and effective error monitors are formulated in this paper. This paper develops models of changeover transients, the unstable component of queue length resulting from errors. These models are in the form of recursive digital filters. Time is divided into sequential intervals. The filter's input is the number of errors which have occurred in each interval. The output is the corresponding change in transmit queue length. Engineered EIM's are constructed by comparing an estimated changeover transient with a threshold T using a transient model modified to enforce SS7 standards. When this estimate exceeds T, a changeover will be initiated and the link will be removed from service. EIM's can be differentiated from SUERM by the fact that EIM's monitor errors over an interval while SUERM's count errored messages. EIM's offer several advantages over SUERM's, including the fact that they are safe and effective, impose uniform standards in link quality, are easily implemented, and make minimal use of real-time resources.

  5. Effects of Tropospheric Spatio-Temporal Correlated Noise on the Analysis of Space Geodetic Data

    NASA Technical Reports Server (NTRS)

    Romero-Wolf, A. F.; Jacobs, C. S.

    2011-01-01

    The standard VLBI analysis models measurement noise as purely thermal errors modeled according to uncorrelated Gaussian distributions. As the price of recording bits steadily decreases, thermal errors will soon no longer dominate. It is therefore expected that troposphere and instrumentation/clock errors will increasingly become more dominant. Given that both of these errors have correlated spectra, properly modeling the error distributions will become more relevant for optimal analysis. This paper will discuss the advantages of including the correlations between tropospheric delays using a Kolmogorov spectrum and the frozen ow model pioneered by Treuhaft and Lanyi. We will show examples of applying these correlated noise spectra to the weighting of VLBI data analysis.

  6. Application of the precipitation-runoff modeling system to the Ah- shi-sle-pah Wash watershed, San Juan County, New Mexico

    USGS Publications Warehouse

    Hejl, H.R.

    1989-01-01

    The precipitation-runoff modeling system was applied to the 8.21 sq-mi drainage area of the Ah-shi-sle-pah Wash watershed in northwestern New Mexico. The calibration periods were May to September of 1981 and 1982, and the verification period was May to September 1983. Twelve storms were available for calibration and 8 storms were available for verification. For calibration A (hydraulic conductivity estimated from onsite data and other storm-mode parameters optimized), the computed standard error of estimate was 50% for runoff volumes and 72% of peak discharges. Calibration B included hydraulic conductivity in the optimization, which reduced the standard error of estimate to 28 % for runoff volumes and 50% for peak discharges. Optimized values for hydraulic conductivity resulted in reductions from 1.00 to 0.26 in/h and 0.20 to 0.03 in/h for the 2 general soils groups in the calibrations. Simulated runoff volumes using 7 of 8 storms occurring during the verification period had a standard error of estimate of 40% for verification A and 38% for verification B. Simulated peak discharge had a standard error of estimate of 120% for verification A and 56% for verification B. Including the eighth storm which had a relatively small magnitude in the verification analysis more than doubled the standard error of estimating volumes and peaks. (USGS)

  7. Comparison of Optimal Design Methods in Inverse Problems

    PubMed Central

    Banks, H. T.; Holm, Kathleen; Kappel, Franz

    2011-01-01

    Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher Information Matrix (FIM). A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criteria with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst-Pearl logistic population model [13], the standard harmonic oscillator model [13] and a popular glucose regulation model [16, 19, 29]. PMID:21857762

  8. Errors from approximation of ODE systems with reduced order models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vassilevska, Tanya

    2016-12-30

    This is a code to calculate the error from approximation of systems of ordinary differential equations (ODEs) by using Proper Orthogonal Decomposition (POD) Reduced Order Models (ROM) methods and to compare and analyze the errors for two POD ROM variants. The first variant is the standard POD ROM, the second variant is a modification of the method using the values of the time derivatives (a.k.a. time-derivative snapshots). The code compares the errors from the two variants under different conditions.

  9. Effects of Tropospheric Spatio-Temporal Correlated Noise on the Analysis of Space Geodetic Data

    NASA Technical Reports Server (NTRS)

    Romero-Wolf, A.; Jacobs, C. S.; Ratcliff, J. T.

    2012-01-01

    The standard VLBI analysis models the distribution of measurement noise as Gaussian. Because the price of recording bits is steadily decreasing, thermal errors will soon no longer dominate. As a result, it is expected that troposphere and instrumentation/clock errors will increasingly become more dominant. Given that both of these errors have correlated spectra, properly modeling the error distributions will become increasingly relevant for optimal analysis. We discuss the advantages of modeling the correlations between tropospheric delays using a Kolmogorov spectrum and the frozen flow assumption pioneered by Treuhaft and Lanyi. We then apply these correlated noise spectra to the weighting of VLBI data analysis for two case studies: X/Ka-band global astrometry and Earth orientation. In both cases we see improved results when the analyses are weighted with correlated noise models vs. the standard uncorrelated models. The X/Ka astrometric scatter improved by approx.10% and the systematic Delta delta vs. delta slope decreased by approx. 50%. The TEMPO Earth orientation results improved by 17% in baseline transverse and 27% in baseline vertical.

  10. A Note on the Specification of Error Structures in Latent Interaction Models

    ERIC Educational Resources Information Center

    Mao, Xiulin; Harring, Jeffrey R.; Hancock, Gregory R.

    2015-01-01

    Latent interaction models have motivated a great deal of methodological research, mainly in the area of estimating such models. Product-indicator methods have been shown to be competitive with other methods of estimation in terms of parameter bias and standard error accuracy, and their continued popularity in empirical studies is due, in part, to…

  11. An Assessment of State-of-the-Art Mean Sea Surface and Geoid Models of the Arctic Ocean: Implications for Sea Ice Freeboard Retrieval

    NASA Astrophysics Data System (ADS)

    Skourup, Henriette; Farrell, Sinéad Louise; Hendricks, Stefan; Ricker, Robert; Armitage, Thomas W. K.; Ridout, Andy; Andersen, Ole Baltazar; Haas, Christian; Baker, Steven

    2017-11-01

    State-of-the-art Arctic Ocean mean sea surface (MSS) models and global geoid models (GGMs) are used to support sea ice freeboard estimation from satellite altimeters, as well as in oceanographic studies such as mapping sea level anomalies and mean dynamic ocean topography. However, errors in a given model in the high-frequency domain, primarily due to unresolved gravity features, can result in errors in the estimated along-track freeboard. These errors are exacerbated in areas with a sparse lead distribution in consolidated ice pack conditions. Additionally model errors can impact ocean geostrophic currents, derived from satellite altimeter data, while remaining biases in these models may impact longer-term, multisensor oceanographic time series of sea level change in the Arctic. This study focuses on an assessment of five state-of-the-art Arctic MSS models (UCL13/04 and DTU15/13/10) and a commonly used GGM (EGM2008). We describe errors due to unresolved gravity features, intersatellite biases, and remaining satellite orbit errors, and their impact on the derivation of sea ice freeboard. The latest MSS models, incorporating CryoSat-2 sea surface height measurements, show improved definition of gravity features, such as the Gakkel Ridge. The standard deviation between models ranges 0.03-0.25 m. The impact of remaining MSS/GGM errors on freeboard retrieval can reach several decimeters in parts of the Arctic. While the maximum observed freeboard difference found in the central Arctic was 0.59 m (UCL13 MSS minus EGM2008 GGM), the standard deviation in freeboard differences is 0.03-0.06 m.

  12. Modeling error distributions of growth curve models through Bayesian methods.

    PubMed

    Zhang, Zhiyong

    2016-06-01

    Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is proposed to flexibly model normal and non-normal data through the explicit specification of the error distributions. A simulation study shows when the distribution of the error is correctly specified, one can avoid the loss in the efficiency of standard error estimates. A real example on the analysis of mathematical ability growth data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 is used to show the application of the proposed methods. Instructions and code on how to conduct growth curve analysis with both normal and non-normal error distributions using the the MCMC procedure of SAS are provided.

  13. Population Pharmacokinetics of Intravenous Paracetamol (Acetaminophen) in Preterm and Term Neonates: Model Development and External Evaluation.

    PubMed

    Cook, Sarah F; Roberts, Jessica K; Samiee-Zafarghandy, Samira; Stockmann, Chris; King, Amber D; Deutsch, Nina; Williams, Elaine F; Allegaert, Karel; Wilkins, Diana G; Sherwin, Catherine M T; van den Anker, John N

    2016-01-01

    The aims of this study were to develop a population pharmacokinetic model for intravenous paracetamol in preterm and term neonates and to assess the generalizability of the model by testing its predictive performance in an external dataset. Nonlinear mixed-effects models were constructed from paracetamol concentration-time data in NONMEM 7.2. Potential covariates included body weight, gestational age, postnatal age, postmenstrual age, sex, race, total bilirubin, and estimated glomerular filtration rate. An external dataset was used to test the predictive performance of the model through calculation of bias, precision, and normalized prediction distribution errors. The model-building dataset included 260 observations from 35 neonates with a mean gestational age of 33.6 weeks [standard deviation (SD) 6.6]. Data were well-described by a one-compartment model with first-order elimination. Weight predicted paracetamol clearance and volume of distribution, which were estimated as 0.348 L/h (5.5 % relative standard error; 30.8 % coefficient of variation) and 2.46 L (3.5 % relative standard error; 14.3 % coefficient of variation), respectively, at the mean subject weight of 2.30 kg. An external evaluation was performed on an independent dataset that included 436 observations from 60 neonates with a mean gestational age of 35.6 weeks (SD 4.3). The median prediction error was 10.1 % [95 % confidence interval (CI) 6.1-14.3] and the median absolute prediction error was 25.3 % (95 % CI 23.1-28.1). Weight predicted intravenous paracetamol pharmacokinetics in neonates ranging from extreme preterm to full-term gestational status. External evaluation suggested that these findings should be generalizable to other similar patient populations.

  14. Population Pharmacokinetics of Intravenous Paracetamol (Acetaminophen) in Preterm and Term Neonates: Model Development and External Evaluation

    PubMed Central

    Cook, Sarah F.; Roberts, Jessica K.; Samiee-Zafarghandy, Samira; Stockmann, Chris; King, Amber D.; Deutsch, Nina; Williams, Elaine F.; Allegaert, Karel; Sherwin, Catherine M. T.; van den Anker, John N.

    2017-01-01

    Objectives The aims of this study were to develop a population pharmacokinetic model for intravenous paracetamol in preterm and term neonates and to assess the generalizability of the model by testing its predictive performance in an external dataset. Methods Nonlinear mixed-effects models were constructed from paracetamol concentration–time data in NONMEM 7.2. Potential covariates included body weight, gestational age, postnatal age, postmenstrual age, sex, race, total bilirubin, and estimated glomerular filtration rate. An external dataset was used to test the predictive performance of the model through calculation of bias, precision, and normalized prediction distribution errors. Results The model-building dataset included 260 observations from 35 neonates with a mean gestational age of 33.6 weeks [standard deviation (SD) 6.6]. Data were well-described by a one-compartment model with first-order elimination. Weight predicted paracetamol clearance and volume of distribution, which were estimated as 0.348 L/h (5.5 % relative standard error; 30.8 % coefficient of variation) and 2.46 L (3.5 % relative standard error; 14.3 % coefficient of variation), respectively, at the mean subject weight of 2.30 kg. An external evaluation was performed on an independent dataset that included 436 observations from 60 neonates with a mean gestational age of 35.6 weeks (SD 4.3). The median prediction error was 10.1 % [95 % confidence interval (CI) 6.1–14.3] and the median absolute prediction error was 25.3 % (95 % CI 23.1–28.1). Conclusions Weight predicted intravenous paracetamol pharmacokinetics in neonates ranging from extreme preterm to full-term gestational status. External evaluation suggested that these findings should be generalizable to other similar patient populations. PMID:26201306

  15. Mimicking Aphasic Semantic Errors in Normal Speech Production: Evidence from a Novel Experimental Paradigm

    ERIC Educational Resources Information Center

    Hodgson, Catherine; Lambon Ralph, Matthew A.

    2008-01-01

    Semantic errors are commonly found in semantic dementia (SD) and some forms of stroke aphasia and provide insights into semantic processing and speech production. Low error rates are found in standard picture naming tasks in normal controls. In order to increase error rates and thus provide an experimental model of aphasic performance, this study…

  16. A partial least squares based spectrum normalization method for uncertainty reduction for laser-induced breakdown spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Li, Xiongwei; Wang, Zhe; Lui, Siu-Lung; Fu, Yangting; Li, Zheng; Liu, Jianming; Ni, Weidou

    2013-10-01

    A bottleneck of the wide commercial application of laser-induced breakdown spectroscopy (LIBS) technology is its relatively high measurement uncertainty. A partial least squares (PLS) based normalization method was proposed to improve pulse-to-pulse measurement precision for LIBS based on our previous spectrum standardization method. The proposed model utilized multi-line spectral information of the measured element and characterized the signal fluctuations due to the variation of plasma characteristic parameters (plasma temperature, electron number density, and total number density) for signal uncertainty reduction. The model was validated by the application of copper concentration prediction in 29 brass alloy samples. The results demonstrated an improvement on both measurement precision and accuracy over the generally applied normalization as well as our previously proposed simplified spectrum standardization method. The average relative standard deviation (RSD), average of the standard error (error bar), the coefficient of determination (R2), the root-mean-square error of prediction (RMSEP), and average value of the maximum relative error (MRE) were 1.80%, 0.23%, 0.992, 1.30%, and 5.23%, respectively, while those for the generally applied spectral area normalization were 3.72%, 0.71%, 0.973, 1.98%, and 14.92%, respectively.

  17. Advanced error diagnostics of the CMAQ and Chimere modelling systems within the AQMEII3 model evaluation framework

    NASA Astrophysics Data System (ADS)

    Solazzo, Efisio; Hogrefe, Christian; Colette, Augustin; Garcia-Vivanco, Marta; Galmarini, Stefano

    2017-09-01

    The work here complements the overview analysis of the modelling systems participating in the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) by focusing on the performance for hourly surface ozone by two modelling systems, Chimere for Europe and CMAQ for North America. The evaluation strategy outlined in the course of the three phases of the AQMEII activity, aimed to build up a diagnostic methodology for model evaluation, is pursued here and novel diagnostic methods are proposed. In addition to evaluating the base case simulation in which all model components are configured in their standard mode, the analysis also makes use of sensitivity simulations in which the models have been applied by altering and/or zeroing lateral boundary conditions, emissions of anthropogenic precursors, and ozone dry deposition. To help understand of the causes of model deficiencies, the error components (bias, variance, and covariance) of the base case and of the sensitivity runs are analysed in conjunction with timescale considerations and error modelling using the available error fields of temperature, wind speed, and NOx concentration. The results reveal the effectiveness and diagnostic power of the methods devised (which remains the main scope of this study), allowing the detection of the timescale and the fields that the two models are most sensitive to. The representation of planetary boundary layer (PBL) dynamics is pivotal to both models. In particular, (i) the fluctuations slower than ˜ 1.5 days account for 70-85 % of the mean square error of the full (undecomposed) ozone time series; (ii) a recursive, systematic error with daily periodicity is detected, responsible for 10-20 % of the quadratic total error; (iii) errors in representing the timing of the daily transition between stability regimes in the PBL are responsible for a covariance error as large as 9 ppb (as much as the standard deviation of the network-average ozone observations in summer in both Europe and North America); (iv) the CMAQ ozone error has a weak/negligible dependence on the errors in NO2, while the error in NO2 significantly impacts the ozone error produced by Chimere; (v) the response of the models to variations of anthropogenic emissions and boundary conditions show a pronounced spatial heterogeneity, while the seasonal variability of the response is found to be less marked. Only during the winter season does the zeroing of boundary values for North America produce a spatially uniform deterioration of the model accuracy across the majority of the continent.

  18. Two States Mapping Based Time Series Neural Network Model for Compensation Prediction Residual Error

    NASA Astrophysics Data System (ADS)

    Jung, Insung; Koo, Lockjo; Wang, Gi-Nam

    2008-11-01

    The objective of this paper was to design a model of human bio signal data prediction system for decreasing of prediction error using two states mapping based time series neural network BP (back-propagation) model. Normally, a lot of the industry has been applied neural network model by training them in a supervised manner with the error back-propagation algorithm for time series prediction systems. However, it still has got a residual error between real value and prediction result. Therefore, we designed two states of neural network model for compensation residual error which is possible to use in the prevention of sudden death and metabolic syndrome disease such as hypertension disease and obesity. We determined that most of the simulation cases were satisfied by the two states mapping based time series prediction model. In particular, small sample size of times series were more accurate than the standard MLP model.

  19. First order error corrections in common introductory physics experiments

    NASA Astrophysics Data System (ADS)

    Beckey, Jacob; Baker, Andrew; Aravind, Vasudeva; Clarion Team

    As a part of introductory physics courses, students perform different standard lab experiments. Almost all of these experiments are prone to errors owing to factors like friction, misalignment of equipment, air drag, etc. Usually these types of errors are ignored by students and not much thought is paid to the source of these errors. However, paying attention to these factors that give rise to errors help students make better physics models and understand physical phenomena behind experiments in more detail. In this work, we explore common causes of errors in introductory physics experiment and suggest changes that will mitigate the errors, or suggest models that take the sources of these errors into consideration. This work helps students build better and refined physical models and understand physics concepts in greater detail. We thank Clarion University undergraduate student grant for financial support involving this project.

  20. A fast Monte Carlo EM algorithm for estimation in latent class model analysis with an application to assess diagnostic accuracy for cervical neoplasia in women with AGC

    PubMed Central

    Kang, Le; Carter, Randy; Darcy, Kathleen; Kauderer, James; Liao, Shu-Yuan

    2013-01-01

    In this article we use a latent class model (LCM) with prevalence modeled as a function of covariates to assess diagnostic test accuracy in situations where the true disease status is not observed, but observations on three or more conditionally independent diagnostic tests are available. A fast Monte Carlo EM (MCEM) algorithm with binary (disease) diagnostic data is implemented to estimate parameters of interest; namely, sensitivity, specificity, and prevalence of the disease as a function of covariates. To obtain standard errors for confidence interval construction of estimated parameters, the missing information principle is applied to adjust information matrix estimates. We compare the adjusted information matrix based standard error estimates with the bootstrap standard error estimates both obtained using the fast MCEM algorithm through an extensive Monte Carlo study. Simulation demonstrates that the adjusted information matrix approach estimates the standard error similarly with the bootstrap methods under certain scenarios. The bootstrap percentile intervals have satisfactory coverage probabilities. We then apply the LCM analysis to a real data set of 122 subjects from a Gynecologic Oncology Group (GOG) study of significant cervical lesion (S-CL) diagnosis in women with atypical glandular cells of undetermined significance (AGC) to compare the diagnostic accuracy of a histology-based evaluation, a CA-IX biomarker-based test and a human papillomavirus (HPV) DNA test. PMID:24163493

  1. Integrating Map Algebra and Statistical Modeling for Spatio- Temporal Analysis of Monthly Mean Daily Incident Photosynthetically Active Radiation (PAR) over a Complex Terrain.

    PubMed

    Evrendilek, Fatih

    2007-12-12

    This study aims at quantifying spatio-temporal dynamics of monthly mean dailyincident photosynthetically active radiation (PAR) over a vast and complex terrain such asTurkey. The spatial interpolation method of universal kriging, and the combination ofmultiple linear regression (MLR) models and map algebra techniques were implemented togenerate surface maps of PAR with a grid resolution of 500 x 500 m as a function of fivegeographical and 14 climatic variables. Performance of the geostatistical and MLR modelswas compared using mean prediction error (MPE), root-mean-square prediction error(RMSPE), average standard prediction error (ASE), mean standardized prediction error(MSPE), root-mean-square standardized prediction error (RMSSPE), and adjustedcoefficient of determination (R² adj. ). The best-fit MLR- and universal kriging-generatedmodels of monthly mean daily PAR were validated against an independent 37-year observeddataset of 35 climate stations derived from 160 stations across Turkey by the Jackknifingmethod. The spatial variability patterns of monthly mean daily incident PAR were moreaccurately reflected in the surface maps created by the MLR-based models than in thosecreated by the universal kriging method, in particular, for spring (May) and autumn(November). The MLR-based spatial interpolation algorithms of PAR described in thisstudy indicated the significance of the multifactor approach to understanding and mappingspatio-temporal dynamics of PAR for a complex terrain over meso-scales.

  2. Probabilistic performance estimators for computational chemistry methods: The empirical cumulative distribution function of absolute errors

    NASA Astrophysics Data System (ADS)

    Pernot, Pascal; Savin, Andreas

    2018-06-01

    Benchmarking studies in computational chemistry use reference datasets to assess the accuracy of a method through error statistics. The commonly used error statistics, such as the mean signed and mean unsigned errors, do not inform end-users on the expected amplitude of prediction errors attached to these methods. We show that, the distributions of model errors being neither normal nor zero-centered, these error statistics cannot be used to infer prediction error probabilities. To overcome this limitation, we advocate for the use of more informative statistics, based on the empirical cumulative distribution function of unsigned errors, namely, (1) the probability for a new calculation to have an absolute error below a chosen threshold and (2) the maximal amplitude of errors one can expect with a chosen high confidence level. Those statistics are also shown to be well suited for benchmarking and ranking studies. Moreover, the standard error on all benchmarking statistics depends on the size of the reference dataset. Systematic publication of these standard errors would be very helpful to assess the statistical reliability of benchmarking conclusions.

  3. Sensitivity of the model error parameter specification in weak-constraint four-dimensional variational data assimilation

    NASA Astrophysics Data System (ADS)

    Shaw, Jeremy A.; Daescu, Dacian N.

    2017-08-01

    This article presents the mathematical framework to evaluate the sensitivity of a forecast error aspect to the input parameters of a weak-constraint four-dimensional variational data assimilation system (w4D-Var DAS), extending the established theory from strong-constraint 4D-Var. Emphasis is placed on the derivation of the equations for evaluating the forecast sensitivity to parameters in the DAS representation of the model error statistics, including bias, standard deviation, and correlation structure. A novel adjoint-based procedure for adaptive tuning of the specified model error covariance matrix is introduced. Results from numerical convergence tests establish the validity of the model error sensitivity equations. Preliminary experiments providing a proof-of-concept are performed using the Lorenz multi-scale model to illustrate the theoretical concepts and potential benefits for practical applications.

  4. Optimization of the moving-bed biofilm sequencing batch reactor (MBSBR) to control aeration time by kinetic computational modeling: Simulated sugar-industry wastewater treatment.

    PubMed

    Faridnasr, Maryam; Ghanbari, Bastam; Sassani, Ardavan

    2016-05-01

    A novel approach was applied for optimization of a moving-bed biofilm sequencing batch reactor (MBSBR) to treat sugar-industry wastewater (BOD5=500-2500 and COD=750-3750 mg/L) at 2-4 h of cycle time (CT). Although the experimental data showed that MBSBR reached high BOD5 and COD removal performances, it failed to achieve the standard limits at the mentioned CTs. Thus, optimization of the reactor was rendered by kinetic computational modeling and using statistical error indicator normalized root mean square error (NRMSE). The results of NRMSE revealed that Stover-Kincannon (error=6.40%) and Grau (error=6.15%) models provide better fits to the experimental data and may be used for CT optimization in the reactor. The models predicted required CTs of 4.5, 6.5, 7 and 7.5 h for effluent standardization of 500, 1000, 1500 and 2500 mg/L influent BOD5 concentrations, respectively. Similar pattern of the experimental data also confirmed these findings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Error-compensation model for simultaneous measurement of five degrees of freedom motion errors of a rotary axis

    NASA Astrophysics Data System (ADS)

    Bao, Chuanchen; Li, Jiakun; Feng, Qibo; Zhang, Bin

    2018-07-01

    This paper introduces an error-compensation model for our measurement method to measure five motion errors of a rotary axis based on fibre laser collimation. The error-compensation model is established in a matrix form using the homogeneous coordinate transformation theory. The influences of the installation errors, error crosstalk, and manufacturing errors are analysed. The model is verified by both ZEMAX simulation and measurement experiments. The repeatability values of the radial and axial motion errors are significantly suppressed by more than 50% after compensation. The repeatability experiments of five degrees of freedom motion errors and the comparison experiments of two degrees of freedom motion errors of an indexing table were performed by our measuring device and a standard instrument. The results show that the repeatability values of the angular positioning error ε z and tilt motion error around the Y axis ε y are 1.2″ and 4.4″, and the comparison deviations of the two motion errors are 4.0″ and 4.4″, respectively. The repeatability values of the radial and axial motion errors, δ y and δ z , are 1.3 and 0.6 µm, respectively. The repeatability value of the tilt motion error around the X axis ε x is 3.8″.

  6. Multiple imputation to account for measurement error in marginal structural models

    PubMed Central

    Edwards, Jessie K.; Cole, Stephen R.; Westreich, Daniel; Crane, Heidi; Eron, Joseph J.; Mathews, W. Christopher; Moore, Richard; Boswell, Stephen L.; Lesko, Catherine R.; Mugavero, Michael J.

    2015-01-01

    Background Marginal structural models are an important tool for observational studies. These models typically assume that variables are measured without error. We describe a method to account for differential and non-differential measurement error in a marginal structural model. Methods We illustrate the method estimating the joint effects of antiretroviral therapy initiation and current smoking on all-cause mortality in a United States cohort of 12,290 patients with HIV followed for up to 5 years between 1998 and 2011. Smoking status was likely measured with error, but a subset of 3686 patients who reported smoking status on separate questionnaires composed an internal validation subgroup. We compared a standard joint marginal structural model fit using inverse probability weights to a model that also accounted for misclassification of smoking status using multiple imputation. Results In the standard analysis, current smoking was not associated with increased risk of mortality. After accounting for misclassification, current smoking without therapy was associated with increased mortality [hazard ratio (HR): 1.2 (95% CI: 0.6, 2.3)]. The HR for current smoking and therapy (0.4 (95% CI: 0.2, 0.7)) was similar to the HR for no smoking and therapy (0.4; 95% CI: 0.2, 0.6). Conclusions Multiple imputation can be used to account for measurement error in concert with methods for causal inference to strengthen results from observational studies. PMID:26214338

  7. Intermittent nocturnal hypoxia and metabolic risk in obese adolescents with obstructive sleep apnea.

    PubMed

    Narang, Indra; McCrindle, Brian W; Manlhiot, Cedric; Lu, Zihang; Al-Saleh, Suhail; Birken, Catherine S; Hamilton, Jill

    2018-01-22

    There is conflicting data regarding the independent associations of obstructive sleep apnea (OSA) with metabolic risk in obese youth. Previous studies have not consistently addressed central adiposity, specifically elevated waist to height ratio (WHtR), which is associated with metabolic risk independent of body mass index. The objective of this study was to determine the independent effects of the obstructive apnea-hypopnea index (OAHI) and associated indices of nocturnal hypoxia on metabolic function in obese youth after adjusting for WHtR. Subjects had standardized anthropometric measurements. Fasting blood included insulin, glucose, glycated hemoglobin, alanine transferase, and aspartate transaminase. Insulin resistance was quantified with the homeostatic model assessment. Overnight polysomnography determined the OAHI and nocturnal oxygenation indices. Of the 75 recruited subjects, 23% were diagnosed with OSA. Adjusting for age, gender, and WHtR in multivariable linear regression models, a higher oxygen desaturation index was associated with a higher fasting insulin (coefficient [standard error] = 48.076 [11.255], p < 0.001), higher glycated hemoglobin (coefficient [standard error] = 0.097 [0.041], p = 0.02), higher insulin resistance (coefficient [standard error] = 1.516 [0.364], p < 0.001), elevated alanine transferase (coefficient [standard error] = 11.631 [2.770], p < 0.001), and aspartate transaminase (coefficient [standard error] = 4.880 [1.444], p = 0.001). However, there were no significant associations between OAHI, glucose metabolism, and liver enzymes. Intermittent nocturnal hypoxia rather than the OAHI was associated with metabolic risk in obese youth after adjusting for WHtR. Measures of abdominal adiposity such as WHtR should be considered in future studies that evaluate the impact of OSA on metabolic health.

  8. Significant and Sustained Reduction in Chemotherapy Errors Through Improvement Science.

    PubMed

    Weiss, Brian D; Scott, Melissa; Demmel, Kathleen; Kotagal, Uma R; Perentesis, John P; Walsh, Kathleen E

    2017-04-01

    A majority of children with cancer are now cured with highly complex chemotherapy regimens incorporating multiple drugs and demanding monitoring schedules. The risk for error is high, and errors can occur at any stage in the process, from order generation to pharmacy formulation to bedside drug administration. Our objective was to describe a program to eliminate errors in chemotherapy use among children. To increase reporting of chemotherapy errors, we supplemented the hospital reporting system with a new chemotherapy near-miss reporting system. After the model for improvement, we then implemented several interventions, including a daily chemotherapy huddle, improvements to the preparation and delivery of intravenous therapy, headphones for clinicians ordering chemotherapy, and standards for chemotherapy administration throughout the hospital. Twenty-two months into the project, we saw a centerline shift in our U chart of chemotherapy errors that reached the patient from a baseline rate of 3.8 to 1.9 per 1,000 doses. This shift has been sustained for > 4 years. In Poisson regression analyses, we found an initial increase in error rates, followed by a significant decline in errors after 16 months of improvement work ( P < .001). After the model for improvement, our improvement efforts were associated with significant reductions in chemotherapy errors that reached the patient. Key drivers for our success included error vigilance through a huddle, standardization, and minimization of interruptions during ordering.

  9. Molecular radiotherapy: the NUKFIT software for calculating the time-integrated activity coefficient.

    PubMed

    Kletting, P; Schimmel, S; Kestler, H A; Hänscheid, H; Luster, M; Fernández, M; Bröer, J H; Nosske, D; Lassmann, M; Glatting, G

    2013-10-01

    Calculation of the time-integrated activity coefficient (residence time) is a crucial step in dosimetry for molecular radiotherapy. However, available software is deficient in that it is either not tailored for the use in molecular radiotherapy and/or does not include all required estimation methods. The aim of this work was therefore the development and programming of an algorithm which allows for an objective and reproducible determination of the time-integrated activity coefficient and its standard error. The algorithm includes the selection of a set of fitting functions from predefined sums of exponentials and the choice of an error model for the used data. To estimate the values of the adjustable parameters an objective function, depending on the data, the parameters of the error model, the fitting function and (if required and available) Bayesian information, is minimized. To increase reproducibility and user-friendliness the starting values are automatically determined using a combination of curve stripping and random search. Visual inspection, the coefficient of determination, the standard error of the fitted parameters, and the correlation matrix are provided to evaluate the quality of the fit. The functions which are most supported by the data are determined using the corrected Akaike information criterion. The time-integrated activity coefficient is estimated by analytically integrating the fitted functions. Its standard error is determined assuming Gaussian error propagation. The software was implemented using MATLAB. To validate the proper implementation of the objective function and the fit functions, the results of NUKFIT and SAAM numerical, a commercially available software tool, were compared. The automatic search for starting values was successfully tested for reproducibility. The quality criteria applied in conjunction with the Akaike information criterion allowed the selection of suitable functions. Function fit parameters and their standard error estimated by using SAAM numerical and NUKFIT showed differences of <1%. The differences for the time-integrated activity coefficients were also <1% (standard error between 0.4% and 3%). In general, the application of the software is user-friendly and the results are mathematically correct and reproducible. An application of NUKFIT is presented for three different clinical examples. The software tool with its underlying methodology can be employed to objectively and reproducibly estimate the time integrated activity coefficient and its standard error for most time activity data in molecular radiotherapy.

  10. Development of Predictive Models for the Growth Kinetics of Listeria monocytogenes on Fresh Pork under Different Storage Temperatures.

    PubMed

    Luo, Ke; Hong, Sung-Sam; Wang, Jun; Chung, Mi-Ja; Deog-Hwan, Oh

    2015-05-01

    This study was conducted to develop a predictive model to estimate the growth of Listeria monocytogenes on fresh pork during storage at constant temperatures (5, 10, 15, 20, 25, 30, and 35°C). The Baranyi model was fitted to growth data (log CFU per gram) to calculate the specific growth rate (SGR) and lag time (LT) with a high coefficient of determination (R(2) > 0.98). As expected, SGR increased with a decline in LT with rising temperatures in all samples. Secondary models were then developed to describe the variation of SGR and LT as a function of temperature. Subsequently, the developed models were validated with additional independent growth data collected at 7, 17, 27, and 37°C and from published reports using proportion of relative errors and proportion of standard error of prediction. The proportion of relative errors of the SGR and LT models developed herein were 0.79 and 0.18, respectively. In addition, the standard error of prediction values of the SGR and LT of L. monocytogenes ranged from 25.7 to 33.1% and from 44.92 to 58.44%, respectively. These results suggest that the model developed in this study was capable of predicting the growth of L. monocytogenes under various isothermal conditions.

  11. Modeling and Control of a Tailsitter with a Ducted Fan

    NASA Astrophysics Data System (ADS)

    Argyle, Matthew Elliott

    There are two traditional aircraft categories: fixed-wing which have a long endurance and a high cruise airspeed and rotorcraft which can take-off and land vertically. The tailsitter is a type of aircraft that has the strengths of both platforms, with no additional mechanical complexity, because it takes off and lands vertically on its tail and can transition the entire aircraft horizontally into high-speed flight. In this dissertation, we develop the entire control system for a tailsitter with a ducted fan. The standard method to compute the quaternion-based attitude error does not generate ideal trajectories for a hovering tailsitter for some situations. In addition, the only approach in the literature to mitigate this breaks down for large attitude errors. We develop an alternative quaternion-based error method which generates better trajectories than the standard approach and can handle large errors. We also derive a hybrid backstepping controller with almost global asymptotic stability based on this error method. Many common altitude and airspeed control schemes for a fixed-wing airplane assume that the altitude and airspeed dynamics are decoupled which leads to errors. The Total Energy Control System (TECS) is an approach that controls the altitude and airspeed by manipulating the total energy rate and energy distribution rate, of the aircraft, in a manner which accounts for the dynamic coupling. In this dissertation, a nonlinear controller, which can handle inaccurate thrust and drag models, based on the TECS principles is derived. Simulation results show that the nonlinear controller has better performance than the standard PI TECS control schemes. Most constant altitude transitions are accomplished by generating an optimal trajectory, and potentially actuator inputs, based on a high fidelity model of the aircraft. While there are several approaches to mitigate the effects of modeling errors, these do not fully remove the accurate model requirement. In this dissertation, we develop two different approaches that can achieve near constant altitude transitions for some types of aircraft. The first method, based on multiple LQR controllers, requires a high fidelity model of the aircraft. However, the second method, based on the energy along the body axes, requires almost no aerodynamic information.

  12. Three-dimensional quantitative structure-activity relationship studies on novel series of benzotriazine based compounds acting as Src inhibitors using CoMFA and CoMSIA.

    PubMed

    Gueto, Carlos; Ruiz, José L; Torres, Juan E; Méndez, Jefferson; Vivas-Reyes, Ricardo

    2008-03-01

    Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on a series of benzotriazine derivatives, as Src inhibitors. Ligand molecular superimposition on the template structure was performed by database alignment method. The statistically significant model was established of 72 molecules, which were validated by a test set of six compounds. The CoMFA model yielded a q(2)=0.526, non cross-validated R(2) of 0.781, F value of 88.132, bootstrapped R(2) of 0.831, standard error of prediction=0.587, and standard error of estimate=0.351 while the CoMSIA model yielded the best predictive model with a q(2)=0.647, non cross-validated R(2) of 0.895, F value of 115.906, bootstrapped R(2) of 0.953, standard error of prediction=0.519, and standard error of estimate=0.178. The contour maps obtained from 3D-QSAR studies were appraised for activity trends for the molecules analyzed. Results indicate that small steric volumes in the hydrophobic region, electron-withdrawing groups next to the aryl linker region, and atoms close to the solvent accessible region increase the Src inhibitory activity of the compounds. In fact, adding substituents at positions 5, 6, and 8 of the benzotriazine nucleus were generated new compounds having a higher predicted activity. The data generated from the present study will further help to design novel, potent, and selective Src inhibitors as anticancer therapeutic agents.

  13. The Influence of Dimensionality on Estimation in the Partial Credit Model.

    ERIC Educational Resources Information Center

    De Ayala, R. J.

    1995-01-01

    The effect of multidimensionality on partial credit model parameter estimation was studied with noncompensatory and compensatory data. Analysis results, consisting of root mean square error bias, Pearson product-moment corrections, standardized root mean squared differences, standardized differences between means, and descriptive statistics…

  14. Using Least Squares for Error Propagation

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2015-01-01

    The method of least-squares (LS) has a built-in procedure for estimating the standard errors (SEs) of the adjustable parameters in the fit model: They are the square roots of the diagonal elements of the covariance matrix. This means that one can use least-squares to obtain numerical values of propagated errors by defining the target quantities as…

  15. Comparative Cost-Effectiveness Analysis of Three Different Automated Medication Systems Implemented in a Danish Hospital Setting.

    PubMed

    Risør, Bettina Wulff; Lisby, Marianne; Sørensen, Jan

    2018-02-01

    Automated medication systems have been found to reduce errors in the medication process, but little is known about the cost-effectiveness of such systems. The objective of this study was to perform a model-based indirect cost-effectiveness comparison of three different, real-world automated medication systems compared with current standard practice. The considered automated medication systems were a patient-specific automated medication system (psAMS), a non-patient-specific automated medication system (npsAMS), and a complex automated medication system (cAMS). The economic evaluation used original effect and cost data from prospective, controlled, before-and-after studies of medication systems implemented at a Danish hematological ward and an acute medical unit. Effectiveness was described as the proportion of clinical and procedural error opportunities that were associated with one or more errors. An error was defined as a deviation from the electronic prescription, from standard hospital policy, or from written procedures. The cost assessment was based on 6-month standardization of observed cost data. The model-based comparative cost-effectiveness analyses were conducted with system-specific assumptions of the effect size and costs in scenarios with consumptions of 15,000, 30,000, and 45,000 doses per 6-month period. With 30,000 doses the cost-effectiveness model showed that the cost-effectiveness ratio expressed as the cost per avoided clinical error was €24 for the psAMS, €26 for the npsAMS, and €386 for the cAMS. Comparison of the cost-effectiveness of the three systems in relation to different valuations of an avoided error showed that the psAMS was the most cost-effective system regardless of error type or valuation. The model-based indirect comparison against the conventional practice showed that psAMS and npsAMS were more cost-effective than the cAMS alternative, and that psAMS was more cost-effective than npsAMS.

  16. Estimating extreme stream temperatures by the standard deviate method

    NASA Astrophysics Data System (ADS)

    Bogan, Travis; Othmer, Jonathan; Mohseni, Omid; Stefan, Heinz

    2006-02-01

    It is now widely accepted that global climate warming is taking place on the earth. Among many other effects, a rise in air temperatures is expected to increase stream temperatures indefinitely. However, due to evaporative cooling, stream temperatures do not increase linearly with increasing air temperatures indefinitely. Within the anticipated bounds of climate warming, extreme stream temperatures may therefore not rise substantially. With this concept in mind, past extreme temperatures measured at 720 USGS stream gauging stations were analyzed by the standard deviate method. In this method the highest stream temperatures are expressed as the mean temperature of a measured partial maximum stream temperature series plus its standard deviation multiplied by a factor KE (standard deviate). Various KE-values were explored; values of KE larger than 8 were found physically unreasonable. It is concluded that the value of KE should be in the range from 7 to 8. A unit error in estimating KE translates into a typical stream temperature error of about 0.5 °C. Using a logistic model for the stream temperature/air temperature relationship, a one degree error in air temperature gives a typical error of 0.16 °C in stream temperature. With a projected error in the enveloping standard deviate dKE=1.0 (range 0.5-1.5) and an error in projected high air temperature d Ta=2 °C (range 0-4 °C), the total projected stream temperature error is estimated as d Ts=0.8 °C.

  17. Integration of Error Compensation of Coordinate Measuring Machines into Feature Measurement: Part I—Model Development

    PubMed Central

    Calvo, Roque; D’Amato, Roberto; Gómez, Emilio; Domingo, Rosario

    2016-01-01

    The development of an error compensation model for coordinate measuring machines (CMMs) and its integration into feature measurement is presented. CMMs are widespread and dependable instruments in industry and laboratories for dimensional measurement. From the tip probe sensor to the machine display, there is a complex transformation of probed point coordinates through the geometrical feature model that makes the assessment of accuracy and uncertainty measurement results difficult. Therefore, error compensation is not standardized, conversely to other simpler instruments. Detailed coordinate error compensation models are generally based on CMM as a rigid-body and it requires a detailed mapping of the CMM’s behavior. In this paper a new model type of error compensation is proposed. It evaluates the error from the vectorial composition of length error by axis and its integration into the geometrical measurement model. The non-explained variability by the model is incorporated into the uncertainty budget. Model parameters are analyzed and linked to the geometrical errors and uncertainty of CMM response. Next, the outstanding measurement models of flatness, angle, and roundness are developed. The proposed models are useful for measurement improvement with easy integration into CMM signal processing, in particular in industrial environments where built-in solutions are sought. A battery of implementation tests are presented in Part II, where the experimental endorsement of the model is included. PMID:27690052

  18. An Optimal Control Modification to Model-Reference Adaptive Control for Fast Adaptation

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Krishnakumar, Kalmanje; Boskovic, Jovan

    2008-01-01

    This paper presents a method that can achieve fast adaptation for a class of model-reference adaptive control. It is well-known that standard model-reference adaptive control exhibits high-gain control behaviors when a large adaptive gain is used to achieve fast adaptation in order to reduce tracking error rapidly. High gain control creates high-frequency oscillations that can excite unmodeled dynamics and can lead to instability. The fast adaptation approach is based on the minimization of the squares of the tracking error, which is formulated as an optimal control problem. The necessary condition of optimality is used to derive an adaptive law using the gradient method. This adaptive law is shown to result in uniform boundedness of the tracking error by means of the Lyapunov s direct method. Furthermore, this adaptive law allows a large adaptive gain to be used without causing undesired high-gain control effects. The method is shown to be more robust than standard model-reference adaptive control. Simulations demonstrate the effectiveness of the proposed method.

  19. Propagation of uncertainty in nasal spray in vitro performance models using Monte Carlo simulation: Part II. Error propagation during product performance modeling.

    PubMed

    Guo, Changning; Doub, William H; Kauffman, John F

    2010-08-01

    Monte Carlo simulations were applied to investigate the propagation of uncertainty in both input variables and response measurements on model prediction for nasal spray product performance design of experiment (DOE) models in the first part of this study, with an initial assumption that the models perfectly represent the relationship between input variables and the measured responses. In this article, we discard the initial assumption, and extended the Monte Carlo simulation study to examine the influence of both input variable variation and product performance measurement variation on the uncertainty in DOE model coefficients. The Monte Carlo simulations presented in this article illustrate the importance of careful error propagation during product performance modeling. Our results show that the error estimates based on Monte Carlo simulation result in smaller model coefficient standard deviations than those from regression methods. This suggests that the estimated standard deviations from regression may overestimate the uncertainties in the model coefficients. Monte Carlo simulations provide a simple software solution to understand the propagation of uncertainty in complex DOE models so that design space can be specified with statistically meaningful confidence levels. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  20. Erratum: Erratum to: Maximally symmetric two Higgs doublet model with natural standard model alignment

    NASA Astrophysics Data System (ADS)

    Bhupal Dev, P. S.; Pilaftsis, Apostolos

    2015-11-01

    Here we correct some typesetting errors in ref. [1]. These corrections have been implemented in the latest version of [1] on arXiv and the corrected equations have also been reproduced in ref. [2] for the reader's convenience. We clarify that all numerical results presented in ref. [1] remain unaffected by these typographic errors.

  1. Specificity of reliable change models and review of the within-subjects standard deviation as an error term.

    PubMed

    Hinton-Bayre, Anton D

    2011-02-01

    There is an ongoing debate over the preferred method(s) for determining the reliable change (RC) in individual scores over time. In the present paper, specificity comparisons of several classic and contemporary RC models were made using a real data set. This included a more detailed review of a new RC model recently proposed in this journal, that used the within-subjects standard deviation (WSD) as the error term. It was suggested that the RC(WSD) was more sensitive to change and theoretically superior. The current paper demonstrated that even in the presence of mean practice effects, false-positive rates were comparable across models when reliability was good and initial and retest variances were equivalent. However, when variances differed, discrepancies in classification across models became evident. Notably, the RC using the WSD provided unacceptably high false-positive rates in this setting. It was considered that the WSD was never intended for measuring change in this manner. The WSD actually combines systematic and error variance. The systematic variance comes from measurable between-treatment differences, commonly referred to as practice effect. It was further demonstrated that removal of the systematic variance and appropriate modification of the residual error term for the purpose of testing individual change yielded an error term already published and criticized in the literature. A consensus on the RC approach is needed. To that end, further comparison of models under varied conditions is encouraged.

  2. Model specification and bootstrapping for multiply imputed data: An application to count models for the frequency of alcohol use

    PubMed Central

    Comulada, W. Scott

    2015-01-01

    Stata’s mi commands provide powerful tools to conduct multiple imputation in the presence of ignorable missing data. In this article, I present Stata code to extend the capabilities of the mi commands to address two areas of statistical inference where results are not easily aggregated across imputed datasets. First, mi commands are restricted to covariate selection. I show how to address model fit to correctly specify a model. Second, the mi commands readily aggregate model-based standard errors. I show how standard errors can be bootstrapped for situations where model assumptions may not be met. I illustrate model specification and bootstrapping on frequency counts for the number of times that alcohol was consumed in data with missing observations from a behavioral intervention. PMID:26973439

  3. Efficacy of monitoring and empirical predictive modeling at improving public health protection at Chicago beaches

    USGS Publications Warehouse

    Nevers, Meredith B.; Whitman, Richard L.

    2011-01-01

    Efforts to improve public health protection in recreational swimming waters have focused on obtaining real-time estimates of water quality. Current monitoring techniques rely on the time-intensive culturing of fecal indicator bacteria (FIB) from water samples, but rapidly changing FIB concentrations result in management errors that lead to the public being exposed to high FIB concentrations (type II error) or beaches being closed despite acceptable water quality (type I error). Empirical predictive models may provide a rapid solution, but their effectiveness at improving health protection has not been adequately assessed. We sought to determine if emerging monitoring approaches could effectively reduce risk of illness exposure by minimizing management errors. We examined four monitoring approaches (inactive, current protocol, a single predictive model for all beaches, and individual models for each beach) with increasing refinement at 14 Chicago beaches using historical monitoring and hydrometeorological data and compared management outcomes using different standards for decision-making. Predictability (R2) of FIB concentration improved with model refinement at all beaches but one. Predictive models did not always reduce the number of management errors and therefore the overall illness burden. Use of a Chicago-specific single-sample standard-rather than the default 235 E. coli CFU/100 ml widely used-together with predictive modeling resulted in the greatest number of open beach days without any increase in public health risk. These results emphasize that emerging monitoring approaches such as empirical models are not equally applicable at all beaches, and combining monitoring approaches may expand beach access.

  4. Propeller aircraft interior noise model. II - Scale-model and flight-test comparisons

    NASA Technical Reports Server (NTRS)

    Willis, C. M.; Mayes, W. H.

    1987-01-01

    A program for predicting the sound levels inside propeller driven aircraft arising from sidewall transmission of airborne exterior noise is validated through comparisons of predictions with both scale-model test results and measurements obtained in flight tests on a turboprop aircraft. The program produced unbiased predictions for the case of the scale-model tests, with a standard deviation of errors of about 4 dB. For the case of the flight tests, the predictions revealed a bias of 2.62-4.28 dB (depending upon whether or not the data for the fourth harmonic were included) and the standard deviation of the errors ranged between 2.43 and 4.12 dB. The analytical model is shown to be capable of taking changes in the flight environment into account.

  5. New dimension analyses with error analysis for quaking aspen and black spruce

    NASA Technical Reports Server (NTRS)

    Woods, K. D.; Botkin, D. B.; Feiveson, A. H.

    1987-01-01

    Dimension analysis for black spruce in wetland stands and trembling aspen are reported, including new approaches in error analysis. Biomass estimates for sacrificed trees have standard errors of 1 to 3%; standard errors for leaf areas are 10 to 20%. Bole biomass estimation accounts for most of the error for biomass, while estimation of branch characteristics and area/weight ratios accounts for the leaf area error. Error analysis provides insight for cost effective design of future analyses. Predictive equations for biomass and leaf area, with empirically derived estimators of prediction error, are given. Systematic prediction errors for small aspen trees and for leaf area of spruce from different site-types suggest a need for different predictive models within species. Predictive equations are compared with published equations; significant differences may be due to species responses to regional or site differences. Proportional contributions of component biomass in aspen change in ways related to tree size and stand development. Spruce maintains comparatively constant proportions with size, but shows changes corresponding to site. This suggests greater morphological plasticity of aspen and significance for spruce of nutrient conditions.

  6. Comparison of optimal design methods in inverse problems

    NASA Astrophysics Data System (ADS)

    Banks, H. T.; Holm, K.; Kappel, F.

    2011-07-01

    Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric-based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher information matrix. A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criterion with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst-Pearl logistic population model (Banks H T and Tran H T 2009 Mathematical and Experimental Modeling of Physical and Biological Processes (Boca Raton, FL: Chapman and Hall/CRC)), the standard harmonic oscillator model (Banks H T and Tran H T 2009) and a popular glucose regulation model (Bergman R N, Ider Y Z, Bowden C R and Cobelli C 1979 Am. J. Physiol. 236 E667-77 De Gaetano A and Arino O 2000 J. Math. Biol. 40 136-68 Toffolo G, Bergman R N, Finegood D T, Bowden C R and Cobelli C 1980 Diabetes 29 979-90).

  7. Calibration of a flexible measurement system based on industrial articulated robot and structured light sensor

    NASA Astrophysics Data System (ADS)

    Mu, Nan; Wang, Kun; Xie, Zexiao; Ren, Ping

    2017-05-01

    To realize online rapid measurement for complex workpieces, a flexible measurement system based on an articulated industrial robot with a structured light sensor mounted on the end-effector is developed. A method for calibrating the system parameters is proposed in which the hand-eye transformation parameters and the robot kinematic parameters are synthesized in the calibration process. An initial hand-eye calibration is first performed using a standard sphere as the calibration target. By applying the modified complete and parametrically continuous method, we establish a synthesized kinematic model that combines the initial hand-eye transformation and distal link parameters as a whole with the sensor coordinate system as the tool frame. According to the synthesized kinematic model, an error model is constructed based on spheres' center-to-center distance errors. Consequently, the error model parameters can be identified in a calibration experiment using a three-standard-sphere target. Furthermore, the redundancy of error model parameters is eliminated to ensure the accuracy and robustness of the parameter identification. Calibration and measurement experiments are carried out based on an ER3A-C60 robot. The experimental results show that the proposed calibration method enjoys high measurement accuracy, and this efficient and flexible system is suitable for online measurement in industrial scenes.

  8. On a more rigorous gravity field processing for future LL-SST type gravity satellite missions

    NASA Astrophysics Data System (ADS)

    Daras, I.; Pail, R.; Murböck, M.

    2013-12-01

    In order to meet the augmenting demands of the user community concerning accuracies of temporal gravity field models, future gravity missions of low-low satellite-to-satellite tracking (LL-SST) type are planned to carry more precise sensors than their precedents. A breakthrough is planned with the improved LL-SST measurement link, where the traditional K-band microwave instrument of 1μm accuracy will be complemented by an inter-satellite ranging instrument of several nm accuracy. This study focuses on investigations concerning the potential performance of the new sensors and their impact in gravity field solutions. The processing methods for gravity field recovery have to meet the new sensor standards and be able to take full advantage of the new accuracies that they provide. We use full-scale simulations in a realistic environment to investigate whether the standard processing techniques suffice to fully exploit the new sensors standards. We achieve that by performing full numerical closed-loop simulations based on the Integral Equation approach. In our simulation scheme, we simulate dynamic orbits in a conventional tracking analysis to compute pseudo inter-satellite ranges or range-rates that serve as observables. Each part of the processing is validated separately with special emphasis on numerical errors and their impact in gravity field solutions. We demonstrate that processing with standard precision may be a limiting factor for taking full advantage of new generation sensors that future satellite missions will carry. Therefore we have created versions of our simulator with enhanced processing precision with primarily aim to minimize round-off system errors. Results using the enhanced precision show a big reduction of system errors that were present at the standard precision processing even for the error-free scenario, and reveal the improvements the new sensors will bring into the gravity field solutions. As a next step, we analyze the contribution of individual error sources to the system's error budget. More specifically we analyze sensor noise from the laser interferometer and the accelerometers, errors in the kinematic orbits and the background fields as well as temporal and spatial aliasing errors. We give special care on the assessment of error sources with stochastic behavior, such as the laser interferometer and the accelerometers, and their consistent stochastic modeling in frame of the adjustment process.

  9. Correcting the Standard Errors of 2-Stage Residual Inclusion Estimators for Mendelian Randomization Studies

    PubMed Central

    Palmer, Tom M; Holmes, Michael V; Keating, Brendan J; Sheehan, Nuala A

    2017-01-01

    Abstract Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estimates. We compared several different forms of the standard error for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza, bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of coverage and type I error. In the real-data examples, the Newey standard errors were 0.5% and 2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors. PMID:29106476

  10. Spectral combination of spherical gravitational curvature boundary-value problems

    NASA Astrophysics Data System (ADS)

    PitoÅák, Martin; Eshagh, Mehdi; Šprlák, Michal; Tenzer, Robert; Novák, Pavel

    2018-04-01

    Four solutions of the spherical gravitational curvature boundary-value problems can be exploited for the determination of the Earth's gravitational potential. In this article we discuss the combination of simulated satellite gravitational curvatures, i.e., components of the third-order gravitational tensor, by merging these solutions using the spectral combination method. For this purpose, integral estimators of biased- and unbiased-types are derived. In numerical studies, we investigate the performance of the developed mathematical models for the gravitational field modelling in the area of Central Europe based on simulated satellite measurements. Firstly, we verify the correctness of the integral estimators for the spectral downward continuation by a closed-loop test. Estimated errors of the combined solution are about eight orders smaller than those from the individual solutions. Secondly, we perform a numerical experiment by considering the Gaussian noise with the standard deviation of 6.5× 10-17 m-1s-2 in the input data at the satellite altitude of 250 km above the mean Earth sphere. This value of standard deviation is equivalent to a signal-to-noise ratio of 10. Superior results with respect to the global geopotential model TIM-r5 are obtained by the spectral downward continuation of the vertical-vertical-vertical component with the standard deviation of 2.104 m2s-2, but the root mean square error is the largest and reaches 9.734 m2s-2. Using the spectral combination of all gravitational curvatures the root mean square error is more than 400 times smaller but the standard deviation reaches 17.234 m2s-2. The combination of more components decreases the root mean square error of the corresponding solutions while the standard deviations of the combined solutions do not improve as compared to the solution from the vertical-vertical-vertical component. The presented method represents a weight mean in the spectral domain that minimizes the root mean square error of the combined solutions and improves standard deviation of the solution based only on the least accurate components.

  11. Evaluation of alternative model selection criteria in the analysis of unimodal response curves using CART

    USGS Publications Warehouse

    Ribic, C.A.; Miller, T.W.

    1998-01-01

    We investigated CART performance with a unimodal response curve for one continuous response and four continuous explanatory variables, where two variables were important (ie directly related to the response) and the other two were not. We explored performance under three relationship strengths and two explanatory variable conditions: equal importance and one variable four times as important as the other. We compared CART variable selection performance using three tree-selection rules ('minimum risk', 'minimum risk complexity', 'one standard error') to stepwise polynomial ordinary least squares (OLS) under four sample size conditions. The one-standard-error and minimum-risk-complexity methods performed about as well as stepwise OLS with large sample sizes when the relationship was strong. With weaker relationships, equally important explanatory variables and larger sample sizes, the one-standard-error and minimum-risk-complexity rules performed better than stepwise OLS. With weaker relationships and explanatory variables of unequal importance, tree-structured methods did not perform as well as stepwise OLS. Comparing performance within tree-structured methods, with a strong relationship and equally important explanatory variables, the one-standard-error-rule was more likely to choose the correct model than were the other tree-selection rules 1) with weaker relationships and equally important explanatory variables; and 2) under all relationship strengths when explanatory variables were of unequal importance and sample sizes were lower.

  12. How large are the consequences of covariate imbalance in cluster randomized trials: a simulation study with a continuous outcome and a binary covariate at the cluster level.

    PubMed

    Moerbeek, Mirjam; van Schie, Sander

    2016-07-11

    The number of clusters in a cluster randomized trial is often low. It is therefore likely random assignment of clusters to treatment conditions results in covariate imbalance. There are no studies that quantify the consequences of covariate imbalance in cluster randomized trials on parameter and standard error bias and on power to detect treatment effects. The consequences of covariance imbalance in unadjusted and adjusted linear mixed models are investigated by means of a simulation study. The factors in this study are the degree of imbalance, the covariate effect size, the cluster size and the intraclass correlation coefficient. The covariate is binary and measured at the cluster level; the outcome is continuous and measured at the individual level. The results show covariate imbalance results in negligible parameter bias and small standard error bias in adjusted linear mixed models. Ignoring the possibility of covariate imbalance while calculating the sample size at the cluster level may result in a loss in power of at most 25 % in the adjusted linear mixed model. The results are more severe for the unadjusted linear mixed model: parameter biases up to 100 % and standard error biases up to 200 % may be observed. Power levels based on the unadjusted linear mixed model are often too low. The consequences are most severe for large clusters and/or small intraclass correlation coefficients since then the required number of clusters to achieve a desired power level is smallest. The possibility of covariate imbalance should be taken into account while calculating the sample size of a cluster randomized trial. Otherwise more sophisticated methods to randomize clusters to treatments should be used, such as stratification or balance algorithms. All relevant covariates should be carefully identified, be actually measured and included in the statistical model to avoid severe levels of parameter and standard error bias and insufficient power levels.

  13. An ensemble-ANFIS based uncertainty assessment model for forecasting multi-scalar standardized precipitation index

    NASA Astrophysics Data System (ADS)

    Ali, Mumtaz; Deo, Ravinesh C.; Downs, Nathan J.; Maraseni, Tek

    2018-07-01

    Forecasting drought by means of the World Meteorological Organization-approved Standardized Precipitation Index (SPI) is considered to be a fundamental task to support socio-economic initiatives and effectively mitigating the climate-risk. This study aims to develop a robust drought modelling strategy to forecast multi-scalar SPI in drought-rich regions of Pakistan where statistically significant lagged combinations of antecedent SPI are used to forecast future SPI. With ensemble-Adaptive Neuro Fuzzy Inference System ('ensemble-ANFIS') executed via a 10-fold cross-validation procedure, a model is constructed by randomly partitioned input-target data. Resulting in 10-member ensemble-ANFIS outputs, judged by mean square error and correlation coefficient in the training period, the optimal forecasts are attained by the averaged simulations, and the model is benchmarked with M5 Model Tree and Minimax Probability Machine Regression (MPMR). The results show the proposed ensemble-ANFIS model's preciseness was notably better (in terms of the root mean square and mean absolute error including the Willmott's, Nash-Sutcliffe and Legates McCabe's index) for the 6- and 12- month compared to the 3-month forecasts as verified by the largest error proportions that registered in smallest error band. Applying 10-member simulations, ensemble-ANFIS model was validated for its ability to forecast severity (S), duration (D) and intensity (I) of drought (including the error bound). This enabled uncertainty between multi-models to be rationalized more efficiently, leading to a reduction in forecast error caused by stochasticity in drought behaviours. Through cross-validations at diverse sites, a geographic signature in modelled uncertainties was also calculated. Considering the superiority of ensemble-ANFIS approach and its ability to generate uncertainty-based information, the study advocates the versatility of a multi-model approach for drought-risk forecasting and its prime importance for estimating drought properties over confidence intervals to generate better information for strategic decision-making.

  14. Error-Based Design Space Windowing

    NASA Technical Reports Server (NTRS)

    Papila, Melih; Papila, Nilay U.; Shyy, Wei; Haftka, Raphael T.; Fitz-Coy, Norman

    2002-01-01

    Windowing of design space is considered in order to reduce the bias errors due to low-order polynomial response surfaces (RS). Standard design space windowing (DSW) uses a region of interest by setting a requirement on response level and checks it by a global RS predictions over the design space. This approach, however, is vulnerable since RS modeling errors may lead to the wrong region to zoom on. The approach is modified by introducing an eigenvalue error measure based on point-to-point mean squared error criterion. Two examples are presented to demonstrate the benefit of the error-based DSW.

  15. Quantifying uncertainty in carbon and nutrient pools of coarse woody debris

    NASA Astrophysics Data System (ADS)

    See, C. R.; Campbell, J. L.; Fraver, S.; Domke, G. M.; Harmon, M. E.; Knoepp, J. D.; Woodall, C. W.

    2016-12-01

    Woody detritus constitutes a major pool of both carbon and nutrients in forested ecosystems. Estimating coarse wood stocks relies on many assumptions, even when full surveys are conducted. Researchers rarely report error in coarse wood pool estimates, despite the importance to ecosystem budgets and modelling efforts. To date, no study has attempted a comprehensive assessment of error rates and uncertainty inherent in the estimation of this pool. Here, we use Monte Carlo analysis to propagate the error associated with the major sources of uncertainty present in the calculation of coarse wood carbon and nutrient (i.e., N, P, K, Ca, Mg, Na) pools. We also evaluate individual sources of error to identify the importance of each source of uncertainty in our estimates. We quantify sampling error by comparing the three most common field methods used to survey coarse wood (two transect methods and a whole-plot survey). We quantify the measurement error associated with length and diameter measurement, and technician error in species identification and decay class using plots surveyed by multiple technicians. We use previously published values of model error for the four most common methods of volume estimation: Smalian's, conical frustum, conic paraboloid, and average-of-ends. We also use previously published values for error in the collapse ratio (cross-sectional height/width) of decayed logs that serves as a surrogate for the volume remaining. We consider sampling error in chemical concentration and density for all decay classes, using distributions from both published and unpublished studies. Analytical uncertainty is calculated using standard reference plant material from the National Institute of Standards. Our results suggest that technician error in decay classification can have a large effect on uncertainty, since many of the error distributions included in the calculation (e.g. density, chemical concentration, volume-model selection, collapse ratio) are decay-class specific.

  16. Precision modelling of M dwarf stars: the magnetic components of CM Draconis

    NASA Astrophysics Data System (ADS)

    MacDonald, J.; Mullan, D. J.

    2012-04-01

    The eclipsing binary CM Draconis (CM Dra) contains two nearly identical red dwarfs of spectral class dM4.5. The masses and radii of the two components have been reported with unprecedentedly small statistical errors: for M, these errors are 1 part in 260, while for R, the errors reported by Morales et al. are 1 part in 130. When compared with standard stellar models with appropriate mass and age (≈4 Gyr), the empirical results indicate that both components are discrepant from the models in the following sense: the observed stars are larger in R ('bloated'), by several standard deviations, than the models predict. The observed luminosities are also lower than the models predict. Here, we attempt at first to model the two components of CM Dra in the context of standard (non-magnetic) stellar models using a systematic array of different assumptions about helium abundances (Y), heavy element abundances (Z), opacities and mixing length parameter (α). We find no 4-Gyr-old models with plausible values of these four parameters that fit the observed L and R within the reported statistical error bars. However, CM Dra is known to contain magnetic fields, as evidenced by the occurrence of star-spots and flares. Here we ask: can inclusion of magnetic effects into stellar evolution models lead to fits of L and R within the error bars? Morales et al. have reported that the presence of polar spots results in a systematic overestimate of R by a few per cent when eclipses are interpreted with a standard code. In a star where spots cover a fraction f of the surface area, we find that the revised R and L for CM Dra A can be fitted within the error bars by varying the parameter α. The latter is often assumed to be reduced by the presence of magnetic fields, although the reduction in α as a function of B is difficult to quantify. An alternative magnetic effect, namely inhibition of the onset of convection, can be readily quantified in terms of a magnetic parameter δ≈B2/4πγpgas (where B is the strength of the local vertical magnetic field). In the context of δ models in which B is not allowed to exceed a 'ceiling' of 106 G, we find that the revised R and L can also be fitted, within the error bars, in a finite region of the f-δ plane. The permitted values of δ near the surface leads us to estimate that the vertical field strength on the surface of CM Dra A is about 500 G, in good agreement with independent observational evidence for similar low-mass stars. Recent results for another binary with parameters close to those of CM Dra suggest that metallicity differences cannot be the dominant explanation for the bloating of the two components of CM Dra.

  17. [Evaluation of accuracy of virtual occlusal definition in Angle class I molar relationship].

    PubMed

    Wu, L; Liu, X J; Li, Z L; Wang, X

    2018-02-18

    To evaluate the accuracy of virtual occlusal definition in non-Angle class I molar relationship, and to evaluate the clinical feasibility. Twenty pairs of models of orthognathic patients were included in this study. The inclusion criteria were: (1) finished with pre-surgical orthodontic treatment and (2) stable final occlusion. The exclusion criteria were: (1) existence of distorted teeth, (2) needs for segmentation, (3) defect of dentition except for orthodontic extraction ones, and (4) existence of tooth space. The tooth-extracted test group included 10 models with two premolars extracted during preoperative orthodontic treatment. Their molar relationships were not Angle class I relationship. The non-tooth-extracted test group included another 10 models without teeth extracted, therefore their molar relationships were Angle class I. To define the final occlusion in virtual environment, two steps were included: (1) The morphology data of upper and lower dentition were digitalized by surface scanner (Smart Optics/Activity 102; Model-Tray GmbH, Hamburg, Germany); (2) the virtual relationships were defined using 3Shape software. The control standard of final occlusion was manually defined using gypsum models and then digitalized by surface scanner. The final occlusion of test group and control standard were overlapped according to lower dentition morphology. Errors were evaluated by calculating the distance between the corresponding reference points of testing group and control standard locations. The overall errors for upper dentition between test group and control standard location were (0.51±0.18) mm in non-tooth-extracted test group and (0.60±0.36) mm in tooth-extracted test group. The errors were significantly different between these two test groups (P<0.05). However, in both test groups, the errors of each tooth in a single dentition does not differ from one another. There was no significant difference between errors in tooth-extracted test group and 1 mm (P>0.05); and the accuracy of non-tooth-extracted group was significantly smaller than 1 mm (P<0.05). The error of virtual occlusal definition of none class I molar relationship is higher than that of class I relationship, with an accuracy of 1 mm. However, its accuracy is still feasible for clinical application.

