Sample records for model system opening

  1. Archetype-based conversion of EHR content models: pilot experience with a regional EHR system.

    PubMed

    Chen, Rong; Klein, Gunnar O; Sundvall, Erik; Karlsson, Daniel; Ahlfeldt, Hans

    2009-07-01

    Exchange of Electronic Health Record (EHR) data between systems from different suppliers is a major challenge. EHR communication based on archetype methodology has been developed by openEHR and CEN/ISO. The experience of using archetypes in deployed EHR systems is quite limited today. Currently deployed EHR systems with large user bases have their own proprietary way of representing clinical content using various models. This study was designed to investigate the feasibility of representing EHR content models from a regional EHR system as openEHR archetypes and inversely to convert archetypes to the proprietary format. The openEHR EHR Reference Model (RM) and Archetype Model (AM) specifications were used. The template model of the Cambio COSMIC, a regional EHR product from Sweden, was analyzed and compared to the openEHR RM and AM. This study was focused on the convertibility of the EHR semantic models. A semantic mapping between the openEHR RM/AM and the COSMIC template model was produced and used as the basis for developing prototype software that performs automated bi-directional conversion between openEHR archetypes and COSMIC templates. Automated bi-directional conversion between openEHR archetype format and COSMIC template format has been achieved. Several archetypes from the openEHR Clinical Knowledge Repository have been imported into COSMIC, preserving most of the structural and terminology related constraints. COSMIC templates from a large regional installation were successfully converted into the openEHR archetype format. The conversion from the COSMIC templates into archetype format preserves nearly all structural and semantic definitions of the original content models. A strategy of gradually adding archetype support to legacy EHR systems was formulated in order to allow sharing of clinical content models defined using different formats. The openEHR RM and AM are expressive enough to represent the existing clinical content models from the template based EHR system tested and legacy content models can automatically be converted to archetype format for sharing of knowledge. With some limitations, internationally available archetypes could be converted to the legacy EHR models. Archetype support can be added to legacy EHR systems in an incremental way allowing a migration path to interoperability based on standards.

  2. Archetype-based conversion of EHR content models: pilot experience with a regional EHR system

    PubMed Central

    2009-01-01

    Background Exchange of Electronic Health Record (EHR) data between systems from different suppliers is a major challenge. EHR communication based on archetype methodology has been developed by openEHR and CEN/ISO. The experience of using archetypes in deployed EHR systems is quite limited today. Currently deployed EHR systems with large user bases have their own proprietary way of representing clinical content using various models. This study was designed to investigate the feasibility of representing EHR content models from a regional EHR system as openEHR archetypes and inversely to convert archetypes to the proprietary format. Methods The openEHR EHR Reference Model (RM) and Archetype Model (AM) specifications were used. The template model of the Cambio COSMIC, a regional EHR product from Sweden, was analyzed and compared to the openEHR RM and AM. This study was focused on the convertibility of the EHR semantic models. A semantic mapping between the openEHR RM/AM and the COSMIC template model was produced and used as the basis for developing prototype software that performs automated bi-directional conversion between openEHR archetypes and COSMIC templates. Results Automated bi-directional conversion between openEHR archetype format and COSMIC template format has been achieved. Several archetypes from the openEHR Clinical Knowledge Repository have been imported into COSMIC, preserving most of the structural and terminology related constraints. COSMIC templates from a large regional installation were successfully converted into the openEHR archetype format. The conversion from the COSMIC templates into archetype format preserves nearly all structural and semantic definitions of the original content models. A strategy of gradually adding archetype support to legacy EHR systems was formulated in order to allow sharing of clinical content models defined using different formats. Conclusion The openEHR RM and AM are expressive enough to represent the existing clinical content models from the template based EHR system tested and legacy content models can automatically be converted to archetype format for sharing of knowledge. With some limitations, internationally available archetypes could be converted to the legacy EHR models. Archetype support can be added to legacy EHR systems in an incremental way allowing a migration path to interoperability based on standards. PMID:19570196

  3. OpenMI: the essential concepts and their implications for legacy software

    NASA Astrophysics Data System (ADS)

    Gregersen, J. B.; Gijsbers, P. J. A.; Westen, S. J. P.; Blind, M.

    2005-08-01

    Information & Communication Technology (ICT) tools such as computational models are very helpful in designing river basin management plans (rbmp-s). However, in the scientific world there is consensus that a single integrated modelling system to support e.g. the implementation of the Water Framework Directive cannot be developed and that integrated systems need to be very much tailored to the local situation. As a consequence there is an urgent need to increase the flexibility of modelling systems, such that dedicated model systems can be developed from available building blocks. The HarmonIT project aims at precisely that. Its objective is to develop and implement a standard interface for modelling components and other relevant tools: The Open Modelling Interface (OpenMI) standard. The OpenMI standard has been completed and documented. It relies entirely on the "pull" principle, where data are pulled by one model from the previous model in the chain. This paper gives an overview of the OpenMI standard, explains the foremost concepts and the rational behind it.

  4. Open source data assimilation framework for hydrological modeling

    NASA Astrophysics Data System (ADS)

    Ridler, Marc; Hummel, Stef; van Velzen, Nils; Katrine Falk, Anne; Madsen, Henrik

    2013-04-01

    An open-source data assimilation framework is proposed for hydrological modeling. Data assimilation (DA) in hydrodynamic and hydrological forecasting systems has great potential to improve predictions and improve model result. The basic principle is to incorporate measurement information into a model with the aim to improve model results by error minimization. Great strides have been made to assimilate traditional in-situ measurements such as discharge, soil moisture, hydraulic head and snowpack into hydrologic models. More recently, remotely sensed data retrievals of soil moisture, snow water equivalent or snow cover area, surface water elevation, terrestrial water storage and land surface temperature have been successfully assimilated in hydrological models. The assimilation algorithms have become increasingly sophisticated to manage measurement and model bias, non-linear systems, data sparsity (time & space) and undetermined system uncertainty. It is therefore useful to use a pre-existing DA toolbox such as OpenDA. OpenDA is an open interface standard for (and free implementation of) a set of tools to quickly implement DA and calibration for arbitrary numerical models. The basic design philosophy of OpenDA is to breakdown DA into a set of building blocks programmed in object oriented languages. To implement DA, a model must interact with OpenDA to create model instances, propagate the model, get/set variables (or parameters) and free the model once DA is completed. An open-source interface for hydrological models exists capable of all these tasks: OpenMI. OpenMI is an open source standard interface already adopted by key hydrological model providers. It defines a universal approach to interact with hydrological models during simulation to exchange data during runtime, thus facilitating the interactions between models and data sources. The interface is flexible enough so that models can interact even if the model is coded in a different language, represent processes from a different domain or have different spatial and temporal resolutions. An open source framework that bridges OpenMI and OpenDA is presented. The framework provides a generic and easy means for any OpenMI compliant model to assimilate observation measurements. An example test case will be presented using MikeSHE, and OpenMI compliant fully coupled integrated hydrological model that can accurately simulate the feedback dynamics of overland flow, unsaturated zone and saturated zone.

  5. OpenFLUID: an open-source software environment for modelling fluxes in landscapes

    NASA Astrophysics Data System (ADS)

    Fabre, Jean-Christophe; Rabotin, Michaël; Crevoisier, David; Libres, Aline; Dagès, Cécile; Moussa, Roger; Lagacherie, Philippe; Raclot, Damien; Voltz, Marc

    2013-04-01

    Integrative landscape functioning has become a common concept in environmental management. Landscapes are complex systems where many processes interact in time and space. In agro-ecosystems, these processes are mainly physical processes, including hydrological-processes, biological processes and human activities. Modelling such systems requires an interdisciplinary approach, coupling models coming from different disciplines, developed by different teams. In order to support collaborative works, involving many models coupled in time and space for integrative simulations, an open software modelling platform is a relevant answer. OpenFLUID is an open source software platform for modelling landscape functioning, mainly focused on spatial fluxes. It provides an advanced object-oriented architecture allowing to i) couple models developed de novo or from existing source code, and which are dynamically plugged to the platform, ii) represent landscapes as hierarchical graphs, taking into account multi-scale, spatial heterogeneities and landscape objects connectivity, iii) run and explore simulations in many ways : using the OpenFLUID software interfaces for users (command line interface, graphical user interface), or using external applications such as GNU R through the provided ROpenFLUID package. OpenFLUID is developed in C++ and relies on open source libraries only (Boost, libXML2, GLib/GTK, OGR/GDAL, …). For modelers and developers, OpenFLUID provides a dedicated environment for model development, which is based on an open source toolchain, including the Eclipse editor, the GCC compiler and the CMake build system. OpenFLUID is distributed under the GPLv3 open source license, with a special exception allowing to plug existing models licensed under any license. It is clearly in the spirit of sharing knowledge and favouring collaboration in a community of modelers. OpenFLUID has been involved in many research applications, such as modelling of hydrological network transfer, diagnosis and prediction of water quality taking into account human activities, study of the effect of spatial organization on hydrological fluxes, modelling of surface-subsurface water exchanges, … At LISAH research unit, OpenFLUID is the supporting development platform of the MHYDAS model, which is a distributed model for agrosystems (Moussa et al., 2002, Hydrological Processes, 16, 393-412). OpenFLUID web site : http://www.openfluid-project.org

  6. Development of Automated Procedures to Generate Reference Building Models for ASHRAE Standard 90.1 and India’s Building Energy Code and Implementation in OpenStudio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Andrew; Haves, Philip; Jegi, Subhash

    This paper describes a software system for automatically generating a reference (baseline) building energy model from the proposed (as-designed) building energy model. This system is built using the OpenStudio Software Development Kit (SDK) and is designed to operate on building energy models in the OpenStudio file format.

  7. An Open Simulation System Model for Scientific Applications

    NASA Technical Reports Server (NTRS)

    Williams, Anthony D.

    1995-01-01

    A model for a generic and open environment for running multi-code or multi-application simulations - called the open Simulation System Model (OSSM) - is proposed and defined. This model attempts to meet the requirements of complex systems like the Numerical Propulsion Simulator System (NPSS). OSSM places no restrictions on the types of applications that can be integrated at any state of its evolution. This includes applications of different disciplines, fidelities, etc. An implementation strategy is proposed that starts with a basic prototype, and evolves over time to accommodate an increasing number of applications. Potential (standard) software is also identified which may aid in the design and implementation of the system.

  8. An OpenACC-Based Unified Programming Model for Multi-accelerator Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jungwon; Lee, Seyong; Vetter, Jeffrey S

    2015-01-01

    This paper proposes a novel SPMD programming model of OpenACC. Our model integrates the different granularities of parallelism from vector-level parallelism to node-level parallelism into a single, unified model based on OpenACC. It allows programmers to write programs for multiple accelerators using a uniform programming model whether they are in shared or distributed memory systems. We implement a prototype of our model and evaluate its performance with a GPU-based supercomputer using three benchmark applications.

  9. OpenIPSL: Open-Instance Power System Library - Update 1.5 to "iTesla Power Systems Library (iPSL): A Modelica library for phasor time-domain simulations"

    NASA Astrophysics Data System (ADS)

    Baudette, Maxime; Castro, Marcelo; Rabuzin, Tin; Lavenius, Jan; Bogodorova, Tetiana; Vanfretti, Luigi

    2018-01-01

    This paper presents the latest improvements implemented in the Open-Instance Power System Library (OpenIPSL). The OpenIPSL is a fork from the original iTesla Power Systems Library (iPSL) by some of the original developers of the iPSL. This fork's motivation comes from the will of the authors to further develop the library with additional features tailored to research and teaching purposes. The enhancements include improvements to existing models, the addition of a new package of three phase models, and the implementation of automated tests through continuous integration.

  10. Opening Up "Open Systems": Moving toward True Interoperability among Library Software. DataResearch Automation Guide Series, Number One.

    ERIC Educational Resources Information Center

    Data Research Associates, Inc., St. Louis, MO.

    The topic of open systems as it relates to the needs of libraries to establish interoperability between dissimilar computer systems can be clarified by an understanding of the background and evolution of the issue. The International Standards Organization developed a model to link dissimilar computers, and this model has evolved into consensus…

  11. The 1974 AVCR Young Scholar Paper: An Open-System Model of Learning

    ERIC Educational Resources Information Center

    Winn, William

    1975-01-01

    Rejecting the cybernetic model of the learner, the author offers an open-system model based on von Bertalanffy's equation for growth of the living organism. The model produces four learning curves, not just the logarithmic curve produced by the successive approximations of the cybernetic model. (Editor)

  12. OpenDanubia - An integrated, modular simulation system to support regional water resource management

    NASA Astrophysics Data System (ADS)

    Muerth, M.; Waldmann, D.; Heinzeller, C.; Hennicker, R.; Mauser, W.

    2012-04-01

    The already completed, multi-disciplinary research project GLOWA-Danube has developed a regional scale, integrated modeling system, which was successfully applied on the 77,000 km2 Upper Danube basin to investigate the impact of Global Change on both the natural and anthropogenic water cycle. At the end of the last project phase, the integrated modeling system was transferred into the open source project OpenDanubia, which now provides both the core system as well as all major model components to the general public. First, this will enable decision makers from government, business and management to use OpenDanubia as a tool for proactive management of water resources in the context of global change. Secondly, the model framework to support integrated simulations and all simulation models developed for OpenDanubia in the scope of GLOWA-Danube are further available for future developments and research questions. OpenDanubia allows for the investigation of water-related scenarios considering different ecological and economic aspects to support both scientists and policy makers to design policies for sustainable environmental management. OpenDanubia is designed as a framework-based, distributed system. The model system couples spatially distributed physical and socio-economic process during run-time, taking into account their mutual influence. To simulate the potential future impacts of Global Change on agriculture, industrial production, water supply, households and tourism businesses, so-called deep actor models are implemented in OpenDanubia. All important water-related fluxes and storages in the natural environment are implemented in OpenDanubia as spatially explicit, process-based modules. This includes the land surface water and energy balance, dynamic plant water uptake, ground water recharge and flow as well as river routing and reservoirs. Although the complete system is relatively demanding on data requirements and hardware requirements, the modular structure and the generic core system (Core Framework, Actor Framework) allows the application in new regions and the selection of a reduced number of modules for simulation. As part of the Open Source Initiative in GLOWA-Danube (opendanubia.glowa-danube.de) a comprehensive documentation for the system installation was created and both the program code of the framework and of all major components is licensed under the GNU General Public License. In addition, some helpful programs and scripts necessary for the operation and processing of input and result data sets are provided.

  13. Bringing Chatbots into education: Towards Natural Language Negotiation of Open Learner Models

    NASA Astrophysics Data System (ADS)

    Kerlyl, Alice; Hall, Phil; Bull, Susan

    There is an extensive body of work on Intelligent Tutoring Systems: computer environments for education, teaching and training that adapt to the needs of the individual learner. Work on personalisation and adaptivity has included research into allowing the student user to enhance the system's adaptivity by improving the accuracy of the underlying learner model. Open Learner Modelling, where the system's model of the user's knowledge is revealed to the user, has been proposed to support student reflection on their learning. Increased accuracy of the learner model can be obtained by the student and system jointly negotiating the learner model. We present the initial investigations into a system to allow people to negotiate the model of their understanding of a topic in natural language. This paper discusses the development and capabilities of both conversational agents (or chatbots) and Intelligent Tutoring Systems, in particular Open Learner Modelling. We describe a Wizard-of-Oz experiment to investigate the feasibility of using a chatbot to support negotiation, and conclude that a fusion of the two fields can lead to developing negotiation techniques for chatbots and the enhancement of the Open Learner Model. This technology, if successful, could have widespread application in schools, universities and other training scenarios.

  14. Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.

    PubMed

    Davidson, Paul R; Jones, Richard D; Andreae, John H; Sirisena, Harsha R

    2002-11-01

    In many recent human motor control models, including feedback-error learning and adaptive model theory (AMT), feedback control is used to correct errors while an inverse model is simultaneously tuned to provide accurate feedforward control. This popular and appealing hypothesis, based on a combination of psychophysical observations and engineering considerations, predicts that once the tuning of the inverse model is complete the role of feedback control is limited to the correction of disturbances. This hypothesis was tested by looking at the open-loop behavior of the human motor system during adaptation. An experiment was carried out involving 20 normal adult subjects who learned a novel visuomotor relationship on a pursuit tracking task with a steering wheel for input. During learning, the response cursor was periodically blanked, removing all feedback about the external system (i.e., about the relationship between hand motion and response cursor motion). Open-loop behavior was not consistent with a progressive transfer from closed- to open-loop control. Our recently developed computational model of the brain--a novel nonlinear implementation of AMT--was able to reproduce the observed closed- and open-loop results. In contrast, other control-systems models exhibited only minimal feedback control following adaptation, leading to incorrect open-loop behavior. This is because our model continues to use feedback to control slow movements after adaptation is complete. This behavior enhances the internal stability of the inverse model. In summary, our computational model is currently the only motor control model able to accurately simulate the closed- and open-loop characteristics of the experimental response trajectories.

  15. Modelling of Operative Report Documents for Data Integration into an openEHR-Based Enterprise Data Warehouse.

    PubMed

    Haarbrandt, Birger; Wilschko, Andreas; Marschollek, Michael

    2016-01-01

    In order to integrate operative report documents from two operating room management systems into a data warehouse, we investigated the application of the two-level modelling approach of openEHR to create a shared data model. Based on the systems' analyses, a template consisting of 13 archetypes has been developed. Of these 13 archetypes, 3 have been obtained from the international archetype repository of the openEHR foundation. The remaining 10 archetypes have been newly created. The template was evaluated by an application system expert and through conducting a first test mapping of real-world data from one of the systems. The evaluation showed that by using the two-level modelling approach of openEHR, we succeeded to represent an integrated and shared information model for operative report documents. More research is needed to learn about the limitations of this approach in other data integration scenarios.

  16. Opening Pandora's Box: The impact of open system modeling on interpretations of anoxia

    NASA Astrophysics Data System (ADS)

    Hotinski, Roberta M.; Kump, Lee R.; Najjar, Raymond G.

    2000-06-01

    The geologic record preserves evidence that vast regions of ancient oceans were once anoxic, with oxygen levels too low to sustain animal life. Because anoxic conditions have been postulated to foster deposition of petroleum source rocks and have been implicated as a kill mechanism in extinction events, the genesis of such anoxia has been an area of intense study. Most previous models of ocean oxygen cycling proposed, however, have either been qualitative or used closed-system approaches. We reexamine the question of anoxia in open-system box models in order to test the applicability of closed-system results over long timescales and find that open and closed-system modeling results may differ significantly on both short and long timescales. We also compare a scenario with basinwide diffuse upwelling (a three-box model) to a model with upwelling concentrated in the Southern Ocean (a four-box model). While a three-box modeling approach shows that only changes in high-latitude convective mixing rate and character of deepwater sources are likely to cause anoxia, four-box model experiments indicate that slowing of thermohaline circulation, a reduction in wind-driven upwelling, and changes in high-latitude export production may also cause dysoxia or anoxia in part of the deep ocean on long timescales. These results suggest that box models must capture the open-system and vertically stratified nature of the ocean to allow meaningful interpretations of long-lived episodes of anoxia.

  17. Modular Open System Architecture for Reducing Contamination Risk in the Space and Missile Defense Supply Chain

    NASA Technical Reports Server (NTRS)

    Seasly, Elaine

    2015-01-01

    To combat contamination of physical assets and provide reliable data to decision makers in the space and missile defense community, a modular open system architecture for creation of contamination models and standards is proposed. Predictive tools for quantifying the effects of contamination can be calibrated from NASA data of long-term orbiting assets. This data can then be extrapolated to missile defense predictive models. By utilizing a modular open system architecture, sensitive data can be de-coupled and protected while benefitting from open source data of calibrated models. This system architecture will include modules that will allow the designer to trade the effects of baseline performance against the lifecycle degradation due to contamination while modeling the lifecycle costs of alternative designs. In this way, each member of the supply chain becomes an informed and active participant in managing contamination risk early in the system lifecycle.

  18. OpenDA Open Source Generic Data Assimilation Environment and its Application in Process Models

    NASA Astrophysics Data System (ADS)

    El Serafy, Ghada; Verlaan, Martin; Hummel, Stef; Weerts, Albrecht; Dhondia, Juzer

    2010-05-01

    Data Assimilation techniques are essential elements in state-of-the-art development of models and their optimization with data in the field of groundwater, surface water and soil systems. They are essential tools in calibration of complex modelling systems and improvement of model forecasts. The OpenDA is a new and generic open source data assimilation environment for application to a choice of physical process models, applied to case dependent domains. OpenDA was introduced recently when the developers of Costa, an open-source TU Delft project [http://www.costapse.org; Van Velzen and Verlaan; 2007] and those of the DATools from the former WL|Delft Hydraulics [El Serafy et al 2007; Weerts et al. 2009] decided to join forces. OpenDA makes use of a set of interfaces that describe the interaction between models, observations and data assimilation algorithms. It focuses on flexible applications in portable systems for modelling geophysical processes. It provides a generic interfacing protocol that allows combination of the implemented data assimilation techniques with, in principle, any time-stepping model duscribing a process(atmospheric processes, 3D circulation, 2D water level, sea surface temperature, soil systems, groundwater etc.). Presently, OpenDA features filtering techniques and calibration techniques. The presentation will give an overview of the OpenDA and the results of some of its practical applications. Application of data assimilation in portable operational forecasting systems—the DATools assimilation environment, El Serafy G.Y., H. Gerritsen, S. Hummel, A. H. Weerts, A.E. Mynett and M. Tanaka (2007), Journal of Ocean Dynamics, DOI 10.1007/s10236-007-0124-3, pp.485-499. COSTA a problem solving environment for data assimilation applied for hydrodynamical modelling, Van Velzen and Verlaan (2007), Meteorologische Zeitschrift, Volume 16, Number 6, December 2007 , pp. 777-793(17). Application of generic data assimilation tools (DATools) for flood forecasting purposes, A.H. Weerts, G.Y.H. El Serafy, S. Hummel, J. Dhondia, and H. Gerritsen (2009), accepted by Geoscience & Computers.

  19. Model-Based Reinforcement of Kinect Depth Data for Human Motion Capture Applications

    PubMed Central

    Calderita, Luis Vicente; Bandera, Juan Pedro; Bustos, Pablo; Skiadopoulos, Andreas

    2013-01-01

    Motion capture systems have recently experienced a strong evolution. New cheap depth sensors and open source frameworks, such as OpenNI, allow for perceiving human motion on-line without using invasive systems. However, these proposals do not evaluate the validity of the obtained poses. This paper addresses this issue using a model-based pose generator to complement the OpenNI human tracker. The proposed system enforces kinematics constraints, eliminates odd poses and filters sensor noise, while learning the real dimensions of the performer's body. The system is composed by a PrimeSense sensor, an OpenNI tracker and a kinematics-based filter and has been extensively tested. Experiments show that the proposed system improves pure OpenNI results at a very low computational cost. PMID:23845933

  20. On the finite element modeling of the asymmetric cracked rotor

    NASA Astrophysics Data System (ADS)

    AL-Shudeifat, Mohammad A.

    2013-05-01

    The advanced phase of the breathing crack in the heavy duty horizontal rotor system is expected to be dominated by the open crack state rather than the breathing state after a short period of operation. The reason for this scenario is the expected plastic deformation in crack location due to a large compression stress field appears during the continuous shaft rotation. Based on that, the finite element modeling of a cracked rotor system with a transverse open crack is addressed here. The cracked rotor with the open crack model behaves as an asymmetric shaft due to the presence of the transverse edge crack. Hence, the time-varying area moments of inertia of the cracked section are employed in formulating the periodic finite element stiffness matrix which yields a linear time-periodic system. The harmonic balance method (HB) is used for solving the finite element (FE) equations of motion for studying the dynamic behavior of the system. The behavior of the whirl orbits during the passage through the subcritical rotational speeds of the open crack model is compared to that for the breathing crack model. The presence of the open crack with the unbalance force was found only to excite the 1/2 and 1/3 of the backward critical whirling speed. The whirl orbits in the neighborhood of these subcritical speeds were found to have nearly similar behavior for both open and breathing crack models. While unlike the breathing crack model, the subcritical forward whirling speeds have not been observed for the open crack model in the response to the unbalance force. As a result, the behavior of the whirl orbits during the passage through the forward subcritical rotational speeds is found to be enough to distinguish the breathing crack from the open crack model. These whirl orbits with inner loops that appear in the neighborhood of the forward subcritical speeds are then a unique property for the breathing crack model.

  1. Creating system engineering products with executable models in a model-based engineering environment

    NASA Astrophysics Data System (ADS)

    Karban, Robert; Dekens, Frank G.; Herzig, Sebastian; Elaasar, Maged; Jankevičius, Nerijus

    2016-08-01

    Applying systems engineering across the life-cycle results in a number of products built from interdependent sources of information using different kinds of system level analysis. This paper focuses on leveraging the Executable System Engineering Method (ESEM) [1] [2], which automates requirements verification (e.g. power and mass budget margins and duration analysis of operational modes) using executable SysML [3] models. The particular value proposition is to integrate requirements, and executable behavior and performance models for certain types of system level analysis. The models are created with modeling patterns that involve structural, behavioral and parametric diagrams, and are managed by an open source Model Based Engineering Environment (named OpenMBEE [4]). This paper demonstrates how the ESEM is applied in conjunction with OpenMBEE to create key engineering products (e.g. operational concept document) for the Alignment and Phasing System (APS) within the Thirty Meter Telescope (TMT) project [5], which is under development by the TMT International Observatory (TIO) [5].

  2. Automated Transformation of CDISC ODM to OpenClinica.

    PubMed

    Gessner, Sophia; Storck, Michael; Hegselmann, Stefan; Dugas, Martin; Soto-Rey, Iñaki

    2017-01-01

    Due to the increasing use of electronic data capture systems for clinical research, the interest in saving resources by automatically generating and reusing case report forms in clinical studies is growing. OpenClinica, an open-source electronic data capture system enables the reuse of metadata in its own Excel import template, hampering the reuse of metadata defined in other standard formats. One of these standard formats is the Operational Data Model for metadata, administrative and clinical data in clinical studies. This work suggests a mapping from Operational Data Model to OpenClinica and describes the implementation of a converter to automatically generate OpenClinica conform case report forms based upon metadata in the Operational Data Model.

  3. ORBDA: An openEHR benchmark dataset for performance assessment of electronic health record servers.

    PubMed

    Teodoro, Douglas; Sundvall, Erik; João Junior, Mario; Ruch, Patrick; Miranda Freire, Sergio

    2018-01-01

    The openEHR specifications are designed to support implementation of flexible and interoperable Electronic Health Record (EHR) systems. Despite the increasing number of solutions based on the openEHR specifications, it is difficult to find publicly available healthcare datasets in the openEHR format that can be used to test, compare and validate different data persistence mechanisms for openEHR. To foster research on openEHR servers, we present the openEHR Benchmark Dataset, ORBDA, a very large healthcare benchmark dataset encoded using the openEHR formalism. To construct ORBDA, we extracted and cleaned a de-identified dataset from the Brazilian National Healthcare System (SUS) containing hospitalisation and high complexity procedures information and formalised it using a set of openEHR archetypes and templates. Then, we implemented a tool to enrich the raw relational data and convert it into the openEHR model using the openEHR Java reference model library. The ORBDA dataset is available in composition, versioned composition and EHR openEHR representations in XML and JSON formats. In total, the dataset contains more than 150 million composition records. We describe the dataset and provide means to access it. Additionally, we demonstrate the usage of ORBDA for evaluating inserting throughput and query latency performances of some NoSQL database management systems. We believe that ORBDA is a valuable asset for assessing storage models for openEHR-based information systems during the software engineering process. It may also be a suitable component in future standardised benchmarking of available openEHR storage platforms.

  4. ORBDA: An openEHR benchmark dataset for performance assessment of electronic health record servers

    PubMed Central

    Sundvall, Erik; João Junior, Mario; Ruch, Patrick; Miranda Freire, Sergio

    2018-01-01

    The openEHR specifications are designed to support implementation of flexible and interoperable Electronic Health Record (EHR) systems. Despite the increasing number of solutions based on the openEHR specifications, it is difficult to find publicly available healthcare datasets in the openEHR format that can be used to test, compare and validate different data persistence mechanisms for openEHR. To foster research on openEHR servers, we present the openEHR Benchmark Dataset, ORBDA, a very large healthcare benchmark dataset encoded using the openEHR formalism. To construct ORBDA, we extracted and cleaned a de-identified dataset from the Brazilian National Healthcare System (SUS) containing hospitalisation and high complexity procedures information and formalised it using a set of openEHR archetypes and templates. Then, we implemented a tool to enrich the raw relational data and convert it into the openEHR model using the openEHR Java reference model library. The ORBDA dataset is available in composition, versioned composition and EHR openEHR representations in XML and JSON formats. In total, the dataset contains more than 150 million composition records. We describe the dataset and provide means to access it. Additionally, we demonstrate the usage of ORBDA for evaluating inserting throughput and query latency performances of some NoSQL database management systems. We believe that ORBDA is a valuable asset for assessing storage models for openEHR-based information systems during the software engineering process. It may also be a suitable component in future standardised benchmarking of available openEHR storage platforms. PMID:29293556

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horiike, S.; Okazaki, Y.

    This paper describes a performance estimation tool developed for modeling and simulation of open distributed energy management systems to support their design. The approach of discrete event simulation with detailed models is considered for efficient performance estimation. The tool includes basic models constituting a platform, e.g., Ethernet, communication protocol, operating system, etc. Application softwares are modeled by specifying CPU time, disk access size, communication data size, etc. Different types of system configurations for various system activities can be easily studied. Simulation examples show how the tool is utilized for the efficient design of open distributed energy management systems.

  6. Partition-free approach to open quantum systems in harmonic environments: An exact stochastic Liouville equation

    NASA Astrophysics Data System (ADS)

    McCaul, G. M. G.; Lorenz, C. D.; Kantorovich, L.

    2017-03-01

    We present a partition-free approach to the evolution of density matrices for open quantum systems coupled to a harmonic environment. The influence functional formalism combined with a two-time Hubbard-Stratonovich transformation allows us to derive a set of exact differential equations for the reduced density matrix of an open system, termed the extended stochastic Liouville-von Neumann equation. Our approach generalizes previous work based on Caldeira-Leggett models and a partitioned initial density matrix. This provides a simple, yet exact, closed-form description for the evolution of open systems from equilibriated initial conditions. The applicability of this model and the potential for numerical implementations are also discussed.

  7. Open Energy Info (OpenEI) (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2010-12-01

    The Open Energy Information (OpenEI.org) initiative is a free, open-source, knowledge-sharing platform. OpenEI was created to provide access to data, models, tools, and information that accelerate the transition to clean energy systems through informed decisions.

  8. Object Management Group object transaction service based on an X/Open and International Organization for Standardization open systems interconnection transaction processing kernel

    NASA Astrophysics Data System (ADS)

    Liang, J.; Sédillot, S.; Traverson, B.

    1997-09-01

    This paper addresses federation of a transactional object standard - Object Management Group (OMG) object transaction service (OTS) - with the X/Open distributed transaction processing (DTP) model and International Organization for Standardization (ISO) open systems interconnection (OSI) transaction processing (TP) communication protocol. The two-phase commit propagation rules within a distributed transaction tree are similar in the X/Open, ISO and OMG models. Building an OTS on an OSI TP protocol machine is possible because the two specifications are somewhat complementary. OTS defines a set of external interfaces without specific internal protocol machine, while OSI TP specifies an internal protocol machine without any application programming interface. Given these observations, and having already implemented an X/Open two-phase commit transaction toolkit based on an OSI TP protocol machine, we analyse the feasibility of using this implementation as a transaction service provider for OMG interfaces. Based on the favourable result of this feasibility study, we are implementing an OTS compliant system, which, by initiating the extensibility and openness strengths of OSI TP, is able to provide interoperability between X/Open DTP and OMG OTS models.

  9. Feasibility of Implementing an All-Volunteer Force for the ROK Armed Forces

    DTIC Science & Technology

    2007-03-01

    Korea’s current military/economic/political/social factors for voluntary recruitment through an open-systems conceptual model. Results indicate that the...recruitment through an open-systems conceptual model. Results indicate that the draft should be maintained for the near future, but this does not...7 A. A CONCEPTUAL MODEL FOR DEFENSE ORGANIZATION

  10. Opening the Classroom

    ERIC Educational Resources Information Center

    Watson, Richard T.; Boudreau, Marie-Claude; York, Paul T.; Greiner, Martina; Wynn, Donald E.

    2008-01-01

    We argue that information systems educators--and others in similarly dynamic professional disciplines--could benefit from an alternative infrastructure for learning. We present an "open classroom" model of education which expands upon Ferris' (2002) collaborative partnership model of education by integrating "open" technologies such as Wiki and…

  11. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system

    PubMed Central

    Jensen, Tue V.; Pinson, Pierre

    2017-01-01

    Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation. PMID:29182600

  12. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system.

    PubMed

    Jensen, Tue V; Pinson, Pierre

    2017-11-28

    Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation.

  13. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system

    NASA Astrophysics Data System (ADS)

    Jensen, Tue V.; Pinson, Pierre

    2017-11-01

    Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation.

  14. An OpenMI Implementation of a Water Resources System using Simple Script Wrappers

    NASA Astrophysics Data System (ADS)

    Steward, D. R.; Aistrup, J. A.; Kulcsar, L.; Peterson, J. M.; Welch, S. M.; Andresen, D.; Bernard, E. A.; Staggenborg, S. A.; Bulatewicz, T.

    2013-12-01

    This team has developed an adaption of the Open Modelling Interface (OpenMI) that utilizes Simple Script Wrappers. Code is made OpenMI compliant through organization within three modules that initialize, perform time steps, and finalize results. A configuration file is prepared that specifies variables a model expects to receive as input and those it will make available as output. An example is presented for groundwater, economic, and agricultural production models in the High Plains Aquifer region of Kansas. Our models use the programming environments in Scilab and Matlab, along with legacy Fortran code, and our Simple Script Wrappers can also use Python. These models are collectively run within this interdisciplinary framework from initial conditions into the future. It will be shown that by applying model constraints to one model, the impact may be accessed on changes to the water resources system.

  15. 12 CFR Appendix G to Part 226 - Open-End Model Forms and Clauses

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 3 2013-01-01 2013-01-01 false Open-End Model Forms and Clauses G Appendix G... RESERVE SYSTEM (CONTINUED) TRUTH IN LENDING (REGULATION Z) Pt. 226, App. G Appendix G to Part 226—Open-End Model Forms and Clauses G-1Balance Computation Methods Model Clauses (Home-equity Plans) (§§ 226.6 and...

  16. Cultural Geography Model Validation

    DTIC Science & Technology

    2010-03-01

    the Cultural Geography Model (CGM), a government owned, open source multi - agent system utilizing Bayesian networks, queuing systems, the Theory of...referent determined either from theory or SME opinion. 4. CGM Overview The CGM is a government-owned, open source, data driven multi - agent social...HSCB, validation, social network analysis ABSTRACT: In the current warfighting environment , the military needs robust modeling and simulation (M&S

  17. A platform for dynamic simulation and control of movement based on OpenSim and MATLAB.

    PubMed

    Mansouri, Misagh; Reinbolt, Jeffrey A

    2012-05-11

    Numerical simulations play an important role in solving complex engineering problems and have the potential to revolutionize medical decision making and treatment strategies. In this paper, we combine the rapid model-based design, control systems and powerful numerical method strengths of MATLAB/Simulink with the simulation and human movement dynamics strengths of OpenSim by developing a new interface between the two software tools. OpenSim is integrated with Simulink using the MATLAB S-function mechanism, and the interface is demonstrated using both open-loop and closed-loop control systems. While the open-loop system uses MATLAB/Simulink to separately reproduce the OpenSim Forward Dynamics Tool, the closed-loop system adds the unique feature of feedback control to OpenSim, which is necessary for most human movement simulations. An arm model example was successfully used in both open-loop and closed-loop cases. For the open-loop case, the simulation reproduced results from the OpenSim Forward Dynamics Tool with root mean square (RMS) differences of 0.03° for the shoulder elevation angle and 0.06° for the elbow flexion angle. MATLAB's variable step-size integrator reduced the time required to generate the forward dynamic simulation from 7.1s (OpenSim) to 2.9s (MATLAB). For the closed-loop case, a proportional-integral-derivative controller was used to successfully balance a pole on model's hand despite random force disturbances on the pole. The new interface presented here not only integrates the OpenSim and MATLAB/Simulink software tools, but also will allow neuroscientists, physiologists, biomechanists, and physical therapists to adapt and generate new solutions as treatments for musculoskeletal conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. The Open Academic Model for the Systems Engineering Graduate Program at Stevens Institute of Technology

    ERIC Educational Resources Information Center

    Lasfer, Kahina

    2012-01-01

    The Systems Engineering Program at Stevens Institute of Technology has developed the Open Academic Model (OAM) to guide its strategic planning and operations since its founding in 2001. Guided by OAM, the Stevens Systems Engineering Program (SSEP) has grown from inception in 2001 into one of the largest in the US. The main objectives of the…

  19. Defining and using open architecture levels

    NASA Astrophysics Data System (ADS)

    Cramer, M. A.; Morrison, A. W.; Cordes, B.; Stack, J. R.

    2012-05-01

    Open architecture (OA) within military systems enables delivery of increased warfighter capabilities in a shorter time at a reduced cost.i In fact in today's standards-aware environment, solutions are often proposed to the government that include OA as one of its basics design tenets. Yet the ability to measure and assess OA in an objective manner, particularly at the subsystem/component level within a system, remains an elusive proposition. Furthermore, it is increasingly apparent that the establishment of an innovation ecosystem of an open business model that leverages thirdparty development requires more than just technical modifications that promote openness. This paper proposes a framework to migrate not only towards technical openness, but also towards enabling and facilitating an open business model, driven by third party development, for military systems. This framework was developed originally for the U.S. Navy Littoral and Mine Warfare community; however, the principles and approach may be applied elsewhere within the Navy and Department of Defense.

  20. Opening-assisted coherent transport in the semiclassical regime

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Celardo, G. Luca; Borgonovi, Fausto; Kaplan, Lev

    2017-02-01

    We study quantum enhancement of transport in open systems in the presence of disorder and dephasing. Quantum coherence effects may significantly enhance transport in open systems even in the semiclassical regime (where the decoherence rate is greater than the intersite hopping amplitude), as long as the disorder is sufficiently strong. When the strengths of disorder and dephasing are fixed, there is an optimal opening strength at which the coherent transport enhancement is optimized. Analytic results are obtained in two simple paradigmatic tight-binding models of large systems: the linear chain and the fully connected network. The physical behavior is also reflected in the Fenna-Matthews-Olson (FMO) photosynthetic complex, which may be viewed as intermediate between these paradigmatic models.

  1. Towards a coastal ocean forecasting system in Southern Adriatic Northern Ionian seas based on unstructured-grid model

    NASA Astrophysics Data System (ADS)

    Federico, Ivan; Oddo, Paolo; Pinardi, Nadia; Coppini, Giovanni

    2014-05-01

    The Southern Adriatic Northern Ionian Forecasting System (SANIFS) operational chain is based on a nesting approach. The large scale model for the entire Mediterranean basin (MFS, Mediterranean Forecasting system, operated by INGV, e.g. Tonani et al. 2008, Oddo et al. 2009) provides lateral open boundary conditions to the regional model for Adriatic and Ionian seas (AIFS, Adriatic Ionian Forecasting System) which provides the open-sea fields (initial conditions and lateral open boundary conditions) to SANIFS. The latter, here presented, is a coastal ocean model based on SHYFEM (Shallow HYdrodynamics Finite Element Model) code, which is an unstructured grid, finite element three-dimensional hydrodynamic model (e.g. Umgiesser et al., 2004, Ferrarin et al., 2013). The SANIFS hydrodynamic model component has been designed to provide accurate information of hydrodynamics and active tracer fields in the coastal waters of Southern Eastern Italy (Apulia, Basilicata and Calabria regions), where the model is characterized by a resolution of about of 200-500 m. The horizontal resolution is also accurate in open-sea areas, where the elements size is approximately 3 km. During the development phase the model has been initialized and forced at the lateral open boundaries through a full nesting strategy directly with the MFS fields. The heat fluxes has been computed by bulk formulae using as input data the operational analyses of European Centre for Medium-Range Weather Forecasts. Short range pre-operational forecast tests have been performed in different seasons to evaluate the robustness of the implemented model in different oceanographic conditions. Model results are validated by means of comparison with MFS operational results and observations. The model is able to reproduce the large-scale oceanographic structures of the area (keeping similar structures of MFS in open sea), while in the coastal area significant improvements in terms of reproduced structures and dynamics are evident.

  2. 12 CFR Appendix G to Part 226 - Open-End Model Forms and Clauses

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 3 2014-01-01 2014-01-01 false Open-End Model Forms and Clauses G Appendix G... RESERVE SYSTEM (CONTINUED) TRUTH IN LENDING (REGULATION Z) Pt. 226, App. G Appendix G to Part 226—Open-End... Card Accounts Under an Open-End (Not Home-Secured) Consumer Credit Plan [Interest will be charged to...

  3. Multi-level Modeling of Light-Induced Stomatal Opening Offers New Insights into Its Regulation by Drought

    PubMed Central

    Sun, Zhongyao; Jin, Xiaofen; Albert, Réka; Assmann, Sarah M.

    2014-01-01

    Plant guard cells gate CO2 uptake and transpirational water loss through stomatal pores. As a result of decades of experimental investigation, there is an abundance of information on the involvement of specific proteins and secondary messengers in the regulation of stomatal movements and on the pairwise relationships between guard cell components. We constructed a multi-level dynamic model of guard cell signal transduction during light-induced stomatal opening and of the effect of the plant hormone abscisic acid (ABA) on this process. The model integrates into a coherent network the direct and indirect biological evidence regarding the regulation of seventy components implicated in stomatal opening. Analysis of this signal transduction network identified robust cross-talk between blue light and ABA, in which [Ca2+]c plays a key role, and indicated an absence of cross-talk between red light and ABA. The dynamic model captured more than 1031 distinct states for the system and yielded outcomes that were in qualitative agreement with a wide variety of previous experimental results. We obtained novel model predictions by simulating single component knockout phenotypes. We found that under white light or blue light, over 60%, and under red light, over 90% of all simulated knockouts had similar opening responses as wild type, showing that the system is robust against single node loss. The model revealed an open question concerning the effect of ABA on red light-induced stomatal opening. We experimentally showed that ABA is able to inhibit red light-induced stomatal opening, and our model offers possible hypotheses for the underlying mechanism, which point to potential future experiments. Our modelling methodology combines simplicity and flexibility with dynamic richness, making it well suited for a wide class of biological regulatory systems. PMID:25393147

  4. OpenSHMEM-UCX : Evaluation of UCX for implementing OpenSHMEM Programming Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Matthew B; Gorentla Venkata, Manjunath; Aderholdt, William Ferrol

    2016-01-01

    The OpenSHMEM reference implementation was developed towards the goal of developing an open source and high-performing Open- SHMEM implementation. To achieve portability and performance across various networks, the OpenSHMEM reference implementation uses GAS- Net and UCCS for network operations. Recently, new network layers have emerged with the promise of providing high-performance, scalabil- ity, and portability for HPC applications. In this paper, we implement the OpenSHMEM reference implementation to use the UCX framework for network operations. Then, we evaluate its performance and scalabil- ity on Cray XK systems to understand UCX s suitability for developing the OpenSHMEM programming model. Further, wemore » develop a bench- mark called SHOMS for evaluating the OpenSHMEM implementation. Our experimental results show that OpenSHMEM-UCX outperforms the vendor supplied OpenSHMEM implementation in most cases on the Cray XK system by up to 40% with respect to message rate and up to 70% for the execution of application kernels.« less

  5. 12 CFR Appendix G to Part 226 - Open-End Model Forms and Clauses

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 3 2012-01-01 2012-01-01 false Open-End Model Forms and Clauses G Appendix G... RESERVE SYSTEM TRUTH IN LENDING (REGULATION Z) Pt. 226, App. G Appendix G to Part 226—Open-End Model Forms and Clauses G-1Balance Computation Methods Model Clauses (Home-equity Plans) (§§ 226.6 and 226.7) G-1...

  6. Analysis of FERC's Final EIS for Electricity Open Access & Recovery of Stranded Costs

    EIA Publications

    1996-01-01

    Reviews the Final Environmental Impact Statement (FEIS) prepared by the Federal Energy Regulatory Commission for its electricity transmission system open access prepared in April 1996 and uses the National Energy Modeling System (NEMS) to analyze the open access rule (Orders 888 and 889).

  7. A Technology Enhanced Learning Model for Quality Education

    NASA Astrophysics Data System (ADS)

    Sherly, Elizabeth; Uddin, Md. Meraj

    Technology Enhanced Learning and Teaching (TELT) Model provides learning through collaborations and interactions with a framework for content development and collaborative knowledge sharing system as a supplementary for learning to improve the quality of education system. TELT deals with a unique pedagogy model for Technology Enhanced Learning System which includes course management system, digital library, multimedia enriched contents and video lectures, open content management system and collaboration and knowledge sharing systems. Open sources like Moodle and Wiki for content development, video on demand solution with a low cost mid range system, an exhaustive digital library are provided in a portal system. The paper depicts a case study of e-learning initiatives with TELT model at IIITM-K and how effectively implemented.

  8. Community effort endorsing multiscale modelling, multiscale data science and multiscale computing for systems medicine.

    PubMed

    Zanin, Massimiliano; Chorbev, Ivan; Stres, Blaz; Stalidzans, Egils; Vera, Julio; Tieri, Paolo; Castiglione, Filippo; Groen, Derek; Zheng, Huiru; Baumbach, Jan; Schmid, Johannes A; Basilio, José; Klimek, Peter; Debeljak, Nataša; Rozman, Damjana; Schmidt, Harald H H W

    2017-12-05

    Systems medicine holds many promises, but has so far provided only a limited number of proofs of principle. To address this road block, possible barriers and challenges of translating systems medicine into clinical practice need to be identified and addressed. The members of the European Cooperation in Science and Technology (COST) Action CA15120 Open Multiscale Systems Medicine (OpenMultiMed) wish to engage the scientific community of systems medicine and multiscale modelling, data science and computing, to provide their feedback in a structured manner. This will result in follow-up white papers and open access resources to accelerate the clinical translation of systems medicine. © The Author 2017. Published by Oxford University Press.