  18. [Error prevention through management of complications in urology: standard operating procedures from commercial aviation as a model].

    PubMed

    Kranz, J; Sommer, K-J; Steffens, J

    2014-05-01

    Patient safety and risk/complication management rank among the current megatrends in modern medicine, which has undoubtedly become more complex. In time-critical, error-prone and difficult situations, which often occur repeatedly in everyday clinical practice, guidelines are inappropriate for acting rapidly and intelligently. With the establishment and consistent use of standard operating procedures like in commercial aviation, a possible strategic approach is available. These medical aids to decision-making - quick reference cards - are short, optimized instructions that enable a standardized procedure in case of medical claims.

  19. Evaluating concentration estimation errors in ELISA microarray experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, Don S.; White, Amanda M.; Varnum, Susan M.

    Enzyme-linked immunosorbent assay (ELISA) is a standard immunoassay to predict a protein concentration in a sample. Deploying ELISA in a microarray format permits simultaneous prediction of the concentrations of numerous proteins in a small sample. These predictions, however, are uncertain due to processing error and biological variability. Evaluating prediction error is critical to interpreting biological significance and improving the ELISA microarray process. Evaluating prediction error must be automated to realize a reliable high-throughput ELISA microarray system. Methods: In this paper, we present a statistical method based on propagation of error to evaluate prediction errors in the ELISA microarray process. Althoughmore » propagation of error is central to this method, it is effective only when comparable data are available. Therefore, we briefly discuss the roles of experimental design, data screening, normalization and statistical diagnostics when evaluating ELISA microarray prediction errors. We use an ELISA microarray investigation of breast cancer biomarkers to illustrate the evaluation of prediction errors. The illustration begins with a description of the design and resulting data, followed by a brief discussion of data screening and normalization. In our illustration, we fit a standard curve to the screened and normalized data, review the modeling diagnostics, and apply propagation of error.« less

  20. An Enhanced MEMS Error Modeling Approach Based on Nu-Support Vector Regression

    PubMed Central

    Bhatt, Deepak; Aggarwal, Priyanka; Bhattacharya, Prabir; Devabhaktuni, Vijay

    2012-01-01

    Micro Electro Mechanical System (MEMS)-based inertial sensors have made possible the development of a civilian land vehicle navigation system by offering a low-cost solution. However, the accurate modeling of the MEMS sensor errors is one of the most challenging tasks in the design of low-cost navigation systems. These sensors exhibit significant errors like biases, drift, noises; which are negligible for higher grade units. Different conventional techniques utilizing the Gauss Markov model and neural network method have been previously utilized to model the errors. However, Gauss Markov model works unsatisfactorily in the case of MEMS units due to the presence of high inherent sensor errors. On the other hand, modeling the random drift utilizing Neural Network (NN) is time consuming, thereby affecting its real-time implementation. We overcome these existing drawbacks by developing an enhanced Support Vector Machine (SVM) based error model. Unlike NN, SVMs do not suffer from local minimisation or over-fitting problems and delivers a reliable global solution. Experimental results proved that the proposed SVM approach reduced the noise standard deviation by 10–35% for gyroscopes and 61–76% for accelerometers. Further, positional error drifts under static conditions improved by 41% and 80% in comparison to NN and GM approaches. PMID:23012552

  1. Application of data assimilation methods for analysis and integration of observed and modeled Arctic Sea ice motions

    NASA Astrophysics Data System (ADS)

    Meier, Walter Neil

    This thesis demonstrates the applicability of data assimilation methods to improve observed and modeled ice motion fields and to demonstrate the effects of assimilated motion on Arctic processes important to the global climate and of practical concern to human activities. Ice motions derived from 85 GHz and 37 GHz SSM/I imagery and estimated from two-dimensional dynamic-thermodynamic sea ice models are compared to buoy observations. Mean error, error standard deviation, and correlation with buoys are computed for the model domain. SSM/I motions generally have a lower bias, but higher error standard deviations and lower correlation with buoys than model motions. There are notable variations in the statistics depending on the region of the Arctic, season, and ice characteristics. Assimilation methods are investigated and blending and optimal interpolation strategies are implemented. Blending assimilation improves error statistics slightly, but the effect of the assimilation is reduced due to noise in the SSM/I motions and is thus not an effective method to improve ice motion estimates. However, optimal interpolation assimilation reduces motion errors by 25--30% over modeled motions and 40--45% over SSM/I motions. Optimal interpolation assimilation is beneficial in all regions, seasons and ice conditions, and is particularly effective in regimes where modeled and SSM/I errors are high. Assimilation alters annual average motion fields. Modeled ice products of ice thickness, ice divergence, Fram Strait ice volume export, transport across the Arctic and interannual basin averages are also influenced by assimilated motions. Assimilation improves estimates of pollutant transport and corrects synoptic-scale errors in the motion fields caused by incorrect forcings or errors in model physics. The portability of the optimal interpolation assimilation method is demonstrated by implementing the strategy in an ice thickness distribution (ITD) model. This research presents an innovative method of combining a new data set of SSM/I-derived ice motions with three different sea ice models via two data assimilation methods. The work described here is the first example of assimilating remotely-sensed data within high-resolution and detailed dynamic-thermodynamic sea ice models. The results demonstrate that assimilation is a valuable resource for determining accurate ice motion in the Arctic.

  2. Correcting the Standard Errors of 2-Stage Residual Inclusion Estimators for Mendelian Randomization Studies.

    PubMed

    Palmer, Tom M; Holmes, Michael V; Keating, Brendan J; Sheehan, Nuala A

    2017-11-01

    Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estimates. We compared several different forms of the standard error for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza, bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of coverage and type I error. In the real-data examples, the Newey standard errors were 0.5% and 2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.

  3. Design considerations for case series models with exposure onset measurement error.

    PubMed

    Mohammed, Sandra M; Dalrymple, Lorien S; Sentürk, Damla; Nguyen, Danh V

    2013-02-28

    The case series model allows for estimation of the relative incidence of events, such as cardiovascular events, within a pre-specified time window after an exposure, such as an infection. The method requires only cases (individuals with events) and controls for all fixed/time-invariant confounders. The measurement error case series model extends the original case series model to handle imperfect data, where the timing of an infection (exposure) is not known precisely. In this work, we propose a method for power/sample size determination for the measurement error case series model. Extensive simulation studies are used to assess the accuracy of the proposed sample size formulas. We also examine the magnitude of the relative loss of power due to exposure onset measurement error, compared with the ideal situation where the time of exposure is measured precisely. To facilitate the design of case series studies, we provide publicly available web-based tools for determining power/sample size for both the measurement error case series model as well as the standard case series model. Copyright © 2012 John Wiley & Sons, Ltd.

  4. A Model of Self-Monitoring Blood Glucose Measurement Error.

    PubMed

    Vettoretti, Martina; Facchinetti, Andrea; Sparacino, Giovanni; Cobelli, Claudio

    2017-07-01

    A reliable model of the probability density function (PDF) of self-monitoring of blood glucose (SMBG) measurement error would be important for several applications in diabetes, like testing in silico insulin therapies. In the literature, the PDF of SMBG error is usually described by a Gaussian function, whose symmetry and simplicity are unable to properly describe the variability of experimental data. Here, we propose a new methodology to derive more realistic models of SMBG error PDF. The blood glucose range is divided into zones where error (absolute or relative) presents a constant standard deviation (SD). In each zone, a suitable PDF model is fitted by maximum-likelihood to experimental data. Model validation is performed by goodness-of-fit tests. The method is tested on two databases collected by the One Touch Ultra 2 (OTU2; Lifescan Inc, Milpitas, CA) and the Bayer Contour Next USB (BCN; Bayer HealthCare LLC, Diabetes Care, Whippany, NJ). In both cases, skew-normal and exponential models are used to describe the distribution of errors and outliers, respectively. Two zones were identified: zone 1 with constant SD absolute error; zone 2 with constant SD relative error. Goodness-of-fit tests confirmed that identified PDF models are valid and superior to Gaussian models used so far in the literature. The proposed methodology allows to derive realistic models of SMBG error PDF. These models can be used in several investigations of present interest in the scientific community, for example, to perform in silico clinical trials to compare SMBG-based with nonadjunctive CGM-based insulin treatments.

  5. Real-Time Dynamic Modeling - Data Information Requirements and Flight Test Results

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Smith, Mark S.

    2008-01-01

    Practical aspects of identifying dynamic models for aircraft in real time were studied. Topics include formulation of an equation-error method in the frequency domain to estimate non-dimensional stability and control derivatives in real time, data information content for accurate modeling results, and data information management techniques such as data forgetting, incorporating prior information, and optimized excitation. Real-time dynamic modeling was applied to simulation data and flight test data from a modified F-15B fighter aircraft, and to operational flight data from a subscale jet transport aircraft. Estimated parameter standard errors and comparisons with results from a batch output-error method in the time domain were used to demonstrate the accuracy of the identified real-time models.

  6. Real-Time Dynamic Modeling - Data Information Requirements and Flight Test Results

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Smith, Mark S.

    2010-01-01

    Practical aspects of identifying dynamic models for aircraft in real time were studied. Topics include formulation of an equation-error method in the frequency domain to estimate non-dimensional stability and control derivatives in real time, data information content for accurate modeling results, and data information management techniques such as data forgetting, incorporating prior information, and optimized excitation. Real-time dynamic modeling was applied to simulation data and flight test data from a modified F-15B fighter aircraft, and to operational flight data from a subscale jet transport aircraft. Estimated parameter standard errors, prediction cases, and comparisons with results from a batch output-error method in the time domain were used to demonstrate the accuracy of the identified real-time models.

  7. Previous Estimates of Mitochondrial DNA Mutation Level Variance Did Not Account for Sampling Error: Comparing the mtDNA Genetic Bottleneck in Mice and Humans

    PubMed Central

    Wonnapinij, Passorn; Chinnery, Patrick F.; Samuels, David C.

    2010-01-01

    In cases of inherited pathogenic mitochondrial DNA (mtDNA) mutations, a mother and her offspring generally have large and seemingly random differences in the amount of mutated mtDNA that they carry. Comparisons of measured mtDNA mutation level variance values have become an important issue in determining the mechanisms that cause these large random shifts in mutation level. These variance measurements have been made with samples of quite modest size, which should be a source of concern because higher-order statistics, such as variance, are poorly estimated from small sample sizes. We have developed an analysis of the standard error of variance from a sample of size n, and we have defined error bars for variance measurements based on this standard error. We calculate variance error bars for several published sets of measurements of mtDNA mutation level variance and show how the addition of the error bars alters the interpretation of these experimental results. We compare variance measurements from human clinical data and from mouse models and show that the mutation level variance is clearly higher in the human data than it is in the mouse models at both the primary oocyte and offspring stages of inheritance. We discuss how the standard error of variance can be used in the design of experiments measuring mtDNA mutation level variance. Our results show that variance measurements based on fewer than 20 measurements are generally unreliable and ideally more than 50 measurements are required to reliably compare variances with less than a 2-fold difference. PMID:20362273

  8. ASME B89.4.19 Performance Evaluation Tests and Geometric Misalignments in Laser Trackers

    PubMed Central

    Muralikrishnan, B.; Sawyer, D.; Blackburn, C.; Phillips, S.; Borchardt, B.; Estler, W. T.

    2009-01-01

    Small and unintended offsets, tilts, and eccentricity of the mechanical and optical components in laser trackers introduce systematic errors in the measured spherical coordinates (angles and range readings) and possibly in the calculated lengths of reference artifacts. It is desirable that the tests described in the ASME B89.4.19 Standard [1] be sensitive to these geometric misalignments so that any resulting systematic errors are identified during performance evaluation. In this paper, we present some analysis, using error models and numerical simulation, of the sensitivity of the length measurement system tests and two-face system tests in the B89.4.19 Standard to misalignments in laser trackers. We highlight key attributes of the testing strategy adopted in the Standard and propose new length measurement system tests that demonstrate improved sensitivity to some misalignments. Experimental results with a tracker that is not properly error corrected for the effects of the misalignments validate claims regarding the proposed new length tests. PMID:27504211

  9. Does a better model yield a better argument? An info-gap analysis

    NASA Astrophysics Data System (ADS)

    Ben-Haim, Yakov

    2017-04-01

    Theories, models and computations underlie reasoned argumentation in many areas. The possibility of error in these arguments, though of low probability, may be highly significant when the argument is used in predicting the probability of rare high-consequence events. This implies that the choice of a theory, model or computational method for predicting rare high-consequence events must account for the probability of error in these components. However, error may result from lack of knowledge or surprises of various sorts, and predicting the probability of error is highly uncertain. We show that the putatively best, most innovative and sophisticated argument may not actually have the lowest probability of error. Innovative arguments may entail greater uncertainty than more standard but less sophisticated methods, creating an innovation dilemma in formulating the argument. We employ info-gap decision theory to characterize and support the resolution of this problem and present several examples.

  10. Combined proportional and additive residual error models in population pharmacokinetic modelling.

    PubMed

    Proost, Johannes H

    2017-11-15

    In pharmacokinetic modelling, a combined proportional and additive residual error model is often preferred over a proportional or additive residual error model. Different approaches have been proposed, but a comparison between approaches is still lacking. The theoretical background of the methods is described. Method VAR assumes that the variance of the residual error is the sum of the statistically independent proportional and additive components; this method can be coded in three ways. Method SD assumes that the standard deviation of the residual error is the sum of the proportional and additive components. Using datasets from literature and simulations based on these datasets, the methods are compared using NONMEM. The different coding of methods VAR yield identical results. Using method SD, the values of the parameters describing residual error are lower than for method VAR, but the values of the structural parameters and their inter-individual variability are hardly affected by the choice of the method. Both methods are valid approaches in combined proportional and additive residual error modelling, and selection may be based on OFV. When the result of an analysis is used for simulation purposes, it is essential that the simulation tool uses the same method as used during analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. System Identification Applied to Dynamic CFD Simulation and Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav; Frink, Neal T.; Vicroy, Dan D.

    2011-01-01

    Demanding aerodynamic modeling requirements for military and civilian aircraft have provided impetus for researchers to improve computational and experimental techniques. Model validation is a key component for these research endeavors so this study is an initial effort to extend conventional time history comparisons by comparing model parameter estimates and their standard errors using system identification methods. An aerodynamic model of an aircraft performing one-degree-of-freedom roll oscillatory motion about its body axes is developed. The model includes linear aerodynamics and deficiency function parameters characterizing an unsteady effect. For estimation of unknown parameters two techniques, harmonic analysis and two-step linear regression, were applied to roll-oscillatory wind tunnel data and to computational fluid dynamics (CFD) simulated data. The model used for this study is a highly swept wing unmanned aerial combat vehicle. Differences in response prediction, parameters estimates, and standard errors are compared and discussed

  12. Mimicking aphasic semantic errors in normal speech production: evidence from a novel experimental paradigm.

    PubMed

    Hodgson, Catherine; Lambon Ralph, Matthew A

    2008-01-01

    Semantic errors are commonly found in semantic dementia (SD) and some forms of stroke aphasia and provide insights into semantic processing and speech production. Low error rates are found in standard picture naming tasks in normal controls. In order to increase error rates and thus provide an experimental model of aphasic performance, this study utilised a novel method- tempo picture naming. Experiment 1 showed that, compared to standard deadline naming tasks, participants made more errors on the tempo picture naming tasks. Further, RTs were longer and more errors were produced to living items than non-living items a pattern seen in both semantic dementia and semantically-impaired stroke aphasic patients. Experiment 2 showed that providing the initial phoneme as a cue enhanced performance whereas providing an incorrect phonemic cue further reduced performance. These results support the contention that the tempo picture naming paradigm reduces the time allowed for controlled semantic processing causing increased error rates. This experimental procedure would, therefore, appear to mimic the performance of aphasic patients with multi-modal semantic impairment that results from poor semantic control rather than the degradation of semantic representations observed in semantic dementia [Jefferies, E. A., & Lambon Ralph, M. A. (2006). Semantic impairment in stoke aphasia vs. semantic dementia: A case-series comparison. Brain, 129, 2132-2147]. Further implications for theories of semantic cognition and models of speech processing are discussed.

  13. EPA'S NEW EMISSIONS MODELING FRAMEWORK

    EPA Science Inventory

    EPA's Office of Air Quality Planning and Standards is building a new Emissions Modeling Framework that will solve many of the long-standing difficulties of emissions modeling. The goals of the Framework are to (1) prevent bottlenecks and errors caused by emissions modeling activi...

  14. A fuzzy logic-based model for noise control at industrial workplaces.

    PubMed

    Aluclu, I; Dalgic, A; Toprak, Z F

    2008-05-01

    Ergonomics is a broad science encompassing the wide variety of working conditions that can affect worker comfort and health, including factors such as lighting, noise, temperature, vibration, workstation design, tool design, machine design, etc. This paper describes noise-human response and a fuzzy logic model developed by comprehensive field studies on noise measurements (including atmospheric parameters) and control measures. The model has two subsystems constructed on noise reduction quantity in dB. The first subsystem of the fuzzy model depending on 549 linguistic rules comprises acoustical features of all materials used in any workplace. Totally 984 patterns were used, 503 patterns for model development and the rest 481 patterns for testing the model. The second subsystem deals with atmospheric parameter interactions with noise and has 52 linguistic rules. Similarly, 94 field patterns were obtained; 68 patterns were used for training stage of the model and the rest 26 patterns for testing the model. These rules were determined by taking into consideration formal standards, experiences of specialists and the measurements patterns. The results of the model were compared with various statistics (correlation coefficients, max-min, standard deviation, average and coefficient of skewness) and error modes (root mean square error and relative error). The correlation coefficients were significantly high, error modes were quite low and the other statistics were very close to the data. This statement indicates the validity of the model. Therefore, the model can be used for noise control in any workplace and helpful to the designer in planning stage of a workplace.

  15. Three-dimensional quantitative structure-activity relationship CoMSIA/CoMFA and LeapFrog studies on novel series of bicyclo [4.1.0] heptanes derivatives as melanin-concentrating hormone receptor R1 antagonists.

    PubMed

    Morales-Bayuelo, Alejandro; Ayazo, Hernan; Vivas-Reyes, Ricardo

    2010-10-01

    Comparative molecular similarity indices analysis (CoMSIA) and comparative molecular field analysis (CoMFA) were performed on a series of bicyclo [4.1.0] heptanes derivatives as melanin-concentrating hormone receptor R1 antagonists (MCHR1 antagonists). Molecular superimposition of antagonists on the template structure was performed by database alignment method. The statistically significant model was established on sixty five molecules, which were validated by a test set of ten molecules. The CoMSIA model yielded the best predictive model with a q(2) = 0.639, non cross-validated R(2) of 0.953, F value of 92.802, bootstrapped R(2) of 0.971, standard error of prediction = 0.402, and standard error of estimate = 0.146 while the CoMFA model yielded a q(2) = 0.680, non cross-validated R(2) of 0.922, F value of 114.351, bootstrapped R(2) of 0.925, standard error of prediction = 0.364, and standard error of estimate = 0.180. CoMFA analysis maps were employed for generating a pseudo cavity for LeapFrog calculation. The contour maps obtained from 3D-QSAR studies were appraised for activity trends for the molecules analyzed. The results show the variability of steric and electrostatic contributions that determine the activity of the MCHR1 antagonist, with these results we proposed new antagonists that may be more potent than previously reported, these novel antagonists were designed from the addition of highly electronegative groups in the substituent di(i-C(3)H(7))N- of the bicycle [4.1.0] heptanes, using the model CoMFA which also was used for the molecular design using the technique LeapFrog. The data generated from the present study will further help to design novel, potent, and selective MCHR1 antagonists. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  16. Merging gauge and satellite rainfall with specification of associated uncertainty across Australia

    NASA Astrophysics Data System (ADS)

    Woldemeskel, Fitsum M.; Sivakumar, Bellie; Sharma, Ashish

    2013-08-01

    Accurate estimation of spatial rainfall is crucial for modelling hydrological systems and planning and management of water resources. While spatial rainfall can be estimated either using rain gauge-based measurements or using satellite-based measurements, such estimates are subject to uncertainties due to various sources of errors in either case, including interpolation and retrieval errors. The purpose of the present study is twofold: (1) to investigate the benefit of merging rain gauge measurements and satellite rainfall data for Australian conditions and (2) to produce a database of retrospective rainfall along with a new uncertainty metric for each grid location at any timestep. The analysis involves four steps: First, a comparison of rain gauge measurements and the Tropical Rainfall Measuring Mission (TRMM) 3B42 data at such rain gauge locations is carried out. Second, gridded monthly rain gauge rainfall is determined using thin plate smoothing splines (TPSS) and modified inverse distance weight (MIDW) method. Third, the gridded rain gauge rainfall is merged with the monthly accumulated TRMM 3B42 using a linearised weighting procedure, the weights at each grid being calculated based on the error variances of each dataset. Finally, cross validation (CV) errors at rain gauge locations and standard errors at gridded locations for each timestep are estimated. The CV error statistics indicate that merging of the two datasets improves the estimation of spatial rainfall, and more so where the rain gauge network is sparse. The provision of spatio-temporal standard errors with the retrospective dataset is particularly useful for subsequent modelling applications where input error knowledge can help reduce the uncertainty associated with modelling outcomes.

  17. Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging.

    PubMed

    Gençay, R; Qi, M

    2001-01-01

    We study the effectiveness of cross validation, Bayesian regularization, early stopping, and bagging to mitigate overfitting and improving generalization for pricing and hedging derivative securities with daily S&P 500 index daily call options from January 1988 to December 1993. Our results indicate that Bayesian regularization can generate significantly smaller pricing and delta-hedging errors than the baseline neural-network (NN) model and the Black-Scholes model for some years. While early stopping does not affect the pricing errors, it significantly reduces the hedging error (HE) in four of the six years we investigated. Although computationally most demanding, bagging seems to provide the most accurate pricing and delta hedging. Furthermore, the standard deviation of the MSPE of bagging is far less than that of the baseline model in all six years, and the standard deviation of the average HE of bagging is far less than that of the baseline model in five out of six years. We conclude that they be used at least in cases when no appropriate hints are available.

  18. Regionalization of harmonic-mean streamflows in Kentucky

    USGS Publications Warehouse

    Martin, Gary R.; Ruhl, Kevin J.

    1993-01-01

    Harmonic-mean streamflow (Qh), defined as the reciprocal of the arithmetic mean of the reciprocal daily streamflow values, was determined for selected stream sites in Kentucky. Daily mean discharges for the available period of record through the 1989 water year at 230 continuous record streamflow-gaging stations located in and adjacent to Kentucky were used in the analysis. Periods of record affected by regulation were identified and analyzed separately from periods of record unaffected by regulation. Record-extension procedures were applied to short-term stations to reducetime-sampling error and, thus, improve estimates of the long-term Qh. Techniques to estimate the Qh at ungaged stream sites in Kentucky were developed. A regression model relating Qh to total drainage area and streamflow-variability index was presented with example applications. The regression model has a standard error of estimate of 76 percent and a standard error of prediction of 78 percent.

  19. Determination of nutritional parameters of yoghurts by FT Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Czaja, Tomasz; Baranowska, Maria; Mazurek, Sylwester; Szostak, Roman

    2018-05-01

    FT-Raman quantitative analysis of nutritional parameters of yoghurts was performed with the help of partial least squares models. The relative standard errors of prediction for fat, lactose and protein determination in the quantified commercial samples equalled to 3.9, 3.2 and 3.6%, respectively. Models based on attenuated total reflectance spectra of the liquid yoghurt samples and of dried yoghurt films collected with the single reflection diamond accessory showed relative standard errors of prediction values of 1.6-5.0% and 2.7-5.2%, respectively, for the analysed components. Despite a relatively low signal-to-noise ratio in the obtained spectra, Raman spectroscopy, combined with chemometrics, constitutes a fast and powerful tool for macronutrients quantification in yoghurts. Errors received for attenuated total reflectance method were found to be relatively higher than those for Raman spectroscopy due to inhomogeneity of the analysed samples.

  20. Quantitative Determination of Fluorine Content in Blends of Polylactide (PLA)–Talc Using Near Infrared Spectroscopy

    PubMed Central

    Tamburini, Elena; Tagliati, Chiara; Bonato, Tiziano; Costa, Stefania; Scapoli, Chiara; Pedrini, Paola

    2016-01-01

    Near-infrared spectroscopy (NIRS) has been widely used for quantitative and/or qualitative determination of a wide range of matrices. The objective of this study was to develop a NIRS method for the quantitative determination of fluorine content in polylactide (PLA)-talc blends. A blending profile was obtained by mixing different amounts of PLA granules and talc powder. The calibration model was built correlating wet chemical data (alkali digestion method) and NIR spectra. Using FT (Fourier Transform)-NIR technique, a Partial Least Squares (PLS) regression model was set-up, in a concentration interval of 0 ppm of pure PLA to 800 ppm of pure talc. Fluorine content prediction (R2cal = 0.9498; standard error of calibration, SEC = 34.77; standard error of cross-validation, SECV = 46.94) was then externally validated by means of a further 15 independent samples (R2EX.V = 0.8955; root mean standard error of prediction, RMSEP = 61.08). A positive relationship between an inorganic component as fluorine and NIR signal has been evidenced, and used to obtain quantitative analytical information from the spectra. PMID:27490548

  1. Cost-effectiveness of the U.S. Geological Survey stream-gaging program in Indiana

    USGS Publications Warehouse

    Stewart, J.A.; Miller, R.L.; Butch, G.K.

    1986-01-01

    Analysis of the stream gaging program in Indiana was divided into three phases. The first phase involved collecting information concerning the data need and the funding source for each of the 173 surface water stations in Indiana. The second phase used alternate methods to produce streamflow records at selected sites. Statistical models were used to generate stream flow data for three gaging stations. In addition, flow routing models were used at two of the sites. Daily discharges produced from models did not meet the established accuracy criteria and, therefore, these methods should not replace stream gaging procedures at those gaging stations. The third phase of the study determined the uncertainty of the rating and the error at individual gaging stations, and optimized travel routes and frequency of visits to gaging stations. The annual budget, in 1983 dollars, for operating the stream gaging program in Indiana is $823,000. The average standard error of instantaneous discharge for all continuous record gaging stations is 25.3%. A budget of $800,000 could maintain this level of accuracy if stream gaging stations were visited according to phase III results. A minimum budget of $790,000 is required to operate the gaging network. At this budget, the average standard error of instantaneous discharge would be 27.7%. A maximum budget of $1 ,000,000 was simulated in the analysis and the average standard error of instantaneous discharge was reduced to 16.8%. (Author 's abstract)

  2. Joint Seasonal ARMA Approach for Modeling of Load Forecast Errors in Planning Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hafen, Ryan P.; Samaan, Nader A.; Makarov, Yuri V.

    2014-04-14

    To make informed and robust decisions in the probabilistic power system operation and planning process, it is critical to conduct multiple simulations of the generated combinations of wind and load parameters and their forecast errors to handle the variability and uncertainty of these time series. In order for the simulation results to be trustworthy, the simulated series must preserve the salient statistical characteristics of the real series. In this paper, we analyze day-ahead load forecast error data from multiple balancing authority locations and characterize statistical properties such as mean, standard deviation, autocorrelation, correlation between series, time-of-day bias, and time-of-day autocorrelation.more » We then construct and validate a seasonal autoregressive moving average (ARMA) model to model these characteristics, and use the model to jointly simulate day-ahead load forecast error series for all BAs.« less

  3. Characterizing the impact of model error in hydrologic time series recovery inverse problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Scott K.; He, Jiachuan; Vesselinov, Velimir V.

    Hydrologic models are commonly over-smoothed relative to reality, owing to computational limitations and to the difficulty of obtaining accurate high-resolution information. When used in an inversion context, such models may introduce systematic biases which cannot be encapsulated by an unbiased “observation noise” term of the type assumed by standard regularization theory and typical Bayesian formulations. Despite its importance, model error is difficult to encapsulate systematically and is often neglected. In this paper, model error is considered for an important class of inverse problems that includes interpretation of hydraulic transients and contaminant source history inference: reconstruction of a time series thatmore » has been convolved against a transfer function (i.e., impulse response) that is only approximately known. Using established harmonic theory along with two results established here regarding triangular Toeplitz matrices, upper and lower error bounds are derived for the effect of systematic model error on time series recovery for both well-determined and over-determined inverse problems. It is seen that use of additional measurement locations does not improve expected performance in the face of model error. A Monte Carlo study of a realistic hydraulic reconstruction problem is presented, and the lower error bound is seen informative about expected behavior. Finally, a possible diagnostic criterion for blind transfer function characterization is also uncovered.« less

  4. Characterizing the impact of model error in hydrologic time series recovery inverse problems

    DOE PAGES

    Hansen, Scott K.; He, Jiachuan; Vesselinov, Velimir V.

    2017-10-28

    Hydrologic models are commonly over-smoothed relative to reality, owing to computational limitations and to the difficulty of obtaining accurate high-resolution information. When used in an inversion context, such models may introduce systematic biases which cannot be encapsulated by an unbiased “observation noise” term of the type assumed by standard regularization theory and typical Bayesian formulations. Despite its importance, model error is difficult to encapsulate systematically and is often neglected. In this paper, model error is considered for an important class of inverse problems that includes interpretation of hydraulic transients and contaminant source history inference: reconstruction of a time series thatmore » has been convolved against a transfer function (i.e., impulse response) that is only approximately known. Using established harmonic theory along with two results established here regarding triangular Toeplitz matrices, upper and lower error bounds are derived for the effect of systematic model error on time series recovery for both well-determined and over-determined inverse problems. It is seen that use of additional measurement locations does not improve expected performance in the face of model error. A Monte Carlo study of a realistic hydraulic reconstruction problem is presented, and the lower error bound is seen informative about expected behavior. Finally, a possible diagnostic criterion for blind transfer function characterization is also uncovered.« less

  5. The effect of errors in the assignment of the transmission functions on the accuracy of the thermal sounding of the atmosphere

    NASA Technical Reports Server (NTRS)

    Timofeyev, Y. M.

    1979-01-01

    In order to test the error of calculation in assumed values of the transmission function for Soviet and American radiometers sounding the atmosphere thermally from orbiting satellites, the assumptions of the transmission calculation is varied with respect to atmospheric CO2 content, transmission frequency, and atmospheric absorption. The error arising from variations of the assumptions from the standard basic model is calculated.

  6. Spatiotemporal dynamics of random stimuli account for trial-to-trial variability in perceptual decision making

    PubMed Central

    Park, Hame; Lueckmann, Jan-Matthis; von Kriegstein, Katharina; Bitzer, Sebastian; Kiebel, Stefan J.

    2016-01-01

    Decisions in everyday life are prone to error. Standard models typically assume that errors during perceptual decisions are due to noise. However, it is unclear how noise in the sensory input affects the decision. Here we show that there are experimental tasks for which one can analyse the exact spatio-temporal details of a dynamic sensory noise and better understand variability in human perceptual decisions. Using a new experimental visual tracking task and a novel Bayesian decision making model, we found that the spatio-temporal noise fluctuations in the input of single trials explain a significant part of the observed responses. Our results show that modelling the precise internal representations of human participants helps predict when perceptual decisions go wrong. Furthermore, by modelling precisely the stimuli at the single-trial level, we were able to identify the underlying mechanism of perceptual decision making in more detail than standard models. PMID:26752272

  7. Designing image segmentation studies: Statistical power, sample size and reference standard quality.

    PubMed

    Gibson, Eli; Hu, Yipeng; Huisman, Henkjan J; Barratt, Dean C

    2017-12-01

    Segmentation algorithms are typically evaluated by comparison to an accepted reference standard. The cost of generating accurate reference standards for medical image segmentation can be substantial. Since the study cost and the likelihood of detecting a clinically meaningful difference in accuracy both depend on the size and on the quality of the study reference standard, balancing these trade-offs supports the efficient use of research resources. In this work, we derive a statistical power calculation that enables researchers to estimate the appropriate sample size to detect clinically meaningful differences in segmentation accuracy (i.e. the proportion of voxels matching the reference standard) between two algorithms. Furthermore, we derive a formula to relate reference standard errors to their effect on the sample sizes of studies using lower-quality (but potentially more affordable and practically available) reference standards. The accuracy of the derived sample size formula was estimated through Monte Carlo simulation, demonstrating, with 95% confidence, a predicted statistical power within 4% of simulated values across a range of model parameters. This corresponds to sample size errors of less than 4 subjects and errors in the detectable accuracy difference less than 0.6%. The applicability of the formula to real-world data was assessed using bootstrap resampling simulations for pairs of algorithms from the PROMISE12 prostate MR segmentation challenge data set. The model predicted the simulated power for the majority of algorithm pairs within 4% for simulated experiments using a high-quality reference standard and within 6% for simulated experiments using a low-quality reference standard. A case study, also based on the PROMISE12 data, illustrates using the formulae to evaluate whether to use a lower-quality reference standard in a prostate segmentation study. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Estimating the Autocorrelated Error Model with Trended Data: Further Results,

    DTIC Science & Technology

    1979-11-01

    Perhaps the most serious deficiency of OLS in the presence of autocorrelation is not inefficiency but bias in its estimated standard errors--a bias...k for all t has variance var(b) = o2/ Tk2 2This refutes Maeshiro’s (1976) conjecture that "an estimator utilizing relevant extraneous information

  9. A Cognitive Approach to Brailling Errors

    ERIC Educational Resources Information Center

    Wells-Jensen, Sheri; Schwartz, Aaron; Gosche, Bradley

    2007-01-01

    This article analyzes a corpus of 1,600 brailling errors made by one expert braillist. It presents a testable model of braille writing and shows that the subject braillist stores standard braille contractions as part of the orthographic representation of words, rather than imposing contractions on a serially ordered string of letters. (Contains 1…

  10. Estimation of clear-sky insolation using satellite and ground meteorological data

    NASA Technical Reports Server (NTRS)

    Staylor, W. F.; Darnell, W. L.; Gupta, S. K.

    1983-01-01

    Ground based pyranometer measurements were combined with meteorological data from the Tiros N satellite in order to estimate clear-sky insolations at five U.S. sites for five weeks during the spring of 1979. The estimates were used to develop a semi-empirical model of clear-sky insolation for the interpretation of input data from the Tiros Operational Vertical Sounder (TOVS). Using only satellite data, the estimated standard errors in the model were about 2 percent. The introduction of ground based data reduced errors to around 1 percent. It is shown that although the errors in the model were reduced by only 1 percent, TOVS data products are still adequate for estimating clear-sky insolation.

  11. The computation of equating errors in international surveys in education.

    PubMed

    Monseur, Christian; Berezner, Alla

    2007-01-01

    Since the IEA's Third International Mathematics and Science Study, one of the major objectives of international surveys in education has been to report trends in achievement. The names of the two current IEA surveys reflect this growing interest: Trends in International Mathematics and Science Study (TIMSS) and Progress in International Reading Literacy Study (PIRLS). Similarly a central concern of the OECD's PISA is with trends in outcomes over time. To facilitate trend analyses these studies link their tests using common item equating in conjunction with item response modelling methods. IEA and PISA policies differ in terms of reporting the error associated with trends. In IEA surveys, the standard errors of the trend estimates do not include the uncertainty associated with the linking step while PISA does include a linking error component in the standard errors of trend estimates. In other words, PISA implicitly acknowledges that trend estimates partly depend on the selected common items, while the IEA's surveys do not recognise this source of error. Failing to recognise the linking error leads to an underestimation of the standard errors and thus increases the Type I error rate, thereby resulting in reporting of significant changes in achievement when in fact these are not significant. The growing interest of policy makers in trend indicators and the impact of the evaluation of educational reforms appear to be incompatible with such underestimation. However, the procedure implemented by PISA raises a few issues about the underlying assumptions for the computation of the equating error. After a brief introduction, this paper will describe the procedure PISA implemented to compute the linking error. The underlying assumptions of this procedure will then be discussed. Finally an alternative method based on replication techniques will be presented, based on a simulation study and then applied to the PISA 2000 data.

  12. Recommendations for diagnosing effective radiative forcing from climate models for CMIP6

    NASA Astrophysics Data System (ADS)

    Smith, C. J.; Forster, P.; Richardson, T.; Myhre, G.; Pincus, R.

    2016-12-01

    The usefulness of previous Coupled Model Intercomparison Project (CMIP) exercises has been hampered by a lack of radiative forcing information. This has made it difficult to understand reasons for differences between model responses. Effective radiative forcing (ERF) is easier to diagnose than traditional radiative forcing in global climate models (GCMs) and is more representative of the ultimate climate response. Here we examine the different methods of computing ERF in two GCMs. We find that ERF computed from a fixed sea-surface temperature (SST) method (ERF_fSST) has much more certainty than regression-based methods. Thirty-year integrations are sufficient to reduce the standard error in global ERF to 0.05 Wm-2. For 2xCO2 ERF, 30 year integrations are needed to ensure that the signal is larger than the standard error over more than 90% of the globe. Within the ERF_fSST method there are various options for prescribing SSTs and sea-ice. We explore these and find that ERF is only weakly dependent on the methodological choices. Prescribing the monthly-averaged seasonally varying model's preindustrial climatology is recommended for its smaller random error and easier implementation. As part of CMIP6, the Radiative Forcing Model Intercomparison Project (RFMIP) asks models to conduct 30-year ERF_fSST experiments using the model's own preindustrial climatology of SST and sea-ice. The Aerosol and Chemistry Model intercomparison Project (AerChemMIP) will also mainly use this approach. We propose this as a standard method for diagnosing ERF in models and recommend that it be used across the climate modeling community to aid future comparisons.

  13. A staggered-grid finite-difference scheme optimized in the time–space domain for modeling scalar-wave propagation in geophysical problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Sirui, E-mail: siruitan@hotmail.com; Huang, Lianjie, E-mail: ljh@lanl.gov

    For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within amore » given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.« less

  14. Topological quantum error correction in the Kitaev honeycomb model

    NASA Astrophysics Data System (ADS)

    Lee, Yi-Chan; Brell, Courtney G.; Flammia, Steven T.

    2017-08-01

    The Kitaev honeycomb model is an approximate topological quantum error correcting code in the same phase as the toric code, but requiring only a 2-body Hamiltonian. As a frustrated spin model, it is well outside the commuting models of topological quantum codes that are typically studied, but its exact solubility makes it more amenable to analysis of effects arising in this noncommutative setting than a generic topologically ordered Hamiltonian. Here we study quantum error correction in the honeycomb model using both analytic and numerical techniques. We first prove explicit exponential bounds on the approximate degeneracy, local indistinguishability, and correctability of the code space. These bounds are tighter than can be achieved using known general properties of topological phases. Our proofs are specialized to the honeycomb model, but some of the methods may nonetheless be of broader interest. Following this, we numerically study noise caused by thermalization processes in the perturbative regime close to the toric code renormalization group fixed point. The appearance of non-topological excitations in this setting has no significant effect on the error correction properties of the honeycomb model in the regimes we study. Although the behavior of this model is found to be qualitatively similar to that of the standard toric code in most regimes, we find numerical evidence of an interesting effect in the low-temperature, finite-size regime where a preferred lattice direction emerges and anyon diffusion is geometrically constrained. We expect this effect to yield an improvement in the scaling of the lifetime with system size as compared to the standard toric code.

  15. Lognormal kriging for the assessment of reliability in groundwater quality control observation networks

    USGS Publications Warehouse

    Candela, L.; Olea, R.A.; Custodio, E.

    1988-01-01

    Groundwater quality observation networks are examples of discontinuous sampling on variables presenting spatial continuity and highly skewed frequency distributions. Anywhere in the aquifer, lognormal kriging provides estimates of the variable being sampled and a standard error of the estimate. The average and the maximum standard error within the network can be used to dynamically improve the network sampling efficiency or find a design able to assure a given reliability level. The approach does not require the formulation of any physical model for the aquifer or any actual sampling of hypothetical configurations. A case study is presented using the network monitoring salty water intrusion into the Llobregat delta confined aquifer, Barcelona, Spain. The variable chloride concentration used to trace the intrusion exhibits sudden changes within short distances which make the standard error fairly invariable to changes in sampling pattern and to substantial fluctuations in the number of wells. ?? 1988.

  16. Underestimation of Variance of Predicted Health Utilities Derived from Multiattribute Utility Instruments.

    PubMed

    Chan, Kelvin K W; Xie, Feng; Willan, Andrew R; Pullenayegum, Eleanor M

    2017-04-01

    Parameter uncertainty in value sets of multiattribute utility-based instruments (MAUIs) has received little attention previously. This false precision leads to underestimation of the uncertainty of the results of cost-effectiveness analyses. The aim of this study is to examine the use of multiple imputation as a method to account for this uncertainty of MAUI scoring algorithms. We fitted a Bayesian model with random effects for respondents and health states to the data from the original US EQ-5D-3L valuation study, thereby estimating the uncertainty in the EQ-5D-3L scoring algorithm. We applied these results to EQ-5D-3L data from the Commonwealth Fund (CWF) Survey for Sick Adults ( n = 3958), comparing the standard error of the estimated mean utility in the CWF population using the predictive distribution from the Bayesian mixed-effect model (i.e., incorporating parameter uncertainty in the value set) with the standard error of the estimated mean utilities based on multiple imputation and the standard error using the conventional approach of using MAUI (i.e., ignoring uncertainty in the value set). The mean utility in the CWF population based on the predictive distribution of the Bayesian model was 0.827 with a standard error (SE) of 0.011. When utilities were derived using the conventional approach, the estimated mean utility was 0.827 with an SE of 0.003, which is only 25% of the SE based on the full predictive distribution of the mixed-effect model. Using multiple imputation with 20 imputed sets, the mean utility was 0.828 with an SE of 0.011, which is similar to the SE based on the full predictive distribution. Ignoring uncertainty of the predicted health utilities derived from MAUIs could lead to substantial underestimation of the variance of mean utilities. Multiple imputation corrects for this underestimation so that the results of cost-effectiveness analyses using MAUIs can report the correct degree of uncertainty.

  17. Quantitative determination of amorphous cyclosporine in crystalline cyclosporine samples by Fourier transform infrared spectroscopy.

    PubMed

    Bertacche, Vittorio; Pini, Elena; Stradi, Riccardo; Stratta, Fabio

    2006-01-01

    The purpose of this study is the development of a quantification method to detect the amount of amorphous cyclosporine using Fourier transform infrared (FTIR) spectroscopy. The mixing of different percentages of crystalline cyclosporine with amorphous cyclosporine was used to obtain a set of standards, composed of cyclosporine samples characterized by different percentages of amorphous cyclosporine. Using a wavelength range of 450-4,000 cm(-1), FTIR spectra were obtained from samples in potassium bromide pellets and then a partial least squares (PLS) model was exploited to correlate the features of the FTIR spectra with the percentage of amorphous cyclosporine in the samples. This model gave a standard error of estimate (SEE) of 0.3562, with an r value of 0.9971 and a standard error of prediction (SEP) of 0.4168, which derives from the cross validation function used to check the precision of the model. Statistical values reveal the applicability of the method to the quantitative determination of amorphous cyclosporine in crystalline cyclosporine samples.

  18. Psycho-Motor and Error Enabled Simulations: Modeling Vulnerable Skills in the Pre-Mastery Phase Medical Practice Initiative Procedural Skill Decay and Maintenance (MPI-PSD)

    DTIC Science & Technology

    2014-04-01

    laparoscopic ventral hernia repair. Additional simulation stations were added to the standards and purchases (including a motion tracking system) were...framework for laparoscopic ventral hernia; Incorporation of error-based simulators into an exit assessment of chief surgical residents; Development of...simulating a laparoscopic ventral hernia (LVH) repair. Based on collected data, the lab worked to finalize the incorporation of error-based simulators

  19. Use of modeling to identify vulnerabilities to human error in laparoscopy.

    PubMed

    Funk, Kenneth H; Bauer, James D; Doolen, Toni L; Telasha, David; Nicolalde, R Javier; Reeber, Miriam; Yodpijit, Nantakrit; Long, Myra

    2010-01-01

    This article describes an exercise to investigate the utility of modeling and human factors analysis in understanding surgical processes and their vulnerabilities to medical error. A formal method to identify error vulnerabilities was developed and applied to a test case of Veress needle insertion during closed laparoscopy. A team of 2 surgeons, a medical assistant, and 3 engineers used hierarchical task analysis and Integrated DEFinition language 0 (IDEF0) modeling to create rich models of the processes used in initial port creation. Using terminology from a standardized human performance database, detailed task descriptions were written for 4 tasks executed in the process of inserting the Veress needle. Key terms from the descriptions were used to extract from the database generic errors that could occur. Task descriptions with potential errors were translated back into surgical terminology. Referring to the process models and task descriptions, the team used a modified failure modes and effects analysis (FMEA) to consider each potential error for its probability of occurrence, its consequences if it should occur and be undetected, and its probability of detection. The resulting likely and consequential errors were prioritized for intervention. A literature-based validation study confirmed the significance of the top error vulnerabilities identified using the method. Ongoing work includes design and evaluation of procedures to correct the identified vulnerabilities and improvements to the modeling and vulnerability identification methods. Copyright 2010 AAGL. Published by Elsevier Inc. All rights reserved.

  20. Tidal Models In A New Era of Satellite Gravimetry

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Rowlings, David D.; Edbert, G. D.; Chao, Benjamin F. (Technical Monitor)

    2002-01-01

    The high precision gravity measurements to be made by recently launched (and recently approved) satellites place new demands on models of Earth, atmospheric, and oceanic tides. The latter is the most problematic. The ocean tides induce variations in the Earth's geoid by amounts that far exceed the new satellite sensitivities, and tidal models must be used to correct for this. Two methods are used here to determine the standard errors in current ocean tide models. At long wavelengths these errors exceed the sensitivity of the GRACE mission. Tidal errors will not prevent the new satellite missions from improving our knowledge of the geopotential by orders of magnitude, but the errors may well contaminate GRACE estimates of temporal variations in gravity. Solar tides are especially problematic because of their long alias periods. The satellite data may be used to improve tidal models once a sufficiently long time series is obtained. Improvements in the long-wavelength components of lunar tides are especially promising.

  1. Unified Computational Methods for Regression Analysis of Zero-Inflated and Bound-Inflated Data

    PubMed Central

    Yang, Yan; Simpson, Douglas

    2010-01-01

    Bounded data with excess observations at the boundary are common in many areas of application. Various individual cases of inflated mixture models have been studied in the literature for bound-inflated data, yet the computational methods have been developed separately for each type of model. In this article we use a common framework for computing these models, and expand the range of models for both discrete and semi-continuous data with point inflation at the lower boundary. The quasi-Newton and EM algorithms are adapted and compared for estimation of model parameters. The numerical Hessian and generalized Louis method are investigated as means for computing standard errors after optimization. Correlated data are included in this framework via generalized estimating equations. The estimation of parameters and effectiveness of standard errors are demonstrated through simulation and in the analysis of data from an ultrasound bioeffect study. The unified approach enables reliable computation for a wide class of inflated mixture models and comparison of competing models. PMID:20228950

  2. Multilevel Modeling with Correlated Effects

    ERIC Educational Resources Information Center

    Kim, Jee-Seon; Frees, Edward W.

    2007-01-01

    When there exist omitted effects, measurement error, and/or simultaneity in multilevel models, explanatory variables may be correlated with random components, and standard estimation methods do not provide consistent estimates of model parameters. This paper introduces estimators that are consistent under such conditions. By employing generalized…

  3. Determination of Barometric Altimeter Errors for the Orion Exploration Flight Test-1 Entry

    NASA Technical Reports Server (NTRS)

    Brown, Denise L.; Munoz, Jean-Philippe; Gay, Robert

    2011-01-01

    The EFT-1 mission is the unmanned flight test for the upcoming Multi-Purpose Crew Vehicle (MPCV). During entry, the EFT-1 vehicle will trigger several Landing and Recovery System (LRS) events, such as parachute deployment, based on onboard altitude information. The primary altitude source is the filtered navigation solution updated with GPS measurement data. The vehicle also has three barometric altimeters that will be used to measure atmospheric pressure during entry. In the event that GPS data is not available during entry, the altitude derived from the barometric altimeter pressure will be used to trigger chute deployment for the drogues and main parachutes. Therefore it is important to understand the impact of error sources on the pressure measured by the barometric altimeters and on the altitude derived from that pressure. There are four primary error sources impacting the sensed pressure: sensor errors, Analog to Digital conversion errors, aerodynamic errors, and atmosphere modeling errors. This last error source is induced by the conversion from pressure to altitude in the vehicle flight software, which requires an atmosphere model such as the US Standard 1976 Atmosphere model. There are several secondary error sources as well, such as waves, tides, and latencies in data transmission. Typically, for error budget calculations it is assumed that all error sources are independent, normally distributed variables. Thus, the initial approach to developing the EFT-1 barometric altimeter altitude error budget was to create an itemized error budget under these assumptions. This budget was to be verified by simulation using high fidelity models of the vehicle hardware and software. The simulation barometric altimeter model includes hardware error sources and a data-driven model of the aerodynamic errors expected to impact the pressure in the midbay compartment in which the sensors are located. The aerodynamic model includes the pressure difference between the midbay compartment and the free stream pressure as a function of altitude, oscillations in sensed pressure due to wake effects, and an acoustics model capturing fluctuations in pressure due to motion of the passive vents separating the barometric altimeters from the outside of the vehicle.

  4. On the Confounding Effect of Temperature on Chemical Shift-Encoded Fat Quantification

    PubMed Central

    Hernando, Diego; Sharma, Samir D.; Kramer, Harald; Reeder, Scott B.

    2014-01-01

    Purpose To characterize the confounding effect of temperature on chemical shift-encoded (CSE) fat quantification. Methods The proton resonance frequency of water, unlike triglycerides, depends on temperature. This leads to a temperature dependence of the spectral models of fat (relative to water) that are commonly used by CSE-MRI methods. Simulation analysis was performed for 1.5 Tesla CSE fat–water signals at various temperatures and echo time combinations. Oil–water phantoms were constructed and scanned at temperatures between 0 and 40°C using spectroscopy and CSE imaging at three echo time combinations. An explanted human liver, rejected for transplantation due to steatosis, was scanned using spectroscopy and CSE imaging. Fat–water reconstructions were performed using four different techniques: magnitude and complex fitting, with standard or temperature-corrected signal modeling. Results In all experiments, magnitude fitting with standard signal modeling resulted in large fat quantification errors. Errors were largest for echo time combinations near TEinit ≈ 1.3 ms, ΔTE ≈ 2.2 ms. Errors in fat quantification caused by temperature-related frequency shifts were smaller with complex fitting, and were avoided using a temperature-corrected signal model. Conclusion Temperature is a confounding factor for fat quantification. If not accounted for, it can result in large errors in fat quantifications in phantom and ex vivo acquisitions. PMID:24123362

  5. On how to avoid input and structural uncertainties corrupt the inference of hydrological parameters using a Bayesian framework

    NASA Astrophysics Data System (ADS)

    Hernández, Mario R.; Francés, Félix

    2015-04-01

    One phase of the hydrological models implementation process, significantly contributing to the hydrological predictions uncertainty, is the calibration phase in which values of the unknown model parameters are tuned by optimizing an objective function. An unsuitable error model (e.g. Standard Least Squares or SLS) introduces noise into the estimation of the parameters. The main sources of this noise are the input errors and the hydrological model structural deficiencies. Thus, the biased calibrated parameters cause the divergence model phenomenon, where the errors variance of the (spatially and temporally) forecasted flows far exceeds the errors variance in the fitting period, and provoke the loss of part or all of the physical meaning of the modeled processes. In other words, yielding a calibrated hydrological model which works well, but not for the right reasons. Besides, an unsuitable error model yields a non-reliable predictive uncertainty assessment. Hence, with the aim of prevent all these undesirable effects, this research focuses on the Bayesian joint inference (BJI) of both the hydrological and error model parameters, considering a general additive (GA) error model that allows for correlation, non-stationarity (in variance and bias) and non-normality of model residuals. As hydrological model, it has been used a conceptual distributed model called TETIS, with a particular split structure of the effective model parameters. Bayesian inference has been performed with the aid of a Markov Chain Monte Carlo (MCMC) algorithm called Dream-ZS. MCMC algorithm quantifies the uncertainty of the hydrological and error model parameters by getting the joint posterior probability distribution, conditioned on the observed flows. The BJI methodology is a very powerful and reliable tool, but it must be used correctly this is, if non-stationarity in errors variance and bias is modeled, the Total Laws must be taken into account. The results of this research show that the application of BJI with a GA error model outperforms the hydrological parameters robustness (diminishing the divergence model phenomenon) and improves the reliability of the streamflow predictive distribution, in respect of the results of a bad error model as SLS. Finally, the most likely prediction in a validation period, for both BJI+GA and SLS error models shows a similar performance.

  6. Anatomical reconstructions of pediatric airways from endoscopic images: a pilot study of the accuracy of quantitative endoscopy.

    PubMed

    Meisner, Eric M; Hager, Gregory D; Ishman, Stacey L; Brown, David; Tunkel, David E; Ishii, Masaru

    2013-11-01

    To evaluate the accuracy of three-dimensional (3D) airway reconstructions obtained using quantitative endoscopy (QE). We developed this novel technique to reconstruct precise 3D representations of airway geometries from endoscopic video streams. This method, based on machine vision methodologies, uses a post-processing step of the standard videos obtained during routine laryngoscopy and bronchoscopy. We hypothesize that this method is precise and will generate assessment of airway size and shape similar to those obtained using computed tomography (CT). This study was approved by the institutional review board (IRB). We analyzed video sequences from pediatric patients receiving rigid bronchoscopy. We generated 3D scaled airway models of the subglottis, trachea, and carina using QE. These models were compared to 3D airway models generated from CT. We used the CT data as the gold standard measure of airway size, and used a mixed linear model to estimate the average error in cross-sectional area and effective diameter for QE. The average error in cross sectional area (area sliced perpendicular to the long axis of the airway) was 7.7 mm(2) (variance 33.447 mm(4)). The average error in effective diameter was 0.38775 mm (variance 2.45 mm(2)), approximately 9% error. Our pilot study suggests that QE can be used to generate precise 3D reconstructions of airways. This technique is atraumatic, does not require ionizing radiation, and integrates easily into standard airway assessment protocols. We conjecture that this technology will be useful for staging airway disease and assessing surgical outcomes. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  7. Confidence limits for data mining models of options prices

    NASA Astrophysics Data System (ADS)

    Healy, J. V.; Dixon, M.; Read, B. J.; Cai, F. F.

    2004-12-01

    Non-parametric methods such as artificial neural nets can successfully model prices of financial options, out-performing the Black-Scholes analytic model (Eur. Phys. J. B 27 (2002) 219). However, the accuracy of such approaches is usually expressed only by a global fitting/error measure. This paper describes a robust method for determining prediction intervals for models derived by non-linear regression. We have demonstrated it by application to a standard synthetic example (29th Annual Conference of the IEEE Industrial Electronics Society, Special Session on Intelligent Systems, pp. 1926-1931). The method is used here to obtain prediction intervals for option prices using market data for LIFFE “ESX” FTSE 100 index options ( http://www.liffe.com/liffedata/contracts/month_onmonth.xls). We avoid special neural net architectures and use standard regression procedures to determine local error bars. The method is appropriate for target data with non constant variance (or volatility).

  8. Automation of workplace lifting hazard assessment for musculoskeletal injury prevention.

    PubMed

    Spector, June T; Lieblich, Max; Bao, Stephen; McQuade, Kevin; Hughes, Margaret

    2014-01-01

    Existing methods for practically evaluating musculoskeletal exposures such as posture and repetition in workplace settings have limitations. We aimed to automate the estimation of parameters in the revised United States National Institute for Occupational Safety and Health (NIOSH) lifting equation, a standard manual observational tool used to evaluate back injury risk related to lifting in workplace settings, using depth camera (Microsoft Kinect) and skeleton algorithm technology. A large dataset (approximately 22,000 frames, derived from six subjects) of simultaneous lifting and other motions recorded in a laboratory setting using the Kinect (Microsoft Corporation, Redmond, Washington, United States) and a standard optical motion capture system (Qualysis, Qualysis Motion Capture Systems, Qualysis AB, Sweden) was assembled. Error-correction regression models were developed to improve the accuracy of NIOSH lifting equation parameters estimated from the Kinect skeleton. Kinect-Qualysis errors were modelled using gradient boosted regression trees with a Huber loss function. Models were trained on data from all but one subject and tested on the excluded subject. Finally, models were tested on three lifting trials performed by subjects not involved in the generation of the model-building dataset. Error-correction appears to produce estimates for NIOSH lifting equation parameters that are more accurate than those derived from the Microsoft Kinect algorithm alone. Our error-correction models substantially decreased the variance of parameter errors. In general, the Kinect underestimated parameters, and modelling reduced this bias, particularly for more biased estimates. Use of the raw Kinect skeleton model tended to result in falsely high safe recommended weight limits of loads, whereas error-corrected models gave more conservative, protective estimates. Our results suggest that it may be possible to produce reasonable estimates of posture and temporal elements of tasks such as task frequency in an automated fashion, although these findings should be confirmed in a larger study. Further work is needed to incorporate force assessments and address workplace feasibility challenges. We anticipate that this approach could ultimately be used to perform large-scale musculoskeletal exposure assessment not only for research but also to provide real-time feedback to workers and employers during work method improvement activities and employee training.

  9. The prediction of speech intelligibility in classrooms using computer models

    NASA Astrophysics Data System (ADS)

    Dance, Stephen; Dentoni, Roger

    2005-04-01

    Two classrooms were measured and modeled using the industry standard CATT model and the Web model CISM. Sound levels, reverberation times and speech intelligibility were predicted in these rooms using data for 7 octave bands. It was found that overall sound levels could be predicted to within 2 dB by both models. However, overall reverberation time was found to be accurately predicted by CATT 14% prediction error, but not by CISM, 41% prediction error. This compared to a 30% prediction error using classical theory. As for STI: CATT predicted within 11%, CISM to within 3% and Sabine to within 28% of the measured value. It should be noted that CISM took approximately 15 seconds to calculate, while CATT took 15 minutes. CISM is freely available on-line at www.whyverne.co.uk/acoustics/Pages/cism/cism.html

  10. WE-H-BRC-05: Catastrophic Error Metrics for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, S; Molloy, J

    Purpose: Intuitive evaluation of complex radiotherapy treatments is impractical, while data transfer anomalies create the potential for catastrophic treatment delivery errors. Contrary to prevailing wisdom, logical scrutiny can be applied to patient-specific machine settings. Such tests can be automated, applied at the point of treatment delivery and can be dissociated from prior states of the treatment plan, potentially revealing errors introduced early in the process. Methods: Analytical metrics were formulated for conventional and intensity modulated RT (IMRT) treatments. These were designed to assess consistency between monitor unit settings, wedge values, prescription dose and leaf positioning (IMRT). Institutional metric averages formore » 218 clinical plans were stratified over multiple anatomical sites. Treatment delivery errors were simulated using a commercial treatment planning system and metric behavior assessed via receiver-operator-characteristic (ROC) analysis. A positive result was returned if the erred plan metric value exceeded a given number of standard deviations, e.g. 2. The finding was declared true positive if the dosimetric impact exceeded 25%. ROC curves were generated over a range of metric standard deviations. Results: Data for the conventional treatment metric indicated standard deviations of 3%, 12%, 11%, 8%, and 5 % for brain, pelvis, abdomen, lung and breast sites, respectively. Optimum error declaration thresholds yielded true positive rates (TPR) between 0.7 and 1, and false positive rates (FPR) between 0 and 0.2. Two proposed IMRT metrics possessed standard deviations of 23% and 37%. The superior metric returned TPR and FPR of 0.7 and 0.2, respectively, when both leaf position and MUs were modelled. Isolation to only leaf position errors yielded TPR and FPR values of 0.9 and 0.1. Conclusion: Logical tests can reveal treatment delivery errors and prevent large, catastrophic errors. Analytical metrics are able to identify errors in monitor units, wedging and leaf positions with favorable sensitivity and specificity. In part by Varian.« less

  11. Sensitivity Functions and Their Uses in Inverse Problems

    DTIC Science & Technology

    2007-07-21

    Σ0 is used in formu- lating the standard errors for our estimates θ̂n; these are given by SEk = √ (Σ0)kk, k = 1, 2, ..., p. (5) Because θ0 in (4) is...standard formula SEk = √ σ̂2(χT χ)−1kk , k = 1, 2, ..., p, (7) with χ(θ) an n× p sensitivity matrix for our model given by χjk(θ) = ∂f(tj, θ) ∂θk . (8) 5 For...Note that since θ = (K, r, x0), the standard error for K is indicated as the first entry in each of the ordered sets in each table, i.e., SEK = SEθ1

  12. Analytical Problems and Suggestions in the Analysis of Behavioral Economic Demand Curves.

    PubMed

    Yu, Jihnhee; Liu, Liu; Collins, R Lorraine; Vincent, Paula C; Epstein, Leonard H

    2014-01-01

    Behavioral economic demand curves (Hursh, Raslear, Shurtleff, Bauman, & Simmons, 1988) are innovative approaches to characterize the relationships between consumption of a substance and its price. In this article, we investigate common analytical issues in the use of behavioral economic demand curves, which can cause inconsistent interpretations of demand curves, and then we provide methodological suggestions to address those analytical issues. We first demonstrate that log transformation with different added values for handling zeros changes model parameter estimates dramatically. Second, demand curves are often analyzed using an overparameterized model that results in an inefficient use of the available data and a lack of assessment of the variability among individuals. To address these issues, we apply a nonlinear mixed effects model based on multivariate error structures that has not been used previously to analyze behavioral economic demand curves in the literature. We also propose analytical formulas for the relevant standard errors of derived values such as P max, O max, and elasticity. The proposed model stabilizes the derived values regardless of using different added increments and provides substantially smaller standard errors. We illustrate the data analysis procedure using data from a relative reinforcement efficacy study of simulated marijuana purchasing.

  13. An analytic technique for statistically modeling random atomic clock errors in estimation

    NASA Technical Reports Server (NTRS)

    Fell, P. J.

    1981-01-01

    Minimum variance estimation requires that the statistics of random observation errors be modeled properly. If measurements are derived through the use of atomic frequency standards, then one source of error affecting the observable is random fluctuation in frequency. This is the case, for example, with range and integrated Doppler measurements from satellites of the Global Positioning and baseline determination for geodynamic applications. An analytic method is presented which approximates the statistics of this random process. The procedure starts with a model of the Allan variance for a particular oscillator and develops the statistics of range and integrated Doppler measurements. A series of five first order Markov processes is used to approximate the power spectral density obtained from the Allan variance.

  14. Error modelling of quantum Hall array resistance standards

    NASA Astrophysics Data System (ADS)

    Marzano, Martina; Oe, Takehiko; Ortolano, Massimo; Callegaro, Luca; Kaneko, Nobu-Hisa

    2018-04-01

    Quantum Hall array resistance standards (QHARSs) are integrated circuits composed of interconnected quantum Hall effect elements that allow the realization of virtually arbitrary resistance values. In recent years, techniques were presented to efficiently design QHARS networks. An open problem is that of the evaluation of the accuracy of a QHARS, which is affected by contact and wire resistances. In this work, we present a general and systematic procedure for the error modelling of QHARSs, which is based on modern circuit analysis techniques and Monte Carlo evaluation of the uncertainty. As a practical example, this method of analysis is applied to the characterization of a 1 MΩ QHARS developed by the National Metrology Institute of Japan. Software tools are provided to apply the procedure to other arrays.

  15. Novel conformal technique to reduce staircasing artifacts at material boundaries for FDTD modeling of the bioheat equation.

    PubMed

    Neufeld, E; Chavannes, N; Samaras, T; Kuster, N

    2007-08-07

    The modeling of thermal effects, often based on the Pennes Bioheat Equation, is becoming increasingly popular. The FDTD technique commonly used in this context suffers considerably from staircasing errors at boundaries. A new conformal technique is proposed that can easily be integrated into existing implementations without requiring a special update scheme. It scales fluxes at interfaces with factors derived from the local surface normal. The new scheme is validated using an analytical solution, and an error analysis is performed to understand its behavior. The new scheme behaves considerably better than the standard scheme. Furthermore, in contrast to the standard scheme, it is possible to obtain with it more accurate solutions by increasing the grid resolution.

  16. A Note on the Heterogeneous Choice Model

    ERIC Educational Resources Information Center

    Rohwer, Goetz

    2015-01-01

    The heterogeneous choice model (HCM) has been proposed as an extension of the standard logit and probit models, which allows taking into account different error variances of explanatory variables. In this note, I show that in an important special case, this model is just another way to specify an interaction effect.

  17. Tutorial on Biostatistics: Linear Regression Analysis of Continuous Correlated Eye Data.

    PubMed

    Ying, Gui-Shuang; Maguire, Maureen G; Glynn, Robert; Rosner, Bernard

    2017-04-01

    To describe and demonstrate appropriate linear regression methods for analyzing correlated continuous eye data. We describe several approaches to regression analysis involving both eyes, including mixed effects and marginal models under various covariance structures to account for inter-eye correlation. We demonstrate, with SAS statistical software, applications in a study comparing baseline refractive error between one eye with choroidal neovascularization (CNV) and the unaffected fellow eye, and in a study determining factors associated with visual field in the elderly. When refractive error from both eyes were analyzed with standard linear regression without accounting for inter-eye correlation (adjusting for demographic and ocular covariates), the difference between eyes with CNV and fellow eyes was 0.15 diopters (D; 95% confidence interval, CI -0.03 to 0.32D, p = 0.10). Using a mixed effects model or a marginal model, the estimated difference was the same but with narrower 95% CI (0.01 to 0.28D, p = 0.03). Standard regression for visual field data from both eyes provided biased estimates of standard error (generally underestimated) and smaller p-values, while analysis of the worse eye provided larger p-values than mixed effects models and marginal models. In research involving both eyes, ignoring inter-eye correlation can lead to invalid inferences. Analysis using only right or left eyes is valid, but decreases power. Worse-eye analysis can provide less power and biased estimates of effect. Mixed effects or marginal models using the eye as the unit of analysis should be used to appropriately account for inter-eye correlation and maximize power and precision.

  18. Frequency-difference MIT imaging of cerebral haemorrhage with a hemispherical coil array: numerical modelling.

    PubMed

    Zolgharni, M; Griffiths, H; Ledger, P D

    2010-08-01

    The feasibility of detecting a cerebral haemorrhage with a hemispherical MIT coil array consisting of 56 exciter/sensor coils of 10 mm radius and operating at 1 and 10 MHz was investigated. A finite difference method combined with an anatomically realistic head model comprising 12 tissue types was used to simulate the strokes. Frequency-difference images were reconstructed from the modelled data with different levels of the added phase noise and two types of a priori boundary errors: a displacement of the head and a size scaling error. The results revealed that a noise level of 3 m degrees (standard deviation) was adequate for obtaining good visualization of a peripheral stroke (volume approximately 49 ml). The simulations further showed that the displacement error had to be within 3-4 mm and the scaling error within 3-4% so as not to cause unacceptably large artefacts on the images.

  19. A Simple Model Predicting Individual Weight Change in Humans

    PubMed Central

    Thomas, Diana M.; Martin, Corby K.; Heymsfield, Steven; Redman, Leanne M.; Schoeller, Dale A.; Levine, James A.

    2010-01-01

    Excessive weight in adults is a national concern with over 2/3 of the US population deemed overweight. Because being overweight has been correlated to numerous diseases such as heart disease and type 2 diabetes, there is a need to understand mechanisms and predict outcomes of weight change and weight maintenance. A simple mathematical model that accurately predicts individual weight change offers opportunities to understand how individuals lose and gain weight and can be used to foster patient adherence to diets in clinical settings. For this purpose, we developed a one dimensional differential equation model of weight change based on the energy balance equation is paired to an algebraic relationship between fat free mass and fat mass derived from a large nationally representative sample of recently released data collected by the Centers for Disease Control. We validate the model's ability to predict individual participants’ weight change by comparing model estimates of final weight data from two recent underfeeding studies and one overfeeding study. Mean absolute error and standard deviation between model predictions and observed measurements of final weights are less than 1.8 ± 1.3 kg for the underfeeding studies and 2.5 ± 1.6 kg for the overfeeding study. Comparison of the model predictions to other one dimensional models of weight change shows improvement in mean absolute error, standard deviation of mean absolute error, and group mean predictions. The maximum absolute individual error decreased by approximately 60% substantiating reliability in individual weight change predictions. The model provides a viable method for estimating individual weight change as a result of changes in intake and determining individual dietary adherence during weight change studies. PMID:24707319

  20. Prediction of ethanol in bottled Chinese rice wine by NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ying, Yibin; Yu, Haiyan; Pan, Xingxiang; Lin, Tao

    2006-10-01

    To evaluate the applicability of non-invasive visible and near infrared (VIS-NIR) spectroscopy for determining ethanol concentration of Chinese rice wine in square brown glass bottle, transmission spectra of 100 bottled Chinese rice wine samples were collected in the spectral range of 350-1200 nm. Statistical equations were established between the reference data and VIS-NIR spectra by partial least squares (PLS) regression method. Performance of three kinds of mathematical treatment of spectra (original spectra, first derivative spectra and second derivative spectra) were also discussed. The PLS models of original spectra turned out better results, with higher correlation coefficient in calibration (R cal) of 0.89, lower root mean standard error of calibration (RMSEC) of 0.165, and lower root mean standard error of cross validation (RMSECV) of 0.179. Using original spectra, PLS models for ethanol concentration prediction were developed. The R cal and the correlation coefficient in validation (R val) were 0.928 and 0.875, respectively; and the RMSEC and the root mean standard error of validation (RMSEP) were 0.135 (%, v v -1) and 0.177 (%, v v -1), respectively. The results demonstrated that VIS-NIR spectroscopy could be used to predict ethanol concentration in bottled Chinese rice wine.

  1. Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks

    NASA Astrophysics Data System (ADS)

    Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.

    2015-03-01

    The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which is to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.

  2. Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks

    NASA Astrophysics Data System (ADS)

    Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.

    2014-11-01

    The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which are to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.

  3. Error analysis of mechanical system and wavelength calibration of monochromator

    NASA Astrophysics Data System (ADS)

    Zhang, Fudong; Chen, Chen; Liu, Jie; Wang, Zhihong

    2018-02-01

    This study focuses on improving the accuracy of a grating monochromator on the basis of the grating diffraction equation in combination with an analysis of the mechanical transmission relationship between the grating, the sine bar, and the screw of the scanning mechanism. First, the relationship between the mechanical error in the monochromator with the sine drive and the wavelength error is analyzed. Second, a mathematical model of the wavelength error and mechanical error is developed, and an accurate wavelength calibration method based on the sine bar's length adjustment and error compensation is proposed. Based on the mathematical model and calibration method, experiments using a standard light source with known spectral lines and a pre-adjusted sine bar length are conducted. The model parameter equations are solved, and subsequent parameter optimization simulations are performed to determine the optimal length ratio. Lastly, the length of the sine bar is adjusted. The experimental results indicate that the wavelength accuracy is ±0.3 nm, which is better than the original accuracy of ±2.6 nm. The results confirm the validity of the error analysis of the mechanical system of the monochromator as well as the validity of the calibration method.

  4. Optical Modeling Activities for the James Webb Space Telescope (JWST) Project. II; Determining Image Motion and Wavefront Error Over an Extended Field of View with a Segmented Optical System

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.; Ha, Kong Q.

    2004-01-01

    This is part two of a series on the optical modeling activities for JWST. Starting with the linear optical model discussed in part one, we develop centroid and wavefront error sensitivities for the special case of a segmented optical system such as JWST, where the primary mirror consists of 18 individual segments. Our approach extends standard sensitivity matrix methods used for systems consisting of monolithic optics, where the image motion is approximated by averaging ray coordinates at the image and residual wavefront error is determined with global tip/tilt removed. We develop an exact formulation using the linear optical model, and extend it to cover multiple field points for performance prediction at each instrument aboard JWST. This optical model is then driven by thermal and dynamic structural perturbations in an integrated modeling environment. Results are presented.

  5. The performance of projective standardization for digital subtraction radiography.

    PubMed

    Mol, André; Dunn, Stanley M

    2003-09-01

    We sought to test the performance and robustness of projective standardization in preserving invariant properties of subtraction images in the presence of irreversible projection errors. Study design Twenty bone chips (1-10 mg each) were placed on dentate dry mandibles. Follow-up images were obtained without the bone chips, and irreversible projection errors of up to 6 degrees were introduced. Digitized image intensities were normalized, and follow-up images were geometrically reconstructed by 2 operators using anatomical and fiduciary landmarks. Subtraction images were analyzed by 3 observers. Regression analysis revealed a linear relationship between radiographic estimates of mineral loss and actual mineral loss (R(2) = 0.99; P <.05). The effect of projection error was not significant (general linear model [GLM]: P >.05). There was no difference between the radiographic estimates from images standardized with anatomical landmarks and those standardized with fiduciary landmarks (Wilcoxon signed rank test: P >.05). Operator variability was low for image analysis alone (R(2) = 0.99; P <.05), as well as for the entire procedure (R(2) = 0.98; P <.05). The predicted detection limit was smaller than 1 mg. Subtraction images registered by projective standardization yield estimates of osseous change that are invariant to irreversible projection errors of up to 6 degrees. Within these limits, operator precision is high and anatomical landmarks can be used to establish correspondence.

  6. How to Avoid Errors in Error Propagation: Prediction Intervals and Confidence Intervals in Forest Biomass

    NASA Astrophysics Data System (ADS)

    Lilly, P.; Yanai, R. D.; Buckley, H. L.; Case, B. S.; Woollons, R. C.; Holdaway, R. J.; Johnson, J.

    2016-12-01

    Calculations of forest biomass and elemental content require many measurements and models, each contributing uncertainty to the final estimates. While sampling error is commonly reported, based on replicate plots, error due to uncertainty in the regression used to estimate biomass from tree diameter is usually not quantified. Some published estimates of uncertainty due to the regression models have used the uncertainty in the prediction of individuals, ignoring uncertainty in the mean, while others have propagated uncertainty in the mean while ignoring individual variation. Using the simple case of the calcium concentration of sugar maple leaves, we compare the variation among individuals (the standard deviation) to the uncertainty in the mean (the standard error) and illustrate the declining importance in the prediction of individual concentrations as the number of individuals increases. For allometric models, the analogous statistics are the prediction interval (or the residual variation in the model fit) and the confidence interval (describing the uncertainty in the best fit model). The effect of propagating these two sources of error is illustrated using the mass of sugar maple foliage. The uncertainty in individual tree predictions was large for plots with few trees; for plots with 30 trees or more, the uncertainty in individuals was less important than the uncertainty in the mean. Authors of previously published analyses have reanalyzed their data to show the magnitude of these two sources of uncertainty in scales ranging from experimental plots to entire countries. The most correct analysis will take both sources of uncertainty into account, but for practical purposes, country-level reports of uncertainty in carbon stocks, as required by the IPCC, can ignore the uncertainty in individuals. Ignoring the uncertainty in the mean will lead to exaggerated estimates of confidence in estimates of forest biomass and carbon and nutrient contents.

  7. Improved model for correcting the ionospheric impact on bending angle in radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Angling, Matthew J.; Elvidge, Sean; Healy, Sean B.

    2018-04-01

    The standard approach to remove the effects of the ionosphere from neutral atmosphere GPS radio occultation measurements is to estimate a corrected bending angle from a combination of the L1 and L2 bending angles. This approach is known to result in systematic errors and an extension has been proposed to the standard ionospheric correction that is dependent on the squared L1 / L2 bending angle difference and a scaling term (κ). The variation of κ with height, time, season, location and solar activity (i.e. the F10.7 flux) has been investigated by applying a 1-D bending angle operator to electron density profiles provided by a monthly median ionospheric climatology model. As expected, the residual bending angle is well correlated (negatively) with the vertical total electron content (TEC). κ is more strongly dependent on the solar zenith angle, indicating that the TEC-dependent component of the residual error is effectively modelled by the squared L1 / L2 bending angle difference term in the correction. The residual error from the ionospheric correction is likely to be a major contributor to the overall error budget of neutral atmosphere retrievals between 40 and 80 km. Over this height range κ is approximately linear with height. A simple κ model has also been developed. It is independent of ionospheric measurements, but incorporates geophysical dependencies (i.e. solar zenith angle, solar flux, altitude). The global mean error (i.e. bias) and the standard deviation of the residual errors are reduced from -1.3×10-8 and 2.2×10-8 for the uncorrected case to -2.2×10-10 rad and 2.0×10-9 rad, respectively, for the corrections using the κ model. Although a fixed scalar κ also reduces bias for the global average, the selected value of κ (14 rad-1) is only appropriate for a small band of locations around the solar terminator. In the daytime, the scalar κ is consistently too high and this results in an overcorrection of the bending angles and a positive bending angle bias. Similarly, in the nighttime, the scalar κ is too low. However, in this case, the bending angles are already small and the impact of the choice of κ is less pronounced.

  8. The Impact of Statistical Adjustment on Conditional Standard Errors of Measurement in the Assessment of Physician Communication Skills

    ERIC Educational Resources Information Center

    Raymond, Mark R.; Clauser, Brian E.; Furman, Gail E.

    2010-01-01

    The use of standardized patients to assess communication skills is now an essential part of assessing a physician's readiness for practice. To improve the reliability of communication scores, it has become increasingly common in recent years to use statistical models to adjust ratings provided by standardized patients. This study employed ordinary…

  9. How personal standards perfectionism and evaluative concerns perfectionism affect the error positivity and post-error behavior with varying stimulus visibility.

    PubMed

    Drizinsky, Jessica; Zülch, Joachim; Gibbons, Henning; Stahl, Jutta

    2016-10-01

    Error detection is required in order to correct or avoid imperfect behavior. Although error detection is beneficial for some people, for others it might be disturbing. We investigated Gaudreau and Thompson's (Personality and Individual Differences, 48, 532-537, 2010) model, which combines personal standards perfectionism (PSP) and evaluative concerns perfectionism (ECP). In our electrophysiological study, 43 participants performed a combination of a modified Simon task, an error awareness paradigm, and a masking task with a variation of stimulus onset asynchrony (SOA; 33, 67, and 100 ms). Interestingly, relative to low-ECP participants, high-ECP participants showed a better post-error accuracy (despite a worse classification accuracy) in the high-visibility SOA 100 condition than in the two low-visibility conditions (SOA 33 and SOA 67). Regarding the electrophysiological results, first, we found a positive correlation between ECP and the amplitude of the error positivity (Pe) under conditions of low stimulus visibility. Second, under the condition of high stimulus visibility, we observed a higher Pe amplitude for high-ECP-low-PSP participants than for high-ECP-high-PSP participants. These findings are discussed within the framework of the error-processing avoidance hypothesis of perfectionism (Stahl, Acharki, Kresimon, Völler, & Gibbons, International Journal of Psychophysiology, 97, 153-162, 2015).

  10. Non-null annular subaperture stitching interferometry for aspheric test

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Liu, Dong; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian

    2015-10-01

    A non-null annular subaperture stitching interferometry (NASSI), combining the subaperture stitching idea and non-null test method, is proposed for steep aspheric testing. Compared with standard annular subaperture stitching interferometry (ASSI), a partial null lens (PNL) is employed as an alternative to the transmission sphere, to generate different aspherical wavefronts as the references. The coverage subaperture number would thus be reduced greatly for the better performance of aspherical wavefronts in matching the local slope of aspheric surfaces. Instead of various mathematical stitching algorithms, a simultaneous reverse optimizing reconstruction (SROR) method based on system modeling and ray tracing is proposed for full aperture figure error reconstruction. All the subaperture measurements are simulated simultaneously with a multi-configuration model in a ray-tracing program, including the interferometric system modeling and subaperture misalignments modeling. With the multi-configuration model, full aperture figure error would be extracted in form of Zernike polynomials from subapertures wavefront data by the SROR method. This method concurrently accomplishes subaperture retrace error and misalignment correction, requiring neither complex mathematical algorithms nor subaperture overlaps. A numerical simulation exhibits the comparison of the performance of the NASSI and standard ASSI, which demonstrates the high accuracy of the NASSI in testing steep aspheric. Experimental results of NASSI are shown to be in good agreement with that of Zygo® VerifireTM Asphere interferometer.

  11. The effect of covariate mean differences on the standard error and confidence interval for the comparison of treatment means.

    PubMed

    Liu, Xiaofeng Steven

    2011-05-01

    The use of covariates is commonly believed to reduce the unexplained error variance and the standard error for the comparison of treatment means, but the reduction in the standard error is neither guaranteed nor uniform over different sample sizes. The covariate mean differences between the treatment conditions can inflate the standard error of the covariate-adjusted mean difference and can actually produce a larger standard error for the adjusted mean difference than that for the unadjusted mean difference. When the covariate observations are conceived of as randomly varying from one study to another, the covariate mean differences can be related to a Hotelling's T(2) . Using this Hotelling's T(2) statistic, one can always find a minimum sample size to achieve a high probability of reducing the standard error and confidence interval width for the adjusted mean difference. ©2010 The British Psychological Society.

  12. Standard Errors and Confidence Intervals of Norm Statistics for Educational and Psychological Tests.

    PubMed

    Oosterhuis, Hannah E M; van der Ark, L Andries; Sijtsma, Klaas

    2016-11-14

    Norm statistics allow for the interpretation of scores on psychological and educational tests, by relating the test score of an individual test taker to the test scores of individuals belonging to the same gender, age, or education groups, et cetera. Given the uncertainty due to sampling error, one would expect researchers to report standard errors for norm statistics. In practice, standard errors are seldom reported; they are either unavailable or derived under strong distributional assumptions that may not be realistic for test scores. We derived standard errors for four norm statistics (standard deviation, percentile ranks, stanine boundaries and Z-scores) under the mild assumption that the test scores are multinomially distributed. A simulation study showed that the standard errors were unbiased and that corresponding Wald-based confidence intervals had good coverage. Finally, we discuss the possibilities for applying the standard errors in practical test use in education and psychology. The procedure is provided via the R function check.norms, which is available in the mokken package.

  13. Repeatable source, site, and path effects on the standard deviation for empirical ground-motion prediction models

    USGS Publications Warehouse

    Lin, P.-S.; Chiou, B.; Abrahamson, N.; Walling, M.; Lee, C.-T.; Cheng, C.-T.

    2011-01-01

    In this study, we quantify the reduction in the standard deviation for empirical ground-motion prediction models by removing ergodic assumption.We partition the modeling error (residual) into five components, three of which represent the repeatable source-location-specific, site-specific, and path-specific deviations from the population mean. A variance estimation procedure of these error components is developed for use with a set of recordings from earthquakes not heavily clustered in space.With most source locations and propagation paths sampled only once, we opt to exploit the spatial correlation of residuals to estimate the variances associated with the path-specific and the source-location-specific deviations. The estimation procedure is applied to ground-motion amplitudes from 64 shallow earthquakes in Taiwan recorded at 285 sites with at least 10 recordings per site. The estimated variance components are used to quantify the reduction in aleatory variability that can be used in hazard analysis for a single site and for a single path. For peak ground acceleration and spectral accelerations at periods of 0.1, 0.3, 0.5, 1.0, and 3.0 s, we find that the singlesite standard deviations are 9%-14% smaller than the total standard deviation, whereas the single-path standard deviations are 39%-47% smaller.

  14. Compensation of kinematic geometric parameters error and comparative study of accuracy testing for robot

    NASA Astrophysics Data System (ADS)

    Du, Liang; Shi, Guangming; Guan, Weibin; Zhong, Yuansheng; Li, Jin

    2014-12-01

    Geometric error is the main error of the industrial robot, and it plays a more significantly important fact than other error facts for robot. The compensation model of kinematic error is proposed in this article. Many methods can be used to test the robot accuracy, therefore, how to compare which method is better one. In this article, a method is used to compare two methods for robot accuracy testing. It used Laser Tracker System (LTS) and Three Coordinate Measuring instrument (TCM) to test the robot accuracy according to standard. According to the compensation result, it gets the better method which can improve the robot accuracy apparently.

  15. National suicide rates a century after Durkheim: do we know enough to estimate error?

    PubMed

    Claassen, Cynthia A; Yip, Paul S; Corcoran, Paul; Bossarte, Robert M; Lawrence, Bruce A; Currier, Glenn W

    2010-06-01

    Durkheim's nineteenth-century analysis of national suicide rates dismissed prior concerns about mortality data fidelity. Over the intervening century, however, evidence documenting various types of error in suicide data has only mounted, and surprising levels of such error continue to be routinely uncovered. Yet the annual suicide rate remains the most widely used population-level suicide metric today. After reviewing the unique sources of bias incurred during stages of suicide data collection and concatenation, we propose a model designed to uniformly estimate error in future studies. A standardized method of error estimation uniformly applied to mortality data could produce data capable of promoting high quality analyses of cross-national research questions.

  16. Influence of survey strategy and interpolation model on DEM quality

    NASA Astrophysics Data System (ADS)

    Heritage, George L.; Milan, David J.; Large, Andrew R. G.; Fuller, Ian C.

    2009-11-01

    Accurate characterisation of morphology is critical to many studies in the field of geomorphology, particularly those dealing with changes over time. Digital elevation models (DEMs) are commonly used to represent morphology in three dimensions. The quality of the DEM is largely a function of the accuracy of individual survey points, field survey strategy, and the method of interpolation. Recommendations concerning field survey strategy and appropriate methods of interpolation are currently lacking. Furthermore, the majority of studies to date consider error to be uniform across a surface. This study quantifies survey strategy and interpolation error for a gravel bar on the River Nent, Blagill, Cumbria, UK. Five sampling strategies were compared: (i) cross section; (ii) bar outline only; (iii) bar and chute outline; (iv) bar and chute outline with spot heights; and (v) aerial LiDAR equivalent, derived from degraded terrestrial laser scan (TLS) data. Digital Elevation Models were then produced using five different common interpolation algorithms. Each resultant DEM was differentiated from a terrestrial laser scan of the gravel bar surface in order to define the spatial distribution of vertical and volumetric error. Overall triangulation with linear interpolation (TIN) or point kriging appeared to provide the best interpolators for the bar surface. Lowest error on average was found for the simulated aerial LiDAR survey strategy, regardless of interpolation technique. However, comparably low errors were also found for the bar-chute-spot sampling strategy when TINs or point kriging was used as the interpolator. The magnitude of the errors between survey strategy exceeded those found between interpolation technique for a specific survey strategy. Strong relationships between local surface topographic variation (as defined by the standard deviation of vertical elevations in a 0.2-m diameter moving window), and DEM errors were also found, with much greater errors found at slope breaks such as bank edges. A series of curves are presented that demonstrate these relationships for each interpolation and survey strategy. The simulated aerial LiDAR data set displayed the lowest errors across the flatter surfaces; however, sharp slope breaks are better modelled by the morphologically based survey strategy. The curves presented have general application to spatially distributed data of river beds and may be applied to standard deviation grids to predict spatial error within a surface, depending upon sampling strategy and interpolation algorithm.

  17. Assessment of a model for achieving competency in administration and scoring of the WAIS-IV in post-graduate psychology students.

    PubMed

    Roberts, Rachel M; Davis, Melissa C

    2015-01-01

    There is a need for an evidence-based approach to training professional psychologists in the administration and scoring of standardized tests such as the Wechsler Adult Intelligence Scale (WAIS) due to substantial evidence that these tasks are associated with numerous errors that have the potential to significantly impact clients' lives. Twenty three post-graduate psychology students underwent training in using the WAIS-IV according to a best-practice teaching model that involved didactic teaching, independent study of the test manual, and in-class practice with teacher supervision and feedback. Video recordings and test protocols from a role-played test administration were analyzed for errors according to a comprehensive checklist with self, peer, and faculty member reviews. 91.3% of students were rated as having demonstrated competency in administration and scoring. All students were found to make errors, with substantially more errors being detected by the faculty member than by self or peers. Across all subtests, the most frequent errors related to failure to deliver standardized instructions verbatim from the manual. The failure of peer and self-reviews to detect the majority of the errors suggests that novice feedback (self or peers) may be ineffective to eliminate errors and the use of more senior peers may be preferable. It is suggested that involving senior trainees, recent graduates and/or experienced practitioners in the training of post-graduate students may have benefits for both parties, promoting a peer-learning and continuous professional development approach to the development and maintenance of skills in psychological assessment.

  18. Dose assessment in contrast enhanced digital mammography using simple phantoms simulating standard model breasts.

    PubMed

    Bouwman, R W; van Engen, R E; Young, K C; Veldkamp, W J H; Dance, D R

    2015-01-07

    Slabs of polymethyl methacrylate (PMMA) or a combination of PMMA and polyethylene (PE) slabs are used to simulate standard model breasts for the evaluation of the average glandular dose (AGD) in digital mammography (DM) and digital breast tomosynthesis (DBT). These phantoms are optimized for the energy spectra used in DM and DBT, which normally have a lower average energy than used in contrast enhanced digital mammography (CEDM). In this study we have investigated whether these phantoms can be used for the evaluation of AGD with the high energy x-ray spectra used in CEDM. For this purpose the calculated values of the incident air kerma for dosimetry phantoms and standard model breasts were compared in a zero degree projection with the use of an anti scatter grid. It was found that the difference in incident air kerma compared to standard model breasts ranges between -10% to +4% for PMMA slabs and between 6% and 15% for PMMA-PE slabs. The estimated systematic error in the measured AGD for both sets of phantoms were considered to be sufficiently small for the evaluation of AGD in quality control procedures for CEDM. However, the systematic error can be substantial if AGD values from different phantoms are compared.

  19. Bayesian analysis of stochastic volatility-in-mean model with leverage and asymmetrically heavy-tailed error using generalized hyperbolic skew Student’s t-distribution*

    PubMed Central

    Leão, William L.; Chen, Ming-Hui

    2017-01-01

    A stochastic volatility-in-mean model with correlated errors using the generalized hyperbolic skew Student-t (GHST) distribution provides a robust alternative to the parameter estimation for daily stock returns in the absence of normality. An efficient Markov chain Monte Carlo (MCMC) sampling algorithm is developed for parameter estimation. The deviance information, the Bayesian predictive information and the log-predictive score criterion are used to assess the fit of the proposed model. The proposed method is applied to an analysis of the daily stock return data from the Standard & Poor’s 500 index (S&P 500). The empirical results reveal that the stochastic volatility-in-mean model with correlated errors and GH-ST distribution leads to a significant improvement in the goodness-of-fit for the S&P 500 index returns dataset over the usual normal model. PMID:29333210

  20. Modelling Errors in Automatic Speech Recognition for Dysarthric Speakers

    NASA Astrophysics Data System (ADS)

    Caballero Morales, Santiago Omar; Cox, Stephen J.

    2009-12-01

    Dysarthria is a motor speech disorder characterized by weakness, paralysis, or poor coordination of the muscles responsible for speech. Although automatic speech recognition (ASR) systems have been developed for disordered speech, factors such as low intelligibility and limited phonemic repertoire decrease speech recognition accuracy, making conventional speaker adaptation algorithms perform poorly on dysarthric speakers. In this work, rather than adapting the acoustic models, we model the errors made by the speaker and attempt to correct them. For this task, two techniques have been developed: (1) a set of "metamodels" that incorporate a model of the speaker's phonetic confusion matrix into the ASR process; (2) a cascade of weighted finite-state transducers at the confusion matrix, word, and language levels. Both techniques attempt to correct the errors made at the phonetic level and make use of a language model to find the best estimate of the correct word sequence. Our experiments show that both techniques outperform standard adaptation techniques.

  1. Correction of electrode modelling errors in multi-frequency EIT imaging.

    PubMed

    Jehl, Markus; Holder, David

    2016-06-01

    The differentiation of haemorrhagic from ischaemic stroke using electrical impedance tomography (EIT) requires measurements at multiple frequencies, since the general lack of healthy measurements on the same patient excludes time-difference imaging methods. It has previously been shown that the inaccurate modelling of electrodes constitutes one of the largest sources of image artefacts in non-linear multi-frequency EIT applications. To address this issue, we augmented the conductivity Jacobian matrix with a Jacobian matrix with respect to electrode movement. Using this new algorithm, simulated ischaemic and haemorrhagic strokes in a realistic head model were reconstructed for varying degrees of electrode position errors. The simultaneous recovery of conductivity spectra and electrode positions removed most artefacts caused by inaccurately modelled electrodes. Reconstructions were stable for electrode position errors of up to 1.5 mm standard deviation along both surface dimensions. We conclude that this method can be used for electrode model correction in multi-frequency EIT.

  2. Bayesian analysis of stochastic volatility-in-mean model with leverage and asymmetrically heavy-tailed error using generalized hyperbolic skew Student's t-distribution.

    PubMed

    Leão, William L; Abanto-Valle, Carlos A; Chen, Ming-Hui

    2017-01-01

    A stochastic volatility-in-mean model with correlated errors using the generalized hyperbolic skew Student-t (GHST) distribution provides a robust alternative to the parameter estimation for daily stock returns in the absence of normality. An efficient Markov chain Monte Carlo (MCMC) sampling algorithm is developed for parameter estimation. The deviance information, the Bayesian predictive information and the log-predictive score criterion are used to assess the fit of the proposed model. The proposed method is applied to an analysis of the daily stock return data from the Standard & Poor's 500 index (S&P 500). The empirical results reveal that the stochastic volatility-in-mean model with correlated errors and GH-ST distribution leads to a significant improvement in the goodness-of-fit for the S&P 500 index returns dataset over the usual normal model.

  3. Evaluation of Satellite and Model Precipitation Products Over Turkey

    NASA Astrophysics Data System (ADS)

    Yilmaz, M. T.; Amjad, M.

    2017-12-01

    Satellite-based remote sensing, gauge stations, and models are the three major platforms to acquire precipitation dataset. Among them satellites and models have the advantage of retrieving spatially and temporally continuous and consistent datasets, while the uncertainty estimates of these retrievals are often required for many hydrological studies to understand the source and the magnitude of the uncertainty in hydrological response parameters. In this study, satellite and model precipitation data products are validated over various temporal scales (daily, 3-daily, 7-daily, 10-daily and monthly) using in-situ measured precipitation observations from a network of 733 gauges from all over the Turkey. Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 version 7 and European Center of Medium-Range Weather Forecast (ECMWF) model estimates (daily, 3-daily, 7-daily and 10-daily accumulated forecast) are used in this study. Retrievals are evaluated for their mean and standard deviation and their accuracies are evaluated via bias, root mean square error, error standard deviation and correlation coefficient statistics. Intensity vs frequency analysis and some contingency table statistics like percent correct, probability of detection, false alarm ratio and critical success index are determined using daily time-series. Both ECMWF forecasts and TRMM observations, on average, overestimate the precipitation compared to gauge estimates; wet biases are 10.26 mm/month and 8.65 mm/month, respectively for ECMWF and TRMM. RMSE values of ECMWF forecasts and TRMM estimates are 39.69 mm/month and 41.55 mm/month, respectively. Monthly correlations between Gauges-ECMWF, Gauges-TRMM and ECMWF-TRMM are 0.76, 0.73 and 0.81, respectively. The model and the satellite error statistics are further compared against the gauges error statistics based on inverse distance weighting (IWD) analysis. Both the model and satellite data have less IWD errors (14.72 mm/month and 10.75 mm/month, respectively) compared to gauges IWD error (21.58 mm/month). These results show that, on average, ECMWF forecast data have higher skill than TRMM observations. Overall, both ECMWF forecast data and TRMM observations show good potential for catchment scale hydrological analysis.

  4. Telemetry Standards, RCC Standard 106-17, Annex A.1, Pulse Amplitude Modulation Standards

    DTIC Science & Technology

    2017-07-01

    conform to either Figure Error! No text of specified style in document.-1 or Figure Error! No text of specified style in document.-2. Figure Error...No text of specified style in document.-1. 50 percent duty cycle PAM with amplitude synchronization A 20-25 percent deviation reserved for pulse...synchronization is recommended. Telemetry Standards, RCC Standard 106-17 Annex A.1, July 2017 A.1.2 Figure Error! No text of specified style

  5. Is comprehension necessary for error detection? A conflict-based account of monitoring in speech production

    PubMed Central

    Nozari, Nazbanou; Dell, Gary S.; Schwartz, Myrna F.

    2011-01-01

    Despite the existence of speech errors, verbal communication is successful because speakers can detect (and correct) their errors. The standard theory of speech-error detection, the perceptual-loop account, posits that the comprehension system monitors production output for errors. Such a comprehension-based monitor, however, cannot explain the double dissociation between comprehension and error-detection ability observed in the aphasic patients. We propose a new theory of speech-error detection which is instead based on the production process itself. The theory borrows from studies of forced-choice-response tasks the notion that error detection is accomplished by monitoring response conflict via a frontal brain structure, such as the anterior cingulate cortex. We adapt this idea to the two-step model of word production, and test the model-derived predictions on a sample of aphasic patients. Our results show a strong correlation between patients’ error-detection ability and the model’s characterization of their production skills, and no significant correlation between error detection and comprehension measures, thus supporting a production-based monitor, generally, and the implemented conflict-based monitor in particular. The successful application of the conflict-based theory to error-detection in linguistic, as well as non-linguistic domains points to a domain-general monitoring system. PMID:21652015

  6. Space-Time Fusion Under Error in Computer Model Output: An Application to Modeling Air Quality

    EPA Science Inventory

    In the last two decades a considerable amount of research effort has been devoted to modeling air quality with public health objectives. These objectives include regulatory activities such as setting standards along with assessing the relationship between exposure to air pollutan...

  7. On the Estimation of Standard Errors in Cognitive Diagnosis Models

    ERIC Educational Resources Information Center

    Philipp, Michel; Strobl, Carolin; de la Torre, Jimmy; Zeileis, Achim

    2018-01-01

    Cognitive diagnosis models (CDMs) are an increasingly popular method to assess mastery or nonmastery of a set of fine-grained abilities in educational or psychological assessments. Several inference techniques are available to quantify the uncertainty of model parameter estimates, to compare different versions of CDMs, or to check model…

  8. Effects of Employing Ridge Regression in Structural Equation Models.

    ERIC Educational Resources Information Center

    McQuitty, Shaun

    1997-01-01

    LISREL 8 invokes a ridge option when maximum likelihood or generalized least squares are used to estimate a structural equation model with a nonpositive definite covariance or correlation matrix. Implications of the ridge option for model fit, parameter estimates, and standard errors are explored through two examples. (SLD)

  9. How accurate are lexile text measures?

    PubMed

    Stenner, A Jackson; Burdick, Hal; Sanford, Eleanor E; Burdick, Donald S

    2006-01-01

    The Lexile Framework for Reading models comprehension as the difference between a reader measure and a text measure. Uncertainty in comprehension rates results from unreliability in reader measures and inaccuracy in text readability measures. Whole-text processing eliminates sampling error in text measures. However, Lexile text measures are imperfect due to misspecification of the Lexile theory. The standard deviation component associated with theory misspecification is estimated at 64L for a standard-length passage (approximately 125 words). A consequence is that standard errors for longer texts (2,500 to 150,000 words) are measured on the Lexile scale with uncertainties in the single digits. Uncertainties in expected comprehension rates are largely due to imprecision in reader ability and not inaccuracies in text readabilities.

  10. Lower limb estimation from sparse landmarks using an articulated shape model.

    PubMed

    Zhang, Ju; Fernandez, Justin; Hislop-Jambrich, Jacqui; Besier, Thor F

    2016-12-08

    Rapid generation of lower limb musculoskeletal models is essential for clinically applicable patient-specific gait modeling. Estimation of muscle and joint contact forces requires accurate representation of bone geometry and pose, as well as their muscle attachment sites, which define muscle moment arms. Motion-capture is a routine part of gait assessment but contains relatively sparse geometric information. Standard methods for creating customized models from motion-capture data scale a reference model without considering natural shape variations. We present an articulated statistical shape model of the left lower limb with embedded anatomical landmarks and muscle attachment regions. This model is used in an automatic workflow, implemented in an easy-to-use software application, that robustly and accurately estimates realistic lower limb bone geometry, pose, and muscle attachment regions from seven commonly used motion-capture landmarks. Estimated bone models were validated on noise-free marker positions to have a lower (p=0.001) surface-to-surface root-mean-squared error of 4.28mm, compared to 5.22mm using standard isotropic scaling. Errors at a variety of anatomical landmarks were also lower (8.6mm versus 10.8mm, p=0.001). We improve upon standard lower limb model scaling methods with shape model-constrained realistic bone geometries, regional muscle attachment sites, and higher accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Precision, Reliability, and Effect Size of Slope Variance in Latent Growth Curve Models: Implications for Statistical Power Analysis

    PubMed Central

    Brandmaier, Andreas M.; von Oertzen, Timo; Ghisletta, Paolo; Lindenberger, Ulman; Hertzog, Christopher

    2018-01-01

    Latent Growth Curve Models (LGCM) have become a standard technique to model change over time. Prediction and explanation of inter-individual differences in change are major goals in lifespan research. The major determinants of statistical power to detect individual differences in change are the magnitude of true inter-individual differences in linear change (LGCM slope variance), design precision, alpha level, and sample size. Here, we show that design precision can be expressed as the inverse of effective error. Effective error is determined by instrument reliability and the temporal arrangement of measurement occasions. However, it also depends on another central LGCM component, the variance of the latent intercept and its covariance with the latent slope. We derive a new reliability index for LGCM slope variance—effective curve reliability (ECR)—by scaling slope variance against effective error. ECR is interpretable as a standardized effect size index. We demonstrate how effective error, ECR, and statistical power for a likelihood ratio test of zero slope variance formally relate to each other and how they function as indices of statistical power. We also provide a computational approach to derive ECR for arbitrary intercept-slope covariance. With practical use cases, we argue for the complementary utility of the proposed indices of a study's sensitivity to detect slope variance when making a priori longitudinal design decisions or communicating study designs. PMID:29755377

  12. Design and validation of realistic breast models for use in multiple alternative forced choice virtual clinical trials

    NASA Astrophysics Data System (ADS)

    Elangovan, Premkumar; Mackenzie, Alistair; Dance, David R.; Young, Kenneth C.; Cooke, Victoria; Wilkinson, Louise; Given-Wilson, Rosalind M.; Wallis, Matthew G.; Wells, Kevin

    2017-04-01

    A novel method has been developed for generating quasi-realistic voxel phantoms which simulate the compressed breast in mammography and digital breast tomosynthesis (DBT). The models are suitable for use in virtual clinical trials requiring realistic anatomy which use the multiple alternative forced choice (AFC) paradigm and patches from the complete breast image. The breast models are produced by extracting features of breast tissue components from DBT clinical images including skin, adipose and fibro-glandular tissue, blood vessels and Cooper’s ligaments. A range of different breast models can then be generated by combining these components. Visual realism was validated using a receiver operating characteristic (ROC) study of patches from simulated images calculated using the breast models and from real patient images. Quantitative analysis was undertaken using fractal dimension and power spectrum analysis. The average areas under the ROC curves for 2D and DBT images were 0.51  ±  0.06 and 0.54  ±  0.09 demonstrating that simulated and real images were statistically indistinguishable by expert breast readers (7 observers); errors represented as one standard error of the mean. The average fractal dimensions (2D, DBT) for real and simulated images were (2.72  ±  0.01, 2.75  ±  0.01) and (2.77  ±  0.03, 2.82  ±  0.04) respectively; errors represented as one standard error of the mean. Excellent agreement was found between power spectrum curves of real and simulated images, with average β values (2D, DBT) of (3.10  ±  0.17, 3.21  ±  0.11) and (3.01  ±  0.32, 3.19  ±  0.07) respectively; errors represented as one standard error of the mean. These results demonstrate that radiological images of these breast models realistically represent the complexity of real breast structures and can be used to simulate patches from mammograms and DBT images that are indistinguishable from patches from the corresponding real breast images. The method can generate about 500 radiological patches (~30 mm  ×  30 mm) per day for AFC experiments on a single workstation. This is the first study to quantitatively validate the realism of simulated radiological breast images using direct blinded comparison with real data via the ROC paradigm with expert breast readers.

  13. Virtual occlusal definition for orthognathic surgery.

    PubMed

    Liu, X J; Li, Q Q; Zhang, Z; Li, T T; Xie, Z; Zhang, Y

    2016-03-01

    Computer-assisted surgical simulation is being used increasingly in orthognathic surgery. However, occlusal definition is still undertaken using model surgery with subsequent digitization via surface scanning or cone beam computed tomography. A software tool has been developed and a workflow set up in order to achieve a virtual occlusal definition. The results of a validation study carried out on 60 models of normal occlusion are presented. Inter- and intra-user correlation tests were used to investigate the reproducibility of the manual setting point procedure. The errors between the virtually set positions (test) and the digitized manually set positions (gold standard) were compared. The consistency in virtual set positions performed by three individual users was investigated by one way analysis of variance test. Inter- and intra-observer correlation coefficients for manual setting points were all greater than 0.95. Overall, the median error between the test and the gold standard positions was 1.06mm. Errors did not differ among teeth (F=0.371, P>0.05). The errors were not significantly different from 1mm (P>0.05). There were no significant differences in the errors made by the three independent users (P>0.05). In conclusion, this workflow for virtual occlusal definition was found to be reliable and accurate. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. A comparison of two estimates of standard error for a ratio-of-means estimator for a mapped-plot sample design in southeast Alaska.

    Treesearch

    Willem W.S. van Hees

    2002-01-01

    Comparisons of estimated standard error for a ratio-of-means (ROM) estimator are presented for forest resource inventories conducted in southeast Alaska between 1995 and 2000. Estimated standard errors for the ROM were generated by using a traditional variance estimator and also approximated by bootstrap methods. Estimates of standard error generated by both...

  15. Navigation Operational Concept,

    DTIC Science & Technology

    1991-08-01

    Area Control Facility AFSS Automated Flight Service Station AGL Above Ground Level ALSF-2 Approach Light System with Sequence Flasher Model 2 ATC Air...equipment contributes less than 0.30 NM error at the missed approach point. This total system use accuracy allows for flight technical error of up to...means for transition from instrument to visual flight . This function is provided by a series of standard lighting systems : the Approach Lighting

  16. Tutorial on Biostatistics: Linear Regression Analysis of Continuous Correlated Eye Data

    PubMed Central

    Ying, Gui-shuang; Maguire, Maureen G; Glynn, Robert; Rosner, Bernard

    2017-01-01

    Purpose To describe and demonstrate appropriate linear regression methods for analyzing correlated continuous eye data. Methods We describe several approaches to regression analysis involving both eyes, including mixed effects and marginal models under various covariance structures to account for inter-eye correlation. We demonstrate, with SAS statistical software, applications in a study comparing baseline refractive error between one eye with choroidal neovascularization (CNV) and the unaffected fellow eye, and in a study determining factors associated with visual field data in the elderly. Results When refractive error from both eyes were analyzed with standard linear regression without accounting for inter-eye correlation (adjusting for demographic and ocular covariates), the difference between eyes with CNV and fellow eyes was 0.15 diopters (D; 95% confidence interval, CI −0.03 to 0.32D, P=0.10). Using a mixed effects model or a marginal model, the estimated difference was the same but with narrower 95% CI (0.01 to 0.28D, P=0.03). Standard regression for visual field data from both eyes provided biased estimates of standard error (generally underestimated) and smaller P-values, while analysis of the worse eye provided larger P-values than mixed effects models and marginal models. Conclusion In research involving both eyes, ignoring inter-eye correlation can lead to invalid inferences. Analysis using only right or left eyes is valid, but decreases power. Worse-eye analysis can provide less power and biased estimates of effect. Mixed effects or marginal models using the eye as the unit of analysis should be used to appropriately account for inter-eye correlation and maximize power and precision. PMID:28102741

  17. The two errors of using the within-subject standard deviation (WSD) as the standard error of a reliable change index.

    PubMed

    Maassen, Gerard H

    2010-08-01

    In this Journal, Lewis and colleagues introduced a new Reliable Change Index (RCI(WSD)), which incorporated the within-subject standard deviation (WSD) of a repeated measurement design as the standard error. In this note, two opposite errors in using WSD this way are demonstrated. First, being the standard error of measurement of only a single assessment makes WSD too small when practice effects are absent. Then, too many individuals will be designated reliably changed. Second, WSD can grow unlimitedly to the extent that differential practice effects occur. This can even make RCI(WSD) unable to detect any reliable change.

  18. The impact of response measurement error on the analysis of designed experiments

    DOE PAGES

    Anderson-Cook, Christine Michaela; Hamada, Michael Scott; Burr, Thomas Lee

    2016-11-01

    This study considers the analysis of designed experiments when there is measurement error in the true response or so-called response measurement error. We consider both additive and multiplicative response measurement errors. Through a simulation study, we investigate the impact of ignoring the response measurement error in the analysis, that is, by using a standard analysis based on t-tests. In addition, we examine the role of repeat measurements in improving the quality of estimation and prediction in the presence of response measurement error. We also study a Bayesian approach that accounts for the response measurement error directly through the specification ofmore » the model, and allows including additional information about variability in the analysis. We consider the impact on power, prediction, and optimization. Copyright © 2015 John Wiley & Sons, Ltd.« less

  19. The impact of response measurement error on the analysis of designed experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson-Cook, Christine Michaela; Hamada, Michael Scott; Burr, Thomas Lee

    This study considers the analysis of designed experiments when there is measurement error in the true response or so-called response measurement error. We consider both additive and multiplicative response measurement errors. Through a simulation study, we investigate the impact of ignoring the response measurement error in the analysis, that is, by using a standard analysis based on t-tests. In addition, we examine the role of repeat measurements in improving the quality of estimation and prediction in the presence of response measurement error. We also study a Bayesian approach that accounts for the response measurement error directly through the specification ofmore » the model, and allows including additional information about variability in the analysis. We consider the impact on power, prediction, and optimization. Copyright © 2015 John Wiley & Sons, Ltd.« less

  20. A novel auto-tuning PID control mechanism for nonlinear systems.

    PubMed

    Cetin, Meric; Iplikci, Serdar

    2015-09-01

    In this paper, a novel Runge-Kutta (RK) discretization-based model-predictive auto-tuning proportional-integral-derivative controller (RK-PID) is introduced for the control of continuous-time nonlinear systems. The parameters of the PID controller are tuned using RK model of the system through prediction error-square minimization where the predicted information of tracking error provides an enhanced tuning of the parameters. Based on the model-predictive control (MPC) approach, the proposed mechanism provides necessary PID parameter adaptations while generating additive correction terms to assist the initially inadequate PID controller. Efficiency of the proposed mechanism has been tested on two experimental real-time systems: an unstable single-input single-output (SISO) nonlinear magnetic-levitation system and a nonlinear multi-input multi-output (MIMO) liquid-level system. RK-PID has been compared to standard PID, standard nonlinear MPC (NMPC), RK-MPC and conventional sliding-mode control (SMC) methods in terms of control performance, robustness, computational complexity and design issue. The proposed mechanism exhibits acceptable tuning and control performance with very small steady-state tracking errors, and provides very short settling time for parameter convergence. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Guideline validation in multiple trauma care through business process modeling.

    PubMed

    Stausberg, Jürgen; Bilir, Hüseyin; Waydhas, Christian; Ruchholtz, Steffen

    2003-07-01

    Clinical guidelines can improve the quality of care in multiple trauma. In our Department of Trauma Surgery a specific guideline is available paper-based as a set of flowcharts. This format is appropriate for the use by experienced physicians but insufficient for electronic support of learning, workflow and process optimization. A formal and logically consistent version represented with a standardized meta-model is necessary for automatic processing. In our project we transferred the paper-based into an electronic format and analyzed the structure with respect to formal errors. Several errors were detected in seven error categories. The errors were corrected to reach a formally and logically consistent process model. In a second step the clinical content of the guideline was revised interactively using a process-modeling tool. Our study reveals that guideline development should be assisted by process modeling tools, which check the content in comparison to a meta-model. The meta-model itself could support the domain experts in formulating their knowledge systematically. To assure sustainability of guideline development a representation independent of specific applications or specific provider is necessary. Then, clinical guidelines could be used for eLearning, process optimization and workflow management additionally.

  2. Adaptive framework to better characterize errors of apriori fluxes and observational residuals in a Bayesian setup for the urban flux inversions.

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Lopez-Coto, I.; Prasad, K.; Karion, A.; Mueller, K.; Gourdji, S.; Martin, C.; Whetstone, J. R.

    2017-12-01

    The National Institute of Standards and Technology (NIST) supports the North-East Corridor Baltimore Washington (NEC-B/W) project and Indianapolis Flux Experiment (INFLUX) aiming to quantify sources of Greenhouse Gas (GHG) emissions as well as their uncertainties. These projects employ different flux estimation methods including top-down inversion approaches. The traditional Bayesian inversion method estimates emission distributions by updating prior information using atmospheric observations of Green House Gases (GHG) coupled to an atmospheric and dispersion model. The magnitude of the update is dependent upon the observed enhancement along with the assumed errors such as those associated with prior information and the atmospheric transport and dispersion model. These errors are specified within the inversion covariance matrices. The assumed structure and magnitude of the specified errors can have large impact on the emission estimates from the inversion. The main objective of this work is to build a data-adaptive model for these covariances matrices. We construct a synthetic data experiment using a Kalman Filter inversion framework (Lopez et al., 2017) employing different configurations of transport and dispersion model and an assumed prior. Unlike previous traditional Bayesian approaches, we estimate posterior emissions using regularized sample covariance matrices associated with prior errors to investigate whether the structure of the matrices help to better recover our hypothetical true emissions. To incorporate transport model error, we use ensemble of transport models combined with space-time analytical covariance to construct a covariance that accounts for errors in space and time. A Kalman Filter is then run using these covariances along with Maximum Likelihood Estimates (MLE) of the involved parameters. Preliminary results indicate that specifying sptio-temporally varying errors in the error covariances can improve the flux estimates and uncertainties. We also demonstrate that differences between the modeled and observed meteorology can be used to predict uncertainties associated with atmospheric transport and dispersion modeling which can help improve the skill of an inversion at urban scales.

  3. Stratospheric Assimilation of Chemical Tracer Observations Using a Kalman Filter. Pt. 2; Chi-Square Validated Results and Analysis of Variance and Correlation Dynamics

    NASA Technical Reports Server (NTRS)

    Menard, Richard; Chang, Lang-Ping

    1998-01-01

    A Kalman filter system designed for the assimilation of limb-sounding observations of stratospheric chemical tracers, which has four tunable covariance parameters, was developed in Part I (Menard et al. 1998) The assimilation results of CH4 observations from the Cryogenic Limb Array Etalon Sounder instrument (CLAES) and the Halogen Observation Experiment instrument (HALOE) on board of the Upper Atmosphere Research Satellite are described in this paper. A robust (chi)(sup 2) criterion, which provides a statistical validation of the forecast and observational error covariances, was used to estimate the tunable variance parameters of the system. In particular, an estimate of the model error variance was obtained. The effect of model error on the forecast error variance became critical after only three days of assimilation of CLAES observations, although it took 14 days of forecast to double the initial error variance. We further found that the model error due to numerical discretization as arising in the standard Kalman filter algorithm, is comparable in size to the physical model error due to wind and transport modeling errors together. Separate assimilations of CLAES and HALOE observations were compared to validate the state estimate away from the observed locations. A wave-breaking event that took place several thousands of kilometers away from the HALOE observation locations was well captured by the Kalman filter due to highly anisotropic forecast error correlations. The forecast error correlation in the assimilation of the CLAES observations was found to have a structure similar to that in pure forecast mode except for smaller length scales. Finally, we have conducted an analysis of the variance and correlation dynamics to determine their relative importance in chemical tracer assimilation problems. Results show that the optimality of a tracer assimilation system depends, for the most part, on having flow-dependent error correlation rather than on evolving the error variance.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morley, Steven

    The PyForecastTools package provides Python routines for calculating metrics for model validation, forecast verification and model comparison. For continuous predictands the package provides functions for calculating bias (mean error, mean percentage error, median log accuracy, symmetric signed bias), and for calculating accuracy (mean squared error, mean absolute error, mean absolute scaled error, normalized RMSE, median symmetric accuracy). Convenience routines to calculate the component parts (e.g. forecast error, scaled error) of each metric are also provided. To compare models the package provides: generic skill score; percent better. Robust measures of scale including median absolute deviation, robust standard deviation, robust coefficient ofmore » variation and the Sn estimator are all provided by the package. Finally, the package implements Python classes for NxN contingency tables. In the case of a multi-class prediction, accuracy and skill metrics such as proportion correct and the Heidke and Peirce skill scores are provided as object methods. The special case of a 2x2 contingency table inherits from the NxN class and provides many additional metrics for binary classification: probability of detection, probability of false detection, false alarm ration, threat score, equitable threat score, bias. Confidence intervals for many of these quantities can be calculated using either the Wald method or Agresti-Coull intervals.« less

  5. Adiabatic gate teleportation.

    PubMed

    Bacon, Dave; Flammia, Steven T

    2009-09-18

    The difficulty in producing precisely timed and controlled quantum gates is a significant source of error in many physical implementations of quantum computers. Here we introduce a simple universal primitive, adiabatic gate teleportation, which is robust to timing errors and many control errors and maintains a constant energy gap throughout the computation above a degenerate ground state space. This construction allows for geometric robustness based upon the control of two independent qubit interactions. Further, our piecewise adiabatic evolution easily relates to the quantum circuit model, enabling the use of standard methods from fault-tolerance theory for establishing thresholds.

  6. Cache-based error recovery for shared memory multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Wu, Kun-Lung; Fuchs, W. Kent; Patel, Janak H.

    1989-01-01

    A multiprocessor cache-based checkpointing and recovery scheme for of recovering from transient processor errors in a shared-memory multiprocessor with private caches is presented. New implementation techniques that use checkpoint identifiers and recovery stacks to reduce performance degradation in processor utilization during normal execution are examined. This cache-based checkpointing technique prevents rollback propagation, provides for rapid recovery, and can be integrated into standard cache coherence protocols. An analytical model is used to estimate the relative performance of the scheme during normal execution. Extensions that take error latency into account are presented.

  7. Heavy flavor decay of Zγ at CDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timothy M. Harrington-Taber

    2013-01-01

    Diboson production is an important and frequently measured parameter of the Standard Model. This analysis considers the previously neglected pmore » $$\\bar{p}$$ →Z γ→ b$$\\bar{b}$$ channel, as measured at the Collider Detector at Fermilab. Using the entire Tevatron Run II dataset, the measured result is consistent with Standard Model predictions, but the statistical error associated with this method of measurement limits the strength of this correlation.« less

  8. Partial Least Squares Regression Calibration of an Ultraviolet-Visible Spectrophotometer for Measurements of Chemical Oxygen Demand in Dye Wastewater

    NASA Astrophysics Data System (ADS)

    Mai, W.; Zhang, J.-F.; Zhao, X.-M.; Li, Z.; Xu, Z.-W.

    2017-11-01

    Wastewater from the dye industry is typically analyzed using a standard method for measurement of chemical oxygen demand (COD) or by a single-wavelength spectroscopic method. To overcome the disadvantages of these methods, ultraviolet-visible (UV-Vis) spectroscopy was combined with principal component regression (PCR) and partial least squares regression (PLSR) in this study. Unlike the standard method, this method does not require digestion of the samples for preparation. Experiments showed that the PLSR model offered high prediction performance for COD, with a mean relative error of about 5% for two dyes. This error is similar to that obtained with the standard method. In this study, the precision of the PLSR model decreased with the number of dye compounds present. It is likely that multiple models will be required in reality, and the complexity of a COD monitoring system would be greatly reduced if the PLSR model is used because it can include several dyes. UV-Vis spectroscopy with PLSR successfully enhanced the performance of COD prediction for dye wastewater and showed good potential for application in on-line water quality monitoring.

  9. An improved simulation of the 2015 El Niño event by optimally correcting the initial conditions and model parameters in an intermediate coupled model

    NASA Astrophysics Data System (ADS)

    Zhang, Rong-Hua; Tao, Ling-Jiang; Gao, Chuan

    2017-09-01

    Large uncertainties exist in real-time predictions of the 2015 El Niño event, which have systematic intensity biases that are strongly model-dependent. It is critically important to characterize those model biases so they can be reduced appropriately. In this study, the conditional nonlinear optimal perturbation (CNOP)-based approach was applied to an intermediate coupled model (ICM) equipped with a four-dimensional variational data assimilation technique. The CNOP-based approach was used to quantify prediction errors that can be attributed to initial conditions (ICs) and model parameters (MPs). Two key MPs were considered in the ICM: one represents the intensity of the thermocline effect, and the other represents the relative coupling intensity between the ocean and atmosphere. Two experiments were performed to illustrate the effects of error corrections, one with a standard simulation and another with an optimized simulation in which errors in the ICs and MPs derived from the CNOP-based approach were optimally corrected. The results indicate that simulations of the 2015 El Niño event can be effectively improved by using CNOP-derived error correcting. In particular, the El Niño intensity in late 2015 was adequately captured when simulations were started from early 2015. Quantitatively, the Niño3.4 SST index simulated in Dec. 2015 increased to 2.8 °C in the optimized simulation, compared with only 1.5 °C in the standard simulation. The feasibility and effectiveness of using the CNOP-based technique to improve ENSO simulations are demonstrated in the context of the 2015 El Niño event. The limitations and further applications are also discussed.

  10. Audio-frequency analysis of inductive voltage dividers based on structural models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avramov, S.; Oldham, N.M.; Koffman, A.D.

    1994-12-31

    A Binary Inductive Voltage Divider (BIVD) is compared with a Decade Inductive Voltage Divider (DIVD) in an automatic IVD bridge. New detection and injection circuitry was designed and used to evaluate the IVDs with either the input or output tied to ground potential. In the audio frequency range the DIVD and BIVD error patterns are characterized for both in-phase and quadrature components. Differences between results obtained using a new error decomposition scheme based on structural modeling, and measurements using conventional IVD standards are reported.

  11. Enumerating Sparse Organisms in Ships’ Ballast Water: Why Counting to 10 Is Not So Easy

    PubMed Central

    2011-01-01

    To reduce ballast water-borne aquatic invasions worldwide, the International Maritime Organization and United States Coast Guard have each proposed discharge standards specifying maximum concentrations of living biota that may be released in ships’ ballast water (BW), but these regulations still lack guidance for standardized type approval and compliance testing of treatment systems. Verifying whether BW meets a discharge standard poses significant challenges. Properly treated BW will contain extremely sparse numbers of live organisms, and robust estimates of rare events require extensive sampling efforts. A balance of analytical rigor and practicality is essential to determine the volume of BW that can be reasonably sampled and processed, yet yield accurate live counts. We applied statistical modeling to a range of sample volumes, plankton concentrations, and regulatory scenarios (i.e., levels of type I and type II errors), and calculated the statistical power of each combination to detect noncompliant discharge concentrations. The model expressly addresses the roles of sampling error, BW volume, and burden of proof on the detection of noncompliant discharges in order to establish a rigorous lower limit of sampling volume. The potential effects of recovery errors (i.e., incomplete recovery and detection of live biota) in relation to sample volume are also discussed. PMID:21434685

  12. Enumerating sparse organisms in ships' ballast water: why counting to 10 is not so easy.

    PubMed

    Miller, A Whitman; Frazier, Melanie; Smith, George E; Perry, Elgin S; Ruiz, Gregory M; Tamburri, Mario N

    2011-04-15

    To reduce ballast water-borne aquatic invasions worldwide, the International Maritime Organization and United States Coast Guard have each proposed discharge standards specifying maximum concentrations of living biota that may be released in ships' ballast water (BW), but these regulations still lack guidance for standardized type approval and compliance testing of treatment systems. Verifying whether BW meets a discharge standard poses significant challenges. Properly treated BW will contain extremely sparse numbers of live organisms, and robust estimates of rare events require extensive sampling efforts. A balance of analytical rigor and practicality is essential to determine the volume of BW that can be reasonably sampled and processed, yet yield accurate live counts. We applied statistical modeling to a range of sample volumes, plankton concentrations, and regulatory scenarios (i.e., levels of type I and type II errors), and calculated the statistical power of each combination to detect noncompliant discharge concentrations. The model expressly addresses the roles of sampling error, BW volume, and burden of proof on the detection of noncompliant discharges in order to establish a rigorous lower limit of sampling volume. The potential effects of recovery errors (i.e., incomplete recovery and detection of live biota) in relation to sample volume are also discussed.

  13. Atmospheric modeling to assess wind dependence in tracer dilution method measurements of landfill methane emissions.

    PubMed

    Taylor, Diane M; Chow, Fotini K; Delkash, Madjid; Imhoff, Paul T

    2018-03-01

    The short-term temporal variability of landfill methane emissions is not well understood due to uncertainty in measurement methods. Significant variability is seen over short-term measurement campaigns with the tracer dilution method (TDM), but this variability may be due in part to measurement error rather than fluctuations in the actual landfill emissions. In this study, landfill methane emissions and TDM-measured emissions are simulated over a real landfill in Delaware, USA using the Weather Research and Forecasting model (WRF) for two emissions scenarios. In the steady emissions scenario, a constant landfill emissions rate is prescribed at each model grid point on the surface of the landfill. In the unsteady emissions scenario, emissions are calculated at each time step as a function of the local surface wind speed, resulting in variable emissions over each 1.5-h measurement period. The simulation output is used to assess the standard deviation and percent error of the TDM-measured emissions. Eight measurement periods are simulated over two different days to look at different conditions. Results show that standard deviation of the TDM- measured emissions does not increase significantly from the steady emissions simulations to the unsteady emissions scenarios, indicating that the TDM may have inherent errors in its prediction of emissions fluctuations. Results also show that TDM error does not increase significantly from the steady to the unsteady emissions simulations. This indicates that introducing variability to the landfill emissions does not increase errors in the TDM at this site. Across all simulations, TDM errors range from -15% to 43%, consistent with the range of errors seen in previous TDM studies. Simulations indicate diurnal variations of methane emissions when wind effects are significant, which may be important when developing daily and annual emissions estimates from limited field data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Composite Linear Models | Division of Cancer Prevention

    Cancer.gov

    By Stuart G. Baker The composite linear models software is a matrix approach to compute maximum likelihood estimates and asymptotic standard errors for models for incomplete multinomial data. It implements the method described in Baker SG. Composite linear models for incomplete multinomial data. Statistics in Medicine 1994;13:609-622. The software includes a library of thirty

  15. Performance of Bootstrapping Approaches To Model Test Statistics and Parameter Standard Error Estimation in Structural Equation Modeling.

    ERIC Educational Resources Information Center

    Nevitt, Jonathan; Hancock, Gregory R.

    2001-01-01

    Evaluated the bootstrap method under varying conditions of nonnormality, sample size, model specification, and number of bootstrap samples drawn from the resampling space. Results for the bootstrap suggest the resampling-based method may be conservative in its control over model rejections, thus having an impact on the statistical power associated…

  16. Absolute color scale for improved diagnostics with wavefront error mapping.

    PubMed

    Smolek, Michael K; Klyce, Stephen D

    2007-11-01

    Wavefront data are expressed in micrometers and referenced to the pupil plane, but current methods to map wavefront error lack standardization. Many use normalized or floating scales that may confuse the user by generating ambiguous, noisy, or varying information. An absolute scale that combines consistent clinical information with statistical relevance is needed for wavefront error mapping. The color contours should correspond better to current corneal topography standards to improve clinical interpretation. Retrospective analysis of wavefront error data. Historic ophthalmic medical records. Topographic modeling system topographical examinations of 120 corneas across 12 categories were used. Corneal wavefront error data in micrometers from each topography map were extracted at 8 Zernike polynomial orders and for 3 pupil diameters expressed in millimeters (3, 5, and 7 mm). Both total aberrations (orders 2 through 8) and higher-order aberrations (orders 3 through 8) were expressed in the form of frequency histograms to determine the working range of the scale across all categories. The standard deviation of the mean error of normal corneas determined the map contour resolution. Map colors were based on corneal topography color standards and on the ability to distinguish adjacent color contours through contrast. Higher-order and total wavefront error contour maps for different corneal conditions. An absolute color scale was produced that encompassed a range of +/-6.5 microm and a contour interval of 0.5 microm. All aberrations in the categorical database were plotted with no loss of clinical information necessary for classification. In the few instances where mapped information was beyond the range of the scale, the type and severity of aberration remained legible. When wavefront data are expressed in micrometers, this absolute scale facilitates the determination of the severity of aberrations present compared with a floating scale, particularly for distinguishing normal from abnormal levels of wavefront error. The new color palette makes it easier to identify disorders. The corneal mapping method can be extended to mapping whole eye wavefront errors. When refraction data are expressed in diopters, the previously published corneal topography scale is suggested.

  17. A standardization model based on image recognition for performance evaluation of an oral scanner.

    PubMed

    Seo, Sang-Wan; Lee, Wan-Sun; Byun, Jae-Young; Lee, Kyu-Bok

    2017-12-01

    Accurate information is essential in dentistry. The image information of missing teeth is used in optically based medical equipment in prosthodontic treatment. To evaluate oral scanners, the standardized model was examined from cases of image recognition errors of linear discriminant analysis (LDA), and a model that combines the variables with reference to ISO 12836:2015 was designed. The basic model was fabricated by applying 4 factors to the tooth profile (chamfer, groove, curve, and square) and the bottom surface. Photo-type and video-type scanners were used to analyze 3D images after image capture. The scans were performed several times according to the prescribed sequence to distinguish the model from the one that did not form, and the results confirmed it to be the best. In the case of the initial basic model, a 3D shape could not be obtained by scanning even if several shots were taken. Subsequently, the recognition rate of the image was improved with every variable factor, and the difference depends on the tooth profile and the pattern of the floor surface. Based on the recognition error of the LDA, the recognition rate decreases when the model has a similar pattern. Therefore, to obtain the accurate 3D data, the difference of each class needs to be provided when developing a standardized model.

  18. Improving Empirical Magnetic Field Models by Fitting to In Situ Data Using an Optimized Parameter Approach

    DOE PAGES

    Brito, Thiago V.; Morley, Steven K.

    2017-10-25

    A method for comparing and optimizing the accuracy of empirical magnetic field models using in situ magnetic field measurements is presented in this paper. The optimization method minimizes a cost function—τ—that explicitly includes both a magnitude and an angular term. A time span of 21 days, including periods of mild and intense geomagnetic activity, was used for this analysis. A comparison between five magnetic field models (T96, T01S, T02, TS04, and TS07) widely used by the community demonstrated that the T02 model was, on average, the most accurate when driven by the standard model input parameters. The optimization procedure, performedmore » in all models except TS07, generally improved the results when compared to unoptimized versions of the models. Additionally, using more satellites in the optimization procedure produces more accurate results. This procedure reduces the number of large errors in the model, that is, it reduces the number of outliers in the error distribution. The TS04 model shows the most accurate results after the optimization in terms of both the magnitude and direction, when using at least six satellites in the fitting. It gave a smaller error than its unoptimized counterpart 57.3% of the time and outperformed the best unoptimized model (T02) 56.2% of the time. Its median percentage error in |B| was reduced from 4.54% to 3.84%. Finally, the difference among the models analyzed, when compared in terms of the median of the error distributions, is not very large. However, the unoptimized models can have very large errors, which are much reduced after the optimization.« less

  19. Improving Empirical Magnetic Field Models by Fitting to In Situ Data Using an Optimized Parameter Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brito, Thiago V.; Morley, Steven K.

    A method for comparing and optimizing the accuracy of empirical magnetic field models using in situ magnetic field measurements is presented in this paper. The optimization method minimizes a cost function—τ—that explicitly includes both a magnitude and an angular term. A time span of 21 days, including periods of mild and intense geomagnetic activity, was used for this analysis. A comparison between five magnetic field models (T96, T01S, T02, TS04, and TS07) widely used by the community demonstrated that the T02 model was, on average, the most accurate when driven by the standard model input parameters. The optimization procedure, performedmore » in all models except TS07, generally improved the results when compared to unoptimized versions of the models. Additionally, using more satellites in the optimization procedure produces more accurate results. This procedure reduces the number of large errors in the model, that is, it reduces the number of outliers in the error distribution. The TS04 model shows the most accurate results after the optimization in terms of both the magnitude and direction, when using at least six satellites in the fitting. It gave a smaller error than its unoptimized counterpart 57.3% of the time and outperformed the best unoptimized model (T02) 56.2% of the time. Its median percentage error in |B| was reduced from 4.54% to 3.84%. Finally, the difference among the models analyzed, when compared in terms of the median of the error distributions, is not very large. However, the unoptimized models can have very large errors, which are much reduced after the optimization.« less

  20. Using Multilevel Factor Analysis with Clustered Data: Investigating the Factor Structure of the Positive Values Scale

    ERIC Educational Resources Information Center

    Huang, Francis L.; Cornell, Dewey G.