  9. Leveraging the Value of Human Relationships to Improve Health Outcomes. Lessons learned from the OpenMRS Electronic Health Record System.

    PubMed

    Kasthurirathne, Suranga N; Mamlin, Burke W; Cullen, Theresa

    2017-02-01

    Despite significant awareness on the value of leveraging patient relationships across the healthcare continuum, there is no research on the potential of using Electronic Health Record (EHR) systems to store structured patient relationship data, or its impact on enabling better healthcare. We sought to identify which EHR systems supported effective patient relationship data collection, and for systems that do, what types of relationship data is collected, how this data is used, and the perceived value of doing so. We performed a literature search to identify EHR systems that supported patient relationship data collection. Based on our results, we defined attributes of an effective patient relationship model. The Open Medical Record System (OpenMRS), an open source medical record platform for underserved settings met our eligibility criteria for effective patient relationship collection. We performed a survey to understand how the OpenMRS patient relationship model was used, and how it brought value to implementers. The OpenMRS patient relationship model has won widespread adoption across many implementations and is perceived to be valuable in enabling better health care delivery. Patient relationship information is widely used for community health programs and enabling chronic care. Additionally, many OpenMRS implementers were using this feature to collect custom relationship types for implementation specific needs. We believe that flexible patient relationship data collection is critical for better healthcare, and can inform community care and chronic care initiatives across the world. Additionally, patient relationship data could also be leveraged for many other initiatives such as patient centric care and in the field of precision medicine.

  10. The continued movement for open access to peer-reviewed literature.

    PubMed

    Liesegang, Thomas J

    2013-09-01

    To provide a current overview of the movement for open access to the peer review literature. Perspective. Literature review of recent advances in the open access movement with a personal viewpoint of the nuances of the movement. The open access movement is complex, with many different constituents. The idealists for the open access movement are seeking open access to the literature but also to the data that constitute the research within the manuscript. The business model of the traditional subscription journal is being scrutinized in relation to the surge in the number of open access journals. Within this environment authors should beware predatory practices. More government and funding agencies are mandating open access to their funded research. This open access movement will continue to be disruptive until a business model ensures continuity of the scientific record. A flood of open access articles that might enrich, but also might pollute or confuse, the medical literature has altered the filtering mechanism provided by the traditional peer review system. At some point there may be a shake-out, with some literature being lost in cyberspace. The open access movement is maturing and must be embraced in some format. The challenge is to establish a sustainable financial business model that will permit the use of digital technology but yet not endanger the decades-old traditional publication model and peer review system. Authors seem to be slower in adopting open access than the idealists in the movement. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Building an Open Source Framework for Integrated Catchment Modeling

    NASA Astrophysics Data System (ADS)

    Jagers, B.; Meijers, E.; Villars, M.

    2015-12-01

    In order to develop effective strategies and associated policies for environmental management, we need to understand the dynamics of the natural system as a whole and the human role therein. This understanding is gained by comparing our mental model of the world with observations from the field. However, to properly understand the system we should look at dynamics of water, sediments, water quality, and ecology throughout the whole system from catchment to coast both at the surface and in the subsurface. Numerical models are indispensable in helping us understand the interactions of the overall system, but we need to be able to update and adjust them to improve our understanding and test our hypotheses. To support researchers around the world with this challenging task we started a few years ago with the development of a new open source modeling environment DeltaShell that integrates distributed hydrological models with 1D, 2D, and 3D hydraulic models including generic components for the tracking of sediment, water quality, and ecological quantities throughout the hydrological cycle composed of the aforementioned components. The open source approach combined with a modular approach based on open standards, which allow for easy adjustment and expansion as demands and knowledge grow, provides an ideal starting point for addressing challenging integrated environmental questions.

  12. Initial correlations in open-systems dynamics: The Jaynes-Cummings model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirne, Andrea; Vacchini, Bassano; INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano

    2010-12-15

    Employing the trace distance as a measure for the distinguishability of quantum states, we study the influence of initial correlations on the dynamics of open systems. We concentrate on the Jaynes-Cummings model for which the knowledge of the exact joint dynamics of system and reservoir allows the treatment of initial states with arbitrary correlations. As a measure for the correlations in the initial state we consider the trace distance between the system-environment state and the product of its marginal states. In particular, we examine the correlations contained in the thermal equilibrium state for the total system, analyze their dependence onmore » the temperature and on the coupling strength, and demonstrate their connection to the entanglement properties of the eigenstates of the Hamiltonian. A detailed study of the time dependence of the distinguishability of the open system states evolving from the thermal equilibrium state and its corresponding uncorrelated product state shows that the open system dynamically uncovers typical features of the initial correlations.« less

  13. Open Innovation, Triple Helix and Regional Innovation Systems: Exploring CATAPULT Centres in the UK

    ERIC Educational Resources Information Center

    Kerry, Christopher; Danson, Michael

    2016-01-01

    Through the lens of UK CATAPULT Centres this conceptual paper presents an examination of the links between open innovation, the Triple Helix model and regional innovation systems. Highlighting the importance of boundary-spanning intermediaries, the combined role of these concepts is explored in detail. A conceptual model is then proposed which…

  14. Open-Source Learning Management Systems: A Predictive Model for Higher Education

    ERIC Educational Resources Information Center

    van Rooij, S. Williams

    2012-01-01

    The present study investigated the role of pedagogical, technical, and institutional profile factors in an institution of higher education's decision to select an open-source learning management system (LMS). Drawing on the results of previous research that measured patterns of deployment of open-source software (OSS) in US higher education and…

  15. Community-based Early Warning and Adaptive Response System (EWARS) for mosquito borne diseases: An open source/open community approach

    NASA Astrophysics Data System (ADS)

    Babu, A. N.; Soman, B.; Niehaus, E.; Shah, J.; Sarda, N. L.; Ramkumar, P. S.; Unnithan, C.

    2014-11-01

    A variety of studies around the world have evaluated the use of remote sensing with and without GIS in communicable diseases. The ongoing Ebola epidemic has highlighted the risks that can arise for the global community from rapidly spreading diseases which may outpace attempts at control and eradication. This paper presents an approach to the development, deployment, validation and wide-spread adoption of a GIS-based temporo-spatial decision support system which is being collaboratively developed in open source/open community mode by an international group that came together under UN auspices. The group believes in an open source/open community approach to make the fruits of knowledge as widely accessible as possible. A core initiative of the groups is the EWARS project. It proposes to strengthen existing public health systems by the development and validation a model for a community based surveillance and response system which will initially address mosquito borne diseases in the developing world. At present mathematical modeling to support EWARS is at an advanced state, and it planned to embark on a pilot project

  16. A proposed application programming interface for a physical volume repository

    NASA Technical Reports Server (NTRS)

    Jones, Merritt; Williams, Joel; Wrenn, Richard

    1996-01-01

    The IEEE Storage System Standards Working Group (SSSWG) has developed the Reference Model for Open Storage Systems Interconnection, Mass Storage System Reference Model Version 5. This document, provides the framework for a series of standards for application and user interfaces to open storage systems. More recently, the SSSWG has been developing Application Programming Interfaces (APIs) for the individual components defined by the model. The API for the Physical Volume Repository is the most fully developed, but work is being done on APIs for the Physical Volume Library and for the Mover also. The SSSWG meets every other month, and meetings are open to all interested parties. The Physical Volume Repository (PVR) is responsible for managing the storage of removable media cartridges and for mounting and dismounting these cartridges onto drives. This document describes a model which defines a Physical Volume Repository, and gives a brief summary of the Application Programming Interface (API) which the IEEE Storage Systems Standards Working Group (SSSWG) is proposing as the standard interface for the PVR.

  17. Mapping a Nursing Terminology Subset to openEHR Archetypes. A Case Study of the International Classification for Nursing Practice.

    PubMed

    Nogueira, J R M; Cook, T W; Cavalini, L T

    2015-01-01

    Healthcare information technologies have the potential to transform nursing care. However, healthcare information systems based on conventional software architecture are not semantically interoperable and have high maintenance costs. Health informatics standards, such as controlled terminologies, have been proposed to improve healthcare information systems, but their implementation in conventional software has not been enough to overcome the current challenge. Such obstacles could be removed by adopting a multilevel model-driven approach, such as the openEHR specifications, in nursing information systems. To create an openEHR archetype model for the Functional Status concepts as published in Nursing Outcome Indicators Catalog of the International Classification for Nursing Practice (NOIC-ICNP). Four methodological steps were followed: 1) extraction of terms from the NOIC-ICNP terminology; 2) identification of previously published openEHR archetypes; 3) assessment of the adequacy of those openEHR archetypes to represent the terms; and 4) development of new openEHR archetypes when required. The "Barthel Index" archetype was retrieved and mapped to the 68 NOIC-ICNP Functional Status terms. There were 19 exact matches between a term and the correspondent archetype node and 23 archetype nodes that matched to one or more NOIC-INCP. No matches were found between the archetype and 14 of the NOIC-ICNP terms, and nine archetype nodes did not match any of the NOIC-ICNP terms. The openEHR model was sufficient to represent the semantics of the Functional Status concept according to the NOIC-ICNP, but there were differences in data granularity between the terminology and the archetype, thus producing a significantly complex mapping, which could be difficult to implement in real healthcare information systems. However, despite the technological complexity, the present study demonstrated the feasibility of mapping nursing terminologies to openEHR archetypes, which emphasizes the importance of adopting the multilevel model-driven approach for the achievement of semantic interoperability between healthcare information systems.

  18. Feature-based component model for design of embedded systems

    NASA Astrophysics Data System (ADS)

    Zha, Xuan Fang; Sriram, Ram D.

    2004-11-01

    An embedded system is a hybrid of hardware and software, which combines software's flexibility and hardware real-time performance. Embedded systems can be considered as assemblies of hardware and software components. An Open Embedded System Model (OESM) is currently being developed at NIST to provide a standard representation and exchange protocol for embedded systems and system-level design, simulation, and testing information. This paper proposes an approach to representing an embedded system feature-based model in OESM, i.e., Open Embedded System Feature Model (OESFM), addressing models of embedded system artifacts, embedded system components, embedded system features, and embedded system configuration/assembly. The approach provides an object-oriented UML (Unified Modeling Language) representation for the embedded system feature model and defines an extension to the NIST Core Product Model. The model provides a feature-based component framework allowing the designer to develop a virtual embedded system prototype through assembling virtual components. The framework not only provides a formal precise model of the embedded system prototype but also offers the possibility of designing variation of prototypes whose members are derived by changing certain virtual components with different features. A case study example is discussed to illustrate the embedded system model.

  19. Finding Resolution for the Responsible Transparency of Economic Models in Health and Medicine.

    PubMed

    Padula, William V; McQueen, Robert Brett; Pronovost, Peter J

    2017-11-01

    The Second Panel on Cost-Effectiveness in Health and Medicine recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses has a number of questions unanswered with respect to the implementation of transparent, open source code interface for economic models. The possibility of making economic model source code could be positive and progressive for the field; however, several unintended consequences of this system should be first considered before complete implementation of this model. First, there is the concern regarding intellectual property rights that modelers have to their analyses. Second, the open source code could make analyses more accessible to inexperienced modelers, leading to inaccurate or misinterpreted results. We propose several resolutions to these concerns. The field should establish a licensing system of open source code such that the model originators maintain control of the code use and grant permissions to other investigators who wish to use it. The field should also be more forthcoming towards the teaching of cost-effectiveness analysis in medical and health services education so that providers and other professionals are familiar with economic modeling and able to conduct analyses with open source code. These types of unintended consequences need to be fully considered before the field's preparedness to move forward into an era of model transparency with open source code.

  20. General response formula and application to topological insulator in quantum open system.

    PubMed

    Shen, H Z; Qin, M; Shao, X Q; Yi, X X

    2015-11-01

    It is well-known that the quantum linear response theory is based on the first-order perturbation theory for a system in thermal equilibrium. Hence, this theory breaks down when the system is in a steady state far from thermal equilibrium and the response up to higher order in perturbation is not negligible. In this paper, we develop a nonlinear response theory for such quantum open system. We first formulate this theory in terms of general susceptibility, after which we apply it to the derivation of Hall conductance for open system at finite temperature. As an example, the Hall conductance of the two-band model is derived. Then we calculate the Hall conductance for a two-dimensional ferromagnetic electron gas and a two-dimensional lattice model. The calculations show that the transition points of topological phase are robust against the environment. Our results provide a promising platform for the coherent manipulation of the nonlinear response in quantum open system, which has potential applications for quantum information processing and statistical physics.

  1. Tip Vortex and Wake Characteristics of a Counterrotating Open Rotor

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Wernet, Mark P.

    2012-01-01

    One of the primary noise sources for Open Rotor systems is the interaction of the forward rotor tip vortex and blade wake with the aft rotor. NASA has collaborated with General Electric on the testing of a new generation of low noise, counterrotating Open Rotor systems. Three-dimensional particle image velocimetry measurements were acquired in the intra-rotor gap of the Historical Baseline blade set. The velocity measurements are of sufficient resolution to characterize the tip vortex size and trajectory as well as the rotor wake decay and turbulence character. The tip clearance vortex trajectory is compared to results from previously developed models. Forward rotor wake velocity profiles are shown. Results are presented in a form as to assist numerical modeling of Open Rotor system aerodynamics and acoustics.

  2. Generating Systems Biology Markup Language Models from the Synthetic Biology Open Language.

    PubMed

    Roehner, Nicholas; Zhang, Zhen; Nguyen, Tramy; Myers, Chris J

    2015-08-21

    In the context of synthetic biology, model generation is the automated process of constructing biochemical models based on genetic designs. This paper discusses the use cases for model generation in genetic design automation (GDA) software tools and introduces the foundational concepts of standards and model annotation that make this process useful. Finally, this paper presents an implementation of model generation in the GDA software tool iBioSim and provides an example of generating a Systems Biology Markup Language (SBML) model from a design of a 4-input AND sensor written in the Synthetic Biology Open Language (SBOL).

  3. Development of a 3D log sawing optimization system for small sawmills in central Appalachia, US

    Treesearch

    Wenshu Lin; Jingxin Wang; Edward Thomas

    2011-01-01

    A 3D log sawing optimization system was developed to perform log generation, opening face determination, sawing simulation, and lumber grading using 3D modeling techniques. Heuristic and dynamic programming algorithms were used to determine opening face and grade sawing optimization. Positions and shapes of internal log defects were predicted using a model developed by...

  4. Models for Deploying Open Source and Commercial Software to Support Earth Science Data Processing and Distribution

    NASA Astrophysics Data System (ADS)

    Yetman, G.; Downs, R. R.

    2011-12-01

    Software deployment is needed to process and distribute scientific data throughout the data lifecycle. Developing software in-house can take software development teams away from other software development projects and can require efforts to maintain the software over time. Adopting and reusing software and system modules that have been previously developed by others can reduce in-house software development and maintenance costs and can contribute to the quality of the system being developed. A variety of models are available for reusing and deploying software and systems that have been developed by others. These deployment models include open source software, vendor-supported open source software, commercial software, and combinations of these approaches. Deployment in Earth science data processing and distribution has demonstrated the advantages and drawbacks of each model. Deploying open source software offers advantages for developing and maintaining scientific data processing systems and applications. By joining an open source community that is developing a particular system module or application, a scientific data processing team can contribute to aspects of the software development without having to commit to developing the software alone. Communities of interested developers can share the work while focusing on activities that utilize in-house expertise and addresses internal requirements. Maintenance is also shared by members of the community. Deploying vendor-supported open source software offers similar advantages to open source software. However, by procuring the services of a vendor, the in-house team can rely on the vendor to provide, install, and maintain the software over time. Vendor-supported open source software may be ideal for teams that recognize the value of an open source software component or application and would like to contribute to the effort, but do not have the time or expertise to contribute extensively. Vendor-supported software may also have the additional benefits of guaranteed up-time, bug fixes, and vendor-added enhancements. Deploying commercial software can be advantageous for obtaining system or software components offered by a vendor that meet in-house requirements. The vendor can be contracted to provide installation, support and maintenance services as needed. Combining these options offers a menu of choices, enabling selection of system components or software modules that meet the evolving requirements encountered throughout the scientific data lifecycle.

  5. Quantum Control of Open Systems and Dense Atomic Ensembles

    NASA Astrophysics Data System (ADS)

    DiLoreto, Christopher

    Controlling the dynamics of open quantum systems; i.e. quantum systems that decohere because of interactions with the environment, is an active area of research with many applications in quantum optics and quantum computation. My thesis expands the scope of this inquiry by seeking to control open systems in proximity to an additional system. The latter could be a classical system such as metal nanoparticles, or a quantum system such as a cluster of similar atoms. By modelling the interactions between the systems, we are able to expand the accessible state space of the quantum system in question. For a single, three-level quantum system, I examine isolated systems that have only normal spontaneous emission. I then show that intensity-intensity correlation spectra, which depend directly on the density matrix of the system, can be used detect whether transitions share a common energy level. This detection is possible due to the presence of quantum interference effects between two transitions if they are connected. This effect allows one to asses energy level structure diagrams in complex atoms/molecules. By placing an open quantum system near a nanoparticle dimer, I show that the spontaneous emission rate of the system can be changed "on demand" by changing the polarization of an incident, driving field. In a three-level, Lambda system, this allows a qubit to both retain high qubit fidelity when it is operating, and to be rapidly initialized to a pure state once it is rendered unusable by decoherence. This type of behaviour is not possible in a single open quantum system; therefore adding a classical system nearby extends the overall control space of the quantum system. An open quantum system near identical neighbours in a dense ensemble is another example of how the accessible state space can be expanded. I show that a dense ensemble of atoms rapidly becomes disordered with states that are not directly excited by an incident field becoming significantly populated. This effect motivates the need for using multi-directional basis sets in theoretical analysis of dense quantum systems. My results demonstrate the shortcomings of short-pulse techniques used in many recent studies. Based on my numerical studies, I hypothesize that the dense ensemble can be modelled by an effective single quantum system that has a decoherence rate that changes over time. My effective single particle model provides a way in which computational time can be reduced, and also a model in which the underlying physical processes involved in the system's evolution are much easier to understand. I then use this model to provide an elegant theoretical explanation for an unusual experimental result called "transverse optical magnetism''. My effective single particle model's predictions match very well with experimental data.

  6. Experimental and modelling of Arthrospira platensis cultivation in open raceway ponds.

    PubMed

    Ranganathan, Panneerselvam; Amal, J C; Savithri, S; Haridas, Ajith

    2017-10-01

    In this study, the growth of Arthrospira platensis was studied in an open raceway pond. Furthermore, dynamic model for algae growth and CFD modelling of hydrodynamics in open raceway pond were developed. The dynamic behaviour of the algal system was developed by solving mass balance equations of various components, considering light intensity and gas-liquid mass transfer. A CFD modelling of the hydrodynamics of open raceway pond was developed by solving mass and momentum balance equations of the liquid medium. The prediction of algae concentration from the dynamic model was compared with the experimental data. The hydrodynamic behaviour of the open raceway pond was compared with the literature data for model validation. The model predictions match the experimental findings. Furthermore, the hydrodynamic behaviour and residence time distribution in our small raceway pond were predicted. These models can serve as a tool to assess the pond performance criteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Offset-Free Model Predictive Control of Open Water Channel Based on Moving Horizon Estimation

    NASA Astrophysics Data System (ADS)

    Ekin Aydin, Boran; Rutten, Martine

    2016-04-01

    Model predictive control (MPC) is a powerful control option which is increasingly used by operational water managers for managing water systems. The explicit consideration of constraints and multi-objective management are important features of MPC. However, due to the water loss in open water systems by seepage, leakage and evaporation a mismatch between the model and the real system will be created. These mismatch affects the performance of MPC and creates an offset from the reference set point of the water level. We present model predictive control based on moving horizon estimation (MHE-MPC) to achieve offset free control of water level for open water canals. MHE-MPC uses the past predictions of the model and the past measurements of the system to estimate unknown disturbances and the offset in the controlled water level is systematically removed. We numerically tested MHE-MPC on an accurate hydro-dynamic model of the laboratory canal UPC-PAC located in Barcelona. In addition, we also used well known disturbance modeling offset free control scheme for the same test case. Simulation experiments on a single canal reach show that MHE-MPC outperforms disturbance modeling offset free control scheme.

  8. Quality Test of Flexible Flat Cable (FFC) With Short Open Test Using Law Ohm Approach through Embedded Fuzzy Logic Based On Open Source Arduino Data Logger

    NASA Astrophysics Data System (ADS)

    Rohmanu, Ajar; Everhard, Yan

    2017-04-01

    A technological development, especially in the field of electronics is very fast. One of the developments in the electronics hardware device is Flexible Flat Cable (FFC), which serves as a media liaison between the main boards with other hardware parts. The production of Flexible Flat Cable (FFC) will go through the process of testing and measuring of the quality Flexible Flat Cable (FFC). Currently, the testing and measurement is still done manually by observing the Light Emitting Diode (LED) by the operator, so there were many problems. This study will be made of test quality Flexible Flat Cable (FFC) computationally utilize Open Source Embedded System. The method used is the measurement with Short Open Test method using Ohm’s Law approach to 4-wire (Kelvin) and fuzzy logic as a decision maker measurement results based on Open Source Arduino Data Logger. This system uses a sensor current INA219 as a sensor to read the voltage value thus obtained resistance value Flexible Flat Cable (FFC). To get a good system we will do the Black-box testing as well as testing the accuracy and precision with the standard deviation method. In testing the system using three models samples were obtained the test results in the form of standard deviation for the first model of 1.921 second model of 4.567 and 6.300 for the third model. While the value of the Standard Error of Mean (SEM) for the first model of the model 0.304 second at 0.736 and 0.996 of the third model. In testing this system, we will also obtain the average value of the measurement tolerance resistance values for the first model of - 3.50% 4.45% second model and the third model of 5.18% with the standard measurement of prisoners and improve productivity becomes 118.33%. From the results of the testing system is expected to improve the quality and productivity in the process of testing Flexible Flat Cable (FFC).

  9. Space Generic Open Avionics Architecture (SGOAA) reference model technical guide

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1993-01-01

    This report presents a full description of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing architecture, and a six class model of interfaces in a hardware/software system. The purpose of the SGOAA is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of specific avionics hardware/software systems. The SGOAA defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.

  10. Rewriting Modulo SMT and Open System Analysis

    NASA Technical Reports Server (NTRS)

    Rocha, Camilo; Meseguer, Jose; Munoz, Cesar

    2014-01-01

    This paper proposes rewriting modulo SMT, a new technique that combines the power of SMT solving, rewriting modulo theories, and model checking. Rewriting modulo SMT is ideally suited to model and analyze infinite-state open systems, i.e., systems that interact with a non-deterministic environment. Such systems exhibit both internal non-determinism, which is proper to the system, and external non-determinism, which is due to the environment. In a reflective formalism, such as rewriting logic, rewriting modulo SMT can be reduced to standard rewriting. Hence, rewriting modulo SMT naturally extends rewriting-based reachability analysis techniques, which are available for closed systems, to open systems. The proposed technique is illustrated with the formal analysis of: (i) a real-time system that is beyond the scope of timed-automata methods and (ii) automatic detection of reachability violations in a synchronous language developed to support autonomous spacecraft operations.

  11. Evolution of the Campanian Ignimbrite Magmatic System II: Trace Element and Th Isotopic Evidence for Open-System Processes

    NASA Astrophysics Data System (ADS)

    Bohrson, W. A.; Spera, F. J.; Fowler, S.; Belkin, H.; de Vivo, B.

    2005-12-01

    The Campanian Ignimbrite, a large volume (~200 km3 DRE) trachytic to phonolitic ignimbrite was deposited at ~39.3 ka and represents the largest of a number of highly explosive volcanic events in the region near Naples, Italy. Thermodynamic modeling of the major element evolution using the MELTS algorithm (see companion contribution by Fowler et al.) provides detailed information about the identity of and changes in proportions of solids along the liquid line of descent during isobaric fractional crystallization. We have derived trace element mass balance equations that explicitly accommodate changing mineral-melt bulk distribution coefficients during crystallization and also simultaneously satisfy energy and major element mass conservation. Although major element patterns are reasonably modeled assuming closed system fractional crystallization, modeling of trace elements that represent a range of behaviors (e.g. Zr, Nb, Th, U, Rb, Sm, Sr) yields trends for closed system fractionation that are distinct from those observed. These results suggest open-system processes were also important in the evolution of the Campanian magmatic system. Th isotope data yield an apparent isochron that is ~20 kyr younger than the age of the deposit, and age-corrected Th isotope data indicate that the magma body was an open-system at the time of eruption. Because open-system processes can profoundly change isotopic characteristics of a magma body, these results illustrate that it is critical to understand the contribution that open-system processes make to silicic magma bodies prior to assigning relevance to age or timescale information derived from isotope systematics. Fluid-magma interaction has been proposed as a mechanism to change isotopic and elemental characteristics of magma bodies, but an evaluation of the mass and thermal constraints on such a process suggest large-scale fluid-melt interaction at liquidus temperatures is unlikely. In the case of the magma body associated with the Campanian Ignimbrite, the most likely source of open-system signatures is assimilation of partial melts of compositionally heterogeneous basement composed of older cumulates and intrusive equivalents of volcanic activity within the Campanian region. Additional trace element modeling, explicitly evaluating the mass and energy balance effects that fluid, solids, and melt have on trace element evolution, will further elucidate the contributions of open vs. closed system processes within the Campanian magma body.

  12. When intelligence is in control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellman, K.L.

    Each time a discipline redefines itself, I look at it as a sign of growth, because often such redefinition means that there is new theory, new methods, or new {open_quotes}disciples{close_quote} from other disciplines who are stretching, enlarging, and deepening the field. Such is the case with semiotics. Deeply entwined with the concepts of {open_quotes}intelligent systems{close_quotes}, {open_quotes}intelligent control{close_quotes}, and complex systems theory, semiotics struggles to develop representations, notations (systems of representations), and models (functionally-oriented sets of related representations) to study systems that may or may not be usefully described as employing representations, notations, and models themselves. That last, of course, ismore » the main problem that semiotics faces. Semiotics, like psychology, philosophy, or any other self-referential discipline, is burdened by the eye attempting to study the eye or the mind studying the mind, or more to the point here, the modeler studying the modeling acts of others.« less

  13. The Open Global Glacier Model

    NASA Astrophysics Data System (ADS)

    Marzeion, B.; Maussion, F.

    2017-12-01

    Mountain glaciers are one of the few remaining sub-systems of the global climate system for which no globally applicable, open source, community-driven model exists. Notable examples from the ice sheet community include the Parallel Ice Sheet Model or Elmer/Ice. While the atmospheric modeling community has a long tradition of sharing models (e.g. the Weather Research and Forecasting model) or comparing them (e.g. the Coupled Model Intercomparison Project or CMIP), recent initiatives originating from the glaciological community show a new willingness to better coordinate global research efforts following the CMIP example (e.g. the Glacier Model Intercomparison Project or the Glacier Ice Thickness Estimation Working Group). In the recent past, great advances have been made in the global availability of data and methods relevant for glacier modeling, spanning glacier outlines, automatized glacier centerline identification, bed rock inversion methods, and global topographic data sets. Taken together, these advances now allow the ice dynamics of glaciers to be modeled on a global scale, provided that adequate modeling platforms are available. Here, we present the Open Global Glacier Model (OGGM), developed to provide a global scale, modular, and open source numerical model framework for consistently simulating past and future global scale glacier change. Global not only in the sense of leading to meaningful results for all glaciers combined, but also for any small ensemble of glaciers, e.g. at the headwater catchment scale. Modular to allow combinations of different approaches to the representation of ice flow and surface mass balance, enabling a new kind of model intercomparison. Open source so that the code can be read and used by anyone and so that new modules can be added and discussed by the community, following the principles of open governance. Consistent in order to provide uncertainty measures at all realizable scales.

  14. Role of OpenEHR as an open source solution for the regional modelling of patient data in obstetrics.

    PubMed

    Pahl, Christina; Zare, Mojtaba; Nilashi, Mehrbakhsh; de Faria Borges, Marco Aurélio; Weingaertner, Daniel; Detschew, Vesselin; Supriyanto, Eko; Ibrahim, Othman

    2015-06-01

    This work investigates, whether openEHR with its reference model, archetypes and templates is suitable for the digital representation of demographic as well as clinical data. Moreover, it elaborates openEHR as a tool for modelling Hospital Information Systems on a regional level based on a national logical infrastructure. OpenEHR is a dual model approach developed for the modelling of Hospital Information Systems enabling semantic interoperability. A holistic solution to this represents the use of dual model based Electronic Healthcare Record systems. Modelling data in the field of obstetrics is a challenge, since different regions demand locally specific information for the process of treatment. Smaller health units in developing countries like Brazil or Malaysia, which until recently handled automatable processes like the storage of sensitive patient data in paper form, start organizational reconstruction processes. This archetype proof-of-concept investigation has tried out some elements of the openEHR methodology in cooperation with a health unit in Colombo, Brazil. Two legal forms provided by the Brazilian Ministry of Health have been analyzed and classified into demographic and clinical data. LinkEHR-Ed editor was used to read, edit and create archetypes. Results show that 33 clinical and demographic concepts, which are necessary to cover data demanded by the Unified National Health System, were identified. Out of the concepts 61% were reused and 39% modified to cover domain requirements. The detailed process of reuse, modification and creation of archetypes is shown. We conclude that, although a major part of demographic and clinical patient data were already represented by existing archetypes, a significant part required major modifications. In this study openEHR proved to be a highly suitable tool in the modelling of complex health data. In combination with LinkEHR-Ed software it offers user-friendly and highly applicable tools, although the complexity built by the vast specifications requires expert networks to define generally excepted clinical models. Finally, this project has pointed out main benefits enclosing high coverage of obstetrics data on the Clinical Knowledge Manager, simple modelling, and wide network and support using openEHR. Moreover, barriers described are enclosing the allocation of clinical content to respective archetypes, as well as stagnant adaption of changes on the Clinical Knowledge Manager leading to redundant efforts in data contribution that need to be addressed in future works. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Space Generic Open Avionics Architecture (SGOAA) standard specification

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1994-01-01

    This standard establishes the Space Generic Open Avionics Architecture (SGOAA). The SGOAA includes a generic functional model, processing structural model, and an architecture interface model. This standard defines the requirements for applying these models to the development of spacecraft core avionics systems. The purpose of this standard is to provide an umbrella set of requirements for applying the generic architecture models to the design of a specific avionics hardware/software processing system. This standard defines a generic set of system interface points to facilitate identification of critical services and interfaces. It establishes the requirement for applying appropriate low level detailed implementation standards to those interfaces points. The generic core avionics functions and processing structural models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.

  16. A Lifecycle Approach to Brokered Data Management for Hydrologic Modeling Data Using Open Standards.

    NASA Astrophysics Data System (ADS)

    Blodgett, D. L.; Booth, N.; Kunicki, T.; Walker, J.

    2012-12-01

    The U.S. Geological Survey Center for Integrated Data Analytics has formalized an information management-architecture to facilitate hydrologic modeling and subsequent decision support throughout a project's lifecycle. The architecture is based on open standards and open source software to decrease the adoption barrier and to build on existing, community supported software. The components of this system have been developed and evaluated to support data management activities of the interagency Great Lakes Restoration Initiative, Department of Interior's Climate Science Centers and WaterSmart National Water Census. Much of the research and development of this system has been in cooperation with international interoperability experiments conducted within the Open Geospatial Consortium. Community-developed standards and software, implemented to meet the unique requirements of specific disciplines, are used as a system of interoperable, discipline specific, data types and interfaces. This approach has allowed adoption of existing software that satisfies the majority of system requirements. Four major features of the system include: 1) assistance in model parameter and forcing creation from large enterprise data sources; 2) conversion of model results and calibrated parameters to standard formats, making them available via standard web services; 3) tracking a model's processes, inputs, and outputs as a cohesive metadata record, allowing provenance tracking via reference to web services; and 4) generalized decision support tools which rely on a suite of standard data types and interfaces, rather than particular manually curated model-derived datasets. Recent progress made in data and web service standards related to sensor and/or model derived station time series, dynamic web processing, and metadata management are central to this system's function and will be presented briefly along with a functional overview of the applications that make up the system. As the separate pieces of this system progress, they will be combined and generalized to form a sort of social network for nationally consistent hydrologic modeling.

  17. OpenID connect as a security service in Cloud-based diagnostic imaging systems

    NASA Astrophysics Data System (ADS)

    Ma, Weina; Sartipi, Kamran; Sharghi, Hassan; Koff, David; Bak, Peter

    2015-03-01

    The evolution of cloud computing is driving the next generation of diagnostic imaging (DI) systems. Cloud-based DI systems are able to deliver better services to patients without constraining to their own physical facilities. However, privacy and security concerns have been consistently regarded as the major obstacle for adoption of cloud computing by healthcare domains. Furthermore, traditional computing models and interfaces employed by DI systems are not ready for accessing diagnostic images through mobile devices. RESTful is an ideal technology for provisioning both mobile services and cloud computing. OpenID Connect, combining OpenID and OAuth together, is an emerging REST-based federated identity solution. It is one of the most perspective open standards to potentially become the de-facto standard for securing cloud computing and mobile applications, which has ever been regarded as "Kerberos of Cloud". We introduce OpenID Connect as an identity and authentication service in cloud-based DI systems and propose enhancements that allow for incorporating this technology within distributed enterprise environment. The objective of this study is to offer solutions for secure radiology image sharing among DI-r (Diagnostic Imaging Repository) and heterogeneous PACS (Picture Archiving and Communication Systems) as well as mobile clients in the cloud ecosystem. Through using OpenID Connect as an open-source identity and authentication service, deploying DI-r and PACS to private or community clouds should obtain equivalent security level to traditional computing model.

  18. An extension of the OpenModelica compiler for using Modelica models in a discrete event simulation

    DOE PAGES

    Nutaro, James

    2014-11-03

    In this article, a new back-end and run-time system is described for the OpenModelica compiler. This new back-end transforms a Modelica model into a module for the adevs discrete event simulation package, thereby extending adevs to encompass complex, hybrid dynamical systems. The new run-time system that has been built within the adevs simulation package supports models with state-events and time-events and that comprise differential-algebraic systems with high index. Finally, although the procedure for effecting this transformation is based on adevs and the Discrete Event System Specification, it can be adapted to any discrete event simulation package.

  19. Panel C report: Standards needed for the use of ISO Open Systems Interconnection - basic reference model

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The use of an International Standards Organization (ISO) Open Systems Interconnection (OSI) Reference Model and its relevance to interconnecting an Applications Data Service (ADS) pilot program for data sharing is discussed. A top level mapping between the conjectured ADS requirements and identified layers within the OSI Reference Model was performed. It was concluded that the OSI model represents an orderly architecture for the ADS networking planning and that the protocols being developed by the National Bureau of Standards offer the best available implementation approach.

  20. A Course Evaluation System in an Open University.

    ERIC Educational Resources Information Center

    Chacon, Fabio J.

    A model is presented for response to evaluating instruction in a university based on the teaching-at-a-distance concept. Technically appropriate and operationally viable, this model is applied to the National Open University of Venezuela (UNA). The model is based on two principles of educational evaluation: (1) the concept of evaluation as a…

  1. The openEHR Java reference implementation project.

    PubMed

    Chen, Rong; Klein, Gunnar

    2007-01-01

    The openEHR foundation has developed an innovative design for interoperable and future-proof Electronic Health Record (EHR) systems based on a dual model approach with a stable reference information model complemented by archetypes for specific clinical purposes.A team from Sweden has implemented all the stable specifications in the Java programming language and donated the source code to the openEHR foundation. It was adopted as the openEHR Java Reference Implementation in March 2005 and released under open source licenses. This encourages early EHR implementation projects around the world and a number of groups have already started to use this code. The early Java implementation experience has also led to the publication of the openEHR Java Implementation Technology Specification. A number of design changes to the specifications and important minor corrections have been directly initiated by the implementation project over the last two years. The Java Implementation has been important for the validation and improvement of the openEHR design specifications and provides building blocks for future EHR systems.

  2. A platform for dynamic simulation and control of movement based on OpenSim and MATLAB

    PubMed Central

    Mansouri, Misagh; Reinbolt, Jeffrey A.

    2013-01-01

    Numerical simulations play an important role in solving complex engineering problems and have the potential to revolutionize medical decision making and treatment strategies. In this paper, we combine the rapid model-based design, control systems and powerful numerical method strengths of MATLAB/Simulink with the simulation and human movement dynamics strengths of OpenSim by developing a new interface between the two software tools. OpenSim is integrated with Simulink using the MATLAB S-function mechanism, and the interface is demonstrated using both open-loop and closed-loop control systems. While the open-loop system uses MATLAB/Simulink to separately reproduce the OpenSim Forward Dynamics Tool, the closed-loop system adds the unique feature of feedback control to OpenSim, which is necessary for most human movement simulations. An arm model example was successfully used in both open-loop and closed-loop cases. For the open-loop case, the simulation reproduced results from the OpenSim Forward Dynamics Tool with root mean square (RMS) differences of 0.03° for the shoulder elevation angle and 0.06° for the elbow flexion angle. MATLAB’s variable step-size integrator reduced the time required to generate the forward dynamic simulation from 7.1 s (OpenSim) to 2.9 s (MATLAB). For the closed-loop case, a proportional–integral–derivative controller was used to successfully balance a pole on model’s hand despite random force disturbances on the pole. The new interface presented here not only integrates the OpenSim and MATLAB/Simulink software tools, but also will allow neuroscientists, physiologists, biomechanists, and physical therapists to adapt and generate new solutions as treatments for musculoskeletal conditions. PMID:22464351

  3. Composite quantum collision models

    NASA Astrophysics Data System (ADS)

    Lorenzo, Salvatore; Ciccarello, Francesco; Palma, G. Massimo

    2017-09-01

    A collision model (CM) is a framework to describe open quantum dynamics. In its memoryless version, it models the reservoir R as consisting of a large collection of elementary ancillas: the dynamics of the open system S results from successive collisions of S with the ancillas of R . Here, we present a general formulation of memoryless composite CMs, where S is partitioned into the very open system under study S coupled to one or more auxiliary systems {Si} . Their composite dynamics occurs through internal S -{Si} collisions interspersed with external ones involving {Si} and the reservoir R . We show that important known instances of quantum non-Markovian dynamics of S —such as the emission of an atom into a reservoir featuring a Lorentzian, or multi-Lorentzian, spectral density or a qubit subject to random telegraph noise—can be mapped on to such memoryless composite CMs.

  4. Automated Environment Generation for Software Model Checking

    NASA Technical Reports Server (NTRS)

    Tkachuk, Oksana; Dwyer, Matthew B.; Pasareanu, Corina S.

    2003-01-01

    A key problem in model checking open systems is environment modeling (i.e., representing the behavior of the execution context of the system under analysis). Software systems are fundamentally open since their behavior is dependent on patterns of invocation of system components and values defined outside the system but referenced within the system. Whether reasoning about the behavior of whole programs or about program components, an abstract model of the environment can be essential in enabling sufficiently precise yet tractable verification. In this paper, we describe an approach to generating environments of Java program fragments. This approach integrates formally specified assumptions about environment behavior with sound abstractions of environment implementations to form a model of the environment. The approach is implemented in the Bandera Environment Generator (BEG) which we describe along with our experience using BEG to reason about properties of several non-trivial concurrent Java programs.

  5. A Programming Model Performance Study Using the NAS Parallel Benchmarks

    DOE PAGES

    Shan, Hongzhang; Blagojević, Filip; Min, Seung-Jai; ...

    2010-01-01

    Harnessing the power of multicore platforms is challenging due to the additional levels of parallelism present. In this paper we use the NAS Parallel Benchmarks to study three programming models, MPI, OpenMP and PGAS to understand their performance and memory usage characteristics on current multicore architectures. To understand these characteristics we use the Integrated Performance Monitoring tool and other ways to measure communication versus computation time, as well as the fraction of the run time spent in OpenMP. The benchmarks are run on two different Cray XT5 systems and an Infiniband cluster. Our results show that in general the threemore » programming models exhibit very similar performance characteristics. In a few cases, OpenMP is significantly faster because it explicitly avoids communication. For these particular cases, we were able to re-write the UPC versions and achieve equal performance to OpenMP. Using OpenMP was also the most advantageous in terms of memory usage. Also we compare performance differences between the two Cray systems, which have quad-core and hex-core processors. We show that at scale the performance is almost always slower on the hex-core system because of increased contention for network resources.« less

  6. Rewriting Modulo SMT

    NASA Technical Reports Server (NTRS)

    Rocha, Camilo; Meseguer, Jose; Munoz, Cesar A.

    2013-01-01

    Combining symbolic techniques such as: (i) SMT solving, (ii) rewriting modulo theories, and (iii) model checking can enable the analysis of infinite-state systems outside the scope of each such technique. This paper proposes rewriting modulo SMT as a new technique combining the powers of (i)-(iii) and ideally suited to model and analyze infinite-state open systems; that is, systems that interact with a non-deterministic environment. Such systems exhibit both internal non-determinism due to the system, and external non-determinism due to the environment. They are not amenable to finite-state model checking analysis because they typically are infinite-state. By being reducible to standard rewriting using reflective techniques, rewriting modulo SMT can both naturally model and analyze open systems without requiring any changes to rewriting-based reachability analysis techniques for closed systems. This is illustrated by the analysis of a real-time system beyond the scope of timed automata methods.

  7. Numerical Analysis of Combined Well and Open-Closed Loops Geothermal (CWG) Systems

    NASA Astrophysics Data System (ADS)

    Park, Yu-Chul

    2016-04-01

    Open-loop geothermal heat pump (GHP) system and closed-loop heat pump systems have been used in Korea to reduce emission of greenhouse gases such as carbon dioxide (CO2). The GHP systems have the pros and cons, for example, the open-loop GHP system is good energy-efficient and the closed-loop GHP system requires minimum maintenance costs. The open-loop GHP system can be used practically only with large amount of groundwater supply. The closed-loop GHP system can be used with high costs of initial installation. The performance and efficiency of the GHP system depend on the characteristics of the GHP system itself in addition to the geologic conditions. To overcome the cons of open-loop or closed-loop GHP system, the combined well and open-closed loops geothermal (CWG) system was designed. The open-loop GHP system is surrounded with closed-loop GHP systems in the CWG system. The geothermal energy in closed-loop GHP systems is supplied by the groundwater pumped by the open-loop GHP system. In this study, 2 different types of the CWG systems (small aperture hybrid CWG system and large aperture CWG system) are estimated using numerical simulation models in the aspect of energy efficiency. This work was supported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No.20153030111120).

  8. Development of Open Brain Simulator for Human Biomechatronics

    NASA Astrophysics Data System (ADS)

    Otake, Mihoko; Takagi, Toshihisa; Asama, Hajime

    Modeling and simulation based on mechanisms is important in order to design and control mechatronic systems. In particular, in-depth understanding and realistic modeling of biological systems is indispensable for biomechatronics. This paper presents open brain simulator, which estimates the neural state of human through external measurement for the purpose of improving motor and social skills. Macroscopic anatomical nervous systems model was built which can be connected to the musculoskeletal model. Microscopic anatomical and physiological neural models were interfaced to the macroscopic model. Neural activities of somatosensory area and Purkinje cell were calculated from motion capture data. The simulator provides technical infrastructure for human biomechatronics, which is promising for the novel diagnosis of neurological disorders and their treatments through medication and movement therapy, and for motor learning support system supporting acquisition of motor skill considering neural mechanism.

  9. Behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases.

    PubMed

    Tatem, Kathleen S; Quinn, James L; Phadke, Aditi; Yu, Qing; Gordish-Dressman, Heather; Nagaraju, Kanneboyina

    2014-09-29

    The open field activity monitoring system comprehensively assesses locomotor and behavioral activity levels of mice. It is a useful tool for assessing locomotive impairment in animal models of neuromuscular disease and efficacy of therapeutic drugs that may improve locomotion and/or muscle function. The open field activity measurement provides a different measure than muscle strength, which is commonly assessed by grip strength measurements. It can also show how drugs may affect other body systems as well when used with additional outcome measures. In addition, measures such as total distance traveled mirror the 6 min walk test, a clinical trial outcome measure. However, open field activity monitoring is also associated with significant challenges: Open field activity measurements vary according to animal strain, age, sex, and circadian rhythm. In addition, room temperature, humidity, lighting, noise, and even odor can affect assessment outcomes. Overall, this manuscript provides a well-tested and standardized open field activity SOP for preclinical trials in animal models of neuromuscular diseases. We provide a discussion of important considerations, typical results, data analysis, and detail the strengths and weaknesses of open field testing. In addition, we provide recommendations for optimal study design when using open field activity in a preclinical trial.

  10. Perceptron Genetic to Recognize Openning Strategy Ruy Lopez

    NASA Astrophysics Data System (ADS)

    Azmi, Zulfian; Mawengkang, Herman

    2018-01-01

    The application of Perceptron method is not effective for coding on hardware based systems because it is not real time learning. With Genetic algorithm approach in calculating and searching the best weight (fitness value) system will do learning only one iteration. And the results of this analysis were tested in the case of the introduction of the opening pattern of chess Ruy Lopez. The Analysis with Perceptron Model with Algorithm Approach Genetics from group Artificial Neural Network for open Ruy Lopez. The data is processed with base open chess, with step eight a position white Pion from end open chess. Using perceptron method have many input and one output process many weight and refraction until output equal goal. Data trained and test with software Matlab and system can recognize the chess opening Ruy Lopez or Not open Ruy Lopez with Real time.

  11. OpenClimateGIS - A Web Service Providing Climate Model Data in Commonly Used Geospatial Formats

    NASA Astrophysics Data System (ADS)

    Erickson, T. A.; Koziol, B. W.; Rood, R. B.