    2016-01-01

    Advances in multilevel modeling techniques now make it possible to investigate the psychometric properties of instruments using clustered data. Factor models that overlook the clustering effect can lead to underestimated standard errors, incorrect parameter estimates, and model fit indices. In addition, factor structures may differ depending on…

  1. Multilevel Modeling and Ordinary Least Squares Regression: How Comparable Are They?

    ERIC Educational Resources Information Center

    Huang, Francis L.

    2018-01-01

    Studies analyzing clustered data sets using both multilevel models (MLMs) and ordinary least squares (OLS) regression have generally concluded that resulting point estimates, but not the standard errors, are comparable with each other. However, the accuracy of the estimates of OLS models is important to consider, as several alternative techniques…

  2. A Systems Modeling Approach for Risk Management of Command File Errors

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila

    2012-01-01

    The main cause of commanding errors is often (but not always) due to procedures. Either lack of maturity in the processes, incompleteness of requirements or lack of compliance to these procedures. Other causes of commanding errors include lack of understanding of system states, inadequate communication, and making hasty changes in standard procedures in response to an unexpected event. In general, it's important to look at the big picture prior to making corrective actions. In the case of errors traced back to procedures, considering the reliability of the process as a metric during its' design may help to reduce risk. This metric is obtained by using data from Nuclear Industry regarding human reliability. A structured method for the collection of anomaly data will help the operator think systematically about the anomaly and facilitate risk management. Formal models can be used for risk based design and risk management. A generic set of models can be customized for a broad range of missions.

  3. Application of zero-inflated poisson mixed models in prognostic factors of hepatitis C.

    PubMed

    Akbarzadeh Baghban, Alireza; Pourhoseingholi, Asma; Zayeri, Farid; Jafari, Ali Akbar; Alavian, Seyed Moayed

    2013-01-01

    In recent years, hepatitis C virus (HCV) infection represents a major public health problem. Evaluation of risk factors is one of the solutions which help protect people from the infection. This study aims to employ zero-inflated Poisson mixed models to evaluate prognostic factors of hepatitis C. The data was collected from a longitudinal study during 2005-2010. First, mixed Poisson regression (PR) model was fitted to the data. Then, a mixed zero-inflated Poisson model was fitted with compound Poisson random effects. For evaluating the performance of the proposed mixed model, standard errors of estimators were compared. The results obtained from mixed PR showed that genotype 3 and treatment protocol were statistically significant. Results of zero-inflated Poisson mixed model showed that age, sex, genotypes 2 and 3, the treatment protocol, and having risk factors had significant effects on viral load of HCV patients. Of these two models, the estimators of zero-inflated Poisson mixed model had the minimum standard errors. The results showed that a mixed zero-inflated Poisson model was the almost best fit. The proposed model can capture serial dependence, additional overdispersion, and excess zeros in the longitudinal count data.

  4. Time-order errors and standard-position effects in duration discrimination: An experimental study and an analysis by the sensation-weighting model.

    PubMed

    Hellström, Åke; Rammsayer, Thomas H

    2015-10-01

    Studies have shown that the discriminability of successive time intervals depends on the presentation order of the standard (St) and the comparison (Co) stimuli. Also, this order affects the point of subjective equality. The first effect is here called the standard-position effect (SPE); the latter is known as the time-order error. In the present study, we investigated how these two effects vary across interval types and standard durations, using Hellström's sensation-weighting model to describe the results and relate them to stimulus comparison mechanisms. In Experiment 1, four modes of interval presentation were used, factorially combining interval type (filled, empty) and sensory modality (auditory, visual). For each mode, two presentation orders (St-Co, Co-St) and two standard durations (100 ms, 1,000 ms) were used; half of the participants received correctness feedback, and half of them did not. The interstimulus interval was 900 ms. The SPEs were negative (i.e., a smaller difference limen for St-Co than for Co-St), except for the filled-auditory and empty-visual 100-ms standards, for which a positive effect was obtained. In Experiment 2, duration discrimination was investigated for filled auditory intervals with four standards between 100 and 1,000 ms, an interstimulus interval of 900 ms, and no feedback. Standard duration interacted with presentation order, here yielding SPEs that were negative for standards of 100 and 1,000 ms, but positive for 215 and 464 ms. Our findings indicate that the SPE can be positive as well as negative, depending on the interval type and standard duration, reflecting the relative weighting of the stimulus information, as is described by the sensation-weighting model.

  5. A Comparison between Discrimination Indices and Item-Response Theory Using the Rasch Model in a Clinical Course Written Examination of a Medical School.

    PubMed

    Park, Jong Cook; Kim, Kwang Sig

    2012-03-01

    The reliability of test is determined by each items' characteristics. Item analysis is achieved by classical test theory and item response theory. The purpose of the study was to compare the discrimination indices with item response theory using the Rasch model. Thirty-one 4th-year medical school students participated in the clinical course written examination, which included 22 A-type items and 3 R-type items. Point biserial correlation coefficient (C(pbs)) was compared to method of extreme group (D), biserial correlation coefficient (C(bs)), item-total correlation coefficient (C(it)), and corrected item-total correlation coeffcient (C(cit)). Rasch model was applied to estimate item difficulty and examinee's ability and to calculate item fit statistics using joint maximum likelihood. Explanatory power (r2) of Cpbs is decreased in the following order: C(cit) (1.00), C(it) (0.99), C(bs) (0.94), and D (0.45). The ranges of difficulty logit and standard error and ability logit and standard error were -0.82 to 0.80 and 0.37 to 0.76, -3.69 to 3.19 and 0.45 to 1.03, respectively. Item 9 and 23 have outfit > or =1.3. Student 1, 5, 7, 18, 26, 30, and 32 have fit > or =1.3. C(pbs), C(cit), and C(it) are good discrimination parameters. Rasch model can estimate item difficulty parameter and examinee's ability parameter with standard error. The fit statistics can identify bad items and unpredictable examinee's responses.

  6. Custom map projections for regional groundwater models

    USGS Publications Warehouse

    Kuniansky, Eve L.

    2017-01-01

    For regional groundwater flow models (areas greater than 100,000 km2), improper choice of map projection parameters can result in model error for boundary conditions dependent on area (recharge or evapotranspiration simulated by application of a rate using cell area from model discretization) and length (rivers simulated with head-dependent flux boundary). Smaller model areas can use local map coordinates, such as State Plane (United States) or Universal Transverse Mercator (correct zone) without introducing large errors. Map projections vary in order to preserve one or more of the following properties: area, shape, distance (length), or direction. Numerous map projections are developed for different purposes as all four properties cannot be preserved simultaneously. Preservation of area and length are most critical for groundwater models. The Albers equal-area conic projection with custom standard parallels, selected by dividing the length north to south by 6 and selecting standard parallels 1/6th above or below the southern and northern extent, preserves both area and length for continental areas in mid latitudes oriented east-west. Custom map projection parameters can also minimize area and length error in non-ideal projections. Additionally, one must also use consistent vertical and horizontal datums for all geographic data. The generalized polygon for the Floridan aquifer system study area (306,247.59 km2) is used to provide quantitative examples of the effect of map projections on length and area with different projections and parameter choices. Use of improper map projection is one model construction problem easily avoided.

  7. Statistical inference for template aging

    NASA Astrophysics Data System (ADS)

    Schuckers, Michael E.

    2006-04-01

    A change in classification error rates for a biometric device is often referred to as template aging. Here we offer two methods for determining whether the effect of time is statistically significant. The first of these is the use of a generalized linear model to determine if these error rates change linearly over time. This approach generalizes previous work assessing the impact of covariates using generalized linear models. The second approach uses of likelihood ratio tests methodology. The focus here is on statistical methods for estimation not the underlying cause of the change in error rates over time. These methodologies are applied to data from the National Institutes of Standards and Technology Biometric Score Set Release 1. The results of these applications are discussed.

  8. Recognizing and managing errors of cognitive underspecification.

    PubMed

    Duthie, Elizabeth A

    2014-03-01

    James Reason describes cognitive underspecification as incomplete communication that creates a knowledge gap. Errors occur when an information mismatch occurs in bridging that gap with a resulting lack of shared mental models during the communication process. There is a paucity of studies in health care examining this cognitive error and the role it plays in patient harm. The goal of the following case analyses is to facilitate accurate recognition, identify how it contributes to patient harm, and suggest appropriate management strategies. Reason's human error theory is applied in case analyses of errors of cognitive underspecification. Sidney Dekker's theory of human incident investigation is applied to event investigation to facilitate identification of this little recognized error. Contributory factors leading to errors of cognitive underspecification include workload demands, interruptions, inexperienced practitioners, and lack of a shared mental model. Detecting errors of cognitive underspecification relies on blame-free listening and timely incident investigation. Strategies for interception include two-way interactive communication, standardization of communication processes, and technological support to ensure timely access to documented clinical information. Although errors of cognitive underspecification arise at the sharp end with the care provider, effective management is dependent upon system redesign that mitigates the latent contributory factors. Cognitive underspecification is ubiquitous whenever communication occurs. Accurate identification is essential if effective system redesign is to occur.

  9. Evaluating the utility of mid-infrared spectral subspaces for predicting soil properties.

    PubMed

    Sila, Andrew M; Shepherd, Keith D; Pokhariyal, Ganesh P

    2016-04-15

    We propose four methods for finding local subspaces in large spectral libraries. The proposed four methods include (a) cosine angle spectral matching; (b) hit quality index spectral matching; (c) self-organizing maps and (d) archetypal analysis methods. Then evaluate prediction accuracies for global and subspaces calibration models. These methods were tested on a mid-infrared spectral library containing 1907 soil samples collected from 19 different countries under the Africa Soil Information Service project. Calibration models for pH, Mehlich-3 Ca, Mehlich-3 Al, total carbon and clay soil properties were developed for the whole library and for the subspace. Root mean square error of prediction was used to evaluate predictive performance of subspace and global models. The root mean square error of prediction was computed using a one-third-holdout validation set. Effect of pretreating spectra with different methods was tested for 1st and 2nd derivative Savitzky-Golay algorithm, multiplicative scatter correction, standard normal variate and standard normal variate followed by detrending methods. In summary, the results show that global models outperformed the subspace models. We, therefore, conclude that global models are more accurate than the local models except in few cases. For instance, sand and clay root mean square error values from local models from archetypal analysis method were 50% poorer than the global models except for subspace models obtained using multiplicative scatter corrected spectra with which were 12% better. However, the subspace approach provides novel methods for discovering data pattern that may exist in large spectral libraries.

  10. Template CoMFA Generates Single 3D-QSAR Models that, for Twelve of Twelve Biological Targets, Predict All ChEMBL-Tabulated Affinities

    PubMed Central

    Cramer, Richard D.

    2015-01-01

    The possible applicability of the new template CoMFA methodology to the prediction of unknown biological affinities was explored. For twelve selected targets, all ChEMBL binding affinities were used as training and/or prediction sets, making these 3D-QSAR models the most structurally diverse and among the largest ever. For six of the targets, X-ray crystallographic structures provided the aligned templates required as input (BACE, cdk1, chk2, carbonic anhydrase-II, factor Xa, PTP1B). For all targets including the other six (hERG, cyp3A4 binding, endocrine receptor, COX2, D2, and GABAa), six modeling protocols applied to only three familiar ligands provided six alternate sets of aligned templates. The statistical qualities of the six or seven models thus resulting for each individual target were remarkably similar. Also, perhaps unexpectedly, the standard deviations of the errors of cross-validation predictions accompanying model derivations were indistinguishable from the standard deviations of the errors of truly prospective predictions. These standard deviations of prediction ranged from 0.70 to 1.14 log units and averaged 0.89 (8x in concentration units) over the twelve targets, representing an average reduction of almost 50% in uncertainty, compared to the null hypothesis of “predicting” an unknown affinity to be the average of known affinities. These errors of prediction are similar to those from Tanimoto coefficients of fragment occurrence frequencies, the predominant approach to side effect prediction, which template CoMFA can augment by identifying additional active structural classes, by improving Tanimoto-only predictions, by yielding quantitative predictions of potency, and by providing interpretable guidance for avoiding or enhancing any specific target response. PMID:26065424

  11. Quantifying Adventitious Error in a Covariance Structure as a Random Effect

    PubMed Central

    Wu, Hao; Browne, Michael W.

    2017-01-01

    We present an approach to quantifying errors in covariance structures in which adventitious error, identified as the process underlying the discrepancy between the population and the structured model, is explicitly modeled as a random effect with a distribution, and the dispersion parameter of this distribution to be estimated gives a measure of misspecification. Analytical properties of the resultant procedure are investigated and the measure of misspecification is found to be related to the RMSEA. An algorithm is developed for numerical implementation of the procedure. The consistency and asymptotic sampling distributions of the estimators are established under a new asymptotic paradigm and an assumption weaker than the standard Pitman drift assumption. Simulations validate the asymptotic sampling distributions and demonstrate the importance of accounting for the variations in the parameter estimates due to adventitious error. Two examples are also given as illustrations. PMID:25813463

  12. The regionalization of national-scale SPARROW models for stream nutrients

    USGS Publications Warehouse

    Schwarz, Gregory E.; Alexander, Richard B.; Smith, Richard A.; Preston, Stephen D.

    2011-01-01

    This analysis modifies the parsimonious specification of recently published total nitrogen (TN) and total phosphorus (TP) national-scale SPAtially Referenced Regressions On Watershed attributes models to allow each model coefficient to vary geographically among three major river basins of the conterminous United States. Regionalization of the national models reduces the standard errors in the prediction of TN and TP loads, expressed as a percentage of the predicted load, by about 6 and 7%. We develop and apply a method for combining national-scale and regional-scale information to estimate a hybrid model that imposes cross-region constraints that limit regional variation in model coefficients, effectively reducing the number of free model parameters as compared to a collection of independent regional models. The hybrid TN and TP regional models have improved model fit relative to the respective national models, reducing the standard error in the prediction of loads, expressed as a percentage of load, by about 5 and 4%. Only 19% of the TN hybrid model coefficients and just 2% of the TP hybrid model coefficients show evidence of substantial regional specificity (more than ±100% deviation from the national model estimate). The hybrid models have much greater precision in the estimated coefficients than do the unconstrained regional models, demonstrating the efficacy of pooling information across regions to improve regional models.

  13. Technology research for strapdown inertial experiment and digital flight control and guidance

    NASA Technical Reports Server (NTRS)

    Carestia, R. A.; Cottrell, D. E.

    1985-01-01

    A helicopter flight-test program to evaluate the performance of Honeywell's Tetrad - a strapdown, laser gyro, inertial navitation system is discussed. The results of 34 flights showed a mean final navigational velocity error of 5.06 knots, with a standard deviation of 3.84 knots; a corresponding mean final position error of 2.66 n.mi., with a standard deviation of 1.48 n.m.; and a modeled mean-position-error growth rate for the 34 tests of 1.96 knots, with a standard deviation of 1.09 knots. Tetrad's four-ring laser gyros provided reliable and accurate angular rate sensing during the test program and on sensor failures were detected during the evaluation. Criteria suitable for investigating cockpit systems in rotorcraft were developed. This criteria led to the development of two basic simulators. The first was a standard simulator which could be used to obtain baseline information for studying pilot workload and interactions. The second was an advanced simulator which integrated the RODAAS developed by Honeywell into this simulator. The second area also included surveying the aerospace industry to determine the level of use and impact of microcomputers and related components on avionics systems.

  14. Multiplicative effects model with internal standard in mobile phase for quantitative liquid chromatography-mass spectrometry.

    PubMed

    Song, Mi; Chen, Zeng-Ping; Chen, Yao; Jin, Jing-Wen

    2014-07-01

    Liquid chromatography-mass spectrometry assays suffer from signal instability caused by the gradual fouling of the ion source, vacuum instability, aging of the ion multiplier, etc. To address this issue, in this contribution, an internal standard was added into the mobile phase. The internal standard was therefore ionized and detected together with the analytes of interest by the mass spectrometer to ensure that variations in measurement conditions and/or instrument have similar effects on the signal contributions of both the analytes of interest and the internal standard. Subsequently, based on the unique strategy of adding internal standard in mobile phase, a multiplicative effects model was developed for quantitative LC-MS assays and tested on a proof of concept model system: the determination of amino acids in water by LC-MS. The experimental results demonstrated that the proposed method could efficiently mitigate the detrimental effects of continuous signal variation, and achieved quantitative results with average relative predictive error values in the range of 8.0-15.0%, which were much more accurate than the corresponding results of conventional internal standard method based on the peak height ratio and partial least squares method (their average relative predictive error values were as high as 66.3% and 64.8%, respectively). Therefore, it is expected that the proposed method can be developed and extended in quantitative LC-MS analysis of more complex systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Automated Hypothesis Tests and Standard Errors for Nonstandard Problems with Description of Computer Package: A Draft.

    ERIC Educational Resources Information Center

    Lord, Frederic M.; Stocking, Martha

    A general Computer program is described that will compute asymptotic standard errors and carry out significance tests for an endless variety of (standard and) nonstandard large-sample statistical problems, without requiring the statistician to derive asymptotic standard error formulas. The program assumes that the observations have a multinormal…

  16. Updating the Standard Spatial Observer for Contrast Detection

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J.; Watson, Andrew B.

    2011-01-01

    Watson and Ahmuada (2005) constructed a Standard Spatial Observer (SSO) model for foveal luminance contrast signal detection based on the Medelfest data (Watson, 1999). Here we propose two changes to the model, dropping the oblique effect from the CSF and using the cone density data of Curcio et al. (1990) to estimate the variation of sensitivity with eccentricity. Dropping the complex images, and using medians to exclude outlier data points, the SSO model now accounts for essentially all the predictable variance in the data, with an RMS prediction error of only 0.67 dB.

  17. Bias correction by use of errors-in-variables regression models in studies with K-X-ray fluorescence bone lead measurements.

    PubMed

    Lamadrid-Figueroa, Héctor; Téllez-Rojo, Martha M; Angeles, Gustavo; Hernández-Ávila, Mauricio; Hu, Howard

    2011-01-01

    In-vivo measurement of bone lead by means of K-X-ray fluorescence (KXRF) is the preferred biological marker of chronic exposure to lead. Unfortunately, considerable measurement error associated with KXRF estimations can introduce bias in estimates of the effect of bone lead when this variable is included as the exposure in a regression model. Estimates of uncertainty reported by the KXRF instrument reflect the variance of the measurement error and, although they can be used to correct the measurement error bias, they are seldom used in epidemiological statistical analyzes. Errors-in-variables regression (EIV) allows for correction of bias caused by measurement error in predictor variables, based on the knowledge of the reliability of such variables. The authors propose a way to obtain reliability coefficients for bone lead measurements from uncertainty data reported by the KXRF instrument and compare, by the use of Monte Carlo simulations, results obtained using EIV regression models vs. those obtained by the standard procedures. Results of the simulations show that Ordinary Least Square (OLS) regression models provide severely biased estimates of effect, and that EIV provides nearly unbiased estimates. Although EIV effect estimates are more imprecise, their mean squared error is much smaller than that of OLS estimates. In conclusion, EIV is a better alternative than OLS to estimate the effect of bone lead when measured by KXRF. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Comparison of Flow-Dependent and Static Error Correlation Models in the DAO Ozone Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Wargan, K.; Stajner, I.; Pawson, S.

    2003-01-01

    In a data assimilation system the forecast error covariance matrix governs the way in which the data information is spread throughout the model grid. Implementation of a correct method of assigning covariances is expected to have an impact on the analysis results. The simplest models assume that correlations are constant in time and isotropic or nearly isotropic. In such models the analysis depends on the dynamics only through assumed error standard deviations. In applications to atmospheric tracer data assimilation this may lead to inaccuracies, especially in regions with strong wind shears or high gradient of potential vorticity, as well as in areas where no data are available. In order to overcome this problem we have developed a flow-dependent covariance model that is based on short term evolution of error correlations. The presentation compares performance of a static and a flow-dependent model applied to a global three- dimensional ozone data assimilation system developed at NASA s Data Assimilation Office. We will present some results of validation against WMO balloon-borne sondes and the Polar Ozone and Aerosol Measurement (POAM) III instrument. Experiments show that allowing forecast error correlations to evolve with the flow results in positive impact on assimilated ozone within the regions where data were not assimilated, particularly at high latitudes in both hemispheres and in the troposphere. We will also discuss statistical characteristics of both models; in particular we will argue that including evolution of error correlations leads to stronger internal consistency of a data assimilation ,

  19. On the Estimation of Errors in Sparse Bathymetric Geophysical Data Sets

    NASA Astrophysics Data System (ADS)

    Jakobsson, M.; Calder, B.; Mayer, L.; Armstrong, A.

    2001-05-01

    There is a growing demand in the geophysical community for better regional representations of the world ocean's bathymetry. However, given the vastness of the oceans and the relative limited coverage of even the most modern mapping systems, it is likely that many of the older data sets will remain part of our cumulative database for several more decades. Therefore, regional bathymetrical compilations that are based on a mixture of historic and contemporary data sets will have to remain the standard. This raises the problem of assembling bathymetric compilations and utilizing data sets not only with a heterogeneous cover but also with a wide range of accuracies. In combining these data to regularly spaced grids of bathymetric values, which the majority of numerical procedures in earth sciences require, we are often forced to use a complex interpolation scheme due to the sparseness and irregularity of the input data points. Consequently, we are faced with the difficult task of assessing the confidence that we can assign to the final grid product, a task that is not usually addressed in most bathymetric compilations. We approach the problem of assessing the confidence via a direct-simulation Monte Carlo method. We start with a small subset of data from the International Bathymetric Chart of the Arctic Ocean (IBCAO) grid model [Jakobsson et al., 2000]. This grid is compiled from a mixture of data sources ranging from single beam soundings with available metadata to spot soundings with no available metadata, to digitized contours; the test dataset shows examples of all of these types. From this database, we assign a priori error variances based on available meta-data, and when this is not available, based on a worst-case scenario in an essentially heuristic manner. We then generate a number of synthetic datasets by randomly perturbing the base data using normally distributed random variates, scaled according to the predicted error model. These datasets are then re-gridded using the same methodology as the original product, generating a set of plausible grid models of the regional bathymetry that we can use for standard error estimates. Finally, we repeat the entire random estimation process and analyze each run's standard error grids in order to examine sampling bias and variance in the predictions. The final products of the estimation are a collection of standard error grids, which we combine with the source data density in order to create a grid that contains information about the bathymetry model's reliability. Jakobsson, M., Cherkis, N., Woodward, J., Coakley, B., and Macnab, R., 2000, A new grid of Arctic bathymetry: A significant resource for scientists and mapmakers, EOS Transactions, American Geophysical Union, v. 81, no. 9, p. 89, 93, 96.

  20. Computation of Standard Errors

    PubMed Central

    Dowd, Bryan E; Greene, William H; Norton, Edward C

    2014-01-01

    Objectives We discuss the problem of computing the standard errors of functions involving estimated parameters and provide the relevant computer code for three different computational approaches using two popular computer packages. Study Design We show how to compute the standard errors of several functions of interest: the predicted value of the dependent variable for a particular subject, and the effect of a change in an explanatory variable on the predicted value of the dependent variable for an individual subject and average effect for a sample of subjects. Empirical Application Using a publicly available dataset, we explain three different methods of computing standard errors: the delta method, Krinsky–Robb, and bootstrapping. We provide computer code for Stata 12 and LIMDEP 10/NLOGIT 5. Conclusions In most applications, choice of the computational method for standard errors of functions of estimated parameters is a matter of convenience. However, when computing standard errors of the sample average of functions that involve both estimated parameters and nonstochastic explanatory variables, it is important to consider the sources of variation in the function's values. PMID:24800304

  1. Rectifying calibration error of Goldmann applanation tonometer is easy!

    PubMed

    Choudhari, Nikhil S; Moorthy, Krishna P; Tungikar, Vinod B; Kumar, Mohan; George, Ronnie; Rao, Harsha L; Senthil, Sirisha; Vijaya, Lingam; Garudadri, Chandra Sekhar

    2014-11-01

    Purpose: Goldmann applanation tonometer (GAT) is the current Gold standard tonometer. However, its calibration error is common and can go unnoticed in clinics. Its company repair has limitations. The purpose of this report is to describe a self-taught technique of rectifying calibration error of GAT. Materials and Methods: Twenty-nine slit-lamp-mounted Haag-Streit Goldmann tonometers (Model AT 900 C/M; Haag-Streit, Switzerland) were included in this cross-sectional interventional pilot study. The technique of rectification of calibration error of the tonometer involved cleaning and lubrication of the instrument followed by alignment of weights when lubrication alone didn't suffice. We followed the South East Asia Glaucoma Interest Group's definition of calibration error tolerance (acceptable GAT calibration error within ±2, ±3 and ±4 mm Hg at the 0, 20 and 60-mm Hg testing levels, respectively). Results: Twelve out of 29 (41.3%) GATs were out of calibration. The range of positive and negative calibration error at the clinically most important 20-mm Hg testing level was 0.5 to 20 mm Hg and -0.5 to -18 mm Hg, respectively. Cleaning and lubrication alone sufficed to rectify calibration error of 11 (91.6%) faulty instruments. Only one (8.3%) faulty GAT required alignment of the counter-weight. Conclusions: Rectification of calibration error of GAT is possible in-house. Cleaning and lubrication of GAT can be carried out even by eye care professionals and may suffice to rectify calibration error in the majority of faulty instruments. Such an exercise may drastically reduce the downtime of the Gold standard tonometer.

  2. Methods for reducing biases and errors in regional photochemical model outputs for use in emission reduction and exposure assessments

    EPA Science Inventory

    In the United States, regional-scale photochemical models are being used to design emission control strategies needed to meet the relevant National Ambient Air Quality Standards (NAAQS) within the framework of the attainment demonstration process. Previous studies have shown that...

  3. Composable Framework Support for Software-FMEA Through Model Execution

    NASA Astrophysics Data System (ADS)

    Kocsis, Imre; Patricia, Andras; Brancati, Francesco; Rossi, Francesco

    2016-08-01

    Performing Failure Modes and Effect Analysis (FMEA) during software architecture design is becoming a basic requirement in an increasing number of domains; however, due to the lack of standardized early design phase model execution, classic SW-FMEA approaches carry significant risks and are human effort-intensive even in processes that use Model-Driven Engineering.Recently, modelling languages with standardized executable semantics have emerged. Building on earlier results, this paper describes framework support for generating executable error propagation models from such models during software architecture design. The approach carries the promise of increased precision, decreased risk and more automated execution for SW-FMEA during dependability- critical system development.

  4. Sea-Level Trend Uncertainty With Pacific Climatic Variability and Temporally-Correlated Noise

    NASA Astrophysics Data System (ADS)

    Royston, Sam; Watson, Christopher S.; Legrésy, Benoît; King, Matt A.; Church, John A.; Bos, Machiel S.

    2018-03-01

    Recent studies have identified climatic drivers of the east-west see-saw of Pacific Ocean satellite altimetry era sea level trends and a number of sea-level trend and acceleration assessments attempt to account for this. We investigate the effect of Pacific climate variability, together with temporally-correlated noise, on linear trend error estimates and determine new time-of-emergence (ToE) estimates across the Indian and Pacific Oceans. Sea-level trend studies often advocate the use of auto-regressive (AR) noise models to adequately assess formal uncertainties, yet sea level often exhibits colored but non-AR(1) noise. Standard error estimates are over- or under-estimated by an AR(1) model for much of the Indo-Pacific sea level. Allowing for PDO and ENSO variability in the trend estimate only reduces standard errors across the tropics and we find noise characteristics are largely unaffected. Of importance for trend and acceleration detection studies, formal error estimates remain on average up to 1.6 times those from an AR(1) model for long-duration tide gauge data. There is an even chance that the observed trend from the satellite altimetry era exceeds the noise in patches of the tropical Pacific and Indian Oceans and the south-west and north-east Pacific gyres. By including climate indices in the trend analysis, the time it takes for the observed linear sea-level trend to emerge from the noise reduces by up to 2 decades.

  5. Combining forecast weights: Why and how?

    NASA Astrophysics Data System (ADS)

    Yin, Yip Chee; Kok-Haur, Ng; Hock-Eam, Lim

    2012-09-01

    This paper proposes a procedure called forecast weight averaging which is a specific combination of forecast weights obtained from different methods of constructing forecast weights for the purpose of improving the accuracy of pseudo out of sample forecasting. It is found that under certain specified conditions, forecast weight averaging can lower the mean squared forecast error obtained from model averaging. In addition, we show that in a linear and homoskedastic environment, this superior predictive ability of forecast weight averaging holds true irrespective whether the coefficients are tested by t statistic or z statistic provided the significant level is within the 10% range. By theoretical proofs and simulation study, we have shown that model averaging like, variance model averaging, simple model averaging and standard error model averaging, each produces mean squared forecast error larger than that of forecast weight averaging. Finally, this result also holds true marginally when applied to business and economic empirical data sets, Gross Domestic Product (GDP growth rate), Consumer Price Index (CPI) and Average Lending Rate (ALR) of Malaysia.

  6. Fractional Ornstein-Uhlenbeck for index prices of FTSE Bursa Malaysia KLCI

    NASA Astrophysics Data System (ADS)

    Chen, Kho Chia; Bahar, Arifah; Ting, Chee-Ming

    2014-07-01

    This paper studies the Ornstein-Uhlenbeck model that incorporates long memory stochastic volatility which is known as fractional Ornstein-Uhlenbeck model. The determination of the existence of long range dependence of the index prices of FTSE Bursa Malaysia KLCI is measured by the Hurst exponent. The empirical distribution of unobserved volatility is estimated using the particle filtering method. The performance between fractional Ornstein -Uhlenbeck and standard Ornstein -Uhlenbeck process had been compared. The mean square errors of the fractional Ornstein-Uhlenbeck model indicated that the model describes index prices better than the standard Ornstein-Uhlenbeck process.

  7. Using SEM to Analyze Complex Survey Data: A Comparison between Design-Based Single-Level and Model-Based Multilevel Approaches

    ERIC Educational Resources Information Center

    Wu, Jiun-Yu; Kwok, Oi-man

    2012-01-01

    Both ad-hoc robust sandwich standard error estimators (design-based approach) and multilevel analysis (model-based approach) are commonly used for analyzing complex survey data with nonindependent observations. Although these 2 approaches perform equally well on analyzing complex survey data with equal between- and within-level model structures…

  8. Relative Performance of Rescaling and Resampling Approaches to Model Chi Square and Parameter Standard Error Estimation in Structural Equation Modeling.

    ERIC Educational Resources Information Center

    Nevitt, Johnathan; Hancock, Gregory R.

    Though common structural equation modeling (SEM) methods are predicated upon the assumption of multivariate normality, applied researchers often find themselves with data clearly violating this assumption and without sufficient sample size to use distribution-free estimation methods. Fortunately, promising alternatives are being integrated into…

  9. Parameter Variability and Distributional Assumptions in the Diffusion Model

    ERIC Educational Resources Information Center

    Ratcliff, Roger

    2013-01-01

    If the diffusion model (Ratcliff & McKoon, 2008) is to account for the relative speeds of correct responses and errors, it is necessary that the components of processing identified by the model vary across the trials of a task. In standard applications, the rate at which information is accumulated by the diffusion process is assumed to be normally…

  10. The Infinitesimal Jackknife with Exploratory Factor Analysis

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Preacher, Kristopher J.; Jennrich, Robert I.

    2012-01-01

    The infinitesimal jackknife, a nonparametric method for estimating standard errors, has been used to obtain standard error estimates in covariance structure analysis. In this article, we adapt it for obtaining standard errors for rotated factor loadings and factor correlations in exploratory factor analysis with sample correlation matrices. Both…

  11. A Comparison of Three Methods for Computing Scale Score Conditional Standard Errors of Measurement. ACT Research Report Series, 2013 (7)

    ERIC Educational Resources Information Center

    Woodruff, David; Traynor, Anne; Cui, Zhongmin; Fang, Yu

    2013-01-01

    Professional standards for educational testing recommend that both the overall standard error of measurement and the conditional standard error of measurement (CSEM) be computed on the score scale used to report scores to examinees. Several methods have been developed to compute scale score CSEMs. This paper compares three methods, based on…

  12. High dimensional linear regression models under long memory dependence and measurement error

    NASA Astrophysics Data System (ADS)

    Kaul, Abhishek

    This dissertation consists of three chapters. The first chapter introduces the models under consideration and motivates problems of interest. A brief literature review is also provided in this chapter. The second chapter investigates the properties of Lasso under long range dependent model errors. Lasso is a computationally efficient approach to model selection and estimation, and its properties are well studied when the regression errors are independent and identically distributed. We study the case, where the regression errors form a long memory moving average process. We establish a finite sample oracle inequality for the Lasso solution. We then show the asymptotic sign consistency in this setup. These results are established in the high dimensional setup (p> n) where p can be increasing exponentially with n. Finally, we show the consistency, n½ --d-consistency of Lasso, along with the oracle property of adaptive Lasso, in the case where p is fixed. Here d is the memory parameter of the stationary error sequence. The performance of Lasso is also analysed in the present setup with a simulation study. The third chapter proposes and investigates the properties of a penalized quantile based estimator for measurement error models. Standard formulations of prediction problems in high dimension regression models assume the availability of fully observed covariates and sub-Gaussian and homogeneous model errors. This makes these methods inapplicable to measurement errors models where covariates are unobservable and observations are possibly non sub-Gaussian and heterogeneous. We propose weighted penalized corrected quantile estimators for the regression parameter vector in linear regression models with additive measurement errors, where unobservable covariates are nonrandom. The proposed estimators forgo the need for the above mentioned model assumptions. We study these estimators in both the fixed dimension and high dimensional sparse setups, in the latter setup, the dimensionality can grow exponentially with the sample size. In the fixed dimensional setting we provide the oracle properties associated with the proposed estimators. In the high dimensional setting, we provide bounds for the statistical error associated with the estimation, that hold with asymptotic probability 1, thereby providing the ℓ1-consistency of the proposed estimator. We also establish the model selection consistency in terms of the correctly estimated zero components of the parameter vector. A simulation study that investigates the finite sample accuracy of the proposed estimator is also included in this chapter.

  13. Goldmann Tonometer Prism with an Optimized Error Correcting Applanation Surface.

    PubMed

    McCafferty, Sean; Lim, Garrett; Duncan, William; Enikov, Eniko; Schwiegerling, Jim

    2016-09-01

    We evaluate solutions for an applanating surface modification to the Goldmann tonometer prism, which substantially negates the errors due to patient variability in biomechanics. A modified Goldmann or correcting applanation tonometry surface (CATS) prism is presented which was optimized to minimize the intraocular pressure (IOP) error due to corneal thickness, stiffness, curvature, and tear film. Mathematical modeling with finite element analysis (FEA) and manometric IOP referenced cadaver eyes were used to optimize and validate the design. Mathematical modeling of the optimized CATS prism indicates an approximate 50% reduction in each of the corneal biomechanical and tear film errors. Manometric IOP referenced pressure in cadaveric eyes demonstrates substantial equivalence to GAT in nominal eyes with the CATS prism as predicted by modeling theory. A CATS modified Goldmann prism is theoretically able to significantly improve the accuracy of IOP measurement without changing Goldmann measurement technique or interpretation. Clinical validation is needed but the analysis indicates a reduction in CCT error alone to less than ±2 mm Hg using the CATS prism in 100% of a standard population compared to only 54% less than ±2 mm Hg error with the present Goldmann prism. This article presents an easily adopted novel approach and critical design parameters to improve the accuracy of a Goldmann applanating tonometer.

  14. Performance Improvement of Receivers Based on Ultra-Tight Integration in GNSS-Challenged Environments

    PubMed Central

    Qin, Feng; Zhan, Xingqun; Du, Gang

    2013-01-01

    Ultra-tight integration was first proposed by Abbott in 2003 with the purpose of integrating a global navigation satellite system (GNSS) and an inertial navigation system (INS). This technology can improve the tracking performances of a receiver by reconfiguring the tracking loops in GNSS-challenged environments. In this paper, the models of all error sources known to date in the phase lock loops (PLLs) of a standard receiver and an ultra-tightly integrated GNSS/INS receiver are built, respectively. Based on these models, the tracking performances of the two receivers are compared to verify the improvement due to the ultra-tight integration. Meanwhile, the PLL error distributions of the two receivers are also depicted to analyze the error changes of the tracking loops. These results show that the tracking error is significantly reduced in the ultra-tightly integrated GNSS/INS receiver since the receiver's dynamics are estimated and compensated by an INS. Moreover, the mathematical relationship between the tracking performances of the ultra-tightly integrated GNSS/INS receiver and the quality of the selected inertial measurement unit (IMU) is derived from the error models and proved by the error comparisons of four ultra-tightly integrated GNSS/INS receivers aided by different grade IMUs.

  15. An Empirical State Error Covariance Matrix Orbit Determination Example

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2015-01-01

    State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. First, consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. Then it follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix of the estimate will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully include all of the errors in the state estimate. The empirical error covariance matrix is determined from a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm. It is a formally correct, empirical state error covariance matrix obtained through use of the average form of the weighted measurement residual variance performance index rather than the usual total weighted residual form. Based on its formulation, this matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty and whether the source is anticipated or not. It is expected that the empirical error covariance matrix will give a better, statistical representation of the state error in poorly modeled systems or when sensor performance is suspect. In its most straight forward form, the technique only requires supplemental calculations to be added to existing batch estimation algorithms. In the current problem being studied a truth model making use of gravity with spherical, J2 and J4 terms plus a standard exponential type atmosphere with simple diurnal and random walk components is used. The ability of the empirical state error covariance matrix to account for errors is investigated under four scenarios during orbit estimation. These scenarios are: exact modeling under known measurement errors, exact modeling under corrupted measurement errors, inexact modeling under known measurement errors, and inexact modeling under corrupted measurement errors. For this problem a simple analog of a distributed space surveillance network is used. The sensors in this network make only range measurements and with simple normally distributed measurement errors. The sensors are assumed to have full horizon to horizon viewing at any azimuth. For definiteness, an orbit at the approximate altitude and inclination of the International Space Station is used for the study. The comparison analyses of the data involve only total vectors. No investigation of specific orbital elements is undertaken. The total vector analyses will look at the chisquare values of the error in the difference between the estimated state and the true modeled state using both the empirical and theoretical error covariance matrices for each of scenario.

  16. Semi-empirical model for retrieval of soil moisture using RISAT-1 C-Band SAR data over a sub-tropical semi-arid area of Rewari district, Haryana (India)

    NASA Astrophysics Data System (ADS)

    Rawat, Kishan Singh; Sehgal, Vinay Kumar; Pradhan, Sanatan; Ray, Shibendu S.

    2018-03-01

    We have estimated soil moisture (SM) by using circular horizontal polarization backscattering coefficient (σ o_{RH}), differences of circular vertical and horizontal σ o (σ o_{RV} {-} σ o_{RH}) from FRS-1 data of Radar Imaging Satellite (RISAT-1) and surface roughness in terms of RMS height ({RMS}_{height}). We examined the performance of FRS-1 in retrieving SM under wheat crop at tillering stage. Results revealed that it is possible to develop a good semi-empirical model (SEM) to estimate SM of the upper soil layer using RISAT-1 SAR data rather than using existing empirical model based on only single parameter, i.e., σ o. Near surface SM measurements were related to σ o_{RH}, σ o_{RV} {-} σ o_{RH} derived using 5.35 GHz (C-band) image of RISAT-1 and {RMS}_{height}. The roughness component derived in terms of {RMS}_{height} showed a good positive correlation with σ o_{RV} {-} σ o_{RH} (R2 = 0.65). By considering all the major influencing factors (σ o_{RH}, σ o_{RV} {-} σ o_{RH}, and {RMS}_{height}), an SEM was developed where SM (volumetric) predicted values depend on σ o_{RH}, σ o_{RV} {-} σ o_{RH}, and {RMS}_{height}. This SEM showed R2 of 0.87 and adjusted R2 of 0.85, multiple R=0.94 and with standard error of 0.05 at 95% confidence level. Validation of the SM derived from semi-empirical model with observed measurement ({SM}_{Observed}) showed root mean square error (RMSE) = 0.06, relative-RMSE (R-RMSE) = 0.18, mean absolute error (MAE) = 0.04, normalized RMSE (NRMSE) = 0.17, Nash-Sutcliffe efficiency (NSE) = 0.91 ({≈ } 1), index of agreement (d) = 1, coefficient of determination (R2) = 0.87, mean bias error (MBE) = 0.04, standard error of estimate (SEE) = 0.10, volume error (VE) = 0.15, variance of the distribution of differences ({S}d2) = 0.004. The developed SEM showed better performance in estimating SM than Topp empirical model which is based only on σ o. By using the developed SEM, top soil SM can be estimated with low mean absolute percent error (MAPE) = 1.39 and can be used for operational applications.

  17. Top-of-Climb Matching Method for Reducing Aircraft Trajectory Prediction Errors.

    PubMed

    Thipphavong, David P

    2016-09-01

    The inaccuracies of the aircraft performance models utilized by trajectory predictors with regard to takeoff weight, thrust, climb profile, and other parameters result in altitude errors during the climb phase that often exceed the vertical separation standard of 1000 feet. This study investigates the potential reduction in altitude trajectory prediction errors that could be achieved for climbing flights if just one additional parameter is made available: top-of-climb (TOC) time. The TOC-matching method developed and evaluated in this paper is straightforward: a set of candidate trajectory predictions is generated using different aircraft weight parameters, and the one that most closely matches TOC in terms of time is selected. This algorithm was tested using more than 1000 climbing flights in Fort Worth Center. Compared to the baseline trajectory predictions of a real-time research prototype (Center/TRACON Automation System), the TOC-matching method reduced the altitude root mean square error (RMSE) for a 5-minute prediction time by 38%. It also decreased the percentage of flights with absolute altitude error greater than the vertical separation standard of 1000 ft for the same look-ahead time from 55% to 30%.

  18. Top-of-Climb Matching Method for Reducing Aircraft Trajectory Prediction Errors

    PubMed Central

    Thipphavong, David P.

    2017-01-01

    The inaccuracies of the aircraft performance models utilized by trajectory predictors with regard to takeoff weight, thrust, climb profile, and other parameters result in altitude errors during the climb phase that often exceed the vertical separation standard of 1000 feet. This study investigates the potential reduction in altitude trajectory prediction errors that could be achieved for climbing flights if just one additional parameter is made available: top-of-climb (TOC) time. The TOC-matching method developed and evaluated in this paper is straightforward: a set of candidate trajectory predictions is generated using different aircraft weight parameters, and the one that most closely matches TOC in terms of time is selected. This algorithm was tested using more than 1000 climbing flights in Fort Worth Center. Compared to the baseline trajectory predictions of a real-time research prototype (Center/TRACON Automation System), the TOC-matching method reduced the altitude root mean square error (RMSE) for a 5-minute prediction time by 38%. It also decreased the percentage of flights with absolute altitude error greater than the vertical separation standard of 1000 ft for the same look-ahead time from 55% to 30%. PMID:28684883

  19. Top-of-Climb Matching Method for Reducing Aircraft Trajectory Prediction Errors

    NASA Technical Reports Server (NTRS)

    Thipphavong, David P.

    2016-01-01

    The inaccuracies of the aircraft performance models utilized by trajectory predictors with regard to takeoff weight, thrust, climb profile, and other parameters result in altitude errors during the climb phase that often exceed the vertical separation standard of 1000 feet. This study investigates the potential reduction in altitude trajectory prediction errors that could be achieved for climbing flights if just one additional parameter is made available: top-of-climb (TOC) time. The TOC-matching method developed and evaluated in this paper is straightforward: a set of candidate trajectory predictions is generated using different aircraft weight parameters, and the one that most closely matches TOC in terms of time is selected. This algorithm was tested using more than 1000 climbing flights in Fort Worth Center. Compared to the baseline trajectory predictions of a real-time research prototype (Center/TRACON Automation System), the TOC-matching method reduced the altitude root mean square error (RMSE) for a 5-minute prediction time by 38%. It also decreased the percentage of flights with absolute altitude error greater than the vertical separation standard of 1000 ft for the same look-ahead time from 55% to 30%.

  20. Groundwater Pollution Source Identification using Linked ANN-Optimization Model

    NASA Astrophysics Data System (ADS)

    Ayaz, Md; Srivastava, Rajesh; Jain, Ashu

    2014-05-01

    Groundwater is the principal source of drinking water in several parts of the world. Contamination of groundwater has become a serious health and environmental problem today. Human activities including industrial and agricultural activities are generally responsible for this contamination. Identification of groundwater pollution source is a major step in groundwater pollution remediation. Complete knowledge of pollution source in terms of its source characteristics is essential to adopt an effective remediation strategy. Groundwater pollution source is said to be identified completely when the source characteristics - location, strength and release period - are known. Identification of unknown groundwater pollution source is an ill-posed inverse problem. It becomes more difficult for real field conditions, when the lag time between the first reading at observation well and the time at which the source becomes active is not known. We developed a linked ANN-Optimization model for complete identification of an unknown groundwater pollution source. The model comprises two parts- an optimization model and an ANN model. Decision variables of linked ANN-Optimization model contain source location and release period of pollution source. An objective function is formulated using the spatial and temporal data of observed and simulated concentrations, and then minimized to identify the pollution source parameters. In the formulation of the objective function, we require the lag time which is not known. An ANN model with one hidden layer is trained using Levenberg-Marquardt algorithm to find the lag time. Different combinations of source locations and release periods are used as inputs and lag time is obtained as the output. Performance of the proposed model is evaluated for two and three dimensional case with error-free and erroneous data. Erroneous data was generated by adding uniformly distributed random error (error level 0-10%) to the analytically computed concentration values. The main advantage of the proposed model is that it requires only upper half of the breakthrough curve and is capable of predicting source parameters when the lag time is not known. Linking of ANN model with proposed optimization model reduces the dimensionality of the decision variables of the optimization model by one and hence complexity of optimization model is reduced. The results show that our proposed linked ANN-Optimization model is able to predict the source parameters for the error-free data accurately. The proposed model was run several times to obtain the mean, standard deviation and interval estimate of the predicted parameters for observations with random measurement errors. It was observed that mean values as predicted by the model were quite close to the exact values. An increasing trend was observed in the standard deviation of the predicted values with increasing level of measurement error. The model appears to be robust and may be efficiently utilized to solve the inverse pollution source identification problem.

  1. Cost effectiveness of a pharmacist-led information technology intervention for reducing rates of clinically important errors in medicines management in general practices (PINCER).

    PubMed

    Elliott, Rachel A; Putman, Koen D; Franklin, Matthew; Annemans, Lieven; Verhaeghe, Nick; Eden, Martin; Hayre, Jasdeep; Rodgers, Sarah; Sheikh, Aziz; Avery, Anthony J

    2014-06-01

    We recently showed that a pharmacist-led information technology-based intervention (PINCER) was significantly more effective in reducing medication errors in general practices than providing simple feedback on errors, with cost per error avoided at £79 (US$131). We aimed to estimate cost effectiveness of the PINCER intervention by combining effectiveness in error reduction and intervention costs with the effect of the individual errors on patient outcomes and healthcare costs, to estimate the effect on costs and QALYs. We developed Markov models for each of six medication errors targeted by PINCER. Clinical event probability, treatment pathway, resource use and costs were extracted from literature and costing tariffs. A composite probabilistic model combined patient-level error models with practice-level error rates and intervention costs from the trial. Cost per extra QALY and cost-effectiveness acceptability curves were generated from the perspective of NHS England, with a 5-year time horizon. The PINCER intervention generated £2,679 less cost and 0.81 more QALYs per practice [incremental cost-effectiveness ratio (ICER): -£3,037 per QALY] in the deterministic analysis. In the probabilistic analysis, PINCER generated 0.001 extra QALYs per practice compared with simple feedback, at £4.20 less per practice. Despite this extremely small set of differences in costs and outcomes, PINCER dominated simple feedback with a mean ICER of -£3,936 (standard error £2,970). At a ceiling 'willingness-to-pay' of £20,000/QALY, PINCER reaches 59 % probability of being cost effective. PINCER produced marginal health gain at slightly reduced overall cost. Results are uncertain due to the poor quality of data to inform the effect of avoiding errors.

  2. Nonparametric Estimation of Standard Errors in Covariance Analysis Using the Infinitesimal Jackknife

    ERIC Educational Resources Information Center

    Jennrich, Robert I.

    2008-01-01

    The infinitesimal jackknife provides a simple general method for estimating standard errors in covariance structure analysis. Beyond its simplicity and generality what makes the infinitesimal jackknife method attractive is that essentially no assumptions are required to produce consistent standard error estimates, not even the requirement that the…

  3. Factor Rotation and Standard Errors in Exploratory Factor Analysis

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Preacher, Kristopher J.

    2015-01-01

    In this article, we report a surprising phenomenon: Oblique CF-varimax and oblique CF-quartimax rotation produced similar point estimates for rotated factor loadings and factor correlations but different standard error estimates in an empirical example. Influences of factor rotation on asymptotic standard errors are investigated using a numerical…

  4. Measurement of inclusive radiative B-meson decay B decaying to X(S) meson-gamma

    NASA Astrophysics Data System (ADS)

    Ozcan, Veysi Erkcan

    Radiative decays of the B meson, B→ Xsgamma, proceed via virtual flavor changing neutral current processes that are sensitive to contributions from high mass scales, either within the Standard Model of electroweak interactions or beyond. In the Standard Model, these transitions are sensitive to the weak interactions of the top quark, and relatively robust predictions of the inclusive decay rate exist. Significant deviation from these predictions could be interpreted as indications for processes not included in the minimal Standard Model, like interactions of charged Higgs or SUSY particles. The analysis of the inclusive photon spectrum from B→ Xsgamma decays is rather challenging due to high backgrounds from photons emitted in the decay of mesons in B decays as well as e+e- annihilation to low mass quark and lepton pairs. Based on 88.5 million BB events collected by the BABAR detector, the photon spectrum above 1.9 GeV is presented. By comparison of the first and second moments of the photon spectrum with QCD predictions (calculated in the kinetic scheme), QCD parameters describing the bound state of the b quark in the B meson are extracted: mb=4.45+/-0.16 GeV/c2m2 p=0.65+/-0.29 GeV2 These parameters are useful input to non-perturbative QCD corrections to the semileptonic B decay rate and the determination of the CKM parameter Vub. Based on these parameters and heavy quark expansion, the full branching fraction is obtained as: BRB→X sgEg >1.6GeV=4.050.32 stat+/-0.38syst +/-0.29model x10-4. This result is in good agreement with previous measurements, the statistical and systematic errors are comparable. It is also in good agreement with the theoretical Standard Model predictions, and thus within the present errors there is no indication of any interactions not accounted for in the Standard Model. This finding implies strong constraints on physics beyond the Standard Model.

  5. Thoughtflow: Standards and Tools for Provenance Capture and Workflow Definition to Support Model-Informed Drug Discovery and Development.

    PubMed

    Wilkins, J J; Chan, Pls; Chard, J; Smith, G; Smith, M K; Beer, M; Dunn, A; Flandorfer, C; Franklin, C; Gomeni, R; Harnisch, L; Kaye, R; Moodie, S; Sardu, M L; Wang, E; Watson, E; Wolstencroft, K; Cheung, Sya

    2017-05-01

    Pharmacometric analyses are complex and multifactorial. It is essential to check, track, and document the vast amounts of data and metadata that are generated during these analyses (and the relationships between them) in order to comply with regulations, support quality control, auditing, and reporting. It is, however, challenging, tedious, error-prone, and time-consuming, and diverts pharmacometricians from the more useful business of doing science. Automating this process would save time, reduce transcriptional errors, support the retention and transfer of knowledge, encourage good practice, and help ensure that pharmacometric analyses appropriately impact decisions. The ability to document, communicate, and reconstruct a complete pharmacometric analysis using an open standard would have considerable benefits. In this article, the Innovative Medicines Initiative (IMI) Drug Disease Model Resources (DDMoRe) consortium proposes a set of standards to facilitate the capture, storage, and reporting of knowledge (including assumptions and decisions) in the context of model-informed drug discovery and development (MID3), as well as to support reproducibility: "Thoughtflow." A prototype software implementation is provided. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  6. Comparison of estimators of standard deviation for hydrologic time series

    USGS Publications Warehouse

    Tasker, Gary D.; Gilroy, Edward J.

    1982-01-01

    Unbiasing factors as a function of serial correlation, ρ, and sample size, n for the sample standard deviation of a lag one autoregressive model were generated by random number simulation. Monte Carlo experiments were used to compare the performance of several alternative methods for estimating the standard deviation σ of a lag one autoregressive model in terms of bias, root mean square error, probability of underestimation, and expected opportunity design loss. Three methods provided estimates of σ which were much less biased but had greater mean square errors than the usual estimate of σ: s = (1/(n - 1) ∑ (xi −x¯)2)½. The three methods may be briefly characterized as (1) a method using a maximum likelihood estimate of the unbiasing factor, (2) a method using an empirical Bayes estimate of the unbiasing factor, and (3) a robust nonparametric estimate of σ suggested by Quenouille. Because s tends to underestimate σ, its use as an estimate of a model parameter results in a tendency to underdesign. If underdesign losses are considered more serious than overdesign losses, then the choice of one of the less biased methods may be wise.

  7. Estimation of heart rate and heart rate variability from pulse oximeter recordings using localized model fitting.

    PubMed

    Wadehn, Federico; Carnal, David; Loeliger, Hans-Andrea

    2015-08-01

    Heart rate variability is one of the key parameters for assessing the health status of a subject's cardiovascular system. This paper presents a local model fitting algorithm used for finding single heart beats in photoplethysmogram recordings. The local fit of exponentially decaying cosines of frequencies within the physiological range is used to detect the presence of a heart beat. Using 42 subjects from the CapnoBase database, the average heart rate error was 0.16 BPM and the standard deviation of the absolute estimation error was 0.24 BPM.

  8. Generalized additive models and Lucilia sericata growth: assessing confidence intervals and error rates in forensic entomology.

    PubMed

    Tarone, Aaron M; Foran, David R

    2008-07-01

    Forensic entomologists use blow fly development to estimate a postmortem interval. Although accurate, fly age estimates can be imprecise for older developmental stages and no standard means of assigning confidence intervals exists. Presented here is a method for modeling growth of the forensically important blow fly Lucilia sericata, using generalized additive models (GAMs). Eighteen GAMs were created to predict the extent of juvenile fly development, encompassing developmental stage, length, weight, strain, and temperature data, collected from 2559 individuals. All measures were informative, explaining up to 92.6% of the deviance in the data, though strain and temperature exerted negligible influences. Predictions made with an independent data set allowed for a subsequent examination of error. Estimates using length and developmental stage were within 5% of true development percent during the feeding portion of the larval life cycle, while predictions for postfeeding third instars were less precise, but within expected error.

  9. Healthcare Coinsurance Elasticity Coefficient Estimation Using Monthly Cross-sectional, Time-series Claims Data.

    PubMed

    Scoggins, John F; Weinberg, Daniel A

    2017-06-01

    Published estimates of the healthcare coinsurance elasticity coefficient have typically relied on annual observations of individual healthcare expenditures even though health plan membership and expenditures are traditionally reported in monthly units and several studies have stressed the need for demand models to recognize the episodic nature of healthcare. Summing individual healthcare expenditures into annual observations complicates two common challenges of statistical inference, heteroscedasticity, and regressor endogeneity. This paper estimates the elasticity coefficient using a monthly panel data model that addresses the heteroscedasticity and endogeneity problems with relative ease. Healthcare claims data from employees of King County, Washington, during 2005 to 2011 were used to estimate the mean point elasticity coefficient: -0.314 (0.015 standard error) to -0.145 (0.015 standard error) depending on model specification. These estimates bracket the -0.2 point estimate (range: -0.22 to -0.17) derived from the famous Rand Health Insurance Experiment. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. A one-step method for modelling longitudinal data with differential equations.

    PubMed

    Hu, Yueqin; Treinen, Raymond

    2018-04-06

    Differential equation models are frequently used to describe non-linear trajectories of longitudinal data. This study proposes a new approach to estimate the parameters in differential equation models. Instead of estimating derivatives from the observed data first and then fitting a differential equation to the derivatives, our new approach directly fits the analytic solution of a differential equation to the observed data, and therefore simplifies the procedure and avoids bias from derivative estimations. A simulation study indicates that the analytic solutions of differential equations (ASDE) approach obtains unbiased estimates of parameters and their standard errors. Compared with other approaches that estimate derivatives first, ASDE has smaller standard error, larger statistical power and accurate Type I error. Although ASDE obtains biased estimation when the system has sudden phase change, the bias is not serious and a solution is also provided to solve the phase problem. The ASDE method is illustrated and applied to a two-week study on consumers' shopping behaviour after a sale promotion, and to a set of public data tracking participants' grammatical facial expression in sign language. R codes for ASDE, recommendations for sample size and starting values are provided. Limitations and several possible expansions of ASDE are also discussed. © 2018 The British Psychological Society.

  11. Propagation-of-uncertainty from contact angle and streaming potential measurements to XDLVO model assessments of membrane-colloid interactions.

    PubMed

    Muthu, Satish; Childress, Amy; Brant, Jonathan

    2014-08-15

    Membrane fouling assessed from a fundamental standpoint within the context of the Derjaguin-Landau-Verwey-Overbeek (DLVO) model. The DLVO model requires that the properties of the membrane and foulant(s) be quantified. Membrane surface charge (zeta potential) and free energy values are characterized using streaming potential and contact angle measurements, respectively. Comparing theoretical assessments for membrane-colloid interactions between research groups requires that the variability of the measured inputs be established. The impact that such variability in input values on the outcome from interfacial models must be quantified to determine an acceptable variance in inputs. An interlaboratory study was conducted to quantify the variability in streaming potential and contact angle measurements when using standard protocols. The propagation of uncertainty from these errors was evaluated in terms of their impact on the quantitative and qualitative conclusions on extended DLVO (XDLVO) calculated interaction terms. The error introduced into XDLVO calculated values was of the same magnitude as the calculated free energy values at contact and at any given separation distance. For two independent laboratories to draw similar quantitative conclusions regarding membrane-foulant interfacial interactions the standard error in contact angle values must be⩽2.5°, while that for the zeta potential values must be⩽7 mV. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Predictive accuracy of a ground-water model--Lessons from a postaudit

    USGS Publications Warehouse

    Konikow, Leonard F.

    1986-01-01

    Hydrogeologic studies commonly include the development, calibration, and application of a deterministic simulation model. To help assess the value of using such models to make predictions, a postaudit was conducted on a previously studied area in the Salt River and lower Santa Cruz River basins in central Arizona. A deterministic, distributed-parameter model of the ground-water system in these alluvial basins was calibrated by Anderson (1968) using about 40 years of data (1923–64). The calibrated model was then used to predict future water-level changes during the next 10 years (1965–74). Examination of actual water-level changes in 77 wells from 1965–74 indicates a poor correlation between observed and predicted water-level changes. The differences have a mean of 73 ft that is, predicted declines consistently exceeded those observed and a standard deviation of 47 ft. The bias in the predicted water-level change can be accounted for by the large error in the assumed total pumpage during the prediction period. However, the spatial distribution of errors in predicted water-level change does not correlate with the spatial distribution of errors in pumpage. Consequently, the lack of precision probably is not related only to errors in assumed pumpage, but may indicate the presence of other sources of error in the model, such as the two-dimensional representation of a three-dimensional problem or the lack of consideration of land-subsidence processes. This type of postaudit is a valuable method of verifying a model, and an evaluation of predictive errors can provide an increased understanding of the system and aid in assessing the value of undertaking development of a revised model.

  13. Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty

    NASA Astrophysics Data System (ADS)

    Kuczera, George

    1983-10-01

    A Bayesian methodology is developed to evaluate parameter uncertainty in catchment models fitted to a hydrologic response such as runoff, the goal being to improve the chance of successful regionalization. The catchment model is posed as a nonlinear regression model with stochastic errors possibly being both autocorrelated and heteroscedastic. The end result of this methodology, which may use Box-Cox power transformations and ARMA error models, is the posterior distribution, which summarizes what is known about the catchment model parameters. This can be simplified to a multivariate normal provided a linearization in parameter space is acceptable; means of checking and improving this assumption are discussed. The posterior standard deviations give a direct measure of parameter uncertainty, and study of the posterior correlation matrix can indicate what kinds of data are required to improve the precision of poorly determined parameters. Finally, a case study involving a nine-parameter catchment model fitted to monthly runoff and soil moisture data is presented. It is shown that use of ordinary least squares when its underlying error assumptions are violated gives an erroneous description of parameter uncertainty.

  14. Null tests of the standard model using the linear model formalism

    NASA Astrophysics Data System (ADS)

    Marra, Valerio; Sapone, Domenico

    2018-04-01

    We test both the Friedmann-Lemaître-Robertson-Walker geometry and Λ CDM cosmology in a model-independent way by reconstructing the Hubble function H (z ), the comoving distance D (z ), and the growth of structure f σ8(z ) using the most recent data available. We use the linear model formalism in order to optimally reconstruct the above cosmological functions, together with their derivatives and integrals. We then evaluate four of the null tests available in the literature that probe both background and perturbation assumptions. For all the four tests, we find agreement, within the errors, with the standard cosmological model.

  15. Influence of eye micromotions on spatially resolved refractometry

    NASA Astrophysics Data System (ADS)

    Chyzh, Igor H.; Sokurenko, Vyacheslav M.; Osipova, Irina Y.

    2001-01-01

    The influence eye micromotions on the accuracy of estimation of Zernike coefficients form eye transverse aberration measurements was investigated. By computer modeling, the following found eye aberrations have been examined: defocusing, primary astigmatism, spherical aberration of the 3rd and the 5th orders, as well as their combinations. It was determined that the standard deviation of estimated Zernike coefficients is proportional to the standard deviation of angular eye movements. Eye micromotions cause the estimation errors of Zernike coefficients of present aberrations and produce the appearance of Zernike coefficients of aberrations, absent in the eye. When solely defocusing is present, the biggest errors, cased by eye micromotions, are obtained for aberrations like coma and astigmatism. In comparison with other aberrations, spherical aberration of the 3rd and the 5th orders evokes the greatest increase of the standard deviation of other Zernike coefficients.

  16. H∞ output tracking control of discrete-time nonlinear systems via standard neural network models.

    PubMed

    Liu, Meiqin; Zhang, Senlin; Chen, Haiyang; Sheng, Weihua

    2014-10-01

    This brief proposes an output tracking control for a class of discrete-time nonlinear systems with disturbances. A standard neural network model is used to represent discrete-time nonlinear systems whose nonlinearity satisfies the sector conditions. H∞ control performance for the closed-loop system including the standard neural network model, the reference model, and state feedback controller is analyzed using Lyapunov-Krasovskii stability theorem and linear matrix inequality (LMI) approach. The H∞ controller, of which the parameters are obtained by solving LMIs, guarantees that the output of the closed-loop system closely tracks the output of a given reference model well, and reduces the influence of disturbances on the tracking error. Three numerical examples are provided to show the effectiveness of the proposed H∞ output tracking design approach.

  17. Addressing Common Student Technical Errors in Field Data Collection: An Analysis of a Citizen-Science Monitoring Project.

    PubMed

    Philippoff, Joanna; Baumgartner, Erin

    2016-03-01

    The scientific value of citizen-science programs is limited when the data gathered are inconsistent, erroneous, or otherwise unusable. Long-term monitoring studies, such as Our Project In Hawai'i's Intertidal (OPIHI), have clear and consistent procedures and are thus a good model for evaluating the quality of participant data. The purpose of this study was to examine the kinds of errors made by student researchers during OPIHI data collection and factors that increase or decrease the likelihood of these errors. Twenty-four different types of errors were grouped into four broad error categories: missing data, sloppiness, methodological errors, and misidentification errors. "Sloppiness" was the most prevalent error type. Error rates decreased with field trip experience and student age. We suggest strategies to reduce data collection errors applicable to many types of citizen-science projects including emphasizing neat data collection, explicitly addressing and discussing the problems of falsifying data, emphasizing the importance of using standard scientific vocabulary, and giving participants multiple opportunities to practice to build their data collection techniques and skills.

  18. Robust ridge regression estimators for nonlinear models with applications to high throughput screening assay data.

    PubMed

    Lim, Changwon

    2015-03-30

    Nonlinear regression is often used to evaluate the toxicity of a chemical or a drug by fitting data from a dose-response study. Toxicologists and pharmacologists may draw a conclusion about whether a chemical is toxic by testing the significance of the estimated parameters. However, sometimes the null hypothesis cannot be rejected even though the fit is quite good. One possible reason for such cases is that the estimated standard errors of the parameter estimates are extremely large. In this paper, we propose robust ridge regression estimation procedures for nonlinear models to solve this problem. The asymptotic properties of the proposed estimators are investigated; in particular, their mean squared errors are derived. The performances of the proposed estimators are compared with several standard estimators using simulation studies. The proposed methodology is also illustrated using high throughput screening assay data obtained from the National Toxicology Program. Copyright © 2014 John Wiley & Sons, Ltd.

  19. De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets

    NASA Astrophysics Data System (ADS)

    Hemati, Maziar S.; Rowley, Clarence W.; Deem, Eric A.; Cattafesta, Louis N.