    2011-12-01

    The goal of the OpenClimateGIS project is to make climate model datasets readily available in commonly used, modern geospatial formats used by GIS software, browser-based mapping tools, and virtual globes.The climate modeling community typically stores climate data in multidimensional gridded formats capable of efficiently storing large volumes of data (such as netCDF, grib) while the geospatial community typically uses flexible vector and raster formats that are capable of storing small volumes of data (relative to the multidimensional gridded formats). OpenClimateGIS seeks to address this difference in data formats by clipping climate data to user-specified vector geometries (i.e. areas of interest) and translating the gridded data on-the-fly into multiple vector formats. The OpenClimateGIS system does not store climate data archives locally, but rather works in conjunction with external climate archives that expose climate data via the OPeNDAP protocol. OpenClimateGIS provides a RESTful API web service for accessing climate data resources via HTTP, allowing a wide range of applications to access the climate data.The OpenClimateGIS system has been developed using open source development practices and the source code is publicly available. The project integrates libraries from several other open source projects (including Django, PostGIS, numpy, Shapely, and netcdf4-python).OpenClimateGIS development is supported by a grant from NOAA's Climate Program Office.

  12. Modular and Spatially Explicit: A Novel Approach to System Dynamics

    EPA Science Inventory

    The Open Modeling Environment (OME) is an open-source System Dynamics (SD) simulation engine which has been created as a joint project between Oregon State University and the US Environmental Protection Agency. It is designed around a modular implementation, and provides a standa...

  13. Open Systems Interconnection.

    ERIC Educational Resources Information Center

    Denenberg, Ray

    1985-01-01

    Discusses the need for standards allowing computer-to-computer communication and gives examples of technical issues. The seven-layer framework of the Open Systems Interconnection (OSI) Reference Model is explained and illustrated. Sidebars feature public data networks and Recommendation X.25, OSI standards, OSI layer functions, and a glossary.…

  14. pyBSM: A Python package for modeling imaging systems

    NASA Astrophysics Data System (ADS)

    LeMaster, Daniel A.; Eismann, Michael T.

    2017-05-01

    There are components that are common to all electro-optical and infrared imaging system performance models. The purpose of the Python Based Sensor Model (pyBSM) is to provide open source access to these functions for other researchers to build upon. Specifically, pyBSM implements much of the capability found in the ERIM Image Based Sensor Model (IBSM) V2.0 along with some improvements. The paper also includes two use-case examples. First, performance of an airborne imaging system is modeled using the General Image Quality Equation (GIQE). The results are then decomposed into factors affecting noise and resolution. Second, pyBSM is paired with openCV to evaluate performance of an algorithm used to detect objects in an image.

  15. Open Source, Open Standards, and Health Care Information Systems

    PubMed Central

    2011-01-01

    Recognition of the improvements in patient safety, quality of patient care, and efficiency that health care information systems have the potential to bring has led to significant investment. Globally the sale of health care information systems now represents a multibillion dollar industry. As policy makers, health care professionals, and patients, we have a responsibility to maximize the return on this investment. To this end we analyze alternative licensing and software development models, as well as the role of standards. We describe how licensing affects development. We argue for the superiority of open source licensing to promote safer, more effective health care information systems. We claim that open source licensing in health care information systems is essential to rational procurement strategy. PMID:21447469

  16. Open source, open standards, and health care information systems.

    PubMed

    Reynolds, Carl J; Wyatt, Jeremy C

    2011-02-17

    Recognition of the improvements in patient safety, quality of patient care, and efficiency that health care information systems have the potential to bring has led to significant investment. Globally the sale of health care information systems now represents a multibillion dollar industry. As policy makers, health care professionals, and patients, we have a responsibility to maximize the return on this investment. To this end we analyze alternative licensing and software development models, as well as the role of standards. We describe how licensing affects development. We argue for the superiority of open source licensing to promote safer, more effective health care information systems. We claim that open source licensing in health care information systems is essential to rational procurement strategy.

  17. Sea-Salt Aerosol Forecasts Compared with Wave and Sea-Salt Measurements in the Open Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Kishcha, P.; Starobinets, B.; Bozzano, R.; Pensieri, S.; Canepa, E.; Nickovie, S.; di Sarra, A.; Udisti, R.; Becagli, S.; Alpert, P.

    2012-03-01

    Sea-salt aerosol (SSA) could influence the Earth's climate acting as cloud condensation nuclei. However, there were no regular measurements of SSA in the open sea. At Tel-Aviv University, the DREAM-Salt prediction system has been producing daily forecasts of 3-D distribution of sea-salt aerosol concentrations over the Mediterranean Sea (http://wind.tau.ac.il/saltina/ salt.html). In order to evaluate the model performance in the open sea, daily modeled concentrations were compared directly with SSA measurements taken at the tiny island of Lampedusa, in the Central Mediterranean. In order to further test the robustness of the model, the model performance over the open sea was indirectly verified by comparing modeled SSA concentrations with wave height measurements collected by the ODAS Italia 1 buoy and the Llobregat buoy. Model-vs.-measurement comparisons show that the model is capable of producing realistic SSA concentrations and their day-today variations over the open sea, in accordance with observed wave height and wind speed.

  18. Mathematics Teaching and Learning in Rural Contexts: A Social Systems Perspective. Working Paper.

    ERIC Educational Resources Information Center

    Arnold, Michael L.

    Mathematics education is different in rural schools than in non-rural schools. An explanation for this can be found in an open social systems model of schools, in which schools are comprised of interdependent subsystems that function together to transform inputs into outcomes. These are open systems in that external forces in the environment…

  19. Linear-algebraic bath transformation for simulating complex open quantum systems

    DOE PAGES

    Huh, Joonsuk; Mostame, Sarah; Fujita, Takatoshi; ...

    2014-12-02

    In studying open quantum systems, the environment is often approximated as a collection of non-interacting harmonic oscillators, a configuration also known as the star-bath model. It is also well known that the star-bath can be transformed into a nearest-neighbor interacting chain of oscillators. The chain-bath model has been widely used in renormalization group approaches. The transformation can be obtained by recursion relations or orthogonal polynomials. Based on a simple linear algebraic approach, we propose a bath partition strategy to reduce the system-bath coupling strength. As a result, the non-interacting star-bath is transformed into a set of weakly coupled multiple parallelmore » chains. Furthermore, the transformed bath model allows complex problems to be practically implemented on quantum simulators, and it can also be employed in various numerical simulations of open quantum dynamics.« less

  20. Open Systems with Error Bounds: Spin-Boson Model with Spectral Density Variations.

    PubMed

    Mascherpa, F; Smirne, A; Huelga, S F; Plenio, M B

    2017-03-10

    In the study of open quantum systems, one of the most common ways to describe environmental effects on the reduced dynamics is through the spectral density. However, in many models this object cannot be computed from first principles and needs to be inferred on phenomenological grounds or fitted to experimental data. Consequently, some uncertainty regarding its form and parameters is unavoidable; this in turn calls into question the accuracy of any theoretical predictions based on a given spectral density. Here, we focus on the spin-boson model as a prototypical open quantum system, find two error bounds on predicted expectation values in terms of the spectral density variation considered, and state a sufficient condition for the strongest one to apply. We further demonstrate an application of our result, by bounding the error brought about by the approximations involved in the hierarchical equations of motion resolution method for spin-boson dynamics.

  1. Application of enthalpy model for floating zone silicon crystal growth

    NASA Astrophysics Data System (ADS)

    Krauze, A.; Bergfelds, K.; Virbulis, J.

    2017-09-01

    A 2D simplified crystal growth model based on the enthalpy method and coupled with a low-frequency harmonic electromagnetic model is developed to simulate the silicon crystal growth near the external triple point (ETP) and crystal melting on the open melting front of a polycrystalline feed rod in FZ crystal growth systems. Simulations of the crystal growth near the ETP show significant influence of the inhomogeneities of the EM power distribution on the crystal growth rate for a 4 in floating zone (FZ) system. The generated growth rate fluctuations are shown to be larger in the system with higher crystal pull rate. Simulations of crystal melting on the open melting front of the polycrystalline rod show the development of melt-filled grooves at the open melting front surface. The distance between the grooves is shown to grow with the increase of the skin-layer depth in the solid material.

  2. Mathematical multi-scale model of the cardiovascular system including mitral valve dynamics. Application to ischemic mitral insufficiency

    PubMed Central

    2011-01-01

    Background Valve dysfunction is a common cardiovascular pathology. Despite significant clinical research, there is little formal study of how valve dysfunction affects overall circulatory dynamics. Validated models would offer the ability to better understand these dynamics and thus optimize diagnosis, as well as surgical and other interventions. Methods A cardiovascular and circulatory system (CVS) model has already been validated in silico, and in several animal model studies. It accounts for valve dynamics using Heaviside functions to simulate a physiologically accurate "open on pressure, close on flow" law. However, it does not consider real-time valve opening dynamics and therefore does not fully capture valve dysfunction, particularly where the dysfunction involves partial closure. This research describes an updated version of this previous closed-loop CVS model that includes the progressive opening of the mitral valve, and is defined over the full cardiac cycle. Results Simulations of the cardiovascular system with healthy mitral valve are performed, and, the global hemodynamic behaviour is studied compared with previously validated results. The error between resulting pressure-volume (PV) loops of already validated CVS model and the new CVS model that includes the progressive opening of the mitral valve is assessed and remains within typical measurement error and variability. Simulations of ischemic mitral insufficiency are also performed. Pressure-Volume loops, transmitral flow evolution and mitral valve aperture area evolution follow reported measurements in shape, amplitude and trends. Conclusions The resulting cardiovascular system model including mitral valve dynamics provides a foundation for clinical validation and the study of valvular dysfunction in vivo. The overall models and results could readily be generalised to other cardiac valves. PMID:21942971

  3. Joint Common Architecture Demonstration (JCA Demo) Final Report

    DTIC Science & Technology

    2016-07-28

    approach for implementing open systems [16], formerly known as the Modular Open Systems Approach (MOSA). OSA is a business and technical strategy to... TECHNICAL REPORT RDMR-AD-16-01 JOINT COMMON ARCHITECTURE DEMONSTRATION (JCA DEMO) FINAL REPORT Scott A. Wigginton... Modular Avionics .......................................................................... 5 E. Model-Based Engineering

  4. RivGen, Igiugig Deployment, Control System Specifications and Models

    DOE Data Explorer

    Forbush, Dominic; Cavagnaro, Robert J.; Guerra, Maricarmen; Donegan, James; McEntee, Jarlath; Thomson, Jim; Polagye, Brian; Fabien, Brian; Kilcher, Levi

    2016-03-21

    Control System simulation models, case studies, and processing codes for analyzing field data. Raw data files included from VFD and SCADA. MatLab and Simulink are required to open some data files and all model files.

  5. A simple object-oriented and open-source model for scientific and policy analyses of the global climate system – Hector v1.0

    DOE PAGES

    Hartin, Corinne A.; Patel, Pralit L.; Schwarber, Adria; ...

    2015-04-01

    Simple climate models play an integral role in the policy and scientific communities. They are used for climate mitigation scenarios within integrated assessment models, complex climate model emulation, and uncertainty analyses. Here we describe Hector v1.0, an open source, object-oriented, simple global climate carbon-cycle model. This model runs essentially instantaneously while still representing the most critical global-scale earth system processes. Hector has a three-part main carbon cycle: a one-pool atmosphere, land, and ocean. The model's terrestrial carbon cycle includes primary production and respiration fluxes, accommodating arbitrary geographic divisions into, e.g., ecological biomes or political units. Hector actively solves the inorganicmore » carbon system in the surface ocean, directly calculating air–sea fluxes of carbon and ocean pH. Hector reproduces the global historical trends of atmospheric [CO 2], radiative forcing, and surface temperatures. The model simulates all four Representative Concentration Pathways (RCPs) with equivalent rates of change of key variables over time compared to current observations, MAGICC (a well-known simple climate model), and models from the 5th Coupled Model Intercomparison Project. Hector's flexibility, open-source nature, and modular design will facilitate a broad range of research in various areas.« less

  6. Development of an Integrated Hydrologic Modeling System for Rainfall-Runoff Simulation

    NASA Astrophysics Data System (ADS)

    Lu, B.; Piasecki, M.

    2008-12-01

    This paper aims to present the development of an integrated hydrological model which involves functionalities of digital watershed processing, online data retrieval, hydrologic simulation and post-event analysis. The proposed system is intended to work as a back end to the CUAHSI HIS cyberinfrastructure developments. As a first step into developing this system, a physics-based distributed hydrologic model PIHM (Penn State Integrated Hydrologic Model) is wrapped into OpenMI(Open Modeling Interface and Environment ) environment so as to seamlessly interact with OpenMI compliant meteorological models. The graphical user interface is being developed from the openGIS application called MapWindows which permits functionality expansion through the addition of plug-ins. . Modules required to set up through the GUI workboard include those for retrieving meteorological data from existing database or meteorological prediction models, obtaining geospatial data from the output of digital watershed processing, and importing initial condition and boundary condition. They are connected to the OpenMI compliant PIHM to simulate rainfall-runoff processes and includes a module for automatically displaying output after the simulation. Online databases are accessed through the WaterOneFlow web services, and the retrieved data are either stored in an observation database(OD) following the schema of Observation Data Model(ODM) in case for time series support, or a grid based storage facility which may be a format like netCDF or a grid-based-data database schema . Specific development steps include the creation of a bridge to overcome interoperability issue between PIHM and the ODM, as well as the embedding of TauDEM (Terrain Analysis Using Digital Elevation Models) into the model. This module is responsible for developing watershed and stream network using digital elevation models. Visualizing and editing geospatial data is achieved by the usage of MapWinGIS, an ActiveX control developed by MapWindow team. After applying to the practical watershed, the performance of the model can be tested by the post-event analysis module.

  7. Space Generic Open Avionics Architecture (SGOAA): Overview

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1992-01-01

    A space generic open avionics architecture created for NASA is described. It will serve as the basis for entities in spacecraft core avionics, capable of being tailored by NASA for future space program avionics ranging from small vehicles such as Moon ascent/descent vehicles to large ones such as Mars transfer vehicles or orbiting stations. The standard consists of: (1) a system architecture; (2) a generic processing hardware architecture; (3) a six class architecture interface model; (4) a system services functional subsystem architectural model; and (5) an operations control functional subsystem architectural model.

  8. Comparing the Open University Systems of China and India: Origins, Developments and Prospects

    ERIC Educational Resources Information Center

    Perris, Kirk

    2015-01-01

    The national open universities of China and India are unique adaptations of the open university model that emanated from the UK. These institutions have expanded to become the largest universities in the world as measured by current enrollment of approximately four million each. This article comparatively analyzes how these open universities have…

  9. An informatics model for guiding assembly of telemicrobiology workstations for malaria collaborative diagnostics using commodity products and open-source software.

    PubMed

    Suhanic, West; Crandall, Ian; Pennefather, Peter

    2009-07-17

    Deficits in clinical microbiology infrastructure exacerbate global infectious disease burdens. This paper examines how commodity computation, communication, and measurement products combined with open-source analysis and communication applications can be incorporated into laboratory medicine microbiology protocols. Those commodity components are all now sourceable globally. An informatics model is presented for guiding the use of low-cost commodity components and free software in the assembly of clinically useful and usable telemicrobiology workstations. The model incorporates two general principles: 1) collaborative diagnostics, where free and open communication and networking applications are used to link distributed collaborators for reciprocal assistance in organizing and interpreting digital diagnostic data; and 2) commodity engineering, which leverages globally available consumer electronics and open-source informatics applications, to build generic open systems that measure needed information in ways substantially equivalent to more complex proprietary systems. Routine microscopic examination of Giemsa and fluorescently stained blood smears for diagnosing malaria is used as an example to validate the model. The model is used as a constraint-based guide for the design, assembly, and testing of a functioning, open, and commoditized telemicroscopy system that supports distributed acquisition, exploration, analysis, interpretation, and reporting of digital microscopy images of stained malarial blood smears while also supporting remote diagnostic tracking, quality assessment and diagnostic process development. The open telemicroscopy workstation design and use-process described here can address clinical microbiology infrastructure deficits in an economically sound and sustainable manner. It can boost capacity to deal with comprehensive measurement of disease and care outcomes in individuals and groups in a distributed and collaborative fashion. The workstation enables local control over the creation and use of diagnostic data, while allowing for remote collaborative support of diagnostic data interpretation and tracking. It can enable global pooling of malaria disease information and the development of open, participatory, and adaptable laboratory medicine practices. The informatic model highlights how the larger issue of access to generic commoditized measurement, information processing, and communication technology in both high- and low-income countries can enable diagnostic services that are much less expensive, but substantially equivalent to those currently in use in high-income countries.

  10. Open Learning and Formal Credentialing in Higher Education: Curriculum Models and Institutional Policies

    ERIC Educational Resources Information Center

    Reushle, Shirley, Ed.; Antonio, Amy, Ed.; Keppell, Mike, Ed.

    2016-01-01

    The discipline of education is a multi-faceted system that must constantly integrate new strategies and procedures to ensure successful learning experiences. Enhancements in education provide learners with greater opportunities for growth and advancement. "Open Learning and Formal Credentialing in Higher Education: Curriculum Models and…

  11. Using CellML with OpenCMISS to Simulate Multi-Scale Physiology

    PubMed Central

    Nickerson, David P.; Ladd, David; Hussan, Jagir R.; Safaei, Soroush; Suresh, Vinod; Hunter, Peter J.; Bradley, Christopher P.

    2014-01-01

    OpenCMISS is an open-source modeling environment aimed, in particular, at the solution of bioengineering problems. OpenCMISS consists of two main parts: a computational library (OpenCMISS-Iron) and a field manipulation and visualization library (OpenCMISS-Zinc). OpenCMISS is designed for the solution of coupled multi-scale, multi-physics problems in a general-purpose parallel environment. CellML is an XML format designed to encode biophysically based systems of ordinary differential equations and both linear and non-linear algebraic equations. A primary design goal of CellML is to allow mathematical models to be encoded in a modular and reusable format to aid reproducibility and interoperability of modeling studies. In OpenCMISS, we make use of CellML models to enable users to configure various aspects of their multi-scale physiological models. This avoids the need for users to be familiar with the OpenCMISS internal code in order to perform customized computational experiments. Examples of this are: cellular electrophysiology models embedded in tissue electrical propagation models; material constitutive relationships for mechanical growth and deformation simulations; time-varying boundary conditions for various problem domains; and fluid constitutive relationships and lumped-parameter models. In this paper, we provide implementation details describing how CellML models are integrated into multi-scale physiological models in OpenCMISS. The external interface OpenCMISS presents to users is also described, including specific examples exemplifying the extensibility and usability these tools provide the physiological modeling and simulation community. We conclude with some thoughts on future extension of OpenCMISS to make use of other community developed information standards, such as FieldML, SED-ML, and BioSignalML. Plans for the integration of accelerator code (graphical processing unit and field programmable gate array) generated from CellML models is also discussed. PMID:25601911

  12. Collision-model approach to steering of an open driven qubit

    NASA Astrophysics Data System (ADS)

    Beyer, Konstantin; Luoma, Kimmo; Strunz, Walter T.

    2018-03-01

    We investigate quantum steering of an open quantum system by measurements on its environment in the framework of collision models. As an example we consider a coherently driven qubit dissipatively coupled to a bath. We construct local nonadaptive and adaptive as well as nonlocal measurement scenarios specifying explicitly the measured observable on the environment. Our approach shows transparently how the conditional evolution of the open system depends on the type of the measurement scenario and the measured observables. These can then be optimized for steering. The nonlocal measurement scenario leads to maximal violation of the used steering inequality at zero temperature. Further, we investigate the robustness of the constructed scenarios against thermal noise. We find generally that steering becomes harder at higher temperatures. Surprisingly, the system can be steered even when bipartite entanglement between the system and individual subenvironments vanishes.

  13. Roadmap for cardiovascular circulation model

    PubMed Central

    Bradley, Christopher P.; Suresh, Vinod; Mithraratne, Kumar; Muller, Alexandre; Ho, Harvey; Ladd, David; Hellevik, Leif R.; Omholt, Stig W.; Chase, J. Geoffrey; Müller, Lucas O.; Watanabe, Sansuke M.; Blanco, Pablo J.; de Bono, Bernard; Hunter, Peter J.

    2016-01-01

    Abstract Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well‐established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo‐skeletal system. The computational infrastructure for the cardiovascular model should provide for near real‐time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model. PMID:27506597

  14. Roadmap for cardiovascular circulation model.

    PubMed

    Safaei, Soroush; Bradley, Christopher P; Suresh, Vinod; Mithraratne, Kumar; Muller, Alexandre; Ho, Harvey; Ladd, David; Hellevik, Leif R; Omholt, Stig W; Chase, J Geoffrey; Müller, Lucas O; Watanabe, Sansuke M; Blanco, Pablo J; de Bono, Bernard; Hunter, Peter J

    2016-12-01

    Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well-established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo-skeletal system. The computational infrastructure for the cardiovascular model should provide for near real-time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  15. Archetype Model-Driven Development Framework for EHR Web System.

    PubMed

    Kobayashi, Shinji; Kimura, Eizen; Ishihara, Ken

    2013-12-01

    This article describes the Web application framework for Electronic Health Records (EHRs) we have developed to reduce construction costs for EHR sytems. The openEHR project has developed clinical model driven architecture for future-proof interoperable EHR systems. This project provides the specifications to standardize clinical domain model implementations, upon which the ISO/CEN 13606 standards are based. The reference implementation has been formally described in Eiffel. Moreover C# and Java implementations have been developed as reference. While scripting languages had been more popular because of their higher efficiency and faster development in recent years, they had not been involved in the openEHR implementations. From 2007, we have used the Ruby language and Ruby on Rails (RoR) as an agile development platform to implement EHR systems, which is in conformity with the openEHR specifications. We implemented almost all of the specifications, the Archetype Definition Language parser, and RoR scaffold generator from archetype. Although some problems have emerged, most of them have been resolved. We have provided an agile EHR Web framework, which can build up Web systems from archetype models using RoR. The feasibility of the archetype model to provide semantic interoperability of EHRs has been demonstrated and we have verified that that it is suitable for the construction of EHR systems.

  16. The Retrospection and Elicitation of China's Teacher Education Reform and Opening-Up More Than 30 Years

    ERIC Educational Resources Information Center

    Tian-Ping, Yang

    2012-01-01

    Since implementation of reform and opening-up policy, China's teacher education has got significant success on policy design, legislation process, theory research, system reform, model innovation and teaching qualification system building. Teachers' educational background level has been increased. Teachers' professional ethics and teaching…

  17. Role of Open and Distance Education in Integrating Education with Development--Emerging Model of Networked Collaborative Learning and Net-working.

    ERIC Educational Resources Information Center

    Takwale, Ram

    1998-01-01

    Discusses the evolution of the educational system in India, developments in new communication technologies, and plans by the open and distance education system to develop educational networks. Policies and programs adopted by the Distance Education Council are outlined. (AEF)

  18. Comparison of Traditional and Open-Access Appointment Scheduling for Exponentially Distributed Service Time.

    PubMed

    Yan, Chongjun; Tang, Jiafu; Jiang, Bowen; Fung, Richard Y K

    2015-01-01

    This paper compares the performance measures of traditional appointment scheduling (AS) with those of an open-access appointment scheduling (OA-AS) system with exponentially distributed service time. A queueing model is formulated for the traditional AS system with no-show probability. The OA-AS models assume that all patients who call before the session begins will show up for the appointment on time. Two types of OA-AS systems are considered: with a same-session policy and with a same-or-next-session policy. Numerical results indicate that the superiority of OA-AS systems is not as obvious as those under deterministic scenarios. The same-session system has a threshold of relative waiting cost, after which the traditional system always has higher total costs, and the same-or-next-session system is always preferable, except when the no-show probability or the weight of patients' waiting is low. It is concluded that open-access policies can be viewed as alternative approaches to mitigate the negative effects of no-show patients.

  19. A LabVIEW model incorporating an open-loop arterial impedance and a closed-loop circulatory system.

    PubMed

    Cole, R T; Lucas, C L; Cascio, W E; Johnson, T A

    2005-11-01

    While numerous computer models exist for the circulatory system, many are limited in scope, contain unwanted features or incorporate complex components specific to unique experimental situations. Our purpose was to develop a basic, yet multifaceted, computer model of the left heart and systemic circulation in LabVIEW having universal appeal without sacrificing crucial physiologic features. The program we developed employs Windkessel-type impedance models in several open-loop configurations and a closed-loop model coupling a lumped impedance and ventricular pressure source. The open-loop impedance models demonstrate afterload effects on arbitrary aortic pressure/flow inputs. The closed-loop model catalogs the major circulatory waveforms with changes in afterload, preload, and left heart properties. Our model provides an avenue for expanding the use of the ventricular equations through closed-loop coupling that includes a basic coronary circuit. Tested values used for the afterload components and the effects of afterload parameter changes on various waveforms are consistent with published data. We conclude that this model offers the ability to alter several circulatory factors and digitally catalog the most salient features of the pressure/flow waveforms employing a user-friendly platform. These features make the model a useful instructional tool for students as well as a simple experimental tool for cardiovascular research.

  20. Numerical simulation of the actuation system for the ALDF's propulsion control valve. [Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Korte, John J.

    1990-01-01

    A numerical simulation of the actuation system for the propulsion control valve (PCV) of the NASA Langley Aircraft Landing Dynamics Facility was developed during the preliminary design of the PCV and used throughout the entire project. The simulation is based on a predictive model of the PCV which is used to evaluate and design the actuation system. The PCV controls a 1.7 million-pound thrust water jet used in propelling a 108,000-pound test carriage. The PCV can open and close in 0.300 second and deliver over 9,000 gallons of water per sec at pressures up to 3150 psi. The numerical simulation results are used to predict transient performance and valve opening characteristics, specify the hydraulic control system, define transient loadings on components, and evaluate failure modes. The mathematical model used for numerically simulating the mechanical fluid power system is described, and numerical results are demonstrated for a typical opening and closing cycle of the PCV. A summary is then given on how the model is used in the design process.

  1. Making Conferences Human Places of Learning

    ERIC Educational Resources Information Center

    Kenny, Michael

    2014-01-01

    Open Space Technology is a cumbersome name for a participative conference model that enables dynamic inclusive engagement and challenges traditional, highly structured hierarchical conference formats. Based on self-organising systems, (Wenger, 1998) Open Space Technology conferences have an open process, start with no agenda and empower the most…

  2. Vibro-acoustic modeling and analysis of a coupled acoustic system comprising a partially opened cavity coupled with a flexible plate

    NASA Astrophysics Data System (ADS)

    Shi, Shuangxia; Su, Zhu; Jin, Guoyong; Liu, Zhigang

    2018-01-01

    This paper is concerned with the modeling and solution method of a three-dimensional (3D) coupled acoustic system comprising a partially opened cavity coupled with a flexible plate and an exterior field of semi-infinite size, which is ubiquitously encountered in architectural acoustics and is a reasonable representation of many engineering occasions. A general solution method is presented to predict the dynamic behaviors of the three-dimensional (3D) acoustic coupled system, in which the displacement of the plate and the sound pressure in the cavity are respectively constructed in the form of the two-dimensional and three-dimensional modified Fourier series with several auxiliary functions introduced to ensure the uniform convergence of the solution over the entire solution domain. The effect of the opening is taken into account via the work done by the sound pressure acting at the coupling aperture that is contributed from the vibration of particles on the acoustic coupling interface and on the structural-acoustic coupling interface. Both the acoustic coupling between finite cavity and exterior field and the structural-acoustic coupling between flexible plate and interior acoustic field are considered in the vibro-acoustic modeling of the three-dimensional acoustic coupled acoustic system. The dynamic responses of the coupled structural-acoustic system are obtained using the Rayleigh-Ritz procedure based on the energy expressions for the coupled system. The accuracy and effectiveness of the proposed method are validated through numerical examples and comparison with results obtained by the boundary element analysis. Furthermore, the influence of the opening and the cavity volume on the acoustic behaviors of opened cavity system is studied.

  3. Opening up Architectures of Software-Intensive Systems: A Functional Decomposition to Support System Comprehension

    DTIC Science & Technology

    2007-10-01

    Architecture ................................................................................ 14 Figure 2. Eclipse Java Model...16 Figure 3. Eclipse Java Model at the Source Code Level...24 Figure 9. Java Source Code

  4. Modeling healthcare authorization and claim submissions using the openEHR dual-model approach

    PubMed Central

    2011-01-01

    Background The TISS standard is a set of mandatory forms and electronic messages for healthcare authorization and claim submissions among healthcare plans and providers in Brazil. It is not based on formal models as the new generation of health informatics standards suggests. The objective of this paper is to model the TISS in terms of the openEHR archetype-based approach and integrate it into a patient-centered EHR architecture. Methods Three approaches were adopted to model TISS. In the first approach, a set of archetypes was designed using ENTRY subclasses. In the second one, a set of archetypes was designed using exclusively ADMIN_ENTRY and CLUSTERs as their root classes. In the third approach, the openEHR ADMIN_ENTRY is extended with classes designed for authorization and claim submissions, and an ISM_TRANSITION attribute is added to the COMPOSITION class. Another set of archetypes was designed based on this model. For all three approaches, templates were designed to represent the TISS forms. Results The archetypes based on the openEHR RM (Reference Model) can represent all TISS data structures. The extended model adds subclasses and an attribute to the COMPOSITION class to represent information on authorization and claim submissions. The archetypes based on all three approaches have similar structures, although rooted in different classes. The extended openEHR RM model is more semantically aligned with the concepts involved in a claim submission, but may disrupt interoperability with other systems and the current tools must be adapted to deal with it. Conclusions Modeling the TISS standard by means of the openEHR approach makes it aligned with ISO recommendations and provides a solid foundation on which the TISS can evolve. Although there are few administrative archetypes available, the openEHR RM is expressive enough to represent the TISS standard. This paper focuses on the TISS but its results may be extended to other billing processes. A complete communication architecture to simulate the exchange of TISS data between systems according to the openEHR approach still needs to be designed and implemented. PMID:21992670

  5. Methodology to evaluate the performance of simulation models for alternative compiler and operating system configurations

    USDA-ARS?s Scientific Manuscript database

    Simulation modelers increasingly require greater flexibility for model implementation on diverse operating systems, and they demand high computational speed for efficient iterative simulations. Additionally, model users may differ in preference for proprietary versus open-source software environment...

  6. Three-Dimensional Modeling of Aircraft High-Lift Components with Vehicle Sketch Pad

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.

    2016-01-01

    Vehicle Sketch Pad (OpenVSP) is a parametric geometry modeler that has been used extensively for conceptual design studies of aircraft, including studies using higher-order analysis. OpenVSP can model flap and slat surfaces using simple shearing of the airfoil coordinates, which is an appropriate level of complexity for lower-order aerodynamic analysis methods. For three-dimensional analysis, however, there is not a built-in method for defining the high-lift components in OpenVSP in a realistic manner, or for controlling their complex motions in a parametric manner that is intuitive to the designer. This paper seeks instead to utilize OpenVSP's existing capabilities, and establish a set of best practices for modeling high-lift components at a level of complexity suitable for higher-order analysis methods. Techniques are described for modeling the flap and slat components as separate three-dimensional surfaces, and for controlling their motion using simple parameters defined in the local hinge-axis frame of reference. To demonstrate the methodology, an OpenVSP model for the Energy-Efficient Transport (EET) AR12 wind-tunnel model has been created, taking advantage of OpenVSP's Advanced Parameter Linking capability to translate the motions of the high-lift components from the hinge-axis coordinate system to a set of transformations in OpenVSP's frame of reference.

  7. Use of Open Standards and Technologies at the Lunar Mapping and Modeling Project

    NASA Astrophysics Data System (ADS)

    Law, E.; Malhotra, S.; Bui, B.; Chang, G.; Goodale, C. E.; Ramirez, P.; Kim, R. M.; Sadaqathulla, S.; Rodriguez, L.

    2011-12-01

    The Lunar Mapping and Modeling Project (LMMP), led by the Marshall Space Flight center (MSFC), is tasked by NASA. The project is responsible for the development of an information system to support lunar exploration activities. It provides lunar explorers a set of tools and lunar map and model products that are predominantly derived from present lunar missions (e.g., the Lunar Reconnaissance Orbiter (LRO)) and from historical missions (e.g., Apollo). At Jet Propulsion Laboratory (JPL), we have built the LMMP interoperable geospatial information system's underlying infrastructure and a single point of entry - the LMMP Portal by employing a number of open standards and technologies. The Portal exposes a set of services to users to allow search, visualization, subset, and download of lunar data managed by the system. Users also have access to a set of tools that visualize, analyze and annotate the data. The infrastructure and Portal are based on web service oriented architecture. We designed the system to support solar system bodies in general including asteroids, earth and planets. We employed a combination of custom software, commercial and open-source components, off-the-shelf hardware and pay-by-use cloud computing services. The use of open standards and web service interfaces facilitate platform and application independent access to the services and data, offering for instances, iPad and Android mobile applications and large screen multi-touch with 3-D terrain viewing functions, for a rich browsing and analysis experience from a variety of platforms. The web services made use of open standards including: Representational State Transfer (REST); and Open Geospatial Consortium (OGC)'s Web Map Service (WMS), Web Coverage Service (WCS), Web Feature Service (WFS). Its data management services have been built on top of a set of open technologies including: Object Oriented Data Technology (OODT) - open source data catalog, archive, file management, data grid framework; openSSO - open source access management and federation platform; solr - open source enterprise search platform; redmine - open source project collaboration and management framework; GDAL - open source geospatial data abstraction library; and others. Its data products are compliant with Federal Geographic Data Committee (FGDC) metadata standard. This standardization allows users to access the data products via custom written applications or off-the-shelf applications such as GoogleEarth. We will demonstrate this ready-to-use system for data discovery and visualization by walking through the data services provided through the portal such as browse, search, and other tools. We will further demonstrate image viewing and layering of lunar map images from the Internet, via mobile devices such as Apple's iPad.

  8. Detection of no-model input-output pairs in closed-loop systems.

    PubMed

    Potts, Alain Segundo; Alvarado, Christiam Segundo Morales; Garcia, Claudio

    2017-11-01

    The detection of no-model input-output (IO) pairs is important because it can speed up the multivariable system identification process, since all the pairs with null transfer functions are previously discarded and it can also improve the identified model quality, thus improving the performance of model based controllers. In the available literature, the methods focus just on the open-loop case, since in this case there is not the effect of the controller forcing the main diagonal in the transfer matrix to one and all the other terms to zero. In this paper, a modification of a previous method able to detect no-model IO pairs in open-loop systems is presented, but adapted to perform this duty in closed-loop systems. Tests are performed by using the traditional methods and the proposed one to show its effectiveness. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Similarity Metrics for Closed Loop Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.; Yang, Lee C.; Bedrossian, Naz; Hall, Robert A.

    2008-01-01

    To what extent and in what ways can two closed-loop dynamic systems be said to be "similar?" This question arises in a wide range of dynamic systems modeling and control system design applications. For example, bounds on error models are fundamental to the controller optimization with modern control design methods. Metrics such as the structured singular value are direct measures of the degree to which properties such as stability or performance are maintained in the presence of specified uncertainties or variations in the plant model. Similarly, controls-related areas such as system identification, model reduction, and experimental model validation employ measures of similarity between multiple realizations of a dynamic system. Each area has its tools and approaches, with each tool more or less suited for one application or the other. Similarity in the context of closed-loop model validation via flight test is subtly different from error measures in the typical controls oriented application. Whereas similarity in a robust control context relates to plant variation and the attendant affect on stability and performance, in this context similarity metrics are sought that assess the relevance of a dynamic system test for the purpose of validating the stability and performance of a "similar" dynamic system. Similarity in the context of system identification is much more relevant than are robust control analogies in that errors between one dynamic system (the test article) and another (the nominal "design" model) are sought for the purpose of bounding the validity of a model for control design and analysis. Yet system identification typically involves open-loop plant models which are independent of the control system (with the exception of limited developments in closed-loop system identification which is nonetheless focused on obtaining open-loop plant models from closed-loop data). Moreover the objectives of system identification are not the same as a flight test and hence system identification error metrics are not directly relevant. In applications such as launch vehicles where the open loop plant is unstable it is similarity of the closed-loop system dynamics of a flight test that are relevant.

  10. Open-RAC: Open-Design, Recirculating and Auto-Cleaning Zebrafish Maintenance System.

    PubMed

    Nema, Shubham; Bhargava, Yogesh

    2017-08-01

    Zebrafish is a vertebrate animal model. Their maintenance in large number under laboratory conditions is a daunting task. Commercially available recirculating zebrafish maintenance systems are used to efficiently handle the tasks of automatic sediment cleaning from zebrafish tanks with minimal waste of water. Due to their compact nature, they also ensure the maximal use of available lab space. However, the high costs of commercial systems present a limitation to researchers with limited funds. A cost-effective zebrafish maintenance system with major features offered by commercially available systems is highly desirable. Here, we describe a compact and recirculating zebrafish maintenance system. Our system is composed of cost-effective components, which are available in local markets and/or can be procured via online vendors. Depending on the expertise of end users, the system can be assembled in 2 days. The system is completely customizable as it offers geometry independent zebrafish tanks that are capable of auto-cleaning the sediments. Due to these features, we called our setup as Open-RAC (Open-design, Recirculating and Auto-Cleaning zebrafish maintenance system). Open-RAC is a cost-effective and viable alternative to the currently available zebrafish maintenance systems. Thus, we believe that the use of Open-RAC could promote the zebrafish research by removing the cost barrier for researchers.

  11. A general theoretical framework for decoherence in open and closed systems

    NASA Astrophysics Data System (ADS)

    Castagnino, Mario; Fortin, Sebastian; Laura, Roberto; Lombardi, Olimpia

    2008-08-01

    A general theoretical framework for decoherence is proposed, which encompasses formalisms originally devised to deal just with open or closed systems. The conditions for decoherence are clearly stated and the relaxation and decoherence times are compared. Finally, the spin-bath model is developed in detail from the new perspective.

  12. The Open Systems University and Organizational Intelligence.

    ERIC Educational Resources Information Center

    Counelis, James Steve

    The open systems model of the university defines the function of institutional research to be a cybernetic one. The internal and external reality-testing function is a vital duty and a moral charge. Though policy makers and educational practitioners can carry on for a considerable length of time with organizational intelligence of low validity,…

  13. Phase Control in Nonlinear Systems

    NASA Astrophysics Data System (ADS)

    Zambrano, Samuel; Seoane, Jesús M.; Mariño, Inés P.; Sanjuán, Miguel A. F.; Meucci, Riccardo

    The following sections are included: * Introduction * Phase Control of Chaos * Description of the model * Numerical exploration of phase control of chaos * Experimental evidence of phase control of chaos * Phase Control of Intermittency in Dynamical Systems * Crisis-induced intermittency and its control * Experimental setup and implementation of the phase control scheme * Phase control of the laser in the pre-crisis regime * Phase control of the intermittency after the crisis * Phase control of the intermittency in the quadratic map * Phase Control of Escapes in Open Dynamical Systems * Control of open dynamical systems * Model description * Numerical simulations and heuristic arguments * Experimental implementation in an electronic circuit * Conclusions and Discussions * Acknowledgments * References

  14. Dynamic modeling and simulation of an integral bipropellant propulsion double-valve combined test system

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Wang, Huasheng; Xia, Jixia; Cai, Guobiao; Zhang, Zhenpeng

    2017-04-01

    For the pressure reducing regulator and check valve double-valve combined test system in an integral bipropellant propulsion system, a system model is established with modular models of various typical components. The simulation research is conducted on the whole working process of an experiment of 9 MPa working condition from startup to rated working condition and finally to shutdown. Comparison of simulation results with test data shows: five working conditions including standby, startup, rated pressurization, shutdown and halt and nine stages of the combined test system are comprehensively disclosed; valve-spool opening and closing details of the regulator and two check valves are accurately revealed; the simulation also clarifies two phenomena which test data are unable to clarify, one is the critical opening state in which the check valve spools slightly open and close alternately in their own fully closed positions, the other is the obvious effects of flow-field temperature drop and temperature rise in pipeline network with helium gas flowing. Moreover, simulation results with consideration of component wall heat transfer are closer to the test data than those under the adiabatic-wall condition, and more able to reveal the dynamic characteristics of the system in various working stages.

  15. Parameter estimation in linear models of the human operator in a closed loop with application of deterministic test signals

    NASA Technical Reports Server (NTRS)

    Vanlunteren, A.; Stassen, H. G.

    1973-01-01

    Parameter estimation techniques are discussed with emphasis on unbiased estimates in the presence of noise. A distinction between open and closed loop systems is made. A method is given based on the application of external forcing functions consisting of a sun of sinusoids; this method is thus based on the estimation of Fourier coefficients and is applicable for models with poles and zeros in open and closed loop systems.

  16. Air Force Research Initiation Program 1986 Technical Report Volume 1

    DTIC Science & Technology

    1988-04-01

    inaccuracy of meteoroligical measurements. For the convenience of this study, the first two oi these will be further grouped together as ’ modelO ...communication protocol is a set of rules governing the exchange of data between entities forming the network, and is the focus of this research. 1.2.1 The OSI ...This model, termed Open Systems Interconnection ( OSI ), presents standards for the exchange of information among systems that are "open" to one 25-5

  17. Open data models for smart health interconnected applications: the example of openEHR.

    PubMed

    Demski, Hans; Garde, Sebastian; Hildebrand, Claudia

    2016-10-22

    Smart Health is known as a concept that enhances networking, intelligent data processing and combining patient data with other parameters. Open data models can play an important role in creating a framework for providing interoperable data services that support the development of innovative Smart Health applications profiting from data fusion and sharing. This article describes a model-driven engineering approach based on standardized clinical information models and explores its application for the development of interoperable electronic health record systems. The following possible model-driven procedures were considered: provision of data schemes for data exchange, automated generation of artefacts for application development and native platforms that directly execute the models. The applicability of the approach in practice was examined using the openEHR framework as an example. A comprehensive infrastructure for model-driven engineering of electronic health records is presented using the example of the openEHR framework. It is shown that data schema definitions to be used in common practice software development processes can be derived from domain models. The capabilities for automatic creation of implementation artefacts (e.g., data entry forms) are demonstrated. Complementary programming libraries and frameworks that foster the use of open data models are introduced. Several compatible health data platforms are listed. They provide standard based interfaces for interconnecting with further applications. Open data models help build a framework for interoperable data services that support the development of innovative Smart Health applications. Related tools for model-driven application development foster semantic interoperability and interconnected innovative applications.

  18. Distributed geospatial model sharing based on open interoperability standards

    USGS Publications Warehouse

    Feng, Min; Liu, Shuguang; Euliss, Ned H.; Fang, Yin

    2009-01-01

    Numerous geospatial computational models have been developed based on sound principles and published in journals or presented in conferences. However modelers have made few advances in the development of computable modules that facilitate sharing during model development or utilization. Constraints hampering development of model sharing technology includes limitations on computing, storage, and connectivity; traditional stand-alone and closed network systems cannot fully support sharing and integrating geospatial models. To address this need, we have identified methods for sharing geospatial computational models using Service Oriented Architecture (SOA) techniques and open geospatial standards. The service-oriented model sharing service is accessible using any tools or systems compliant with open geospatial standards, making it possible to utilize vast scientific resources available from around the world to solve highly sophisticated application problems. The methods also allow model services to be empowered by diverse computational devices and technologies, such as portable devices and GRID computing infrastructures. Based on the generic and abstract operations and data structures required for Web Processing Service (WPS) standards, we developed an interactive interface for model sharing to help reduce interoperability problems for model use. Geospatial computational models are shared on model services, where the computational processes provided by models can be accessed through tools and systems compliant with WPS. We developed a platform to help modelers publish individual models in a simplified and efficient way. Finally, we illustrate our technique using wetland hydrological models we developed for the prairie pothole region of North America.

  19. Social determinants of health inequalities: towards a theoretical perspective using systems science.

    PubMed

    Jayasinghe, Saroj

    2015-08-25

    A systems approach offers a novel conceptualization to natural and social systems. In recent years, this has led to perceiving population health outcomes as an emergent property of a dynamic and open, complex adaptive system. The current paper explores these themes further and applies the principles of systems approach and complexity science (i.e. systems science) to conceptualize social determinants of health inequalities. The conceptualization can be done in two steps: viewing health inequalities from a systems approach and extending it to include complexity science. Systems approach views health inequalities as patterns within the larger rubric of other facets of the human condition, such as educational outcomes and economic development. This anlysis requires more sophisticated models such as systems dynamic models. An extension of the approach is to view systems as complex adaptive systems, i.e. systems that are 'open' and adapt to the environment. They consist of dynamic adapting subsystems that exhibit non-linear interactions, while being 'open' to a similarly dynamic environment of interconnected systems. They exhibit emergent properties that cannot be estimated with precision by using the known interactions among its components (such as economic development, political freedom, health system, culture etc.). Different combinations of the same bundle of factors or determinants give rise to similar patterns or outcomes (i.e. property of convergence), and minor variations in the initial condition could give rise to widely divergent outcomes. Novel approaches using computer simulation models (e.g. agent-based models) would shed light on possible mechanisms as to how factors or determinants interact and lead to emergent patterns of health inequalities of populations.

  20. Driven-dissipative quantum Monte Carlo method for open quantum systems

    NASA Astrophysics Data System (ADS)

    Nagy, Alexandra; Savona, Vincenzo

    2018-05-01

    We develop a real-time full configuration-interaction quantum Monte Carlo approach to model driven-dissipative open quantum systems with Markovian system-bath coupling. The method enables stochastic sampling of the Liouville-von Neumann time evolution of the density matrix thanks to a massively parallel algorithm, thus providing estimates of observables on the nonequilibrium steady state. We present the underlying theory and introduce an initiator technique and importance sampling to reduce the statistical error. Finally, we demonstrate the efficiency of our approach by applying it to the driven-dissipative two-dimensional X Y Z spin-1/2 model on a lattice.

  1. DEVELOP MULTI-STRESSOR, OPEN ARCHITECTURE MODELING FRAMEWORK FOR ECOLOGICAL EXPOSURE FROM SITE TO WATERSHED SCALE

    EPA Science Inventory

    A number of multimedia modeling frameworks are currently being developed. The Multimedia Integrated Modeling System (MIMS) is one of these frameworks. A framework should be seen as more of a multimedia modeling infrastructure than a single software system. This infrastructure do...