    2017-08-01

    The dynamic mode decomposition (DMD)—a popular method for performing data-driven Koopman spectral analysis—has gained increased popularity for extracting dynamically meaningful spatiotemporal descriptions of fluid flows from snapshot measurements. Often times, DMD descriptions can be used for predictive purposes as well, which enables informed decision-making based on DMD model forecasts. Despite its widespread use and utility, DMD can fail to yield accurate dynamical descriptions when the measured snapshot data are imprecise due to, e.g., sensor noise. Here, we express DMD as a two-stage algorithm in order to isolate a source of systematic error. We show that DMD's first stage, a subspace projection step, systematically introduces bias errors by processing snapshots asymmetrically. To remove this systematic error, we propose utilizing an augmented snapshot matrix in a subspace projection step, as in problems of total least-squares, in order to account for the error present in all snapshots. The resulting unbiased and noise-aware total DMD (TDMD) formulation reduces to standard DMD in the absence of snapshot errors, while the two-stage perspective generalizes the de-biasing framework to other related methods as well. TDMD's performance is demonstrated in numerical and experimental fluids examples. In particular, in the analysis of time-resolved particle image velocimetry data for a separated flow, TDMD outperforms standard DMD by providing dynamical interpretations that are consistent with alternative analysis techniques. Further, TDMD extracts modes that reveal detailed spatial structures missed by standard DMD.

  20. The Influence of Effortful Thought and Cognitive Proficiencies on the Conjunction Fallacy: Implications for Dual-Process Theories of Reasoning and Judgment.

    PubMed

    Scherer, Laura D; Yates, J Frank; Baker, S Glenn; Valentine, Kathrene D

    2017-06-01

    Human judgment often violates normative standards, and virtually no judgment error has received as much attention as the conjunction fallacy. Judgment errors have historically served as evidence for dual-process theories of reasoning, insofar as these errors are assumed to arise from reliance on a fast and intuitive mental process, and are corrected via effortful deliberative reasoning. In the present research, three experiments tested the notion that conjunction errors are reduced by effortful thought. Predictions based on three different dual-process theory perspectives were tested: lax monitoring, override failure, and the Tripartite Model. Results indicated that participants higher in numeracy were less likely to make conjunction errors, but this association only emerged when participants engaged in two-sided reasoning, as opposed to one-sided or no reasoning. Confidence was higher for incorrect as opposed to correct judgments, suggesting that participants were unaware of their errors.

  1. Application of genetic algorithm in the evaluation of the profile error of archimedes helicoid surface

    NASA Astrophysics Data System (ADS)

    Zhu, Lianqing; Chen, Yunfang; Chen, Qingshan; Meng, Hao

    2011-05-01

    According to minimum zone condition, a method for evaluating the profile error of Archimedes helicoid surface based on Genetic Algorithm (GA) is proposed. The mathematic model of the surface is provided and the unknown parameters in the equation of surface are acquired through least square method. Principle of GA is explained. Then, the profile error of Archimedes Helicoid surface is obtained through GA optimization method. To validate the proposed method, the profile error of an Archimedes helicoid surface, Archimedes Cylindrical worm (ZA worm) surface, is evaluated. The results show that the proposed method is capable of correctly evaluating the profile error of Archimedes helicoid surface and satisfy the evaluation standard of the Minimum Zone Method. It can be applied to deal with the measured data of profile error of complex surface obtained by three coordinate measurement machines (CMM).

  2. Command Process Modeling & Risk Analysis

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila

    2011-01-01

    Commanding Errors may be caused by a variety of root causes. It's important to understand the relative significance of each of these causes for making institutional investment decisions. One of these causes is the lack of standardized processes and procedures for command and control. We mitigate this problem by building periodic tables and models corresponding to key functions within it. These models include simulation analysis and probabilistic risk assessment models.

  3. Finding of Correction Factor and Dimensional Error in Bio-AM Model by FDM Technique

    NASA Astrophysics Data System (ADS)

    Manmadhachary, Aiamunoori; Ravi Kumar, Yennam; Krishnanand, Lanka

    2018-06-01

    Additive Manufacturing (AM) is the swift manufacturing process, in which input data can be provided from various sources like 3-Dimensional (3D) Computer Aided Design (CAD), Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and 3D scanner data. From the CT/MRI data can be manufacture Biomedical Additive Manufacturing (Bio-AM) models. The Bio-AM model gives a better lead on preplanning of oral and maxillofacial surgery. However manufacturing of the accurate Bio-AM model is one of the unsolved problems. The current paper demonstrates error between the Standard Triangle Language (STL) model to Bio-AM model of dry mandible and found correction factor in Bio-AM model with Fused Deposition Modelling (FDM) technique. In the present work dry mandible CT images are acquired by CT scanner and supplied into a 3D CAD model in the form of STL model. Further the data is sent to FDM machine for fabrication of Bio-AM model. The difference between Bio-AM to STL model dimensions is considered as dimensional error and the ratio of STL to Bio-AM model dimensions considered as a correction factor. This correction factor helps to fabricate the AM model with accurate dimensions of the patient anatomy. These true dimensional Bio-AM models increasing the safety and accuracy in pre-planning of oral and maxillofacial surgery. The correction factor for Dimension SST 768 FDM AM machine is 1.003 and dimensional error is limited to 0.3 %.

  4. Finding of Correction Factor and Dimensional Error in Bio-AM Model by FDM Technique

    NASA Astrophysics Data System (ADS)

    Manmadhachary, Aiamunoori; Ravi Kumar, Yennam; Krishnanand, Lanka

    2016-06-01

    Additive Manufacturing (AM) is the swift manufacturing process, in which input data can be provided from various sources like 3-Dimensional (3D) Computer Aided Design (CAD), Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and 3D scanner data. From the CT/MRI data can be manufacture Biomedical Additive Manufacturing (Bio-AM) models. The Bio-AM model gives a better lead on preplanning of oral and maxillofacial surgery. However manufacturing of the accurate Bio-AM model is one of the unsolved problems. The current paper demonstrates error between the Standard Triangle Language (STL) model to Bio-AM model of dry mandible and found correction factor in Bio-AM model with Fused Deposition Modelling (FDM) technique. In the present work dry mandible CT images are acquired by CT scanner and supplied into a 3D CAD model in the form of STL model. Further the data is sent to FDM machine for fabrication of Bio-AM model. The difference between Bio-AM to STL model dimensions is considered as dimensional error and the ratio of STL to Bio-AM model dimensions considered as a correction factor. This correction factor helps to fabricate the AM model with accurate dimensions of the patient anatomy. These true dimensional Bio-AM models increasing the safety and accuracy in pre-planning of oral and maxillofacial surgery. The correction factor for Dimension SST 768 FDM AM machine is 1.003 and dimensional error is limited to 0.3 %.

  5. ALT space shuttle barometric altimeter altitude analysis

    NASA Technical Reports Server (NTRS)

    Killen, R.

    1978-01-01

    The accuracy was analyzed of the barometric altimeters onboard the space shuttle orbiter. Altitude estimates from the air data systems including the operational instrumentation and the developmental flight instrumentation were obtained for each of the approach and landing test flights. By comparing the barometric altitude estimates to altitudes derived from radar tracking data filtered through a Kalman filter and fully corrected for atmospheric refraction, the errors in the barometric altitudes were shown to be 4 to 5 percent of the Kalman altitudes. By comparing the altitude determined from the true atmosphere derived from weather balloon data to the altitude determined from the U.S. Standard Atmosphere of 1962, it was determined that the assumption of the Standard Atmosphere equations contributes roughly 75 percent of the total error in the baro estimates. After correcting the barometric altitude estimates using an average summer model atmosphere computed for the average latitude of the space shuttle landing sites, the residual error in the altitude estimates was reduced to less than 373 feet. This corresponds to an error of less than 1.5 percent for altitudes above 4000 feet for all flights.

  6. Research on Standard Errors of Equating Differences. Research Report. ETS RR-10-25

    ERIC Educational Resources Information Center

    Moses, Tim; Zhang, Wenmin

    2010-01-01

    In this paper, the "standard error of equating difference" (SEED) is described in terms of originally proposed kernel equating functions (von Davier, Holland, & Thayer, 2004) and extended to incorporate traditional linear and equipercentile functions. These derivations expand on prior developments of SEEDs and standard errors of equating and…

  7. On Inertial Body Tracking in the Presence of Model Calibration Errors

    PubMed Central

    Miezal, Markus; Taetz, Bertram; Bleser, Gabriele

    2016-01-01

    In inertial body tracking, the human body is commonly represented as a biomechanical model consisting of rigid segments with known lengths and connecting joints. The model state is then estimated via sensor fusion methods based on data from attached inertial measurement units (IMUs). This requires the relative poses of the IMUs w.r.t. the segments—the IMU-to-segment calibrations, subsequently called I2S calibrations—to be known. Since calibration methods based on static poses, movements and manual measurements are still the most widely used, potentially large human-induced calibration errors have to be expected. This work compares three newly developed/adapted extended Kalman filter (EKF) and optimization-based sensor fusion methods with an existing EKF-based method w.r.t. their segment orientation estimation accuracy in the presence of model calibration errors with and without using magnetometer information. While the existing EKF-based method uses a segment-centered kinematic chain biomechanical model and a constant angular acceleration motion model, the newly developed/adapted methods are all based on a free segments model, where each segment is represented with six degrees of freedom in the global frame. Moreover, these methods differ in the assumed motion model (constant angular acceleration, constant angular velocity, inertial data as control input), the state representation (segment-centered, IMU-centered) and the estimation method (EKF, sliding window optimization). In addition to the free segments representation, the optimization-based method also represents each IMU with six degrees of freedom in the global frame. In the evaluation on simulated and real data from a three segment model (an arm), the optimization-based method showed the smallest mean errors, standard deviations and maximum errors throughout all tests. It also showed the lowest dependency on magnetometer information and motion agility. Moreover, it was insensitive w.r.t. I2S position and segment length errors in the tested ranges. Errors in the I2S orientations were, however, linearly propagated into the estimated segment orientations. In the absence of magnetic disturbances, severe model calibration errors and fast motion changes, the newly developed IMU centered EKF-based method yielded comparable results with lower computational complexity. PMID:27455266

  8. A Comparison of Latent Growth Models for Constructs Measured by Multiple Items

    ERIC Educational Resources Information Center

    Leite, Walter L.

    2007-01-01

    Univariate latent growth modeling (LGM) of composites of multiple items (e.g., item means or sums) has been frequently used to analyze the growth of latent constructs. This study evaluated whether LGM of composites yields unbiased parameter estimates, standard errors, chi-square statistics, and adequate fit indexes. Furthermore, LGM was compared…

  9. A Comparison of Exposure Control Procedures in CATS Using the GPC Model

    ERIC Educational Resources Information Center

    Leroux, Audrey J.; Dodd, Barbara G.

    2016-01-01

    The current study compares the progressive-restricted standard error (PR-SE) exposure control method with the Sympson-Hetter, randomesque, and no exposure control (maximum information) procedures using the generalized partial credit model with fixed- and variable-length CATs and two item pools. The PR-SE method administered the entire item pool…

  10. A Comparison of Exposure Control Procedures in CATs Using the 3PL Model

    ERIC Educational Resources Information Center

    Leroux, Audrey J.; Lopez, Myriam; Hembry, Ian; Dodd, Barbara G.

    2013-01-01

    This study compares the progressive-restricted standard error (PR-SE) exposure control procedure to three commonly used procedures in computerized adaptive testing, the randomesque, Sympson-Hetter (SH), and no exposure control methods. The performance of these four procedures is evaluated using the three-parameter logistic model under the…

  11. Near infrared spectroscopy for prediction of antioxidant compounds in the honey.

    PubMed

    Escuredo, Olga; Seijo, M Carmen; Salvador, Javier; González-Martín, M Inmaculada

    2013-12-15

    The selection of antioxidant variables in honey is first time considered applying the near infrared (NIR) spectroscopic technique. A total of 60 honey samples were used to develop the calibration models using the modified partial least squares (MPLS) regression method and 15 samples were used for external validation. Calibration models on honey matrix for the estimation of phenols, flavonoids, vitamin C, antioxidant capacity (DPPH), oxidation index and copper using near infrared (NIR) spectroscopy has been satisfactorily obtained. These models were optimised by cross-validation, and the best model was evaluated according to multiple correlation coefficient (RSQ), standard error of cross-validation (SECV), ratio performance deviation (RPD) and root mean standard error (RMSE) in the prediction set. The result of these statistics suggested that the equations developed could be used for rapid determination of antioxidant compounds in honey. This work shows that near infrared spectroscopy can be considered as rapid tool for the nondestructive measurement of antioxidant constitutes as phenols, flavonoids, vitamin C and copper and also the antioxidant capacity in the honey. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Portable visible and near-infrared spectrophotometer for triglyceride measurements.

    PubMed

    Kobayashi, Takanori; Kato, Yukiko Hakariya; Tsukamoto, Megumi; Ikuta, Kazuyoshi; Sakudo, Akikazu

    2009-01-01

    An affordable and portable machine is required for the practical use of visible and near-infrared (Vis-NIR) spectroscopy. A portable fruit tester comprising a Vis-NIR spectrophotometer was modified for use in the transmittance mode and employed to quantify triglyceride levels in serum in combination with a chemometric analysis. Transmittance spectra collected in the 600- to 1100-nm region were subjected to a partial least-squares regression analysis and leave-out cross-validation to develop a chemometrics model for predicting triglyceride concentrations in serum. The model yielded a coefficient of determination in cross-validation (R2VAL) of 0.7831 with a standard error of cross-validation (SECV) of 43.68 mg/dl. The detection limit of the model was 148.79 mg/dl. Furthermore, masked samples predicted by the model yielded a coefficient of determination in prediction (R2PRED) of 0.6856 with a standard error of prediction (SEP) and detection limit of 61.54 and 159.38 mg/dl, respectively. The portable Vis-NIR spectrophotometer may prove convenient for the measurement of triglyceride concentrations in serum, although before practical use there remain obstacles, which are discussed.

  13. Avoiding and identifying errors in health technology assessment models: qualitative study and methodological review.

    PubMed

    Chilcott, J; Tappenden, P; Rawdin, A; Johnson, M; Kaltenthaler, E; Paisley, S; Papaioannou, D; Shippam, A

    2010-05-01

    Health policy decisions must be relevant, evidence-based and transparent. Decision-analytic modelling supports this process but its role is reliant on its credibility. Errors in mathematical decision models or simulation exercises are unavoidable but little attention has been paid to processes in model development. Numerous error avoidance/identification strategies could be adopted but it is difficult to evaluate the merits of strategies for improving the credibility of models without first developing an understanding of error types and causes. The study aims to describe the current comprehension of errors in the HTA modelling community and generate a taxonomy of model errors. Four primary objectives are to: (1) describe the current understanding of errors in HTA modelling; (2) understand current processes applied by the technology assessment community for avoiding errors in development, debugging and critically appraising models for errors; (3) use HTA modellers' perceptions of model errors with the wider non-HTA literature to develop a taxonomy of model errors; and (4) explore potential methods and procedures to reduce the occurrence of errors in models. It also describes the model development process as perceived by practitioners working within the HTA community. A methodological review was undertaken using an iterative search methodology. Exploratory searches informed the scope of interviews; later searches focused on issues arising from the interviews. Searches were undertaken in February 2008 and January 2009. In-depth qualitative interviews were performed with 12 HTA modellers from academic and commercial modelling sectors. All qualitative data were analysed using the Framework approach. Descriptive and explanatory accounts were used to interrogate the data within and across themes and subthemes: organisation, roles and communication; the model development process; definition of error; types of model error; strategies for avoiding errors; strategies for identifying errors; and barriers and facilitators. There was no common language in the discussion of modelling errors and there was inconsistency in the perceived boundaries of what constitutes an error. Asked about the definition of model error, there was a tendency for interviewees to exclude matters of judgement from being errors and focus on 'slips' and 'lapses', but discussion of slips and lapses comprised less than 20% of the discussion on types of errors. Interviewees devoted 70% of the discussion to softer elements of the process of defining the decision question and conceptual modelling, mostly the realms of judgement, skills, experience and training. The original focus concerned model errors, but it may be more useful to refer to modelling risks. Several interviewees discussed concepts of validation and verification, with notable consistency in interpretation: verification meaning the process of ensuring that the computer model correctly implemented the intended model, whereas validation means the process of ensuring that a model is fit for purpose. Methodological literature on verification and validation of models makes reference to the Hermeneutic philosophical position, highlighting that the concept of model validation should not be externalized from the decision-makers and the decision-making process. Interviewees demonstrated examples of all major error types identified in the literature: errors in the description of the decision problem, in model structure, in use of evidence, in implementation of the model, in operation of the model, and in presentation and understanding of results. The HTA error classifications were compared against existing classifications of model errors in the literature. A range of techniques and processes are currently used to avoid errors in HTA models: engaging with clinical experts, clients and decision-makers to ensure mutual understanding, producing written documentation of the proposed model, explicit conceptual modelling, stepping through skeleton models with experts, ensuring transparency in reporting, adopting standard housekeeping techniques, and ensuring that those parties involved in the model development process have sufficient and relevant training. Clarity and mutual understanding were identified as key issues. However, their current implementation is not framed within an overall strategy for structuring complex problems. Some of the questioning may have biased interviewees responses but as all interviewees were represented in the analysis no rebalancing of the report was deemed necessary. A potential weakness of the literature review was its focus on spreadsheet and program development rather than specifically on model development. It should also be noted that the identified literature concerning programming errors was very narrow despite broad searches being undertaken. Published definitions of overall model validity comprising conceptual model validation, verification of the computer model, and operational validity of the use of the model in addressing the real-world problem are consistent with the views expressed by the HTA community and are therefore recommended as the basis for further discussions of model credibility. Such discussions should focus on risks, including errors of implementation, errors in matters of judgement and violations. Discussions of modelling risks should reflect the potentially complex network of cognitive breakdowns that lead to errors in models and existing research on the cognitive basis of human error should be included in an examination of modelling errors. There is a need to develop a better understanding of the skills requirements for the development, operation and use of HTA models. Interaction between modeller and client in developing mutual understanding of a model establishes that model's significance and its warranty. This highlights that model credibility is the central concern of decision-makers using models so it is crucial that the concept of model validation should not be externalized from the decision-makers and the decision-making process. Recommendations for future research would be studies of verification and validation; the model development process; and identification of modifications to the modelling process with the aim of preventing the occurrence of errors and improving the identification of errors in models.

  14. An Evaluation of Recent Gravity Models wrt. Altimeter Satellite Missions

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Zelensky, N. P.; Luthcke, S. B.; Beckley, B. D.; Chinn, D. S.; Rowlands, D. D.

    2003-01-01

    With the launch of CHAMP and GRACE, we have entered a new phase in the history of satellite geodesy. For the first time, geopotential models are now available based almost exclusively on satellite-satellite tracking either with GPS in the case of the CHAMP-based geopotential models, or co-orbital intersatellite ultra-precise ranging in the case of GRACE. Different groups have analyzed these data, and produced a series of geopotential models (e.g., EIGENlS, EIGEN2, GGM0lS, GGMOlC) that incorporate the new data. We will compare the performance of these "newer" geopotential models with the standard models now used for computations, (e.g., JGM-3, BGM-96, PGS7727, and GRIMS-C1) for TOPEX, JASON, Geosat-Follow-On (GFO), and Envisat using standard metrics such as SLR RMS of fit, altimeter crossovers, and orbit overlaps. Where covariances are available we can evaluate the predicted geographically correlated orbit error. These predicted results can be compared with the Earth-fixed differences between dynamic and reduced-dynamic orbits to test the predictive accuracy of the covariances, as well as to calibrate the error of the solutions.

  15. An assessment of air pollutant exposure methods in Mexico City, Mexico.

    PubMed

    Rivera-González, Luis O; Zhang, Zhenzhen; Sánchez, Brisa N; Zhang, Kai; Brown, Daniel G; Rojas-Bracho, Leonora; Osornio-Vargas, Alvaro; Vadillo-Ortega, Felipe; O'Neill, Marie S

    2015-05-01

    Geostatistical interpolation methods to estimate individual exposure to outdoor air pollutants can be used in pregnancy cohorts where personal exposure data are not collected. Our objectives were to a) develop four assessment methods (citywide average (CWA); nearest monitor (NM); inverse distance weighting (IDW); and ordinary Kriging (OK)), and b) compare daily metrics and cross-validations of interpolation models. We obtained 2008 hourly data from Mexico City's outdoor air monitoring network for PM10, PM2.5, O3, CO, NO2, and SO2 and constructed daily exposure metrics for 1,000 simulated individual locations across five populated geographic zones. Descriptive statistics from all methods were calculated for dry and wet seasons, and by zone. We also evaluated IDW and OK methods' ability to predict measured concentrations at monitors using cross validation and a coefficient of variation (COV). All methods were performed using SAS 9.3, except ordinary Kriging which was modeled using R's gstat package. Overall, mean concentrations and standard deviations were similar among the different methods for each pollutant. Correlations between methods were generally high (r=0.77 to 0.99). However, ranges of estimated concentrations determined by NM, IDW, and OK were wider than the ranges for CWA. Root mean square errors for OK were consistently equal to or lower than for the IDW method. OK standard errors varied considerably between pollutants and the computed COVs ranged from 0.46 (least error) for SO2 and PM10 to 3.91 (most error) for PM2.5. OK predicted concentrations measured at the monitors better than IDW and NM. Given the similarity in results for the exposure methods, OK is preferred because this method alone provides predicted standard errors which can be incorporated in statistical models. The daily estimated exposures calculated using these different exposure methods provide flexibility to evaluate multiple windows of exposure during pregnancy, not just trimester or pregnancy-long exposures. Many studies evaluating associations between outdoor air pollution and adverse pregnancy outcomes rely on outdoor air pollution monitoring data linked to information gathered from large birth registries, and often lack residence location information needed to estimate individual exposure. This study simulated 1,000 residential locations to evaluate four air pollution exposure assessment methods, and describes possible exposure misclassification from using spatial averaging versus geostatistical interpolation models. An implication of this work is that policies to reduce air pollution and exposure among pregnant women based on epidemiologic literature should take into account possible error in estimates of effect when spatial averages alone are evaluated.

  16. Prediction Accuracy of Error Rates for MPTB Space Experiment

    NASA Technical Reports Server (NTRS)

    Buchner, S. P.; Campbell, A. B.; Davis, D.; McMorrow, D.; Petersen, E. L.; Stassinopoulos, E. G.; Ritter, J. C.

    1998-01-01

    This paper addresses the accuracy of radiation-induced upset-rate predictions in space using the results of ground-based measurements together with standard environmental and device models. The study is focused on two part types - 16 Mb NEC DRAM's (UPD4216) and 1 Kb SRAM's (AMD93L422) - both of which are currently in space on board the Microelectronics and Photonics Test Bed (MPTB). To date, ground-based measurements of proton-induced single event upset (SEM cross sections as a function of energy have been obtained and combined with models of the proton environment to predict proton-induced error rates in space. The role played by uncertainties in the environmental models will be determined by comparing the modeled radiation environment with the actual environment measured aboard MPTB. Heavy-ion induced upsets have also been obtained from MPTB and will be compared with the "predicted" error rate following ground testing that will be done in the near future. These results should help identify sources of uncertainty in predictions of SEU rates in space.

  17. Addressing the Hard Factors for Command File Errors by Probabilistic Reasoning

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Bryant, Larry

    2014-01-01

    Command File Errors (CFE) are managed using standard risk management approaches at the Jet Propulsion Laboratory. Over the last few years, more emphasis has been made on the collection, organization, and analysis of these errors for the purpose of reducing the CFE rates. More recently, probabilistic modeling techniques have been used for more in depth analysis of the perceived error rates of the DAWN mission and for managing the soft factors in the upcoming phases of the mission. We broadly classify the factors that can lead to CFE's as soft factors, which relate to the cognition of the operators and hard factors which relate to the Mission System which is composed of the hardware, software and procedures used for the generation, verification & validation and execution of commands. The focus of this paper is to use probabilistic models that represent multiple missions at JPL to determine the root cause and sensitivities of the various components of the mission system and develop recommendations and techniques for addressing them. The customization of these multi-mission models to a sample interplanetary spacecraft is done for this purpose.

  18. Statistical analysis of AFE GN&C aeropass performance

    NASA Technical Reports Server (NTRS)

    Chang, Ho-Pen; French, Raymond A.

    1990-01-01

    Performance of the guidance, navigation, and control (GN&C) system used on the Aeroassist Flight Experiment (AFE) spacecraft has been studied with Monte Carlo techniques. The performance of the AFE GN&C is investigated with a 6-DOF numerical dynamic model which includes a Global Reference Atmospheric Model (GRAM) and a gravitational model with oblateness corrections. The study considers all the uncertainties due to the environment and the system itself. In the AFE's aeropass phase, perturbations on the system performance are caused by an error space which has over 20 dimensions of the correlated/uncorrelated error sources. The goal of this study is to determine, in a statistical sense, how much flight path angle error can be tolerated at entry interface (EI) and still have acceptable delta-V capability at exit to position the AFE spacecraft for recovery. Assuming there is fuel available to produce 380 ft/sec of delta-V at atmospheric exit, a 3-sigma standard deviation in flight path angle error of 0.04 degrees at EI would result in a 98-percent probability of mission success.

  19. Measurement error: Implications for diagnosis and discrepancy models of developmental dyslexia.

    PubMed

    Cotton, Sue M; Crewther, David P; Crewther, Sheila G

    2005-08-01

    The diagnosis of developmental dyslexia (DD) is reliant on a discrepancy between intellectual functioning and reading achievement. Discrepancy-based formulae have frequently been employed to establish the significance of the difference between 'intelligence' and 'actual' reading achievement. These formulae, however, often fail to take into consideration test reliability and the error associated with a single test score. This paper provides an illustration of the potential effects that test reliability and measurement error can have on the diagnosis of dyslexia, with particular reference to discrepancy models. The roles of reliability and standard error of measurement (SEM) in classic test theory are also briefly reviewed. This is followed by illustrations of how SEM and test reliability can aid with the interpretation of a simple discrepancy-based formula of DD. It is proposed that a lack of consideration of test theory in the use of discrepancy-based models of DD can lead to misdiagnosis (both false positives and false negatives). Further, misdiagnosis in research samples affects reproducibility and generalizability of findings. This in turn, may explain current inconsistencies in research on the perceptual, sensory, and motor correlates of dyslexia.

  20. The Calibration of Gloss Reference Standards

    NASA Astrophysics Data System (ADS)

    Budde, W.

    1980-04-01

    In present international and national standards for the measurement of specular gloss the primary and secondary reference standards are defined for monochromatic radiation. However the glossmeter specified is using polychromatic radiation (CIE Standard Illuminant C) and the CIE Standard Photometric Observer. This produces errors in practical gloss measurements of up to 0.5%. Although this may be considered small as compared to the accuracy of most practical gloss measurements, such an error should not be tolerated in the calibration of secondary standards. Corrections for such errors are presented and various alternatives for amendments of the existing documentary standards are discussed.

  1. Rank score and permutation testing alternatives for regression quantile estimates

    USGS Publications Warehouse

    Cade, B.S.; Richards, J.D.; Mielke, P.W.

    2006-01-01

    Performance of quantile rank score tests used for hypothesis testing and constructing confidence intervals for linear quantile regression estimates (0 ≤ τ ≤ 1) were evaluated by simulation for models with p = 2 and 6 predictors, moderate collinearity among predictors, homogeneous and hetero-geneous errors, small to moderate samples (n = 20–300), and central to upper quantiles (0.50–0.99). Test statistics evaluated were the conventional quantile rank score T statistic distributed as χ2 random variable with q degrees of freedom (where q parameters are constrained by H 0:) and an F statistic with its sampling distribution approximated by permutation. The permutation F-test maintained better Type I errors than the T-test for homogeneous error models with smaller n and more extreme quantiles τ. An F distributional approximation of the F statistic provided some improvements in Type I errors over the T-test for models with > 2 parameters, smaller n, and more extreme quantiles but not as much improvement as the permutation approximation. Both rank score tests required weighting to maintain correct Type I errors when heterogeneity under the alternative model increased to 5 standard deviations across the domain of X. A double permutation procedure was developed to provide valid Type I errors for the permutation F-test when null models were forced through the origin. Power was similar for conditions where both T- and F-tests maintained correct Type I errors but the F-test provided some power at smaller n and extreme quantiles when the T-test had no power because of excessively conservative Type I errors. When the double permutation scheme was required for the permutation F-test to maintain valid Type I errors, power was less than for the T-test with decreasing sample size and increasing quantiles. Confidence intervals on parameters and tolerance intervals for future predictions were constructed based on test inversion for an example application relating trout densities to stream channel width:depth.

  2. Phase-demodulation error of a fiber-optic Fabry-Perot sensor with complex reflection coefficients.

    PubMed

    Kilpatrick, J M; MacPherson, W N; Barton, J S; Jones, J D

    2000-03-20

    The influence of reflector losses attracts little discussion in standard treatments of the Fabry-Perot interferometer yet may be an important factor contributing to errors in phase-stepped demodulation of fiber optic Fabry-Perot (FFP) sensors. We describe a general transfer function for FFP sensors with complex reflection coefficients and estimate systematic phase errors that arise when the asymmetry of the reflected fringe system is neglected, as is common in the literature. The measured asymmetric response of higher-finesse metal-dielectric FFP constructions corroborates a model that predicts systematic phase errors of 0.06 rad in three-step demodulation of a low-finesse FFP sensor (R = 0.05) with internal reflector losses of 25%.

  3. Estimating the Standard Error of Robust Regression Estimates.

    DTIC Science & Technology

    1987-03-01

    error is 0(n4/5). In another Monte Carlo study, McKean and Schrader (1984) found that the tests resulting from studentizing ; by _3d/1/2 with d =0(n4 /5...44 4 -:~~-~*v: -. *;~ ~ ~*t .~ # ~ 44 % * ~ .%j % % % * . ., ~ -%. -14- Sheather, S. J. and McKean, J. W. (1987). A comparison of testing and...Wiley, New York. Welsch, R. E. (1980). Regression Sensitivity Analysis and Bounded- Influence Estimation, in Evaluation of Econometric Models eds. J

  4. On the move: Exploring the impact of residential mobility on cannabis use.

    PubMed

    Morris, Tim; Manley, David; Northstone, Kate; Sabel, Clive E

    2016-11-01

    A large literature exists suggesting that residential mobility leads to increased participation in risky health behaviours such as cannabis use amongst youth. However, much of this work fails to account for the impact that underlying differences between mobile and non-mobile youth have on this relationship. In this study we utilise multilevel models with longitudinal data to simultaneously estimate between-child and within-child effects in the relationship between residential mobility and cannabis use, allowing us to determine the extent to which cannabis use in adolescence is driven by residential mobility and unobserved confounding. Data come from a UK cohort, The Avon Longitudinal Study of Parents and Children. Consistent with previous research we find a positive association between cumulative residential mobility and cannabis use when using multilevel extensions of conventional logistic regression models (log odds: 0.94, standard error: 0.42), indicating that children who move houses are more likely to use cannabis than those who remain residentially stable. However, decomposing this relationship into within- and between-child components reveals that the conventional model is underspecified and misleading; we find that differences in cannabis use between mobile and non-mobile children are due to underlying differences between these groups (between-child log odds: 3.56, standard error: 1.22), not by a change in status of residential mobility (within-child log odds: 1.33, standard error: 1.02). Our findings suggest that residential mobility in the teenage years does not place children at an increased risk of cannabis use throughout these years. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: Application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant

    NASA Astrophysics Data System (ADS)

    Winiarek, Victor; Bocquet, Marc; Saunier, Olivier; Mathieu, Anne

    2012-03-01

    A major difficulty when inverting the source term of an atmospheric tracer dispersion problem is the estimation of the prior errors: those of the atmospheric transport model, those ascribed to the representativity of the measurements, those that are instrumental, and those attached to the prior knowledge on the variables one seeks to retrieve. In the case of an accidental release of pollutant, the reconstructed source is sensitive to these assumptions. This sensitivity makes the quality of the retrieval dependent on the methods used to model and estimate the prior errors of the inverse modeling scheme. We propose to use an estimation method for the errors' amplitude based on the maximum likelihood principle. Under semi-Gaussian assumptions, it takes into account, without approximation, the positivity assumption on the source. We apply the method to the estimation of the Fukushima Daiichi source term using activity concentrations in the air. The results are compared to an L-curve estimation technique and to Desroziers's scheme. The total reconstructed activities significantly depend on the chosen method. Because of the poor observability of the Fukushima Daiichi emissions, these methods provide lower bounds for cesium-137 and iodine-131 reconstructed activities. These lower bound estimates, 1.2 × 1016 Bq for cesium-137, with an estimated standard deviation range of 15%-20%, and 1.9 - 3.8 × 1017 Bq for iodine-131, with an estimated standard deviation range of 5%-10%, are of the same order of magnitude as those provided by the Japanese Nuclear and Industrial Safety Agency and about 5 to 10 times less than the Chernobyl atmospheric releases.

  6. Predicting protein concentrations with ELISA microarray assays, monotonic splines and Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, Don S.; Anderson, Kevin K.; White, Amanda M.

    Background: A microarray of enzyme-linked immunosorbent assays, or ELISA microarray, predicts simultaneously the concentrations of numerous proteins in a small sample. These predictions, however, are uncertain due to processing error and biological variability. Making sound biological inferences as well as improving the ELISA microarray process require require both concentration predictions and creditable estimates of their errors. Methods: We present a statistical method based on monotonic spline statistical models, penalized constrained least squares fitting (PCLS) and Monte Carlo simulation (MC) to predict concentrations and estimate prediction errors in ELISA microarray. PCLS restrains the flexible spline to a fit of assay intensitymore » that is a monotone function of protein concentration. With MC, both modeling and measurement errors are combined to estimate prediction error. The spline/PCLS/MC method is compared to a common method using simulated and real ELISA microarray data sets. Results: In contrast to the rigid logistic model, the flexible spline model gave credible fits in almost all test cases including troublesome cases with left and/or right censoring, or other asymmetries. For the real data sets, 61% of the spline predictions were more accurate than their comparable logistic predictions; especially the spline predictions at the extremes of the prediction curve. The relative errors of 50% of comparable spline and logistic predictions differed by less than 20%. Monte Carlo simulation rendered acceptable asymmetric prediction intervals for both spline and logistic models while propagation of error produced symmetric intervals that diverged unrealistically as the standard curves approached horizontal asymptotes. Conclusions: The spline/PCLS/MC method is a flexible, robust alternative to a logistic/NLS/propagation-of-error method to reliably predict protein concentrations and estimate their errors. The spline method simplifies model selection and fitting, and reliably estimates believable prediction errors. For the 50% of the real data sets fit well by both methods, spline and logistic predictions are practically indistinguishable, varying in accuracy by less than 15%. The spline method may be useful when automated prediction across simultaneous assays of numerous proteins must be applied routinely with minimal user intervention.« less

  7. Application of human reliability analysis to nursing errors in hospitals.

    PubMed

    Inoue, Kayoko; Koizumi, Akio

    2004-12-01

    Adverse events in hospitals, such as in surgery, anesthesia, radiology, intensive care, internal medicine, and pharmacy, are of worldwide concern and it is important, therefore, to learn from such incidents. There are currently no appropriate tools based on state-of-the art models available for the analysis of large bodies of medical incident reports. In this study, a new model was developed to facilitate medical error analysis in combination with quantitative risk assessment. This model enables detection of the organizational factors that underlie medical errors, and the expedition of decision making in terms of necessary action. Furthermore, it determines medical tasks as module practices and uses a unique coding system to describe incidents. This coding system has seven vectors for error classification: patient category, working shift, module practice, linkage chain (error type, direct threat, and indirect threat), medication, severity, and potential hazard. Such mathematical formulation permitted us to derive two parameters: error rates for module practices and weights for the aforementioned seven elements. The error rate of each module practice was calculated by dividing the annual number of incident reports of each module practice by the annual number of the corresponding module practice. The weight of a given element was calculated by the summation of incident report error rates for an element of interest. This model was applied specifically to nursing practices in six hospitals over a year; 5,339 incident reports with a total of 63,294,144 module practices conducted were analyzed. Quality assurance (QA) of our model was introduced by checking the records of quantities of practices and reproducibility of analysis of medical incident reports. For both items, QA guaranteed legitimacy of our model. Error rates for all module practices were approximately of the order 10(-4) in all hospitals. Three major organizational factors were found to underlie medical errors: "violation of rules" with a weight of 826 x 10(-4), "failure of labor management" with a weight of 661 x 10(-4), and "defects in the standardization of nursing practices" with a weight of 495 x 10(-4).

  8. Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modelling heteroscedastic residual errors

    NASA Astrophysics Data System (ADS)

    David, McInerney; Mark, Thyer; Dmitri, Kavetski; George, Kuczera

    2017-04-01

    This study provides guidance to hydrological researchers which enables them to provide probabilistic predictions of daily streamflow with the best reliability and precision for different catchment types (e.g. high/low degree of ephemerality). Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. It is commonly known that hydrological model residual errors are heteroscedastic, i.e. there is a pattern of larger errors in higher streamflow predictions. Although multiple approaches exist for representing this heteroscedasticity, few studies have undertaken a comprehensive evaluation and comparison of these approaches. This study fills this research gap by evaluating 8 common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter, lambda) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and USA, and two lumped hydrological models. We find the choice of heteroscedastic error modelling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with lambda of 0.2 and 0.5, and the log scheme (lambda=0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.

  9. Initializing a Mesoscale Boundary-Layer Model with Radiosonde Observations

    NASA Astrophysics Data System (ADS)

    Berri, Guillermo J.; Bertossa, Germán

    2018-01-01

    A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land-river surface-temperature contrast and low-level circulations of sea-land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994-2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.

  10. [Study on freshness evaluation of ice-stored large yellow croaker (Pseudosciaena crocea) using near infrared spectroscopy].

    PubMed

    Liu, Yuan; Chen, Wei-Hua; Hou, Qiao-Juan; Wang, Xi-Chang; Dong, Ruo-Yan; Wu, Hao

    2014-04-01

    Near infrared spectroscopy (NIR) was used in this experiment to evaluate the freshness of ice-stored large yellow croaker (Pseudosciaena crocea) during different storage periods. And the TVB-N was used as an index to evaluate the freshness. Through comparing the correlation coefficent and standard deviations of calibration set and validation set of models established by singly and combined using of different pretreatment methods, different modeling methods and different wavelength region, the best TVB-N models of ice-stored large yellow croaker sold in the market were established to predict the freshness quickly. According to the research, the model shows that the best performance could be established by using the normalization by closure (Ncl) with 1st derivative (Dbl) and normalization to unit length (Nle) with 1st derivative as the pretreated method and partial least square (PLS) as the modeling method combined with choosing the wavelength region of 5 000-7 144, and 7 404-10 000 cm(-1). The calibration model gave the correlation coefficient of 0.992, with a standard error of calibration of 1.045 and the validation model gave the correlation coefficient of 0.999, with a standard error of prediction of 0.990. This experiment attempted to combine several pretreatment methods and choose the best wavelength region, which has got a good result. It could have a good prospective application of freshness detection and quality evaluation of large yellow croaker in the market.

  11. Simplified Approach Charts Improve Data Retrieval Performance

    PubMed Central

    Stewart, Michael; Laraway, Sean; Jordan, Kevin; Feary, Michael S.

    2016-01-01

    The effectiveness of different instrument approach charts to deliver minimum visibility and altitude information during airport equipment outages was investigated. Eighteen pilots flew simulated instrument approaches in three conditions: (a) normal operations using a standard approach chart (standard-normal), (b) equipment outage conditions using a standard approach chart (standard-outage), and (c) equipment outage conditions using a prototype decluttered approach chart (prototype-outage). Errors and retrieval times in identifying minimum altitudes and visibilities were measured. The standard-outage condition produced significantly more errors and longer retrieval times versus the standard-normal condition. The prototype-outage condition had significantly fewer errors and shorter retrieval times than did the standard-outage condition. The prototype-outage condition produced significantly fewer errors but similar retrieval times when compared with the standard-normal condition. Thus, changing the presentation of minima may reduce risk and increase safety in instrument approaches, specifically with airport equipment outages. PMID:28491009

  12. Analysis of Performance of Stereoscopic-Vision Software

    NASA Technical Reports Server (NTRS)

    Kim, Won; Ansar, Adnan; Steele, Robert; Steinke, Robert

    2007-01-01

    A team of JPL researchers has analyzed stereoscopic vision software and produced a document describing its performance. This software is of the type used in maneuvering exploratory robotic vehicles on Martian terrain. The software in question utilizes correlations between portions of the images recorded by two electronic cameras to compute stereoscopic disparities, which, in conjunction with camera models, are used in computing distances to terrain points to be included in constructing a three-dimensional model of the terrain. The analysis included effects of correlation- window size, a pyramidal image down-sampling scheme, vertical misalignment, focus, maximum disparity, stereo baseline, and range ripples. Contributions of sub-pixel interpolation, vertical misalignment, and foreshortening to stereo correlation error were examined theoretically and experimentally. It was found that camera-calibration inaccuracy contributes to both down-range and cross-range error but stereo correlation error affects only the down-range error. Experimental data for quantifying the stereo disparity error were obtained by use of reflective metrological targets taped to corners of bricks placed at known positions relative to the cameras. For the particular 1,024-by-768-pixel cameras of the system analyzed, the standard deviation of the down-range disparity error was found to be 0.32 pixel.

  13. Statistical properties of four effect-size measures for mediation models.

    PubMed

    Miočević, Milica; O'Rourke, Holly P; MacKinnon, David P; Brown, Hendricks C

    2018-02-01

    This project examined the performance of classical and Bayesian estimators of four effect size measures for the indirect effect in a single-mediator model and a two-mediator model. Compared to the proportion and ratio mediation effect sizes, standardized mediation effect-size measures were relatively unbiased and efficient in the single-mediator model and the two-mediator model. Percentile and bias-corrected bootstrap interval estimates of ab/s Y , and ab(s X )/s Y in the single-mediator model outperformed interval estimates of the proportion and ratio effect sizes in terms of power, Type I error rate, coverage, imbalance, and interval width. For the two-mediator model, standardized effect-size measures were superior to the proportion and ratio effect-size measures. Furthermore, it was found that Bayesian point and interval summaries of posterior distributions of standardized effect-size measures reduced excessive relative bias for certain parameter combinations. The standardized effect-size measures are the best effect-size measures for quantifying mediated effects.

  14. Adjusting for overdispersion in piecewise exponential regression models to estimate excess mortality rate in population-based research.

    PubMed

    Luque-Fernandez, Miguel Angel; Belot, Aurélien; Quaresma, Manuela; Maringe, Camille; Coleman, Michel P; Rachet, Bernard

    2016-10-01

    In population-based cancer research, piecewise exponential regression models are used to derive adjusted estimates of excess mortality due to cancer using the Poisson generalized linear modelling framework. However, the assumption that the conditional mean and variance of the rate parameter given the set of covariates x i are equal is strong and may fail to account for overdispersion given the variability of the rate parameter (the variance exceeds the mean). Using an empirical example, we aimed to describe simple methods to test and correct for overdispersion. We used a regression-based score test for overdispersion under the relative survival framework and proposed different approaches to correct for overdispersion including a quasi-likelihood, robust standard errors estimation, negative binomial regression and flexible piecewise modelling. All piecewise exponential regression models showed the presence of significant inherent overdispersion (p-value <0.001). However, the flexible piecewise exponential model showed the smallest overdispersion parameter (3.2 versus 21.3) for non-flexible piecewise exponential models. We showed that there were no major differences between methods. However, using a flexible piecewise regression modelling, with either a quasi-likelihood or robust standard errors, was the best approach as it deals with both, overdispersion due to model misspecification and true or inherent overdispersion.

  15. Noise-induced errors in geophysical parameter estimation from retarding potential analyzers in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Debchoudhury, Shantanab; Earle, Gregory

    2017-04-01

    Retarding Potential Analyzers (RPA) have a rich flight heritage. Standard curve-fitting analysis techniques exist that can infer state variables in the ionospheric plasma environment from RPA data, but the estimation process is prone to errors arising from a number of sources. Previous work has focused on the effects of grid geometry on uncertainties in estimation; however, no prior study has quantified the estimation errors due to additive noise. In this study, we characterize the errors in estimation of thermal plasma parameters by adding noise to the simulated data derived from the existing ionospheric models. We concentrate on low-altitude, mid-inclination orbits since a number of nano-satellite missions are focused on this region of the ionosphere. The errors are quantified and cross-correlated for varying geomagnetic conditions.

  16. Noise in two-color electronic distance meter measurements revisited

    USGS Publications Warehouse

    Langbein, J.

    2004-01-01

    Frequent, high-precision geodetic data have temporally correlated errors. Temporal correlations directly affect both the estimate of rate and its standard error; the rate of deformation is a key product from geodetic measurements made in tectonically active areas. Various models of temporally correlated errors are developed and these provide relations between the power spectral density and the data covariance matrix. These relations are applied to two-color electronic distance meter (EDM) measurements made frequently in California over the past 15-20 years. Previous analysis indicated that these data have significant random walk error. Analysis using the noise models developed here indicates that the random walk model is valid for about 30% of the data. A second 30% of the data can be better modeled with power law noise with a spectral index between 1 and 2, while another 30% of the data can be modeled with a combination of band-pass-filtered plus random walk noise. The remaining 10% of the data can be best modeled as a combination of band-pass-filtered plus power law noise. This band-pass-filtered noise is a product of an annual cycle that leaks into adjacent frequency bands. For time spans of more than 1 year these more complex noise models indicate that the precision in rate estimates is better than that inferred by just the simpler, random walk model of noise.

  17. Usefulness of model-based iterative reconstruction in semi-automatic volumetry for ground-glass nodules at ultra-low-dose CT: a phantom study.

    PubMed

    Maruyama, Shuki; Fukushima, Yasuhiro; Miyamae, Yuta; Koizumi, Koji

    2018-06-01

    This study aimed to investigate the effects of parameter presets of the forward projected model-based iterative reconstruction solution (FIRST) on the accuracy of pulmonary nodule volume measurement. A torso phantom with simulated nodules [diameter: 5, 8, 10, and 12 mm; computed tomography (CT) density: - 630 HU] was scanned with a multi-detector CT at tube currents of 10 mA (ultra-low-dose: UL-dose) and 270 mA (standard-dose: Std-dose). Images were reconstructed with filtered back projection [FBP; standard (Std-FBP), ultra-low-dose (UL-FBP)], FIRST Lung (UL-Lung), and FIRST Body (UL-Body), and analyzed with a semi-automatic software. The error in the volume measurement was determined. The errors with UL-Lung and UL-Body were smaller than that with UL-FBP. The smallest error was 5.8% ± 0.3 for the 12-mm nodule with UL-Body (middle lung). Our results indicated that FIRST Body would be superior to FIRST Lung in terms of accuracy of nodule measurement with UL-dose CT.

  18. Bias and uncertainty in regression-calibrated models of groundwater flow in heterogeneous media

    USGS Publications Warehouse

    Cooley, R.L.; Christensen, S.

    2006-01-01

    Groundwater models need to account for detailed but generally unknown spatial variability (heterogeneity) of the hydrogeologic model inputs. To address this problem we replace the large, m-dimensional stochastic vector ?? that reflects both small and large scales of heterogeneity in the inputs by a lumped or smoothed m-dimensional approximation ????*, where ?? is an interpolation matrix and ??* is a stochastic vector of parameters. Vector ??* has small enough dimension to allow its estimation with the available data. The consequence of the replacement is that model function f(????*) written in terms of the approximate inputs is in error with respect to the same model function written in terms of ??, ??,f(??), which is assumed to be nearly exact. The difference f(??) - f(????*), termed model error, is spatially correlated, generates prediction biases, and causes standard confidence and prediction intervals to be too small. Model error is accounted for in the weighted nonlinear regression methodology developed to estimate ??* and assess model uncertainties by incorporating the second-moment matrix of the model errors into the weight matrix. Techniques developed by statisticians to analyze classical nonlinear regression methods are extended to analyze the revised method. The analysis develops analytical expressions for bias terms reflecting the interaction of model nonlinearity and model error, for correction factors needed to adjust the sizes of confidence and prediction intervals for this interaction, and for correction factors needed to adjust the sizes of confidence and prediction intervals for possible use of a diagonal weight matrix in place of the correct one. If terms expressing the degree of intrinsic nonlinearity for f(??) and f(????*) are small, then most of the biases are small and the correction factors are reduced in magnitude. Biases, correction factors, and confidence and prediction intervals were obtained for a test problem for which model error is large to test robustness of the methodology. Numerical results conform with the theoretical analysis. ?? 2005 Elsevier Ltd. All rights reserved.

  19. Explicit treatment for Dirichlet, Neumann and Cauchy boundary conditions in POD-based reduction of groundwater models

    NASA Astrophysics Data System (ADS)

    Gosses, Moritz; Nowak, Wolfgang; Wöhling, Thomas

    2018-05-01

    In recent years, proper orthogonal decomposition (POD) has become a popular model reduction method in the field of groundwater modeling. It is used to mitigate the problem of long run times that are often associated with physically-based modeling of natural systems, especially for parameter estimation and uncertainty analysis. POD-based techniques reproduce groundwater head fields sufficiently accurate for a variety of applications. However, no study has investigated how POD techniques affect the accuracy of different boundary conditions found in groundwater models. We show that the current treatment of boundary conditions in POD causes inaccuracies for these boundaries in the reduced models. We provide an improved method that splits the POD projection space into a subspace orthogonal to the boundary conditions and a separate subspace that enforces the boundary conditions. To test the method for Dirichlet, Neumann and Cauchy boundary conditions, four simple transient 1D-groundwater models, as well as a more complex 3D model, are set up and reduced both by standard POD and POD with the new extension. We show that, in contrast to standard POD, the new method satisfies both Dirichlet and Neumann boundary conditions. It can also be applied to Cauchy boundaries, where the flux error of standard POD is reduced by its head-independent contribution. The extension essentially shifts the focus of the projection towards the boundary conditions. Therefore, we see a slight trade-off between errors at model boundaries and overall accuracy of the reduced model. The proposed POD extension is recommended where exact treatment of boundary conditions is required.

  20. Standard Errors of Equating for the Percentile Rank-Based Equipercentile Equating with Log-Linear Presmoothing

    ERIC Educational Resources Information Center

    Wang, Tianyou

    2009-01-01

    Holland and colleagues derived a formula for analytical standard error of equating using the delta-method for the kernel equating method. Extending their derivation, this article derives an analytical standard error of equating procedure for the conventional percentile rank-based equipercentile equating with log-linear smoothing. This procedure is…

  1. A Comparison of Forecast Error Generators for Modeling Wind and Load Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ning; Diao, Ruisheng; Hafen, Ryan P.

    2013-07-25

    This paper presents four algorithms to generate random forecast error time series. The performance of four algorithms is compared. The error time series are used to create real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast time series that statistically match historically observed forecasting data sets used in power grid operation to study the net load balancing need in variable generation integration studies. The four algorithms are truncated-normal distribution models, state-space based Markov models, seasonal autoregressive moving average (ARMA) models, and a stochastic-optimization based approach. The comparison is made using historical DA load forecast and actual load valuesmore » to generate new sets of DA forecasts with similar stoical forecast error characteristics (i.e., mean, standard deviation, autocorrelation, and cross-correlation). The results show that all methods generate satisfactory results. One method may preserve one or two required statistical characteristics better the other methods, but may not preserve other statistical characteristics as well compared with the other methods. Because the wind and load forecast error generators are used in wind integration studies to produce wind and load forecasts time series for stochastic planning processes, it is sometimes critical to use multiple methods to generate the error time series to obtain a statistically robust result. Therefore, this paper discusses and compares the capabilities of each algorithm to preserve the characteristics of the historical forecast data sets.« less

  2. The Expected Sample Variance of Uncorrelated Random Variables with a Common Mean and Some Applications in Unbalanced Random Effects Models

    ERIC Educational Resources Information Center

    Vardeman, Stephen B.; Wendelberger, Joanne R.

    2005-01-01

    There is a little-known but very simple generalization of the standard result that for uncorrelated random variables with common mean [mu] and variance [sigma][superscript 2], the expected value of the sample variance is [sigma][superscript 2]. The generalization justifies the use of the usual standard error of the sample mean in possibly…

  3. Voxel-based statistical analysis of uncertainties associated with deformable image registration

    NASA Astrophysics Data System (ADS)

    Li, Shunshan; Glide-Hurst, Carri; Lu, Mei; Kim, Jinkoo; Wen, Ning; Adams, Jeffrey N.; Gordon, James; Chetty, Indrin J.; Zhong, Hualiang

    2013-09-01

    Deformable image registration (DIR) algorithms have inherent uncertainties in their displacement vector fields (DVFs).The purpose of this study is to develop an optimal metric to estimate DIR uncertainties. Six computational phantoms have been developed from the CT images of lung cancer patients using a finite element method (FEM). The FEM generated DVFs were used as a standard for registrations performed on each of these phantoms. A mechanics-based metric, unbalanced energy (UE), was developed to evaluate these registration DVFs. The potential correlation between UE and DIR errors was explored using multivariate analysis, and the results were validated by landmark approach and compared with two other error metrics: DVF inverse consistency (IC) and image intensity difference (ID). Landmark-based validation was performed using the POPI-model. The results show that the Pearson correlation coefficient between UE and DIR error is rUE-error = 0.50. This is higher than rIC-error = 0.29 for IC and DIR error and rID-error = 0.37 for ID and DIR error. The Pearson correlation coefficient between UE and the product of the DIR displacements and errors is rUE-error × DVF = 0.62 for the six patients and rUE-error × DVF = 0.73 for the POPI-model data. It has been demonstrated that UE has a strong correlation with DIR errors, and the UE metric outperforms the IC and ID metrics in estimating DIR uncertainties. The quantified UE metric can be a useful tool for adaptive treatment strategies, including probability-based adaptive treatment planning.

  4. Simultaneous estimation of cross-validation errors in least squares collocation applied for statistical testing and evaluation of the noise variance components

    NASA Astrophysics Data System (ADS)

    Behnabian, Behzad; Mashhadi Hossainali, Masoud; Malekzadeh, Ahad

    2018-02-01

    The cross-validation technique is a popular method to assess and improve the quality of prediction by least squares collocation (LSC). We present a formula for direct estimation of the vector of cross-validation errors (CVEs) in LSC which is much faster than element-wise CVE computation. We show that a quadratic form of CVEs follows Chi-squared distribution. Furthermore, a posteriori noise variance factor is derived by the quadratic form of CVEs. In order to detect blunders in the observations, estimated standardized CVE is proposed as the test statistic which can be applied when noise variances are known or unknown. We use LSC together with the methods proposed in this research for interpolation of crustal subsidence in the northern coast of the Gulf of Mexico. The results show that after detection and removing outliers, the root mean square (RMS) of CVEs and estimated noise standard deviation are reduced about 51 and 59%, respectively. In addition, RMS of LSC prediction error at data points and RMS of estimated noise of observations are decreased by 39 and 67%, respectively. However, RMS of LSC prediction error on a regular grid of interpolation points covering the area is only reduced about 4% which is a consequence of sparse distribution of data points for this case study. The influence of gross errors on LSC prediction results is also investigated by lower cutoff CVEs. It is indicated that after elimination of outliers, RMS of this type of errors is also reduced by 19.5% for a 5 km radius of vicinity. We propose a method using standardized CVEs for classification of dataset into three groups with presumed different noise variances. The noise variance components for each of the groups are estimated using restricted maximum-likelihood method via Fisher scoring technique. Finally, LSC assessment measures were computed for the estimated heterogeneous noise variance model and compared with those of the homogeneous model. The advantage of the proposed method is the reduction in estimated noise levels for those groups with the fewer number of noisy data points.

  5. A statistical model for analyzing the rotational error of single isocenter for multiple targets technique.

    PubMed

    Chang, Jenghwa

    2017-06-01

    To develop a statistical model that incorporates the treatment uncertainty from the rotational error of the single isocenter for multiple targets technique, and calculates the extra PTV (planning target volume) margin required to compensate for this error. The random vector for modeling the setup (S) error in the three-dimensional (3D) patient coordinate system was assumed to follow a 3D normal distribution with a zero mean, and standard deviations of σ x , σ y , σ z . It was further assumed that the rotation of clinical target volume (CTV) about the isocenter happens randomly and follows a three-dimensional (3D) independent normal distribution with a zero mean and a uniform standard deviation of σ δ . This rotation leads to a rotational random error (R), which also has a 3D independent normal distribution with a zero mean and a uniform standard deviation of σ R equal to the product of σδπ180 and dI⇔T, the distance between the isocenter and CTV. Both (S and R) random vectors were summed, normalized, and transformed to the spherical coordinates to derive the Chi distribution with three degrees of freedom for the radial coordinate of S+R. PTV margin was determined using the critical value of this distribution for a 0.05 significance level so that 95% of the time the treatment target would be covered by the prescription dose. The additional PTV margin required to compensate for the rotational error was calculated as a function of σ R and dI⇔T. The effect of the rotational error is more pronounced for treatments that require high accuracy/precision like stereotactic radiosurgery (SRS) or stereotactic body radiotherapy (SBRT). With a uniform 2-mm PTV margin (or σ x = σ y = σ z = 0.715 mm), a σ R = 0.328 mm will decrease the CTV coverage probability from 95.0% to 90.9%, or an additional 0.2-mm PTV margin is needed to prevent this loss of coverage. If we choose 0.2 mm as the threshold, any σ R > 0.328 mm will lead to an extra PTV margin that cannot be ignored, and the maximal σ δ that can be ignored is 0.45° (or 0.0079 rad ) for dI⇔T = 50 mm or 0.23° (or 0.004 rad ) for dI⇔T = 100 mm. The rotational error cannot be ignored for high-accuracy/-precision treatments like SRS/SBRT, particularly when the distance between the isocenter and target is large. © 2017 American Association of Physicists in Medicine.

  6. Adjusted adaptive Lasso for covariate model-building in nonlinear mixed-effect pharmacokinetic models.

    PubMed

    Haem, Elham; Harling, Kajsa; Ayatollahi, Seyyed Mohammad Taghi; Zare, Najaf; Karlsson, Mats O

    2017-02-01

    One important aim in population pharmacokinetics (PK) and pharmacodynamics is identification and quantification of the relationships between the parameters and covariates. Lasso has been suggested as a technique for simultaneous estimation and covariate selection. In linear regression, it has been shown that Lasso possesses no oracle properties, which means it asymptotically performs as though the true underlying model was given in advance. Adaptive Lasso (ALasso) with appropriate initial weights is claimed to possess oracle properties; however, it can lead to poor predictive performance when there is multicollinearity between covariates. This simulation study implemented a new version of ALasso, called adjusted ALasso (AALasso), to take into account the ratio of the standard error of the maximum likelihood (ML) estimator to the ML coefficient as the initial weight in ALasso to deal with multicollinearity in non-linear mixed-effect models. The performance of AALasso was compared with that of ALasso and Lasso. PK data was simulated in four set-ups from a one-compartment bolus input model. Covariates were created by sampling from a multivariate standard normal distribution with no, low (0.2), moderate (0.5) or high (0.7) correlation. The true covariates influenced only clearance at different magnitudes. AALasso, ALasso and Lasso were compared in terms of mean absolute prediction error and error of the estimated covariate coefficient. The results show that AALasso performed better in small data sets, even in those in which a high correlation existed between covariates. This makes AALasso a promising method for covariate selection in nonlinear mixed-effect models.

  7. Error-Transparent Quantum Gates for Small Logical Qubit Architectures

    NASA Astrophysics Data System (ADS)

    Kapit, Eliot

    2018-02-01

    One of the largest obstacles to building a quantum computer is gate error, where the physical evolution of the state of a qubit or group of qubits during a gate operation does not match the intended unitary transformation. Gate error stems from a combination of control errors and random single qubit errors from interaction with the environment. While great strides have been made in mitigating control errors, intrinsic qubit error remains a serious problem that limits gate fidelity in modern qubit architectures. Simultaneously, recent developments of small error-corrected logical qubit devices promise significant increases in logical state lifetime, but translating those improvements into increases in gate fidelity is a complex challenge. In this Letter, we construct protocols for gates on and between small logical qubit devices which inherit the parent device's tolerance to single qubit errors which occur at any time before or during the gate. We consider two such devices, a passive implementation of the three-qubit bit flip code, and the author's own [E. Kapit, Phys. Rev. Lett. 116, 150501 (2016), 10.1103/PhysRevLett.116.150501] very small logical qubit (VSLQ) design, and propose error-tolerant gate sets for both. The effective logical gate error rate in these models displays superlinear error reduction with linear increases in single qubit lifetime, proving that passive error correction is capable of increasing gate fidelity. Using a standard phenomenological noise model for superconducting qubits, we demonstrate a realistic, universal one- and two-qubit gate set for the VSLQ, with error rates an order of magnitude lower than those for same-duration operations on single qubits or pairs of qubits. These developments further suggest that incorporating small logical qubits into a measurement based code could substantially improve code performance.

  8. SBKF Modeling and Analysis Plan: Buckling Analysis of Compression-Loaded Orthogrid and Isogrid Cylinders

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Hilburger, Mark W.

    2013-01-01

    This document outlines a Modeling and Analysis Plan (MAP) to be followed by the SBKF analysts. It includes instructions on modeling and analysis formulation and execution, model verification and validation, identifying sources of error and uncertainty, and documentation. The goal of this MAP is to provide a standardized procedure that ensures uniformity and quality of the results produced by the project and corresponding documentation.

  9. Robust estimation of partially linear models for longitudinal data with dropouts and measurement error.

    PubMed

    Qin, Guoyou; Zhang, Jiajia; Zhu, Zhongyi; Fung, Wing

    2016-12-20

    Outliers, measurement error, and missing data are commonly seen in longitudinal data because of its data collection process. However, no method can address all three of these issues simultaneously. This paper focuses on the robust estimation of partially linear models for longitudinal data with dropouts and measurement error. A new robust estimating equation, simultaneously tackling outliers, measurement error, and missingness, is proposed. The asymptotic properties of the proposed estimator are established under some regularity conditions. The proposed method is easy to implement in practice by utilizing the existing standard generalized estimating equations algorithms. The comprehensive simulation studies show the strength of the proposed method in dealing with longitudinal data with all three features. Finally, the proposed method is applied to data from the Lifestyle Education for Activity and Nutrition study and confirms the effectiveness of the intervention in producing weight loss at month 9. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Ultraspectral sounding retrieval error budget and estimation

    NASA Astrophysics Data System (ADS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, Larrabee L.; Yang, Ping

    2011-11-01

    The ultraspectral infrared radiances obtained from satellite observations provide atmospheric, surface, and/or cloud information. The intent of the measurement of the thermodynamic state is the initialization of weather and climate models. Great effort has been given to retrieving and validating these atmospheric, surface, and/or cloud properties. Error Consistency Analysis Scheme (ECAS), through fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of absolute and standard deviation of differences in both spectral radiance and retrieved geophysical parameter domains. The retrieval error is assessed through ECAS without assistance of other independent measurements such as radiosonde data. ECAS re-evaluates instrument random noise, and establishes the link between radiometric accuracy and retrieved geophysical parameter accuracy. ECAS can be applied to measurements of any ultraspectral instrument and any retrieval scheme with associated RTM. In this paper, ECAS is described and demonstration is made with the measurements of the METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI).

  11. Application of Rapid Visco Analyser (RVA) viscograms and chemometrics for maize hardness characterisation.

    PubMed

    Guelpa, Anina; Bevilacqua, Marta; Marini, Federico; O'Kennedy, Kim; Geladi, Paul; Manley, Marena

    2015-04-15

    It has been established in this study that the Rapid Visco Analyser (RVA) can describe maize hardness, irrespective of the RVA profile, when used in association with appropriate multivariate data analysis techniques. Therefore, the RVA can complement or replace current and/or conventional methods as a hardness descriptor. Hardness modelling based on RVA viscograms was carried out using seven conventional hardness methods (hectoliter mass (HLM), hundred kernel mass (HKM), particle size index (PSI), percentage vitreous endosperm (%VE), protein content, percentage chop (%chop) and near infrared (NIR) spectroscopy) as references and three different RVA profiles (hard, soft and standard) as predictors. An approach using locally weighted partial least squares (LW-PLS) was followed to build the regression models. The resulted prediction errors (root mean square error of cross-validation (RMSECV) and root mean square error of prediction (RMSEP)) for the quantification of hardness values were always lower or in the same order of the laboratory error of the reference method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Ultraspectral Sounding Retrieval Error Budget and Estimation

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2011-01-01

    The ultraspectral infrared radiances obtained from satellite observations provide atmospheric, surface, and/or cloud information. The intent of the measurement of the thermodynamic state is the initialization of weather and climate models. Great effort has been given to retrieving and validating these atmospheric, surface, and/or cloud properties. Error Consistency Analysis Scheme (ECAS), through fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of absolute and standard deviation of differences in both spectral radiance and retrieved geophysical parameter domains. The retrieval error is assessed through ECAS without assistance of other independent measurements such as radiosonde data. ECAS re-evaluates instrument random noise, and establishes the link between radiometric accuracy and retrieved geophysical parameter accuracy. ECAS can be applied to measurements of any ultraspectral instrument and any retrieval scheme with associated RTM. In this paper, ECAS is described and demonstration is made with the measurements of the METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI)..

  13. Artificial Intelligence Techniques for Predicting and Mapping Daily Pan Evaporation

    NASA Astrophysics Data System (ADS)

    Arunkumar, R.; Jothiprakash, V.; Sharma, Kirty

    2017-09-01

    In this study, Artificial Intelligence techniques such as Artificial Neural Network (ANN), Model Tree (MT) and Genetic Programming (GP) are used to develop daily pan evaporation time-series (TS) prediction and cause-effect (CE) mapping models. Ten years of observed daily meteorological data such as maximum temperature, minimum temperature, relative humidity, sunshine hours, dew point temperature and pan evaporation are used for developing the models. For each technique, several models are developed by changing the number of inputs and other model parameters. The performance of each model is evaluated using standard statistical measures such as Mean Square Error, Mean Absolute Error, Normalized Mean Square Error and correlation coefficient (R). The results showed that daily TS-GP (4) model predicted better with a correlation coefficient of 0.959 than other TS models. Among various CE models, CE-ANN (6-10-1) resulted better than MT and GP models with a correlation coefficient of 0.881. Because of the complex non-linear inter-relationship among various meteorological variables, CE mapping models could not achieve the performance of TS models. From this study, it was found that GP performs better for recognizing single pattern (time series modelling), whereas ANN is better for modelling multiple patterns (cause-effect modelling) in the data.

  14. A Note on Standard Deviation and Standard Error

    ERIC Educational Resources Information Center

    Hassani, Hossein; Ghodsi, Mansoureh; Howell, Gareth

    2010-01-01

    Many students confuse the standard deviation and standard error of the mean and are unsure which, if either, to use in presenting data. In this article, we endeavour to address these questions and cover some related ambiguities about these quantities.