  2. A feasibility study on porting the community land model onto accelerators using OpenACC

    DOE PAGES

    Wang, Dali; Wu, Wei; Winkler, Frank; ...

    2014-01-01

    As environmental models (such as Accelerated Climate Model for Energy (ACME), Parallel Reactive Flow and Transport Model (PFLOTRAN), Arctic Terrestrial Simulator (ATS), etc.) became more and more complicated, we are facing enormous challenges regarding to porting those applications onto hybrid computing architecture. OpenACC appears as a very promising technology, therefore, we have conducted a feasibility analysis on porting the Community Land Model (CLM), a terrestrial ecosystem model within the Community Earth System Models (CESM)). Specifically, we used automatic function testing platform to extract a small computing kernel out of CLM, then we apply this kernel into the actually CLM dataflowmore » procedure, and investigate the strategy of data parallelization and the benefit of data movement provided by current implementation of OpenACC. Even it is a non-intensive kernel, on a single 16-core computing node, the performance (based on the actual computation time using one GPU) of OpenACC implementation is 2.3 time faster than that of OpenMP implementation using single OpenMP thread, but it is 2.8 times slower than the performance of OpenMP implementation using 16 threads. On multiple nodes, MPI_OpenACC implementation demonstrated very good scalability on up to 128 GPUs on 128 computing nodes. This study also provides useful information for us to look into the potential benefits of “deep copy” capability and “routine” feature of OpenACC standards. In conclusion, we believe that our experience on the environmental model, CLM, can be beneficial to many other scientific research programs who are interested to porting their large scale scientific code using OpenACC onto high-end computers, empowered by hybrid computing architecture.« less

  3. Thermal modeling of a secondary concentrator integrated with an open direct-absorption molten-salt volumetric receiver in a beam-down tower system

    NASA Astrophysics Data System (ADS)

    Lahlou, Radia; Armstrong, Peter; Grange, Benjamin; Almheiri, Saif; Calvet, Nicolas; Slocum, Alexander; Shamim, Tariq

    2016-05-01

    An upward-facing three-dimensional secondary concentrator, herein termed Final Optical Element (FOE), is designed to be used in a beam-down tower in combination with an open volumetric direct-absorption molten-salt receiver tank acting simultaneously as a thermal energy storage system. It allows reducing thermal losses from the open receiver by decreasing its aperture area while keeping minimal spillage losses. The FOE is exposed to high solar fluxes, a part of which is absorbed by its reflector material, leading to material degradation by overheating. Consequently, the FOE may require active cooling. A thermal model of the FOE under passive cooling mechanism is proposed as a first step to evaluate its sensitivity to some design parameters. Then, it will be used to evaluate the requirements for the active cooling system. The model provides insights on the FOE thermal behavior and highlights the effectiveness of a design modification on passive cooling enhancement. First prototype tests under reduced flux and with no active cooling will be used for model adjustment.

  4. Iterative LQG Controller Design Through Closed-Loop Identification

    NASA Technical Reports Server (NTRS)

    Hsiao, Min-Hung; Huang, Jen-Kuang; Cox, David E.

    1996-01-01

    This paper presents an iterative Linear Quadratic Gaussian (LQG) controller design approach for a linear stochastic system with an uncertain open-loop model and unknown noise statistics. This approach consists of closed-loop identification and controller redesign cycles. In each cycle, the closed-loop identification method is used to identify an open-loop model and a steady-state Kalman filter gain from closed-loop input/output test data obtained by using a feedback LQG controller designed from the previous cycle. Then the identified open-loop model is used to redesign the state feedback. The state feedback and the identified Kalman filter gain are used to form an updated LQC controller for the next cycle. This iterative process continues until the updated controller converges. The proposed controller design is demonstrated by numerical simulations and experiments on a highly unstable large-gap magnetic suspension system.

  5. Quantum state engineering in hybrid open quantum systems

    NASA Astrophysics Data System (ADS)

    Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.

    2016-04-01

    We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.

  6. Construction of multi-functional open modulized Matlab simulation toolbox for imaging ladar system

    NASA Astrophysics Data System (ADS)

    Wu, Long; Zhao, Yuan; Tang, Meng; He, Jiang; Zhang, Yong

    2011-06-01

    Ladar system simulation is to simulate the ladar models using computer simulation technology in order to predict the performance of the ladar system. This paper presents the developments of laser imaging radar simulation for domestic and overseas studies and the studies of computer simulation on ladar system with different application requests. The LadarSim and FOI-LadarSIM simulation facilities of Utah State University and Swedish Defence Research Agency are introduced in details. This paper presents the low level of simulation scale, un-unified design and applications of domestic researches in imaging ladar system simulation, which are mostly to achieve simple function simulation based on ranging equations for ladar systems. Design of laser imaging radar simulation with open and modularized structure is proposed to design unified modules for ladar system, laser emitter, atmosphere models, target models, signal receiver, parameters setting and system controller. Unified Matlab toolbox and standard control modules have been built with regulated input and output of the functions, and the communication protocols between hardware modules. A simulation based on ICCD gain-modulated imaging ladar system for a space shuttle is made based on the toolbox. The simulation result shows that the models and parameter settings of the Matlab toolbox are able to simulate the actual detection process precisely. The unified control module and pre-defined parameter settings simplify the simulation of imaging ladar detection. Its open structures enable the toolbox to be modified for specialized requests. The modulization gives simulations flexibility.

  7. Nonlinear quantum Langevin equations for bosonic modes in solid-state systems

    NASA Astrophysics Data System (ADS)

    Manninen, Juuso; Agasti, Souvik; Massel, Francesco

    2017-12-01

    Based on the experimental evidence that impurities contribute to the dissipation properties of solid-state open quantum systems, we provide here a description in terms of nonlinear quantum Langevin equations of the role played by two-level systems in the dynamics of a bosonic degree of freedom. Our starting point is represented by the description of the system-environment coupling in terms of coupling to two separate reservoirs, modeling the interaction with external bosonic modes and two-level systems, respectively. Furthermore, we show how this model represents a specific example of a class of open quantum systems that can be described by nonlinear quantum Langevin equations. Our analysis offers a potential explanation of the parametric effects recently observed in circuit-QED cavity optomechanics experiments.

  8. Organizing Community-Based Data Standards: Lessons from Developing a Successful Open Standard in Systems Biology

    NASA Astrophysics Data System (ADS)

    Hucka, M.

    2015-09-01

    In common with many fields, including astronomy, a vast number of software tools for computational modeling and simulation are available today in systems biology. This wealth of resources is a boon to researchers, but it also presents interoperability problems. Despite working with different software tools, researchers want to disseminate their work widely as well as reuse and extend the models of other researchers. This situation led in the year 2000 to an effort to create a tool-independent, machine-readable file format for representing models: SBML, the Systems Biology Markup Language. SBML has since become the de facto standard for its purpose. Its success and general approach has inspired and influenced other community-oriented standardization efforts in systems biology. Open standards are essential for the progress of science in all fields, but it is often difficult for academic researchers to organize successful community-based standards. I draw on personal experiences from the development of SBML and summarize some of the lessons learned, in the hope that this may be useful to other groups seeking to develop open standards in a community-oriented fashion.

  9. Integrated Teacher Education Programme for Open Distance Learning: A Model for Development and Implementation

    ERIC Educational Resources Information Center

    Bose, Sutapa

    2013-01-01

    Teacher education in India, including that offered by the open distance learning (ODL) system to thousands every year, imparts mainly pedagogic knowledge, although the need for integrated teacher education programmes has been underscored. As the Indira Gandhi National Open University (IGNOU), an ODL institution, will develop an integrated Bachelor…

  10. Evaluation of software maintain ability with open EHR - a comparison of architectures.

    PubMed

    Atalag, Koray; Yang, Hong Yul; Tempero, Ewan; Warren, James R

    2014-11-01

    To assess whether it is easier to maintain a clinical information system developed using open EHR model driven development versus mainstream methods. A new open source application (GastrOS) has been developed following open EHR's multi-level modelling approach using .Net/C# based on the same requirements of an existing clinically used application developed using Microsoft Visual Basic and Access database. Almost all the domain knowledge was embedded into the software code and data model in the latter. The same domain knowledge has been expressed as a set of open EHR Archetypes in GastrOS. We then introduced eight real-world change requests that had accumulated during live clinical usage, and implemented these in both systems while measuring time for various development tasks and change in software size for each change request. Overall it took half the time to implement changes in GastrOS. However it was the more difficult application to modify for one change request, suggesting the nature of change is also important. It was not possible to implement changes by modelling only. Comparison of relative measures of time and software size change within each application highlights how architectural differences affected maintain ability across change requests. The use of open EHR model driven development can result in better software maintain ability. The degree to which open EHR affects software maintain ability depends on the extent and nature of domain knowledge involved in changes. Although we used relative measures for time and software size, confounding factors could not be totally excluded as a controlled study design was not feasible. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems.

    PubMed

    Stone, John E; Gohara, David; Shi, Guochun

    2010-05-01

    We provide an overview of the key architectural features of recent microprocessor designs and describe the programming model and abstractions provided by OpenCL, a new parallel programming standard targeting these architectures.

  12. Archetype Model-Driven Development Framework for EHR Web System

    PubMed Central

    Kimura, Eizen; Ishihara, Ken

    2013-01-01

    Objectives This article describes the Web application framework for Electronic Health Records (EHRs) we have developed to reduce construction costs for EHR sytems. Methods The openEHR project has developed clinical model driven architecture for future-proof interoperable EHR systems. This project provides the specifications to standardize clinical domain model implementations, upon which the ISO/CEN 13606 standards are based. The reference implementation has been formally described in Eiffel. Moreover C# and Java implementations have been developed as reference. While scripting languages had been more popular because of their higher efficiency and faster development in recent years, they had not been involved in the openEHR implementations. From 2007, we have used the Ruby language and Ruby on Rails (RoR) as an agile development platform to implement EHR systems, which is in conformity with the openEHR specifications. Results We implemented almost all of the specifications, the Archetype Definition Language parser, and RoR scaffold generator from archetype. Although some problems have emerged, most of them have been resolved. Conclusions We have provided an agile EHR Web framework, which can build up Web systems from archetype models using RoR. The feasibility of the archetype model to provide semantic interoperability of EHRs has been demonstrated and we have verified that that it is suitable for the construction of EHR systems. PMID:24523991

  13. Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    2015-10-01

    We discuss foundational issues of quantum information biology (QIB)—one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from "traditional quantum biophysics". The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D' Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalism— quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.

  14. Robustness study of the pseudo open-loop controller for multiconjugate adaptive optics.

    PubMed

    Piatrou, Piotr; Gilles, Luc

    2005-02-20

    Robustness of the recently proposed "pseudo open-loop control" algorithm against various system errors has been investigated for the representative example of the Gemini-South 8-m telescope multiconjugate adaptive-optics system. The existing model to represent the adaptive-optics system with pseudo open-loop control has been modified to account for misalignments, noise and calibration errors in deformable mirrors, and wave-front sensors. Comparison with the conventional least-squares control model has been done. We show with the aid of both transfer-function pole-placement analysis and Monte Carlo simulations that POLC remains remarkably stable and robust against very large levels of system errors and outperforms in this respect least-squares control. Approximate stability margins as well as performance metrics such as Strehl ratios and rms wave-front residuals averaged over a 1-arc min field of view have been computed for different types and levels of system errors to quantify the expected performance degradation.

  15. GIS-MODFLOW: Ein kleines OpenSource-Werkzeug zur Anbindung von GIS-Daten an MODFLOW

    NASA Astrophysics Data System (ADS)

    Gossel, Wolfgang

    2013-06-01

    The numerical model MODFLOW (Harbaugh 2005) is an efficient and up-to-date tool for groundwater flow modelling. On the other hand, Geo-Information-Systems (GIS) provide useful tools for data preparation and visualization that can also be incorporated in numerical groundwater modelling. An interface between both would therefore be useful for many hydrogeological investigations. To date, several integrated stand-alone tools have been developed that rely on MODFLOW, MODPATH and transport modelling tools. Simultaneously, several open source-GIS codes were developed to improve functionality and ease of use. These GIS tools can be used as pre- and post-processors of the numerical model MODFLOW via a suitable interface. Here we present GIS-MODFLOW as an open-source tool that provides a new universal interface by using the ESRI ASCII GRID data format that can be converted into MODFLOW input data. This tool can also treat MODFLOW results. Such a combination of MODFLOW and open-source GIS opens new possibilities to render groundwater flow modelling, and simulation results, available to larger circles of hydrogeologists.

  16. Model-free inference of direct network interactions from nonlinear collective dynamics.

    PubMed

    Casadiego, Jose; Nitzan, Mor; Hallerberg, Sarah; Timme, Marc

    2017-12-19

    The topology of interactions in network dynamical systems fundamentally underlies their function. Accelerating technological progress creates massively available data about collective nonlinear dynamics in physical, biological, and technological systems. Detecting direct interaction patterns from those dynamics still constitutes a major open problem. In particular, current nonlinear dynamics approaches mostly require to know a priori a model of the (often high dimensional) system dynamics. Here we develop a model-independent framework for inferring direct interactions solely from recording the nonlinear collective dynamics generated. Introducing an explicit dependency matrix in combination with a block-orthogonal regression algorithm, the approach works reliably across many dynamical regimes, including transient dynamics toward steady states, periodic and non-periodic dynamics, and chaos. Together with its capabilities to reveal network (two point) as well as hypernetwork (e.g., three point) interactions, this framework may thus open up nonlinear dynamics options of inferring direct interaction patterns across systems where no model is known.

  17. The eGo grid model: An open-source and open-data based synthetic medium-voltage grid model for distribution power supply systems

    NASA Astrophysics Data System (ADS)

    Amme, J.; Pleßmann, G.; Bühler, J.; Hülk, L.; Kötter, E.; Schwaegerl, P.

    2018-02-01

    The increasing integration of renewable energy into the electricity supply system creates new challenges for distribution grids. The planning and operation of distribution systems requires appropriate grid models that consider the heterogeneity of existing grids. In this paper, we describe a novel method to generate synthetic medium-voltage (MV) grids, which we applied in our DIstribution Network GeneratOr (DINGO). DINGO is open-source software and uses freely available data. Medium-voltage grid topologies are synthesized based on location and electricity demand in defined demand areas. For this purpose, we use GIS data containing demand areas with high-resolution spatial data on physical properties, land use, energy, and demography. The grid topology is treated as a capacitated vehicle routing problem (CVRP) combined with a local search metaheuristics. We also consider the current planning principles for MV distribution networks, paying special attention to line congestion and voltage limit violations. In the modelling process, we included power flow calculations for validation. The resulting grid model datasets contain 3608 synthetic MV grids in high resolution, covering all of Germany and taking local characteristics into account. We compared the modelled networks with real network data. In terms of number of transformers and total cable length, we conclude that the method presented in this paper generates realistic grids that could be used to implement a cost-optimised electrical energy system.

  18. Colloquium: Non-Markovian dynamics in open quantum systems

    NASA Astrophysics Data System (ADS)

    Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano

    2016-04-01

    The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of non-Markovian quantum dynamics are also briefly discussed.

  19. Open Innovation and the Erosion of the Traditional Information Systems Project's Boundaries

    NASA Astrophysics Data System (ADS)

    Elbanna, Amany

    This paper examines the notion of open innovation and its implication on information systems management. It investigates a project of an enterprise resource planning system implementation in an international organization to unravel the resemblance with the open innovation model. The study shows that the conceptualization of ERP project as an open innovation could reveal the complex architecture of today's organization from which the ERP project cannot be isolated. It argues that the traditional boundaries around IS projects are dissolving and the relationship between what used to be outside and what used to be inside the project is increasingly blurred. The study calls for a different perspective of project management that goes beyond single and multiple project management to scan the open space of innovation and actively look for partners, competitors, and collaborators.

  20. Human systems dynamics: Toward a computational model

    NASA Astrophysics Data System (ADS)

    Eoyang, Glenda H.

    2012-09-01

    A robust and reliable computational model of complex human systems dynamics could support advancements in theory and practice for social systems at all levels, from intrapersonal experience to global politics and economics. Models of human interactions have evolved from traditional, Newtonian systems assumptions, which served a variety of practical and theoretical needs of the past. Another class of models has been inspired and informed by models and methods from nonlinear dynamics, chaos, and complexity science. None of the existing models, however, is able to represent the open, high dimension, and nonlinear self-organizing dynamics of social systems. An effective model will represent interactions at multiple levels to generate emergent patterns of social and political life of individuals and groups. Existing models and modeling methods are considered and assessed against characteristic pattern-forming processes in observed and experienced phenomena of human systems. A conceptual model, CDE Model, based on the conditions for self-organizing in human systems, is explored as an alternative to existing models and methods. While the new model overcomes the limitations of previous models, it also provides an explanatory base and foundation for prospective analysis to inform real-time meaning making and action taking in response to complex conditions in the real world. An invitation is extended to readers to engage in developing a computational model that incorporates the assumptions, meta-variables, and relationships of this open, high dimension, and nonlinear conceptual model of the complex dynamics of human systems.

  1. The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle-climate simulations

    NASA Astrophysics Data System (ADS)

    Strassmann, Kuno M.; Joos, Fortunat

    2018-05-01

    The Bern Simple Climate Model (BernSCM) is a free open-source re-implementation of a reduced-form carbon cycle-climate model which has been used widely in previous scientific work and IPCC assessments. BernSCM represents the carbon cycle and climate system with a small set of equations for the heat and carbon budget, the parametrization of major nonlinearities, and the substitution of complex component systems with impulse response functions (IRFs). The IRF approach allows cost-efficient yet accurate substitution of detailed parent models of climate system components with near-linear behavior. Illustrative simulations of scenarios from previous multimodel studies show that BernSCM is broadly representative of the range of the climate-carbon cycle response simulated by more complex and detailed models. Model code (in Fortran) was written from scratch with transparency and extensibility in mind, and is provided open source. BernSCM makes scientifically sound carbon cycle-climate modeling available for many applications. Supporting up to decadal time steps with high accuracy, it is suitable for studies with high computational load and for coupling with integrated assessment models (IAMs), for example. Further applications include climate risk assessment in a business, public, or educational context and the estimation of CO2 and climate benefits of emission mitigation options.

  2. Analysis, testing, and evaluation of faulted and unfaulted Wye, Delta, and open Delta connected electromechanical actuators

    NASA Technical Reports Server (NTRS)

    Nehl, T. W.; Demerdash, N. A.

    1983-01-01

    Mathematical models capable of simulating the transient, steady state, and faulted performance characteristics of various brushless dc machine-PSA (power switching assembly) configurations were developed. These systems are intended for possible future use as primemovers in EMAs (electromechanical actuators) for flight control applications. These machine-PSA configurations include wye, delta, and open-delta connected systems. The research performed under this contract was initially broken down into the following six tasks: development of mathematical models for various machine-PSA configurations; experimental validation of the model for failure modes; experimental validation of the mathematical model for shorted turn-failure modes; tradeoff study; and documentation of results and methodology.

  3. OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems

    PubMed Central

    Stone, John E.; Gohara, David; Shi, Guochun

    2010-01-01

    We provide an overview of the key architectural features of recent microprocessor designs and describe the programming model and abstractions provided by OpenCL, a new parallel programming standard targeting these architectures. PMID:21037981

  4. Beta Testing of CFD Code for the Analysis of Combustion Systems

    NASA Technical Reports Server (NTRS)

    Yee, Emma; Wey, Thomas

    2015-01-01

    A preliminary version of OpenNCC was tested to assess its accuracy in generating steady-state temperature fields for combustion systems at atmospheric conditions using three-dimensional tetrahedral meshes. Meshes were generated from a CAD model of a single-element lean-direct injection combustor, and the latest version of OpenNCC was used to calculate combustor temperature fields. OpenNCC was shown to be capable of generating sustainable reacting flames using a tetrahedral mesh, and the subsequent results were compared to experimental results. While nonreacting flow results closely matched experimental results, a significant discrepancy was present between the code's reacting flow results and experimental results. When wide air circulation regions with high velocities were present in the model, this appeared to create inaccurately high temperature fields. Conversely, low recirculation velocities caused low temperature profiles. These observations will aid in future modification of OpenNCC reacting flow input parameters to improve the accuracy of calculated temperature fields.

  5. A thought construction of working perpetuum mobile of the second kind

    NASA Astrophysics Data System (ADS)

    Čápek, V.; Bok, J.

    1999-12-01

    The previously published model of the isothermal Maxwell demon as one of models of open quantum systems endowed with the faculty of selforganization is reconstructed here. It describes an open quantum system interacting with a single thermodynamic bath but otherwise not aided from outside. Its activity is given by the standard linear Liouville equation for the system and bath. Owing to its selforganization property, the model then yields cyclic conversion of heat from the bath into mechanical work without compensation. Hence, it provides an explicit thought construction of perpetuum mobile of the second kind, contradicting thus the Thomson formulation of the second law of thermodynamics. No approximation is involved as a special scaling procedure is used which makes the employed kinetic equations exact.

  6. Transformation of standardized clinical models based on OWL technologies: from CEM to OpenEHR archetypes

    PubMed Central

    Legaz-García, María del Carmen; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás; Chute, Christopher G; Tao, Cui

    2015-01-01

    Introduction The semantic interoperability of electronic healthcare records (EHRs) systems is a major challenge in the medical informatics area. International initiatives pursue the use of semantically interoperable clinical models, and ontologies have frequently been used in semantic interoperability efforts. The objective of this paper is to propose a generic, ontology-based, flexible approach for supporting the automatic transformation of clinical models, which is illustrated for the transformation of Clinical Element Models (CEMs) into openEHR archetypes. Methods Our transformation method exploits the fact that the information models of the most relevant EHR specifications are available in the Web Ontology Language (OWL). The transformation approach is based on defining mappings between those ontological structures. We propose a way in which CEM entities can be transformed into openEHR by using transformation templates and OWL as common representation formalism. The transformation architecture exploits the reasoning and inferencing capabilities of OWL technologies. Results We have devised a generic, flexible approach for the transformation of clinical models, implemented for the unidirectional transformation from CEM to openEHR, a series of reusable transformation templates, a proof-of-concept implementation, and a set of openEHR archetypes that validate the methodological approach. Conclusions We have been able to transform CEM into archetypes in an automatic, flexible, reusable transformation approach that could be extended to other clinical model specifications. We exploit the potential of OWL technologies for supporting the transformation process. We believe that our approach could be useful for international efforts in the area of semantic interoperability of EHR systems. PMID:25670753

  7. Prototyping an online wetland ecosystem services model using open model sharing standards

    USGS Publications Warehouse

    Feng, M.; Liu, S.; Euliss, N.H.; Young, Caitlin; Mushet, D.M.

    2011-01-01

    Great interest currently exists for developing ecosystem models to forecast how ecosystem services may change under alternative land use and climate futures. Ecosystem services are diverse and include supporting services or functions (e.g., primary production, nutrient cycling), provisioning services (e.g., wildlife, groundwater), regulating services (e.g., water purification, floodwater retention), and even cultural services (e.g., ecotourism, cultural heritage). Hence, the knowledge base necessary to quantify ecosystem services is broad and derived from many diverse scientific disciplines. Building the required interdisciplinary models is especially challenging as modelers from different locations and times may develop the disciplinary models needed for ecosystem simulations, and these models must be identified and made accessible to the interdisciplinary simulation. Additional difficulties include inconsistent data structures, formats, and metadata required by geospatial models as well as limitations on computing, storage, and connectivity. Traditional standalone and closed network systems cannot fully support sharing and integrating interdisciplinary geospatial models from variant sources. To address this need, we developed an approach to openly share and access geospatial computational models using distributed Geographic Information System (GIS) techniques and open geospatial standards. We included a means to share computational models compliant with Open Geospatial Consortium (OGC) Web Processing Services (WPS) standard to ensure modelers have an efficient and simplified means to publish new models. To demonstrate our approach, we developed five disciplinary models that can be integrated and shared to simulate a few of the ecosystem services (e.g., water storage, waterfowl breeding) that are provided by wetlands in the Prairie Pothole Region (PPR) of North America.

  8. Systemic Modelling for Relating Labour Market to Vocational Education

    ERIC Educational Resources Information Center

    Papakitsos, Evangelos C.

    2016-01-01

    The present study introduces a systemic model that demonstrates a description of the relationship between the labour-market and vocational education from the perspective of systemic theory. Based on the application of the relevant methodology, the two open social systems are identified and analyzed. Their key-features are presented and the points…

  9. Supporting Students in Open and Distance Learning. Open and Distance Learning Series.

    ERIC Educational Resources Information Center

    Simpson, Ormond

    This book, which is intended for individuals involved in recruiting and teaching students in open and distance learning (ODL) situations, examines academic and nonacademic student support issues in ODL. The following are among the topics discussed in the book's 14 chapters: (1) models and definitions of ODL systems; (2) rationale for student…

  10. An open ecosystem engagement strategy through the lens of global food safety

    PubMed Central

    Stacey, Paul; Fons, Garin; Bernardo, Theresa M

    2015-01-01

    The Global Food Safety Partnership (GFSP) is a public/private partnership established through the World Bank to improve food safety systems through a globally coordinated and locally-driven approach. This concept paper aims to establish a framework to help GFSP fully leverage the potential of open models. In preparing this paper the authors spoke to many different GFSP stakeholders who asked questions about open models such as: what is it?what’s in it for me?why use an open rather than a proprietary model?how will open models generate equivalent or greater sustainable revenue streams compared to the current “traditional” approaches?  This last question came up many times with assertions that traditional service providers need to see opportunity for equivalent or greater revenue dollars before they will buy-in. This paper identifies open value propositions for GFSP stakeholders and proposes a framework for creating and structuring that value. Open Educational Resources (OER) were the primary open practice GFSP partners spoke to us about, as they provide a logical entry point for collaboration. Going forward, funders should consider requiring that educational resources and concomitant data resulting from their sponsorship should be open, as a public good. There are, however, many other forms of open practice that bring value to the GFSP. Nine different open strategies and tactics (Appendix A) are described, including: open content (including OER and open courseware), open data, open access (research), open government, open source software, open standards, open policy, open licensing and open hardware. It is recommended that all stakeholders proactively pursue "openness" as an operating principle. This paper presents an overall GFSP Open Ecosystem Engagement Strategy within which specific local case examples can be situated. Two different case examples, China and Colombia, are presented to show both project-based and crowd-sourced, direct-to-public paths through this ecosystem. PMID:26213614

  11. Reaping the benefits of an open systems approach: getting the commercial approach right

    NASA Astrophysics Data System (ADS)

    Pearson, Gavin; Dawe, Tony; Stubbs, Peter; Worthington, Olwen

    2016-05-01

    Critical to reaping the benefits of an Open System Approach within Defence, or any other sector, is the ability to design the appropriate commercial model (or framework). This paper reports on the development and testing of a commercial strategy decision support tool. The tool set comprises a number of elements, including a process model, and provides business intelligence insights into likely supplier behaviour. The tool has been developed by subject matter experts and has been tested with a number of UK Defence procurement teams. The paper will present the commercial model framework, the elements of the toolset and the results of testing.

  12. Developing Mathematical Provisions for Assessment of Liquid Hydrocarbon Emissions in Emergency Situations

    NASA Astrophysics Data System (ADS)

    Zemenkova, M. Yu; Zemenkov, Yu D.; Shantarin, V. D.

    2016-10-01

    The paper reviews the development of methodology for calculation of hydrocarbon emissions during seepage and evaporation to monitor the reliability and safety of hydrocarbon storage and transportation. The authors have analyzed existing methods, models and techniques for assessing the amount of evaporated oil. Models used for predicting the material balance of multicomponent two-phase systems have been discussed. The results of modeling the open-air hydrocarbon evaporation from an oil spill are provided and exemplified by an emergency pit. Dependences and systems of differential equations have been obtained to assess parameters of mass transfer from the open surface of a liquid multicomponent mixture.

  13. Convergence of high order perturbative expansions in open system quantum dynamics.

    PubMed

    Xu, Meng; Song, Linze; Song, Kai; Shi, Qiang

    2017-02-14

    We propose a new method to directly calculate high order perturbative expansion terms in open system quantum dynamics. They are first written explicitly in path integral expressions. A set of differential equations are then derived by extending the hierarchical equation of motion (HEOM) approach. As two typical examples for the bosonic and fermionic baths, specific forms of the extended HEOM are obtained for the spin-boson model and the Anderson impurity model. Numerical results are then presented for these two models. General trends of the high order perturbation terms as well as the necessary orders for the perturbative expansions to converge are analyzed.

  14. 12 CFR Appendix G to Part 226 - Open-End Model Forms and Clauses

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... RESERVE SYSTEM TRUTH IN LENDING (REGULATION Z) Pt. 226, App. G Appendix G to Part 226—Open-End Model Forms... charges]. We do not add in any new [purchases/advances/loans]. This gives us the daily balance. Then, we... “average daily balance” we take the beginning balance of your account each day, add any new [purchases...

  15. DasPy – Open Source Multivariate Land Data Assimilation Framework with High Performance Computing

    NASA Astrophysics Data System (ADS)

    Han, Xujun; Li, Xin; Montzka, Carsten; Kollet, Stefan; Vereecken, Harry; Hendricks Franssen, Harrie-Jan

    2015-04-01

    Data assimilation has become a popular method to integrate observations from multiple sources with land surface models to improve predictions of the water and energy cycles of the soil-vegetation-atmosphere continuum. In recent years, several land data assimilation systems have been developed in different research agencies. Because of the software availability or adaptability, these systems are not easy to apply for the purpose of multivariate land data assimilation research. Multivariate data assimilation refers to the simultaneous assimilation of observation data for multiple model state variables into a simulation model. Our main motivation was to develop an open source multivariate land data assimilation framework (DasPy) which is implemented using the Python script language mixed with C++ and Fortran language. This system has been evaluated in several soil moisture, L-band brightness temperature and land surface temperature assimilation studies. The implementation allows also parameter estimation (soil properties and/or leaf area index) on the basis of the joint state and parameter estimation approach. LETKF (Local Ensemble Transform Kalman Filter) is implemented as the main data assimilation algorithm, and uncertainties in the data assimilation can be represented by perturbed atmospheric forcings, perturbed soil and vegetation properties and model initial conditions. The CLM4.5 (Community Land Model) was integrated as the model operator. The CMEM (Community Microwave Emission Modelling Platform), COSMIC (COsmic-ray Soil Moisture Interaction Code) and the two source formulation were integrated as observation operators for assimilation of L-band passive microwave, cosmic-ray soil moisture probe and land surface temperature measurements, respectively. DasPy is parallelized using the hybrid MPI (Message Passing Interface) and OpenMP (Open Multi-Processing) techniques. All the input and output data flow is organized efficiently using the commonly used NetCDF file format. Online 1D and 2D visualization of data assimilation results is also implemented to facilitate the post simulation analysis. In summary, DasPy is a ready to use open source parallel multivariate land data assimilation framework.

  16. PV_LIB Toolbox v. 1.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-12-09

    PV_LIB comprises a library of Matlab? code for modeling photovoltaic (PV) systems. Included are functions to compute solar position and to estimate irradiance in the PV system's plane of array, cell temperature, PV module electrical output, and conversion from DC to AC power. Also included are functions that aid in determining parameters for module performance models from module characterization testing. PV_LIB is open source code primarily intended for research and academic purposes. All algorithms are documented in openly available literature with the appropriate references included in comments within the code.

  17. An open-access microfluidic model for lung-specific functional studies at an air-liquid interface.

    PubMed

    Nalayanda, Divya D; Puleo, Christopher; Fulton, William B; Sharpe, Leilani M; Wang, Tza-Huei; Abdullah, Fizan

    2009-10-01

    In an effort to improve the physiologic relevance of existing in vitro models for alveolar cells, we present a microfluidic platform which provides an air-interface in a dynamic system combining microfluidic and suspended membrane culture systems. Such a system provides the ability to manipulate multiple parameters on a single platform along with ease in cell seeding and manipulation. The current study presents a comparison of the efficacy of the hybrid system with conventional platforms using assays analyzing the maintenance of function and integrity of A549 alveolar epithelial cell monolayer cultures. The hybrid system incorporates bio-mimetic nourishment on the basal side of the epithelial cells along with an open system on the apical side of the cells exposed to air allowing for easy access for assays.

  18. The SRFR 5 modeling system for surface irrigation

    USDA-ARS?s Scientific Manuscript database

    The SRFR program is a modeling system for surface irrigation. It is a central component of WinSRFR, a software package for the hydraulic analysis of surface irrigation systems. SRFR solves simplified versions of the equations of unsteady open channel flow coupled to a user selected infiltration mod...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben, Haoxi; Jarvis, Mark W.; Nimlos, Mark R.

    In this study, a pyroprobe-deuterium (2H) NMR system has been used to identify isotopomer products formed during the deuteration and ring opening of lignin model compounds. Several common model compounds for lignin and its upgraded products, including guaiacol, syringol, toluene, p-xylene, phenol, catechol, cyclohexane, methylcyclohexane, and methylcyclopentane, have been examined for selective ring opening. Similar pathways for upgrading of toluene and p-xylene has been found, which will undergo hydrogenation, methyl group elimination, and ring opening process, and benzene, cyclohexane, and methylcyclohexane have been found as major intermediates before ring opening. Very interestingly, the 2H NMR analysis for the deuterium-traced ringmore » opening of catechol on Ir/..gamma..-Al2O3 is almost identical to the ring opening process for phenol. The ring opening processes for guaiacol and syringol appeared to be very complicated, as expected. Benzene, phenol, toluene, cyclohexane, and methylcyclohexane have been determined to be the major products.« less

  20. Chemical effects in biological systems (CEBS) object model for toxicology data, SysTox-OM: design and application.

    PubMed

    Xirasagar, Sandhya; Gustafson, Scott F; Huang, Cheng-Cheng; Pan, Qinyan; Fostel, Jennifer; Boyer, Paul; Merrick, B Alex; Tomer, Kenneth B; Chan, Denny D; Yost, Kenneth J; Choi, Danielle; Xiao, Nianqing; Stasiewicz, Stanley; Bushel, Pierre; Waters, Michael D

    2006-04-01

    The CEBS data repository is being developed to promote a systems biology approach to understand the biological effects of environmental stressors. CEBS will house data from multiple gene expression platforms (transcriptomics), protein expression and protein-protein interaction (proteomics), and changes in low molecular weight metabolite levels (metabolomics) aligned by their detailed toxicological context. The system will accommodate extensive complex querying in a user-friendly manner. CEBS will store toxicological contexts including the study design details, treatment protocols, animal characteristics and conventional toxicological endpoints such as histopathology findings and clinical chemistry measures. All of these data types can be integrated in a seamless fashion to enable data query and analysis in a biologically meaningful manner. An object model, the SysBio-OM (Xirasagar et al., 2004) has been designed to facilitate the integration of microarray gene expression, proteomics and metabolomics data in the CEBS database system. We now report SysTox-OM as an open source systems toxicology model designed to integrate toxicological context into gene expression experiments. The SysTox-OM model is comprehensive and leverages other open source efforts, namely, the Standard for Exchange of Nonclinical Data (http://www.cdisc.org/models/send/v2/index.html) which is a data standard for capturing toxicological information for animal studies and Clinical Data Interchange Standards Consortium (http://www.cdisc.org/models/sdtm/index.html) that serves as a standard for the exchange of clinical data. Such standardization increases the accuracy of data mining, interpretation and exchange. The open source SysTox-OM model, which can be implemented on various software platforms, is presented here. A universal modeling language (UML) depiction of the entire SysTox-OM is available at http://cebs.niehs.nih.gov and the Rational Rose object model package is distributed under an open source license that permits unrestricted academic and commercial use and is available at http://cebs.niehs.nih.gov/cebsdownloads. Currently, the public toxicological data in CEBS can be queried via a web application based on the SysTox-OM at http://cebs.niehs.nih.gov xirasagars@saic.com Supplementary data are available at Bioinformatics online.

  1. Drivers of Learning Management System Use in a South African Open and Distance Learning Institution

    ERIC Educational Resources Information Center

    Venter, Peet; van Rensburg, Mari Jansen; Davis, Annemarie

    2012-01-01

    The study on which this article reports examined the determinants of usage of an online learning management system (LMS) by fourth level business students at a South African open and distance learning university using an extension of the widely used technology acceptance model (TAM) as a theoretical basis. A survey was conducted among students at…

  2. Bandwidth Management in Resource Constrained Networks

    DTIC Science & Technology

    2012-03-01

    Postgraduate School OSI Open Systems Interconnection QoS Quality of Service TCP Transmission Control Protocol/Internet Protocol TCP/IP Transmission...filtering. B. NORMAL TCP/IP COMMUNICATIONS The Internet is a “complex network WAN that connects LANs and clients around the globe” (Dean, 2009...of the Open Systems Interconnection ( OSI ) model allowing them to route traffic based on MAC address (Kurose & Ross, 2009). While switching

  3. WHAT IS A MOMENT ARM? CALCULATING MUSCLE EFFECTIVENESS IN BIOMECHANICAL MODELS USING GENERALIZED COORDINATES

    PubMed Central

    Seth, Ajay; Delp, Scott L.

    2015-01-01

    Biomechanics researchers often use multibody models to represent biological systems. However, the mapping from biology to mechanics and back can be problematic. OpenSim is a popular open source tool used for this purpose, mapping between biological specifications and an underlying generalized coordinate multibody system called Simbody. One quantity of interest to biomechanical researchers and clinicians is “muscle moment arm,” a measure of the effectiveness of a muscle at contributing to a particular motion over a range of configurations. OpenSim can automatically calculate these quantities for any muscle once a model has been built. For simple cases, this calculation is the same as the conventional moment arm calculation in mechanical engineering. But a muscle may span several joints (e.g., wrist, neck, back) and may follow a convoluted path over various curved surfaces. A biological joint may require several bodies or even a mechanism to accurately represent in the multibody model (e.g., knee, shoulder). In these situations we need a careful definition of muscle moment arm that is analogous to the mechanical engineering concept, yet generalized to be of use to biomedical researchers. Here we present some biomechanical modeling challenges and how they are resolved in OpenSim and Simbody to yield biologically meaningful muscle moment arms. PMID:25905111

  4. WHAT IS A MOMENT ARM? CALCULATING MUSCLE EFFECTIVENESS IN BIOMECHANICAL MODELS USING GENERALIZED COORDINATES.

    PubMed

    Sherman, Michael A; Seth, Ajay; Delp, Scott L

    2013-08-01

    Biomechanics researchers often use multibody models to represent biological systems. However, the mapping from biology to mechanics and back can be problematic. OpenSim is a popular open source tool used for this purpose, mapping between biological specifications and an underlying generalized coordinate multibody system called Simbody. One quantity of interest to biomechanical researchers and clinicians is "muscle moment arm," a measure of the effectiveness of a muscle at contributing to a particular motion over a range of configurations. OpenSim can automatically calculate these quantities for any muscle once a model has been built. For simple cases, this calculation is the same as the conventional moment arm calculation in mechanical engineering. But a muscle may span several joints (e.g., wrist, neck, back) and may follow a convoluted path over various curved surfaces. A biological joint may require several bodies or even a mechanism to accurately represent in the multibody model (e.g., knee, shoulder). In these situations we need a careful definition of muscle moment arm that is analogous to the mechanical engineering concept, yet generalized to be of use to biomedical researchers. Here we present some biomechanical modeling challenges and how they are resolved in OpenSim and Simbody to yield biologically meaningful muscle moment arms.

  5. Aerodynamic effects by cooling flows within engine room of a car model

    NASA Astrophysics Data System (ADS)

    Sawaguchi, T.; Takakura, Y.

    2017-10-01

    The purpose of this research is to clarify the change of characteristics of aerodynamic drag and lift of a car by the engine loading system (engine arrangement) and the air inlet system (opening area and position) with and without a radiator in wind-tunnel experiments. A simplified car model with 1/5 scale is generated with reproduction of the engine room covered with the transparent acryl externals for visualization. In the wind-tunnel experiments, the moving-belt ground board is adopted to include ground effects with force measurements by use of load cells. The flows are visualized by the smoke method. As results, with enlargement of the opening area, the drag increased overall although depending largely on the engine loading system and the inlet opening position, the front lift increased and the rear left decreased; the effect of the radiator was to relieve the change of the drag and lift.

  6. The thermodynamics of bipolarity: a bifurcation model of bipolar illness and bipolar character and its psychotherapeutic applications.

    PubMed

    Sabelli, H C; Carlson-Sabelli, L; Javaid, J I

    1990-11-01

    Two models dominate current formulations of bipolar illness: the homeostatic model implicit in Freud's psychodynamics and most neuroamine deficit/excess theories; and the oscillatory model of exaggerated biological rhythms. The homeostatic model is based on the closed systems approach of classic thermodynamics, while the oscillatory model requires the open systems approach of modern thermodynamics. Here we present a thermodynamic model of bipolarity that includes both homeostatic and oscillatory features and adds the most important feature of open systems thermodynamics: the creation of novel structures in bifurcation processes. According to the proposed model, bipolarity is the result of exaggerated biological energy that augments homeostatic, oscillatory and creative psychological processes. Only low-energy closed systems tend to rest ("point attractor") and entropic disorder. Open processes containing and exchanging energy fluctuate between opposite states ("periodic attractors"); they are characteristic of most physiological rhythms and are exaggerated in bipolar subjects. At higher energies, their strong fluctuations destroy pre-existing patterns and structures, produce turbulence ("chaotic attractors"), which sudden switches between opposite states, and create new and more complex structures. Likewise, high-energy bipolars develop high spontaneity, great fluctuations between opposite moods, internal and interpersonal chaos, and enhanced creativity (personal, artistic, professional) as well as psychopathology (personality deviations, psychotic delusions). Offered here is a theoretical explanation of the dual--creative and destructive--nature of bipolarity in terms of the new enantiodromic concept of entropy generalized by process theory. Clinically, this article offers an integrative model of bipolarity that accounts for many clinical features and contributes to a definition of the bipolar personality.

  7. Research on e-commerce transaction networks using multi-agent modelling and open application programming interface

    NASA Astrophysics Data System (ADS)

    Piao, Chunhui; Han, Xufang; Wu, Harris

    2010-08-01

    We provide a formal definition of an e-commerce transaction network. Agent-based modelling is used to simulate e-commerce transaction networks. For real-world analysis, we studied the open application programming interfaces (APIs) from eBay and Taobao e-commerce websites and captured real transaction data. Pajek is used to visualise the agent relationships in the transaction network. We derived one-mode networks from the transaction network and analysed them using degree and betweenness centrality. Integrating multi-agent modelling, open APIs and social network analysis, we propose a new way to study large-scale e-commerce systems.

  8. A simplified dynamic model of the T700 turboshaft engine

    NASA Technical Reports Server (NTRS)

    Duyar, Ahmet; Gu, Zhen; Litt, Jonathan S.

    1992-01-01

    A simplified open-loop dynamic model of the T700 turboshaft engine, valid within the normal operating range of the engine, is developed. This model is obtained by linking linear state space models obtained at different engine operating points. Each linear model is developed from a detailed nonlinear engine simulation using a multivariable system identification and realization method. The simplified model may be used with a model-based real time diagnostic scheme for fault detection and diagnostics, as well as for open loop engine dynamics studies and closed loop control analysis utilizing a user generated control law.

  9. CEBS object model for systems biology data, SysBio-OM.

    PubMed

    Xirasagar, Sandhya; Gustafson, Scott; Merrick, B Alex; Tomer, Kenneth B; Stasiewicz, Stanley; Chan, Denny D; Yost, Kenneth J; Yates, John R; Sumner, Susan; Xiao, Nianqing; Waters, Michael D

    2004-09-01

    To promote a systems biology approach to understanding the biological effects of environmental stressors, the Chemical Effects in Biological Systems (CEBS) knowledge base is being developed to house data from multiple complex data streams in a systems friendly manner that will accommodate extensive querying from users. Unified data representation via a single object model will greatly aid in integrating data storage and management, and facilitate reuse of software to analyze and display data resulting from diverse differential expression or differential profile technologies. Data streams include, but are not limited to, gene expression analysis (transcriptomics), protein expression and protein-protein interaction analysis (proteomics) and changes in low molecular weight metabolite levels (metabolomics). To enable the integration of microarray gene expression, proteomics and metabolomics data in the CEBS system, we designed an object model, Systems Biology Object Model (SysBio-OM). The model is comprehensive and leverages other open source efforts, namely the MicroArray Gene Expression Object Model (MAGE-OM) and the Proteomics Experiment Data Repository (PEDRo) object model. SysBio-OM is designed by extending MAGE-OM to represent protein expression data elements (including those from PEDRo), protein-protein interaction and metabolomics data. SysBio-OM promotes the standardization of data representation and data quality by facilitating the capture of the minimum annotation required for an experiment. Such standardization refines the accuracy of data mining and interpretation. The open source SysBio-OM model, which can be implemented on varied computing platforms is presented here. A universal modeling language depiction of the entire SysBio-OM is available at http://cebs.niehs.nih.gov/SysBioOM/. The Rational Rose object model package is distributed under an open source license that permits unrestricted academic and commercial use and is available at http://cebs.niehs.nih.gov/cebsdownloads. The database and interface are being built to implement the model and will be available for public use at http://cebs.niehs.nih.gov.

  10. Open quantum maps from complex scaling of kicked scattering systems

    NASA Astrophysics Data System (ADS)

    Mertig, Normann; Shudo, Akira

    2018-04-01

    We derive open quantum maps from periodically kicked scattering systems and discuss the computation of their resonance spectra in terms of theoretically grounded methods, such as complex scaling and sufficiently weak absorbing potentials. In contrast, we also show that current implementations of open quantum maps, based on strong absorptive or even projective openings, fail to produce the resonance spectra of kicked scattering systems. This comparison pinpoints flaws in current implementations of open quantum maps, namely, the inability to separate resonance eigenvalues from the continuum as well as the presence of diffraction effects due to strong absorption. The reported deviations from the true resonance spectra appear, even if the openings do not affect the classical trapped set, and become appreciable for shorter-lived resonances, e.g., those associated with chaotic orbits. This makes the open quantum maps, which we derive in this paper, a valuable alternative for future explorations of quantum-chaotic scattering systems, for example, in the context of the fractal Weyl law. The results are illustrated for a quantum map model whose classical dynamics exhibits key features of ionization and a trapped set which is organized by a topological horseshoe.