  15. Methods, analysis, and the treatment of systematic errors for the electron electric dipole moment search in thorium monoxide

    NASA Astrophysics Data System (ADS)

    Baron, J.; Campbell, W. C.; DeMille, D.; Doyle, J. M.; Gabrielse, G.; Gurevich, Y. V.; Hess, P. W.; Hutzler, N. R.; Kirilov, E.; Kozyryev, I.; O'Leary, B. R.; Panda, C. D.; Parsons, M. F.; Spaun, B.; Vutha, A. C.; West, A. D.; West, E. P.; ACME Collaboration

    2017-07-01

    We recently set a new limit on the electric dipole moment of the electron (eEDM) (J Baron et al and ACME collaboration 2014 Science 343 269-272), which represented an order-of-magnitude improvement on the previous limit and placed more stringent constraints on many charge-parity-violating extensions to the standard model. In this paper we discuss the measurement in detail. The experimental method and associated apparatus are described, together with the techniques used to isolate the eEDM signal. In particular, we detail the way experimental switches were used to suppress effects that can mimic the signal of interest. The methods used to search for systematic errors, and models explaining observed systematic errors, are also described. We briefly discuss possible improvements to the experiment.

  16. Accuracy in planar cutting of bones: an ISO-based evaluation.

    PubMed

    Cartiaux, Olivier; Paul, Laurent; Docquier, Pierre-Louis; Francq, Bernard G; Raucent, Benoît; Dombre, Etienne; Banse, Xavier

    2009-03-01

    Computer- and robot-assisted technologies are capable of improving the accuracy of planar cutting in orthopaedic surgery. This study is a first step toward formulating and validating a new evaluation methodology for planar bone cutting, based on the standards from the International Organization for Standardization. Our experimental test bed consisted of a purely geometrical model of the cutting process around a simulated bone. Cuts were performed at three levels of surgical assistance: unassisted, computer-assisted and robot-assisted. We measured three parameters of the standard ISO1101:2004: flatness, parallelism and location of the cut plane. The location was the most relevant parameter for assessing cutting errors. The three levels of assistance were easily distinguished using the location parameter. Our ISO methodology employs the location to obtain all information about translational and rotational cutting errors. Location may be used on any osseous structure to compare the performance of existing assistance technologies.

  17. SPSS macros to compare any two fitted values from a regression model.

    PubMed

    Weaver, Bruce; Dubois, Sacha

    2012-12-01

    In regression models with first-order terms only, the coefficient for a given variable is typically interpreted as the change in the fitted value of Y for a one-unit increase in that variable, with all other variables held constant. Therefore, each regression coefficient represents the difference between two fitted values of Y. But the coefficients represent only a fraction of the possible fitted value comparisons that might be of interest to researchers. For many fitted value comparisons that are not captured by any of the regression coefficients, common statistical software packages do not provide the standard errors needed to compute confidence intervals or carry out statistical tests-particularly in more complex models that include interactions, polynomial terms, or regression splines. We describe two SPSS macros that implement a matrix algebra method for comparing any two fitted values from a regression model. The !OLScomp and !MLEcomp macros are for use with models fitted via ordinary least squares and maximum likelihood estimation, respectively. The output from the macros includes the standard error of the difference between the two fitted values, a 95% confidence interval for the difference, and a corresponding statistical test with its p-value.

  18. Estimation of Handling Qualities Parameters of the Tu-144 Supersonic Transport Aircraft from Flight Test Data

    NASA Technical Reports Server (NTRS)

    Curry, Timothy J.; Batterson, James G. (Technical Monitor)

    2000-01-01

    Low order equivalent system (LOES) models for the Tu-144 supersonic transport aircraft were identified from flight test data. The mathematical models were given in terms of transfer functions with a time delay by the military standard MIL-STD-1797A, "Flying Qualities of Piloted Aircraft," and the handling qualities were predicted from the estimated transfer function coefficients. The coefficients and the time delay in the transfer functions were estimated using a nonlinear equation error formulation in the frequency domain. Flight test data from pitch, roll, and yaw frequency sweeps at various flight conditions were used for parameter estimation. Flight test results are presented in terms of the estimated parameter values, their standard errors, and output fits in the time domain. Data from doublet maneuvers at the same flight conditions were used to assess the predictive capabilities of the identified models. The identified transfer function models fit the measured data well and demonstrated good prediction capabilities. The Tu-144 was predicted to be between level 2 and 3 for all longitudinal maneuvers and level I for all lateral maneuvers. High estimates of the equivalent time delay in the transfer function model caused the poor longitudinal rating.

  19. Study on the medical meteorological forecast of the number of hypertension inpatient based on SVR

    NASA Astrophysics Data System (ADS)

    Zhai, Guangyu; Chai, Guorong; Zhang, Haifeng

    2017-06-01

    The purpose of this study is to build a hypertension prediction model by discussing the meteorological factors for hypertension incidence. The research method is selecting the standard data of relative humidity, air temperature, visibility, wind speed and air pressure of Lanzhou from 2010 to 2012(calculating the maximum, minimum and average value with 5 days as a unit ) as the input variables of Support Vector Regression(SVR) and the standard data of hypertension incidence of the same period as the output dependent variables to obtain the optimal prediction parameters by cross validation algorithm, then by SVR algorithm learning and training, a SVR forecast model for hypertension incidence is built. The result shows that the hypertension prediction model is composed of 15 input independent variables, the training accuracy is 0.005, the final error is 0.0026389. The forecast accuracy based on SVR model is 97.1429%, which is higher than statistical forecast equation and neural network prediction method. It is concluded that SVR model provides a new method for hypertension prediction with its simple calculation, small error as well as higher historical sample fitting and Independent sample forecast capability.

  20. Geometric Accuracy Analysis of Worlddem in Relation to AW3D30, Srtm and Aster GDEM2

    NASA Astrophysics Data System (ADS)

    Bayburt, S.; Kurtak, A. B.; Büyüksalih, G.; Jacobsen, K.

    2017-05-01

    In a project area close to Istanbul the quality of WorldDEM, AW3D30, SRTM DSM and ASTER GDEM2 have been analyzed in relation to a reference aerial LiDAR DEM and to each other. The random and the systematic height errors have been separated. The absolute offset for all height models in X, Y and Z is within the expectation. The shifts have been respected in advance for a satisfying estimation of the random error component. All height models are influenced by some tilts, different in size. In addition systematic deformations can be seen not influencing the standard deviation too much. The delivery of WorldDEM includes information about the height error map which is based on the interferometric phase errors, and the number and location of coverage's from different orbits. A dependency of the height accuracy from the height error map information and the number of coverage's can be seen, but it is smaller as expected. WorldDEM is more accurate as the other investigated height models and with 10 m point spacing it includes more morphologic details, visible at contour lines. The morphologic details are close to the details based on the LiDAR digital surface model (DSM). As usual a dependency of the accuracy from the terrain slope can be seen. In forest areas the canopy definition of InSAR X- and C-band height models as well as for the height models based on optical satellite images is not the same as the height definition by LiDAR. In addition the interferometric phase uncertainty over forest areas is larger. Both effects lead to lower height accuracy in forest areas, also visible in the height error map.

  1. Influence of Joint Angle on EMG-Torque Model During Constant-Posture, Torque-Varying Contractions.

    PubMed

    Liu, Pu; Liu, Lukai; Clancy, Edward A

    2015-11-01

    Relating the electromyogram (EMG) to joint torque is useful in various application areas, including prosthesis control, ergonomics and clinical biomechanics. Limited study has related EMG to torque across varied joint angles, particularly when subjects performed force-varying contractions or when optimized modeling methods were utilized. We related the biceps-triceps surface EMG of 22 subjects to elbow torque at six joint angles (spanning 60° to 135°) during constant-posture, torque-varying contractions. Three nonlinear EMG σ -torque models, advanced EMG amplitude (EMG σ ) estimation processors (i.e., whitened, multiple-channel) and the duration of data used to train models were investigated. When EMG-torque models were formed separately for each of the six distinct joint angles, a minimum "gold standard" error of 4.01±1.2% MVC(F90) resulted (i.e., error relative to maximum voluntary contraction at 90° flexion). This model structure, however, did not directly facilitate interpolation across angles. The best model which did so achieved a statistically equivalent error of 4.06±1.2% MVC(F90). Results demonstrated that advanced EMG σ processors lead to improved joint torque estimation as do longer model training durations.

  2. Dynamic load-sharing characteristic analysis of face gear power-split gear system based on tooth contact characteristics

    NASA Astrophysics Data System (ADS)

    Dong, Hao; Hu, Yahui

    2018-04-01

    The bend-torsion coupling dynamics load-sharing model of the helicopter face gear split torque transmission system is established by using concentrated quality standard, to analyzing the dynamic load-sharing characteristic. The mathematical models include nonlinear support stiffness, time-varying meshing stiffness, damping, gear backlash. The results showed that the errors collectively influenced the load sharing characteristics, only reduce a certain error, it is never fully reached the perfect loading sharing characteristics. The system load-sharing performance can be improved through floating shaft support. The above-method will provide a theoretical basis and data support for its dynamic performance optimization design.

  3. Refining new-physics searches in B→Dτν with lattice QCD.

    PubMed

    Bailey, Jon A; Bazavov, A; Bernard, C; Bouchard, C M; Detar, C; Du, Daping; El-Khadra, A X; Foley, J; Freeland, E D; Gámiz, E; Gottlieb, Steven; Heller, U M; Kim, Jongjeong; Kronfeld, A S; Laiho, J; Levkova, L; Mackenzie, P B; Meurice, Y; Neil, E T; Oktay, M B; Qiu, Si-Wei; Simone, J N; Sugar, R; Toussaint, D; Van de Water, R S; Zhou, Ran

    2012-08-17

    The semileptonic decay channel B→Dτν is sensitive to the presence of a scalar current, such as that mediated by a charged-Higgs boson. Recently, the BABAR experiment reported the first observation of the exclusive semileptonic decay B→Dτ(-)ν, finding an approximately 2σ disagreement with the standard-model prediction for the ratio R(D)=BR(B→Dτν)/BR(B→Dℓν), where ℓ = e,μ. We compute this ratio of branching fractions using hadronic form factors computed in unquenched lattice QCD and obtain R(D)=0.316(12)(7), where the errors are statistical and total systematic, respectively. This result is the first standard-model calculation of R(D) from ab initio full QCD. Its error is smaller than that of previous estimates, primarily due to the reduced uncertainty in the scalar form factor f(0)(q(2)). Our determination of R(D) is approximately 1σ higher than previous estimates and, thus, reduces the tension with experiment. We also compute R(D) in models with electrically charged scalar exchange, such as the type-II two-Higgs-doublet model. Once again, our result is consistent with, but approximately 1σ higher than, previous estimates for phenomenologically relevant values of the scalar coupling in the type-II model. As a by-product of our calculation, we also present the standard-model prediction for the longitudinal-polarization ratio P(L)(D)=0.325(4)(3).

  4. Use of Bayesian Inference in Crystallographic Structure Refinement via Full Diffraction Profile Analysis

    PubMed Central

    Fancher, Chris M.; Han, Zhen; Levin, Igor; Page, Katharine; Reich, Brian J.; Smith, Ralph C.; Wilson, Alyson G.; Jones, Jacob L.

    2016-01-01

    A Bayesian inference method for refining crystallographic structures is presented. The distribution of model parameters is stochastically sampled using Markov chain Monte Carlo. Posterior probability distributions are constructed for all model parameters to properly quantify uncertainty by appropriately modeling the heteroskedasticity and correlation of the error structure. The proposed method is demonstrated by analyzing a National Institute of Standards and Technology silicon standard reference material. The results obtained by Bayesian inference are compared with those determined by Rietveld refinement. Posterior probability distributions of model parameters provide both estimates and uncertainties. The new method better estimates the true uncertainties in the model as compared to the Rietveld method. PMID:27550221

  5. Maintaining tumor targeting accuracy in real-time motion compensation systems for respiration-induced tumor motion.

    PubMed

    Malinowski, Kathleen; McAvoy, Thomas J; George, Rohini; Dieterich, Sonja; D'Souza, Warren D

    2013-07-01

    To determine how best to time respiratory surrogate-based tumor motion model updates by comparing a novel technique based on external measurements alone to three direct measurement methods. Concurrently measured tumor and respiratory surrogate positions from 166 treatment fractions for lung or pancreas lesions were analyzed. Partial-least-squares regression models of tumor position from marker motion were created from the first six measurements in each dataset. Successive tumor localizations were obtained at a rate of once per minute on average. Model updates were timed according to four methods: never, respiratory surrogate-based (when metrics based on respiratory surrogate measurements exceeded confidence limits), error-based (when localization error ≥ 3 mm), and always (approximately once per minute). Radial tumor displacement prediction errors (mean ± standard deviation) for the four schema described above were 2.4 ± 1.2, 1.9 ± 0.9, 1.9 ± 0.8, and 1.7 ± 0.8 mm, respectively. The never-update error was significantly larger than errors of the other methods. Mean update counts over 20 min were 0, 4, 9, and 24, respectively. The same improvement in tumor localization accuracy could be achieved through any of the three update methods, but significantly fewer updates were required when the respiratory surrogate method was utilized. This study establishes the feasibility of timing image acquisitions for updating respiratory surrogate models without direct tumor localization.

  6. Integration of Error Compensation of Coordinate Measuring Machines into Feature Measurement: Part II—Experimental Implementation

    PubMed Central

    Calvo, Roque; D’Amato, Roberto; Gómez, Emilio; Domingo, Rosario

    2016-01-01

    Coordinate measuring machines (CMM) are main instruments of measurement in laboratories and in industrial quality control. A compensation error model has been formulated (Part I). It integrates error and uncertainty in the feature measurement model. Experimental implementation for the verification of this model is carried out based on the direct testing on a moving bridge CMM. The regression results by axis are quantified and compared to CMM indication with respect to the assigned values of the measurand. Next, testing of selected measurements of length, flatness, dihedral angle, and roundness features are accomplished. The measurement of calibrated gauge blocks for length or angle, flatness verification of the CMM granite table and roundness of a precision glass hemisphere are presented under a setup of repeatability conditions. The results are analysed and compared with alternative methods of estimation. The overall performance of the model is endorsed through experimental verification, as well as the practical use and the model capability to contribute in the improvement of current standard CMM measuring capabilities. PMID:27754441

  7. High‐resolution trench photomosaics from image‐based modeling: Workflow and error analysis

    USGS Publications Warehouse

    Reitman, Nadine G.; Bennett, Scott E. K.; Gold, Ryan D.; Briggs, Richard; Duross, Christopher

    2015-01-01

    Photomosaics are commonly used to construct maps of paleoseismic trench exposures, but the conventional process of manually using image‐editing software is time consuming and produces undesirable artifacts and distortions. Herein, we document and evaluate the application of image‐based modeling (IBM) for creating photomosaics and 3D models of paleoseismic trench exposures, illustrated with a case‐study trench across the Wasatch fault in Alpine, Utah. Our results include a structure‐from‐motion workflow for the semiautomated creation of seamless, high‐resolution photomosaics designed for rapid implementation in a field setting. Compared with conventional manual methods, the IBM photomosaic method provides a more accurate, continuous, and detailed record of paleoseismic trench exposures in approximately half the processing time and 15%–20% of the user input time. Our error analysis quantifies the effect of the number and spatial distribution of control points on model accuracy. For this case study, an ∼87  m2 exposure of a benched trench photographed at viewing distances of 1.5–7 m yields a model with <2  cm root mean square error (rmse) with as few as six control points. Rmse decreases as more control points are implemented, but the gains in accuracy are minimal beyond 12 control points. Spreading control points throughout the target area helps to minimize error. We propose that 3D digital models and corresponding photomosaics should be standard practice in paleoseismic exposure archiving. The error analysis serves as a guide for future investigations that seek balance between speed and accuracy during photomosaic and 3D model construction.

  8. Modeling error in assessment of mammographic image features for improved computer-aided mammography training: initial experience

    NASA Astrophysics Data System (ADS)

    Mazurowski, Maciej A.; Tourassi, Georgia D.

    2011-03-01

    In this study we investigate the hypothesis that there exist patterns in erroneous assessment of BI-RADS image features among radiology trainees when performing diagnostic interpretation of mammograms. We also investigate whether these error making patterns can be captured by individual user models. To test our hypothesis we propose a user modeling algorithm that uses the previous readings of a trainee to identify whether certain BI-RADS feature values (e.g. "spiculated" value for "margin" feature) are associated with higher than usual likelihood that the feature will be assessed incorrectly. In our experiments we used readings of 3 radiology residents and 7 breast imaging experts for 33 breast masses for the following BI-RADS features: parenchyma density, mass margin, mass shape and mass density. The expert readings were considered as the gold standard. Rule-based individual user models were developed and tested using the leave one-one-out crossvalidation scheme. Our experimental evaluation showed that the individual user models are accurate in identifying cases for which errors are more likely to be made. The user models captured regularities in error making for all 3 residents. This finding supports our hypothesis about existence of individual error making patterns in assessment of mammographic image features using the BI-RADS lexicon. Explicit user models identifying the weaknesses of each resident could be of great use when developing and adapting a personalized training plan to meet the resident's individual needs. Such approach fits well with the framework of adaptive computer-aided educational systems in mammography we have proposed before.

  9. Orbital-free bond breaking via machine learning

    NASA Astrophysics Data System (ADS)

    Snyder, John C.; Rupp, Matthias; Hansen, Katja; Blooston, Leo; Müller, Klaus-Robert; Burke, Kieron

    2013-12-01

    Using a one-dimensional model, we explore the ability of machine learning to approximate the non-interacting kinetic energy density functional of diatomics. This nonlinear interpolation between Kohn-Sham reference calculations can (i) accurately dissociate a diatomic, (ii) be systematically improved with increased reference data and (iii) generate accurate self-consistent densities via a projection method that avoids directions with no data. With relatively few densities, the error due to the interpolation is smaller than typical errors in standard exchange-correlation functionals.

  10. On the Use of Rank Tests and Estimates in the Linear Model.

    DTIC Science & Technology

    1982-06-01

    assumption A5, McKean and Hettmansperger (1976) show that 10 w (W(N-c) - W (c+l))/ (2Z /2) (14) where 2Z is the 1-a interpercentile range of the standard...r(.75n) - r(.25n)) (13) The window width h incorporates a resistant estimate of scale, then interquartile range of the residuals, and a normalizing...alternative estimate of i is available with the additional assumption of symmetry of the error distribution. ASSUMPTION: A5. Suppose the underlying error

  11. Determination of streamflow of the Arkansas River near Bentley in south-central Kansas

    USGS Publications Warehouse

    Perry, Charles A.

    2012-01-01

    The Kansas Department of Agriculture, Division of Water Resources, requires that the streamflow of the Arkansas River just upstream from Bentley in south-central Kansas be measured or calculated before groundwater can be pumped from the well field. When the daily streamflow of the Arkansas River near Bentley is less than 165 cubic feet per second (ft3/s), pumping must be curtailed. Daily streamflow near Bentley was calculated by determining the relations between streamflow data from two reference streamgages with a concurrent record of 24 years, one located 17.2 miles (mi) upstream and one located 10.9 mi downstream, and streamflow at a temporary gage located just upstream from Bentley (Arkansas River near Bentley, Kansas). Flow-duration curves for the two reference streamgages indicate that during 1988?2011, the mean daily streamflow was less than 165 ft3/s 30 to 35 percent of the time. During extreme low-flow (drought) conditions, the reach of the Arkansas River between Hutchinson and Maize can lose flow to the adjacent alluvial aquifer, with streamflow losses as much as 1.6 cubic feet per second per mile. Three models were developed to calculate the streamflow of the Arkansas River near Bentley, Kansas. The model chosen depends on the data available and on whether the reach of the Arkansas River between Hutchinson and Maize is gaining or losing groundwater from or to the adjacent alluvial aquifer. The first model was a pair of equations developed from linear regressions of the relation between daily streamflow data from the Bentley streamgage and daily streamflow data from either the Arkansas River near Hutchinson, Kansas, station (station number 07143330) or the Arkansas River near Maize, Kansas, station (station number 07143375). The standard error of the Hutchinson-only equation was 22.8 ft3/s, and the standard error of the Maize-only equation was 22.3 ft3/s. The single-station model would be used if only one streamgage was available. In the second model, the flow gradient between the streamflow near Hutchinson and the streamflow near Maize was used to calculate the streamflow at the Bentley streamgage. This equation resulted in a standard error of 26.7 ft3/s. In the third model, a multiple regression analysis between both the daily streamflow of the Arkansas River near Hutchinson, Kansas, and the daily streamflow of the Arkansas River near Maize, Kansas, was used to calculate the streamflow at the Bentley streamgage. The multiple regression equation had a standard error of 21.2 ft3/s, which was the smallest of the standard errors for all the models. An analysis of the number of low-flow days and the number of days when the reach between Hutchinson and Maize loses flow to the adjacent alluvial aquifer indicates that the long-term trend is toward fewer days of losing conditions. This trend may indicate a long-term increase in water levels in the alluvial aquifer, which could be caused by one or more of several conditions, including an increase in rainfall, a decrease in pumping, a decrease in temperature, and an increase in streamflow upstream from the Hutchinson-to-Maize reach of the Arkansas River.

  12. Backus-Gilbert inversion of travel time data

    NASA Technical Reports Server (NTRS)

    Johnson, L. E.

    1972-01-01

    Application of the Backus-Gilbert theory for geophysical inverse problems to the seismic body wave travel-time problem is described. In particular, it is shown how to generate earth models that fit travel-time data to within one standard error and having generated such models how to describe their degree of uniqueness. An example is given to illustrate the process.

  13. Examination of Different Item Response Theory Models on Tests Composed of Testlets

    ERIC Educational Resources Information Center

    Kogar, Esin Yilmaz; Kelecioglu, Hülya

    2017-01-01

    The purpose of this research is to first estimate the item and ability parameters and the standard error values related to those parameters obtained from Unidimensional Item Response Theory (UIRT), bifactor (BIF) and Testlet Response Theory models (TRT) in the tests including testlets, when the number of testlets, number of independent items, and…

  14. On the Latent Regression Model of Item Response Theory. Research Report. ETS RR-07-12

    ERIC Educational Resources Information Center

    Antal, Tamás

    2007-01-01

    Full account of the latent regression model for the National Assessment of Educational Progress is given. The treatment includes derivation of the EM algorithm, Newton-Raphson method, and the asymptotic standard errors. The paper also features the use of the adaptive Gauss-Hermite numerical integration method as a basic tool to evaluate…

  15. A Statistical Model for Misreported Binary Outcomes in Clustered RCTs of Education Interventions

    ERIC Educational Resources Information Center

    Schochet, Peter Z.

    2013-01-01

    In education randomized control trials (RCTs), the misreporting of student outcome data could lead to biased estimates of average treatment effects (ATEs) and their standard errors. This article discusses a statistical model that adjusts for misreported binary outcomes for two-level, school-based RCTs, where it is assumed that misreporting could…

  16. Asymptotic Standard Errors of Observed-Score Equating with Polytomous IRT Models

    ERIC Educational Resources Information Center

    Andersson, Björn

    2016-01-01

    In observed-score equipercentile equating, the goal is to make scores on two scales or tests measuring the same construct comparable by matching the percentiles of the respective score distributions. If the tests consist of different items with multiple categories for each item, a suitable model for the responses is a polytomous item response…

  17. Utilizing Adjoint-Based Error Estimates for Surrogate Models to Accurately Predict Probabilities of Events

    DOE PAGES

    Butler, Troy; Wildey, Timothy

    2018-01-01

    In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less

  18. Utilizing Adjoint-Based Error Estimates for Surrogate Models to Accurately Predict Probabilities of Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, Troy; Wildey, Timothy

    In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less

  19. Comparing Measurement Error between Two Different Methods of Measurement of Various Magnitudes

    ERIC Educational Resources Information Center

    Zavorsky, Gerald S.

    2010-01-01

    Measurement error is a common problem in several fields of research such as medicine, physiology, and exercise science. The standard deviation of repeated measurements on the same person is the measurement error. One way of presenting measurement error is called the repeatability, which is 2.77 multiplied by the within subject standard deviation.…

  20. Suboptimal schemes for atmospheric data assimilation based on the Kalman filter

    NASA Technical Reports Server (NTRS)

    Todling, Ricardo; Cohn, Stephen E.

    1994-01-01

    This work is directed toward approximating the evolution of forecast error covariances for data assimilation. The performance of different algorithms based on simplification of the standard Kalman filter (KF) is studied. These are suboptimal schemes (SOSs) when compared to the KF, which is optimal for linear problems with known statistics. The SOSs considered here are several versions of optimal interpolation (OI), a scheme for height error variance advection, and a simplified KF in which the full height error covariance is advected. To employ a methodology for exact comparison among these schemes, a linear environment is maintained, in which a beta-plane shallow-water model linearized about a constant zonal flow is chosen for the test-bed dynamics. The results show that constructing dynamically balanced forecast error covariances rather than using conventional geostrophically balanced ones is essential for successful performance of any SOS. A posteriori initialization of SOSs to compensate for model - data imbalance sometimes results in poor performance. Instead, properly constructed dynamically balanced forecast error covariances eliminate the need for initialization. When the SOSs studied here make use of dynamically balanced forecast error covariances, the difference among their performances progresses naturally from conventional OI to the KF. In fact, the results suggest that even modest enhancements of OI, such as including an approximate dynamical equation for height error variances while leaving height error correlation structure homogeneous, go a long way toward achieving the performance of the KF, provided that dynamically balanced cross-covariances are constructed and that model errors are accounted for properly. The results indicate that such enhancements are necessary if unconventional data are to have a positive impact.

  1. Use of a non-linear method for including the mass uncertainty of gravimetric standards and system measurement errors in the fitting of calibration curves for XRFA freeze-dried UNO/sub 3/ standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickles, W.L.; McClure, J.W.; Howell, R.H.

    1978-05-01

    A sophisticated nonlinear multiparameter fitting program was used to produce a best fit calibration curve for the response of an x-ray fluorescence analyzer to uranium nitrate, freeze dried, 0.2% accurate, gravimetric standards. The program is based on unconstrained minimization subroutine, VA02A. The program considers the mass values of the gravimetric standards as parameters to be fit along with the normal calibration curve parameters. The fitting procedure weights with the system errors and the mass errors in a consistent way. The resulting best fit calibration curve parameters reflect the fact that the masses of the standard samples are measured quantities withmore » a known error. Error estimates for the calibration curve parameters can be obtained from the curvature of the ''Chi-Squared Matrix'' or from error relaxation techniques. It was shown that nondispersive XRFA of 0.1 to 1 mg freeze-dried UNO/sub 3/ can have an accuracy of 0.2% in 1000 s.« less

  2. Lognormal Kalman filter for assimilating phase space density data in the radiation belts

    NASA Astrophysics Data System (ADS)

    Kondrashov, D.; Ghil, M.; Shprits, Y.

    2011-11-01

    Data assimilation combines a physical model with sparse observations and has become an increasingly important tool for scientists and engineers in the design, operation, and use of satellites and other high-technology systems in the near-Earth space environment. Of particular importance is predicting fluxes of high-energy particles in the Van Allen radiation belts, since these fluxes can damage spaceborne platforms and instruments during strong geomagnetic storms. In transiting from a research setting to operational prediction of these fluxes, improved data assimilation is of the essence. The present study is motivated by the fact that phase space densities (PSDs) of high-energy electrons in the outer radiation belt—both simulated and observed—are subject to spatiotemporal variations that span several orders of magnitude. Standard data assimilation methods that are based on least squares minimization of normally distributed errors may not be adequate for handling the range of these variations. We propose herein a modification of Kalman filtering that uses a log-transformed, one-dimensional radial diffusion model for the PSDs and includes parameterized losses. The proposed methodology is first verified on model-simulated, synthetic data and then applied to actual satellite measurements. When the model errors are sufficiently smaller then observational errors, our methodology can significantly improve analysis and prediction skill for the PSDs compared to those of the standard Kalman filter formulation. This improvement is documented by monitoring the variance of the innovation sequence.

  3. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Guoyan

    2010-04-15

    Purpose: The aim of this article is to investigate the feasibility of using a statistical shape model (SSM)-based reconstruction technique to derive a scaled, patient-specific surface model of the pelvis from a single standard anteroposterior (AP) x-ray radiograph and the feasibility of estimating the scale of the reconstructed surface model by performing a surface-based 3D/3D matching. Methods: Data sets of 14 pelvises (one plastic bone, 12 cadavers, and one patient) were used to validate the single-image based reconstruction technique. This reconstruction technique is based on a hybrid 2D/3D deformable registration process combining a landmark-to-ray registration with a SSM-based 2D/3D reconstruction.more » The landmark-to-ray registration was used to find an initial scale and an initial rigid transformation between the x-ray image and the SSM. The estimated scale and rigid transformation were used to initialize the SSM-based 2D/3D reconstruction. The optimal reconstruction was then achieved in three stages by iteratively matching the projections of the apparent contours extracted from a 3D model derived from the SSM to the image contours extracted from the x-ray radiograph: Iterative affine registration, statistical instantiation, and iterative regularized shape deformation. The image contours are first detected by using a semiautomatic segmentation tool based on the Livewire algorithm and then approximated by a set of sparse dominant points that are adaptively sampled from the detected contours. The unknown scales of the reconstructed models were estimated by performing a surface-based 3D/3D matching between the reconstructed models and the associated ground truth models that were derived from a CT-based reconstruction method. Such a matching also allowed for computing the errors between the reconstructed models and the associated ground truth models. Results: The technique could reconstruct the surface models of all 14 pelvises directly from the landmark-based initialization. Depending on the surface-based matching techniques, the reconstruction errors were slightly different. When a surface-based iterative affine registration was used, an average reconstruction error of 1.6 mm was observed. This error was increased to 1.9 mm, when a surface-based iterative scaled rigid registration was used. Conclusions: It is feasible to reconstruct a scaled, patient-specific surface model of the pelvis from single standard AP x-ray radiograph using the present approach. The unknown scale of the reconstructed model can be estimated by performing a surface-based 3D/3D matching.« less

  4. Flight test results of the strapdown ring laser gyro tetrad inertial navigation system

    NASA Technical Reports Server (NTRS)

    Carestia, R. A.; Hruby, R. J.; Bjorkman, W. S.

    1983-01-01

    A helicopter flight test program undertaken to evaluate the performance of Tetrad (a strap down, laser gyro, inertial navigation system) is described. The results of 34 flights show a mean final navigational velocity error of 5.06 knots, with a standard deviation of 3.84 knots; a corresponding mean final position error of 2.66 n. mi., with a standard deviation of 1.48 n. mi.; and a modeled mean position error growth rate for the 34 tests of 1.96 knots, with a standard deviation of 1.09 knots. No laser gyro or accelerometer failures were detected during the flight tests. Off line parity residual studies used simulated failures with the prerecorded flight test and laboratory test data. The airborne Tetrad system's failure--detection logic, exercised during the tests, successfully demonstrated the detection of simulated ""hard'' failures and the system's ability to continue successfully to navigate by removing the simulated faulted sensor from the computations. Tetrad's four ring laser gyros provided reliable and accurate angular rate sensing during the 4 yr of the test program, and no sensor failures were detected during the evaluation of free inertial navigation performance.

  5. Streamflow simulation studies of the Hillsborough, Alafia, and Anclote Rivers, west-central Florida

    USGS Publications Warehouse

    Turner, J.F.

    1979-01-01

    A modified version of the Georgia Tech Watershed Model was applied for the purpose of flow simulation in three large river basins of west-central Florida. Calibrations were evaluated by comparing the following synthesized and observed data: annual hydrographs for the 1959, 1960, 1973 and 1974 water years, flood hydrographs (maximum daily discharge and flood volume), and long-term annual flood-peak discharges (1950-72). Annual hydrographs, excluding the 1973 water year, were compared using average absolute error in annual runoff and daily flows and correlation coefficients of monthly and daily flows. Correlations coefficients for simulated and observed maximum daily discharges and flood volumes used for calibrating range from 0.91 to 0.98 and average standard errors of estimate range from 18 to 45 percent. Correlation coefficients for simulated and observed annual flood-peak discharges range from 0.60 to 0.74 and average standard errors of estimate range from 33 to 44 percent. (Woodard-USGS)

  6. The use of precise ephemerides, ionospheric data, and corrected antenna coordinates in a long-distance GPS time transfer

    NASA Technical Reports Server (NTRS)

    Lewandowski, Wlodzimierz W.; Petit, Gerard; Thomas, Claudine; Weiss, Marc A.

    1990-01-01

    Over intercontinental distances, the accuracy of The Global Positioning System (GPS) time transfers ranges from 10 to 20 ns. The principal error sources are the broadcast ionospheric model, the broadcast ephemerides and the local antenna coordinates. For the first time, the three major error sources for GPS time transfer can be reduced simultaneously for a particular time link. Ionospheric measurement systems of the National Institute of Standards and Technology (NIST) type are now operating on a regular basis at the National Institute of Standards and Technology in Boulder and at the Paris Observatory in Paris. Broadcast ephemerides are currently recorded for time-transfer tracks between these sites, this being necessary for using precise ephemerides. At last, corrected local GPS antenna coordinates are now introduced in GPS receivers at both sites. Shown here is the improvement in precision for this long-distance time comparison resulting from the reduction of these three error sources.

  7. Evaluating the effects of modeling errors for isolated finite three-dimensional targets

    NASA Astrophysics Data System (ADS)

    Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui

    2017-10-01

    Optical three-dimensional (3-D) nanostructure metrology utilizes a model-based metrology approach to determine critical dimensions (CDs) that are well below the inspection wavelength. Our project at the National Institute of Standards and Technology is evaluating how to attain key CD and shape parameters from engineered in-die capable metrology targets. More specifically, the quantities of interest are determined by varying the input parameters for a physical model until the simulations agree with the actual measurements within acceptable error bounds. As in most applications, establishing a reasonable balance between model accuracy and time efficiency is a complicated task. A well-established simplification is to model the intrinsically finite 3-D nanostructures as either periodic or infinite in one direction, reducing the computationally expensive 3-D simulations to usually less complex two-dimensional (2-D) problems. Systematic errors caused by this simplified model can directly influence the fitting of the model to the measurement data and are expected to become more apparent with decreasing lengths of the structures. We identify these effects using selected simulation results and present experimental setups, e.g., illumination numerical apertures and focal ranges, that can increase the validity of the 2-D approach.

  8. Quantifying the uncertainty of regional and national estimates of soil carbon stocks

    NASA Astrophysics Data System (ADS)

    Papritz, Andreas

    2013-04-01

    At regional and national scales, carbon (C) stocks are frequently estimated by means of regression models. Such statistical models link measurements of carbons stocks, recorded for a set of soil profiles or soil cores, to covariates that characterize soil formation conditions and land management. A prerequisite is that these covariates are available for any location within a region of interest G because they are used along with the fitted regression coefficients to predict the carbon stocks at the nodes of a fine-meshed grid that is laid over G. The mean C stock in G is then estimated by the arithmetic mean of the stock predictions for the grid nodes. Apart from the mean stock, the precision of the estimate is often also of interest, for example to judge whether the mean C stock has changed significantly between two inventories. The standard error of the estimated mean stock in G can be computed from the regression results as well. Two issues are thereby important: (i) How large is the area of G relative to the support of the measurements? (ii) Are the residuals of the regression model spatially auto-correlated or is the assumption of statistical independence tenable? Both issues are correctly handled if one adopts a geostatistical block kriging approach for estimating the mean C stock within a region and its standard error. In the presentation I shall summarize the main ideas of external drift block kriging. To compute the standard error of the mean stock, one has in principle to sum the elements a potentially very large covariance matrix of point prediction errors, but I shall show that the required term can be approximated very well by Monte Carlo techniques. I shall further illustrated with a few examples how the standard error of the mean stock estimate changes with the size of G and with the strenght of the auto-correlation of the regression residuals. As an application a robust variant of block kriging is used to quantify the mean carbon stock stored in the soils of Swiss forests (Nussbaum et al., 2012). Nussbaum, M., Papritz, A., Baltensweiler, A., and Walthert, L. (2012). Organic carbon stocks of swiss forest soils. Final report, Institute of Terrestrial Ecosystems, ETH Zürich and Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), pp. 51, http://e-collection.library.ethz.ch/eserv/eth:6027/eth-6027-01.pdf

  9. Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modeling heteroscedastic residual errors

    NASA Astrophysics Data System (ADS)

    McInerney, David; Thyer, Mark; Kavetski, Dmitri; Lerat, Julien; Kuczera, George

    2017-03-01

    Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. This study focuses on approaches for representing error heteroscedasticity with respect to simulated streamflow, i.e., the pattern of larger errors in higher streamflow predictions. We evaluate eight common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter λ) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and the United States, and two lumped hydrological models. Performance is quantified using predictive reliability, precision, and volumetric bias metrics. We find the choice of heteroscedastic error modeling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with λ of 0.2 and 0.5, and the log scheme (λ = 0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Paradoxically, calibration of λ is often counterproductive: in perennial catchments, it tends to overfit low flows at the expense of abysmal precision in high flows. The log-sinh transformation is dominated by the simpler Pareto optimal schemes listed above. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.

  10. Model identification using stochastic differential equation grey-box models in diabetes.

    PubMed

    Duun-Henriksen, Anne Katrine; Schmidt, Signe; Røge, Rikke Meldgaard; Møller, Jonas Bech; Nørgaard, Kirsten; Jørgensen, John Bagterp; Madsen, Henrik

    2013-03-01

    The acceptance of virtual preclinical testing of control algorithms is growing and thus also the need for robust and reliable models. Models based on ordinary differential equations (ODEs) can rarely be validated with standard statistical tools. Stochastic differential equations (SDEs) offer the possibility of building models that can be validated statistically and that are capable of predicting not only a realistic trajectory, but also the uncertainty of the prediction. In an SDE, the prediction error is split into two noise terms. This separation ensures that the errors are uncorrelated and provides the possibility to pinpoint model deficiencies. An identifiable model of the glucoregulatory system in a type 1 diabetes mellitus (T1DM) patient is used as the basis for development of a stochastic-differential-equation-based grey-box model (SDE-GB). The parameters are estimated on clinical data from four T1DM patients. The optimal SDE-GB is determined from likelihood-ratio tests. Finally, parameter tracking is used to track the variation in the "time to peak of meal response" parameter. We found that the transformation of the ODE model into an SDE-GB resulted in a significant improvement in the prediction and uncorrelated errors. Tracking of the "peak time of meal absorption" parameter showed that the absorption rate varied according to meal type. This study shows the potential of using SDE-GBs in diabetes modeling. Improved model predictions were obtained due to the separation of the prediction error. SDE-GBs offer a solid framework for using statistical tools for model validation and model development. © 2013 Diabetes Technology Society.

  11. On the internal target model in a tracking task

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Baron, S.

    1981-01-01

    An optimal control model for predicting operator's dynamic responses and errors in target tracking ability is summarized. The model, which predicts asymmetry in the tracking data, is dependent on target maneuvers and trajectories. Gunners perception, decision making, control, and estimate of target positions and velocity related to crossover intervals are discussed. The model provides estimates for means, standard deviations, and variances for variables investigated and for operator estimates of future target positions and velocities.

  12. Groundwater-surface water interactions across scales in a boreal landscape investigated using a numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Jutebring Sterte, Elin; Johansson, Emma; Sjöberg, Ylva; Huseby Karlsen, Reinert; Laudon, Hjalmar

    2018-05-01

    Groundwater and surface-water interactions are regulated by catchment characteristics and complex inter- and intra-annual variations in climatic conditions that are not yet fully understood. Our objective was to investigate the influence of catchment characteristics and freeze-thaw processes on surface and groundwater interactions in a boreal landscape, the Krycklan catchment in Sweden. We used a numerical modelling approach and sub-catchment evaluation method to identify and evaluate fundamental catchment characteristics and processes. The model reproduced observed stream discharge patterns of the 14 sub-catchments and the dynamics of the 15 groundwater wells with an average accumulated discharge error of 1% (15% standard deviation) and an average groundwater-level mean error of 0.1 m (0.23 m standard deviation). We show how peatland characteristics dampen the effect of intense rain, and how soil freeze-thaw processes regulate surface and groundwater partitioning during snowmelt. With these results, we demonstrate the importance of defining, understanding and quantifying the role of landscape heterogeneity and sub-catchment characteristics for accurately representing catchment hydrological functioning.

  13. Protein and oil composition predictions of single soybeans by transmission Raman spectroscopy.

    PubMed

    Schulmerich, Matthew V; Walsh, Michael J; Gelber, Matthew K; Kong, Rong; Kole, Matthew R; Harrison, Sandra K; McKinney, John; Thompson, Dennis; Kull, Linda S; Bhargava, Rohit

    2012-08-22

    The soybean industry requires rapid, accurate, and precise technologies for the analyses of seed/grain constituents. While the current gold standard for nondestructive quantification of economically and nutritionally important soybean components is near-infrared spectroscopy (NIRS), emerging technology may provide viable alternatives and lead to next generation instrumentation for grain compositional analysis. In principle, Raman spectroscopy provides the necessary chemical information to generate models for predicting the concentration of soybean constituents. In this communication, we explore the use of transmission Raman spectroscopy (TRS) for nondestructive soybean measurements. We show that TRS uses the light scattering properties of soybeans to effectively homogenize the heterogeneous bulk of a soybean for representative sampling. Working with over 1000 individual intact soybean seeds, we developed a simple partial least-squares model for predicting oil and protein content nondestructively. We find TRS to have a root-mean-standard error of prediction (RMSEP) of 0.89% for oil measurements and 0.92% for protein measurements. In both calibration and validation sets, the predicative capabilities of the model were similar to the error in the reference methods.

  14. Reflectance infrared spectroscopy for in-line monitoring of nicotine during a coating process for an oral thin film.

    PubMed

    Hammes, Florian; Hille, Thomas; Kissel, Thomas

    2014-02-01

    A process analytical method using reflectance infrared spectrometry was developed for the in-line monitoring of the amount of the active pharmaceutical ingredient (API) nicotine during a coating process for an oral thin film (OTF). In-line measurements were made using a reflectance infrared (RI) sensor positioned after the last drying zone of the coating line. Real-time spectra from the coating process were used for modelling the nicotine content. Partial least squares (PLS1) calibration models with different data pre-treatments were generated. The calibration model with the most comparable standard error of calibration (SEC) and the standard error of cross validation (SECV) was selected for an external validation run on the production coating line with an independent laminate. Good correlations could be obtained between values estimated from the reflectance infrared data and the reference HPLC test method, respectively. With in-line measurements it was possible to allow real-time adjustments during the production process to keep product specifications within predefined limits hence avoiding loss of material and batch. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Reconstruction of dynamic image series from undersampled MRI data using data-driven model consistency condition (MOCCO).

    PubMed

    Velikina, Julia V; Samsonov, Alexey A

    2015-11-01

    To accelerate dynamic MR imaging through development of a novel image reconstruction technique using low-rank temporal signal models preestimated from training data. We introduce the model consistency condition (MOCCO) technique, which utilizes temporal models to regularize reconstruction without constraining the solution to be low-rank, as is performed in related techniques. This is achieved by using a data-driven model to design a transform for compressed sensing-type regularization. The enforcement of general compliance with the model without excessively penalizing deviating signal allows recovery of a full-rank solution. Our method was compared with a standard low-rank approach utilizing model-based dimensionality reduction in phantoms and patient examinations for time-resolved contrast-enhanced angiography (CE-MRA) and cardiac CINE imaging. We studied the sensitivity of all methods to rank reduction and temporal subspace modeling errors. MOCCO demonstrated reduced sensitivity to modeling errors compared with the standard approach. Full-rank MOCCO solutions showed significantly improved preservation of temporal fidelity and aliasing/noise suppression in highly accelerated CE-MRA (acceleration up to 27) and cardiac CINE (acceleration up to 15) data. MOCCO overcomes several important deficiencies of previously proposed methods based on pre-estimated temporal models and allows high quality image restoration from highly undersampled CE-MRA and cardiac CINE data. © 2014 Wiley Periodicals, Inc.

  16. RECONSTRUCTION OF DYNAMIC IMAGE SERIES FROM UNDERSAMPLED MRI DATA USING DATA-DRIVEN MODEL CONSISTENCY CONDITION (MOCCO)

    PubMed Central

    Velikina, Julia V.; Samsonov, Alexey A.

    2014-01-01

    Purpose To accelerate dynamic MR imaging through development of a novel image reconstruction technique using low-rank temporal signal models pre-estimated from training data. Theory We introduce the MOdel Consistency COndition (MOCCO) technique that utilizes temporal models to regularize the reconstruction without constraining the solution to be low-rank as performed in related techniques. This is achieved by using a data-driven model to design a transform for compressed sensing-type regularization. The enforcement of general compliance with the model without excessively penalizing deviating signal allows recovery of a full-rank solution. Methods Our method was compared to standard low-rank approach utilizing model-based dimensionality reduction in phantoms and patient examinations for time-resolved contrast-enhanced angiography (CE MRA) and cardiac CINE imaging. We studied sensitivity of all methods to rank-reduction and temporal subspace modeling errors. Results MOCCO demonstrated reduced sensitivity to modeling errors compared to the standard approach. Full-rank MOCCO solutions showed significantly improved preservation of temporal fidelity and aliasing/noise suppression in highly accelerated CE MRA (acceleration up to 27) and cardiac CINE (acceleration up to 15) data. Conclusions MOCCO overcomes several important deficiencies of previously proposed methods based on pre-estimated temporal models and allows high quality image restoration from highly undersampled CE-MRA and cardiac CINE data. PMID:25399724

  17. Partnerships With Aviation: Promoting a Culture of Safety in Health Care.

    PubMed

    Skinner, Lori; Tripp, Terrance R; Scouler, David; Pechacek, Judith M

    2015-01-01

    According to the Institute of Medicine (IOM, 1999, p. 1), "Medical errors can be defined as the failure of a planned action to be completed as intended or the use of a wrong plan to achieve an aim." The current health care culture is disjointed, as evidenced by a lack of consistent reporting standards for all providers; provider licensing pays little attention to errors, and there are no financial incentives to improve safety (IOM, 1999). Many errors in health care are preventable. "Near misses" and adverse events that do occur can offer insight on how to improve practice and prevent future events. The aim of this article is to better understand underreporting of errors in health care, to present a model of change that increases voluntary error reporting, and to discuss the role nurse executives play in creating a culture of safety. This article explores how high reliability organizations such as aviation improve safety through enhanced error reporting, culture change, and teamwork.

  18. A simplified physical model for assessing solar radiation over Brazil using GOES 8 visible imagery

    NASA Astrophysics Data System (ADS)

    Ceballos, Juan Carlos; Bottino, Marcus Jorge; de Souza, Jaidete Monteiro

    2004-01-01

    Solar radiation assessment by satellite is constrained by physical limitations of imagery and by the accuracy of instantaneous local atmospheric parameters, suggesting that one should use simplified but physically consistent models for operational work. Such a model is presented for use with GOES 8 imagery applied to atmospheres with low aerosol optical depth. Fundamental satellite-derived parameters are reflectance and cloud cover. A classification method applied to a set of images shows that reflectance, usually defined as upper-threshold Rmax in algorithms assessing cloud cover, would amount ˜0.465, corresponding to the transition between a cumuliform and a stratiform cloud field. Ozone absorption is limited to the stratosphere. The model considers two spectral broadband intervals for tropospheric radiative transfer: ultraviolet and visible intervals are essentially nonabsorbing and can be processed as a single interval, while near-infrared intervals have negligible atmospheric scattering and very low cloud transmittance. Typical values of CO2 and O3 content and of precipitable water are considered. A comparison of daily values of modeled mean irradiance with data of three sites (in rural, urban industrial, and urban coastal environments), September-October 2002, exhibits a bias of +5 W m-2 and a standard deviation of ˜15 W m-2 (0.4 and 1.3 MJ m-2 for daily irradiation). A comparison with monthly means from about 80 automatic weather stations (covering a large area throughout the Brazilian territory) still shows a bias generally within ±10 W m-2 and a low standard deviation (<20 W m-2), but the bias has a trend in September-December 2002, suggesting an annual cycle of local Rmax values. Systematic (mean) errors in partial cloud cover and in nearly clear-sky situations may be enhanced using regional values for atmospheric and surface parameters, such as precipitable water, Rmax, and ground reflectance. The larger errors are observed in situations of high aerosol load (especially in regions with industrial activity or forest or agricultural fires). The last case is evident when sites in the Amazonian region or São Paulo city are selected. When considering daily values averaged within 2.5° × 2.5° cells, the standard error is lower than 20 W m-2; present results suggest an annual cycle of mean bias ranging from +10 to -10 W m-2, with an amplitude of ˜10 W m-2. These values are close to the proposed requirements of 10 W m-2 for the mean deviation and 25 W m-2 for the standard deviation. It is expected that the introduction of a reference grid containing mean values of parameters within a cell could induce a decrease in the standard deviation of mean errors and the correction of their annual cycle. A model adaptation for assessing the effect of high aerosol loads is needed in order to extend improvements to the whole Brazilian area.

  19. Modeling Major Adverse Outcomes of Pediatric and Adult Patients With Congenital Heart Disease Undergoing Cardiac Catheterization: Observations From the NCDR IMPACT Registry (National Cardiovascular Data Registry Improving Pediatric and Adult Congenital Treatment).

    PubMed

    Jayaram, Natalie; Spertus, John A; Kennedy, Kevin F; Vincent, Robert; Martin, Gerard R; Curtis, Jeptha P; Nykanen, David; Moore, Phillip M; Bergersen, Lisa

    2017-11-21

    Risk standardization for adverse events after congenital cardiac catheterization is needed to equitably compare patient outcomes among different hospitals as a foundation for quality improvement. The goal of this project was to develop a risk-standardization methodology to adjust for patient characteristics when comparing major adverse outcomes in the NCDR's (National Cardiovascular Data Registry) IMPACT Registry (Improving Pediatric and Adult Congenital Treatment). Between January 2011 and March 2014, 39 725 consecutive patients within IMPACT undergoing cardiac catheterization were identified. Given the heterogeneity of interventional procedures for congenital heart disease, new procedure-type risk categories were derived with empirical data and expert opinion, as were markers of hemodynamic vulnerability. A multivariable hierarchical logistic regression model to identify patient and procedural characteristics predictive of a major adverse event or death after cardiac catheterization was derived in 70% of the cohort and validated in the remaining 30%. The rate of major adverse event or death was 7.1% and 7.2% in the derivation and validation cohorts, respectively. Six procedure-type risk categories and 6 independent indicators of hemodynamic vulnerability were identified. The final risk adjustment model included procedure-type risk category, number of hemodynamic vulnerability indicators, renal insufficiency, single-ventricle physiology, and coagulation disorder. The model had good discrimination, with a C-statistic of 0.76 and 0.75 in the derivation and validation cohorts, respectively. Model calibration in the validation cohort was excellent, with a slope of 0.97 (standard error, 0.04; P value [for difference from 1] =0.53) and an intercept of 0.007 (standard error, 0.12; P value [for difference from 0] =0.95). The creation of a validated risk-standardization model for adverse outcomes after congenital cardiac catheterization can support reporting of risk-adjusted outcomes in the IMPACT Registry as a foundation for quality improvement. © 2017 American Heart Association, Inc.

  20. Reduction of medication errors related to sliding scale insulin by the introduction of a standardized order sheet.

    PubMed

    Harada, Saki; Suzuki, Akio; Nishida, Shohei; Kobayashi, Ryo; Tamai, Sayuri; Kumada, Keisuke; Murakami, Nobuo; Itoh, Yoshinori

    2017-06-01

    Insulin is frequently used for glycemic control. Medication errors related to insulin are a common problem for medical institutions. Here, we prepared a standardized sliding scale insulin (SSI) order sheet and assessed the effect of its introduction. Observations before and after the introduction of the standardized SSI template were conducted at Gifu University Hospital. The incidence of medication errors, hyperglycemia, and hypoglycemia related to SSI were obtained from the electronic medical records. The introduction of the standardized SSI order sheet significantly reduced the incidence of medication errors related to SSI compared with that prior to its introduction (12/165 [7.3%] vs 4/159 [2.1%], P = .048). However, the incidence of hyperglycemia (≥250 mg/dL) and hypoglycemia (≤50 mg/dL) in patients who received SSI was not significantly different between the 2 groups. The introduction of the standardized SSI order sheet reduced the incidence of medication errors related to SSI. © 2016 John Wiley & Sons, Ltd.

  1. Numerical modeling of the divided bar measurements

    NASA Astrophysics Data System (ADS)

    LEE, Y.; Keehm, Y.

    2011-12-01

    The divided-bar technique has been used to measure thermal conductivity of rocks and fragments in heat flow studies. Though widely used, divided-bar measurements can have errors, which are not systematically quantified yet. We used an FEM and performed a series of numerical studies to evaluate various errors in divided-bar measurements and to suggest more reliable measurement techniques. A divided-bar measurement should be corrected against lateral heat loss on the sides of rock samples, and the thermal resistance at the contacts between the rock sample and the bar. We first investigated how the amount of these corrections would change by the thickness and thermal conductivity of rock samples through numerical modeling. When we fixed the sample thickness as 10 mm and varied thermal conductivity, errors in the measured thermal conductivity ranges from 2.02% for 1.0 W/m/K to 7.95% for 4.0 W/m/K. While we fixed thermal conductivity as 1.38 W/m/K and varied the sample thickness, we found that the error ranges from 2.03% for the 30 mm-thick sample to 11.43% for the 5 mm-thick sample. After corrections, a variety of error analyses for divided-bar measurements were conducted numerically. Thermal conductivity of two thin standard disks (2 mm in thickness) located at the top and the bottom of the rock sample slightly affects the accuracy of thermal conductivity measurements. When the thermal conductivity of a sample is 3.0 W/m/K and that of two standard disks is 0.2 W/m/K, the relative error in measured thermal conductivity is very small (~0.01%). However, the relative error would reach up to -2.29% for the same sample when thermal conductivity of two disks is 0.5 W/m/K. The accuracy of thermal conductivity measurements strongly depends on thermal conductivity and the thickness of thermal compound that is applied to reduce thermal resistance at contacts between the rock sample and the bar. When the thickness of thermal compound (0.29 W/m/K) is 0.03 mm, we found that the relative error in measured thermal conductivity is 4.01%, while the relative error can be very significant (~12.2%) if the thickness increases to 0.1 mm. Then, we fixed the thickness (0.03 mm) and varied thermal conductivity of the thermal compound. We found that the relative error with an 1.0 W/m/K compound is 1.28%, and the relative error with a 0.29 W/m/K is 4.06%. When we repeated this test with a different thickness of the thermal compound (0.1 mm), the relative error with an 1.0 W/m/K compound is 3.93%, and that with a 0.29 W/m/K is 12.2%. In addition, the cell technique by Sass et al.(1971), which is widely used to measure thermal conductivity of rock fragments, was evaluated using the FEM modeling. A total of 483 isotropic and homogeneous spherical rock fragments in the sample holder were used to test numerically the accuracy of the cell technique. The result shows the relative error of -9.61% for rock fragments with the thermal conductivity of 2.5 W/m/K. In conclusion, we report quantified errors in the divided-bar and the cell technique for thermal conductivity measurements for rocks and fragments. We found that the FEM modeling can accurately mimic these measurement techniques and can help us to estimate measurement errors quantitatively.

  2. Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters.

    PubMed

    Chung, SungWon; Lu, Ying; Henry, Roland G

    2006-11-01

    Bootstrap is an empirical non-parametric statistical technique based on data resampling that has been used to quantify uncertainties of diffusion tensor MRI (DTI) parameters, useful in tractography and in assessing DTI methods. The current bootstrap method (repetition bootstrap) used for DTI analysis performs resampling within the data sharing common diffusion gradients, requiring multiple acquisitions for each diffusion gradient. Recently, wild bootstrap was proposed that can be applied without multiple acquisitions. In this paper, two new approaches are introduced called residual bootstrap and repetition bootknife. We show that repetition bootknife corrects for the large bias present in the repetition bootstrap method and, therefore, better estimates the standard errors. Like wild bootstrap, residual bootstrap is applicable to single acquisition scheme, and both are based on regression residuals (called model-based resampling). Residual bootstrap is based on the assumption that non-constant variance of measured diffusion-attenuated signals can be modeled, which is actually the assumption behind the widely used weighted least squares solution of diffusion tensor. The performances of these bootstrap approaches were compared in terms of bias, variance, and overall error of bootstrap-estimated standard error by Monte Carlo simulation. We demonstrate that residual bootstrap has smaller biases and overall errors, which enables estimation of uncertainties with higher accuracy. Understanding the properties of these bootstrap procedures will help us to choose the optimal approach for estimating uncertainties that can benefit hypothesis testing based on DTI parameters, probabilistic fiber tracking, and optimizing DTI methods.

  3. Ellipsoidal geometry in asteroid thermal models - The standard radiometric model

    NASA Technical Reports Server (NTRS)

    Brown, R. H.

    1985-01-01

    The major consequences of ellipsoidal geometry in an othewise standard radiometric model for asteroids are explored. It is shown that for small deviations from spherical shape a spherical model of the same projected area gives a reasonable aproximation to the thermal flux from an ellipsoidal body. It is suggested that large departures from spherical shape require that some correction be made for geometry. Systematic differences in the radii of asteroids derived radiometrically at 10 and 20 microns may result partly from nonspherical geometry. It is also suggested that extrapolations of the rotational variation of thermal flux from a nonspherical body based solely on the change in cross-sectional area are in error.

  4. The Regionalization of National-Scale SPARROW Models for Stream Nutrients

    USGS Publications Warehouse

    Schwarz, G.E.; Alexander, R.B.; Smith, R.A.; Preston, S.D.

    2011-01-01

    This analysis modifies the parsimonious specification of recently published total nitrogen (TN) and total phosphorus (TP) national-scale SPAtially Referenced Regressions On Watershed attributes models to allow each model coefficient to vary geographically among three major river basins of the conterminous United States. Regionalization of the national models reduces the standard errors in the prediction of TN and TP loads, expressed as a percentage of the predicted load, by about 6 and 7%. We develop and apply a method for combining national-scale and regional-scale information to estimate a hybrid model that imposes cross-region constraints that limit regional variation in model coefficients, effectively reducing the number of free model parameters as compared to a collection of independent regional models. The hybrid TN and TP regional models have improved model fit relative to the respective national models, reducing the standard error in the prediction of loads, expressed as a percentage of load, by about 5 and 4%. Only 19% of the TN hybrid model coefficients and just 2% of the TP hybrid model coefficients show evidence of substantial regional specificity (more than ??100% deviation from the national model estimate). The hybrid models have much greater precision in the estimated coefficients than do the unconstrained regional models, demonstrating the efficacy of pooling information across regions to improve regional models. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  5. A Comparison of Pseudo-Maximum Likelihood and Asymptotically Distribution-Free Dynamic Factor Analysis Parameter Estimation in Fitting Covariance Structure Models to Block-Toeplitz Matrices Representing Single-Subject Multivariate Time-Series.

    ERIC Educational Resources Information Center

    Molenaar, Peter C. M.; Nesselroade, John R.

    1998-01-01

    Pseudo-Maximum Likelihood (p-ML) and Asymptotically Distribution Free (ADF) estimation methods for estimating dynamic factor model parameters within a covariance structure framework were compared through a Monte Carlo simulation. Both methods appear to give consistent model parameter estimates, but only ADF gives standard errors and chi-square…

  6. Computer simulation of storm runoff for three watersheds in Albuquerque, New Mexico

    USGS Publications Warehouse

    Knutilla, R.L.; Veenhuis, J.E.

    1994-01-01

    Rainfall-runoff data from three watersheds were selected for calibration and verification of the U.S. Geological Survey's Distributed Routing Rainfall-Runoff Model. The watersheds chosen are residentially developed. The conceptually based model uses an optimization process that adjusts selected parameters to achieve the best fit between measured and simulated runoff volumes and peak discharges. Three of these optimization parameters represent soil-moisture conditions, three represent infiltration, and one accounts for effective impervious area. Each watershed modeled was divided into overland-flow segments and channel segments. The overland-flow segments were further subdivided to reflect pervious and impervious areas. Each overland-flow and channel segment was assigned representative values of area, slope, percentage of imperviousness, and roughness coefficients. Rainfall-runoff data for each watershed were separated into two sets for use in calibration and verification. For model calibration, seven input parameters were optimized to attain a best fit of the data. For model verification, parameter values were set using values from model calibration. The standard error of estimate for calibration of runoff volumes ranged from 19 to 34 percent, and for peak discharge calibration ranged from 27 to 44 percent. The standard error of estimate for verification of runoff volumes ranged from 26 to 31 percent, and for peak discharge verification ranged from 31 to 43 percent.

  7. Computer Programs for the Semantic Differential: Further Modifications.

    ERIC Educational Resources Information Center

    Lawson, Edwin D.; And Others

    The original nine programs for semantic differential analysis have been condensed into three programs which have been further refined and augmented. They yield: (1) means, standard deviations, and standard errors for each subscale on each concept; (2) Evaluation, Potency, and Activity (EPA) means, standard deviations, and standard errors; (3)…

  8. Experimental determination of the navigation error of the 4-D navigation, guidance, and control systems on the NASA B-737 airplane

    NASA Technical Reports Server (NTRS)

    Knox, C. E.

    1978-01-01

    Navigation error data from these flights are presented in a format utilizing three independent axes - horizontal, vertical, and time. The navigation position estimate error term and the autopilot flight technical error term are combined to form the total navigation error in each axis. This method of error presentation allows comparisons to be made between other 2-, 3-, or 4-D navigation systems and allows experimental or theoretical determination of the navigation error terms. Position estimate error data are presented with the navigation system position estimate based on dual DME radio updates that are smoothed with inertial velocities, dual DME radio updates that are smoothed with true airspeed and magnetic heading, and inertial velocity updates only. The normal mode of navigation with dual DME updates that are smoothed with inertial velocities resulted in a mean error of 390 m with a standard deviation of 150 m in the horizontal axis; a mean error of 1.5 m low with a standard deviation of less than 11 m in the vertical axis; and a mean error as low as 252 m with a standard deviation of 123 m in the time axis.

  9. The Neural-fuzzy Thermal Error Compensation Controller on CNC Machining Center

    NASA Astrophysics Data System (ADS)

    Tseng, Pai-Chung; Chen, Shen-Len

    The geometric errors and structural thermal deformation are factors that influence the machining accuracy of Computer Numerical Control (CNC) machining center. Therefore, researchers pay attention to thermal error compensation technologies on CNC machine tools. Some real-time error compensation techniques have been successfully demonstrated in both laboratories and industrial sites. The compensation results still need to be enhanced. In this research, the neural-fuzzy theory has been conducted to derive a thermal prediction model. An IC-type thermometer has been used to detect the heat sources temperature variation. The thermal drifts are online measured by a touch-triggered probe with a standard bar. A thermal prediction model is then derived by neural-fuzzy theory based on the temperature variation and the thermal drifts. A Graphic User Interface (GUI) system is also built to conduct the user friendly operation interface with Insprise C++ Builder. The experimental results show that the thermal prediction model developed by neural-fuzzy theory methodology can improve machining accuracy from 80µm to 3µm. Comparison with the multi-variable linear regression analysis the compensation accuracy is increased from ±10µm to ±3µm.

  10. Error in total ozone measurements arising from aerosol attenuation

    NASA Technical Reports Server (NTRS)

    Thomas, R. W. L.; Basher, R. E.

    1979-01-01

    A generalized least squares method for deducing both total ozone and aerosol extinction spectrum parameters from Dobson spectrophotometer measurements was developed. An error analysis applied to this system indicates that there is little advantage to additional measurements once a sufficient number of line pairs have been employed to solve for the selected detail in the attenuation model. It is shown that when there is a predominance of small particles (less than about 0.35 microns in diameter) the total ozone from the standard AD system is too high by about one percent. When larger particles are present the derived total ozone may be an overestimate or an underestimate but serious errors occur only for narrow polydispersions.

  11. Error recovery in shared memory multiprocessors using private caches

    NASA Technical Reports Server (NTRS)

    Wu, Kun-Lung; Fuchs, W. Kent; Patel, Janak H.

    1990-01-01

    The problem of recovering from processor transient faults in shared memory multiprocesses systems is examined. A user-transparent checkpointing and recovery scheme using private caches is presented. Processes can recover from errors due to faulty processors by restarting from the checkpointed computation state. Implementation techniques using checkpoint identifiers and recovery stacks are examined as a means of reducing performance degradation in processor utilization during normal execution. This cache-based checkpointing technique prevents rollback propagation, provides rapid recovery, and can be integrated into standard cache coherence protocols. An analytical model is used to estimate the relative performance of the scheme during normal execution. Extensions to take error latency into account are presented.

  12. Using HLM to Explore the Effects of Perceptions of Learning Environments and Assessments on Students' Test Performance

    ERIC Educational Resources Information Center

    Chu, Man-Wai; Babenko, Oksana; Cui, Ying; Leighton, Jacqueline P.

    2014-01-01

    The study examines the role that perceptions or impressions of learning environments and assessments play in students' performance on a large-scale standardized test. Hierarchical linear modeling (HLM) was used to test aspects of the Learning Errors and Formative Feedback model to determine how much variation in students' performance was explained…

  13. Standard Errors and Confidence Intervals from Bootstrapping for Ramsay-Curve Item Response Theory Model Item Parameters

    ERIC Educational Resources Information Center

    Gu, Fei; Skorupski, William P.; Hoyle, Larry; Kingston, Neal M.