  11. Image-guided laparoscopic surgery in an open MRI operating theater.

    PubMed

    Tsutsumi, Norifumi; Tomikawa, Morimasa; Uemura, Munenori; Akahoshi, Tomohiko; Nagao, Yoshihiro; Konishi, Kozo; Ieiri, Satoshi; Hong, Jaesung; Maehara, Yoshihiko; Hashizume, Makoto

    2013-06-01

    The recent development of open magnetic resonance imaging (MRI) has provided an opportunity for the next stage of image-guided surgical and interventional procedures. The purpose of this study was to evaluate the feasibility of laparoscopic surgery under the pneumoperitoneum with the system of an open MRI operating theater. Five patients underwent laparoscopic surgery with a real-time augmented reality navigation system that we previously developed in a horizontal-type 0.4-T open MRI operating theater. All procedures were performed in an open MRI operating theater. During the operations, the laparoscopic monitor clearly showed the augmented reality models of the intraperitoneal structures, such as the common bile ducts and the urinary bladder, as well as the proper positions of the prosthesis. The navigation frame rate was 8 frames per min. The mean fiducial registration error was 6.88 ± 6.18 mm in navigated cases. We were able to use magnetic resonance-incompatible surgical instruments out of the 5-Gs restriction area, as well as conventional laparoscopic surgery, and we developed a real-time augmented reality navigation system using open MRI. Laparoscopic surgery with our real-time augmented reality navigation system in the open MRI operating theater is a feasible option.

  12. OpenID Connect as a security service in cloud-based medical imaging systems.

    PubMed

    Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter

    2016-04-01

    The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as "Kerberos of cloud." We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model.

  13. Questioning the efficacy of 'gold' open access to published articles.

    PubMed

    Fredericks, Suzanne

    2015-07-01

    To question the efficacy of 'gold' open access to published articles. Open access is unrestricted access to academic, theoretical and research literature that is scholarly and peer-reviewed. Two models of open access exist: 'gold' and 'green'. Gold open access provides everyone with access to articles during all stages of publication, with processing charges paid by the author(s). Green open access involves placing an already published article into a repository to provide unrestricted access, with processing charges incurred by the publisher. This is a discussion paper. An exploration of the relative benefits and drawbacks of the 'gold' and 'green' open access systems. Green open access is a more economic and efficient means of granting open access to scholarly literature but a large number of researchers select gold open access journals as their first choices for manuscript submissions. This paper questions the efficacy of gold open access models and presents an examination of green open access models to encourage nurse researchers to consider this approach. In the current academic environment, with increased pressures to publish and low funding success rates, it is difficult to understand why gold open access still exists. Green open access enhances the visibility of an academic's work, as increased downloads of articles tend to lead to increased citations. Green open access is the cheaper option, as well as the most beneficial choice, for universities that want to provide unrestricted access to all literature at minimal risk.

  14. Lessons learned in transitioning to an open systems environment

    NASA Technical Reports Server (NTRS)

    Boland, Dillard E.; Green, David S.; Steger, Warren L.

    1994-01-01

    Software development organizations, both commercial and governmental, are undergoing rapid change spurred by developments in the computing industry. To stay competitive, these organizations must adopt new technologies, skills, and practices quickly. Yet even for an organization with a well-developed set of software engineering models and processes, transitioning to a new technology can be expensive and risky. Current industry trends are leading away from traditional mainframe environments and toward the workstation-based, open systems world. This paper presents the experiences of software engineers on three recent projects that pioneered open systems development for NASA's Flight Dynamics Division of the Goddard Space Flight Center (GSFC).

  15. Multi-Physics Modelling of Fault Mechanics Using REDBACK: A Parallel Open-Source Simulator for Tightly Coupled Problems

    NASA Astrophysics Data System (ADS)

    Poulet, Thomas; Paesold, Martin; Veveakis, Manolis

    2017-03-01

    Faults play a major role in many economically and environmentally important geological systems, ranging from impermeable seals in petroleum reservoirs to fluid pathways in ore-forming hydrothermal systems. Their behavior is therefore widely studied and fault mechanics is particularly focused on the mechanisms explaining their transient evolution. Single faults can change in time from seals to open channels as they become seismically active and various models have recently been presented to explain the driving forces responsible for such transitions. A model of particular interest is the multi-physics oscillator of Alevizos et al. (J Geophys Res Solid Earth 119(6), 4558-4582, 2014) which extends the traditional rate and state friction approach to rate and temperature-dependent ductile rocks, and has been successfully applied to explain spatial features of exposed thrusts as well as temporal evolutions of current subduction zones. In this contribution we implement that model in REDBACK, a parallel open-source multi-physics simulator developed to solve such geological instabilities in three dimensions. The resolution of the underlying system of equations in a tightly coupled manner allows REDBACK to capture appropriately the various theoretical regimes of the system, including the periodic and non-periodic instabilities. REDBACK can then be used to simulate the drastic permeability evolution in time of such systems, where nominally impermeable faults can sporadically become fluid pathways, with permeability increases of several orders of magnitude.

  16. QuantumOptics.jl: A Julia framework for simulating open quantum systems

    NASA Astrophysics Data System (ADS)

    Krämer, Sebastian; Plankensteiner, David; Ostermann, Laurin; Ritsch, Helmut

    2018-06-01

    We present an open source computational framework geared towards the efficient numerical investigation of open quantum systems written in the Julia programming language. Built exclusively in Julia and based on standard quantum optics notation, the toolbox offers speed comparable to low-level statically typed languages, without compromising on the accessibility and code readability found in dynamic languages. After introducing the framework, we highlight its features and showcase implementations of generic quantum models. Finally, we compare its usability and performance to two well-established and widely used numerical quantum libraries.

  17. Finding Services for an Open Architecture: A Review of Existing Applications and Programs in PEO C4I

    DTIC Science & Technology

    2011-01-01

    2004) Two key SOA success factors listed were as follows: 1. Shared Services Strategy: Existence of a strategy to identify overlapping business and...model Architectural pattern 22 Finding Services for an Open Architecture or eliminating redundancies and overlaps through use of shared services 2...Funding Model: Existence of an IT funding model aligned with and supportive of a shared services strategy. (Sun Micro- systems, 2004) Become Data

  18. An integrated microalgal growth model and its application to optimize the biomass production of Scenedesmus sp. LX1 in open pond under the nutrient level of domestic secondary effluent.

    PubMed

    Wu, Yin-Hu; Li, Xin; Yu, Yin; Hu, Hong-Ying; Zhang, Tian-Yuan; Li, Feng-Min

    2013-09-01

    Microalgal growth is the key to the coupled system of wastewater treatment and microalgal biomass production. In this study, Monod model, Droop model and Steele model were incorporated to obtain an integrated growth model describing the combined effects of nitrogen, phosphorus and light intensity on the growth rate of Scenedesmus sp. LX1. The model parameters were obtained via fitting experimental data to these classical models. Furthermore, the biomass production of Scenedesmus sp. LX1 in open pond under nutrient level of secondary effluent was analyzed based on the integrated model, predicting a maximal microalgal biomass production rate about 20 g m(-2) d(-1). In order to optimize the biomass production of open pond the microalgal biomass concentration, light intensity on the surface of open pond, total depth of culture medium and hydraulic retention time should be 500 g m(-3), 16,000 lx, 0.2 m and 5.2 d in the conditions of this study, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Utilizing Free and Open Source Software to access, view and compare in situ observations, EO products and model output data

    NASA Astrophysics Data System (ADS)

    Vines, Aleksander; Hamre, Torill; Lygre, Kjetil

    2014-05-01

    The GreenSeas project (Development of global plankton data base and model system for eco-climate early warning) aims to advance the knowledge and predictive capacities of how marine ecosystems will respond to global change. A main task has been to set up a data delivery and monitoring core service following the open and free data access policy implemented in the Global Monitoring for the Environment and Security (GMES) programme. The aim is to ensure open and free access to historical plankton data, new data (EO products and in situ measurements), model data (including estimates of simulation error) and biological, environmental and climatic indicators to a range of stakeholders, such as scientists, policy makers and environmental managers. To this end, we have developed a geo-spatial database of both historical and new in situ physical, biological and chemical parameters for the Southern Ocean, Atlantic, Nordic Seas and the Arctic, and organized related satellite-derived quantities and model forecasts in a joint geo-spatial repository. For easy access to these data, we have implemented a web-based GIS (Geographical Information Systems) where observed, derived and forcasted parameters can be searched, displayed, compared and exported. Model forecasts can also be uploaded dynamically to the system, to allow modelers to quickly compare their results with available in situ and satellite observations. We have implemented the web-based GIS(Geographical Information Systems) system based on free and open source technologies: Thredds Data Server, ncWMS, GeoServer, OpenLayers, PostGIS, Liferay, Apache Tomcat, PRTree, NetCDF-Java, json-simple, Geotoolkit, Highcharts, GeoExt, MapFish, FileSaver, jQuery, jstree and qUnit. We also wanted to used open standards to communicate between the different services and we use WMS, WFS, netCDF, GML, OPeNDAP, JSON, and SLD. The main advantage we got from using FOSS was that we did not have to invent the wheel all over again, but could use already existing code and functionalities on our software for free: Of course most the software did not have to be open source for this, but in some cases we had to do minor modifications to make the different technologies work together. We could extract the parts of the code that we needed for a specific task. One example of this was to use part of the code from ncWMS and Thredds to help our main application to both read netCDF files and present them in the browser. This presentation will focus on both difficulties we had with and advantages we got from developing this tool with FOSS.

  20. Evaluation of Teacher Perceptions and Potential of OpenOffice in a K-12 School District

    ERIC Educational Resources Information Center

    Vajda, James; Abbitt, Jason T.

    2011-01-01

    Through this mixed-method evaluation study the authors investigated a pilot implementation of an open-source productivity suite for teachers in a K-12 public school district. The authors evaluated OpenOffice version 3.0 using measures identified by the technology acceptance model as predictors of acceptance and use of technology systems. During a…

  1. Fluctuations in the DNA double helix

    NASA Astrophysics Data System (ADS)

    Peyrard, M.; López, S. C.; Angelov, D.

    2007-08-01

    DNA is not the static entity suggested by the famous double helix structure. It shows large fluctuational openings, in which the bases, which contain the genetic code, are temporarily open. Therefore it is an interesting system to study the effect of nonlinearity on the physical properties of a system. A simple model for DNA, at a mesoscopic scale, can be investigated by computer simulation, in the same spirit as the original work of Fermi, Pasta and Ulam. These calculations raise fundamental questions in statistical physics because they show a temporary breaking of equipartition of energy, regions with large amplitude fluctuations being able to coexist with regions where the fluctuations are very small, even when the model is studied in the canonical ensemble. This phenomenon can be related to nonlinear excitations in the model. The ability of the model to describe the actual properties of DNA is discussed by comparing theoretical and experimental results for the probability that base pairs open an a given temperature in specific DNA sequences. These studies give us indications on the proper description of the effect of the sequence in the mesoscopic model.

  2. Challenges of agricultural monitoring: integration of the Open Farm Management Information System into GEOSS and Digital Earth

    NASA Astrophysics Data System (ADS)

    Řezník, T.; Kepka, M.; Charvát, K.; Charvát, K., Jr.; Horáková, S.; Lukas, V.

    2016-04-01

    From a global perspective, agriculture is the single largest user of freshwater resources, each country using an average of 70% of all its surface water supplies. An essential proportion of agricultural water is recycled back to surface water and/or groundwater. Agriculture and water pollution is therefore the subject of (inter)national legislation, such as the Clean Water Act in the United States of America, the European Water Framework Directive, and the Law of the People's Republic of China on the Prevention and Control of Water Pollution. Regular monitoring by means of sensor networks is needed in order to provide evidence of water pollution in agriculture. This paper describes the benefits of, and open issues stemming from, regular sensor monitoring provided by an Open Farm Management Information System. Emphasis is placed on descriptions of the processes and functionalities available to users, the underlying open data model, and definitions of open and lightweight application programming interfaces for the efficient management of collected (spatial) data. The presented Open Farm Management Information System has already been successfully registered under Phase 8 of the Global Earth Observation System of Systems (GEOSS) Architecture Implementation Pilot in order to support the wide variety of demands that are primarily aimed at agriculture pollution monitoring. The final part of the paper deals with the integration of the Open Farm Management Information System into the Digital Earth framework.

  3. The OpenMI - its Transformation From a Research Output to a Global Standard for the Integrated Modelling Community

    NASA Astrophysics Data System (ADS)

    Moore, R.

    2008-12-01

    The pressure to take a more integrated approach both to science and to management increases by the day. At almost any scale from local to global, it is no longer possible to consider issues in isolation; to do so runs a high risk of creating more problems than are solved. The consequence of this situation is that there is strong encouragement in the scientific world not just to understand and to be able to predict the response of individual processes but also to predict how those processes will interact. The manager is similarly encouraged to think in the widest terms about the likely impact of any policy before it is implemented. A new reservoir may solve a water supply problem but will it adversely affect the fishing and hence the tourist trade? How will climate change impact biodiversity? Will the drugs for treating a flu pandemic adversely affect river water quality? One approach to predicting such impacts would be to create new models simulating more and more processes. This, however, is neither feasible nor useful and makes poor use of the huge investment in existing models. A better approach, with many additional benefits, would be to find a way of linking existing models and modelling components such as databases or visualisation systems. Against this background, the European Commission, as part of its research programme to facilitate the introduction of integrated water management, commissioned a community project to find a generic solution to the linking of simulation models at run time. The outcome of this work was the Open Modelling Interface (OpenMI) standard and the creation of the OpenMI Association, an open, non-proprietary, not-for-profit, international organisation for its support. The work has received widespread recognition and encouragement from across the world, especially in the USA. A second phase is now building a community to continue the OpenMI's development and promote its use. The community's vision, mission and implementation strategy can be summarised as follows: Vision. The OpenMI Association believes that integrated management in some form or another is the only option for the future management of our resources. Although not yet widely accepted outside the modelling world, because of the inherent complexities, it is foreseeable that managers will demand decision support systems, i.e. predictive models. As the need to understand the wider impacts of decisions increases, so the models will have to take account of more and more interacting processes. The OpenMI Association, therefore, foresees a future where the concept of integrated modelling becomes widely accepted, and the need for standards such as the OpenMI becomes greater. Mission. The attainment of the vision will require the collective energy and resources of developers, modellers and users. Within this context, the mission that the OpenMI Association has set itself, is a) to promote integrated modelling as a means of achieving better management and b) to develop and support the OpenMI Standard. Implementation Strategy. To achieve its mission, the OpenMI Association will focus on the following key actions. They are a) creating a culture that facilitates the take up and use of integrated modelling and the OpenMI, b) ensuring that the OpenMI remains relevant, easy to use, of high quality and available under acceptable conditions, c) supporting the community of OpenMI users and providing a compliancy service, d) disseminating information, e) enabling the community to participate in the development of the OpenMI, and f) securing the necessary resources. The session will present and invite debate on this strategy.

  4. A sliding mode control proposal for open-loop unstable processes.

    PubMed

    Rojas, Rubén; Camacho, Oscar; González, Luis

    2004-04-01

    This papers presents a sliding mode controller based on a first-order-plus-dead-time model of the process for controlling open-loop unstable systems. The proposed controller has a simple and fixed structure with a set of tuning equations as a function of the desired performance. Both linear and nonlinear models were used to study the controller performance by computer simulations.

  5. Transformation of standardized clinical models based on OWL technologies: from CEM to OpenEHR archetypes.

    PubMed

    Legaz-García, María del Carmen; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás; Chute, Christopher G; Tao, Cui

    2015-05-01

    The semantic interoperability of electronic healthcare records (EHRs) systems is a major challenge in the medical informatics area. International initiatives pursue the use of semantically interoperable clinical models, and ontologies have frequently been used in semantic interoperability efforts. The objective of this paper is to propose a generic, ontology-based, flexible approach for supporting the automatic transformation of clinical models, which is illustrated for the transformation of Clinical Element Models (CEMs) into openEHR archetypes. Our transformation method exploits the fact that the information models of the most relevant EHR specifications are available in the Web Ontology Language (OWL). The transformation approach is based on defining mappings between those ontological structures. We propose a way in which CEM entities can be transformed into openEHR by using transformation templates and OWL as common representation formalism. The transformation architecture exploits the reasoning and inferencing capabilities of OWL technologies. We have devised a generic, flexible approach for the transformation of clinical models, implemented for the unidirectional transformation from CEM to openEHR, a series of reusable transformation templates, a proof-of-concept implementation, and a set of openEHR archetypes that validate the methodological approach. We have been able to transform CEM into archetypes in an automatic, flexible, reusable transformation approach that could be extended to other clinical model specifications. We exploit the potential of OWL technologies for supporting the transformation process. We believe that our approach could be useful for international efforts in the area of semantic interoperability of EHR systems. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. FRED (a Framework for Reconstructing Epidemic Dynamics): an open-source software system for modeling infectious diseases and control strategies using census-based populations.

    PubMed

    Grefenstette, John J; Brown, Shawn T; Rosenfeld, Roni; DePasse, Jay; Stone, Nathan T B; Cooley, Phillip C; Wheaton, William D; Fyshe, Alona; Galloway, David D; Sriram, Anuroop; Guclu, Hasan; Abraham, Thomas; Burke, Donald S

    2013-10-08

    Mathematical and computational models provide valuable tools that help public health planners to evaluate competing health interventions, especially for novel circumstances that cannot be examined through observational or controlled studies, such as pandemic influenza. The spread of diseases like influenza depends on the mixing patterns within the population, and these mixing patterns depend in part on local factors including the spatial distribution and age structure of the population, the distribution of size and composition of households, employment status and commuting patterns of adults, and the size and age structure of schools. Finally, public health planners must take into account the health behavior patterns of the population, patterns that often vary according to socioeconomic factors such as race, household income, and education levels. FRED (a Framework for Reconstructing Epidemic Dynamics) is a freely available open-source agent-based modeling system based closely on models used in previously published studies of pandemic influenza. This version of FRED uses open-access census-based synthetic populations that capture the demographic and geographic heterogeneities of the population, including realistic household, school, and workplace social networks. FRED epidemic models are currently available for every state and county in the United States, and for selected international locations. State and county public health planners can use FRED to explore the effects of possible influenza epidemics in specific geographic regions of interest and to help evaluate the effect of interventions such as vaccination programs and school closure policies. FRED is available under a free open source license in order to contribute to the development of better modeling tools and to encourage open discussion of modeling tools being used to evaluate public health policies. We also welcome participation by other researchers in the further development of FRED.

  7. Alpha-canonical form representation of the open loop dynamics of the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Duyar, Almet; Eldem, Vasfi; Merrill, Walter C.; Guo, Ten-Huei

    1991-01-01

    A parameter and structure estimation technique for multivariable systems is used to obtain a state space representation of open loop dynamics of the space shuttle main engine in alpha-canonical form. The parameterization being used is both minimal and unique. The simplified linear model may be used for fault detection studies and control system design and development.

  8. Examining Co-Teaching through a Socio-Technical Systems Lens

    ERIC Educational Resources Information Center

    Isherwood, Robert S.; Barger-Anderson, Richard; Erickson, Matthew

    2012-01-01

    Qualitative research was conducted in a large suburban school district implementing co-teaching as a new service delivery model for special education. Researchers examined the changes that resulted from the new service delivery model using a socio-technical systems lens. This framework views schools as open systems that contain a structural, task,…

  9. Open source Matrix Product States: Opening ways to simulate entangled many-body quantum systems in one dimension

    NASA Astrophysics Data System (ADS)

    Jaschke, Daniel; Wall, Michael L.; Carr, Lincoln D.

    2018-04-01

    Numerical simulations are a powerful tool to study quantum systems beyond exactly solvable systems lacking an analytic expression. For one-dimensional entangled quantum systems, tensor network methods, amongst them Matrix Product States (MPSs), have attracted interest from different fields of quantum physics ranging from solid state systems to quantum simulators and quantum computing. Our open source MPS code provides the community with a toolset to analyze the statics and dynamics of one-dimensional quantum systems. Here, we present our open source library, Open Source Matrix Product States (OSMPS), of MPS methods implemented in Python and Fortran2003. The library includes tools for ground state calculation and excited states via the variational ansatz. We also support ground states for infinite systems with translational invariance. Dynamics are simulated with different algorithms, including three algorithms with support for long-range interactions. Convenient features include built-in support for fermionic systems and number conservation with rotational U(1) and discrete Z2 symmetries for finite systems, as well as data parallelism with MPI. We explain the principles and techniques used in this library along with examples of how to efficiently use the general interfaces to analyze the Ising and Bose-Hubbard models. This description includes the preparation of simulations as well as dispatching and post-processing of them.

  10. Real-time visual simulation of APT system based on RTW and Vega

    NASA Astrophysics Data System (ADS)

    Xiong, Shuai; Fu, Chengyu; Tang, Tao

    2012-10-01

    The Matlab/Simulink simulation model of APT (acquisition, pointing and tracking) system is analyzed and established. Then the model's C code which can be used for real-time simulation is generated by RTW (Real-Time Workshop). Practical experiments show, the simulation result of running the C code is the same as running the Simulink model directly in the Matlab environment. MultiGen-Vega is a real-time 3D scene simulation software system. With it and OpenGL, the APT scene simulation platform is developed and used to render and display the virtual scenes of the APT system. To add some necessary graphics effects to the virtual scenes real-time, GLSL (OpenGL Shading Language) shaders are used based on programmable GPU. By calling the C code, the scene simulation platform can adjust the system parameters on-line and get APT system's real-time simulation data to drive the scenes. Practical application shows that this visual simulation platform has high efficiency, low charge and good simulation effect.

  11. Interpreting Musculoskeletal Models and Dynamic Simulations: Causes and Effects of Differences Between Models.

    PubMed

    Roelker, Sarah A; Caruthers, Elena J; Baker, Rachel K; Pelz, Nicholas C; Chaudhari, Ajit M W; Siston, Robert A

    2017-11-01

    With more than 29,000 OpenSim users, several musculoskeletal models with varying levels of complexity are available to study human gait. However, how different model parameters affect estimated joint and muscle function between models is not fully understood. The purpose of this study is to determine the effects of four OpenSim models (Gait2392, Lower Limb Model 2010, Full-Body OpenSim Model, and Full Body Model 2016) on gait mechanics and estimates of muscle forces and activations. Using OpenSim 3.1 and the same experimental data for all models, six young adults were scaled in each model, gait kinematics were reproduced, and static optimization estimated muscle function. Simulated measures differed between models by up to 6.5° knee range of motion, 0.012 Nm/Nm peak knee flexion moment, 0.49 peak rectus femoris activation, and 462 N peak rectus femoris force. Differences in coordinate system definitions between models altered joint kinematics, influencing joint moments. Muscle parameter and joint moment discrepancies altered muscle activations and forces. Additional model complexity yielded greater error between experimental and simulated measures; therefore, this study suggests Gait2392 is a sufficient model for studying walking in healthy young adults. Future research is needed to determine which model(s) is best for tasks with more complex motion.

  12. A Web-based Visualization System for Three Dimensional Geological Model using Open GIS

    NASA Astrophysics Data System (ADS)

    Nemoto, T.; Masumoto, S.; Nonogaki, S.

    2017-12-01

    A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.

  13. The Semi-opened Infrastructure Model (SopIM): A Frame to Set Up an Organizational Learning Process

    NASA Astrophysics Data System (ADS)

    Grundstein, Michel

    In this paper, we introduce the "Semi-opened Infrastructure Model (SopIM)" implemented to deploy Artificial Intelligence and Knowledge-based Systems within a large industrial company. This model illustrates what could be two of the operating elements of the Model for General Knowledge Management within the Enterprise (MGKME) that are essential to set up the organizational learning process that leads people to appropriate and use concepts, methods and tools of an innovative technology: the "Ad hoc Infrastructures" element, and the "Organizational Learning Processes" element.

  14. Open Source Cloud-Based Technologies for Bim

    NASA Astrophysics Data System (ADS)

    Logothetis, S.; Karachaliou, E.; Valari, E.; Stylianidis, E.

    2018-05-01

    This paper presents a Cloud-based open source system for storing and processing data from a 3D survey approach. More specifically, we provide an online service for viewing, storing and analysing BIM. Cloud technologies were used to develop a web interface as a BIM data centre, which can handle large BIM data using a server. The server can be accessed by many users through various electronic devices anytime and anywhere so they can view online 3D models using browsers. Nowadays, the Cloud computing is engaged progressively in facilitating BIM-based collaboration between the multiple stakeholders and disciplinary groups for complicated Architectural, Engineering and Construction (AEC) projects. Besides, the development of Open Source Software (OSS) has been rapidly growing and their use tends to be united. Although BIM and Cloud technologies are extensively known and used, there is a lack of integrated open source Cloud-based platforms able to support all stages of BIM processes. The present research aims to create an open source Cloud-based BIM system that is able to handle geospatial data. In this effort, only open source tools will be used; from the starting point of creating the 3D model with FreeCAD to its online presentation through BIMserver. Python plug-ins will be developed to link the two software which will be distributed and freely available to a large community of professional for their use. The research work will be completed by benchmarking four Cloud-based BIM systems: Autodesk BIM 360, BIMserver, Graphisoft BIMcloud and Onuma System, which present remarkable results.

  15. Personalized-detailed clinical model for data interoperability among clinical standards.

    PubMed

    Khan, Wajahat Ali; Hussain, Maqbool; Afzal, Muhammad; Amin, Muhammad Bilal; Saleem, Muhammad Aamir; Lee, Sungyoung

    2013-08-01

    Data interoperability among health information exchange (HIE) systems is a major concern for healthcare practitioners to enable provisioning of telemedicine-related services. Heterogeneity exists in these systems not only at the data level but also among different heterogeneous healthcare standards with which these are compliant. The relationship between healthcare organization data and different heterogeneous standards is necessary to achieve the goal of data level interoperability. We propose a personalized-detailed clinical model (P-DCM) approach for the generation of customized mappings that creates the necessary linkage between organization-conformed healthcare standards concepts and clinical model concepts to ensure data interoperability among HIE systems. We consider electronic health record (EHR) standards, openEHR, and HL7 CDA instances transformation using P-DCM. P-DCM concepts associated with openEHR and HL7 CDA help in transformation of instances among these standards. We investigated two datasets: (1) data of 100 diabetic patients, including 50 each of type 1 and type 2, from a local hospital in Korea and (2) data of a single Alzheimer's disease patient. P-DCMs were created for both scenarios, which provided the basis for deriving instances for HL7 CDA and openEHR standards. For proof of concept, we present case studies of encounter information for type 2 diabetes mellitus patients and monitoring of daily routine activities of an Alzheimer's disease patient. These reflect P-DCM-based customized mappings generation with openEHR and HL7 CDA standards. Customized mappings are generated based on the relationship of P-DCM concepts with CDA and openEHR concepts. The objective of this work is to achieve semantic data interoperability among heterogeneous standards. This would lead to effective utilization of resources and allow timely information exchange among healthcare systems.

  16. Personalized-Detailed Clinical Model for Data Interoperability Among Clinical Standards

    PubMed Central

    Khan, Wajahat Ali; Hussain, Maqbool; Afzal, Muhammad; Amin, Muhammad Bilal; Saleem, Muhammad Aamir

    2013-01-01

    Abstract Objective: Data interoperability among health information exchange (HIE) systems is a major concern for healthcare practitioners to enable provisioning of telemedicine-related services. Heterogeneity exists in these systems not only at the data level but also among different heterogeneous healthcare standards with which these are compliant. The relationship between healthcare organization data and different heterogeneous standards is necessary to achieve the goal of data level interoperability. We propose a personalized-detailed clinical model (P-DCM) approach for the generation of customized mappings that creates the necessary linkage between organization-conformed healthcare standards concepts and clinical model concepts to ensure data interoperability among HIE systems. Materials and Methods: We consider electronic health record (EHR) standards, openEHR, and HL7 CDA instances transformation using P-DCM. P-DCM concepts associated with openEHR and HL7 CDA help in transformation of instances among these standards. We investigated two datasets: (1) data of 100 diabetic patients, including 50 each of type 1 and type 2, from a local hospital in Korea and (2) data of a single Alzheimer's disease patient. P-DCMs were created for both scenarios, which provided the basis for deriving instances for HL7 CDA and openEHR standards. Results: For proof of concept, we present case studies of encounter information for type 2 diabetes mellitus patients and monitoring of daily routine activities of an Alzheimer's disease patient. These reflect P-DCM-based customized mappings generation with openEHR and HL7 CDA standards. Customized mappings are generated based on the relationship of P-DCM concepts with CDA and openEHR concepts. Conclusions: The objective of this work is to achieve semantic data interoperability among heterogeneous standards. This would lead to effective utilization of resources and allow timely information exchange among healthcare systems. PMID:23875730

  17. 12 CFR Appendix A to Part 213 - Model Forms

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Model Forms A Appendix A to Part 213 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM CONSUMER LEASING (REGULATION M) Pt. 213, App. A Appendix A to Part 213—Model Forms A-1Model Open-End or Finance Vehicle Lease...

  18. 12 CFR Appendix A to Part 213 - Model Forms

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Model Forms A Appendix A to Part 213 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM CONSUMER LEASING (REGULATION M) Pt. 213, App. A Appendix A to Part 213—Model Forms A-1Model Open-End or Finance Vehicle Lease...

  19. A Classification Model and an Open E-Learning System Based on Intuitionistic Fuzzy Sets for Instructional Design Concepts

    ERIC Educational Resources Information Center

    Güyer, Tolga; Aydogdu, Seyhmus

    2016-01-01

    This study suggests a classification model and an e-learning system based on this model for all instructional theories, approaches, models, strategies, methods, and technics being used in the process of instructional design that constitutes a direct or indirect resource for educational technology based on the theory of intuitionistic fuzzy sets…

  20. THYME: Toolkit for Hybrid Modeling of Electric Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutaro Kalyan Perumalla, James Joseph

    2011-01-01

    THYME is an object oriented library for building models of wide area control and communications in electric power systems. This software is designed as a module to be used with existing open source simulators for discrete event systems in general and communication systems in particular. THYME consists of a typical model for simulating electro-mechanical transients (e.g., as are used in dynamic stability studies), data handling objects to work with CDF and PTI formatted power flow data, and sample models of discrete sensors and controllers.

  1. Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) User's Guide

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    The Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) software package is an open source, MATLABSimulink toolbox (plug in) that can be used by industry professionals and academics for the development of thermodynamic and controls simulations.

  2. The eGo grid model: An open source approach towards a model of German high and extra-high voltage power grids

    NASA Astrophysics Data System (ADS)

    Mueller, Ulf Philipp; Wienholt, Lukas; Kleinhans, David; Cussmann, Ilka; Bunke, Wolf-Dieter; Pleßmann, Guido; Wendiggensen, Jochen

    2018-02-01

    There are several power grid modelling approaches suitable for simulations in the field of power grid planning. The restrictive policies of grid operators, regulators and research institutes concerning their original data and models lead to an increased interest in open source approaches of grid models based on open data. By including all voltage levels between 60 kV (high voltage) and 380kV (extra high voltage), we dissolve the common distinction between transmission and distribution grid in energy system models and utilize a single, integrated model instead. An open data set for primarily Germany, which can be used for non-linear, linear and linear-optimal power flow methods, was developed. This data set consists of an electrically parameterised grid topology as well as allocated generation and demand characteristics for present and future scenarios at high spatial and temporal resolution. The usability of the grid model was demonstrated by the performance of exemplary power flow optimizations. Based on a marginal cost driven power plant dispatch, being subject to grid restrictions, congested power lines were identified. Continuous validation of the model is nescessary in order to reliably model storage and grid expansion in progressing research.

  3. User's manual for the generalized computer program system. Open-channel flow and sedimentation, TABS-2. Main text

    NASA Astrophysics Data System (ADS)

    Thomas, W. A.; McAnally, W. H., Jr.

    1985-07-01

    TABS-2 is a generalized numerical modeling system for open-channel flows, sedimentation, and constituent transport. It consists of more than 40 computer programs to perform modeling and related tasks. The major modeling components--RMA-2V, STUDH, and RMA-4--calculate two-dimensional, depth-averaged flows, sedimentation, and dispersive transport, respectively. The other programs in the system perform digitizing, mesh generation, data management, graphical display, output analysis, and model interfacing tasks. Utilities include file management and automatic generation of computer job control instructions. TABS-2 has been applied to a variety of waterways, including rivers, estuaries, bays, and marshes. It is designed for use by engineers and scientists who may not have a rigorous computer background. Use of the various components is described in Appendices A-O. The bound version of the report does not include the appendices. A looseleaf form with Appendices A-O is distributed to system users.

  4. Augmented switching linear dynamical system model for gas concentration estimation with MOX sensors in an open sampling system.

    PubMed

    Di Lello, Enrico; Trincavelli, Marco; Bruyninckx, Herman; De Laet, Tinne

    2014-07-11

    In this paper, we introduce a Bayesian time series model approach for gas concentration estimation using Metal Oxide (MOX) sensors in Open Sampling System (OSS). Our approach focuses on the compensation of the slow response of MOX sensors, while concurrently solving the problem of estimating the gas concentration in OSS. The proposed Augmented Switching Linear System model allows to include all the sources of uncertainty arising at each step of the problem in a single coherent probabilistic formulation. In particular, the problem of detecting on-line the current sensor dynamical regime and estimating the underlying gas concentration under environmental disturbances and noisy measurements is formulated and solved as a statistical inference problem. Our model improves, with respect to the state of the art, where system modeling approaches have been already introduced, but only provided an indirect relative measures proportional to the gas concentration and the problem of modeling uncertainty was ignored. Our approach is validated experimentally and the performances in terms of speed of and quality of the gas concentration estimation are compared with the ones obtained using a photo-ionization detector.

  5. Augmented Switching Linear Dynamical System Model for Gas Concentration Estimation with MOX Sensors in an Open Sampling System

    PubMed Central

    Di Lello, Enrico; Trincavelli, Marco; Bruyninckx, Herman; De Laet, Tinne

    2014-01-01

    In this paper, we introduce a Bayesian time series model approach for gas concentration estimation using Metal Oxide (MOX) sensors in Open Sampling System (OSS). Our approach focuses on the compensation of the slow response of MOX sensors, while concurrently solving the problem of estimating the gas concentration in OSS. The proposed Augmented Switching Linear System model allows to include all the sources of uncertainty arising at each step of the problem in a single coherent probabilistic formulation. In particular, the problem of detecting on-line the current sensor dynamical regime and estimating the underlying gas concentration under environmental disturbances and noisy measurements is formulated and solved as a statistical inference problem. Our model improves, with respect to the state of the art, where system modeling approaches have been already introduced, but only provided an indirect relative measures proportional to the gas concentration and the problem of modeling uncertainty was ignored. Our approach is validated experimentally and the performances in terms of speed of and quality of the gas concentration estimation are compared with the ones obtained using a photo-ionization detector. PMID:25019637

  6. Strength and stiffness reduction factors for infilled frames with openings

    NASA Astrophysics Data System (ADS)

    Decanini, Luis D.; Liberatore, Laura; Mollaioli, Fabrizio

    2014-09-01

    Framed structures are usually infilled with masonry walls. They may cause a significant increase in both stiffness and strength, reducing the deformation demand and increasing the energy dissipation capacity of the system. On the other hand, irregular arrangements of the masonry panels may lead to the concentration of damage in some regions, with negative effects; for example soft story mechanisms and shear failures in short columns. Therefore, the presence of infill walls should not be neglected, especially in regions of moderate and high seismicity. To this aim, simple models are available for solid infills walls, such as the diagonal no-tension strut model, while infilled frames with openings have not been adequately investigated. In this study, the effect of openings on the strength and stiffness of infilled frames is investigated by means of about 150 experimental and numerical tests. The main parameters involved are identified and a simple model to take into account the openings in the infills is developed and compared with other models proposed by different researchers. The model, which is based on the use of strength and stiffness reduction factors, takes into account the opening dimensions and presence of reinforcing elements around the opening. An example of an application of the proposed reduction factors is also presented.

  7. Optimal control of open quantum systems: A combined surrogate Hamiltonian optimal control theory approach applied to photochemistry on surfaces

    NASA Astrophysics Data System (ADS)

    Asplund, Erik; Klüner, Thorsten

    2012-03-01

    In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate Hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)], 10.1063/1.473950. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998), 10.1063/1.475576; Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)], 10.1063/1.1650297. To gain control of open quantum systems, the surrogate Hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ℏ = me = e = a0 = 1, have been used unless otherwise stated.

  8. A new approach to fracture modelling in reservoirs using deterministic, genetic and statistical models of fracture growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawnsley, K.; Swaby, P.

    1996-08-01

    It is increasingly acknowledged that in order to understand and forecast the behavior of fracture influenced reservoirs we must attempt to reproduce the fracture system geometry and use this as a basis for fluid flow calculation. This article aims to present a recently developed fracture modelling prototype designed specifically for use in hydrocarbon reservoir environments. The prototype {open_quotes}FRAME{close_quotes} (FRActure Modelling Environment) aims to provide a tool which will allow the generation of realistic 3D fracture systems within a reservoir model, constrained to the known geology of the reservoir by both mechanical and statistical considerations, and which can be used asmore » a basis for fluid flow calculation. Two newly developed modelling techniques are used. The first is an interactive tool which allows complex fault surfaces and their associated deformations to be reproduced. The second is a {open_quotes}genetic{close_quotes} model which grows fracture patterns from seeds using conceptual models of fracture development. The user defines the mechanical input and can retrieve all the statistics of the growing fractures to allow comparison to assumed statistical distributions for the reservoir fractures. Input parameters include growth rate, fracture interaction characteristics, orientation maps and density maps. More traditional statistical stochastic fracture models are also incorporated. FRAME is designed to allow the geologist to input hard or soft data including seismically defined surfaces, well fractures, outcrop models, analogue or numerical mechanical models or geological {open_quotes}feeling{close_quotes}. The geologist is not restricted to {open_quotes}a priori{close_quotes} models of fracture patterns that may not correspond to the data.« less

  9. Performance and Weight Estimates for an Advanced Open Rotor Engine

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric S.; Tong, Michael T.

    2012-01-01

    NASA s Environmentally Responsible Aviation Project and Subsonic Fixed Wing Project are focused on developing concepts and technologies which may enable dramatic reductions to the environmental impact of future generation subsonic aircraft. The open rotor concept (also historically referred to an unducted fan or advanced turboprop) may allow for the achievement of this objective by reducing engine fuel consumption. To evaluate the potential impact of open rotor engines, cycle modeling and engine weight estimation capabilities have been developed. The initial development of the cycle modeling capabilities in the Numerical Propulsion System Simulation (NPSS) tool was presented in a previous paper. Following that initial development, further advancements have been made to the cycle modeling and weight estimation capabilities for open rotor engines and are presented in this paper. The developed modeling capabilities are used to predict the performance of an advanced open rotor concept using modern counter-rotating propeller designs. Finally, performance and weight estimates for this engine are presented and compared to results from a previous NASA study of advanced geared and direct-drive turbofans.

  10. Dynamic modeling and optimal joint torque coordination of advanced robotic systems

    NASA Astrophysics Data System (ADS)

    Kang, Hee-Jun

    The development is documented of an efficient dynamic modeling algorithm and the subsequent optimal joint input load coordination of advanced robotic systems for industrial application. A closed-form dynamic modeling algorithm for the general closed-chain robotic linkage systems is presented. The algorithm is based on the transfer of system dependence from a set of open chain Lagrangian coordinates to any desired system generalized coordinate set of the closed-chain. Three different techniques for evaluation of the kinematic closed chain constraints allow the representation of the dynamic modeling parameters in terms of system generalized coordinates and have no restriction with regard to kinematic redundancy. The total computational requirement of the closed-chain system model is largely dependent on the computation required for the dynamic model of an open kinematic chain. In order to improve computational efficiency, modification of an existing open-chain KIC based dynamic formulation is made by the introduction of the generalized augmented body concept. This algorithm allows a 44 pct. computational saving over the current optimized one (O(N4), 5995 when N = 6). As means of resolving redundancies in advanced robotic systems, local joint torque optimization is applied for effectively using actuator power while avoiding joint torque limits. The stability problem in local joint torque optimization schemes is eliminated by using fictitious dissipating forces which act in the necessary null space. The performance index representing the global torque norm is shown to be satisfactory. In addition, the resulting joint motion trajectory becomes conservative, after a transient stage, for repetitive cyclic end-effector trajectories. The effectiveness of the null space damping method is shown. The modular robot, which is built of well defined structural modules from a finite-size inventory and is controlled by one general computer system, is another class of evolving, highly versatile, advanced robotic systems. Therefore, finally, a module based dynamic modeling algorithm is presented for the dynamic coordination of such reconfigurable modular robotic systems. A user interactive module based manipulator analysis program (MBMAP) has been coded in C language running on 4D/70 Silicon Graphics.

  11. Open Rotor Aeroacoustic Modeling

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2012-01-01

    Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.

  12. Open Rotor Aeroacoustic Modelling

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2012-01-01

    Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.

  13. Research on Closed Residential Area Based on Balanced Distribution Theory

    NASA Astrophysics Data System (ADS)

    Lan, Si; Fang, Ni; Lin, Hai Peng; Ye, Shi Qi

    2018-06-01

    With the promotion of the street system, residential quarters and units of the compound gradually open. In this paper, the relationship between traffic flow and traffic flow is established for external roads, and the road resistance model is established by internal roads. We propose a balanced distribution model from the two aspects of road opening conditions and traffic flow inside and outside the district, and quantitatively analyze the impact of the opening and closing on the surrounding roads. Finally, it puts forward feasible suggestions to improve the traffic situation and optimize the network structure.

  14. Advanced and secure architectural EHR approaches.

    PubMed

    Blobel, Bernd

    2006-01-01

    Electronic Health Records (EHRs) provided as a lifelong patient record advance towards core applications of distributed and co-operating health information systems and health networks. For meeting the challenge of scalable, flexible, portable, secure EHR systems, the underlying EHR architecture must be based on the component paradigm and model driven, separating platform-independent and platform-specific models. Allowing manageable models, real systems must be decomposed and simplified. The resulting modelling approach has to follow the ISO Reference Model - Open Distributing Processing (RM-ODP). The ISO RM-ODP describes any system component from different perspectives. Platform-independent perspectives contain the enterprise view (business process, policies, scenarios, use cases), the information view (classes and associations) and the computational view (composition and decomposition), whereas platform-specific perspectives concern the engineering view (physical distribution and realisation) and the technology view (implementation details from protocols up to education and training) on system components. Those views have to be established for components reflecting aspects of all domains involved in healthcare environments including administrative, legal, medical, technical, etc. Thus, security-related component models reflecting all view mentioned have to be established for enabling both application and communication security services as integral part of the system's architecture. Beside decomposition and simplification of system regarding the different viewpoint on their components, different levels of systems' granularity can be defined hiding internals or focusing on properties of basic components to form a more complex structure. The resulting models describe both structure and behaviour of component-based systems. The described approach has been deployed in different projects defining EHR systems and their underlying architectural principles. In that context, the Australian GEHR project, the openEHR initiative, the revision of CEN ENV 13606 "Electronic Health Record communication", all based on Archetypes, but also the HL7 version 3 activities are discussed in some detail. The latter include the HL7 RIM, the HL7 Development Framework, the HL7's clinical document architecture (CDA) as well as the set of models from use cases, activity diagrams, sequence diagrams up to Domain Information Models (DMIMs) and their building blocks Common Message Element Types (CMET) Constraining Models to their underlying concepts. The future-proof EHR architecture as open, user-centric, user-friendly, flexible, scalable, portable core application in health information systems and health networks has to follow advanced architectural paradigms.

  15. Wealth condensation in pareto macroeconomies

    NASA Astrophysics Data System (ADS)

    Burda, Z.; Johnston, D.; Jurkiewicz, J.; Kamiński, M.; Nowak, M. A.; Papp, G.; Zahed, I.

    2002-02-01

    We discuss a Pareto macroeconomy (a) in a closed system with fixed total wealth and (b) in an open system with average mean wealth, and compare our results to a similar analysis in a super-open system (c) with unbounded wealth [J.-P. Bouchaud and M. Mézard, Physica A 282, 536 (2000)]. Wealth condensation takes place in the social phase for closed and open economies, while it occurs in the liberal phase for super-open economies. In the first two cases, the condensation is related to a mechanism known from the balls-in-boxes model, while in the last case, to the nonintegrable tails of the Pareto distribution. For a closed macroeconomy in the social phase, we point to the emergence of a ``corruption'' phenomenon: a sizeable fraction of the total wealth is always amassed by a single individual.

  16. Architecture for Survivable System Processing (ASSP)

    NASA Astrophysics Data System (ADS)

    Wood, Richard J.

    1991-11-01

    The Architecture for Survivable System Processing (ASSP) Program is a multi-phase effort to implement Department of Defense (DOD) and commercially developed high-tech hardware, software, and architectures for reliable space avionics and ground based systems. System configuration options provide processing capabilities to address Time Dependent Processing (TDP), Object Dependent Processing (ODP), and Mission Dependent Processing (MDP) requirements through Open System Architecture (OSA) alternatives that allow for the enhancement, incorporation, and capitalization of a broad range of development assets. High technology developments in hardware, software, and networking models, address technology challenges of long processor life times, fault tolerance, reliability, throughput, memories, radiation hardening, size, weight, power (SWAP) and security. Hardware and software design, development, and implementation focus on the interconnectivity/interoperability of an open system architecture and is being developed to apply new technology into practical OSA components. To insure for widely acceptable architecture capable of interfacing with various commercial and military components, this program provides for regular interactions with standardization working groups (e.g.) the International Standards Organization (ISO), American National Standards Institute (ANSI), Society of Automotive Engineers (SAE), and Institute of Electrical and Electronic Engineers (IEEE). Selection of a viable open architecture is based on the widely accepted standards that implement the ISO/OSI Reference Model.

  17. Architecture for Survivable System Processing (ASSP)

    NASA Technical Reports Server (NTRS)

    Wood, Richard J.