    2011-01-01

    Ramsay-curve item response theory (RC-IRT) is a nonparametric procedure that estimates the latent trait using splines, and no distributional assumption about the latent trait is required. For item parameters of the two-parameter logistic (2-PL), three-parameter logistic (3-PL), and polytomous IRT models, RC-IRT can provide more accurate estimates…

  14. Application of a spectrum standardization method for carbon analysis in coal using laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Li, Xiongwei; Wang, Zhe; Fu, Yangting; Li, Zheng; Liu, Jianmin; Ni, Weidou

    2014-01-01

    Measurement of coal carbon content using laser-induced breakdown spectroscopy (LIBS) is limited by its low precision and accuracy. A modified spectrum standardization method was proposed to achieve both reproducible and accurate results for the quantitative analysis of carbon content in coal using LIBS. The proposed method used the molecular emissions of diatomic carbon (C2) and cyanide (CN) to compensate for the diminution of atomic carbon emissions in high volatile content coal samples caused by matrix effect. The compensated carbon line intensities were further converted into an assumed standard state with standard plasma temperature, electron number density, and total number density of carbon, under which the carbon line intensity is proportional to its concentration in the coal samples. To obtain better compensation for fluctuations of total carbon number density, the segmental spectral area was used and an iterative algorithm was applied that is different from our previous spectrum standardization calculations. The modified spectrum standardization model was applied to the measurement of carbon content in 24 bituminous coal samples. The results demonstrate that the proposed method has superior performance over the generally applied normalization methods. The average relative standard deviation was 3.21%, the coefficient of determination was 0.90, the root mean square error of prediction was 2.24%, and the average maximum relative error for the modified model was 12.18%, showing an overall improvement over the corresponding values for the normalization with segmental spectrum area, 6.00%, 0.75, 3.77%, and 15.40%, respectively.

  15. Use of ATR-FTIR spectroscopy coupled with chemometrics for the authentication of avocado oil in ternary mixtures with sunflower and soybean oils.

    PubMed

    Jiménez-Sotelo, Paola; Hernández-Martínez, Maylet; Osorio-Revilla, Guillermo; Meza-Márquez, Ofelia Gabriela; García-Ochoa, Felipe; Gallardo-Velázquez, Tzayhrí

    2016-07-01

    Avocado oil is a high-value and nutraceutical oil whose authentication is very important since the addition of low-cost oils could lower its beneficial properties. Mid-FTIR spectroscopy combined with chemometrics was used to detect and quantify adulteration of avocado oil with sunflower and soybean oils in a ternary mixture. Thirty-seven laboratory-prepared adulterated samples and 20 pure avocado oil samples were evaluated. The adulterated oil amount ranged from 2% to 50% (w/w) in avocado oil. A soft independent modelling class analogy (SIMCA) model was developed to discriminate between pure and adulterated samples. The model showed recognition and rejection rate of 100% and proper classification in external validation. A partial least square (PLS) algorithm was used to estimate the percentage of adulteration. The PLS model showed values of R(2) > 0.9961, standard errors of calibration (SEC) in the range of 0.3963-0.7881, standard errors of prediction (SEP estimated) between 0.6483 and 0.9707, and good prediction performances in external validation. The results showed that mid-FTIR spectroscopy could be an accurate and reliable technique for qualitative and quantitative analysis of avocado oil in ternary mixtures.

  16. Application of Multivariable Analysis and FTIR-ATR Spectroscopy to the Prediction of Properties in Campeche Honey

    PubMed Central

    Pat, Lucio; Ali, Bassam; Guerrero, Armando; Córdova, Atl V.; Garduza, José P.

    2016-01-01

    Attenuated total reflectance-Fourier transform infrared spectrometry and chemometrics model was used for determination of physicochemical properties (pH, redox potential, free acidity, electrical conductivity, moisture, total soluble solids (TSS), ash, and HMF) in honey samples. The reference values of 189 honey samples of different botanical origin were determined using Association Official Analytical Chemists, (AOAC), 1990; Codex Alimentarius, 2001, International Honey Commission, 2002, methods. Multivariate calibration models were built using partial least squares (PLS) for the measurands studied. The developed models were validated using cross-validation and external validation; several statistical parameters were obtained to determine the robustness of the calibration models: (PCs) optimum number of components principal, (SECV) standard error of cross-validation, (R 2 cal) coefficient of determination of cross-validation, (SEP) standard error of validation, and (R 2 val) coefficient of determination for external validation and coefficient of variation (CV). The prediction accuracy for pH, redox potential, electrical conductivity, moisture, TSS, and ash was good, while for free acidity and HMF it was poor. The results demonstrate that attenuated total reflectance-Fourier transform infrared spectrometry is a valuable, rapid, and nondestructive tool for the quantification of physicochemical properties of honey. PMID:28070445

  17. Real-Time Detector of Human Fatigue: Detecting Lapses in Alertness

    DTIC Science & Technology

    2008-02-15

    These coefficients and their variances, covariances and standard errors were computed simultaneously using HLM 6 (Raudenbush, Bryk, Cheong, & Congdon ...CA: Sage. Raudenbush, S. W., Bryk, A. S., Cheong, Y. F., & Congdon , R. T. (2004). HLM6: Hierarchical Linear and Nonlinear Modeling [Computer software

  18. Padé Approximant and Minimax Rational Approximation in Standard Cosmology

    NASA Astrophysics Data System (ADS)

    Zaninetti, Lorenzo

    2016-02-01

    The luminosity distance in the standard cosmology as given by $\\Lambda$CDM and consequently the distance modulus for supernovae can be defined by the Pad\\'e approximant. A comparison with a known analytical solution shows that the Pad\\'e approximant for the luminosity distance has an error of $4\\%$ at redshift $= 10$. A similar procedure for the Taylor expansion of the luminosity distance gives an error of $4\\%$ at redshift $=0.7 $; this means that for the luminosity distance, the Pad\\'e approximation is superior to the Taylor series. The availability of an analytical expression for the distance modulus allows applying the Levenberg--Marquardt method to derive the fundamental parameters from the available compilations for supernovae. A new luminosity function for galaxies derived from the truncated gamma probability density function models the observed luminosity function for galaxies when the observed range in absolute magnitude is modeled by the Pad\\'e approximant. A comparison of $\\Lambda$CDM with other cosmologies is done adopting a statistical point of view.

  19. Clinical implications and economic impact of accuracy differences among commercially available blood glucose monitoring systems.

    PubMed

    Budiman, Erwin S; Samant, Navendu; Resch, Ansgar

    2013-03-01

    Despite accuracy standards, there are performance differences among commercially available blood glucose monitoring (BGM) systems. The objective of this analysis was to assess the potential clinical and economic impact of accuracy differences of various BGM systems using a modeling approach. We simulated additional risk of hypoglycemia due to blood glucose (BG) measurement errors of five different BGM systems based on results of a real-world accuracy study, while retaining other sources of glycemic variability. Using data from published literature, we estimated an annual additional number of required medical interventions as a result of hypoglycemia. We based our calculations on patients with type 1 diabetes mellitus (T1DM) and T2DM requiring multiple daily injections (MDIs) of insulin in a U.S. health care system. We estimated additional costs attributable to treatment of severe hypoglycemic episodes resulting from BG measurement errors. Results from our model predict an annual difference of approximately 296,000 severe hypoglycemic episodes from BG measurement errors for T1DM (105,000 for T2DM MDI) patients for the estimated U.S. population of 958,800 T1DM and 1,353,600 T2DM MDI patients, using the least accurate BGM system versus patients using the most accurate system in a U.S. health care system. This resulted in additional direct costs of approximately $339 million for T1DM and approximately $121 million for T2DM MDI patients per year. Our analysis shows that error patterns over the operating range of BGM meter may lead to relevant clinical and economic outcome differences that may not be reflected in a common accuracy metric or standard. Further research is necessary to validate the findings of this model-based approach. © 2013 Diabetes Technology Society.

  20. A zero-augmented generalized gamma regression calibration to adjust for covariate measurement error: A case of an episodically consumed dietary intake

    PubMed Central

    Agogo, George O.

    2017-01-01

    Measurement error in exposure variables is a serious impediment in epidemiological studies that relate exposures to health outcomes. In nutritional studies, interest could be in the association between long-term dietary intake and disease occurrence. Long-term intake is usually assessed with food frequency questionnaire (FFQ), which is prone to recall bias. Measurement error in FFQ-reported intakes leads to bias in parameter estimate that quantifies the association. To adjust for bias in the association, a calibration study is required to obtain unbiased intake measurements using a short-term instrument such as 24-hour recall (24HR). The 24HR intakes are used as response in regression calibration to adjust for bias in the association. For foods not consumed daily, 24HR-reported intakes are usually characterized by excess zeroes, right skewness, and heteroscedasticity posing serious challenge in regression calibration modeling. We proposed a zero-augmented calibration model to adjust for measurement error in reported intake, while handling excess zeroes, skewness, and heteroscedasticity simultaneously without transforming 24HR intake values. We compared the proposed calibration method with the standard method and with methods that ignore measurement error by estimating long-term intake with 24HR and FFQ-reported intakes. The comparison was done in real and simulated datasets. With the 24HR, the mean increase in mercury level per ounce fish intake was about 0.4; with the FFQ intake, the increase was about 1.2. With both calibration methods, the mean increase was about 2.0. Similar trend was observed in the simulation study. In conclusion, the proposed calibration method performs at least as good as the standard method. PMID:27704599

  1. Methods for estimating the magnitude and frequency of peak streamflows at ungaged sites in and near the Oklahoma Panhandle

    USGS Publications Warehouse

    Smith, S. Jerrod; Lewis, Jason M.; Graves, Grant M.

    2015-09-28

    Generalized-least-squares multiple-linear regression analysis was used to formulate regression relations between peak-streamflow frequency statistics and basin characteristics. Contributing drainage area was the only basin characteristic determined to be statistically significant for all percentage of annual exceedance probabilities and was the only basin characteristic used in regional regression equations for estimating peak-streamflow frequency statistics on unregulated streams in and near the Oklahoma Panhandle. The regression model pseudo-coefficient of determination, converted to percent, for the Oklahoma Panhandle regional regression equations ranged from about 38 to 63 percent. The standard errors of prediction and the standard model errors for the Oklahoma Panhandle regional regression equations ranged from about 84 to 148 percent and from about 76 to 138 percent, respectively. These errors were comparable to those reported for regional peak-streamflow frequency regression equations for the High Plains areas of Texas and Colorado. The root mean square errors for the Oklahoma Panhandle regional regression equations (ranging from 3,170 to 92,000 cubic feet per second) were less than the root mean square errors for the Oklahoma statewide regression equations (ranging from 18,900 to 412,000 cubic feet per second); therefore, the Oklahoma Panhandle regional regression equations produce more accurate peak-streamflow statistic estimates for the irrigated period of record in the Oklahoma Panhandle than do the Oklahoma statewide regression equations. The regression equations developed in this report are applicable to streams that are not substantially affected by regulation, impoundment, or surface-water withdrawals. These regression equations are intended for use for stream sites with contributing drainage areas less than or equal to about 2,060 square miles, the maximum value for the independent variable used in the regression analysis.

  2. Reliability Analysis and Standardization of Spacecraft Command Generation Processes

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Grenander, Sven; Evensen, Ken

    2011-01-01

    center dot In order to reduce commanding errors that are caused by humans, we create an approach and corresponding artifacts for standardizing the command generation process and conducting risk management during the design and assurance of such processes. center dot The literature review conducted during the standardization process revealed that very few atomic level human activities are associated with even a broad set of missions. center dot Applicable human reliability metrics for performing these atomic level tasks are available. center dot The process for building a "Periodic Table" of Command and Control Functions as well as Probabilistic Risk Assessment (PRA) models is demonstrated. center dot The PRA models are executed using data from human reliability data banks. center dot The Periodic Table is related to the PRA models via Fault Links.

  3. Standardized Competencies for Parenteral Nutrition Prescribing: The American Society for Parenteral and Enteral Nutrition Model.

    PubMed

    Guenter, Peggi; Boullata, Joseph I; Ayers, Phil; Gervasio, Jane; Malone, Ainsley; Raymond, Erica; Holcombe, Beverly; Kraft, Michael; Sacks, Gordon; Seres, David

    2015-08-01

    Parenteral nutrition (PN) provision is complex, as it is a high-alert medication and prone to a variety of potential errors. With changes in clinical practice models and recent federal rulings, the number of PN prescribers may be increasing. Safe prescribing of this therapy requires that competency for prescribers from all disciplines be demonstrated using a standardized process. A standardized model for PN prescribing competency is proposed based on a competency framework, the American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.)-published interdisciplinary core competencies, safe practice recommendations, and clinical guidelines. This framework will guide institutions and agencies in developing and maintaining competency for safe PN prescription by their staff. © 2015 American Society for Parenteral and Enteral Nutrition.

  4. Economic Value of Improved Accuracy for Self-Monitoring of Blood Glucose Devices for Type 1 and Type 2 Diabetes in England.

    PubMed

    McQueen, Robert Brett; Breton, Marc D; Craig, Joyce; Holmes, Hayden; Whittington, Melanie D; Ott, Markus A; Campbell, Jonathan D

    2018-04-01

    The objective was to model clinical and economic outcomes of self-monitoring blood glucose (SMBG) devices with varying error ranges and strip prices for type 1 and insulin-treated type 2 diabetes patients in England. We programmed a simulation model that included separate risk and complication estimates by type of diabetes and evidence from in silico modeling validated by the Food and Drug Administration. Changes in SMBG error were associated with changes in hemoglobin A1c (HbA1c) and separately, changes in hypoglycemia. Markov cohort simulation estimated clinical and economic outcomes. A SMBG device with 8.4% error and strip price of £0.30 (exceeding accuracy requirements by International Organization for Standardization [ISO] 15197:2013/EN ISO 15197:2015) was compared to a device with 15% error (accuracy meeting ISO 15197:2013/EN ISO 15197:2015) and price of £0.20. Outcomes were lifetime costs, quality-adjusted life years (QALYs) and incremental cost-effectiveness ratios (ICERs). With SMBG errors associated with changes in HbA1c only, the ICER was £3064 per QALY in type 1 diabetes and £264 668 per QALY in insulin-treated type 2 diabetes for an SMBG device with 8.4% versus 15% error. With SMBG errors associated with hypoglycemic events only, the device exceeding accuracy requirements was cost-saving and more effective in insulin-treated type 1 and type 2 diabetes. Investment in devices with higher strip prices but improved accuracy (less error) appears to be an efficient strategy for insulin-treated diabetes patients at high risk of severe hypoglycemia.

  5. Unmodeled observation error induces bias when inferring patterns and dynamics of species occurrence via aural detections

    USGS Publications Warehouse

    McClintock, Brett T.; Bailey, Larissa L.; Pollock, Kenneth H.; Simons, Theodore R.

    2010-01-01

    The recent surge in the development and application of species occurrence models has been associated with an acknowledgment among ecologists that species are detected imperfectly due to observation error. Standard models now allow unbiased estimation of occupancy probability when false negative detections occur, but this is conditional on no false positive detections and sufficient incorporation of explanatory variables for the false negative detection process. These assumptions are likely reasonable in many circumstances, but there is mounting evidence that false positive errors and detection probability heterogeneity may be much more prevalent in studies relying on auditory cues for species detection (e.g., songbird or calling amphibian surveys). We used field survey data from a simulated calling anuran system of known occupancy state to investigate the biases induced by these errors in dynamic models of species occurrence. Despite the participation of expert observers in simplified field conditions, both false positive errors and site detection probability heterogeneity were extensive for most species in the survey. We found that even low levels of false positive errors, constituting as little as 1% of all detections, can cause severe overestimation of site occupancy, colonization, and local extinction probabilities. Further, unmodeled detection probability heterogeneity induced substantial underestimation of occupancy and overestimation of colonization and local extinction probabilities. Completely spurious relationships between species occurrence and explanatory variables were also found. Such misleading inferences would likely have deleterious implications for conservation and management programs. We contend that all forms of observation error, including false positive errors and heterogeneous detection probabilities, must be incorporated into the estimation framework to facilitate reliable inferences about occupancy and its associated vital rate parameters.

  6. On the application of photogrammetry to the fitting of jawbone-anchored bridges.

    PubMed

    Strid, K G

    1985-01-01

    Misfit between a jawbone-anchored bridge and the abutments in the patient's jaw may result in, for example, fixture fracture. To achieve improved alignment, the bridge base could be prepared in a numerically-controlled tooling machine using measured abutment coordinates as primary data. For each abutment, the measured values must comprise the coordinates of a reference surface as well as the spatial orientation of the fixture/abutment longitudinal axis. Stereophotogrammetry was assumed to be the measuring method of choice. To assess its potentials, a lower-jaw model with accurately positioned signals was stereophotographed and the films were measured in a stereocomparator. Model-space coordinates, computed from the image coordinates, were compared to the known signal coordinates. The root-mean-square error in position was determined to 0.03-0.08 mm, the maximum individual error amounting to 0.12 mm, whereas the r. m. s. error in axis direction was found to be 0.5-1.5 degrees with a maximum individual error of 1.8 degrees. These errors are of the same order as can be achieved by careful impression techniques. The method could be useful, but because of its complexity, stereophotogrammetry is not recommended as a standard procedure.

  7. Evaluation of Acoustic Doppler Current Profiler measurements of river discharge

    USGS Publications Warehouse

    Morlock, S.E.

    1996-01-01

    The standard deviations of the ADCP measurements ranged from approximately 1 to 6 percent and were generally higher than the measurement errors predicted by error-propagation analysis of ADCP instrument performance. These error-prediction methods assume that the largest component of ADCP discharge measurement error is instrument related. The larger standard deviations indicate that substantial portions of measurement error may be attributable to sources unrelated to ADCP electronics or signal processing and are functions of the field environment.

  8. Increasing point-count duration increases standard error

    USGS Publications Warehouse

    Smith, W.P.; Twedt, D.J.; Hamel, P.B.; Ford, R.P.; Wiedenfeld, D.A.; Cooper, R.J.

    1998-01-01

    We examined data from point counts of varying duration in bottomland forests of west Tennessee and the Mississippi Alluvial Valley to determine if counting interval influenced sampling efficiency. Estimates of standard error increased as point count duration increased both for cumulative number of individuals and species in both locations. Although point counts appear to yield data with standard errors proportional to means, a square root transformation of the data may stabilize the variance. Using long (>10 min) point counts may reduce sample size and increase sampling error, both of which diminish statistical power and thereby the ability to detect meaningful changes in avian populations.

  9. Goldmann tonometer error correcting prism: clinical evaluation.

    PubMed

    McCafferty, Sean; Lim, Garrett; Duncan, William; Enikov, Eniko T; Schwiegerling, Jim; Levine, Jason; Kew, Corin

    2017-01-01

    Clinically evaluate a modified applanating surface Goldmann tonometer prism designed to substantially negate errors due to patient variability in biomechanics. A modified Goldmann prism with a correcting applanation tonometry surface (CATS) was mathematically optimized to minimize the intraocular pressure (IOP) measurement error due to patient variability in corneal thickness, stiffness, curvature, and tear film adhesion force. A comparative clinical study of 109 eyes measured IOP with CATS and Goldmann prisms. The IOP measurement differences between the CATS and Goldmann prisms were correlated to corneal thickness, hysteresis, and curvature. The CATS tonometer prism in correcting for Goldmann central corneal thickness (CCT) error demonstrated a reduction to <±2 mmHg in 97% of a standard CCT population. This compares to only 54% with CCT error <±2 mmHg using the Goldmann prism. Equal reductions of ~50% in errors due to corneal rigidity and curvature were also demonstrated. The results validate the CATS prism's improved accuracy and expected reduced sensitivity to Goldmann errors without IOP bias as predicted by mathematical modeling. The CATS replacement for the Goldmann prism does not change Goldmann measurement technique or interpretation.

  10. Error Consistency Analysis Scheme for Infrared Ultraspectral Sounding Retrieval Error Budget Estimation

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, Larry, L.

    2013-01-01

    Great effort has been devoted towards validating geophysical parameters retrieved from ultraspectral infrared radiances obtained from satellite remote sensors. An error consistency analysis scheme (ECAS), utilizing fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of mean difference and standard deviation of error in both spectral radiance and retrieval domains. The retrieval error is assessed through ECAS without relying on other independent measurements such as radiosonde data. ECAS establishes a link between the accuracies of radiances and retrieved geophysical parameters. ECAS can be applied to measurements from any ultraspectral instrument and any retrieval scheme with its associated RTM. In this manuscript, ECAS is described and demonstrated with measurements from the MetOp-A satellite Infrared Atmospheric Sounding Interferometer (IASI). This scheme can be used together with other validation methodologies to give a more definitive characterization of the error and/or uncertainty of geophysical parameters retrieved from ultraspectral radiances observed from current and future satellite remote sensors such as IASI, the Atmospheric Infrared Sounder (AIRS), and the Cross-track Infrared Sounder (CrIS).

  11. Maintaining tumor targeting accuracy in real-time motion compensation systems for respiration-induced tumor motion

    PubMed Central

    Malinowski, Kathleen; McAvoy, Thomas J.; George, Rohini; Dieterich, Sonja; D’Souza, Warren D.

    2013-01-01

    Purpose: To determine how best to time respiratory surrogate-based tumor motion model updates by comparing a novel technique based on external measurements alone to three direct measurement methods. Methods: Concurrently measured tumor and respiratory surrogate positions from 166 treatment fractions for lung or pancreas lesions were analyzed. Partial-least-squares regression models of tumor position from marker motion were created from the first six measurements in each dataset. Successive tumor localizations were obtained at a rate of once per minute on average. Model updates were timed according to four methods: never, respiratory surrogate-based (when metrics based on respiratory surrogate measurements exceeded confidence limits), error-based (when localization error ≥3 mm), and always (approximately once per minute). Results: Radial tumor displacement prediction errors (mean ± standard deviation) for the four schema described above were 2.4 ± 1.2, 1.9 ± 0.9, 1.9 ± 0.8, and 1.7 ± 0.8 mm, respectively. The never-update error was significantly larger than errors of the other methods. Mean update counts over 20 min were 0, 4, 9, and 24, respectively. Conclusions: The same improvement in tumor localization accuracy could be achieved through any of the three update methods, but significantly fewer updates were required when the respiratory surrogate method was utilized. This study establishes the feasibility of timing image acquisitions for updating respiratory surrogate models without direct tumor localization. PMID:23822413

  12. Biases and Standard Errors of Standardized Regression Coefficients

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Chan, Wai

    2011-01-01

    The paper obtains consistent standard errors (SE) and biases of order O(1/n) for the sample standardized regression coefficients with both random and given predictors. Analytical results indicate that the formulas for SEs given in popular text books are consistent only when the population value of the regression coefficient is zero. The sample…

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Jennifer F.; Clifton, Andrew

    Currently, cup anemometers on meteorological towers are used to measure wind speeds and turbulence intensity to make decisions about wind turbine class and site suitability; however, as modern turbine hub heights increase and wind energy expands to complex and remote sites, it becomes more difficult and costly to install meteorological towers at potential sites. As a result, remote-sensing devices (e.g., lidars) are now commonly used by wind farm managers and researchers to estimate the flow field at heights spanned by a turbine. Although lidars can accurately estimate mean wind speeds and wind directions, there is still a large amount ofmore » uncertainty surrounding the measurement of turbulence using these devices. Errors in lidar turbulence estimates are caused by a variety of factors, including instrument noise, volume averaging, and variance contamination, in which the magnitude of these factors is highly dependent on measurement height and atmospheric stability. As turbulence has a large impact on wind power production, errors in turbulence measurements will translate into errors in wind power prediction. The impact of using lidars rather than cup anemometers for wind power prediction must be understood if lidars are to be considered a viable alternative to cup anemometers.In this poster, the sensitivity of power prediction error to typical lidar turbulence measurement errors is assessed. Turbulence estimates from a vertically profiling WINDCUBE v2 lidar are compared to high-resolution sonic anemometer measurements at field sites in Oklahoma and Colorado to determine the degree of lidar turbulence error that can be expected under different atmospheric conditions. These errors are then incorporated into a power prediction model to estimate the sensitivity of power prediction error to turbulence measurement error. Power prediction models, including the standard binning method and a random forest method, were developed using data from the aeroelastic simulator FAST for a 1.5 MW turbine. The impact of lidar turbulence error on the predicted power from these different models is examined to determine the degree of turbulence measurement accuracy needed for accurate power prediction.« less

  14. Galilean-invariant preconditioned central-moment lattice Boltzmann method without cubic velocity errors for efficient steady flow simulations

    NASA Astrophysics Data System (ADS)

    Hajabdollahi, Farzaneh; Premnath, Kannan N.

    2018-05-01

    Lattice Boltzmann (LB) models used for the computation of fluid flows represented by the Navier-Stokes (NS) equations on standard lattices can lead to non-Galilean-invariant (GI) viscous stress involving cubic velocity errors. This arises from the dependence of their third-order diagonal moments on the first-order moments for standard lattices, and strategies have recently been introduced to restore Galilean invariance without such errors using a modified collision operator involving corrections to either the relaxation times or the moment equilibria. Convergence acceleration in the simulation of steady flows can be achieved by solving the preconditioned NS equations, which contain a preconditioning parameter that can be used to tune the effective sound speed, and thereby alleviating the numerical stiffness. In the present paper, we present a GI formulation of the preconditioned cascaded central-moment LB method used to solve the preconditioned NS equations, which is free of cubic velocity errors on a standard lattice, for steady flows. A Chapman-Enskog analysis reveals the structure of the spurious non-GI defect terms and it is demonstrated that the anisotropy of the resulting viscous stress is dependent on the preconditioning parameter, in addition to the fluid velocity. It is shown that partial correction to eliminate the cubic velocity defects is achieved by scaling the cubic velocity terms in the off-diagonal third-order moment equilibria with the square of the preconditioning parameter. Furthermore, we develop additional corrections based on the extended moment equilibria involving gradient terms with coefficients dependent locally on the fluid velocity and the preconditioning parameter. Such parameter dependent corrections eliminate the remaining truncation errors arising from the degeneracy of the diagonal third-order moments and fully restore Galilean invariance without cubic defects for the preconditioned LB scheme on a standard lattice. Several conclusions are drawn from the analysis of the structure of the non-GI errors and the associated corrections, with particular emphasis on their dependence on the preconditioning parameter. The GI preconditioned central-moment LB method is validated for a number of complex flow benchmark problems and its effectiveness to achieve convergence acceleration and improvement in accuracy is demonstrated.

  15. Thermodynamics of Anharmonic Systems: Uncoupled Mode Approximations for Molecules

    DOE PAGES

    Li, Yi-Pei; Bell, Alexis T.; Head-Gordon, Martin

    2016-05-26

    The partition functions, heat capacities, entropies, and enthalpies of selected molecules were calculated using uncoupled mode (UM) approximations, where the full-dimensional potential energy surface for internal motions was modeled as a sum of independent one-dimensional potentials for each mode. The computational cost of such approaches scales the same with molecular size as standard harmonic oscillator vibrational analysis using harmonic frequencies (HO hf). To compute thermodynamic properties, a computational protocol for obtaining the energy levels of each mode was established. The accuracy of the UM approximation depends strongly on how the one-dimensional potentials of each modes are defined. If the potentialsmore » are determined by the energy as a function of displacement along each normal mode (UM-N), the accuracies of the calculated thermodynamic properties are not significantly improved versus the HO hf model. Significant improvements can be achieved by constructing potentials for internal rotations and vibrations using the energy surfaces along the torsional coordinates and the remaining vibrational normal modes, respectively (UM-VT). For hydrogen peroxide and its isotopologs at 300 K, UM-VT captures more than 70% of the partition functions on average. By con trast, the HO hf model and UM-N can capture no more than 50%. For a selected test set of C2 to C8 linear and branched alkanes and species with different moieties, the enthalpies calculated using the HO hf model, UM-N, and UM-VT are all quite accurate comparing with reference values though the RMS errors of the HO model and UM-N are slightly higher than UM-VT. However, the accuracies in entropy calculations differ significantly between these three models. For the same test set, the RMS error of the standard entropies calculated by UM-VT is 2.18 cal mol -1 K -1 at 1000 K. By contrast, the RMS error obtained using the HO model and UM-N are 6.42 and 5.73 cal mol -1 K -1, respectively. For a test set composed of nine alkanes ranging from C5 to C8, the heat capacities calculated with the UM-VT model agree with the experimental values to within a RMS error of 0.78 cal mol -1 K -1 , which is less than one-third of the RMS error of the HO hf (2.69 cal mol -1 K -1) and UM-N (2.41 cal mol -1 K -1) models.« less

  16. Functional Mixed Effects Model for Small Area Estimation.

    PubMed

    Maiti, Tapabrata; Sinha, Samiran; Zhong, Ping-Shou

    2016-09-01

    Functional data analysis has become an important area of research due to its ability of handling high dimensional and complex data structures. However, the development is limited in the context of linear mixed effect models, and in particular, for small area estimation. The linear mixed effect models are the backbone of small area estimation. In this article, we consider area level data, and fit a varying coefficient linear mixed effect model where the varying coefficients are semi-parametrically modeled via B-splines. We propose a method of estimating the fixed effect parameters and consider prediction of random effects that can be implemented using a standard software. For measuring prediction uncertainties, we derive an analytical expression for the mean squared errors, and propose a method of estimating the mean squared errors. The procedure is illustrated via a real data example, and operating characteristics of the method are judged using finite sample simulation studies.

  17. Comparison of Low Cost Photogrammetric Survey with Tls and Leica Pegasus Backpack 3d Modelss

    NASA Astrophysics Data System (ADS)

    Masiero, A.; Fissore, F.; Guarnieri, A.; Piragnolo, M.; Vettore, A.

    2017-11-01

    This paper considers Leica backpack and photogrammetric surveys of a mediaeval bastion in Padua, Italy. Furhtermore, terrestrial laser scanning (TLS) survey is considered in order to provide a state of the art reconstruction of the bastion. Despite control points are typically used to avoid deformations in photogrammetric surveys and ensure correct scaling of the reconstruction, in this paper a different approach is considered: this work is part of a project aiming at the development of a system exploiting ultra-wide band (UWB) devices to provide correct scaling of the reconstruction. In particular, low cost Pozyx UWB devices are used to estimate camera positions during image acquisitions. Then, in order to obtain a metric reconstruction, scale factor in the photogrammetric survey is estimated by comparing camera positions obtained from UWB measurements with those obtained from photogrammetric reconstruction. Compared with the TLS survey, the considered photogrammetric model of the bastion results in a RMSE of 21.9cm, average error 13.4cm, and standard deviation 13.5cm. Excluding the final part of the bastion left wing, where the presence of several poles make reconstruction more difficult, (RMSE) fitting error is 17.3cm, average error 11.5cm, and standard deviation 9.5cm. Instead, comparison of Leica backpack and TLS surveys leads to an average error of 4.7cm and standard deviation 0.6cm (4.2cm and 0.3cm, respectively, by excluding the final part of the left wing).

  18. Documenting Models for Interoperability and Reusability ...

    EPA Pesticide Factsheets

    Many modeling frameworks compartmentalize science via individual models that link sets of small components to create larger modeling workflows. Developing integrated watershed models increasingly requires coupling multidisciplinary, independent models, as well as collaboration between scientific communities, since component-based modeling can integrate models from different disciplines. Integrated Environmental Modeling (IEM) systems focus on transferring information between components by capturing a conceptual site model; establishing local metadata standards for input/output of models and databases; managing data flow between models and throughout the system; facilitating quality control of data exchanges (e.g., checking units, unit conversions, transfers between software languages); warning and error handling; and coordinating sensitivity/uncertainty analyses. Although many computational software systems facilitate communication between, and execution of, components, there are no common approaches, protocols, or standards for turn-key linkages between software systems and models, especially if modifying components is not the intent. Using a standard ontology, this paper reviews how models can be described for discovery, understanding, evaluation, access, and implementation to facilitate interoperability and reusability. In the proceedings of the International Environmental Modelling and Software Society (iEMSs), 8th International Congress on Environmental Mod

  19. Use of Two-Part Regression Calibration Model to Correct for Measurement Error in Episodically Consumed Foods in a Single-Replicate Study Design: EPIC Case Study

    PubMed Central

    Agogo, George O.; van der Voet, Hilko; Veer, Pieter van’t; Ferrari, Pietro; Leenders, Max; Muller, David C.; Sánchez-Cantalejo, Emilio; Bamia, Christina; Braaten, Tonje; Knüppel, Sven; Johansson, Ingegerd; van Eeuwijk, Fred A.; Boshuizen, Hendriek

    2014-01-01

    In epidemiologic studies, measurement error in dietary variables often attenuates association between dietary intake and disease occurrence. To adjust for the attenuation caused by error in dietary intake, regression calibration is commonly used. To apply regression calibration, unbiased reference measurements are required. Short-term reference measurements for foods that are not consumed daily contain excess zeroes that pose challenges in the calibration model. We adapted two-part regression calibration model, initially developed for multiple replicates of reference measurements per individual to a single-replicate setting. We showed how to handle excess zero reference measurements by two-step modeling approach, how to explore heteroscedasticity in the consumed amount with variance-mean graph, how to explore nonlinearity with the generalized additive modeling (GAM) and the empirical logit approaches, and how to select covariates in the calibration model. The performance of two-part calibration model was compared with the one-part counterpart. We used vegetable intake and mortality data from European Prospective Investigation on Cancer and Nutrition (EPIC) study. In the EPIC, reference measurements were taken with 24-hour recalls. For each of the three vegetable subgroups assessed separately, correcting for error with an appropriately specified two-part calibration model resulted in about three fold increase in the strength of association with all-cause mortality, as measured by the log hazard ratio. Further found is that the standard way of including covariates in the calibration model can lead to over fitting the two-part calibration model. Moreover, the extent of adjusting for error is influenced by the number and forms of covariates in the calibration model. For episodically consumed foods, we advise researchers to pay special attention to response distribution, nonlinearity, and covariate inclusion in specifying the calibration model. PMID:25402487

  20. [Influence of Spectral Pre-Processing on PLS Quantitative Model of Detecting Cu in Navel Orange by LIBS].

    PubMed

    Li, Wen-bing; Yao, Lin-tao; Liu, Mu-hua; Huang, Lin; Yao, Ming-yin; Chen, Tian-bing; He, Xiu-wen; Yang, Ping; Hu, Hui-qin; Nie, Jiang-hui

    2015-05-01

    Cu in navel orange was detected rapidly by laser-induced breakdown spectroscopy (LIBS) combined with partial least squares (PLS) for quantitative analysis, then the effect on the detection accuracy of the model with different spectral data ptetreatment methods was explored. Spectral data for the 52 Gannan navel orange samples were pretreated by different data smoothing, mean centralized and standard normal variable transform. Then 319~338 nm wavelength section containing characteristic spectral lines of Cu was selected to build PLS models, the main evaluation indexes of models such as regression coefficient (r), root mean square error of cross validation (RMSECV) and the root mean square error of prediction (RMSEP) were compared and analyzed. Three indicators of PLS model after 13 points smoothing and processing of the mean center were found reaching 0. 992 8, 3. 43 and 3. 4 respectively, the average relative error of prediction model is only 5. 55%, and in one word, the quality of calibration and prediction of this model are the best results. The results show that selecting the appropriate data pre-processing method, the prediction accuracy of PLS quantitative model of fruits and vegetables detected by LIBS can be improved effectively, providing a new method for fast and accurate detection of fruits and vegetables by LIBS.

  1. Robust Mean and Covariance Structure Analysis through Iteratively Reweighted Least Squares.

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Bentler, Peter M.

    2000-01-01

    Adapts robust schemes to mean and covariance structures, providing an iteratively reweighted least squares approach to robust structural equation modeling. Each case is weighted according to its distance, based on first and second order moments. Test statistics and standard error estimators are given. (SLD)

  2. Data Combination and Instrumental Variables in Linear Models

    ERIC Educational Resources Information Center

    Khawand, Christopher

    2012-01-01

    Instrumental variables (IV) methods allow for consistent estimation of causal effects, but suffer from poor finite-sample properties and data availability constraints. IV estimates also tend to have relatively large standard errors, often inhibiting the interpretability of differences between IV and non-IV point estimates. Lastly, instrumental…

  3. An algebraic aspect of Pareto mixture parameter estimation using censored sample: A Bayesian approach.

    PubMed

    Saleem, Muhammad; Sharif, Kashif; Fahmi, Aliya

    2018-04-27

    Applications of Pareto distribution are common in reliability, survival and financial studies. In this paper, A Pareto mixture distribution is considered to model a heterogeneous population comprising of two subgroups. Each of two subgroups is characterized by the same functional form with unknown distinct shape and scale parameters. Bayes estimators have been derived using flat and conjugate priors using squared error loss function. Standard errors have also been derived for the Bayes estimators. An interesting feature of this study is the preparation of components of Fisher Information matrix.

  4. On the error statistics of Viterbi decoding and the performance of concatenated codes

    NASA Technical Reports Server (NTRS)

    Miller, R. L.; Deutsch, L. J.; Butman, S. A.

    1981-01-01

    Computer simulation results are presented on the performance of convolutional codes of constraint lengths 7 and 10 concatenated with the (255, 223) Reed-Solomon code (a proposed NASA standard). These results indicate that as much as 0.8 dB can be gained by concatenating this Reed-Solomon code with a (10, 1/3) convolutional code, instead of the (7, 1/2) code currently used by the DSN. A mathematical model of Viterbi decoder burst-error statistics is developed and is validated through additional computer simulations.

  5. Data Assimilation in the Presence of Forecast Bias: The GEOS Moisture Analysis

    NASA Technical Reports Server (NTRS)

    Dee, Dick P.; Todling, Ricardo

    1999-01-01

    We describe the application of the unbiased sequential analysis algorithm developed by Dee and da Silva (1998) to the GEOS DAS moisture analysis. The algorithm estimates the persistent component of model error using rawinsonde observations and adjusts the first-guess moisture field accordingly. Results of two seasonal data assimilation cycles show that moisture analysis bias is almost completely eliminated in all observed regions. The improved analyses cause a sizable reduction in the 6h-forecast bias and a marginal improvement in the error standard deviations.

  6. An emerging network storage management standard: Media error monitoring and reporting information (MEMRI) - to determine optical tape data integrity

    NASA Technical Reports Server (NTRS)

    Podio, Fernando; Vollrath, William; Williams, Joel; Kobler, Ben; Crouse, Don

    1998-01-01

    Sophisticated network storage management applications are rapidly evolving to satisfy a market demand for highly reliable data storage systems with large data storage capacities and performance requirements. To preserve a high degree of data integrity, these applications must rely on intelligent data storage devices that can provide reliable indicators of data degradation. Error correction activity generally occurs within storage devices without notification to the host. Early indicators of degradation and media error monitoring 333 and reporting (MEMR) techniques implemented in data storage devices allow network storage management applications to notify system administrators of these events and to take appropriate corrective actions before catastrophic errors occur. Although MEMR techniques have been implemented in data storage devices for many years, until 1996 no MEMR standards existed. In 1996 the American National Standards Institute (ANSI) approved the only known (world-wide) industry standard specifying MEMR techniques to verify stored data on optical disks. This industry standard was developed under the auspices of the Association for Information and Image Management (AIIM). A recently formed AIIM Optical Tape Subcommittee initiated the development of another data integrity standard specifying a set of media error monitoring tools and media error monitoring information (MEMRI) to verify stored data on optical tape media. This paper discusses the need for intelligent storage devices that can provide data integrity metadata, the content of the existing data integrity standard for optical disks, and the content of the MEMRI standard being developed by the AIIM Optical Tape Subcommittee.

  7. Statistical power for detecting trends with applications to seabird monitoring

    USGS Publications Warehouse

    Hatch, Shyla A.

    2003-01-01

    Power analysis is helpful in defining goals for ecological monitoring and evaluating the performance of ongoing efforts. I examined detection standards proposed for population monitoring of seabirds using two programs (MONITOR and TRENDS) specially designed for power analysis of trend data. Neither program models within- and among-years components of variance explicitly and independently, thus an error term that incorporates both components is an essential input. Residual variation in seabird counts consisted of day-to-day variation within years and unexplained variation among years in approximately equal parts. The appropriate measure of error for power analysis is the standard error of estimation (S.E.est) from a regression of annual means against year. Replicate counts within years are helpful in minimizing S.E.est but should not be treated as independent samples for estimating power to detect trends. Other issues include a choice of assumptions about variance structure and selection of an exponential or linear model of population change. Seabird count data are characterized by strong correlations between S.D. and mean, thus a constant CV model is appropriate for power calculations. Time series were fit about equally well with exponential or linear models, but log transformation ensures equal variances over time, a basic assumption of regression analysis. Using sample data from seabird monitoring in Alaska, I computed the number of years required (with annual censusing) to detect trends of -1.4% per year (50% decline in 50 years) and -2.7% per year (50% decline in 25 years). At ??=0.05 and a desired power of 0.9, estimated study intervals ranged from 11 to 69 years depending on species, trend, software, and study design. Power to detect a negative trend of 6.7% per year (50% decline in 10 years) is suggested as an alternative standard for seabird monitoring that achieves a reasonable match between statistical and biological significance.

  8. Rapid Detection of Volatile Oil in Mentha haplocalyx by Near-Infrared Spectroscopy and Chemometrics.

    PubMed

    Yan, Hui; Guo, Cheng; Shao, Yang; Ouyang, Zhen

    2017-01-01

    Near-infrared spectroscopy combined with partial least squares regression (PLSR) and support vector machine (SVM) was applied for the rapid determination of chemical component of volatile oil content in Mentha haplocalyx . The effects of data pre-processing methods on the accuracy of the PLSR calibration models were investigated. The performance of the final model was evaluated according to the correlation coefficient ( R ) and root mean square error of prediction (RMSEP). For PLSR model, the best preprocessing method combination was first-order derivative, standard normal variate transformation (SNV), and mean centering, which had of 0.8805, of 0.8719, RMSEC of 0.091, and RMSEP of 0.097, respectively. The wave number variables linking to volatile oil are from 5500 to 4000 cm-1 by analyzing the loading weights and variable importance in projection (VIP) scores. For SVM model, six LVs (less than seven LVs in PLSR model) were adopted in model, and the result was better than PLSR model. The and were 0.9232 and 0.9202, respectively, with RMSEC and RMSEP of 0.084 and 0.082, respectively, which indicated that the predicted values were accurate and reliable. This work demonstrated that near infrared reflectance spectroscopy with chemometrics could be used to rapidly detect the main content volatile oil in M. haplocalyx . The quality of medicine directly links to clinical efficacy, thus, it is important to control the quality of Mentha haplocalyx . Near-infrared spectroscopy combined with partial least squares regression (PLSR) and support vector machine (SVM) was applied for the rapid determination of chemical component of volatile oil content in Mentha haplocalyx . For SVM model, 6 LVs (less than 7 LVs in PLSR model) were adopted in model, and the result was better than PLSR model. It demonstrated that near infrared reflectance spectroscopy with chemometrics could be used to rapidly detect the main content volatile oil in Mentha haplocalyx . Abbreviations used: 1 st der: First-order derivative; 2 nd der: Second-order derivative; LOO: Leave-one-out; LVs: Latent variables; MC: Mean centering, NIR: Near-infrared; NIRS: Near infrared spectroscopy; PCR: Principal component regression, PLSR: Partial least squares regression; RBF: Radial basis function; RMSEC: Root mean square error of cross validation, RMSEC: Root mean square error of calibration; RMSEP: Root mean square error of prediction; SNV: Standard normal variate transformation; SVM: Support vector machine; VIP: Variable Importance in projection.

  9. Frame error rate for single-hop and dual-hop transmissions in 802.15.4 LoWPANs

    NASA Astrophysics Data System (ADS)

    Biswas, Sankalita; Ghosh, Biswajit; Chandra, Aniruddha; Dhar Roy, Sanjay

    2017-08-01

    IEEE 802.15.4 is a popular standard for personal area networks used in different low-rate short-range applications. This paper examines the error rate performance of 802.15.4 in fading wireless channel. An analytical model is formulated for evaluating frame error rate (FER); first, for direct single-hop transmission between two sensor nodes, and second, for dual-hop (DH) transmission using an in-between relay node. During modeling the transceiver design parameters are chosen according to the specifications set for both the 2.45 GHz and 868/915 MHz bands. We have also developed a simulation test bed for evaluating FER. Some results showed expected trends, such as FER is higher for larger payloads. Other observations are not that intuitive. It is interesting to note that the error rates are significantly higher for the DH case and demands a signal-to-noise ratio (SNR) penalty of about 7 dB. Also, the FER shoots from zero to one within a very small range of SNR.

  10. Parametric models to compute tryptophan fluorescence wavelengths from classical protein simulations.

    PubMed

    Lopez, Alvaro J; Martínez, Leandro

    2018-02-26

    Fluorescence spectroscopy is an important method to study protein conformational dynamics and solvation structures. Tryptophan (Trp) residues are the most important and practical intrinsic probes for protein fluorescence due to the variability of their fluorescence wavelengths: Trp residues emit in wavelengths ranging from 308 to 360 nm depending on the local molecular environment. Fluorescence involves electronic transitions, thus its computational modeling is a challenging task. We show that it is possible to predict the wavelength of emission of a Trp residue from classical molecular dynamics simulations by computing the solvent-accessible surface area or the electrostatic interaction between the indole group and the rest of the system. Linear parametric models are obtained to predict the maximum emission wavelengths with standard errors of the order 5 nm. In a set of 19 proteins with emission wavelengths ranging from 308 to 352 nm, the best model predicts the maximum wavelength of emission with a standard error of 4.89 nm and a quadratic Pearson correlation coefficient of 0.81. These models can be used for the interpretation of fluorescence spectra of proteins with multiple Trp residues, or for which local Trp environmental variability exists and can be probed by classical molecular dynamics simulations. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  11. Perceptions and Efficacy of Flight Operational Quality Assurance (FOQA) Programs Among Small-scale Operators

    DTIC Science & Technology

    2012-01-01

    regressive Integrated Moving Average ( ARIMA ) model for the data, eliminating the need to identify an appropriate model through trial and error alone...06 .11 13.67 16 .62 16 .14 .11 8.06 16 .95 * Based on the asymptotic chi-square approximation. 8 In general, ARIMA models address three...performance standards and measurement processes and a prevailing climate of organizational trust were important factors. Unfortunately, uneven

  12. Neutrinos help reconcile Planck measurements with the local universe.

    PubMed

    Wyman, Mark; Rudd, Douglas H; Vanderveld, R Ali; Hu, Wayne

    2014-02-07

    Current measurements of the low and high redshift Universe are in tension if we restrict ourselves to the standard six-parameter model of flat ΛCDM. This tension has two parts. First, the Planck satellite data suggest a higher normalization of matter perturbations than local measurements of galaxy clusters. Second, the expansion rate of the Universe today, H0, derived from local distance-redshift measurements is significantly higher than that inferred using the acoustic scale in galaxy surveys and the Planck data as a standard ruler. The addition of a sterile neutrino species changes the acoustic scale and brings the two into agreement; meanwhile, adding mass to the active neutrinos or to a sterile neutrino can suppress the growth of structure, bringing the cluster data into better concordance as well. For our fiducial data set combination, with statistical errors for clusters, a model with a massive sterile neutrino shows 3.5σ evidence for a nonzero mass and an even stronger rejection of the minimal model. A model with massive active neutrinos and a massless sterile neutrino is similarly preferred. An eV-scale sterile neutrino mass--of interest for short baseline and reactor anomalies--is well within the allowed range. We caution that (i) unknown astrophysical systematic errors in any of the data sets could weaken this conclusion, but they would need to be several times the known errors to eliminate the tensions entirely; (ii) the results we find are at some variance with analyses that do not include cluster measurements; and (iii) some tension remains among the data sets even when new neutrino physics is included.

  13. Chemical Source Inversion using Assimilated Constituent Observations in an Idealized Two-dimensional System

    NASA Technical Reports Server (NTRS)

    Tangborn, Andrew; Cooper, Robert; Pawson, Steven; Sun, Zhibin

    2009-01-01

    We present a source inversion technique for chemical constituents that uses assimilated constituent observations rather than directly using the observations. The method is tested with a simple model problem, which is a two-dimensional Fourier-Galerkin transport model combined with a Kalman filter for data assimilation. Inversion is carried out using a Green's function method and observations are simulated from a true state with added Gaussian noise. The forecast state uses the same spectral spectral model, but differs by an unbiased Gaussian model error, and emissions models with constant errors. The numerical experiments employ both simulated in situ and satellite observation networks. Source inversion was carried out by either direct use of synthetically generated observations with added noise, or by first assimilating the observations and using the analyses to extract observations. We have conducted 20 identical twin experiments for each set of source and observation configurations, and find that in the limiting cases of a very few localized observations, or an extremely large observation network there is little advantage to carrying out assimilation first. However, in intermediate observation densities, there decreases in source inversion error standard deviation using the Kalman filter algorithm followed by Green's function inversion by 50% to 95%.

  14. Multilevel principal component analysis (mPCA) in shape analysis: A feasibility study in medical and dental imaging.

    PubMed

    Farnell, D J J; Popat, H; Richmond, S

    2016-06-01

    Methods used in image processing should reflect any multilevel structures inherent in the image dataset or they run the risk of functioning inadequately. We wish to test the feasibility of multilevel principal components analysis (PCA) to build active shape models (ASMs) for cases relevant to medical and dental imaging. Multilevel PCA was used to carry out model fitting to sets of landmark points and it was compared to the results of "standard" (single-level) PCA. Proof of principle was tested by applying mPCA to model basic peri-oral expressions (happy, neutral, sad) approximated to the junction between the mouth/lips. Monte Carlo simulations were used to create this data which allowed exploration of practical implementation issues such as the number of landmark points, number of images, and number of groups (i.e., "expressions" for this example). To further test the robustness of the method, mPCA was subsequently applied to a dental imaging dataset utilising landmark points (placed by different clinicians) along the boundary of mandibular cortical bone in panoramic radiographs of the face. Changes of expression that varied between groups were modelled correctly at one level of the model and changes in lip width that varied within groups at another for the Monte Carlo dataset. Extreme cases in the test dataset were modelled adequately by mPCA but not by standard PCA. Similarly, variations in the shape of the cortical bone were modelled by one level of mPCA and variations between the experts at another for the panoramic radiographs dataset. Results for mPCA were found to be comparable to those of standard PCA for point-to-point errors via miss-one-out testing for this dataset. These errors reduce with increasing number of eigenvectors/values retained, as expected. We have shown that mPCA can be used in shape models for dental and medical image processing. mPCA was found to provide more control and flexibility when compared to standard "single-level" PCA. Specifically, mPCA is preferable to "standard" PCA when multiple levels occur naturally in the dataset. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Nonlinear method for including the mass uncertainty of standards and the system measurement errors in the fitting of calibration curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickles, W.L.; McClure, J.W.; Howell, R.H.

    1978-01-01

    A sophisticated non-linear multiparameter fitting program has been used to produce a best fit calibration curve for the response of an x-ray fluorescence analyzer to uranium nitrate, freeze dried, 0.2% accurate, gravimetric standards. The program is based on unconstrained minimization subroutine, VA02A. The program considers the mass values of the gravimetric standards as parameters to be fit along with the normal calibration curve parameters. The fitting procedure weights with the system errors and the mass errors in a consistent way. The resulting best fit calibration curve parameters reflect the fact that the masses of the standard samples are measured quantitiesmore » with a known error. Error estimates for the calibration curve parameters can be obtined from the curvature of the Chi-Squared Matrix or from error relaxation techniques. It has been shown that non-dispersive x-ray fluorescence analysis of 0.1 to 1 mg freeze-dried UNO/sub 3/ can have an accuracy of 0.2% in 1000 sec.« less

  16. Statistical modelling of thermal annealing of fission tracks in apatite

    NASA Astrophysics Data System (ADS)

    Laslett, G. M.; Galbraith, R. F.

    1996-12-01

    We develop an improved methodology for modelling the relationship between mean track length, temperature, and time in fission track annealing experiments. We consider "fanning Arrhenius" models, in which contours of constant mean length on an Arrhenius plot are straight lines meeting at a common point. Features of our approach are explicit use of subject matter knowledge, treating mean length as the response variable, modelling of the mean-variance relationship with two components of variance, improved modelling of the control sample, and using information from experiments in which no tracks are seen. This approach overcomes several weaknesses in previous models and provides a robust six parameter model that is widely applicable. Estimation is via direct maximum likelihood which can be implemented using a standard numerical optimisation package. Because the model is highly nonlinear, some reparameterisations are needed to achieve stable estimation and calculation of precisions. Experience suggests that precisions are more convincingly estimated from profile log-likelihood functions than from the information matrix. We apply our method to the B-5 and Sr fluorapatite data of Crowley et al. (1991) and obtain well-fitting models in both cases. For the B-5 fluorapatite, our model exhibits less fanning than that of Crowley et al. (1991), although fitted mean values above 12 μm are fairly similar. However, predictions can be different, particularly for heavy annealing at geological time scales, where our model is less retentive. In addition, the refined error structure of our model results in tighter prediction errors, and has components of error that are easier to verify or modify. For the Sr fluorapatite, our fitted model for mean lengths does not differ greatly from that of Crowley et al. (1991), but our error structure is quite different.

  17. Performance monitoring and error significance in patients with obsessive-compulsive disorder.

    PubMed

    Endrass, Tanja; Schuermann, Beate; Kaufmann, Christan; Spielberg, Rüdiger; Kniesche, Rainer; Kathmann, Norbert

    2010-05-01

    Performance monitoring has been consistently found to be overactive in obsessive-compulsive disorder (OCD). The present study examines whether performance monitoring in OCD is adjusted with error significance. Therefore, errors in a flanker task were followed by neutral (standard condition) or punishment feedbacks (punishment condition). In the standard condition patients had significantly larger error-related negativity (ERN) and correct-related negativity (CRN) ampliudes than controls. But, in the punishment condition groups did not differ in ERN and CRN amplitudes. While healthy controls showed an amplitude enhancement between standard and punishment condition, OCD patients showed no variation. In contrast, group differences were not found for the error positivity (Pe): both groups had larger Pe amplitudes in the punishment condition. Results confirm earlier findings of overactive error monitoring in OCD. The absence of a variation with error significance might indicate that OCD patients are unable to down-regulate their monitoring activity according to external requirements. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Spatial Ensemble Postprocessing of Precipitation Forecasts Using High Resolution Analyses

    NASA Astrophysics Data System (ADS)

    Lang, Moritz N.; Schicker, Irene; Kann, Alexander; Wang, Yong

    2017-04-01

    Ensemble prediction systems are designed to account for errors or uncertainties in the initial and boundary conditions, imperfect parameterizations, etc. However, due to sampling errors and underestimation of the model errors, these ensemble forecasts tend to be underdispersive, and to lack both reliability and sharpness. To overcome such limitations, statistical postprocessing methods are commonly applied to these forecasts. In this study, a full-distributional spatial post-processing method is applied to short-range precipitation forecasts over Austria using Standardized Anomaly Model Output Statistics (SAMOS). Following Stauffer et al. (2016), observation and forecast fields are transformed into standardized anomalies by subtracting a site-specific climatological mean and dividing by the climatological standard deviation. Due to the need of fitting only a single regression model for the whole domain, the SAMOS framework provides a computationally inexpensive method to create operationally calibrated probabilistic forecasts for any arbitrary location or for all grid points in the domain simultaneously. Taking advantage of the INCA system (Integrated Nowcasting through Comprehensive Analysis), high resolution analyses are used for the computation of the observed climatology and for model training. The INCA system operationally combines station measurements and remote sensing data into real-time objective analysis fields at 1 km-horizontal resolution and 1 h-temporal resolution. The precipitation forecast used in this study is obtained from a limited area model ensemble prediction system also operated by ZAMG. The so called ALADIN-LAEF provides, by applying a multi-physics approach, a 17-member forecast at a horizontal resolution of 10.9 km and a temporal resolution of 1 hour. The performed SAMOS approach statistically combines the in-house developed high resolution analysis and ensemble prediction system. The station-based validation of 6 hour precipitation sums shows a mean improvement of more than 40% in CRPS when compared to bilinearly interpolated uncalibrated ensemble forecasts. The validation on randomly selected grid points, representing the true height distribution over Austria, still indicates a mean improvement of 35%. The applied statistical model is currently set up for 6-hourly and daily accumulation periods, but will be extended to a temporal resolution of 1-3 hours within a new probabilistic nowcasting system operated by ZAMG.

  19. Model Selection with Strong-lensing Systems

    NASA Astrophysics Data System (ADS)

    Leaf, Kyle; Melia, Fulvio

    2018-05-01

    In this paper, we use an unprecedentedly large sample (158) of confirmed strong lens systems for model selection, comparing five well studied Friedmann-Robertson-Walker cosmologies: ΛCDM, wCDM (the standard model with a variable dark-energy equation of state), the Rh = ct universe, the (empty) Milne cosmology, and the classical Einstein-de Sitter (matter dominated) universe. We first use these sources to optimize the parameters in the standard model and show that they are consistent with Planck, though the quality of the best fit is not satisfactory. We demonstrate that this is likely due to under-reported errors, or to errors yet to be included in this kind of analysis. We suggest that the missing dispersion may be due to scatter about a pure single isothermal sphere (SIS) model that is often assumed for the mass distribution in these lenses. We then use the Bayes information criterion, with the inclusion of a suggested SIS dispersion, to calculate the relative likelihoods and ranking of these models, showing that Milne and Einstein-de Sitter are completely ruled out, while Rh = ct is preferred over ΛCDM/wCDM with a relative probability of ˜73% versus ˜24%. The recently reported sample of new strong lens candidates by the Dark Energy Survey, if confirmed, may be able to demonstrate which of these two models is favoured over the other at a level exceeding 3σ.

  20. Improving atomic force microscopy imaging by a direct inverse asymmetric PI hysteresis model.

    PubMed

    Wang, Dong; Yu, Peng; Wang, Feifei; Chan, Ho-Yin; Zhou, Lei; Dong, Zaili; Liu, Lianqing; Li, Wen Jung

    2015-02-03

    A modified Prandtl-Ishlinskii (PI) model, referred to as a direct inverse asymmetric PI (DIAPI) model in this paper, was implemented to reduce the displacement error between a predicted model and the actual trajectory of a piezoelectric actuator which is commonly found in AFM systems. Due to the nonlinearity of the piezoelectric actuator, the standard symmetric PI model cannot precisely describe the asymmetric motion of the actuator. In order to improve the accuracy of AFM scans, two series of slope parameters were introduced in the PI model to describe both the voltage-increase-loop (trace) and voltage-decrease-loop (retrace). A feedforward controller based on the DIAPI model was implemented to compensate hysteresis. Performance of the DIAPI model and the feedforward controller were validated by scanning micro-lenses and standard silicon grating using a custom-built AFM.

  1. Random errors in interferometry with the least-squares method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qi

    2011-01-20

    This investigation analyzes random errors in interferometric surface profilers using the least-squares method when random noises are present. Two types of random noise are considered here: intensity noise and position noise. Two formulas have been derived for estimating the standard deviations of the surface height measurements: one is for estimating the standard deviation when only intensity noise is present, and the other is for estimating the standard deviation when only position noise is present. Measurements on simulated noisy interferometric data have been performed, and standard deviations of the simulated measurements have been compared with those theoretically derived. The relationships havemore » also been discussed between random error and the wavelength of the light source and between random error and the amplitude of the interference fringe.« less

  2. Short version of the Depression Anxiety Stress Scale-21: is it valid for Brazilian adolescents?

    PubMed Central

    da Silva, Hítalo Andrade; dos Passos, Muana Hiandra Pereira; de Oliveira, Valéria Mayaly Alves; Palmeira, Aline Cabral; Pitangui, Ana Carolina Rodarti; de Araújo, Rodrigo Cappato

    2016-01-01

    ABSTRACT Objective To evaluate the interday reproducibility, agreement and validity of the construct of short version of the Depression Anxiety Stress Scale-21 applied to adolescents. Methods The sample consisted of adolescents of both sexes, aged between 10 and 19 years, who were recruited from schools and sports centers. The validity of the construct was performed by exploratory factor analysis, and reliability was calculated for each construct using the intraclass correlation coefficient, standard error of measurement and the minimum detectable change. Results The factor analysis combining the items corresponding to anxiety and stress in a single factor, and depression in a second factor, showed a better match of all 21 items, with higher factor loadings in their respective constructs. The reproducibility values for depression were intraclass correlation coefficient with 0.86, standard error of measurement with 0.80, and minimum detectable change with 2.22; and, for anxiety/stress: intraclass correlation coefficient with 0.82, standard error of measurement with 1.80, and minimum detectable change with 4.99. Conclusion The short version of the Depression Anxiety Stress Scale-21 showed excellent values of reliability, and strong internal consistency. The two-factor model with condensation of the constructs anxiety and stress in a single factor was the most acceptable for the adolescent population. PMID:28076595

  3. Particle size distributions by transmission electron microscopy: an interlaboratory comparison case study

    PubMed Central

    Rice, Stephen B; Chan, Christopher; Brown, Scott C; Eschbach, Peter; Han, Li; Ensor, David S; Stefaniak, Aleksandr B; Bonevich, John; Vladár, András E; Hight Walker, Angela R; Zheng, Jiwen; Starnes, Catherine; Stromberg, Arnold; Ye, Jia; Grulke, Eric A

    2015-01-01

    This paper reports an interlaboratory comparison that evaluated a protocol for measuring and analysing the particle size distribution of discrete, metallic, spheroidal nanoparticles using transmission electron microscopy (TEM). The study was focused on automated image capture and automated particle analysis. NIST RM8012 gold nanoparticles (30 nm nominal diameter) were measured for area-equivalent diameter distributions by eight laboratories. Statistical analysis was used to (1) assess the data quality without using size distribution reference models, (2) determine reference model parameters for different size distribution reference models and non-linear regression fitting methods and (3) assess the measurement uncertainty of a size distribution parameter by using its coefficient of variation. The interlaboratory area-equivalent diameter mean, 27.6 nm ± 2.4 nm (computed based on a normal distribution), was quite similar to the area-equivalent diameter, 27.6 nm, assigned to NIST RM8012. The lognormal reference model was the preferred choice for these particle size distributions as, for all laboratories, its parameters had lower relative standard errors (RSEs) than the other size distribution reference models tested (normal, Weibull and Rosin–Rammler–Bennett). The RSEs for the fitted standard deviations were two orders of magnitude higher than those for the fitted means, suggesting that most of the parameter estimate errors were associated with estimating the breadth of the distributions. The coefficients of variation for the interlaboratory statistics also confirmed the lognormal reference model as the preferred choice. From quasi-linear plots, the typical range for good fits between the model and cumulative number-based distributions was 1.9 fitted standard deviations less than the mean to 2.3 fitted standard deviations above the mean. Automated image capture, automated particle analysis and statistical evaluation of the data and fitting coefficients provide a framework for assessing nanoparticle size distributions using TEM for image acquisition. PMID:26361398

  4. Fast maximum likelihood estimation using continuous-time neural point process models.

    PubMed

    Lepage, Kyle Q; MacDonald, Christopher J

    2015-06-01

    A recent report estimates that the number of simultaneously recorded neurons is growing exponentially. A commonly employed statistical paradigm using discrete-time point process models of neural activity involves the computation of a maximum-likelihood estimate. The time to computate this estimate, per neuron, is proportional to the number of bins in a finely spaced discretization of time. By using continuous-time models of neural activity and the optimally efficient Gaussian quadrature, memory requirements and computation times are dramatically decreased in the commonly encountered situation where the number of parameters p is much less than the number of time-bins n. In this regime, with q equal to the quadrature order, memory requirements are decreased from O(np) to O(qp), and the number of floating-point operations are decreased from O(np(2)) to O(qp(2)). Accuracy of the proposed estimates is assessed based upon physiological consideration, error bounds, and mathematical results describing the relation between numerical integration error and numerical error affecting both parameter estimates and the observed Fisher information. A check is provided which is used to adapt the order of numerical integration. The procedure is verified in simulation and for hippocampal recordings. It is found that in 95 % of hippocampal recordings a q of 60 yields numerical error negligible with respect to parameter estimate standard error. Statistical inference using the proposed methodology is a fast and convenient alternative to statistical inference performed using a discrete-time point process model of neural activity. It enables the employment of the statistical methodology available with discrete-time inference, but is faster, uses less memory, and avoids any error due to discretization.

  5. An EM Algorithm for Maximum Likelihood Estimation of Process Factor Analysis Models

    ERIC Educational Resources Information Center

    Lee, Taehun

    2010-01-01

    In this dissertation, an Expectation-Maximization (EM) algorithm is developed and implemented to obtain maximum likelihood estimates of the parameters and the associated standard error estimates characterizing temporal flows for the latent variable time series following stationary vector ARMA processes, as well as the parameters defining the…

  6. Decision-Making Accuracy of CBM Progress-Monitoring Data

    ERIC Educational Resources Information Center

    Hintze, John M.; Wells, Craig S.; Marcotte, Amanda M.; Solomon, Benjamin G.

    2018-01-01

    This study examined the diagnostic accuracy associated with decision making as is typically conducted with curriculum-based measurement (CBM) approaches to progress monitoring. Using previously published estimates of the standard errors of estimate associated with CBM, 20,000 progress-monitoring data sets were simulated to model student reading…

  7. Tests of Mediation: Paradoxical Decline in Statistical Power as a Function of Mediator Collinearity

    ERIC Educational Resources Information Center

    Beasley, T. Mark

    2014-01-01

    Increasing the correlation between the independent variable and the mediator ("a" coefficient) increases the effect size ("ab") for mediation analysis; however, increasing a by definition increases collinearity in mediation models. As a result, the standard error of product tests increase. The variance inflation caused by…

  8. Spatial uncertainty analysis: Propagation of interpolation errors in spatially distributed models

    USGS Publications Warehouse

    Phillips, D.L.; Marks, D.G.

    1996-01-01

    In simulation modelling, it is desirable to quantify model uncertainties and provide not only point estimates for output variables but confidence intervals as well. Spatially distributed physical and ecological process models are becoming widely used, with runs being made over a grid of points that represent the landscape. This requires input values at each grid point, which often have to be interpolated from irregularly scattered measurement sites, e.g., weather stations. Interpolation introduces spatially varying errors which propagate through the model We extended established uncertainty analysis methods to a spatial domain for quantifying spatial patterns of input variable interpolation errors and how they propagate through a model to affect the uncertainty of the model output. We applied this to a model of potential evapotranspiration (PET) as a demonstration. We modelled PET for three time periods in 1990 as a function of temperature, humidity, and wind on a 10-km grid across the U.S. portion of the Columbia River Basin. Temperature, humidity, and wind speed were interpolated using kriging from 700- 1000 supporting data points. Kriging standard deviations (SD) were used to quantify the spatially varying interpolation uncertainties. For each of 5693 grid points, 100 Monte Carlo simulations were done, using the kriged values of temperature, humidity, and wind, plus random error terms determined by the kriging SDs and the correlations of interpolation errors among the three variables. For the spring season example, kriging SDs averaged 2.6??C for temperature, 8.7% for relative humidity, and 0.38 m s-1 for wind. The resultant PET estimates had coefficients of variation (CVs) ranging from 14% to 27% for the 10-km grid cells. Maps of PET means and CVs showed the spatial patterns of PET with a measure of its uncertainty due to interpolation of the input variables. This methodology should be applicable to a variety of spatially distributed models using interpolated inputs.

  9. [Errors in medicine. Causes, impact and improvement measures to improve patient safety].

    PubMed

    Waeschle, R M; Bauer, M; Schmidt, C E

    2015-09-01

    The guarantee of quality of care and patient safety is of major importance in hospitals even though increased economic pressure and work intensification are ubiquitously present. Nevertheless, adverse events still occur in 3-4 % of hospital stays and of these 25-50 % are estimated to be avoidable. The identification of possible causes of error and the development of measures for the prevention of medical errors are essential for patient safety. The implementation and continuous development of a constructive culture of error tolerance are fundamental.The origins of errors can be differentiated into systemic latent and individual active causes and components of both categories are typically involved when an error occurs. Systemic causes are, for example out of date structural environments, lack of clinical standards and low personnel density. These causes arise far away from the patient, e.g. management decisions and can remain unrecognized for a long time. Individual causes involve, e.g. confirmation bias, error of fixation and prospective memory failure. These causes have a direct impact on patient care and can result in immediate injury to patients. Stress, unclear information, complex systems and a lack of professional experience can promote individual causes. Awareness of possible causes of error is a fundamental precondition to establishing appropriate countermeasures.Error prevention should include actions directly affecting the causes of error and includes checklists and standard operating procedures (SOP) to avoid fixation and prospective memory failure and team resource management to improve communication and the generation of collective mental models. Critical incident reporting systems (CIRS) provide the opportunity to learn from previous incidents without resulting in injury to patients. Information technology (IT) support systems, such as the computerized physician order entry system, assist in the prevention of medication errors by providing information on dosage, pharmacological interactions, side effects and contraindications of medications.The major challenges for quality and risk management, for the heads of departments and the executive board is the implementation and support of the described actions and a sustained guidance of the staff involved in the modification management process. The global trigger tool is suitable for improving transparency and objectifying the frequency of medical errors.

  10. Analysis of linear measurements on 3D surface models using CBCT data segmentation obtained by automatic standard pre-set thresholds in two segmentation software programs: an in vitro study.

    PubMed

    Poleti, Marcelo Lupion; Fernandes, Thais Maria Freire; Pagin, Otávio; Moretti, Marcela Rodrigues; Rubira-Bullen, Izabel Regina Fischer

    2016-01-01

    The aim of this in vitro study was to evaluate the reliability and accuracy of linear measurements on three-dimensional (3D) surface models obtained by standard pre-set thresholds in two segmentation software programs. Ten mandibles with 17 silica markers were scanned for 0.3-mm voxels in the i-CAT Classic (Imaging Sciences International, Hatfield, PA, USA). Twenty linear measurements were carried out by two observers two times on the 3D surface models: the Dolphin Imaging 11.5 (Dolphin Imaging & Management Solutions, Chatsworth, CA, USA), using two filters(Translucent and Solid-1), and in the InVesalius 3.0.0 (Centre for Information Technology Renato Archer, Campinas, SP, Brazil). The physical measurements were made by another observer two times using a digital caliper on the dry mandibles. Excellent intra- and inter-observer reliability for the markers, physical measurements, and 3D surface models were found (intra-class correlation coefficient (ICC) and Pearson's r ≥ 0.91). The linear measurements on 3D surface models by Dolphin and InVesalius software programs were accurate (Dolphin Solid-1 > InVesalius > Dolphin Translucent). The highest absolute and percentage errors were obtained for the variable R1-R1 (1.37 mm) and MF-AC (2.53 %) in the Dolphin Translucent and InVesalius software, respectively. Linear measurements on 3D surface models obtained by standard pre-set thresholds in the Dolphin and InVesalius software programs are reliable and accurate compared with physical measurements. Studies that evaluate the reliability and accuracy of the 3D models are necessary to ensure error predictability and to establish diagnosis, treatment plan, and prognosis in a more realistic way.

  11. Total ozone trend significance from space time variability of daily Dobson data

    NASA Technical Reports Server (NTRS)

    Wilcox, R. W.

    1981-01-01

    Estimates of standard errors of total ozone time and area means, as derived from ozone's natural temporal and spatial variability and autocorrelation in middle latitudes determined from daily Dobson data are presented. Assessing the significance of apparent total ozone trends is equivalent to assessing the standard error of the means. Standard errors of time averages depend on the temporal variability and correlation of the averaged parameter. Trend detectability is discussed, both for the present network and for satellite measurements.

  12. A Posteriori Correction of Forecast and Observation Error Variances

    NASA Technical Reports Server (NTRS)

    Rukhovets, Leonid

    2005-01-01

    Proposed method of total observation and forecast error variance correction is based on the assumption about normal distribution of "observed-minus-forecast" residuals (O-F), where O is an observed value and F is usually a short-term model forecast. This assumption can be accepted for several types of observations (except humidity) which are not grossly in error. Degree of nearness to normal distribution can be estimated by the symmetry or skewness (luck of symmetry) a(sub 3) = mu(sub 3)/sigma(sup 3) and kurtosis a(sub 4) = mu(sub 4)/sigma(sup 4) - 3 Here mu(sub i) = i-order moment, sigma is a standard deviation. It is well known that for normal distribution a(sub 3) = a(sub 4) = 0.

  13. Simulation Model for DVB-SH Systems Based on OFDM for Analyzing Quasi-error-free Communication over Different Channel Models

    NASA Astrophysics Data System (ADS)

    Bačić, Iva; Malarić, Krešimir; Dumić, Emil

    2014-05-01

    Mobile users today expect wide range of multimedia services to be available in different mobility scenarios, and among the others is mobile TV service. The Digital Video Broadcasting - Satellite services to Handheld (DVB-SH) is designed to provide mobile TV services, supporting a wide range of mobile multimedia services, like audio and data broadcasting as well as file downloading services. In this paper we present our simulation model for the performance evaluation of the DVB-SH system following the ETSI standard EN 302 583. Simulation model includes complete DVB-SH system, supporting all standardized system modes and parameters. From transmitter to receiver, the information may be sent over different channel models, thus simulating real case scenarios. To the best of authors' knowledge, this is the first complete model of DVB-SH system that includes all standardized system parameters and may be used for examining real DVB-SH communication as well as for educational purposes.

  14. Impact of electronic chemotherapy order forms on prescribing errors at an urban medical center: results from an interrupted time-series analysis.

    PubMed

    Elsaid, K; Truong, T; Monckeberg, M; McCarthy, H; Butera, J; Collins, C

    2013-12-01

    To evaluate the impact of electronic standardized chemotherapy templates on incidence and types of prescribing errors. A quasi-experimental interrupted time series with segmented regression. A 700-bed multidisciplinary tertiary care hospital with an ambulatory cancer center. A multidisciplinary team including oncology physicians, nurses, pharmacists and information technologists. Standardized, regimen-specific, chemotherapy prescribing forms were developed and implemented over a 32-month period. Trend of monthly prevented prescribing errors per 1000 chemotherapy doses during the pre-implementation phase (30 months), immediate change in the error rate from pre-implementation to implementation and trend of errors during the implementation phase. Errors were analyzed according to their types: errors in communication or transcription, errors in dosing calculation and errors in regimen frequency or treatment duration. Relative risk (RR) of errors in the post-implementation phase (28 months) compared with the pre-implementation phase was computed with 95% confidence interval (CI). Baseline monthly error rate was stable with 16.7 prevented errors per 1000 chemotherapy doses. A 30% reduction in prescribing errors was observed with initiating the intervention. With implementation, a negative change in the slope of prescribing errors was observed (coefficient = -0.338; 95% CI: -0.612 to -0.064). The estimated RR of transcription errors was 0.74; 95% CI (0.59-0.92). The estimated RR of dosing calculation errors was 0.06; 95% CI (0.03-0.10). The estimated RR of chemotherapy frequency/duration errors was 0.51; 95% CI (0.42-0.62). Implementing standardized chemotherapy-prescribing templates significantly reduced all types of prescribing errors and improved chemotherapy safety.

  15. Evaluation of lens distortion errors in video-based motion analysis

    NASA Technical Reports Server (NTRS)

    Poliner, Jeffrey; Wilmington, Robert; Klute, Glenn K.; Micocci, Angelo

    1993-01-01

    In an effort to study lens distortion errors, a grid of points of known dimensions was constructed and videotaped using a standard and a wide-angle lens. Recorded images were played back on a VCR and stored on a personal computer. Using these stored images, two experiments were conducted. Errors were calculated as the difference in distance from the known coordinates of the points to the calculated coordinates. The purposes of this project were as follows: (1) to develop the methodology to evaluate errors introduced by lens distortion; (2) to quantify and compare errors introduced by use of both a 'standard' and a wide-angle lens; (3) to investigate techniques to minimize lens-induced errors; and (4) to determine the most effective use of calibration points when using a wide-angle lens with a significant amount of distortion. It was seen that when using a wide-angle lens, errors from lens distortion could be as high as 10 percent of the size of the entire field of view. Even with a standard lens, there was a small amount of lens distortion. It was also found that the choice of calibration points influenced the lens distortion error. By properly selecting the calibration points and avoidance of the outermost regions of a wide-angle lens, the error from lens distortion can be kept below approximately 0.5 percent with a standard lens and 1.5 percent with a wide-angle lens.

  16. Uncertainty Analysis of Downscaled CMIP5 Precipitation Data for Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Sumi, S. J.; Tamanna, M.; Chivoiu, B.; Habib, E. H.

    2014-12-01

    The downscaled CMIP3 and CMIP5 Climate and Hydrology Projections dataset contains fine spatial resolution translations of climate projections over the contiguous United States developed using two downscaling techniques (monthly Bias Correction Spatial Disaggregation (BCSD) and daily Bias Correction Constructed Analogs (BCCA)). The objective of this study is to assess the uncertainty of the CMIP5 downscaled general circulation models (GCM). We performed an analysis of the daily, monthly, seasonal and annual variability of precipitation downloaded from the Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections website for the state of Louisiana, USA at 0.125° x 0.125° resolution. A data set of daily gridded observations of precipitation of a rectangular boundary covering Louisiana is used to assess the validity of 21 downscaled GCMs for the 1950-1999 period. The following statistics are computed using the CMIP5 observed dataset with respect to the 21 models: the correlation coefficient, the bias, the normalized bias, the mean absolute error (MAE), the mean absolute percentage error (MAPE), and the root mean square error (RMSE). A measure of variability simulated by each model is computed as the ratio of its standard deviation, in both space and time, to the corresponding standard deviation of the observation. The correlation and MAPE statistics are also computed for each of the nine climate divisions of Louisiana. Some of the patterns that we observed are: 1) Average annual precipitation rate shows similar spatial distribution for all the models within a range of 3.27 to 4.75 mm/day from Northwest to Southeast. 2) Standard deviation of summer (JJA) precipitation (mm/day) for the models maintains lower value than the observation whereas they have similar spatial patterns and range of values in winter (NDJ). 3) Correlation coefficients of annual precipitation of models against observation have a range of -0.48 to 0.36 with variable spatial distribution by model. 4) Most of the models show negative correlation coefficients in summer and positive in winter. 5) MAE shows similar spatial distribution for all the models within a range of 5.20 to 7.43 mm/day from Northwest to Southeast of Louisiana. 6) Highest values of correlation coefficients are found at seasonal scale within a range of 0.36 to 0.46.

  17. Multivariate Statistics Applied to Seismic Phase Picking

    NASA Astrophysics Data System (ADS)

    Velasco, A. A.; Zeiler, C. P.; Anderson, D.; Pingitore, N. E.

    2008-12-01

    The initial effort of the Seismogram Picking Error from Analyst Review (SPEAR) project has been to establish a common set of seismograms to be picked by the seismological community. Currently we have 13 analysts from 4 institutions that have provided picks on the set of 26 seismograms. In comparing the picks thus far, we have identified consistent biases between picks from different institutions; effects of the experience of analysts; and the impact of signal-to-noise on picks. The institutional bias in picks brings up the important concern that picks will not be the same between different catalogs. This difference means less precision and accuracy when combing picks from multiple institutions. We also note that depending on the experience level of the analyst making picks for a catalog the error could fluctuate dramatically. However, the experience level is based off of number of years in picking seismograms and this may not be an appropriate criterion for determining an analyst's precision. The common data set of seismograms provides a means to test an analyst's level of precision and biases. The analyst is also limited by the quality of the signal and we show that the signal-to-noise ratio and pick error are correlated to the location, size and distance of the event. This makes the standard estimate of picking error based on SNR more complex because additional constraints are needed to accurately constrain the measurement error. We propose to extend the current measurement of error by adding the additional constraints of institutional bias and event characteristics to the standard SNR measurement. We use multivariate statistics to model the data and provide constraints to accurately assess earthquake location and measurement errors.

  18. Integrating models that depend on variable data

    NASA Astrophysics Data System (ADS)

    Banks, A. T.; Hill, M. C.

    2016-12-01

    Models of human-Earth systems are often developed with the goal of predicting the behavior of one or more dependent variables from multiple independent variables, processes, and parameters. Often dependent variable values range over many orders of magnitude, which complicates evaluation of the fit of the dependent variable values to observations. Many metrics and optimization methods have been proposed to address dependent variable variability, with little consensus being achieved. In this work, we evaluate two such methods: log transformation (based on the dependent variable being log-normally distributed with a constant variance) and error-based weighting (based on a multi-normal distribution with variances that tend to increase as the dependent variable value increases). Error-based weighting has the advantage of encouraging model users to carefully consider data errors, such as measurement and epistemic errors, while log-transformations can be a black box for typical users. Placing the log-transformation into the statistical perspective of error-based weighting has not formerly been considered, to the best of our knowledge. To make the evaluation as clear and reproducible as possible, we use multiple linear regression (MLR). Simulations are conducted with MatLab. The example represents stream transport of nitrogen with up to eight independent variables. The single dependent variable in our example has values that range over 4 orders of magnitude. Results are applicable to any problem for which individual or multiple data types produce a large range of dependent variable values. For this problem, the log transformation produced good model fit, while some formulations of error-based weighting worked poorly. Results support previous suggestions fthat error-based weighting derived from a constant coefficient of variation overemphasizes low values and degrades model fit to high values. Applying larger weights to the high values is inconsistent with the log-transformation. Greater consistency is obtained by imposing smaller (by up to a factor of 1/35) weights on the smaller dependent-variable values. From an error-based perspective, the small weights are consistent with large standard deviations. This work considers the consequences of these two common ways of addressing variable data.

  19. Using Audit Information to Adjust Parameter Estimates for Data Errors in Clinical Trials

    PubMed Central

    Shepherd, Bryan E.; Shaw, Pamela A.; Dodd, Lori E.

    2013-01-01

    Background Audits are often performed to assess the quality of clinical trial data, but beyond detecting fraud or sloppiness, the audit data is generally ignored. In earlier work using data from a non-randomized study, Shepherd and Yu (2011) developed statistical methods to incorporate audit results into study estimates, and demonstrated that audit data could be used to eliminate bias. Purpose In this manuscript we examine the usefulness of audit-based error-correction methods in clinical trial settings where a continuous outcome is of primary interest. Methods We demonstrate the bias of multiple linear regression estimates in general settings with an outcome that may have errors and a set of covariates for which some may have errors and others, including treatment assignment, are recorded correctly for all subjects. We study this bias under different assumptions including independence between treatment assignment, covariates, and data errors (conceivable in a double-blinded randomized trial) and independence between treatment assignment and covariates but not data errors (possible in an unblinded randomized trial). We review moment-based estimators to incorporate the audit data and propose new multiple imputation estimators. The performance of estimators is studied in simulations. Results When treatment is randomized and unrelated to data errors, estimates of the treatment effect using the original error-prone data (i.e., ignoring the audit results) are unbiased. In this setting, both moment and multiple imputation estimators incorporating audit data are more variable than standard analyses using the original data. In contrast, in settings where treatment is randomized but correlated with data errors and in settings where treatment is not randomized, standard treatment effect estimates will be biased. And in all settings, parameter estimates for the original, error-prone covariates will be biased. Treatment and covariate effect estimates can be corrected by incorporating audit data using either the multiple imputation or moment-based approaches. Bias, precision, and coverage of confidence intervals improve as the audit size increases. Limitations The extent of bias and the performance of methods depend on the extent and nature of the error as well as the size of the audit. This work only considers methods for the linear model. Settings much different than those considered here need further study. Conclusions In randomized trials with continuous outcomes and treatment assignment independent of data errors, standard analyses of treatment effects will be unbiased and are recommended. However, if treatment assignment is correlated with data errors or other covariates, naive analyses may be biased. In these settings, and when covariate effects are of interest, approaches for incorporating audit results should be considered. PMID:22848072

  20. Intravenous Chemotherapy Compounding Errors in a Follow-Up Pan-Canadian Observational Study.

    PubMed

    Gilbert, Rachel E; Kozak, Melissa C; Dobish, Roxanne B; Bourrier, Venetia C; Koke, Paul M; Kukreti, Vishal; Logan, Heather A; Easty, Anthony C; Trbovich, Patricia L

    2018-05-01

    Intravenous (IV) compounding safety has garnered recent attention as a result of high-profile incidents, awareness efforts from the safety community, and increasingly stringent practice standards. New research with more-sensitive error detection techniques continues to reinforce that error rates with manual IV compounding are unacceptably high. In 2014, our team published an observational study that described three types of previously unrecognized and potentially catastrophic latent chemotherapy preparation errors in Canadian oncology pharmacies that would otherwise be undetectable. We expand on this research and explore whether additional potential human failures are yet to be addressed by practice standards. Field observations were conducted in four cancer center pharmacies in four Canadian provinces from January 2013 to February 2015. Human factors specialists observed and interviewed pharmacy managers, oncology pharmacists, pharmacy technicians, and pharmacy assistants as they carried out their work. Emphasis was on latent errors (potential human failures) that could lead to outcomes such as wrong drug, dose, or diluent. Given the relatively short observational period, no active failures or actual errors were observed. However, 11 latent errors in chemotherapy compounding were identified. In terms of severity, all 11 errors create the potential for a patient to receive the wrong drug or dose, which in the context of cancer care, could lead to death or permanent loss of function. Three of the 11 practices were observed in our previous study, but eight were new. Applicable Canadian and international standards and guidelines do not explicitly address many of the potentially error-prone practices observed. We observed a significant degree of risk for error in manual mixing practice. These latent errors may exist in other regions where manual compounding of IV chemotherapy takes place. Continued efforts to advance standards, guidelines, technological innovation, and chemical quality testing are needed.

  1. Effect of Random Circuit Fabrication Errors on Small Signal Gain and Phase in Helix Traveling Wave Tubes

    NASA Astrophysics Data System (ADS)

    Pengvanich, P.; Chernin, D. P.; Lau, Y. Y.; Luginsland, J. W.; Gilgenbach, R. M.

    2007-11-01

    Motivated by the current interest in mm-wave and THz sources, which use miniature, difficult-to-fabricate circuit components, we evaluate the statistical effects of random fabrication errors on a helix traveling wave tube amplifier's small signal characteristics. The small signal theory is treated in a continuum model in which the electron beam is assumed to be monoenergetic, and axially symmetric about the helix axis. Perturbations that vary randomly along the beam axis are introduced in the dimensionless Pierce parameters b, the beam-wave velocity mismatch, C, the gain parameter, and d, the cold tube circuit loss. Our study shows, as expected, that perturbation in b dominates the other two. The extensive numerical data have been confirmed by our analytic theory. They show in particular that the standard deviation of the output phase is linearly proportional to standard deviation of the individual perturbations in b, C, and d. Simple formulas have been derived which yield the output phase variations in terms of the statistical random manufacturing errors. This work was supported by AFOSR and by ONR.

  2. Color constancy in dermatoscopy with smartphone

    NASA Astrophysics Data System (ADS)

    Cugmas, Blaž; Pernuš, Franjo; Likar, Boštjan

    2017-12-01

    The recent spread of cheap dermatoscopes for smartphones can empower patients to acquire images of skin lesions on their own and send them to dermatologists. Since images are acquired by different smartphone cameras under unique illumination conditions, the variability in colors is expected. Therefore, the mobile dermatoscopic systems should be calibrated in order to ensure the color constancy in skin images. In this study, we have tested a dermatoscope DermLite DL1 basic, attached to Samsung Galaxy S4 smartphone. Under the controlled conditions, jpeg images of standard color patches were acquired and a model between an unknown device-dependent RGB and a deviceindependent Lab color space has been built. Results showed that median and the best color error was 7.77 and 3.94, respectively. Results are in the range of a human eye detection capability (color error ≈ 4) and video and printing industry standards (color error is expected to be between 5 and 6). It can be concluded that a calibrated smartphone dermatoscope can provide sufficient color constancy and can serve as an interesting opportunity to bring dermatologists closer to the patients.

  3. A multifaceted program for improving quality of care in intensive care units: IATROREF study.

    PubMed

    Garrouste-Orgeas, Maite; Soufir, Lilia; Tabah, Alexis; Schwebel, Carole; Vesin, Aurelien; Adrie, Christophe; Thuong, Marie; Timsit, Jean Francois

    2012-02-01

    To test the effects of three multifaceted safety programs designed to decrease insulin administration errors, anticoagulant prescription and administration errors, and errors leading to accidental removal of endotracheal tubes and central venous catheters, respectively. Medical errors and adverse events are associated with increased mortality in intensive care patients, indicating an urgent need for prevention programs. Multicenter cluster-randomized study. One medical intensive care unit in a university hospital and two medical-surgical intensive care units in community hospitals belonging to the Outcomerea Study Group. Consecutive patients >18 yrs admitted from January 2007 to January 2008 to the intensive care units. We tested three multifaceted safety programs vs. standard care in random order, each over 2.5 months, after a 1.5-month observation period. Incidence rates of medical errors/1000 patient-days in the multifaceted safety program and standard-care groups were compared using adjusted hierarchical models. In 2117 patients with 15,014 patient-days, 8520 medical errors (567.5/1000 patient-days) were reported, including 1438 adverse events (16.9%, 95.8/1000 patient-days). The insulin multifaceted safety program significantly decreased errors during implementation (risk ratio 0.65; 95% confidence interval [CI] 0.52-0.82; p = .0003) and after implementation (risk ratio 0.51; 95% CI 0.35-0.73; p = .0004). A significant Hawthorne effect was found. The accidental tube/catheter removal multifaceted safety program decreased errors significantly during implementation (odds ratio [OR] 0.34; 95% CI 0.15-0.81; p = .01]) and nonsignificantly after implementation (OR 1.65; 95% CI 0.78-3.48). The anticoagulation multifaceted safety program was not significantly effective (OR 0.64; 95% CI 0.26-1.59) but produced a significant Hawthorne effect. A multifaceted program was effective in preventing insulin errors and accidental tube/catheter removal. Significant Hawthorne effects occurred, emphasizing the need for appropriately designed studies before definitively implementing strategies. clinicaltrials.gov Identifier: NCT00461461.

  4. Liability of physicians supervising nonphysician clinicians.

    PubMed

    Paterick, Barbara B; Waterhouse, Blake E; Paterick, Timothy E; Sanbar, Sandy S

    2014-01-01

    Physicians confront a variety of liability issues when supervising nonphysician clinicians (NPC) including: (1) direct liability resulting from a failure to meet the state-defined standards of supervision/collaboration with NPCs; (2) vicarious liability, arising from agency law, where physicians are held accountable for NPC clinical care that does not meet the national standard of care; and (3) responsibility for medical errors when the NPC and physician are co-employees of the corporate enterprise. Physician-NPC co-employee relationships are highlighted because they are new and becoming predominant in existing healthcare models. Because of their novelty, there is a paucity of judicial decisions determining liability for NPC errors in this setting. Knowledge of the existence of these risks will allow physicians to make informed decisions on what relationships they will enter with NPCs and how these relationships will be structured and monitored.

  5. Accessibility assessment of assistive technology for the hearing impaired.

    PubMed

    Áfio, Aline Cruz Esmeraldo; Carvalho, Aline Tomaz de; Caravalho, Luciana Vieira de; Silva, Andréa Soares Rocha da; Pagliuca, Lorita Marlena Freitag

    2016-01-01

    to assess the automatic accessibility of assistive technology in online courses for the hearing impaired. evaluation study guided by the Assessment and Maintenance step proposed in the Model of Development of Digital Educational Material. The software Assessor and Simulator for the Accessibility of Sites (ASES) was used to analyze the online course "Education on Sexual and Reproductive Health: the use of condoms" according to the accessibility standards of national and international websites. an error report generated by the program identified, in each didactic module, one error and two warnings related to two international principles and six warnings involved with six national recommendations. The warnings relevant to hearing-impaired people were corrected, and the course was considered accessible by automatic assessment. we concluded that the pages of the course were considered, by the software used, appropriate to the standards of web accessibility.

  6. Intimate Partner Violence, 1993-2010

    MedlinePlus

    ... appendix table 2 for standard errors. *Due to methodological changes, use caution when comparing 2006 NCVS criminal ... appendix table 2 for standard errors. *Due to methodological changes, use caution when comparing 2006 NCVS criminal ...

  7. Bivariate random-effects meta-analysis models for diagnostic test accuracy studies using arcsine-based transformations.

    PubMed

    Negeri, Zelalem F; Shaikh, Mateen; Beyene, Joseph

    2018-05-11

    Diagnostic or screening tests are widely used in medical fields to classify patients according to their disease status. Several statistical models for meta-analysis of diagnostic test accuracy studies have been developed to synthesize test sensitivity and specificity of a diagnostic test of interest. Because of the correlation between test sensitivity and specificity, modeling the two measures using a bivariate model is recommended. In this paper, we extend the current standard bivariate linear mixed model (LMM) by proposing two variance-stabilizing transformations: the arcsine square root and the Freeman-Tukey double arcsine transformation. We compared the performance of the proposed methods with the standard method through simulations using several performance measures. The simulation results showed that our proposed methods performed better than the standard LMM in terms of bias, root mean square error, and coverage probability in most of the scenarios, even when data were generated assuming the standard LMM. We also illustrated the methods using two real data sets. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Linear time-dependent reference intervals where there is measurement error in the time variable-a parametric approach.

    PubMed

    Gillard, Jonathan

    2015-12-01

    This article re-examines parametric methods for the calculation of time specific reference intervals where there is measurement error present in the time covariate. Previous published work has commonly been based on the standard ordinary least squares approach, weighted where appropriate. In fact, this is an incorrect method when there are measurement errors present, and in this article, we show that the use of this approach may, in certain cases, lead to referral patterns that may vary with different values of the covariate. Thus, it would not be the case that all patients are treated equally; some subjects would be more likely to be referred than others, hence violating the principle of equal treatment required by the International Federation for Clinical Chemistry. We show, by using measurement error models, that reference intervals are produced that satisfy the requirement for equal treatment for all subjects. © The Author(s) 2011.

  9. Methods for estimating flood frequency in Montana based on data through water year 1998

    USGS Publications Warehouse

    Parrett, Charles; Johnson, Dave R.

    2004-01-01

    Annual peak discharges having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years (T-year floods) were determined for 660 gaged sites in Montana and in adjacent areas of Idaho, Wyoming, and Canada, based on data through water year 1998. The updated flood-frequency information was subsequently used in regression analyses, either ordinary or generalized least squares, to develop equations relating T-year floods to various basin and climatic characteristics, equations relating T-year floods to active-channel width, and equations relating T-year floods to bankfull width. The equations can be used to estimate flood frequency at ungaged sites. Montana was divided into eight regions, within which flood characteristics were considered to be reasonably homogeneous, and the three sets of regression equations were developed for each region. A measure of the overall reliability of the regression equations is the average standard error of prediction. The average standard errors of prediction for the equations based on basin and climatic characteristics ranged from 37.4 percent to 134.1 percent. Average standard errors of prediction for the equations based on active-channel width ranged from 57.2 percent to 141.3 percent. Average standard errors of prediction for the equations based on bankfull width ranged from 63.1 percent to 155.5 percent. In most regions, the equations based on basin and climatic characteristics generally had smaller average standard errors of prediction than equations based on active-channel or bankfull width. An exception was the Southeast Plains Region, where all equations based on active-channel width had smaller average standard errors of prediction than equations based on basin and climatic characteristics or bankfull width. Methods for weighting estimates derived from the basin- and climatic-characteristic equations and the channel-width equations also were developed. The weights were based on the cross correlation of residuals from the different methods and the average standard errors of prediction. When all three methods were combined, the average standard errors of prediction ranged from 37.4 percent to 120.2 percent. Weighting of estimates reduced the standard errors of prediction for all T-year flood estimates in four regions, reduced the standard errors of prediction for some T-year flood estimates in two regions, and provided no reduction in average standard error of prediction in two regions. A computer program for solving the regression equations, weighting estimates, and determining reliability of individual estimates was developed and placed on the USGS Montana District World Wide Web page. A new regression method, termed Region of Influence regression, also was tested. Test results indicated that the Region of Influence method was not as reliable as the regional equations based on generalized least squares regression. Two additional methods for estimating flood frequency at ungaged sites located on the same streams as gaged sites also are described. The first method, based on a drainage-area-ratio adjustment, is intended for use on streams where the ungaged site of interest is located near a gaged site. The second method, based on interpolation between gaged sites, is intended for use on streams that have two or more streamflow-gaging stations.

  10. Novel Robust Models for Damage Tolerant Helicopter Components

    DTIC Science & Technology

    2002-12-01

    was performed on the same materials under two loading spectra, Rotarix , a standard spectrum for a helicopter rotorhead, and Falstaff, a fixed wing...the best agreement for Rotarix on 7010 aluminium, with errors of only 15-20%. FASTRAN was second best. All other models made non conservative...SAE 4340 steel. For Rotarix . K(PR)still was the closest, for Falstaff, other models achieved better accuracy. All predictions were made blind, in advance of knowledge of the validation test data.

  11. Are traditional body fat equations and anthropometry valid to estimate body fat in children and adolescents living with HIV?

    PubMed

    Lima, Luiz Rodrigo Augustemak de; Martins, Priscila Custódio; Junior, Carlos Alencar Souza Alves; Castro, João Antônio Chula de; Silva, Diego Augusto Santos; Petroski, Edio Luiz

    The aim of this study was to assess the validity of traditional anthropometric equations and to develop predictive equations of total body and trunk fat for children and adolescents living with HIV based on anthropometric measurements. Forty-eight children and adolescents of both sexes (24 boys) aged 7-17 years, living in Santa Catarina, Brazil, participated in the study. Dual-energy X-ray absorptiometry was used as the reference method to evaluate total body and trunk fat. Height, body weight, circumferences and triceps, subscapular, abdominal and calf skinfolds were measured. The traditional equations of Lohman and Slaughter were used to estimate body fat. Multiple regression models were fitted to predict total body fat (Model 1) and trunk fat (Model 2) using a backward selection procedure. Model 1 had an R 2 =0.85 and a standard error of the estimate of 1.43. Model 2 had an R 2 =0.80 and standard error of the estimate=0.49. The traditional equations of Lohman and Slaughter showed poor performance in estimating body fat in children and adolescents living with HIV. The prediction models using anthropometry provided reliable estimates and can be used by clinicians and healthcare professionals to monitor total body and trunk fat in children and adolescents living with HIV. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  12. Forecasting Inflow and Outflow of Money Currency in East Java Using a Hybrid Exponential Smoothing and Calendar Variation Model

    NASA Astrophysics Data System (ADS)

    Susanti, Ana; Suhartono; Jati Setyadi, Hario; Taruk, Medi; Haviluddin; Pamilih Widagdo, Putut

    2018-03-01

    Money currency availability in Bank Indonesia can be examined by inflow and outflow of money currency. The objective of this research is to forecast the inflow and outflow of money currency in each Representative Office (RO) of BI in East Java by using a hybrid exponential smoothing based on state space approach and calendar variation model. Hybrid model is expected to generate more accurate forecast. There are two studies that will be discussed in this research. The first studies about hybrid model using simulation data that contain pattern of trends, seasonal and calendar variation. The second studies about the application of a hybrid model for forecasting the inflow and outflow of money currency in each RO of BI in East Java. The first of results indicate that exponential smoothing model can not capture the pattern calendar variation. It results RMSE values 10 times standard deviation of error. The second of results indicate that hybrid model can capture the pattern of trends, seasonal and calendar variation. It results RMSE values approaching the standard deviation of error. In the applied study, the hybrid model give more accurate forecast for five variables : the inflow of money currency in Surabaya, Malang, Jember and outflow of money currency in Surabaya and Kediri. Otherwise, the time series regression model yields better for three variables : outflow of money currency in Malang, Jember and inflow of money currency in Kediri.

  13. [A basic research to share Fourier transform near-infrared spectrum information resource].

    PubMed

    Zhang, Lu-Da; Li, Jun-Hui; Zhao, Long-Lian; Zhao, Li-Li; Qin, Fang-Li; Yan, Yan-Lu

    2004-08-01

    A method to share the information resource in the database of Fourier transform near-infrared(FTNIR) spectrum information of agricultural products and utilize the spectrum information sufficiently is explored in this paper. Mapping spectrum information from one instrument to another is studied to express the spectrum information accurately between the instruments. Then mapping spectrum information is used to establish a mathematical model of quantitative analysis without including standard samples. The analysis result is that the relative coefficient r is 0.941 and the relative error is 3.28% between the model estimate values and the Kjeldahl's value for the protein content of twenty-two wheat samples, while the relative coefficient r is 0.963 and the relative error is 2.4% for the other model, which is established by using standard samples. It is shown that the spectrum information can be shared by using the mapping spectrum information. So it can be concluded that the spectrum information in one FTNIR spectrum information database can be transformed to another instrument's mapping spectrum information, which makes full use of the information resource in the database of FTNIR spectrum information to realize the resource sharing between different instruments.

  14. Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Nichols, Brandon S.; Rajaram, Narasimhan; Tunnell, James W.

    2012-05-01

    Diffuse optical spectroscopy (DOS) provides a powerful tool for fast and noninvasive disease diagnosis. The ability to leverage DOS to accurately quantify tissue optical parameters hinges on the model used to estimate light-tissue interaction. We describe the accuracy of a lookup table (LUT)-based inverse model for measuring optical properties under different conditions relevant to biological tissue. The LUT is a matrix of reflectance values acquired experimentally from calibration standards of varying scattering and absorption properties. Because it is based on experimental values, the LUT inherently accounts for system response and probe geometry. We tested our approach in tissue phantoms containing multiple absorbers, different sizes of scatterers, and varying oxygen saturation of hemoglobin. The LUT-based model was able to extract scattering and absorption properties under most conditions with errors of less than 5 percent. We demonstrate the validity of the lookup table over a range of source-detector separations from 0.25 to 1.48 mm. Finally, we describe the rapid fabrication of a lookup table using only six calibration standards. This optimized LUT was able to extract scattering and absorption properties with average RMS errors of 2.5 and 4 percent, respectively.

  15. Kappa and Rater Accuracy: Paradigms and Parameters.

    PubMed

    Conger, Anthony J

    2017-12-01

    Drawing parallels to classical test theory, this article clarifies the difference between rater accuracy and reliability and demonstrates how category marginal frequencies affect rater agreement and Cohen's kappa (κ). Category assignment paradigms are developed: comparing raters to a standard (index) versus comparing two raters to one another (concordance), using both nonstochastic and stochastic category membership. Using a probability model to express category assignments in terms of rater accuracy and random error, it is shown that observed agreement (Po) depends only on rater accuracy and number of categories; however, expected agreement (Pe) and κ depend additionally on category frequencies. Moreover, category frequencies affect Pe and κ solely through the variance of the category proportions, regardless of the specific frequencies underlying the variance. Paradoxically, some judgment paradigms involving stochastic categories are shown to yield higher κ values than their nonstochastic counterparts. Using the stated probability model, assignments to categories were generated for 552 combinations of paradigms, rater and category parameters, category frequencies, and number of stimuli. Observed means and standard errors for Po, Pe, and κ were fully consistent with theory expectations. Guidelines for interpretation of rater accuracy and reliability are offered, along with a discussion of alternatives to the basic model.

  16. A joint source-channel distortion model for JPEG compressed images.

    PubMed

    Sabir, Muhammad F; Sheikh, Hamid Rahim; Heath, Robert W; Bovik, Alan C

    2006-06-01

    The need for efficient joint source-channel coding (JSCC) is growing as new multimedia services are introduced in commercial wireless communication systems. An important component of practical JSCC schemes is a distortion model that can predict the quality of compressed digital multimedia such as images and videos. The usual approach in the JSCC literature for quantifying the distortion due to quantization and channel errors is to estimate it for each image using the statistics of the image for a given signal-to-noise ratio (SNR). This is not an efficient approach in the design of real-time systems because of the computational complexity. A more useful and practical approach would be to design JSCC techniques that minimize average distortion for a large set of images based on some distortion model rather than carrying out per-image optimizations. However, models for estimating average distortion due to quantization and channel bit errors in a combined fashion for a large set of images are not available for practical image or video coding standards employing entropy coding and differential coding. This paper presents a statistical model for estimating the distortion introduced in progressive JPEG compressed images due to quantization and channel bit errors in a joint manner. Statistical modeling of important compression techniques such as Huffman coding, differential pulse-coding modulation, and run-length coding are included in the model. Examples show that the distortion in terms of peak signal-to-noise ratio (PSNR) can be predicted within a 2-dB maximum error over a variety of compression ratios and bit-error rates. To illustrate the utility of the proposed model, we present an unequal power allocation scheme as a simple application of our model. Results show that it gives a PSNR gain of around 6.5 dB at low SNRs, as compared to equal power allocation.

  17. Optimal error functional for parameter identification in anisotropic finite strain elasto-plasticity

    NASA Astrophysics Data System (ADS)

    Shutov, A. V.; Kaygorodtseva, A. A.; Dranishnikov, N. S.

    2017-10-01

    A problem of parameter identification for a model of finite strain elasto-plasticity is discussed. The utilized phenomenological material model accounts for nonlinear isotropic and kinematic hardening; the model kinematics is described by a nested multiplicative split of the deformation gradient. A hierarchy of optimization problems is considered. First, following the standard procedure, the material parameters are identified through minimization of a certain least square error functional. Next, the focus is placed on finding optimal weighting coefficients which enter the error functional. Toward that end, a stochastic noise with systematic and non-systematic components is introduced to the available measurement results; a superordinate optimization problem seeks to minimize the sensitivity of the resulting material parameters to the introduced noise. The advantage of this approach is that no additional experiments are required; it also provides an insight into the robustness of the identification procedure. As an example, experimental data for the steel 42CrMo4 are considered and a set of weighting coefficients is found, which is optimal in a certain class.

  18. Assessment of ecologic regression in the study of lung cancer and indoor radon.

    PubMed

    Stidley, C A; Samet, J M

    1994-02-01

    Ecologic regression studies conducted to assess the cancer risk of indoor radon to the general population are subject to methodological limitations, and they have given seemingly contradictory results. The authors use simulations to examine the effects of two major methodological problems that affect these studies: measurement error and misspecification of the risk model. In a simulation study of the effect of measurement error caused by the sampling process used to estimate radon exposure for a geographic unit, both the effect of radon and the standard error of the effect estimate were underestimated, with greater bias for smaller sample sizes. In another simulation study, which addressed the consequences of uncontrolled confounding by cigarette smoking, even small negative correlations between county geometric mean annual radon exposure and the proportion of smokers resulted in negative average estimates of the radon effect. A third study considered consequences of using simple linear ecologic models when the true underlying model relation between lung cancer and radon exposure is nonlinear. These examples quantify potential biases and demonstrate the limitations of estimating risks from ecologic studies of lung cancer and indoor radon.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarazona, David; Berz, Martin; Hipple, Robert

    The main goal of the Muon g-2 Experiment (g-2) at Fermilab is to measure the muon anomalous magnetic moment to unprecedented precision. This new measurement will allow to test the completeness of the Standard Model (SM) and to validate other theoretical models beyond the SM. The close interplay of the understanding of particle beam dynamics and the preparation of the beam properties with the experimental measurement is tantamount to the reduction of systematic errors in the determination of the muon anomalous magnetic moment. We describe progress in developing detailed calculations and modeling of the muon beam delivery system in ordermore » to obtain a better understanding of spin-orbit correlations, nonlinearities, and more realistic aspects that contribute to the systematic errors of the g-2 measurement. Our simulation is meant to provide statistical studies of error effects and quick analyses of running conditions for when g-2 is taking beam, among others. We are using COSY, a differential algebra solver developed at Michigan State University that will also serve as an alternative to compare results obtained by other simulation teams of the g-2 Collaboration.« less

  20. DC servomechanism parameter identification: a Closed Loop Input Error approach.

    PubMed

    Garrido, Ruben; Miranda, Roger

    2012-01-01

    This paper presents a Closed Loop Input Error (CLIE) approach for on-line parametric estimation of a continuous-time model of a DC servomechanism functioning in closed loop. A standard Proportional Derivative (PD) position controller stabilizes the loop without requiring knowledge on the servomechanism parameters. The analysis of the identification algorithm takes into account the control law employed for closing the loop. The model contains four parameters that depend on the servo inertia, viscous, and Coulomb friction as well as on a constant disturbance. Lyapunov stability theory permits assessing boundedness of the signals associated to the identification algorithm. Experiments on a laboratory prototype allows evaluating the performance of the approach. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  1. SEPARABLE FACTOR ANALYSIS WITH APPLICATIONS TO MORTALITY DATA

    PubMed Central

    Fosdick, Bailey K.; Hoff, Peter D.

    2014-01-01

    Human mortality data sets can be expressed as multiway data arrays, the dimensions of which correspond to categories by which mortality rates are reported, such as age, sex, country and year. Regression models for such data typically assume an independent error distribution or an error model that allows for dependence along at most one or two dimensions of the data array. However, failing to account for other dependencies can lead to inefficient estimates of regression parameters, inaccurate standard errors and poor predictions. An alternative to assuming independent errors is to allow for dependence along each dimension of the array using a separable covariance model. However, the number of parameters in this model increases rapidly with the dimensions of the array and, for many arrays, maximum likelihood estimates of the covariance parameters do not exist. In this paper, we propose a submodel of the separable covariance model that estimates the covariance matrix for each dimension as having factor analytic structure. This model can be viewed as an extension of factor analysis to array-valued data, as it uses a factor model to estimate the covariance along each dimension of the array. We discuss properties of this model as they relate to ordinary factor analysis, describe maximum likelihood and Bayesian estimation methods, and provide a likelihood ratio testing procedure for selecting the factor model ranks. We apply this methodology to the analysis of data from the Human Mortality Database, and show in a cross-validation experiment how it outperforms simpler methods. Additionally, we use this model to impute mortality rates for countries that have no mortality data for several years. Unlike other approaches, our methodology is able to estimate similarities between the mortality rates of countries, time periods and sexes, and use this information to assist with the imputations. PMID:25489353

  2. Towards reporting standards for neuropsychological study results: A proposal to minimize communication errors with standardized qualitative descriptors for normalized test scores.

    PubMed

    Schoenberg, Mike R; Rum, Ruba S

    2017-11-01

    Rapid, clear and efficient communication of neuropsychological results is essential to benefit patient care. Errors in communication are a lead cause of medical errors; nevertheless, there remains a lack of consistency in how neuropsychological scores are communicated. A major limitation in the communication of neuropsychological results is the inconsistent use of qualitative descriptors for standardized test scores and the use of vague terminology. PubMed search from 1 Jan 2007 to 1 Aug 2016 to identify guidelines or consensus statements for the description and reporting of qualitative terms to communicate neuropsychological test scores was conducted. The review found the use of confusing and overlapping terms to describe various ranges of percentile standardized test scores. In response, we propose a simplified set of qualitative descriptors for normalized test scores (Q-Simple) as a means to reduce errors in communicating test results. The Q-Simple qualitative terms are: 'very superior', 'superior', 'high average', 'average', 'low average', 'borderline' and 'abnormal/impaired'. A case example illustrates the proposed Q-Simple qualitative classification system to communicate neuropsychological results for neurosurgical planning. The Q-Simple qualitative descriptor system is aimed as a means to improve and standardize communication of standardized neuropsychological test scores. Research are needed to further evaluate neuropsychological communication errors. Conveying the clinical implications of neuropsychological results in a manner that minimizes risk for communication errors is a quintessential component of evidence-based practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A hybrid wavelet analysis-cloud model data-extending approach for meteorologic and hydrologic time series

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ding, Hao; Singh, Vijay P.; Shang, Xiaosan; Liu, Dengfeng; Wang, Yuankun; Zeng, Xiankui; Wu, Jichun; Wang, Lachun; Zou, Xinqing

    2015-05-01

    For scientific and sustainable management of water resources, hydrologic and meteorologic data series need to be often extended. This paper proposes a hybrid approach, named WA-CM (wavelet analysis-cloud model), for data series extension. Wavelet analysis has time-frequency localization features, known as "mathematics microscope," that can decompose and reconstruct hydrologic and meteorologic series by wavelet transform. The cloud model is a mathematical representation of fuzziness and randomness and has strong robustness for uncertain data. The WA-CM approach first employs the wavelet transform to decompose the measured nonstationary series and then uses the cloud model to develop an extension model for each decomposition layer series. The final extension is obtained by summing the results of extension of each layer. Two kinds of meteorologic and hydrologic data sets with different characteristics and different influence of human activity from six (three pairs) representative stations are used to illustrate the WA-CM approach. The approach is also compared with four other methods, which are conventional correlation extension method, Kendall-Theil robust line method, artificial neural network method (back propagation, multilayer perceptron, and radial basis function), and single cloud model method. To evaluate the model performance completely and thoroughly, five measures are used, which are relative error, mean relative error, standard deviation of relative error, root mean square error, and Thiel inequality coefficient. Results show that the WA-CM approach is effective, feasible, and accurate and is found to be better than other four methods compared. The theory employed and the approach developed here can be applied to extension of data in other areas as well.

  4. Radiometric analysis of the longwave infrared channel of the Thematic Mapper on LANDSAT 4 and 5

    NASA Technical Reports Server (NTRS)

    Schott, John R.; Volchok, William J.; Biegel, Joseph D.

    1986-01-01

    The first objective was to evaluate the postlaunch radiometric calibration of the LANDSAT Thematic Mapper (TM) band 6 data. The second objective was to determine to what extent surface temperatures could be computed from the TM and 6 data using atmospheric propagation models. To accomplish this, ground truth data were compared to a single TM-4 band 6 data set. This comparison indicated satisfactory agreement over a narrow temperature range. The atmospheric propagation model (modified LOWTRAN 5A) was used to predict surface temperature values based on the radiance at the spacecraft. The aircraft data were calibrated using a multi-altitude profile calibration technique which had been extensively tested in previous studies. This aircraft calibration permitted measurement of surface temperatures based on the radiance reaching the aircraft. When these temperature values are evaluated, an error in the satellite's ability to predict surface temperatures can be estimated. This study indicated that by carefully accounting for various sensor calibration and atmospheric propagation effects, and expected error (1 standard deviation) in surface temperature would be 0.9 K. This assumes no error in surface emissivity and no sampling error due to target location. These results indicate that the satellite calibration is within nominal limits to within this study's ability to measure error.

  5. Modified SPC for short run test and measurement process in multi-stations

    NASA Astrophysics Data System (ADS)

    Koh, C. K.; Chin, J. F.; Kamaruddin, S.

    2018-03-01

    Due to short production runs and measurement error inherent in electronic test and measurement (T&M) processes, continuous quality monitoring through real-time statistical process control (SPC) is challenging. Industry practice allows the installation of guard band using measurement uncertainty to reduce the width of acceptance limit, as an indirect way to compensate the measurement errors. This paper presents a new SPC model combining modified guard band and control charts (\\bar{\\text{Z}} chart and W chart) for short runs in T&M process in multi-stations. The proposed model standardizes the observed value with measurement target (T) and rationed measurement uncertainty (U). S-factor (S f) is introduced to the control limits to improve the sensitivity in detecting small shifts. The model was embedded in automated quality control system and verified with a case study in real industry.

  6. Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide.

    PubMed

    Qibo, Feng; Bin, Zhang; Cunxing, Cui; Cuifang, Kuang; Yusheng, Zhai; Fenglin, You

    2013-11-04

    A simple method for simultaneously measuring the 6DOF geometric motion errors of the linear guide was proposed. The mechanisms for measuring straightness and angular errors and for enhancing their resolution are described in detail. A common-path method for measuring the laser beam drift was proposed and it was used to compensate the errors produced by the laser beam drift in the 6DOF geometric error measurements. A compact 6DOF system was built. Calibration experiments with certain standard measurement meters showed that our system has a standard deviation of 0.5 µm in a range of ± 100 µm for the straightness measurements, and standard deviations of 0.5", 0.5", and 1.0" in the range of ± 100" for pitch, yaw, and roll measurements, respectively.

  7. Anticipatory Neurofuzzy Control

    NASA Technical Reports Server (NTRS)

    Mccullough, Claire L.

    1994-01-01

    Technique of feedback control, called "anticipatory neurofuzzy control," developed for use in controlling flexible structures and other dynamic systems for which mathematical models of dynamics poorly known or unknown. Superior ability to act during operation to compensate for, and adapt to, errors in mathematical model of dynamics, changes in dynamics, and noise. Also offers advantage of reduced computing time. Hybrid of two older fuzzy-logic control techniques: standard fuzzy control and predictive fuzzy control.

  8. Estimating seasonal evapotranspiration from temporal satellite images

    USGS Publications Warehouse

    Singh, Ramesh K.; Liu, Shu-Guang; Tieszen, Larry L.; Suyker, Andrew E.; Verma, Shashi B.

    2012-01-01

    Estimating seasonal evapotranspiration (ET) has many applications in water resources planning and management, including hydrological and ecological modeling. Availability of satellite remote sensing images is limited due to repeat cycle of satellite or cloud cover. This study was conducted to determine the suitability of different methods namely cubic spline, fixed, and linear for estimating seasonal ET from temporal remotely sensed images. Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model in conjunction with the wet METRIC (wMETRIC), a modified version of the METRIC model, was used to estimate ET on the days of satellite overpass using eight Landsat images during the 2001 crop growing season in Midwest USA. The model-estimated daily ET was in good agreement (R2 = 0.91) with the eddy covariance tower-measured daily ET. The standard error of daily ET was 0.6 mm (20%) at three validation sites in Nebraska, USA. There was no statistically significant difference (P > 0.05) among the cubic spline, fixed, and linear methods for computing seasonal (July–December) ET from temporal ET estimates. Overall, the cubic spline resulted in the lowest standard error of 6 mm (1.67%) for seasonal ET. However, further testing of this method for multiple years is necessary to determine its suitability.

  9. Checking distributional assumptions for pharmacokinetic summary statistics based on simulations with compartmental models.

    PubMed

    Shen, Meiyu; Russek-Cohen, Estelle; Slud, Eric V

    2016-08-12

    Bioequivalence (BE) studies are an essential part of the evaluation of generic drugs. The most common in vivo BE study design is the two-period two-treatment crossover design. AUC (area under the concentration-time curve) and Cmax (maximum concentration) are obtained from the observed concentration-time profiles for each subject from each treatment under each sequence. In the BE evaluation of pharmacokinetic crossover studies, the normality of the univariate response variable, e.g. log(AUC) 1 or log(Cmax), is often assumed in the literature without much evidence. Therefore, we investigate the distributional assumption of the normality of response variables, log(AUC) and log(Cmax), by simulating concentration-time profiles from two-stage pharmacokinetic models (commonly used in pharmacokinetic research) for a wide range of pharmacokinetic parameters and measurement error structures. Our simulations show that, under reasonable distributional assumptions on the pharmacokinetic parameters, log(AUC) has heavy tails and log(Cmax) is skewed. Sensitivity analyses are conducted to investigate how the distribution of the standardized log(AUC) (or the standardized log(Cmax)) for a large number of simulated subjects deviates from normality if distributions of errors in the pharmacokinetic model for plasma concentrations deviate from normality and if the plasma concentration can be described by different compartmental models.

  10. Short communication: Multi-trait estimation of genetic parameters for milk protein composition in the Danish Holstein.

    PubMed

    Gebreyesus, G; Lund, M S; Janss, L; Poulsen, N A; Larsen, L B; Bovenhuis, H; Buitenhuis, A J

    2016-04-01

    Genetic parameters were estimated for the major milk proteins using bivariate and multi-trait models based on genomic relationships between animals. The analyses included, apart from total protein percentage, αS1-casein (CN), αS2-CN, β-CN, κ-CN, α-lactalbumin, and β-lactoglobulin, as well as the posttranslational sub-forms of glycosylated κ-CN and αS1-CN-8P (phosphorylated). Standard errors of the estimates were used to compare the models. In total, 650 Danish Holstein cows across 4 parities and days in milk ranging from 9 to 481d were selected from 21 herds. The multi-trait model generally resulted in lower standard errors of heritability estimates, suggesting that genetic parameters can be estimated with high accuracy using multi-trait analyses with genomic relationships for scarcely recorded traits. The heritability estimates from the multi-trait model ranged from low (0.05 for β-CN) to high (0.78 for κ-CN). Genetic correlations between the milk proteins and the total milk protein percentage were generally low, suggesting the possibility to alter protein composition through selective breeding with little effect on total milk protein percentage. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Vector velocity volume flow estimation: Sources of error and corrections applied for arteriovenous fistulas.

    PubMed

    Jensen, Jonas; Olesen, Jacob Bjerring; Stuart, Matthias Bo; Hansen, Peter Møller; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt

    2016-08-01

    A method for vector velocity volume flow estimation is presented, along with an investigation of its sources of error and correction of actual volume flow measurements. Volume flow errors are quantified theoretically by numerical modeling, through flow phantom measurements, and studied in vivo. This paper investigates errors from estimating volumetric flow using a commercial ultrasound scanner and the common assumptions made in the literature. The theoretical model shows, e.g. that volume flow is underestimated by 15%, when the scan plane is off-axis with the vessel center by 28% of the vessel radius. The error sources were also studied in vivo under realistic clinical conditions, and the theoretical results were applied for correcting the volume flow errors. Twenty dialysis patients with arteriovenous fistulas were scanned to obtain vector flow maps of fistulas. When fitting an ellipsis to cross-sectional scans of the fistulas, the major axis was on average 10.2mm, which is 8.6% larger than the minor axis. The ultrasound beam was on average 1.5mm from the vessel center, corresponding to 28% of the semi-major axis in an average fistula. Estimating volume flow with an elliptical, rather than circular, vessel area and correcting the ultrasound beam for being off-axis, gave a significant (p=0.008) reduction in error from 31.2% to 24.3%. The error is relative to the Ultrasound Dilution Technique, which is considered the gold standard for volume flow estimation for dialysis patients. The study shows the importance of correcting for volume flow errors, which are often made in clinical practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Estimating Uncertainties of Ship Course and Speed in Early Navigations using ICOADS3.0

    NASA Astrophysics Data System (ADS)

    Chan, D.; Huybers, P. J.

    2017-12-01

    Information on ship position and its uncertainty is potentially important for mapping out climatologists and changes in SSTs. Using the 2-hourly ship reports from the International Comprehensive Ocean Atmosphere Dataset 3.0 (ICOADS 3.0), we estimate the uncertainties of ship course, ship speed, and latitude/longitude corrections during 1870-1900. After reviewing the techniques used in early navigations, we build forward navigation model that uses dead reckoning technique, celestial latitude corrections, and chronometer longitude corrections. The modeled ship tracks exhibit jumps in longitude and latitude, when a position correction is applied. These jumps are also seen in ICOADS3.0 observations. In this model, position error at the end of each day increases following a 2D random walk; the latitudinal/longitude errors are reset when a latitude/longitude correction is applied.We fit the variance of the magnitude of latitude/longitude corrections in the observation against model outputs, and estimate that the standard deviation of uncertainty is 5.5 degree for ship course, 32% for ship speed, 22km for latitude correction, and 27km for longitude correction. The estimates here are informative priors for Bayesian methods that quantify position errors of individual tracks.

  13. Optical surface pressure measurements: Accuracy and application field evaluation

    NASA Astrophysics Data System (ADS)

    Bukov, A.; Mosharov, V.; Orlov, A.; Pesetsky, V.; Radchenko, V.; Phonov, S.; Matyash, S.; Kuzmin, M.; Sadovskii, N.

    1994-07-01

    Optical pressure measurement (OPM) is a new pressure measurement method rapidly developed in several aerodynamic research centers: TsAGI (Russia), Boeing, NASA, McDonnell Douglas (all USA), and DLR (Germany). Present level of OPM-method provides its practice as standard experimental method of aerodynamic investigations in definite application fields. Applications of OPM-method are determined mainly by its accuracy. The accuracy of OPM-method is determined by the errors of three following groups: (1) errors of the luminescent pressure sensor (LPS) itself, such as uncompensated temperature influence, photo degradation, temperature and pressure hysteresis, variation of the LPS parameters from point to point on the model surface, etc.; (2) errors of the measurement system, such as noise of the photodetector, nonlinearity and nonuniformity of the photodetector, time and temperature offsets, etc.; and (3) methodological errors, owing to displacement and deformation of the model in an airflow, a contamination of the model surface, scattering of the excitation and luminescent light from the model surface and test section walls, etc. OPM-method allows getting total error of measured pressure not less than 1 percent. This accuracy is enough to visualize the pressure field and allows determining total and distributed aerodynamic loads and solving some problems of local aerodynamic investigations at transonic and supersonic velocities. OPM is less effective at low subsonic velocities (M less than 0.4), and for precise measurements, for example, an airfoil optimization. Current limitations of the OPM-method are discussed on an example of the surface pressure measurements and calculations of the integral loads on the wings of canard-aircraft model. The pressure measurement system and data reduction methods used on these tests are also described.

  14. Station Correction Uncertainty in Multiple Event Location Algorithms and the Effect on Error Ellipses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Jason P.; Carlson, Deborah K.; Ortiz, Anne

    Accurate location of seismic events is crucial for nuclear explosion monitoring. There are several sources of error in seismic location that must be taken into account to obtain high confidence results. Most location techniques account for uncertainties in the phase arrival times (measurement error) and the bias of the velocity model (model error), but they do not account for the uncertainty of the velocity model bias. By determining and incorporating this uncertainty in the location algorithm we seek to improve the accuracy of the calculated locations and uncertainty ellipses. In order to correct for deficiencies in the velocity model, itmore » is necessary to apply station specific corrections to the predicted arrival times. Both master event and multiple event location techniques assume that the station corrections are known perfectly, when in reality there is an uncertainty associated with these corrections. For multiple event location algorithms that calculate station corrections as part of the inversion, it is possible to determine the variance of the corrections. The variance can then be used to weight the arrivals associated with each station, thereby giving more influence to stations with consistent corrections. We have modified an existing multiple event location program (based on PMEL, Pavlis and Booker, 1983). We are exploring weighting arrivals with the inverse of the station correction standard deviation as well using the conditional probability of the calculated station corrections. This is in addition to the weighting already given to the measurement and modeling error terms. We re-locate a group of mining explosions that occurred at Black Thunder, Wyoming, and compare the results to those generated without accounting for station correction uncertainty.« less

  15. A method to estimate statistical errors of properties derived from charge-density modelling

    PubMed Central

    Lecomte, Claude

    2018-01-01

    Estimating uncertainties of property values derived from a charge-density model is not straightforward. A methodology, based on calculation of sample standard deviations (SSD) of properties using randomly deviating charge-density models, is proposed with the MoPro software. The parameter shifts applied in the deviating models are generated in order to respect the variance–covariance matrix issued from the least-squares refinement. This ‘SSD methodology’ procedure can be applied to estimate uncertainties of any property related to a charge-density model obtained by least-squares fitting. This includes topological properties such as critical point coordinates, electron density, Laplacian and ellipticity at critical points and charges integrated over atomic basins. Errors on electrostatic potentials and interaction energies are also available now through this procedure. The method is exemplified with the charge density of compound (E)-5-phenylpent-1-enylboronic acid, refined at 0.45 Å resolution. The procedure is implemented in the freely available MoPro program dedicated to charge-density refinement and modelling. PMID:29724964

  16. Experimental investigation of observation error in anuran call surveys

    USGS Publications Warehouse

    McClintock, B.T.; Bailey, L.L.; Pollock, K.H.; Simons, T.R.

    2010-01-01

    Occupancy models that account for imperfect detection are often used to monitor anuran and songbird species occurrence. However, presenceabsence data arising from auditory detections may be more prone to observation error (e.g., false-positive detections) than are sampling approaches utilizing physical captures or sightings of individuals. We conducted realistic, replicated field experiments using a remote broadcasting system to simulate simple anuran call surveys and to investigate potential factors affecting observation error in these studies. Distance, time, ambient noise, and observer abilities were the most important factors explaining false-negative detections. Distance and observer ability were the best overall predictors of false-positive errors, but ambient noise and competing species also affected error rates for some species. False-positive errors made up 5 of all positive detections, with individual observers exhibiting false-positive rates between 0.5 and 14. Previous research suggests false-positive errors of these magnitudes would induce substantial positive biases in standard estimators of species occurrence, and we recommend practices to mitigate for false positives when developing occupancy monitoring protocols that rely on auditory detections. These recommendations include additional observer training, limiting the number of target species, and establishing distance and ambient noise thresholds during surveys. ?? 2010 The Wildlife Society.

  17. Error analysis of the crystal orientations obtained by the dictionary approach to EBSD indexing.

    PubMed

    Ram, Farangis; Wright, Stuart; Singh, Saransh; De Graef, Marc

    2017-10-01

    The efficacy of the dictionary approach to Electron Back-Scatter Diffraction (EBSD) indexing was evaluated through the analysis of the error in the retrieved crystal orientations. EBSPs simulated by the Callahan-De Graef forward model were used for this purpose. Patterns were noised, distorted, and binned prior to dictionary indexing. Patterns with a high level of noise, with optical distortions, and with a 25 × 25 pixel size, when the error in projection center was 0.7% of the pattern width and the error in specimen tilt was 0.8°, were indexed with a 0.8° mean error in orientation. The same patterns, but 60 × 60 pixel in size, were indexed by the standard 2D Hough transform based approach with almost the same orientation accuracy. Optimal detection parameters in the Hough space were obtained by minimizing the orientation error. It was shown that if the error in detector geometry can be reduced to 0.1% in projection center and 0.1° in specimen tilt, the dictionary approach can retrieve a crystal orientation with a 0.2° accuracy. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Test of a Power Transfer Model for Standardized Electrofishing

    USGS Publications Warehouse

    Miranda, L.E.; Dolan, C.R.

    2003-01-01

    Standardization of electrofishing in waters with differing conductivities is critical when monitoring temporal and spatial differences in fish assemblages. We tested a model that can help improve the consistency of electrofishing by allowing control over the amount of power that is transferred to the fish. The primary objective was to verify, under controlled laboratory conditions, whether the model adequately described fish immobilization responses elicited with various electrical settings over a range of water conductivities. We found that the model accurately described empirical observations over conductivities ranging from 12 to 1,030 ??S/cm for DC and various pulsed-DC settings. Because the model requires knowledge of a fish's effective conductivity, an attribute that is likely to vary according to species, size, temperature, and other variables, a second objective was to gather available estimates of the effective conductivity of fish to examine the magnitude of variation and to assess whether in practical applications a standard effective conductivity value for fish may be assumed. We found that applying a standard fish effective conductivity of 115 ??S/cm introduced relatively little error into the estimation of the peak power density required to immobilize fish with electrofishing. However, this standard was derived from few estimates of fish effective conductivity and a limited number of species; more estimates are needed to validate our working standard.

  19. Cost-effectiveness of the stream-gaging program in Nebraska

    USGS Publications Warehouse

    Engel, G.B.; Wahl, K.L.; Boohar, J.A.

    1984-01-01

    This report documents the results of a study of the cost-effectiveness of the streamflow information program in Nebraska. Presently, 145 continuous surface-water stations are operated in Nebraska on a budget of $908,500. Data uses and funding sources are identified for each of the 145 stations. Data from most stations have multiple uses. All stations have sufficient justification for continuation, but two stations primarily are used in short-term research studies; their continued operation needs to be evaluated when the research studies end. The present measurement frequency produces an average standard error for instantaneous discharges of about 12 percent, including periods when stage data are missing. Altering the travel routes and the measurement frequency will allow a reduction in standard error of about 1 percent with the present budget. Standard error could be reduced to about 8 percent if lost record could be eliminated. A minimum budget of $822,000 is required to operate the present network, but operations at that funding level would result in an increase in standard error to about 16 percent. The maximum budget analyzed was $1,363,000, which would result in an average standard error of 6 percent. (USGS)

  20. Quantitative Determination of Fusarium proliferatum Concentration in Intact Garlic Cloves Using Near-Infrared Spectroscopy.

    PubMed

    Tamburini, Elena; Mamolini, Elisabetta; De Bastiani, Morena; Marchetti, Maria Gabriella

    2016-07-15

    Fusarium proliferatum is considered to be a pathogen of many economically important plants, including garlic. The objective of this research was to apply near-infrared spectroscopy (NIRS) to rapidly determine fungal concentration in intact garlic cloves, avoiding the laborious and time-consuming procedures of traditional assays. Preventive detection of infection before seeding is of great interest for farmers, because it could avoid serious losses of yield during harvesting and storage. Spectra were collected on 95 garlic cloves, divided in five classes of infection (from 1-healthy to 5-very highly infected) in the range of fungal concentration 0.34-7231.15 ppb. Calibration and cross validation models were developed with partial least squares regression (PLSR) on pretreated spectra (standard normal variate, SNV, and derivatives), providing good accuracy in prediction, with a coefficient of determination (R²) of 0.829 and 0.774, respectively, a standard error of calibration (SEC) of 615.17 ppb, and a standard error of cross validation (SECV) of 717.41 ppb. The calibration model was then used to predict fungal concentration in unknown samples, peeled and unpeeled. The results showed that NIRS could be used as a reliable tool to directly detect and quantify F. proliferatum infection in peeled intact garlic cloves, but the presence of the external peel strongly affected the prediction reliability.

Top