    1991-01-01

    The Architecture for Survivable System Processing (ASSP) Program is a multi-phase effort to implement Department of Defense (DOD) and commercially developed high-tech hardware, software, and architectures for reliable space avionics and ground based systems. System configuration options provide processing capabilities to address Time Dependent Processing (TDP), Object Dependent Processing (ODP), and Mission Dependent Processing (MDP) requirements through Open System Architecture (OSA) alternatives that allow for the enhancement, incorporation, and capitalization of a broad range of development assets. High technology developments in hardware, software, and networking models, address technology challenges of long processor life times, fault tolerance, reliability, throughput, memories, radiation hardening, size, weight, power (SWAP) and security. Hardware and software design, development, and implementation focus on the interconnectivity/interoperability of an open system architecture and is being developed to apply new technology into practical OSA components. To insure for widely acceptable architecture capable of interfacing with various commercial and military components, this program provides for regular interactions with standardization working groups (e.g.) the International Standards Organization (ISO), American National Standards Institute (ANSI), Society of Automotive Engineers (SAE), and Institute of Electrical and Electronic Engineers (IEEE). Selection of a viable open architecture is based on the widely accepted standards that implement the ISO/OSI Reference Model.

  18. Protecting sensitive systems and data in an open agency

    NASA Technical Reports Server (NTRS)

    Hunt, Douglas B.; Tompkins, Frederick G.

    1987-01-01

    This paper focuses on the policy and definitional issues associated with providing adequate and reasonable levels of protection for sensitive systems and data in an agency whose basic charter mandates the open sharing of information and transfer of technology into the market economy. An information model based on current Federal regulatory issuances is presented. A scheme for determining sensitivity levels, based on a categorization taxonomy,is provided.

  19. Rotor systems research aircraft simulation mathematical model

    NASA Technical Reports Server (NTRS)

    Houck, J. A.; Moore, F. L.; Howlett, J. J.; Pollock, K. S.; Browne, M. M.

    1977-01-01

    An analytical model developed for evaluating and verifying advanced rotor concepts is discussed. The model was used during in both open loop and real time man-in-the-loop simulation during the rotor systems research aircraft design. Future applications include: pilot training, preflight of test programs, and the evaluation of promising concepts before their implementation on the flight vehicle.

  20. Using WNTR to Model Water Distribution System Resilience

    EPA Science Inventory

    The Water Network Tool for Resilience (WNTR) is a new open source Python package developed by the U.S. Environmental Protection Agency and Sandia National Laboratories to model and evaluate resilience of water distribution systems. WNTR can be used to simulate a wide range of di...

  1. OpenID Connect as a security service in cloud-based medical imaging systems

    PubMed Central

    Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter

    2016-01-01

    Abstract. The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as “Kerberos of cloud.” We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model. PMID:27340682

  2. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system

    PubMed Central

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-01

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion–fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies. PMID:26786848

  3. Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system.

    PubMed

    Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro

    2016-01-20

    The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.

  4. A modeling paradigm for interdisciplinary water resources modeling: Simple Script Wrappers (SSW)

    NASA Astrophysics Data System (ADS)

    Steward, David R.; Bulatewicz, Tom; Aistrup, Joseph A.; Andresen, Daniel; Bernard, Eric A.; Kulcsar, Laszlo; Peterson, Jeffrey M.; Staggenborg, Scott A.; Welch, Stephen M.

    2014-05-01

    Holistic understanding of a water resources system requires tools capable of model integration. This team has developed an adaptation of the OpenMI (Open Modelling Interface) that allows easy interactions across the data passed between models. Capabilities have been developed to allow programs written in common languages such as matlab, python and scilab to share their data with other programs and accept other program's data. We call this interface the Simple Script Wrapper (SSW). An implementation of SSW is shown that integrates groundwater, economic, and agricultural models in the High Plains region of Kansas. Output from these models illustrates the interdisciplinary discovery facilitated through use of SSW implemented models. Reference: Bulatewicz, T., A. Allen, J.M. Peterson, S. Staggenborg, S.M. Welch, and D.R. Steward, The Simple Script Wrapper for OpenMI: Enabling interdisciplinary modeling studies, Environmental Modelling & Software, 39, 283-294, 2013. http://dx.doi.org/10.1016/j.envsoft.2012.07.006 http://code.google.com/p/simple-script-wrapper/

  5. An avionics scenario and command model description for Space Generic Open Avionics Architecture (SGOAA)

    NASA Technical Reports Server (NTRS)

    Stovall, John R.; Wray, Richard B.

    1994-01-01

    This paper presents a description of a model for a space vehicle operational scenario and the commands for avionics. This model will be used in developing a dynamic architecture simulation model using the Statemate CASE tool for validation of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA has been proposed as an avionics architecture standard to NASA through its Strategic Avionics Technology Working Group (SATWG) and has been accepted by the Society of Automotive Engineers (SAE) for conversion into an SAE Avionics Standard. This architecture was developed for the Flight Data Systems Division (FDSD) of the NASA Johnson Space Center (JSC) by the Lockheed Engineering and Sciences Company (LESC), Houston, Texas. This SGOAA includes a generic system architecture for the entities in spacecraft avionics, a generic processing external and internal hardware architecture, and a nine class model of interfaces. The SGOAA is both scalable and recursive and can be applied to any hierarchical level of hardware/software processing systems.

  6. 3D groundwater modeling of the Upper Mega Aquifer System (Arabian Peninsula) using OpenGeoSys

    NASA Astrophysics Data System (ADS)

    Schulz, Stephan; Rausch, Randolf; Siebert, Christian; Michelsen, Nils; Kolditz, Olaf; Al-Saud, Mohammed I.; Schüth, Christoph

    2013-04-01

    Groundwater is the only relevant freshwater resource for most countries on the Arabian Peninsula. Due to almost no recharge in most of the areas a sustainable management of this resource is not possible. Nevertheless, a smart and intelligent mining of groundwater can extend its lifetime. For this purpose groundwater models can be applied as powerful management tools. In this work a 3D groundwater model for the most relevant aquifer complex on the Arabian Peninsula, the Upper Mega Aquifer System, will be setup by using OpenGeoSys. The aquifer system has an extent of approximately 1.7 Mio. km2 and comprises 12 hydrogeological units from the Lower Cretaceous to the Neogene. The model serves the purpose to understand the system better and makes it possible to calculate scenarios of different abstraction rates and places. It could also help to quantify complex water balance components like the discharge into the Arabian Gulf. In order to setup the model further research as the estimation of important sink and source terms like groundwater recharge and Sabkha evaporation will be implemented.

  7. OpenSeesPy: Python library for the OpenSees finite element framework

    NASA Astrophysics Data System (ADS)

    Zhu, Minjie; McKenna, Frank; Scott, Michael H.

    2018-01-01

    OpenSees, an open source finite element software framework, has been used broadly in the earthquake engineering community for simulating the seismic response of structural and geotechnical systems. The framework allows users to perform finite element analysis with a scripting language and for developers to create both serial and parallel finite element computer applications as interpreters. For the last 15 years, Tcl has been the primary scripting language to which the model building and analysis modules of OpenSees are linked. To provide users with different scripting language options, particularly Python, the OpenSees interpreter interface was refactored to provide multi-interpreter capabilities. This refactoring, resulting in the creation of OpenSeesPy as a Python module, is accomplished through an abstract interface for interpreter calls with concrete implementations for different scripting languages. Through this approach, users are able to develop applications that utilize the unique features of several scripting languages while taking advantage of advanced finite element analysis models and algorithms.

  8. Review assessment support in Open Journal System using TextRank

    NASA Astrophysics Data System (ADS)

    Manalu, S. R.; Willy; Sundjaja, A. M.; Noerlina

    2017-01-01

    In this paper, a review assessment support in Open Journal System (OJS) using TextRank is proposed. OJS is an open-source journal management platform that provides a streamlined journal publishing workflow. TextRank is an unsupervised, graph-based ranking model commonly used as extractive auto summarization of text documents. This study applies the TextRank algorithm to summarize 50 article reviews from an OJS-based international journal. The resulting summaries are formed using the most representative sentences extracted from the reviews. The summaries are then used to help OJS editors in assessing a review’s quality.

  9. Biomechanical calculation of human TM joint loading with jaw opening.

    PubMed

    Kuboki, T; Takenami, Y; Maekawa, K; Shinoda, M; Yamashita, A; Clark, G T

    2000-11-01

    A three-dimensional, static mathematical calculation of the stomatognathic system was done to predict total temporomandibular joint (TMJ) loading at different levels of jaw opening. The model assumed that muscle forces acting on the mandible could be simulated by a combination of contractile components (CCs) and elastic components (ECs) and that static equilibrium existed within the body of the mandible. The model also imposed the constraint that any generated joint reaction force would act on the centre of the condyle. The results of the model demonstrated that under all conditions of opening and for all values of the elastic modulus selected, the forces between the TMJ condyle and the articular eminence were compressive in nature. The compressive force magnitude increased from 2.7 to 27.6 N incrementally as the jaw opened from 10 to 40 mm. Overall data in this study indicated that the TMJ tissues undergo low levels of compression at open positions up to 40 mm. Finally, the condition of trismus (increased jaw closing activation with opening) was simulated, the joint reaction force at 20 mm opening increased from 7.7 to 64.9 N with only a 20% activation of the closers.

  10. Automated population of an i2b2 clinical data warehouse from an openEHR-based data repository.

    PubMed

    Haarbrandt, Birger; Tute, Erik; Marschollek, Michael

    2016-10-01

    Detailed Clinical Model (DCM) approaches have recently seen wider adoption. More specifically, openEHR-based application systems are now used in production in several countries, serving diverse fields of application such as health information exchange, clinical registries and electronic medical record systems. However, approaches to efficiently provide openEHR data to researchers for secondary use have not yet been investigated or established. We developed an approach to automatically load openEHR data instances into the open source clinical data warehouse i2b2. We evaluated query capabilities and the performance of this approach in the context of the Hanover Medical School Translational Research Framework (HaMSTR), an openEHR-based data repository. Automated creation of i2b2 ontologies from archetypes and templates and the integration of openEHR data instances from 903 patients of a paediatric intensive care unit has been achieved. In total, it took an average of ∼2527s to create 2.311.624 facts from 141.917 XML documents. Using the imported data, we conducted sample queries to compare the performance with two openEHR systems and to investigate if this representation of data is feasible to support cohort identification and record level data extraction. We found the automated population of an i2b2 clinical data warehouse to be a feasible approach to make openEHR data instances available for secondary use. Such an approach can facilitate timely provision of clinical data to researchers. It complements analytics based on the Archetype Query Language by allowing querying on both, legacy clinical data sources and openEHR data instances at the same time and by providing an easy-to-use query interface. However, due to different levels of expressiveness in the data models, not all semantics could be preserved during the ETL process. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Effect of time step size and turbulence model on the open water hydrodynamic performance prediction of contra-rotating propellers

    NASA Astrophysics Data System (ADS)

    Wang, Zhan-zhi; Xiong, Ying

    2013-04-01

    A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers.

  12. Geowall: Investigations into low-cost stereo display technologies

    USGS Publications Warehouse

    Steinwand, Daniel R.; Davis, Brian; Weeks, Nathan

    2003-01-01

    Recently, the combination of new projection technology, fast, low-cost graphics cards, and Linux-powered personal computers has made it possible to provide a stereoprojection and stereoviewing system that is much more affordable than previous commercial solutions. These Geowall systems are low-cost visualization systems built with commodity off-the-shelf components, run on open-source (and other) operating systems, and using open-source applications software. In short, they are ?Beowulf-class? visualization systems that provide a cost-effective way for the U. S. Geological Survey to broaden participation in the visualization community and view stereoimagery and three-dimensional models2.

  13. Experimental recovery of quantum correlations in absence of system-environment back-action

    PubMed Central

    Xu, Jin-Shi; Sun, Kai; Li, Chuan-Feng; Xu, Xiao-Ye; Guo, Guang-Can; Andersson, Erika; Lo Franco, Rosario; Compagno, Giuseppe

    2013-01-01

    Revivals of quantum correlations in composite open quantum systems are a useful dynamical feature against detrimental effects of the environment. Their occurrence is attributed to flows of quantum information back and forth from systems to quantum environments. However, revivals also show up in models where the environment is classical, thus unable to store quantum correlations, and forbids system-environment back-action. This phenomenon opens basic issues about its interpretation involving the role of classical environments, memory effects, collective effects and system-environment correlations. Moreover, an experimental realization of back-action-free quantum revivals has applicative relevance as it leads to recover quantum resources without resorting to more demanding structured environments and correction procedures. Here we introduce a simple two-qubit model suitable to address these issues. We then report an all-optical experiment which simulates the model and permits us to recover and control, against decoherence, quantum correlations without back-action. We finally give an interpretation of the phenomenon by establishing the roles of the involved parties. PMID:24287554

  14. Experimental recovery of quantum correlations in absence of system-environment back-action.

    PubMed

    Xu, Jin-Shi; Sun, Kai; Li, Chuan-Feng; Xu, Xiao-Ye; Guo, Guang-Can; Andersson, Erika; Lo Franco, Rosario; Compagno, Giuseppe

    2013-01-01

    Revivals of quantum correlations in composite open quantum systems are a useful dynamical feature against detrimental effects of the environment. Their occurrence is attributed to flows of quantum information back and forth from systems to quantum environments. However, revivals also show up in models where the environment is classical, thus unable to store quantum correlations, and forbids system-environment back-action. This phenomenon opens basic issues about its interpretation involving the role of classical environments, memory effects, collective effects and system-environment correlations. Moreover, an experimental realization of back-action-free quantum revivals has applicative relevance as it leads to recover quantum resources without resorting to more demanding structured environments and correction procedures. Here we introduce a simple two-qubit model suitable to address these issues. We then report an all-optical experiment which simulates the model and permits us to recover and control, against decoherence, quantum correlations without back-action. We finally give an interpretation of the phenomenon by establishing the roles of the involved parties.

  15. Learning from Multiple Collaborating Intelligent Tutors: An Agent-based Approach.

    ERIC Educational Resources Information Center

    Solomos, Konstantinos; Avouris, Nikolaos

    1999-01-01

    Describes an open distributed multi-agent tutoring system (MATS) and discusses issues related to learning in such open environments. Topics include modeling a one student-many teachers approach in a computer-based learning context; distributed artificial intelligence; implementation issues; collaboration; and user interaction. (Author/LRW)

  16. Ricardo Oliveira | NREL

    Science.gov Websites

    the System Modeling & Geospatial Data Science Group in the Strategic Energy Analysis Center. Areas Publications Oliveira, R and Moreno, R. 2016. Harvesting, Integrating and Distributing Large Open Geospatial Datasets Using Free and Open-Source Software. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B7

  17. Improvement and speed optimization of numerical tsunami modelling program using OpenMP technology

    NASA Astrophysics Data System (ADS)

    Chernov, A.; Zaytsev, A.; Yalciner, A.; Kurkin, A.

    2009-04-01

    Currently, the basic problem of tsunami modeling is low speed of calculations which is unacceptable for services of the operative notification. Existing algorithms of numerical modeling of hydrodynamic processes of tsunami waves are developed without taking the opportunities of modern computer facilities. There is an opportunity to have considerable acceleration of process of calculations by using parallel algorithms. We discuss here new approach to parallelization tsunami modeling code using OpenMP Technology (for multiprocessing systems with the general memory). Nowadays, multiprocessing systems are easily accessible for everyone. The cost of the use of such systems becomes much lower comparing to the costs of clusters. This opportunity also benefits all programmers to apply multithreading algorithms on desktop computers of researchers. Other important advantage of the given approach is the mechanism of the general memory - there is no necessity to send data on slow networks (for example Ethernet). All memory is the common for all computing processes; it causes almost linear scalability of the program and processes. In the new version of NAMI DANCE using OpenMP technology and multi-threading algorithm provide 80% gain in speed in comparison with the one-thread version for dual-processor unit. The speed increased and 320% gain was attained for four core processor unit of PCs. Thus, it was possible to reduce considerably time of performance of calculations on the scientific workstations (desktops) without complete change of the program and user interfaces. The further modernization of algorithms of preparation of initial data and processing of results using OpenMP looks reasonable. The final version of NAMI DANCE with the increased computational speed can be used not only for research purposes but also in real time Tsunami Warning Systems.

  18. Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries

    NASA Astrophysics Data System (ADS)

    Marenda, Mattia; Zanardo, Marina; Trovato, Antonio; Seno, Flavio; Squartini, Andrea

    2016-12-01

    Bacterial communities undergo collective behavioural switches upon producing and sensing diffusible signal molecules; a mechanism referred to as Quorum Sensing (QS). Exemplarily, biofilm organic matrices are built concertedly by bacteria in several environments. QS scope in bacterial ecology has been debated for over 20 years. Different perspectives counterpose the role of density reporter for populations to that of local environment diffusivity probe for individual cells. Here we devise a model system where tubes of different heights contain matrix-embedded producers and sensors. These tubes allow non-limiting signal diffusion from one open end, thereby showing that population spatial extension away from an open boundary can be a main critical factor in QS. Experimental data, successfully recapitulated by a comprehensive mathematical model, demonstrate how tube height can overtake the role of producer density in triggering sensor activation. The biotic degradation of the signal is found to play a major role and to be species-specific and entirely feedback-independent.

  19. Urban Renewable Building And Neighborhood Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    URBANopt is a user interface for creating and running district and city scale building energy simulations. The framework is built around the OpenStudio Urban Measures which are part of the OpenStudio project. Building footprints, building height, building type, and other data can be imported from public records or other sources. Footprints and locations for new buildings and district systems can also be specified. OpenStudio Measures are used to create starting point energy models and to model energy design features and efficiency measures for each building. URBANopt allows a user to pose several scenarios such as “what if 30% of themore » commercial retail buildings added roof top solar” or “what if all elementary schools converted to ground source heat pumps” and then visualize the impacts at a district or city scale. URBANopt is capable of modeling existing buildings, new construction, and district energy systems. URBANopt can be used to explore options for achieving Zero Energy across a collection of buildings (e.g., Zero Energy Districts).« less

  20. Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries.

    PubMed

    Marenda, Mattia; Zanardo, Marina; Trovato, Antonio; Seno, Flavio; Squartini, Andrea

    2016-12-14

    Bacterial communities undergo collective behavioural switches upon producing and sensing diffusible signal molecules; a mechanism referred to as Quorum Sensing (QS). Exemplarily, biofilm organic matrices are built concertedly by bacteria in several environments. QS scope in bacterial ecology has been debated for over 20 years. Different perspectives counterpose the role of density reporter for populations to that of local environment diffusivity probe for individual cells. Here we devise a model system where tubes of different heights contain matrix-embedded producers and sensors. These tubes allow non-limiting signal diffusion from one open end, thereby showing that population spatial extension away from an open boundary can be a main critical factor in QS. Experimental data, successfully recapitulated by a comprehensive mathematical model, demonstrate how tube height can overtake the role of producer density in triggering sensor activation. The biotic degradation of the signal is found to play a major role and to be species-specific and entirely feedback-independent.

  1. Grid Integrated Distributed PV (GridPV) Version 2.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reno, Matthew J.; Coogan, Kyle

    2014-12-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functio ns are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in th e OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included tomore » show potential uses of the toolbox functions. Each function i n the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.« less

  2. OpenBiodiv-O: ontology of the OpenBiodiv knowledge management system.

    PubMed

    Senderov, Viktor; Simov, Kiril; Franz, Nico; Stoev, Pavel; Catapano, Terry; Agosti, Donat; Sautter, Guido; Morris, Robert A; Penev, Lyubomir

    2018-01-18

    The biodiversity domain, and in particular biological taxonomy, is moving in the direction of semantization of its research outputs. The present work introduces OpenBiodiv-O, the ontology that serves as the basis of the OpenBiodiv Knowledge Management System. Our intent is to provide an ontology that fills the gaps between ontologies for biodiversity resources, such as DarwinCore-based ontologies, and semantic publishing ontologies, such as the SPAR Ontologies. We bridge this gap by providing an ontology focusing on biological taxonomy. OpenBiodiv-O introduces classes, properties, and axioms in the domains of scholarly biodiversity publishing and biological taxonomy and aligns them with several important domain ontologies (FaBiO, DoCO, DwC, Darwin-SW, NOMEN, ENVO). By doing so, it bridges the ontological gap across scholarly biodiversity publishing and biological taxonomy and allows for the creation of a Linked Open Dataset (LOD) of biodiversity information (a biodiversity knowledge graph) and enables the creation of the OpenBiodiv Knowledge Management System. A key feature of the ontology is that it is an ontology of the scientific process of biological taxonomy and not of any particular state of knowledge. This feature allows it to express a multiplicity of scientific opinions. The resulting OpenBiodiv knowledge system may gain a high level of trust in the scientific community as it does not force a scientific opinion on its users (e.g. practicing taxonomists, library researchers, etc.), but rather provides the tools for experts to encode different views as science progresses. OpenBiodiv-O provides a conceptual model of the structure of a biodiversity publication and the development of related taxonomic concepts. It also serves as the basis for the OpenBiodiv Knowledge Management System.

  3. OpenSim: open-source software to create and analyze dynamic simulations of movement.

    PubMed

    Delp, Scott L; Anderson, Frank C; Arnold, Allison S; Loan, Peter; Habib, Ayman; John, Chand T; Guendelman, Eran; Thelen, Darryl G

    2007-11-01

    Dynamic simulations of movement allow one to study neuromuscular coordination, analyze athletic performance, and estimate internal loading of the musculoskeletal system. Simulations can also be used to identify the sources of pathological movement and establish a scientific basis for treatment planning. We have developed a freely available, open-source software system (OpenSim) that lets users develop models of musculoskeletal structures and create dynamic simulations of a wide variety of movements. We are using this system to simulate the dynamics of individuals with pathological gait and to explore the biomechanical effects of treatments. OpenSim provides a platform on which the biomechanics community can build a library of simulations that can be exchanged, tested, analyzed, and improved through a multi-institutional collaboration. Developing software that enables a concerted effort from many investigators poses technical and sociological challenges. Meeting those challenges will accelerate the discovery of principles that govern movement control and improve treatments for individuals with movement pathologies.

  4. Government Open Systems Interconnection Profile (GOSIP) transition strategy

    NASA Astrophysics Data System (ADS)

    Laxen, Mark R.

    1993-09-01

    This thesis analyzes the Government Open Systems Interconnection Profile (GOSIP) and the requirements of the Federal Information Processing Standard (FIPS) Publication 146-1. It begins by examining the International Organization for Standardization (ISO) Open Systems Interconnection (OSI) architecture and protocol suites and the distinctions between GOSIP version one and two. Additionally, it explores some of the GOSIP protocol details and discusses the process by which standards organizations have developed their recommendations. Implementation considerations from both government and vendor perspectives illustrate the barriers and requirements faced by information systems managers, as well as basic transition strategies. The result of this thesis is to show a transition strategy through an extended and coordinated period of coexistence due to extensive legacy systems and GOSIP product unavailability. Recommendations for GOSIP protocol standards to include capabilities outside the OSI model are also presented.

  5. Modeling the Ionosphere-Thermosphere Response to a Geomagnetic Storm Using Physics-based Magnetospheric Energy Input: OpenGGCM-CTIM Results

    NASA Technical Reports Server (NTRS)

    Connor, Hyunju K.; Zesta, Eftyhia; Fedrizzi, Mariangel; Shi, Yong; Raeder, Joachim; Codrescu, Mihail V.; Fuller-Rowell, Tim J.

    2016-01-01

    The magnetosphere is a major source of energy for the Earth's ionosphere and thermosphere (IT) system. Current IT models drive the upper atmosphere using empirically calculated magnetospheric energy input. Thus, they do not sufficiently capture the storm-time dynamics, particularly at high latitudes. To improve the prediction capability of IT models, a physics-based magnetospheric input is necessary. Here, we use the Open Global General Circulation Model (OpenGGCM) coupled with the Coupled Thermosphere Ionosphere Model (CTIM). OpenGGCM calculates a three-dimensional global magnetosphere and a two-dimensional high-latitude ionosphere by solving resistive magnetohydrodynamic (MHD) equations with solar wind input. CTIM calculates a global thermosphere and a high-latitude ionosphere in three dimensions using realistic magnetospheric inputs from the OpenGGCM. We investigate whether the coupled model improves the storm-time IT responses by simulating a geomagnetic storm that is preceded by a strong solar wind pressure front on August 24, 2005. We compare the OpenGGCM-CTIM results with low-earth-orbit satellite observations and with the model results of Coupled Thermosphere-Ionosphere-Plasmasphere electrodynamics (CTIPe). CTIPe is an up-to-date version of CTIM that incorporates more IT dynamics such as a low-latitude ionosphere and a plasmasphere, but uses empirical magnetospheric input. OpenGGCMCTIM reproduces localized neutral density peaks at approx. 400 km altitude in the high-latitude dayside regions in agreement with in situ observations during the pressure shock and the early phase of the storm. Although CTIPe is in some sense a much superior model than CTIM, it misses these localized enhancements. Unlike the CTIPe empirical input models, OpenGGCM-CTIM more faithfully produces localized increases of both auroral precipitation and ionospheric electric fields near the high-latitude dayside region after the pressure shock and after the storm onset, which in turn effectively heats the thermosphere and causes the neutral density increase at 400 km altitude.

  6. Epidemic Dynamics in Open Quantum Spin Systems

    NASA Astrophysics Data System (ADS)

    Pérez-Espigares, Carlos; Marcuzzi, Matteo; Gutiérrez, Ricardo; Lesanovsky, Igor

    2017-10-01

    We explore the nonequilibrium evolution and stationary states of an open many-body system that displays epidemic spreading dynamics in a classical and a quantum regime. Our study is motivated by recent experiments conducted in strongly interacting gases of highly excited Rydberg atoms where the facilitated excitation of Rydberg states competes with radiative decay. These systems approximately implement open quantum versions of models for population dynamics or disease spreading where species can be in a healthy, infected or immune state. We show that in a two-dimensional lattice, depending on the dominance of either classical or quantum effects, the system may display a different kind of nonequilibrium phase transition. We moreover discuss the observability of our findings in laser driven Rydberg gases with particular focus on the role of long-range interactions.

  7. OpCost: an open-source system for estimating costs of stand-level forest operations

    Treesearch

    Conor K. Bell; Robert F. Keefe; Jeremy S. Fried

    2017-01-01

    This report describes and documents the OpCost forest operations cost model, a key component of the BioSum analysis framework. OpCost is available in two editions: as a callable module for use with BioSum, and in a stand-alone edition that can be run directly from R. OpCost model logic and assumptions for this open-source tool are explained, references to the...

  8. Human life support during interplanetary travel and domicile. III - Mars expedition system trade study

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Ferrall, Joseph F.; Rohatgi, Naresh K.

    1991-01-01

    Several alternative configurations of life-support systems (LSSs) for a Mars missions are compared analytically on a quantitative basis in terms of weight, volume, and power. A baseline technology set is utilized for the illustrations of systems including totally open loop, carbon dioxide removal only, partially closed loop, and totally closed loop. The analytical model takes advantage of a modular, top-down hierarchical breakdown of LSS subsystems into functional elements that represent individual processing technologies. The open-loop systems are not competitive in terms of weight for both long-duration orbiters and short-duration lander vehicles, and power demands are lowest with the open loop and highest with the closed loop. The closed-loop system can reduce vehicle weight by over 70,000 lbs and thereby overcome the power penalty of 1600 W; the closed-loop variety is championed as the preferred system for a Mars expedition.

  9. Animal Guts as Ideal Reactors: An Open-Ended Project for a Course in Kinetics and Reactor Design.

    ERIC Educational Resources Information Center

    Carlson, Eric D.; Gast, Alice P.

    1998-01-01

    Presents an open-ended project tailored for a senior kinetics and reactor design course in which basic reactor design equations are used to model the digestive systems of several animals. Describes the assignment as well as the results. (DDR)

  10. Extending Open Education in the United States.

    ERIC Educational Resources Information Center

    Spodek, Bernard

    The educational idealogy and administration of the person-oriented English Infant School and the object-oriented traditional American primary school are contrasted in this paper. The English Infant School movement is a contemporary model of open education. Development of opern educational systems in America should emphasize transfer of the spirit…

  11. Openness in Resource Planning in State Universities. AIR Forum 1980 Paper.

    ERIC Educational Resources Information Center

    Delmont, Timothy J.

    Managerial approaches to budget planning for state universities were investigated using an open budgeting model that emphasizes the function of communication, technical analysis, and participative decision making. System-level and central officers in 32 research universities were surveyed to determine whether they used and endorsed technical…

  12. Review of pre-rift continental fits and plate kinematic models for the Gulf of Mexico opening

    NASA Astrophysics Data System (ADS)

    Steier, A.; Mann, P.

    2016-12-01

    We review models for the opening of the Gulf of Mexico (GOM) by: 1) subdividing them into historical groupings; 2) demonstrating their strengths and weaknesses using GPlates; and 3) illustrating the compatibility of models for GOM opening with the surrounding plate mosaic in the Central Atlantic and Caribbean. Tectonic models for GOM opening during the 1970's and 1980's disagreed on whether the Yucatan continental block originated inside or outside the GOM, but difficulties in filling the continental underlap in reconstructions of pre-rift Pangea eventually led to a consensus that the Yucatan block originated inside the GOM. The 1980's saw the advent of the "piggyback model" for GOM evolution based on the assumption that the Jurassic opening of the GOM formed a southwestward extension of the Central Atlantic spreading system and opened about its same pole of rotation. This single-phase model eventually fell out of favor as refraction surveys determined that the existence of a wedge-shaped area of oceanic crust in the deep GOM (widening from east to west) was not compatible with the single, NW-SE opening direction proposed by the piggyback model. The early 2000's saw the appearance of a two-phase opening model as a solution to the existence of a broad zone of NW-SE continental extension in the northern GOM that was succeeded by a more NS-directed phase of extension that in some areas cut at right angles across structures produced during the first rift phase. The second phase of late Jurassic rifting and oceanic crust formation is the outcome of counterclockwise rotation of the Yucatan block that is thought to have been caused by forces acting on the edges of the block. By the earliest Cretaceous rifting in the GOM has ended although tectonic events in Mexico and the northern Caribbean reactivate and influence GOM sedimentation. We provide a GPlates restoration from Triassic to Recent that takes into account all available geologic and geophysical data and illustrates the two-phase GOM opening model which appears to be the tectonic model that can explain the most geologic and geophysical datasets from the Caribbean.

  13. Staghorn: An Automated Large-Scale Distributed System Analysis Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabert, Kasimir; Burns, Ian; Elliott, Steven

    2016-09-01

    Conducting experiments on large-scale distributed computing systems is becoming significantly easier with the assistance of emulation. Researchers can now create a model of a distributed computing environment and then generate a virtual, laboratory copy of the entire system composed of potentially thousands of virtual machines, switches, and software. The use of real software, running at clock rate in full virtual machines, allows experiments to produce meaningful results without necessitating a full understanding of all model components. However, the ability to inspect and modify elements within these models is bound by the limitation that such modifications must compete with the model,more » either running in or alongside it. This inhibits entire classes of analyses from being conducted upon these models. We developed a mechanism to snapshot an entire emulation-based model as it is running. This allows us to \\freeze time" and subsequently fork execution, replay execution, modify arbitrary parts of the model, or deeply explore the model. This snapshot includes capturing packets in transit and other input/output state along with the running virtual machines. We were able to build this system in Linux using Open vSwitch and Kernel Virtual Machines on top of Sandia's emulation platform Firewheel. This primitive opens the door to numerous subsequent analyses on models, including state space exploration, debugging distributed systems, performance optimizations, improved training environments, and improved experiment repeatability.« less

  14. Assimilation of Satellite-Derived Skin Temperature Observations into Land Surface Models

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Kumar, Sujay V.; Mahanama, P. P.; Koster, Randal D.; Liu, Q.

    2010-01-01

    Land surface (or "skin") temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. Here we assimilate LST retrievals from the International Satellite Cloud Climatology Project (ISCCP) into the Noah and Catchment (CLSM) land surface models using an ensemble-based, off-line land data assimilation system. LST is described very differently in the two models. A priori scaling and dynamic bias estimation approaches are applied because satellite and model LST typically exhibit different mean values and variability. Performance is measured against 27 months of in situ measurements from the Coordinated Energy and Water Cycle Observations Project at 48 stations. LST estimates from Noah and CLSM without data assimilation ("open loop") are comparable to each other and superior to that of ISCCP retrievals. For LST, RMSE values are 4.9 K (CLSM), 5.6 K (Noah), and 7.6 K (ISCCP), and anomaly correlation coefficients (R) are 0.62 (CLSM), 0.61 (Noah), and 0.52 (ISCCP). Assimilation of ISCCP retrievals provides modest yet statistically significant improvements (over open loop) of up to 0.7 K in RMSE and 0.05 in anomaly R. The skill of surface turbulent flux estimates from the assimilation integrations is essentially identical to the corresponding open loop skill. Noah assimilation estimates of ground heat flux, however, can be significantly worse than open loop estimates. Provided the assimilation system is properly adapted to each land model, the benefits from the assimilation of LST retrievals are comparable for both models.

  15. Linking the open source, spatial electrification tool (ONSSET) and the open source energy modelling system (OSeMOSYS), with a focus on Sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Mentis, Dimitrios; Howells, Mark; Rogner, Holger; Korkovelos, Alexandros; Arderne, Christopher; Siyal, Shahid; Zepeda, Eduardo; Taliotis, Constantinos; Bazilian, Morgan; de Roo, Ad; Tanvez, Yann; Oudalov, Alexandre; Scholtz, Ernst

    2017-04-01

    In September 2015, the United Nations General Assembly adopted Agenda 2030, which comprises a set of 17 Sustainable Development Goals (SDGs) defined by 169 targets. "Ensuring access to affordable, reliable, sustainable and modern energy for all by 2030" is the seventh goal (SDG7). While access to energy refers to more than electricity, the latter is the central focus of this work. According to the World Bank's 2015 Global Tracking Framework, roughly 15% of world population (or 1.1 billion people) lack access to electricity, and many more rely on poor quality electricity services. The majority of those without access (87%) reside in rural areas. This paper presents results of a Geographic Information Systems (GIS) approach coupled with open access data and linked to the Electricity Model Base for Africa (TEMBA), a model that represents each continental African country's electricity supply system. We present least-cost electrification strategies on a country-by-country basis for Sub-Saharan Africa. The electrification options include grid extension, mini-grid and stand-alone systems for rural, peri-urban, and urban contexts across the economy. At low levels of electricity demand there is a strong penetration of standalone technologies. However, higher electricity demand levels move the favourable electrification option from stand-alone systems to mini grid and to grid extensions.

  16. Convective stability of a plasma in a system of coupled adiabatic open cells in the Kruskal-Oberman model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsenin, V. V.; Terekhin, P. N.

    2010-08-15

    The Kruskal-Oberman kinetic model is used to determine the conditions for the convective stability of a plasma in a system of coupled axisymmetric adiabatic open cells in which the magnetic field curvature has opposite signs. For a combination of a nonparaxial simple mirror cell and a semicusp, the boundaries of the interval of values of the flux coordinate where the plasma can be stable are determined, as well as the range in which the ratio of the pressures in the component cells should lie. Numerical simulations were carried out for different particle distributions over the pitch angle.

  17. Simplified Analytical Model of a Six-Degree-of-Freedom Large-Gap Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1997-01-01

    A simplified analytical model of a six-degree-of-freedom large-gap magnetic suspension system is presented. The suspended element is a cylindrical permanent magnet that is magnetized in a direction which is perpendicular to its axis of symmetry. The actuators are air core electromagnets mounted in a planar array. The analytical model consists of an open-loop representation of the magnetic suspension system with electromagnet currents as inputs.

  18. Software Cost-Estimation Model

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1985-01-01

    Software Cost Estimation Model SOFTCOST provides automated resource and schedule model for software development. Combines several cost models found in open literature into one comprehensive set of algorithms. Compensates for nearly fifty implementation factors relative to size of task, inherited baseline, organizational and system environment and difficulty of task.

  19. Modeling of Quantum Transport in Semiconductor Devices (The Physics and Operation of Ultra-Submicron Length Semiconductor Devices).

    DTIC Science & Technology

    1994-05-01

    Open Systems and Contacts ...................... 16 A Ballistic Transport .......................... 17 B Role of the Boundaries and Contacts...15 Other Devices ................................ 90 V Modeling with the Green’s Functions 91 16 Homogeneous, Low-Field Systems .................. 93 A...The Retarded Function ..................... 95 B The "Less-Than" Function ................... 99 17 Homogeneous, High-Field Systems

  20. NOMADS-NOAA Operational Model Archive and Distribution System

    Science.gov Websites

    Forecast Maps Climate Climate Prediction Climate Archives Weather Safety Storm Ready NOAA Central Library (16km) 6 hours grib filter http OpenDAP-alt URMA hourly - http - Climate Models Climate Forecast System Flux Products 6 hours grib filter http - Climate Forecast System 3D Pressure Products 6 hours grib

  1. The opercular mouth-opening mechanism of largemouth bass functions as a 3D four-bar linkage with three degrees of freedom.

    PubMed

    Olsen, Aaron M; Camp, Ariel L; Brainerd, Elizabeth L

    2017-12-15

    The planar, one degree of freedom (1-DoF) four-bar linkage is an important model for understanding the function, performance and evolution of numerous biomechanical systems. One such system is the opercular mechanism in fishes, which is thought to function like a four-bar linkage to depress the lower jaw. While anatomical and behavioral observations suggest some form of mechanical coupling, previous attempts to model the opercular mechanism as a planar four-bar have consistently produced poor model fits relative to observed kinematics. Using newly developed, open source mechanism fitting software, we fitted multiple three-dimensional (3D) four-bar models with varying DoF to in vivo kinematics in largemouth bass to test whether the opercular mechanism functions instead as a 3D four-bar with one or more DoF. We examined link position error, link rotation error and the ratio of output to input link rotation to identify a best-fit model at two different levels of variation: for each feeding strike and across all strikes from the same individual. A 3D, 3-DoF four-bar linkage was the best-fit model for the opercular mechanism, achieving link rotational errors of less than 5%. We also found that the opercular mechanism moves with multiple degrees of freedom at the level of each strike and across multiple strikes. These results suggest that active motor control may be needed to direct the force input to the mechanism by the axial muscles and achieve a particular mouth-opening trajectory. Our results also expand the versatility of four-bar models in simulating biomechanical systems and extend their utility beyond planar or single-DoF systems. © 2017. Published by The Company of Biologists Ltd.

  2. Effect of Flow Rate Controller on Liquid Steel Flow in Continuous Casting Mold using Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Gursoy, Kadir Ali; Yavuz, Mehmet Metin

    2014-11-01

    In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.

  3. Qualitative investigation of booster recovery in open sea

    NASA Technical Reports Server (NTRS)

    Beck, P. E.

    1973-01-01

    Limited tests were conducted using 1/27 scale model of a Titan 3C booster plus 1/32.9 and 1/15.6 scale models of a solid rocket booster case to establish some of the characteristics that will effect recovery operations in open seas. This preliminary effort was designed to provide additional background information for conceptual development of a waterborne recovery system for space shuttle boosters, pending initiation of comprehensive studies. The models were not instrumented; therefore, all data are qualitative (approximations) and are based on observations plus photographic coverage.

  4. Identifying a cooperative control mechanism between an applied field and the environment of open quantum systems

    NASA Astrophysics Data System (ADS)

    Gao, Fang; Rey-de-Castro, Roberto; Wang, Yaoxiong; Rabitz, Herschel; Shuang, Feng

    2016-05-01

    Many systems under control with an applied field also interact with the surrounding environment. Understanding the control mechanisms has remained a challenge, especially the role played by the interaction between the field and the environment. In order to address this need, here we expand the scope of the Hamiltonian-encoding and observable-decoding (HE-OD) technique. HE-OD was originally introduced as a theoretical and experimental tool for revealing the mechanism induced by control fields in closed quantum systems. The results of open-system HE-OD analysis presented here provide quantitative mechanistic insights into the roles played by a Markovian environment. Two model open quantum systems are considered for illustration. In these systems, transitions are induced by either an applied field linked to a dipole operator or Lindblad operators coupled to the system. For modest control yields, the HE-OD results clearly show distinct cooperation between the dynamics induced by the optimal field and the environment. Although the HE-OD methodology introduced here is considered in simulations, it has an analogous direct experimental formulation, which we suggest may be applied to open systems in the laboratory to reveal mechanistic insights.

  5. Modeling open nanophotonic systems using the Fourier modal method: generalization to 3D Cartesian coordinates.

    PubMed

    Häyrynen, Teppo; Osterkryger, Andreas Dyhl; de Lasson, Jakob Rosenkrantz; Gregersen, Niels

    2017-09-01

    Recently, an open geometry Fourier modal method based on a new combination of an open boundary condition and a non-uniform k-space discretization was introduced for rotationally symmetric structures, providing a more efficient approach for modeling nanowires and micropillar cavities [J. Opt. Soc. Am. A33, 1298 (2016)JOAOD61084-752910.1364/JOSAA.33.001298]. Here, we generalize the approach to three-dimensional (3D) Cartesian coordinates, allowing for the modeling of rectangular geometries in open space. The open boundary condition is a consequence of having an infinite computational domain described using basis functions that expand the whole space. The strength of the method lies in discretizing the Fourier integrals using a non-uniform circular "dartboard" sampling of the Fourier k space. We show that our sampling technique leads to a more accurate description of the continuum of the radiation modes that leak out from the structure. We also compare our approach to conventional discretization with direct and inverse factorization rules commonly used in established Fourier modal methods. We apply our method to a variety of optical waveguide structures and demonstrate that the method leads to a significantly improved convergence, enabling more accurate and efficient modeling of open 3D nanophotonic structures.

  6. Exploring the Components of Dynamic Modeling Techniques

    ERIC Educational Resources Information Center

    Turnitsa, Charles Daniel

    2012-01-01

    Upon defining the terms modeling and simulation, it becomes apparent that there is a wide variety of different models, using different techniques, appropriate for different levels of representation for any one system to be modeled. Selecting an appropriate conceptual modeling technique from those available is an open question for the practitioner.…

  7. OpenTox predictive toxicology framework: toxicological ontology and semantic media wiki-based OpenToxipedia

    PubMed Central

    2012-01-01

    Background The OpenTox Framework, developed by the partners in the OpenTox project (http://www.opentox.org), aims at providing a unified access to toxicity data, predictive models and validation procedures. Interoperability of resources is achieved using a common information model, based on the OpenTox ontologies, describing predictive algorithms, models and toxicity data. As toxicological data may come from different, heterogeneous sources, a deployed ontology, unifying the terminology and the resources, is critical for the rational and reliable organization of the data, and its automatic processing. Results The following related ontologies have been developed for OpenTox: a) Toxicological ontology – listing the toxicological endpoints; b) Organs system and Effects ontology – addressing organs, targets/examinations and effects observed in in vivo studies; c) ToxML ontology – representing semi-automatic conversion of the ToxML schema; d) OpenTox ontology– representation of OpenTox framework components: chemical compounds, datasets, types of algorithms, models and validation web services; e) ToxLink–ToxCast assays ontology and f) OpenToxipedia community knowledge resource on toxicology terminology. OpenTox components are made available through standardized REST web services, where every compound, data set, and predictive method has a unique resolvable address (URI), used to retrieve its Resource Description Framework (RDF) representation, or to initiate the associated calculations and generate new RDF-based resources. The services support the integration of toxicity and chemical data from various sources, the generation and validation of computer models for toxic effects, seamless integration of new algorithms and scientifically sound validation routines and provide a flexible framework, which allows building arbitrary number of applications, tailored to solving different problems by end users (e.g. toxicologists). Availability The OpenTox toxicological ontology projects may be accessed via the OpenTox ontology development page http://www.opentox.org/dev/ontology; the OpenTox ontology is available as OWL at http://opentox.org/api/1 1/opentox.owl, the ToxML - OWL conversion utility is an open source resource available at http://ambit.svn.sourceforge.net/viewvc/ambit/branches/toxml-utils/ PMID:22541598

  8. OpenTox predictive toxicology framework: toxicological ontology and semantic media wiki-based OpenToxipedia.

    PubMed

    Tcheremenskaia, Olga; Benigni, Romualdo; Nikolova, Ivelina; Jeliazkova, Nina; Escher, Sylvia E; Batke, Monika; Baier, Thomas; Poroikov, Vladimir; Lagunin, Alexey; Rautenberg, Micha; Hardy, Barry

    2012-04-24

    The OpenTox Framework, developed by the partners in the OpenTox project (http://www.opentox.org), aims at providing a unified access to toxicity data, predictive models and validation procedures. Interoperability of resources is achieved using a common information model, based on the OpenTox ontologies, describing predictive algorithms, models and toxicity data. As toxicological data may come from different, heterogeneous sources, a deployed ontology, unifying the terminology and the resources, is critical for the rational and reliable organization of the data, and its automatic processing. The following related ontologies have been developed for OpenTox: a) Toxicological ontology - listing the toxicological endpoints; b) Organs system and Effects ontology - addressing organs, targets/examinations and effects observed in in vivo studies; c) ToxML ontology - representing semi-automatic conversion of the ToxML schema; d) OpenTox ontology- representation of OpenTox framework components: chemical compounds, datasets, types of algorithms, models and validation web services; e) ToxLink-ToxCast assays ontology and f) OpenToxipedia community knowledge resource on toxicology terminology.OpenTox components are made available through standardized REST web services, where every compound, data set, and predictive method has a unique resolvable address (URI), used to retrieve its Resource Description Framework (RDF) representation, or to initiate the associated calculations and generate new RDF-based resources.The services support the integration of toxicity and chemical data from various sources, the generation and validation of computer models for toxic effects, seamless integration of new algorithms and scientifically sound validation routines and provide a flexible framework, which allows building arbitrary number of applications, tailored to solving different problems by end users (e.g. toxicologists). The OpenTox toxicological ontology projects may be accessed via the OpenTox ontology development page http://www.opentox.org/dev/ontology; the OpenTox ontology is available as OWL at http://opentox.org/api/1 1/opentox.owl, the ToxML - OWL conversion utility is an open source resource available at http://ambit.svn.sourceforge.net/viewvc/ambit/branches/toxml-utils/

  9. Operational aspects of asynchronous filtering for improved flood forecasting

    NASA Astrophysics Data System (ADS)

    Rakovec, Oldrich; Weerts, Albrecht; Sumihar, Julius; Uijlenhoet, Remko

    2014-05-01

    Hydrological forecasts can be made more reliable and less uncertain by recursively improving initial conditions. A common way of improving the initial conditions is to make use of data assimilation (DA), a feedback mechanism or update methodology which merges model estimates with available real world observations. The traditional implementation of the Ensemble Kalman Filter (EnKF; e.g. Evensen, 2009) is synchronous, commonly named a three dimensional (3-D) assimilation, which means that all assimilated observations correspond to the time of update. Asynchronous DA, also called four dimensional (4-D) assimilation, refers to an updating methodology, in which observations being assimilated into the model originate from times different to the time of update (Evensen, 2009; Sakov 2010). This study investigates how the capabilities of the DA procedure can be improved by applying alternative Kalman-type methods, e.g., the Asynchronous Ensemble Kalman Filter (AEnKF). The AEnKF assimilates observations with smaller computational costs than the original EnKF, which is beneficial for operational purposes. The results of discharge assimilation into a grid-based hydrological model for the Upper Ourthe catchment in Belgian Ardennes show that including past predictions and observations in the AEnKF improves the model forecasts as compared to the traditional EnKF. Additionally we show that elimination of the strongly non-linear relation between the soil moisture storage and assimilated discharge observations from the model update becomes beneficial for an improved operational forecasting, which is evaluated using several validation measures. In the current study we employed the HBV-96 model built within a recently developed open source modelling environment OpenStreams (2013). The advantage of using OpenStreams (2013) is that it enables direct communication with OpenDA (2013), an open source data assimilation toolbox. OpenDA provides a number of algorithms for model calibration and assimilation and is suitable to be connected to any kind of environmental model. This setup is embedded in the Delft Flood Early Warning System (Delft-FEWS, Werner et al., 2013) for making all simulations and forecast runs and handling of all hydrological and meteorological data. References: Evensen, G. (2009), Data Assimilation: The Ensemble Kalman Filter, Springer, doi:10.1007/978-3-642-03711-5. OpenDA (2013), The OpenDA data-assimilation toolbox, www.openda.org, (last access: 1 November 2013). OpenStreams (2013), OpenStreams, www.openstreams.nl, (last access: 1 November 2013). Sakov, P., G. Evensen, and L. Bertino (2010), Asynchronous data assimilation with the EnKF, Tellus, Series A: Dynamic Meteorology and Oceanography, 62(1), 24-29, doi:10.1111/j.1600-0870.2009.00417.x. Werner, M., J. Schellekens, P. Gijsbers, M. van Dijk, O. van den Akker, and K. Heynert (2013), The Delft-FEWS flow forecasting system, Environ. Mod. & Soft., 40(0), 65-77, doi: http://dx.doi.org/10.1016/j.envsoft.2012.07.010.

  10. A Compact Energy Harvesting System for Outdoor Wireless Sensor Nodes Based on a Low-Cost In Situ Photovoltaic Panel Characterization-Modelling Unit.

    PubMed

    Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Martínez, Pedro A

    2017-08-04

    This paper presents a low-cost high-efficiency solar energy harvesting system to power outdoor wireless sensor nodes. It is based on a Voltage Open Circuit (VOC) algorithm that estimates the open-circuit voltage by means of a multilayer perceptron neural network model trained using local experimental characterization data, which are acquired through a novel low cost characterization system incorporated into the deployed node. Both units-characterization and modelling-are controlled by the same low-cost microcontroller, providing a complete solution which can be understood as a virtual pilot cell, with identical characteristics to those of the specific small solar cell installed on the sensor node, that besides allows an easy adaptation to changes in the actual environmental conditions, panel aging, etc. Experimental comparison to a classical pilot panel based VOC algorithm show better efficiency under the same tested conditions.

  11. An approach for the semantic interoperability of ISO EN 13606 and OpenEHR archetypes.

    PubMed

    Martínez-Costa, Catalina; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás

    2010-10-01

    The communication between health information systems of hospitals and primary care organizations is currently an important challenge to improve the quality of clinical practice and patient safety. However, clinical information is usually distributed among several independent systems that may be syntactically or semantically incompatible. This fact prevents healthcare professionals from accessing clinical information of patients in an understandable and normalized way. In this work, we address the semantic interoperability of two EHR standards: OpenEHR and ISO EN 13606. Both standards follow the dual model approach which distinguishes information and knowledge, this being represented through archetypes. The solution presented here is capable of transforming OpenEHR archetypes into ISO EN 13606 and vice versa by combining Semantic Web and Model-driven Engineering technologies. The resulting software implementation has been tested using publicly available collections of archetypes for both standards.

  12. The Community WRF-Hydro Modeling System Version 4 Updates: Merging Toward Capabilities of the National Water Model

    NASA Astrophysics Data System (ADS)

    McAllister, M.; Gochis, D.; Dugger, A. L.; Karsten, L. R.; McCreight, J. L.; Pan, L.; Rafieeinasab, A.; Read, L. K.; Sampson, K. M.; Yu, W.

    2017-12-01

    The community WRF-Hydro modeling system is publicly available and provides researchers and operational forecasters a flexible and extensible capability for performing multi-scale, multi-physics options for hydrologic modeling that can be run independent or fully-interactive with the WRF atmospheric model. The core WRF-Hydro physics model contains very high-resolution descriptions of terrestrial hydrologic process representations such as land-atmosphere exchanges of energy and moisture, snowpack evolution, infiltration, terrain routing, channel routing, basic reservoir representation and hydrologic data assimilation. Complementing the core physics components of WRF-Hydro are an ecosystem of pre- and post-processing tools that facilitate the preparation of terrain and meteorological input data, an open-source hydrologic model evaluation toolset (Rwrfhydro), hydrologic data assimilation capabilities with DART and advanced model visualization capabilities. The National Center for Atmospheric Research (NCAR), through collaborative support from the National Science Foundation and other funding partners, provides community support for the entire WRF-Hydro system through a variety of mechanisms. This presentation summarizes the enhanced user support capabilities that are being developed for the community WRF-Hydro modeling system. These products and services include a new website, open-source code repositories, documentation and user guides, test cases, online training materials, live, hands-on training sessions, an email list serve, and individual user support via email through a new help desk ticketing system. The WRF-Hydro modeling system and supporting tools which now include re-gridding scripts and model calibration have recently been updated to Version 4 and are merging toward capabilities of the National Water Model.

  13. Intermittency and dynamical Lee-Yang zeros of open quantum systems.

    PubMed

    Hickey, James M; Flindt, Christian; Garrahan, Juan P

    2014-12-01

    We use high-order cumulants to investigate the Lee-Yang zeros of generating functions of dynamical observables in open quantum systems. At long times the generating functions take on a large-deviation form with singularities of the associated cumulant generating functions-or dynamical free energies-signifying phase transitions in the ensemble of dynamical trajectories. We consider a driven three-level system as well as the dissipative Ising model. Both systems exhibit dynamical intermittency in the statistics of quantum jumps. From the short-time behavior of the dynamical Lee-Yang zeros, we identify critical values of the counting field which we attribute to the observed intermittency and dynamical phase coexistence. Furthermore, for the dissipative Ising model we construct a trajectory phase diagram and estimate the value of the transverse field where the stationary state changes from being ferromagnetic (inactive) to paramagnetic (active).

  14. From translational research to open technology innovation systems.

    PubMed

    Savory, Clive; Fortune, Joyce

    2015-01-01

    The purpose of this paper is to question whether the emphasis placed within translational research on a linear model of innovation provides the most effective model for managing health technology innovation. Several alternative perspectives are presented that have potential to enhance the existing model of translational research. A case study is presented of innovation of a clinical decision support system. The paper concludes from the case study that an extending the triple helix model of technology transfer, to one based on a quadruple helix, present a basis for improving the performance translational research. A case study approach is used to help understand development of an innovative technology within a teaching hospital. The case is then used to develop and refine a model of the health technology innovation system. The paper concludes from the case study that existing models of translational research could be refined further through the development of a quadruple helix model of heath technology innovation that encompasses greater emphasis on user-led and open innovation perspectives. The paper presents several implications for future research based on the need to enhance the model of health technology innovation used to guide policy and practice. The quadruple helix model of innovation that is proposed can potentially guide alterations to the existing model of translational research in the healthcare sector. Several suggestions are made for how innovation activity can be better supported at both a policy and operational level. This paper presents a synthesis of the innovation literature applied to a theoretically important case of open innovation in the UK National Health Service. It draws in perspectives from other industrial sectors and applies them specifically to the management and organisation of innovation activities around health technology and the services in which they are embedded.

  15. Development and Demonstration of the Open Automated Demand Response Standard for the Residential Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herter, Karen; Rasin, Josh; Perry, Tim

    2009-11-30

    The goal of this study was to demonstrate a demand response system that can signal nearly every customer in all sectors through the integration of two widely available and non- proprietary communications technologies--Open Automated Demand Response (OpenADR) over lnternet protocol and Utility Messaging Channel (UMC) over FM radio. The outcomes of this project were as follows: (1) a software bridge to allow translation of pricing signals from OpenADR to UMC; and (2) a portable demonstration unit with an lnternet-connected notebook computer, a portfolio of DR-enabling technologies, and a model home. The demonstration unit provides visitors the opportunity to send electricity-pricingmore » information over the lnternet (through OpenADR and UMC) and then watch as the model appliances and lighting respond to the signals. The integration of OpenADR and UMC completed and demonstrated in this study enables utilities to send hourly or sub-hourly electricity pricing information simultaneously to the residential, commercial and industrial sectors.« less

  16. Characterization of Dynamical Phase Transitions in Quantum Jump Trajectories Beyond the Properties of the Stationary State

    NASA Astrophysics Data System (ADS)

    Lesanovsky, Igor; van Horssen, Merlijn; Guţă, Mădălin; Garrahan, Juan P.

    2013-04-01

    We describe how to characterize dynamical phase transitions in open quantum systems from a purely dynamical perspective, namely, through the statistical behavior of quantum jump trajectories. This approach goes beyond considering only properties of the steady state. While in small quantum systems dynamical transitions can only occur trivially at limiting values of the controlling parameters, in many-body systems they arise as collective phenomena and within this perspective they are reminiscent of thermodynamic phase transitions. We illustrate this in open models of increasing complexity: a three-level system, the micromaser, and a dissipative version of the quantum Ising model. In these examples dynamical transitions are accompanied by clear changes in static behavior. This is however not always the case, and, in general, dynamical phases need to be uncovered by observables which are strictly dynamical, e.g., dynamical counting fields. We demonstrate this via the example of a class of models of dissipative quantum glasses, whose dynamics can vary widely despite having identical (and trivial) stationary states.

  17. Characterization of dynamical phase transitions in quantum jump trajectories beyond the properties of the stationary state.

    PubMed

    Lesanovsky, Igor; van Horssen, Merlijn; Guţă, Mădălin; Garrahan, Juan P

    2013-04-12

    We describe how to characterize dynamical phase transitions in open quantum systems from a purely dynamical perspective, namely, through the statistical behavior of quantum jump trajectories. This approach goes beyond considering only properties of the steady state. While in small quantum systems dynamical transitions can only occur trivially at limiting values of the controlling parameters, in many-body systems they arise as collective phenomena and within this perspective they are reminiscent of thermodynamic phase transitions. We illustrate this in open models of increasing complexity: a three-level system, the micromaser, and a dissipative version of the quantum Ising model. In these examples dynamical transitions are accompanied by clear changes in static behavior. This is however not always the case, and, in general, dynamical phases need to be uncovered by observables which are strictly dynamical, e.g., dynamical counting fields. We demonstrate this via the example of a class of models of dissipative quantum glasses, whose dynamics can vary widely despite having identical (and trivial) stationary states.

  18. Hysteresis compensation of piezoelectric deformable mirror based on Prandtl-Ishlinskii model

    NASA Astrophysics Data System (ADS)

    Ma, Jianqiang; Tian, Lei; Li, Yan; Yang, Zongfeng; Cui, Yuguo; Chu, Jiaru

    2018-06-01

    Hysteresis of piezoelectric deformable mirror (DM) reduces the closed-loop bandwidth and the open-loop correction accuracy of adaptive optics (AO) systems. In this work, a classical Prandtl-Ishlinskii (PI) model is employed to model the hysteresis behavior of a unimorph DM with 20 actuators. A modified control algorithm combined with the inverse PI model is developed for piezoelectric DMs. With the help of PI model, the hysteresis of the DM was reduced effectively from about 9% to 1%. Furthermore, open-loop regenerations of low-order aberrations with or without hysteresis compensation were carried out. The experimental results demonstrate that the regeneration accuracy with PI model compensation is significantly improved.

  19. Development of an Open Rotor Cycle Model in NPSS Using a Multi-Design Point Approach

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric S.

    2011-01-01

    NASA's Environmentally Responsible Aviation Project and Subsonic Fixed Wing Project are focused on developing concepts and technologies which may enable dramatic reductions to the environmental impact of future generation subsonic aircraft (Refs. 1 and 2). The open rotor concept (also referred to as the Unducted Fan or advanced turboprop) may allow the achievement of this objective by reducing engine emissions and fuel consumption. To evaluate its potential impact, an open rotor cycle modeling capability is needed. This paper presents the initial development of an open rotor cycle model in the Numerical Propulsion System Simulation (NPSS) computer program which can then be used to evaluate the potential benefit of this engine. The development of this open rotor model necessitated addressing two modeling needs within NPSS. First, a method for evaluating the performance of counter-rotating propellers was needed. Therefore, a new counter-rotating propeller NPSS component was created. This component uses propeller performance maps developed from historic counter-rotating propeller experiments to determine the thrust delivered and power required. Second, several methods for modeling a counter-rotating power turbine within NPSS were explored. These techniques used several combinations of turbine components within NPSS to provide the necessary power to the propellers. Ultimately, a single turbine component with a conventional turbine map was selected. Using these modeling enhancements, an open rotor cycle model was developed in NPSS using a multi-design point approach. The multi-design point (MDP) approach improves the engine cycle analysis process by making it easier to properly size the engine to meet a variety of thrust targets throughout the flight envelope. A number of design points are considered including an aerodynamic design point, sea-level static, takeoff and top of climb. The development of this MDP model was also enabled by the selection of a simple power management scheme which schedules propeller blade angles with the freestream Mach number. Finally, sample open rotor performance results and areas for further model improvements are presented.

  20. Calculation of open and closed system elastic coefficients for multicomponent solids

    NASA Astrophysics Data System (ADS)

    Mishin, Y.

    2015-06-01

    Thermodynamic equilibrium in multicomponent solids subject to mechanical stresses is a complex nonlinear problem whose exact solution requires extensive computations. A few decades ago, Larché and Cahn proposed a linearized solution of the mechanochemical equilibrium problem by introducing the concept of open system elastic coefficients [Acta Metall. 21, 1051 (1973), 10.1016/0001-6160(73)90021-7]. Using the Ni-Al solid solution as a model system, we demonstrate that open system elastic coefficients can be readily computed by semigrand canonical Monte Carlo simulations in conjunction with the shape fluctuation approach. Such coefficients can be derived from a single simulation run, together with other thermodynamic properties needed for prediction of compositional fields in solid solutions containing defects. The proposed calculation approach enables streamlined solutions of mechanochemical equilibrium problems in complex alloys. Second order corrections to the linear theory are extended to multicomponent systems.

  1. Optimization of the Switch Mechanism in a Circuit Breaker Using MBD Based Simulation

    PubMed Central

    Jang, Jin-Seok; Yoon, Chang-Gyu; Ryu, Chi-Young; Kim, Hyun-Woo; Bae, Byung-Tae; Yoo, Wan-Suk

    2015-01-01

    A circuit breaker is widely used to protect electric power system from fault currents or system errors; in particular, the opening mechanism in a circuit breaker is important to protect current overflow in the electric system. In this paper, multibody dynamic model of a circuit breaker including switch mechanism was developed including the electromagnetic actuator system. Since the opening mechanism operates sequentially, optimization of the switch mechanism was carried out to improve the current breaking time. In the optimization process, design parameters were selected from length and shape of each latch, which changes pivot points of bearings to shorten the breaking time. To validate optimization results, computational results were compared to physical tests with a high speed camera. Opening time of the optimized mechanism was decreased by 2.3 ms, which was proved by experiments. Switch mechanism design process can be improved including contact-latch system by using this process. PMID:25918740

  2. DigR: a generic model and its open source simulation software to mimic three-dimensional root-system architecture diversity.

    PubMed

    Barczi, Jean-François; Rey, Hervé; Griffon, Sébastien; Jourdan, Christophe

    2018-04-18

    Many studies exist in the literature dealing with mathematical representations of root systems, categorized, for example, as pure structure description, partial derivative equations or functional-structural plant models. However, in these studies, root architecture modelling has seldom been carried out at the organ level with the inclusion of environmental influences that can be integrated into a whole plant characterization. We have conducted a multidisciplinary study on root systems including field observations, architectural analysis, and formal and mathematical modelling. This integrative and coherent approach leads to a generic model (DigR) and its software simulator. Architecture analysis applied to root systems helps at root type classification and architectural unit design for each species. Roots belonging to a particular type share dynamic and morphological characteristics which consist of topological and geometric features. The DigR simulator is integrated into the Xplo environment, with a user interface to input parameter values and make output ready for dynamic 3-D visualization, statistical analysis and saving to standard formats. DigR is simulated in a quasi-parallel computing algorithm and may be used either as a standalone tool or integrated into other simulation platforms. The software is open-source and free to download at http://amapstudio.cirad.fr/soft/xplo/download. DigR is based on three key points: (1) a root-system architectural analysis, (2) root type classification and modelling and (3) a restricted set of 23 root type parameters with flexible values indexed in terms of root position. Genericity and botanical accuracy of the model is demonstrated for growth, branching, mortality and reiteration processes, and for different root architectures. Plugin examples demonstrate the model's versatility at simulating plastic responses to environmental constraints. Outputs of the model include diverse root system structures such as tap-root, fasciculate, tuberous, nodulated and clustered root systems. DigR is based on plant architecture analysis which leads to specific root type classification and organization that are directly linked to field measurements. The open source simulator of the model has been included within a friendly user environment. DigR accuracy and versatility are demonstrated for growth simulations of complex root systems for both annual and perennial plants.

  3. Undecidability and Irreducibility Conditions for Open-Ended Evolution and Emergence.

    PubMed

    Hernández-Orozco, Santiago; Hernández-Quiroz, Francisco; Zenil, Hector

    2018-01-01

    Is undecidability a requirement for open-ended evolution (OEE)? Using methods derived from algorithmic complexity theory, we propose robust computational definitions of open-ended evolution and the adaptability of computable dynamical systems. Within this framework, we show that decidability imposes absolute limits on the stable growth of complexity in computable dynamical systems. Conversely, systems that exhibit (strong) open-ended evolution must be undecidable, establishing undecidability as a requirement for such systems. Complexity is assessed in terms of three measures: sophistication, coarse sophistication, and busy beaver logical depth. These three complexity measures assign low complexity values to random (incompressible) objects. As time grows, the stated complexity measures allow for the existence of complex states during the evolution of a computable dynamical system. We show, however, that finding these states involves undecidable computations. We conjecture that for similar complexity measures that assign low complexity values, decidability imposes comparable limits on the stable growth of complexity, and that such behavior is necessary for nontrivial evolutionary systems. We show that the undecidability of adapted states imposes novel and unpredictable behavior on the individuals or populations being modeled. Such behavior is irreducible. Finally, we offer an example of a system, first proposed by Chaitin, that exhibits strong OEE.

  4. Investigating the Acquisition of Software Systems that Rely on Open Architecture and Open Source Software

    DTIC Science & Technology

    2010-03-01

    associated with certain software systems [Breaux and Anton 2008]. With this basis to build on, it is now possible to analyze the alignment of...Kazman, R., (2003). Software Architecture in Practice, 2nd Edition, Addison-Wesley Pro- fessional, New York.. Breaux, T.D. and Anton , A.I. (2008... calculus for license rights and obligations in license and context models. Using them, we calculate rights and obligations for specific sys- tems, identify

  5. Experimental modeling of crown fire initiation in open and closed shrubland systems

    Treesearch

    W. Tachajapong; S. Lozano; S. Mahalingam; D.R. Weise

    2014-01-01

    The transition of surface fire to live shrub crown fuels was studied through a simplified laboratory experiment using an open-topped wind tunnel. Respective surface and crown fuels used were excelsior (shredded Populus tremuloides wood) and live chamise (Adenostoma fasciculatum, including branches and foliage). A high crown fuel...

  6. Career Education: An Open Door Policy.

    ERIC Educational Resources Information Center

    Wilson, Jeanne; Rutan, Patricia

    A model is presented in this paper for opening the doors between the educational system and the larger community to an effective career education program which would prepare graduates of the 1980s to move directly from the classroom into jobs. Topics discussed include the following: (1) the youth employment crisis and how business and government…

  7. Integrated Multidisciplinary Optimization Objects

    NASA Technical Reports Server (NTRS)

    Alston, Katherine

    2014-01-01

    OpenMDAO is an open-source MDAO framework. It is used to develop an integrated analysis and design environment for engineering challenges. This Phase II project integrated additional modules and design tools into OpenMDAO to perform discipline-specific analysis across multiple flight regimes at varying levels of fidelity. It also showcased a refined system architecture that allows the system to be less customized to a specific configuration (i.e., system and configuration separation). By delivering a capable and validated MDAO system along with a set of example applications to be used as a template for future users, this work greatly expands NASA's high-fidelity, physics-based MDAO capabilities and enables the design of revolutionary vehicles in a cost-effective manner. This proposed work complements M4 Engineering's expertise in developing modeling and simulation toolsets that solve relevant subsonic, supersonic, and hypersonic demonstration applications.

  8. Dynamic modeling of hybrid renewable energy systems for off-grid applications

    NASA Astrophysics Data System (ADS)

    Hasemeyer, Mark David

    The volatile prices of fossil fuels and their contribution to global warming have caused many people to turn to renewable energy systems. Many developing communities are forced to use these systems as they are too far from electrical distribution. As a result, numerous software models have been developed to simulate hybrid renewable energy systems. However almost, if not all, implementations are static in design. A static design limits the ability of the model to account for changes over time. Dynamic modeling can be used to fill the gaps where other modeling techniques fall short. This modeling practice allows the user to account for the effects of technological and economic factors over time. These factors can include changes in energy demand, energy production, and income level. Dynamic modeling can be particularly useful for developing communities who are off-grid and developing at rapid rates. In this study, a dynamic model was used to evaluate a real world system. A non-governmental organization interested in improving their current infrastructure was selected. Five different scenarios were analyzed and compared in order to discover which factors the model is most sensitive to. In four of the scenarios, a new energy system was purchased in order to account for the opening of a restaurant that would be used as a source of local income generation. These scenarios were then compared to a base case in which a new system was not purchased, and the restaurant was not opened. Finally, the results were used to determine which variables had the greatest impact on the various outputs of the simulation.

  9. Collaborative development of predictive toxicology applications

    PubMed Central

    2010-01-01

    OpenTox provides an interoperable, standards-based Framework for the support of predictive toxicology data management, algorithms, modelling, validation and reporting. It is relevant to satisfying the chemical safety assessment requirements of the REACH legislation as it supports access to experimental data, (Quantitative) Structure-Activity Relationship models, and toxicological information through an integrating platform that adheres to regulatory requirements and OECD validation principles. Initial research defined the essential components of the Framework including the approach to data access, schema and management, use of controlled vocabularies and ontologies, architecture, web service and communications protocols, and selection and integration of algorithms for predictive modelling. OpenTox provides end-user oriented tools to non-computational specialists, risk assessors, and toxicological experts in addition to Application Programming Interfaces (APIs) for developers of new applications. OpenTox actively supports public standards for data representation, interfaces, vocabularies and ontologies, Open Source approaches to core platform components, and community-based collaboration approaches, so as to progress system interoperability goals. The OpenTox Framework includes APIs and services for compounds, datasets, features, algorithms, models, ontologies, tasks, validation, and reporting which may be combined into multiple applications satisfying a variety of different user needs. OpenTox applications are based on a set of distributed, interoperable OpenTox API-compliant REST web services. The OpenTox approach to ontology allows for efficient mapping of complementary data coming from different datasets into a unifying structure having a shared terminology and representation. Two initial OpenTox applications are presented as an illustration of the potential impact of OpenTox for high-quality and consistent structure-activity relationship modelling of REACH-relevant endpoints: ToxPredict which predicts and reports on toxicities for endpoints for an input chemical structure, and ToxCreate which builds and validates a predictive toxicity model based on an input toxicology dataset. Because of the extensible nature of the standardised Framework design, barriers of interoperability between applications and content are removed, as the user may combine data, models and validation from multiple sources in a dependable and time-effective way. PMID:20807436

  10. Collaborative development of predictive toxicology applications.

    PubMed

    Hardy, Barry; Douglas, Nicki; Helma, Christoph; Rautenberg, Micha; Jeliazkova, Nina; Jeliazkov, Vedrin; Nikolova, Ivelina; Benigni, Romualdo; Tcheremenskaia, Olga; Kramer, Stefan; Girschick, Tobias; Buchwald, Fabian; Wicker, Joerg; Karwath, Andreas; Gütlein, Martin; Maunz, Andreas; Sarimveis, Haralambos; Melagraki, Georgia; Afantitis, Antreas; Sopasakis, Pantelis; Gallagher, David; Poroikov, Vladimir; Filimonov, Dmitry; Zakharov, Alexey; Lagunin, Alexey; Gloriozova, Tatyana; Novikov, Sergey; Skvortsova, Natalia; Druzhilovsky, Dmitry; Chawla, Sunil; Ghosh, Indira; Ray, Surajit; Patel, Hitesh; Escher, Sylvia

    2010-08-31

    OpenTox provides an interoperable, standards-based Framework for the support of predictive toxicology data management, algorithms, modelling, validation and reporting. It is relevant to satisfying the chemical safety assessment requirements of the REACH legislation as it supports access to experimental data, (Quantitative) Structure-Activity Relationship models, and toxicological information through an integrating platform that adheres to regulatory requirements and OECD validation principles. Initial research defined the essential components of the Framework including the approach to data access, schema and management, use of controlled vocabularies and ontologies, architecture, web service and communications protocols, and selection and integration of algorithms for predictive modelling. OpenTox provides end-user oriented tools to non-computational specialists, risk assessors, and toxicological experts in addition to Application Programming Interfaces (APIs) for developers of new applications. OpenTox actively supports public standards for data representation, interfaces, vocabularies and ontologies, Open Source approaches to core platform components, and community-based collaboration approaches, so as to progress system interoperability goals.The OpenTox Framework includes APIs and services for compounds, datasets, features, algorithms, models, ontologies, tasks, validation, and reporting which may be combined into multiple applications satisfying a variety of different user needs. OpenTox applications are based on a set of distributed, interoperable OpenTox API-compliant REST web services. The OpenTox approach to ontology allows for efficient mapping of complementary data coming from different datasets into a unifying structure having a shared terminology and representation.Two initial OpenTox applications are presented as an illustration of the potential impact of OpenTox for high-quality and consistent structure-activity relationship modelling of REACH-relevant endpoints: ToxPredict which predicts and reports on toxicities for endpoints for an input chemical structure, and ToxCreate which builds and validates a predictive toxicity model based on an input toxicology dataset. Because of the extensible nature of the standardised Framework design, barriers of interoperability between applications and content are removed, as the user may combine data, models and validation from multiple sources in a dependable and time-effective way.

  11. Measurement-based reliability prediction methodology. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Linn, Linda Shen

    1991-01-01

    In the past, analytical and measurement based models were developed to characterize computer system behavior. An open issue is how these models can be used, if at all, for system design improvement. The issue is addressed here. A combined statistical/analytical approach to use measurements from one environment to model the system failure behavior in a new environment is proposed. A comparison of the predicted results with the actual data from the new environment shows a close correspondence.

  12. Introducing uncertainty analysis of nucleation and crystal growth models in Process Analytical Technology (PAT) system design of crystallization processes.

    PubMed

    Samad, Noor Asma Fazli Abdul; Sin, Gürkan; Gernaey, Krist V; Gani, Rafiqul

    2013-11-01

    This paper presents the application of uncertainty and sensitivity analysis as part of a systematic model-based process monitoring and control (PAT) system design framework for crystallization processes. For the uncertainty analysis, the Monte Carlo procedure is used to propagate input uncertainty, while for sensitivity analysis, global methods including the standardized regression coefficients (SRC) and Morris screening are used to identify the most significant parameters. The potassium dihydrogen phosphate (KDP) crystallization process is used as a case study, both in open-loop and closed-loop operation. In the uncertainty analysis, the impact on the predicted output of uncertain parameters related to the nucleation and the crystal growth model has been investigated for both a one- and two-dimensional crystal size distribution (CSD). The open-loop results show that the input uncertainties lead to significant uncertainties on the CSD, with appearance of a secondary peak due to secondary nucleation for both cases. The sensitivity analysis indicated that the most important parameters affecting the CSDs are nucleation order and growth order constants. In the proposed PAT system design (closed-loop), the target CSD variability was successfully reduced compared to the open-loop case, also when considering uncertainty in nucleation and crystal growth model parameters. The latter forms a strong indication of the robustness of the proposed PAT system design in achieving the target CSD and encourages its transfer to full-scale implementation. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. iTesla Power Systems Library (iPSL): A Modelica library for phasor time-domain simulations

    NASA Astrophysics Data System (ADS)

    Vanfretti, L.; Rabuzin, T.; Baudette, M.; Murad, M.

    The iTesla Power Systems Library (iPSL) is a Modelica package providing a set of power system components for phasor time-domain modeling and simulation. The Modelica language provides a systematic approach to develop models using a formal mathematical description, that uniquely specifies the physical behavior of a component or the entire system. Furthermore, the standardized specification of the Modelica language (Modelica Association [1]) enables unambiguous model exchange by allowing any Modelica-compliant tool to utilize the models for simulation and their analyses without the need of a specific model transformation tool. As the Modelica language is being developed with open specifications, any tool that implements these requirements can be utilized. This gives users the freedom of choosing an Integrated Development Environment (IDE) of their choice. Furthermore, any integration solver can be implemented within a Modelica tool to simulate Modelica models. Additionally, Modelica is an object-oriented language, enabling code factorization and model re-use to improve the readability of a library by structuring it with object-oriented hierarchy. The developed library is released under an open source license to enable a wider distribution and let the user customize it to their specific needs. This paper describes the iPSL and provides illustrative application examples.

  14. Students' Use of the Energy Model to Account for Changes in Physical Systems

    ERIC Educational Resources Information Center

    Papadouris, Nico; Constantinou, Constantinos P.; Kyratsi, Theodora

    2008-01-01

    The aim of this study is to explore the ways in which students, aged 11-14 years, account for certain changes in physical systems and the extent to which they draw on an energy model as a common framework for explaining changes observed in diverse systems. Data were combined from two sources: interviews with 20 individuals and an open-ended…

  15. Being or Becoming: Toward an Open-System, Process-Centric Model of Personality.

    PubMed

    Giordano, Peter J

    2015-12-01

    Mainstream personality psychology in the West neglects the investigation of intra-individual process and variation, because it favors a Being over a Becoming ontology. A Being ontology privileges a structural (e.g., traits or selves) conception of personality. Structure-centric models in turn suggest nomothetic research strategies and the investigation of individual and group differences. This article argues for an open-system, process-centric understanding of personality anchored in an ontology of Becoming. A classical Confucian model of personality is offered as an example of a process-centric approach for investigating and appreciating within-person personality process and variation. Both quantitative and qualitative idiographic strategies can be used as methods of scientific inquiry, particularly the exploration of the Confucian exemplar of psychological health and well-being.

  16. Random unitary evolution model of quantum Darwinism with pure decoherence

    NASA Astrophysics Data System (ADS)

    Balanesković, Nenad

    2015-10-01

    We study the behavior of Quantum Darwinism [W.H. Zurek, Nat. Phys. 5, 181 (2009)] within the iterative, random unitary operations qubit-model of pure decoherence [J. Novotný, G. Alber, I. Jex, New J. Phys. 13, 053052 (2011)]. We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system S from the point of view of its environment E, is not a generic phenomenon, but depends on the specific form of input states and on the type of S-E-interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial input states of environment E that allow to store information about an open system S of interest with maximal efficiency.

  17. Responses to applied forces and the Jarzynski equality in classical oscillator systems coupled to finite baths: an exactly solvable nondissipative nonergodic model.

    PubMed

    Hasegawa, Hideo

    2011-07-01

    Responses of small open oscillator systems to applied external forces have been studied with the use of an exactly solvable classical Caldeira-Leggett model in which a harmonic oscillator (system) is coupled to finite N-body oscillators (bath) with an identical frequency (ω(n) = ω(o) for n = 1 to N). We have derived exact expressions for positions, momenta, and energy of the system in nonequilibrium states and for work performed by applied forces. A detailed study has been made on an analytical method for canonical averages of physical quantities over the initial equilibrium state, which is much superior to numerical averages commonly adopted in simulations of small systems. The calculated energy of the system which is strongly coupled to a finite bath is fluctuating but nondissipative. It has been shown that the Jarzynski equality is valid in nondissipative nonergodic open oscillator systems regardless of the rate of applied ramp force.

  18. Diesel oil pool fire characteristic under natural ventilation conditions in tunnels with roof openings.

    PubMed

    Wang, Yanfu; Jiang, Juncheng; Zhu, Dezhi

    2009-07-15

    In order to research the fire characteristic under natural ventilation conditions in tunnels with roof openings, full-scale experiment of tunnel fire is designed and conducted. All the experimental data presented in this paper can be further applied for validation of numerical simulation models and reduced-scale experimental results. The physical model of tunnel with roof openings and the mathematical model of tunnel fire are presented in this paper. The tunnel fire under the same conditions as experiment is simulated using CFD software. From the results, it can be seen that most smoke is discharged directly off the tunnel through roof openings, so roof openings are favorable for exhausting smoke. But along with the decrease of smoke temperatures, some smoke may backflow and mix with the smoke-free layer below, which leads to fall in visibility and is unfavorable for personnel evacuation. So it is necessary to research more efficient ways for improving the smoke removal efficiency, such as early fire detection systems, adequate warning signs and setting tunnel cap.

  19. NREL's OpenStudio Helps Design More Efficient Buildings (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-07-01

    The National Renewable Energy Laboratory (NREL) has created the OpenStudio software platform that makes it easier for architects and engineers to evaluate building energy efficiency measures throughout the design process. OpenStudio makes energy modeling more accessible and affordable, helping professionals to design structures with lower utility bills and less carbon emissions, resulting in a healthier environment. OpenStudio includes a user-friendly application suite that makes the U.S. Department of Energy's EnergyPlus and Radiance simulation engines easier to use for whole building energy and daylighting performance analysis. OpenStudio is freely available and runs on Windows, Mac, and Linux operating systems.

  20. Development of a simultaneous optical/PET imaging system for awake mice

    NASA Astrophysics Data System (ADS)

    Takuwa, Hiroyuki; Ikoma, Yoko; Yoshida, Eiji; Tashima, Hideaki; Wakizaka, Hidekatsu; Shinaji, Tetsuya; Yamaya, Taiga

    2016-09-01

    Simultaneous measurements of multiple physiological parameters are essential for the study of brain disease mechanisms and the development of suitable therapies to treat them. In this study, we developed a measurement system for simultaneous optical imaging and PET for awake mice. The key elements of this system are the OpenPET, optical imaging and fixation apparatus for an awake mouse. The OpenPET is our original open-type PET geometry, which can be used in combination with another device because of the easily accessible open space of the former. A small prototype of the axial shift single-ring OpenPET was used. The objective lens for optical imaging with a mounted charge-coupled device camera was placed inside the open space of the AS-SROP. Our original fixation apparatus to hold an awake mouse was also applied. As a first application of this system, simultaneous measurements of cerebral blood flow (CBF) by laser speckle imaging (LSI) and [11C]raclopride-PET were performed under control and 5% CO2 inhalation (hypercapnia) conditions. Our system successfully obtained the CBF and [11C]raclopride radioactivity concentration simultaneously. Accumulation of [11C]raclopride was observed in the striatum where the density of dopamine D2 receptors is high. LSI measurements could be stably performed for more than 60 minutes. Increased CBF induced by hypercapnia was observed while CBF under the control condition was stable. We concluded that our imaging system should be useful for investigating the mechanisms of brain diseases in awake animal models.

  1. Characterization of Model-Based Reasoning Strategies for Use in IVHM Architectures

    NASA Technical Reports Server (NTRS)

    Poll, Scott; Iverson, David; Patterson-Hine, Ann

    2003-01-01

    Open architectures are gaining popularity for Integrated Vehicle Health Management (IVHM) applications due to the diversity of subsystem health monitoring strategies in use and the need to integrate a variety of techniques at the system health management level. The basic concept of an open architecture suggests that whatever monitoring or reasoning strategy a subsystem wishes to deploy, the system architecture will support the needs of that subsystem and will be capable of transmitting subsystem health status across subsystem boundaries and up to the system level for system-wide fault identification and diagnosis. There is a need to understand the capabilities of various reasoning engines and how they, coupled with intelligent monitoring techniques, can support fault detection and system level fault management. Researchers in IVHM at NASA Ames Research Center are supporting the development of an IVHM system for liquefying-fuel hybrid rockets. In the initial stage of this project, a few readily available reasoning engines were studied to assess candidate technologies for application in next generation launch systems. Three tools representing the spectrum of model-based reasoning approaches, from a quantitative simulation based approach to a graph-based fault propagation technique, were applied to model the behavior of the Hybrid Combustion Facility testbed at Ames. This paper summarizes the characterization of the modeling process for each of the techniques.

  2. Estimation method of finger tapping dynamics using simple magnetic detection system

    NASA Astrophysics Data System (ADS)

    Kandori, Akihiko; Sano, Yuko; Miyashita, Tsuyoshi; Okada, Yoshihisa; Irokawa, Masataka; Shima, Keisuke; Tsuji, Toshio; Yokoe, Masaru; Sakoda, Saburo

    2010-05-01

    We have developed the simple estimation method of a finger tapping dynamics model for investigating muscle resistance and stiffness during tapping movement in normal subjects. We measured finger tapping movements of 207 normal subjects using a magnetic finger tapping detection system. Each subject tapped two fingers in time with a metronome at 1, 2, 3, 4, and 5 Hz. The velocity and acceleration values for both the closing and opening tapping data were used to estimate a finger tapping dynamics model. Using the frequency response of the ratio of acceleration to velocity of the mechanical impedance parameters, we estimated the resistance (friction coefficient) and compliance (stiffness). We found two dynamics models for the maximum open position and tap position. In the maximum open position, the extensor muscle resistance was twice as high as the flexor muscle resistance and males had a higher spring constant. In the tap position, the flexor muscle resistance was much higher than the extensor muscle resistance. This indicates that the tapping dynamics in the maximum open position are controlled by the balance of extensor and flexor muscle friction resistances and the flexor stiffness, and the flexor friction resistance is the main component in the tap position. It can be concluded that our estimation method makes it possible to understand the tapping dynamics.

  3. Estimation method of finger tapping dynamics using simple magnetic detection system.

    PubMed

    Kandori, Akihiko; Sano, Yuko; Miyashita, Tsuyoshi; Okada, Yoshihisa; Irokawa, Masataka; Shima, Keisuke; Tsuji, Toshio; Yokoe, Masaru; Sakoda, Saburo

    2010-05-01

    We have developed the simple estimation method of a finger tapping dynamics model for investigating muscle resistance and stiffness during tapping movement in normal subjects. We measured finger tapping movements of 207 normal subjects using a magnetic finger tapping detection system. Each subject tapped two fingers in time with a metronome at 1, 2, 3, 4, and 5 Hz. The velocity and acceleration values for both the closing and opening tapping data were used to estimate a finger tapping dynamics model. Using the frequency response of the ratio of acceleration to velocity of the mechanical impedance parameters, we estimated the resistance (friction coefficient) and compliance (stiffness). We found two dynamics models for the maximum open position and tap position. In the maximum open position, the extensor muscle resistance was twice as high as the flexor muscle resistance and males had a higher spring constant. In the tap position, the flexor muscle resistance was much higher than the extensor muscle resistance. This indicates that the tapping dynamics in the maximum open position are controlled by the balance of extensor and flexor muscle friction resistances and the flexor stiffness, and the flexor friction resistance is the main component in the tap position. It can be concluded that our estimation method makes it possible to understand the tapping dynamics.

  4. The First NASA Aerospace Pyrotechnic Systems Workshop

    NASA Technical Reports Server (NTRS)

    St.cyr, William W. (Compiler)

    1993-01-01

    Papers from the conference proceedings are presented, and they are grouped by the following sessions: pyrotechnically actuated systems, laser initiation, and modeling and analysis. A fourth session, a panel discussion and open forum, concluded the workshop.

  5. Model driven development of clinical information sytems using openEHR.

    PubMed

    Atalag, Koray; Yang, Hong Yul; Tempero, Ewan; Warren, Jim

    2011-01-01

    openEHR and the recent international standard (ISO 13606) defined a model driven software development methodology for health information systems. However there is little evidence in the literature describing implementation; especially for desktop clinical applications. This paper presents an implementation pathway using .Net/C# technology for Microsoft Windows desktop platforms. An endoscopy reporting application driven by openEHR Archetypes and Templates has been developed. A set of novel GUI directives has been defined and presented which guides the automatic graphical user interface generator to render widgets properly. We also reveal the development steps and important design decisions; from modelling to the final software product. This might provide guidance for other developers and form evidence required for the adoption of these standards for vendors and national programs alike.

  6. Model Fusion Tool - the Open Environmental Modelling Platform Concept

    NASA Astrophysics Data System (ADS)

    Kessler, H.; Giles, J. R.

    2010-12-01

    The vision of an Open Environmental Modelling Platform - seamlessly linking geoscience data, concepts and models to aid decision making in times of environmental change. Governments and their executive agencies across the world are facing increasing pressure to make decisions about the management of resources in light of population growth and environmental change. In the UK for example, groundwater is becoming a scarce resource for large parts of its most densely populated areas. At the same time river and groundwater flooding resulting from high rainfall events are increasing in scale and frequency and sea level rise is threatening the defences of coastal cities. There is also a need for affordable housing, improved transport infrastructure and waste disposal as well as sources of renewable energy and sustainable food production. These challenges can only be resolved if solutions are based on sound scientific evidence. Although we have knowledge and understanding of many individual processes in the natural sciences it is clear that a single science discipline is unable to answer the questions and their inter-relationships. Modern science increasingly employs computer models to simulate the natural, economic and human system. Management and planning requires scenario modelling, forecasts and ‘predictions’. Although the outputs are often impressive in terms of apparent accuracy and visualisation, they are inherently not suited to simulate the response to feedbacks from other models of the earth system, such as the impact of human actions. Geological Survey Organisations (GSO) are increasingly employing advances in Information Technology to visualise and improve their understanding of geological systems. Instead of 2 dimensional paper maps and reports many GSOs now produce 3 dimensional geological framework models and groundwater flow models as their standard output. Additionally the British Geological Survey have developed standard routines to link geological data to groundwater models but these models are only aimed at solving one specific part of the earth’s system, e.g. the flow of groundwater to an abstraction borehole or the availability of water for irrigation. Particular problems arise when model data from two or more disciplines are incompatible in terms of data formats, scientific concepts or language. Other barriers include the cultural segregation within and between science disciplines as well as impediments to data exchange due to ownership and copyright restrictions. OpenMI and GeoSciML are initiatives that are trying to overcome these barriers by building international communities that share vocabularies and data formats. This paper gives examples of the successful merging of geological and hydrological models from the UK and will introduce the vision of an open Environmental Modelling Platform which aims to link data, knowledge and concepts seamlessly to numerical process models. Last but not least there is an urgent need to create a Subsurface Information System akin to a Geographic Information System in which all results of subsurface modelling can be visualised and analysed in an integrated manner and thereby become useful for decision makers.

  7. Conversion and Validation of Distribution System Model from a QSTS-Based Tool to a Real-Time Dynamic Phasor Simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamana, Manohar; Prabakar, Kumaraguru; Palmintier, Bryan

    A software process is developed to convert distribution network models from a quasi-static time-series tool (OpenDSS) to a real-time dynamic phasor simulator (ePHASORSIM). The description of this process in this paper would be helpful for researchers who intend to perform similar conversions. The converter could be utilized directly by users of real-time simulators who intend to perform software-in-the-loop or hardware-in-the-loop tests on large distribution test feeders for a range of use cases, including testing functions of advanced distribution management systems against a simulated distribution system. In the future, the developers intend to release the conversion tool as open source tomore » enable use by others.« less

  8. Conversion and Validation of Distribution System Model from a QSTS-Based Tool to a Real-Time Dynamic Phasor Simulator: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamana, Manohar; Prabakar, Kumaraguru; Palmintier, Bryan

    A software process is developed to convert distribution network models from a quasi-static time-series tool (OpenDSS) to a real-time dynamic phasor simulator (ePHASORSIM). The description of this process in this paper would be helpful for researchers who intend to perform similar conversions. The converter could be utilized directly by users of real-time simulators who intend to perform software-in-the-loop or hardware-in-the-loop tests on large distribution test feeders for a range of use cases, including testing functions of advanced distribution management systems against a simulated distribution system. In the future, the developers intend to release the conversion tool as open source tomore » enable use by others.« less

  9. Self-organization and feedback effects in the shock compressed media

    NASA Astrophysics Data System (ADS)

    Khantuleva, Tatyana

    2005-07-01

    New theoretical approach to the transport in condensed matter far from equilibrium combines methods of statistical mechanics and cybernetic physics in order to construct closed mathematical model of a system with self-organization and self-regulation. Mesoscopic effects are considered as a result of the structure formation and the feedback effects in an open system under dynamic loading. Nonequilibrium state equations had been involved to incorporate the velocity dispersion. Integrodifferential balance equations describe both wave and dissipative transport properties. Boundary conditions determine the internal scale spectra. The model is completed by the feedback that introduces the structure evolution basing the methods of cybernetic physics. The obtained results open a wide prospective for the control methods in applications to new technologies, intellectual systems and prediction of catastrophic phenomena.

  10. CISUS: an integrated 3D ultrasound system for IGT using a modular tracking API

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Viswanathan, Anand; Pieper, Steve; Choti, Michael A.; Taylor, Russell H.; Kikinis, Ron; Fichtinger, Gabor

    2004-05-01

    Ultrasound has become popular in clinical/surgical applications, both as the primary image guidance modality and also in conjunction with other modalities like CT or MRI. Three dimensional ultrasound (3DUS) systems have also demonstrated usefulness in image-guided therapy (IGT). At the same time, however, current lack of open-source and open-architecture multi-modal medical visualization systems prevents 3DUS from fulfilling its potential. Several stand-alone 3DUS systems, like Stradx or In-Vivo exist today. Although these systems have been found to be useful in real clinical setting, it is difficult to augment their functionality and integrate them in versatile IGT systems. To address these limitations, a robotic/freehand 3DUS open environment (CISUS) is being integrated into the 3D Slicer, an open-source research tool developed for medical image analysis and surgical planning. In addition, the system capitalizes on generic application programming interfaces (APIs) for tracking devices and robotic control. The resulting platform-independent open-source system may serve as a valuable tool to the image guided surgery community. Other researchers could straightforwardly integrate the generic CISUS system along with other functionalities (i.e. dual view visualization, registration, real-time tracking, segmentation, etc) to rapidly create their medical/surgical applications. Our current driving clinical application is robotically assisted and freehand 3DUS-guided liver ablation, which is fully being integrated under the CISUS-3D Slicer. Initial functionality and pre-clinical feasibility are demonstrated on phantom and ex-vivo animal models.

  11. Performance of hybrid programming models for multiscale cardiac simulations: preparing for petascale computation.

    PubMed

    Pope, Bernard J; Fitch, Blake G; Pitman, Michael C; Rice, John J; Reumann, Matthias

    2011-10-01

    Future multiscale and multiphysics models that support research into human disease, translational medical science, and treatment can utilize the power of high-performance computing (HPC) systems. We anticipate that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message-passing processes [e.g., the message-passing interface (MPI)] with multithreading (e.g., OpenMP, Pthreads). The objective of this study is to compare the performance of such hybrid programming models when applied to the simulation of a realistic physiological multiscale model of the heart. Our results show that the hybrid models perform favorably when compared to an implementation using only the MPI and, furthermore, that OpenMP in combination with the MPI provides a satisfactory compromise between performance and code complexity. Having the ability to use threads within MPI processes enables the sophisticated use of all processor cores for both computation and communication phases. Considering that HPC systems in 2012 will have two orders of magnitude more cores than what was used in this study, we believe that faster than real-time multiscale cardiac simulations can be achieved on these systems.

  12. Stochastic Sznajd Model in Open Community

    NASA Astrophysics Data System (ADS)

    Emmert-Streib, Frank

    We extend the Sznajd Model for opinion formation by introducing persuasion probabilities for opinions. Moreover, we couple the system to an environment which mimics the application of the opinion. This results in a feedback, representing single-state opinion transitions in opposite to the two-state opinion transitions for persuading other people. We call this model opinion formation in an open community (OFOC). It can be seen as a stochastic extension of the Sznajd model for an open community, because it allows for a special choice of parameters to recover the original Sznajd model. We demonstrate the effect of feedback in the OFOC model by applying it to a scenario in which, e.g., opinion B is worse then opinion A but easier explained to other people. Casually formulated we analyzed the question, how much better one has to be, in order to persuade other people, provided the opinion is worse. Our results reveal a linear relation between the transition probability for opinion B and the influence of the environment on B.

  13. Modelling Biogeochemistry Across Domains with The Modular System for Shelves and Coasts (MOSSCO)

    NASA Astrophysics Data System (ADS)

    Burchard, H.; Lemmen, C.; Hofmeister, R.; Knut, K.; Nasermoaddeli, M. H.; Kerimoglu, O.; Koesters, F.; Wirtz, K.

    2016-02-01

    Coastal biogeochemical processes extend from the atmosphere through the water column and the epibenthos into the ocean floor, laterally they are determined by freshwater inflows and open water exchange, and in situ they are mediated by physical, chemical and biological interactions. We use the new Modular System for Shelves and Coasts (MOSSCO, http://www.mossco.de) to obtain an integrated view of coastal biogeochemistry. MOSSCO is a coupling framework that builds on existing coupling technologies like the Earth System Modeling Framework (ESMF, for domain-coupling) and the Framework for Aquatic Biogeochemistry (FABM, for process coupling). MOSSCO facilitates the communication about and the integration of existing and of new process models into a threedimensional regional coastal modelling context. In the MOSSCO concept, the integrating framework imposes very few restrictions on contributed data or models; in fact, there is no distinction made between data and models. The few requirements are: (1) principle coupleability, i.e. access to I/O and timing information in submodels, which has recently been referred to as the Basic Model Interface (BMI) (2) open source/open data access and licencing and (3) communication of metadata, such as spatiotemporal information, naming conventions, and physical units. These requirements suffice to integrate different models and data sets into the MOSSCO infrastructure and subsequently built a modular integrated modeling tool that can span a diversity of processes and domains. Here, we demonstrate a MOSSCO application for the southern North Sea, where atmospheric deposition, biochemical processing in the water column and the ocean floor, lateral nutrient replenishment, and wave- and current-dependent remobilization from sediments are accounted for by modular components. A multi-annual simulation yields realistic succession of the spatial gradients of dissolved nutrients, of chlorophyll variability and gross primary production rates and of benthic denitrification rates for this intriguing coastal system.

  14. Facilitating secondary use of medical data by using openEHR archetypes.

    PubMed

    Kohl, Christian D; Garde, Sebastian; Knaup, Petra

    2010-01-01

    Clinical trials are of high importance for medical progress. But even though more and more clinical data is available in electronic patient records (EPRs) and more and more electronic data capture (EDC) systems are used in trials, there is still a gap which makes EPR / EDC interoperability difficult and hampers secondary use of medical routine data. The openEHR architecture for Electronic Health Records is based on a two level modeling approach which makes use of 'archetypes'. We want to analyze whether archetypes can help to bridge this gap by building an integrated EPR / EDC system based on openEHR archetypes. We used the 'openEHR Reference Framework and Application' (Opereffa) and existing archetypes for medical data. Furthermore, we developed dedicated archetypes to document study meta data. We developed a first prototype implementation of an archetype based integrated EPR / EDC system. Next steps will be the evaluation of an extended prototype in a real clinical trial scenario. Opereffa was a good starting point for our work. OpenEHR archetypes proved useful for secondary use of health data.

  15. R package CityWaterBalance | Science Inventory | US EPA

    EPA Pesticide Factsheets

    CityWaterBalance provides a reproducible workflow for studying an urban water system. The network of urban water flows and storages can be modeled and visualized. Any city may be modeled with preassembled data, but data for US cities can be gathered via web services using this package and dependencies, geoknife and dataRetrieval. Urban water flows are difficult to comprehensively quantify. Although many important data sources are openly available, they are published by a variety of agencies in different formats, units, spatial and temporal resolutions. Increasingly, open data are made available via web services, which allow for automated, current retrievals. Integrating data streams and estimating the values of unmeasured urban water flows, however, remains needlessly time-consuming. In order to streamline a reproducible analysis, we have developed the CityWaterBalance package for the open source R language. The CityWaterBalance package for R is based on a simple model of the network of urban water flows and storages. The model may be run with data that has been pre-assembled by the user, or data can be retrieved by functions in CityWaterBalance and dependencies. CityWaterBalance can be used to quickly assemble a quantitative portrait of any urban water system. The systemic effects of water management decisions can be readily explored. Much of the data acquisition process for US cities can already be automated, while the package serves as a place-hold

  16. An open source hydroeconomic model for California's water supply system: PyVIN

    NASA Astrophysics Data System (ADS)

    Dogan, M. S.; White, E.; Herman, J. D.; Hart, Q.; Merz, J.; Medellin-Azuara, J.; Lund, J. R.

    2016-12-01

    Models help operators and decision makers explore and compare different management and policy alternatives, better allocate scarce resources, and predict the future behavior of existing or proposed water systems. Hydroeconomic models are useful tools to increase benefits or decrease costs of managing water. Bringing hydrology and economics together, these models provide a framework for different disciplines that share similar objectives. This work proposes a new model to evaluate operation and adaptation strategies under existing and future hydrologic conditions for California's interconnected water system. This model combines the network structure of CALVIN, a statewide optimization model for California's water infrastructure, along with an open source solver written in the Python programming language. With the flexibilities of the model, reservoir operations, including water supply and hydropower, groundwater pumping, and the Delta water operations and requirements can now be better represented. Given time series of hydrologic inputs to the model, typical outputs include urban, agricultural and wildlife refuge water deliveries and shortage costs, conjunctive use of surface and groundwater systems, and insights into policy and management decisions, such as capacity expansion and groundwater management policies. Water market operations also represented in the model, allocating water from lower-valued users to higher-valued users. PyVIN serves as a cross-platform, extensible model to evaluate systemwide water operations. PyVIN separates data from the model structure, enabling model to be easily applied to other parts of the world where water is a scarce resource.

  17. Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim

    PubMed Central

    Modenese, L.; Lloyd, D.G.

    2017-01-01

    Real-time estimation of joint angles and moments can be used for rapid evaluation in clinical, sport, and rehabilitation contexts. However, real-time calculation of kinematics and kinetics is currently based on approximate solutions or generic anatomical models. We present a real-time system based on OpenSim solving inverse kinematics and dynamics without simplifications at 2000 frame per seconds with less than 31.5ms of delay. We describe the software architecture, sensitivity analyses to minimise delays and errors, and compare offline and real-time results. This system has the potential to strongly impact current rehabilitation practices enabling the use of personalised musculoskeletal models in real-time. PMID:27723992

  18. Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim.

    PubMed

    Pizzolato, C; Reggiani, M; Modenese, L; Lloyd, D G

    2017-03-01

    Real-time estimation of joint angles and moments can be used for rapid evaluation in clinical, sport, and rehabilitation contexts. However, real-time calculation of kinematics and kinetics is currently based on approximate solutions or generic anatomical models. We present a real-time system based on OpenSim solving inverse kinematics and dynamics without simplifications at 2000 frame per seconds with less than 31.5 ms of delay. We describe the software architecture, sensitivity analyses to minimise delays and errors, and compare offline and real-time results. This system has the potential to strongly impact current rehabilitation practices enabling the use of personalised musculoskeletal models in real-time.

  19. TAMPA BAY MODEL EVALUATION AND ASSESSMENT

    EPA Science Inventory

    A long term goal of multimedia environmental management is to achieve sustainable ecological resources. Progress towards this goal rests on a foundation of science-based methods and data integrated into predictive multimedia, multi-stressor open architecture modeling systems. The...

  20. Discovering the Power of Individual-Based Modelling in Teaching and Learning: The Study of a Predator-Prey System

    NASA Astrophysics Data System (ADS)

    Ginovart, Marta

    2014-08-01

    The general aim is to promote the use of individual-based models (biological agent-based models) in teaching and learning contexts in life sciences and to make their progressive incorporation into academic curricula easier, complementing other existing modelling strategies more frequently used in the classroom. Modelling activities for the study of a predator-prey system for a mathematics classroom in the first year of an undergraduate program in biosystems engineering have been designed and implemented. These activities were designed to put two modelling approaches side by side, an individual-based model and a set of ordinary differential equations. In order to organize and display this, a system with wolves and sheep in a confined domain was considered and studied. With the teaching material elaborated and a computer to perform the numerical resolutions involved and the corresponding individual-based simulations, the students answered questions and completed exercises to achieve the learning goals set. Students' responses regarding the modelling of biological systems and these two distinct methodologies applied to the study of a predator-prey system were collected via questionnaires, open-ended queries and face-to-face dialogues. Taking into account the positive responses of the students when they were doing these activities, it was clear that using a discrete individual-based model to deal with a predator-prey system jointly with a set of ordinary differential equations enriches the understanding of the modelling process, adds new insights and opens novel perspectives of what can be done with computational models versus other models. The complementary views given by the two modelling approaches were very well assessed by students.

  1. The aggregate timberland assessment system—ATLAS: a comprehensive timber projection model.

    Treesearch

    J.R. Mills; J.C. Kincaid

    1992-01-01

    The aggregate timberland assessment system is a time-based deterministic timber projection model. It was developed by the USDA Forest Service to address broad policy questions related to future timber supplies for the 1989 Renewable Resources Planning Act timber assessment. An open framework design allows for customizing inputs to account for regional and subregional...

  2. Multispectral open-air intraoperative fluorescence imaging.

    PubMed

    Behrooz, Ali; Waterman, Peter; Vasquez, Kristine O; Meganck, Jeff; Peterson, Jeffrey D; Faqir, Ilias; Kempner, Joshua

    2017-08-01

    Intraoperative fluorescence imaging informs decisions regarding surgical margins by detecting and localizing signals from fluorescent reporters, labeling targets such as malignant tissues. This guidance reduces the likelihood of undetected malignant tissue remaining after resection, eliminating the need for additional treatment or surgery. The primary challenges in performing open-air intraoperative fluorescence imaging come from the weak intensity of the fluorescence signal in the presence of strong surgical and ambient illumination, and the auto-fluorescence of non-target components, such as tissue, especially in the visible spectral window (400-650 nm). In this work, a multispectral open-air fluorescence imaging system is presented for translational image-guided intraoperative applications, which overcomes these challenges. The system is capable of imaging weak fluorescence signals with nanomolar sensitivity in the presence of surgical illumination. This is done using synchronized fluorescence excitation and image acquisition with real-time background subtraction. Additionally, the system uses a liquid crystal tunable filter for acquisition of multispectral images that are used to spectrally unmix target fluorescence from non-target auto-fluorescence. Results are validated by preclinical studies on murine models and translational canine oncology models.

  3. Flutter suppression via piezoelectric actuation

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    1991-01-01

    Experimental flutter results obtained from wind tunnel tests of a two degree of freedom wind tunnel model are presented for the open and closed loop systems. The wind tunnel model is a two degree of freedom system which is actuated by piezoelectric plates configured as bimorphs. The model design was based on finite element structural analyses and flutter analyses. A control law was designed based on a discrete system model; gain feedback of strain measurements was utilized in the control task. The results show a 21 pct. increase in the flutter speed.

  4. Empirical tests of Zipf's law mechanism in open source Linux distribution.

    PubMed

    Maillart, T; Sornette, D; Spaeth, S; von Krogh, G

    2008-11-21

    Zipf's power law is a ubiquitous empirical regularity found in many systems, thought to result from proportional growth. Here, we establish empirically the usually assumed ingredients of stochastic growth models that have been previously conjectured to be at the origin of Zipf's law. We use exceptionally detailed data on the evolution of open source software projects in Linux distributions, which offer a remarkable example of a growing complex self-organizing adaptive system, exhibiting Zipf's law over four full decades.

  5. Increasing the object recognition distance of compact open air on board vision system

    NASA Astrophysics Data System (ADS)

    Kirillov, Sergey; Kostkin, Ivan; Strotov, Valery; Dmitriev, Vladimir; Berdnikov, Vadim; Akopov, Eduard; Elyutin, Aleksey

    2016-10-01

    The aim of this work was developing an algorithm eliminating the atmospheric distortion and improves image quality. The proposed algorithm is entirely software without using additional hardware photographic equipment. . This algorithm does not required preliminary calibration. It can work equally effectively with the images obtained at a distances from 1 to 500 meters. An algorithm for the open air images improve designed for Raspberry Pi model B on-board vision systems is proposed. The results of experimental examination are given.

  6. Integrating Kinetic Model of E. coli with Genome Scale Metabolic Fluxes Overcomes Its Open System Problem and Reveals Bistability in Central Metabolism

    PubMed Central

    Mannan, Ahmad A.; Toya, Yoshihiro; Shimizu, Kazuyuki; McFadden, Johnjoe; Kierzek, Andrzej M.; Rocco, Andrea

    2015-01-01

    An understanding of the dynamics of the metabolic profile of a bacterial cell is sought from a dynamical systems analysis of kinetic models. This modelling formalism relies on a deterministic mathematical description of enzyme kinetics and their metabolite regulation. However, it is severely impeded by the lack of available kinetic information, limiting the size of the system that can be modelled. Furthermore, the subsystem of the metabolic network whose dynamics can be modelled is faced with three problems: how to parameterize the model with mostly incomplete steady state data, how to close what is now an inherently open system, and how to account for the impact on growth. In this study we address these challenges of kinetic modelling by capitalizing on multi-‘omics’ steady state data and a genome-scale metabolic network model. We use these to generate parameters that integrate knowledge embedded in the genome-scale metabolic network model, into the most comprehensive kinetic model of the central carbon metabolism of E. coli realized to date. As an application, we performed a dynamical systems analysis of the resulting enriched model. This revealed bistability of the central carbon metabolism and thus its potential to express two distinct metabolic states. Furthermore, since our model-informing technique ensures both stable states are constrained by the same thermodynamically feasible steady state growth rate, the ensuing bistability represents a temporal coexistence of the two states, and by extension, reveals the emergence of a phenotypically heterogeneous population. PMID:26469081

  7. Space Generic Open Avionics Architecture (SGOAA) standard specification

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1993-01-01

    The purpose of this standard is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of a specific avionics hardware/software system. This standard defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.

  8. Software licensing policy for the Open Source Application Development Portal (OSADP).

    DOT National Transportation Integrated Search

    1998-07-01

    The purpose of the Commercial Vehicle Information Systems and Networks Model Deployment Initiative (CVISN MDI) is to demonstrate the technical and institutional feasibility, costs, and benefits of the primary Intelligent Transportation Systems (ITS) ...

  9. Mobile Communication Via Satellite

    NASA Technical Reports Server (NTRS)

    Yan, Tsun-Yee; Naderi, Firouz M.

    1988-01-01

    System mixes real-time and delayed-transmission channels. Combination of L-band and SHF links connect fixed and mobile equipment on ground to satellite relay. Software and hardware architecture conforms structure of open-system-interconnection model suggested by International Standards Organization.

  10. Domain Modeling and Application Development of an Archetype- and XML-based EHRS. Practical Experiences and Lessons Learnt.

    PubMed

    Kropf, Stefan; Chalopin, Claire; Lindner, Dirk; Denecke, Kerstin

    2017-06-28

    Access to patient data within the hospital or between hospitals is still problematic since a variety of information systems is in use applying different vendor specific terminologies and underlying knowledge models. Beyond, the development of electronic health record systems (EHRSs) is time and resource consuming. Thus, there is a substantial need for a development strategy of standardized EHRSs. We are applying a reuse-oriented process model and demonstrate its feasibility and realization on a practical medical use case, which is an EHRS holding all relevant data arising in the context of treatment of tumors of the sella region. In this paper, we describe the development process and our practical experiences. Requirements towards the development of the EHRS were collected by interviews with a neurosurgeon and patient data analysis. For modelling of patient data, we selected openEHR as standard and exploited the software tools provided by the openEHR foundation. The patient information model forms the core of the development process, which comprises the EHR generation and the implementation of an EHRS architecture. Moreover, a reuse-oriented process model from the business domain was adapted to the development of the EHRS. The reuse-oriented process model is a model for a suitable abstraction of both, modeling and development of an EHR centralized EHRS. The information modeling process resulted in 18 archetypes that were aggregated in a template and built the boilerplate of the model driven development. The EHRs and the EHRS were developed by openEHR and W3C standards, tightly supported by well-established XML techniques. The GUI of the final EHRS integrates and visualizes information from various examinations, medical reports, findings and laboratory test results. We conclude that the development of a standardized overarching EHR and an EHRS is feasible using openEHR and W3C standards, enabling a high degree of semantic interoperability. The standardized representation visualizes data and can in this way support the decision process of clinicians.

  11. Modeling the History of Astronomy: Ptolemy, Copernicus, and Tycho

    NASA Astrophysics Data System (ADS)

    Timberlake, Todd K.

    This paper describes a series of activities in which students investigate and use the Ptolemaic, Copernican, and Tychonic models of planetary motion. The activities guide students through using open source software to discover important observational facts, learn the necessary vocabulary, understand the fundamental properties of different theoretical models, and relate the theoretical models to observational data. After completing these activities students can make observations of a fictitious solar system and use those observations to construct models for that system.

  12. Control of Crazyflie nano quadcopter using Simulink

    NASA Astrophysics Data System (ADS)

    Gopabhat Madhusudhan, Meghana

    This thesis focuses on developing a mathematical model in Simulink to Crazyflie, an open source platform. Attitude, altitude and position controllers of a Crazyflie are designed in the mathematical model. The mathematical model is developed based on the quadcopter system dynamics using a non-linear approach. The parameters of translational and rotational dynamics of the quadcopter system are linearized and tuned individually. The tuned attitude and altitude controllers from the mathematical model are implemented on real time Crazyflie Simulink model to achieve autonomous and controlled flight.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamurthy, Dheepak

    This paper is an overview of Power System Simulation Toolbox (psst). psst is an open-source Python application for the simulation and analysis of power system models. psst simulates the wholesale market operation by solving a DC Optimal Power Flow (DCOPF), Security Constrained Unit Commitment (SCUC) and a Security Constrained Economic Dispatch (SCED). psst also includes models for the various entities in a power system such as Generator Companies (GenCos), Load Serving Entities (LSEs) and an Independent System Operator (ISO). psst features an open modular object oriented architecture that will make it useful for researchers to customize, expand, experiment beyond solvingmore » traditional problems. psst also includes a web based Graphical User Interface (GUI) that allows for user friendly interaction and for implementation on remote High Performance Computing (HPCs) clusters for parallelized operations. This paper also provides an illustrative application of psst and benchmarks with standard IEEE test cases to show the advanced features and the performance of toolbox.« less

  14. Opinion evolution and rare events in an open community

    NASA Astrophysics Data System (ADS)

    Ye, Yusong; Yang, Zhuoqin; Zhang, Zili

    2016-11-01

    There are many multi-stable phenomena in society. To explain these multi-stable phenomena, we have studied opinion evolution in an open community. We focus on probability of transition (or the mean transition time) that the system transfer from one state to another. We suggest a bistable model to provide an interpretation of these phenomena. The quasi-potential method that we used is the most important method to calculate the transition time and it can be used to determine the whole probability density. We study the condition of bistability and then discuss rare events in a multi-stable system. In our model, we find that two parameters, ;temperature; and ;persuading intensity,; influence the behavior of the system; a suitable ;persuading intensity; and low ;temperature; make the system more stable. This means that the transition rarely happens. The asymmetric phenomenon caused by ;public-opinion; is also discussed.

  15. Emergent transport in a many-body open system driven by interacting quantum baths

    NASA Astrophysics Data System (ADS)

    Reisons, Juris; Mascarenhas, Eduardo; Savona, Vincenzo

    2017-10-01

    We analyze an open many-body system that is strongly coupled at its boundaries to interacting quantum baths. We show that the two-body interactions inside the baths induce emergent phenomena in the spin transport. The system and baths are modeled as independent spin chains resulting in a global nonhomogeneous X X Z model. The evolution of the system-bath state is simulated using matrix-product-states methods. We present two phase transitions induced by bath interactions. For weak bath interactions we observe ballistic and insulating phases. However, for strong bath interactions a diffusive phase emerges with a distinct power-law decay of the time-dependent spin current Q ∝t-α . Furthermore, we investigate long-lasting current oscillations arising from the non-Markovian dynamics in the homogeneous case and find a sharp change in their frequency scaling coinciding with the triple point of the phase diagram.

  16. Feedback loops and temporal misalignment in component-based hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Elag, Mostafa M.; Goodall, Jonathan L.; Castronova, Anthony M.

    2011-12-01

    In component-based modeling, a complex system is represented as a series of loosely integrated components with defined interfaces and data exchanges that allow the components to be coupled together through shared boundary conditions. Although the component-based paradigm is commonly used in software engineering, it has only recently been applied for modeling hydrologic and earth systems. As a result, research is needed to test and verify the applicability of the approach for modeling hydrologic systems. The objective of this work was therefore to investigate two aspects of using component-based software architecture for hydrologic modeling: (1) simulation of feedback loops between components that share a boundary condition and (2) data transfers between temporally misaligned model components. We investigated these topics using a simple case study where diffusion of mass is modeled across a water-sediment interface. We simulated the multimedia system using two model components, one for the water and one for the sediment, coupled using the Open Modeling Interface (OpenMI) standard. The results were compared with a more conventional numerical approach for solving the system where the domain is represented by a single multidimensional array. Results showed that the component-based approach was able to produce the same results obtained with the more conventional numerical approach. When the two components were temporally misaligned, we explored the use of different interpolation schemes to minimize mass balance error within the coupled system. The outcome of this work provides evidence that component-based modeling can be used to simulate complicated feedback loops between systems and guidance as to how different interpolation schemes minimize mass balance error introduced when components are temporally misaligned.

  17. Assessment of the urban water system with an open ...

    EPA Pesticide Factsheets

    Urban water systems convey complex environmental and man-made flows. The relationships among water flows and networked storages remains difficult to comprehensively evaluate. Such evaluation is important, however, as interventions are designed (e.g, conservation measures, green infrastructure) to modify specific flows of urban water (e.g. drinking water, stormwater) that may have systemic effects. We have developed a general model that specifies the relationships among urban water system components, and a set of tools for evaluating the model for any city as the R package CityWaterBalance. CityWaterBalance provides a reproducible workflow for assessing urban water system(s) by facilitating the retrieval of open data, largely via web services, and analysis of these data using open-source R functions. It allows the user to 1) quickly assemble a quantitative, unified picture of flows thorough an urban area, and 2) easily change the spatial and temporal boundaries of analysis to match scales relevant to local decision-making. We used CityWaterBalance to evaluate the water system in the Chicago metropolitan area on a monthly basis for water years 2001-2010. Results, including the relative magnitudes and temporal variability of major water flows in greater Chicago, are used to consider 1) trade-offs associated with management alternatives for stormwater and combined sewer overflows and 2) the significance of future changes in precipitation, which is the largest

  18. A Converter from the Systems Biology Markup Language to the Synthetic Biology Open Language.

    PubMed

    Nguyen, Tramy; Roehner, Nicholas; Zundel, Zach; Myers, Chris J

    2016-06-17

    Standards are important to synthetic biology because they enable exchange and reproducibility of genetic designs. This paper describes a procedure for converting between two standards: the Systems Biology Markup Language (SBML) and the Synthetic Biology Open Language (SBOL). SBML is a standard for behavioral models of biological systems at the molecular level. SBOL describes structural and basic qualitative behavioral aspects of a biological design. Converting SBML to SBOL enables a consistent connection between behavioral and structural information for a biological design. The conversion process described in this paper leverages Systems Biology Ontology (SBO) annotations to enable inference of a designs qualitative function.

  19. Modelling the Auroral Magnetosphere-Ionosphere Coupling System at Jupiter

    NASA Astrophysics Data System (ADS)

    Bunce, E. J.; Cowley, S.; Provan, G.

    2016-12-01

    The magnetosphere-ionosphere coupling system at Jupiter is a topic of central significance in understanding the fundamental properties of its large-scale plasma environment. Theoretical discussion of this topic typically considers the properties of the field-aligned current systems that form part of a large-scale magnetosphere-ionosphere coupling current system associated with momentum exchange between the ionosphere and the magnetosphere, communicated via the magnetic field. The current system associated with the main oval is believed to be related to centrifugally-driven outward radial transport of iogenic plasma that leads to sub-corotation in the middle magnetosphere. In addition to the magnetosphere-ionosphere coupling current system, upward-directed field-aligned currents may flow at the open-closed field line boundary due to the shear between outer closed field lines and open field lines, which may relate to emission poleward of the main oval. An axi-symmetric model of the plasma flow in the jovian system, the related coupling currents, and the consequent auroral precipitation based on these combined ideas was initially devised to represent typical steady-state conditions for the system and later extended to consider auroral effects resulting from sudden compressions of the magnetosphere. More recently, the model has been extended along model magnetic field lines into the magnetosphere in order to relate them to in situ observations from the NASA Juno spacecraft at Jupiter. The field-aligned coupling currents associated with the modelled current systems produce a readily-observable azimuthal field signature that bends the field lines out of magnetic meridians. Here we show the computed azimuthal fields produced by our model auroral current system throughout the region between the ionosphere and the magnetic equator, and illustrate the results by evaluation of various model parameters (e.g. field-aligned current density, accelerating voltages, accelerated energy flux) along the Juno orbits.

  20. 40 CFR Appendix E to Part 63 - Monitoring Procedure for Nonthoroughly Mixed Open Biological Treatment Systems at Kraft Pulp...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... II. Definitions Biological treatment unit = wastewater treatment unit designed and operated to... last zone in the series and ending with the first zone. B. Data Collection Requirements This method is based upon modeling the nonthoroughly mixed open biological treatment unit as a series of well-mixed...

  1. Using Future Research Methods in Analysing Policies Relating to Open Distance Education in Africa

    ERIC Educational Resources Information Center

    Makoe, Mpine Elizabeth

    2018-01-01

    Many African countries have developed policies to reform their education system in order to widen participation in higher education. To achieve this, open, online and distance education based models have been advocated as the most viable delivery tools in expanding access to higher education. However, the policy analysis of Kenya, Rwanda and…

  2. Open Technology Development: Roadmap Plan

    DTIC Science & Technology

    2006-04-01

    65 RECOMMENDATION 1: APPROVE AND FUND AN OTD STRIKE TEAM................. 67 Senior Leadership...negotiated, rather than an innate property of the product. Software’s replicability also means it can be incorporated into other software systems without...to leverage an open code development model, DoD would provide the market incentives to increase the agility and competitiveness of the industrial

  3. Strain actuated aeroelastic control

    NASA Technical Reports Server (NTRS)

    Lazarus, Kenneth B.

    1992-01-01

    Viewgraphs on strain actuated aeroelastic control are presented. Topics covered include: structural and aerodynamic modeling; control law design methodology; system block diagram; adaptive wing test article; bench-top experiments; bench-top disturbance rejection: open and closed loop response; bench-top disturbance rejection: state cost versus control cost; wind tunnel experiments; wind tunnel gust alleviation: open and closed loop response at 60 mph; wind tunnel gust alleviation: state cost versus control cost at 60 mph; wind tunnel command following: open and closed loop error at 60 mph; wind tunnel flutter suppression: open loop flutter speed; and wind tunnel flutter suppression: closed loop state cost curves.

  4. Doctor discontent. A comparison of physician satisfaction in different delivery system settings, 1986 and 1997.

    PubMed

    Murray, A; Montgomery, J E; Chang, H; Rogers, W H; Inui, T; Safran, D G

    2001-07-01

    To examine the differences in physician satisfaction associated with open- versus closed-model practice settings and to evaluate changes in physician satisfaction between 1986 and 1997. Open-model practices refer to those in which physicians accept patients from multiple health plans and insurers (i.e., do not have an exclusive arrangement with any single health plan). Closed-model practices refer to those wherein physicians have an exclusive relationship with a single health plan (i.e., staff- or group-model HMO). Two cross-sectional surveys of physicians; one conducted in 1986 (Medical Outcomes Study) and one conducted in 1997 (Study of Primary Care Performance in Massachusetts). Primary care practices in Massachusetts. General internists and family practitioners in Massachusetts. Seven measures of physician satisfaction, including satisfaction with quality of care, the potential to achieve professional goals, time spent with individual patients, total earnings from practice, degree of personal autonomy, leisure time, and incentives for high quality. Physicians in open- versus closed-model practices differed significantly in several aspects of their professional satisfaction. In 1997, open-model physicians were less satisfied than closed-model physicians with their total earnings, leisure time, and incentives for high quality. Open-model physicians reported significantly more difficulty with authorization procedures and reported more denials for care. Overall, physicians in 1997 were less satisfied in every aspect of their professional life than 1986 physicians. Differences were significant in three areas: time spent with individual patients, autonomy, and leisure time (P < or =.05). Among open-model physicians, satisfaction with autonomy and time with individual patients were significantly lower in 1997 than 1986 (P < or =.01). Among closed-model physicians, satisfaction with total earnings and with potential to achieve professional goals were significantly lower in 1997 than in 1986 (P < or =.01). This study finds that the state of physician satisfaction in Massachusetts is extremely low, with the majority of physicians dissatisfied with the amount of time they have with individual patients, their leisure time, and their incentives for high quality. Satisfaction with most areas of practice declined significantly between 1986 and 1997. Open-model physicians were less satisfied than closed-model physicians in most aspects of practices.

  5. The dynamics and control of large flexible space structures, 8

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Reddy, A. S. S. R.; Diarra, C. M.; Ananthakrishnan, S.

    1985-01-01

    A development of the in plane open loop rotational equations of motion for the proposed Spacecraft Control Laboratory Experiment (SCOLE) in orbit configuration is presented based on an Eulerian formulation. The mast is considered to be a flexible beam connected to the (rigid) shuttle and the reflector. Frequencies and mode shapes are obtained for the mast vibrational appendage modes (assumed to be decoupled) for different boundary conditions based on continuum approaches and also preliminary results are obtained using a finite element representation of the mast reflector system. The linearized rotational in plane equation is characterized by periodic coefficients and open loop system stability can be examined with an application of the Floquet theorem. Numerical results are presented to illustrate the potential instability associated with actuator time delays even for delays which represent only a small fraction of the natural period of oscillation of the modes contained in the open loop model of the system. When plant and measurement noise effects are added to the previously designed deterministic model of the hoop column system, it is seen that both the system transient and steady state performance are degraded. Mission requirements can be satisfied by appropriate assignment of cost function weighting elements and changes in the ratio of plant noise to measurement noise.

  6. Dynamic analysis of gas-core reactor system

    NASA Technical Reports Server (NTRS)

    Turner, K. H., Jr.

    1973-01-01

    A heat transfer analysis was incorporated into a previously developed model CODYN to obtain a model of open-cycle gaseous core reactor dynamics which can predict the heat flux at the cavity wall. The resulting model was used to study the sensitivity of the model to the value of the reactivity coefficients and to determine the system response for twenty specified perturbations. In addition, the model was used to study the effectiveness of several control systems in controlling the reactor. It was concluded that control drums located in the moderator region capable of inserting reactivity quickly provided the best control.

  7. Oscillations of a sessile droplet in open air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korenchenko, A. E., E-mail: korenchenko@physics.susu.ac.ru; Beskachko, V. P.

    2013-11-15

    The open system consisting of a sessile drop, a neutral gas, and a substrate is analyzed by numerical methods. The mode with constant contact angle is considered. The model takes into account evaporation from drop surface, free and forced convection in gas, buoyancy, and Marangoni effect in the liquid phase. It was established that every considered mechanical and thermodynamical disturbance of the system leads to the drop surface oscillations, and thus a drop in an open air oscillates almost inevitably. The displacement of the liquid-gas interface due to oscillations is analyzed in terms of its impact on the accuracy ofmore » measurement of the surface tension by sessile drop method.« less

  8. Numerical model of the circulation and dispersion in the east Adriatic coastal waters

    NASA Astrophysics Data System (ADS)

    Beg Paklar, Gordana; Dzoic, Tomislav; Koracin, Darko; Matijevic, Slavica; Grbec, Branka; Ivatek-Sahdan, Stjepan

    2017-04-01

    The Regional Ocean Modeling System (ROMS) was implemented to reproduce physical properties of the area around submarine outlet Stobrec in the middle Adriatic coastal area. ROMS model run was forced with realistic atmospheric fields obtained from meteorological model Aladin, climatological river discharges, tides and dynamics of the surrounding area imposed at the open boundaries. Atmospheric forcing included momentum, heat and water fluxes calculated interactively from the Aladin surface fields during ROMS model simulations. Simulated fields from the Adriatic and shelf scale models were used to prescribe the initial and open boundary conditions for fine resolution coastal domain. Model results were compared with available CTD measurements and discussed in the light of the climatological circulation and thermohaline properties of the middle Adriatic coastal area. Variability in the circulation is related to the prevailing atmospheric conditions, changes in the hydrological conditions and water mass exchange at the open boundaries. Basic features of the coastal circulation are well reproduced by the ROMS model, as well as temperatures and salinities which are within corresponding seasonal intervals, although with lower stratification than measured ones. In order to reproduce dispersion of the passive tracer the ROMS model was coupled with Lagrangian dispersion model. Multiyear monitoring of the physical, chemical and biological parameters around the sewage outlet was used to assess the quality of the dispersion model results. Among measured parameters, redox potential of the surface sediment layer was selected to be compared with model results as its negative values are direct consequence of increased organic matter input that can be attributed to the sewage system inflow.

  9. System Identification and Verification of Rotorcraft UAVs

    NASA Astrophysics Data System (ADS)

    Carlton, Zachary M.

    The task of a controls engineer is to design and implement control logic. To complete this task, it helps tremendously to have an accurate model of the system to be controlled. Obtaining a very accurate system model is not a trivial one, as much time and money is usually associated with the development of such a model. A typical physics based approach can require hundreds of hours of flight time. In an iterative process the model is tuned in such a way that it accurately models the physical system's response. This process becomes even more complicated for unstable and highly non-linear systems such as the dynamics of rotorcraft. An alternate approach to solving this problem is to extract an accurate model by analyzing the frequency response of the system. This process involves recording the system's responses for a frequency range of input excitations. From this data, an accurate system model can then be deduced. Furthermore, it has been shown that with use of the software package CIFER® (Comprehensive Identification from FrEquency Responses), this process can both greatly reduce the cost of modeling a dynamic system and produce very accurate results. The topic of this thesis is to apply CIFER® to a quadcopter to extract a system model for the flight condition of hover. The quadcopter itself is comprised of off-the-shelf components with a Pixhack flight controller board running open source Ardupilot controller logic. In this thesis, both the closed and open loop systems are identified. The model is next compared to dissimilar flight data and verified in the time domain. Additionally, the ESC (Electronic Speed Controller) motor/rotor subsystem, which is comprised of all the vehicle's actuators, is also identified. This process required the development of a test bench environment, which included a GUI (Graphical User Interface), data pre and post processing, as well as the augmentation of the flight controller source code. This augmentation of code allowed for proper data logging rates of all needed parameters.

  10. Understanding Hawking radiation in the framework of open quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Hongwei; Zhang Jialin

    2008-01-15

    We study the Hawking radiation in the framework of open quantum systems by examining the time evolution of a detector (modeled by a two-level atom) interacting with vacuum massless scalar fields. The dynamics of the detector is governed by a master equation obtained by tracing over the field degrees of freedom from the complete system. The nonunitary effects are studied by analyzing the time behavior of a particular observable of the detector, i.e., its admissible state, in the Unruh, Hartle-Hawking, as well as Boulware vacua outside a Schwarzschild black hole. We find that the detector in both the Unruh andmore » Hartle-Hawking vacua would spontaneously excite with a nonvanishing probability the same as what one would obtain if there is thermal radiation at the Hawking temperature from the black hole, thus reproducing the basic results concerning the Hawking effect in the framework of open quantum systems.« less

  11. Algae biodiesel - a feasibility report

    PubMed Central

    2012-01-01

    Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model. PMID:22540986

  12. Efficient steady-state solver for hierarchical quantum master equations

    NASA Astrophysics Data System (ADS)

    Zhang, Hou-Dao; Qiao, Qin; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing

    2017-07-01

    Steady states play pivotal roles in many equilibrium and non-equilibrium open system studies. Their accurate evaluations call for exact theories with rigorous treatment of system-bath interactions. Therein, the hierarchical equations-of-motion (HEOM) formalism is a nonperturbative and non-Markovian quantum dissipation theory, which can faithfully describe the dissipative dynamics and nonlinear response of open systems. Nevertheless, solving the steady states of open quantum systems via HEOM is often a challenging task, due to the vast number of dynamical quantities involved. In this work, we propose a self-consistent iteration approach that quickly solves the HEOM steady states. We demonstrate its high efficiency with accurate and fast evaluations of low-temperature thermal equilibrium of a model Fenna-Matthews-Olson pigment-protein complex. Numerically exact evaluation of thermal equilibrium Rényi entropies and stationary emission line shapes is presented with detailed discussion.

  13. Current Standardization and Cooperative Efforts Related to Industrial Information Infrastructures.

    DTIC Science & Technology

    1993-05-01

    Data Management Systems: Components used to store, manage, and retrieve data. Data management includes knowledge bases, database management...Application Development Tools and Methods X/Open and POSIX APIs Integrated Design Support System (IDS) Knowledge -Based Systems (KBS) Application...IDEFlx) Yourdon Jackson System Design (JSD) Knowledge -Based Systems (KBSs) Structured Systems Development (SSD) Semantic Unification Meta-Model

  14. Open loop model for WDM links

    NASA Astrophysics Data System (ADS)

    D, Meena; Francis, Fredy; T, Sarath K.; E, Dipin; Srinivas, T.; K, Jayasree V.

    2014-10-01

    Wavelength Division Multiplexing (WDM) techniques overfibrelinks helps to exploit the high bandwidth capacity of single mode fibres. A typical WDM link consisting of laser source, multiplexer/demultiplexer, amplifier and detectoris considered for obtaining the open loop gain model of the link. The methodology used here is to obtain individual component models using mathematical and different curve fitting techniques. These individual models are then combined to obtain the WDM link model. The objective is to deduce a single variable model for the WDM link in terms of input current to system. Thus it provides a black box solution for a link. The Root Mean Square Error (RMSE) associated with each of the approximated models is given for comparison. This will help the designer to select the suitable WDM link model during a complex link design.

  15. Quasibound states in a triple Gaussian potential

    NASA Astrophysics Data System (ADS)

    Reichl, L. E.; Porter, Max D.

    2018-04-01

    We derive the transmission probabilities and delay times, and identify quasibound state structures in an open quantum system consisting of three Gaussian potential energy peaks, a system whose classical scattering dynamics we show to be chaotic. Such open quantum systems can serve as models for nanoscale quantum devices and their wave dynamics are similar to electromagnetic wave dynamics in optical microcavities. We use a quantum web to determine energy regimes for which the system exhibits the quantum manifestations of chaos, and we show that the classical scattering dynamics contains a significant amount of chaos. We also derive an exact expression for the non-Hermitian Hamiltonian whose eigenvalues give quasibound state energies and lifetimes of the system.

  16. Data Shaping in the Cultural Simulation Modeler Integrated Behavioral Assessment Capability. Phase I

    DTIC Science & Technology

    2007-07-01

    articles that appeared in global media in the years 1999-2006. The articles were all open source information and were obtained in part through an...agreement between Factiva Dow Jones and the NRL for this project, and in part collected by IndaSea from the Open Source Center database and a variety of...This view implied that a system geared to assist analysts should be open and completely dynamic. It is IndaSea’s perspective that there are advantages

  17. Towards a Model of School Leadership.

    ERIC Educational Resources Information Center

    Busher, Hugh; Saran, Rene

    1994-01-01

    Explores the various leadership models (structural-functional, open-systems, cultural-pluralism, interpersonal, and political) used to illuminate headteachers' work and considers the problems faced by leaders in professionally staffed organizations. School leadership activities center on managing organizational cultures and the external…

  18. Communication security in open health care networks.

    PubMed

    Blobel, B; Pharow, P; Engel, K; Spiegel, V; Krohn, R

    1999-01-01

    Fulfilling the shared care paradigm, health care networks providing open systems' interoperability in health care are needed. Such communicating and co-operating health information systems, dealing with sensitive personal medical information across organisational, regional, national or even international boundaries, require appropriate security solutions. Based on the generic security model, within the European MEDSEC project an open approach for secure EDI like HL7, EDIFACT, XDT or XML has been developed. The consideration includes both securing the message in an unsecure network and the transport of the unprotected information via secure channels (SSL, TLS etc.). Regarding EDI, an open and widely usable security solution has been specified and practically implemented for the examples of secure mailing and secure file transfer (FTP) via wrapping the sensitive information expressed by the corresponding protocols. The results are currently prepared for standardisation.

  19. Methodology of selecting dozers for lignite open pit mines in Serbia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stojanovic, D.; Ignjatovic, D.; Kovacevic, S.

    1996-12-31

    Apart from the main production processes (coal and overburden mining, rail conveyors transportation and storage of excavated masses) performed by great-capacity mechanization at open pit mines, numerous and different auxiliary works, that often have crucial influence on both the work efficiency of main equipment and the maintenance of optimum technical conditions of machines and plants covering technological system of open pit, are present. Successful realization of work indispensably requires a proper and adequate selection of auxiliary machines according to their type quantity, capacity, power etc. thus highly respecting specific conditions existing at each and every open pit mine. A dozermore » is certainly the most important and representative auxiliary machine at single open pit mine. It is widely used in numerous works that, in fact, are preconditions for successful work of the main mechanization and consequently the very selection of a dozer ranges among the most important operations when selecting mechanization. This paper presents the methodology of dozers selection when lignite open pit mines are concerned. A mathematical model defining the volume of work required for dozers to perform at open pit mines and consequently the number of necessary dozers was designed. The model underwent testing in practice at big open pit mines and can be used in design of future open pits mines.« less

  20. Representing Road Related Laserscanned Data in Curved Regular Grid: a Support to Autonomous Vehicles

    NASA Astrophysics Data System (ADS)

    Potó, V.; Csepinszky, A.; Barsi, Á.

    2018-05-01

    The terrestrial and mobile laser scanning has become nowadays a mature technology applied in several technical and non-technical applications. The transportation infrastructure can be surveyed by these technologies in an excellent way, then 3D maps, fly-through videos and road furniture inventories can be derived among many other applications. The very detailed measurement and the realistic feature enable even to be used in games or simulators. This advantage was to be analyzed in vehicular simulation environment; the primary goal of the paper was to demonstrate a potential workflow and use case for such laser scanning data. The selected simulation package was the OpenCRG, which is being a component of OpenDRIVE-OpenCRG-OpenSCENARIO system, where it has been developed for microscopic simulations, e.g. vibrations, tire models or vehicle suspension systems. Because of the realistic visualization of CRG models it is very popular in the design and development of autonomous vehicles. The paper presents two different paved pilot sites surveyed by these technologies, then the raw data preparation is described and the details of the CRG model building is shown. The results of the experiments bring an overview, how the captured field data can be represented and interpreted in road surface context. The diagrams illustrate the potential of the very high resolution (1 cm) model, which allows to identify each separate cobble stone or to study surface roughness.

  1. Bound states, scattering states, and resonant states in PT -symmetric open quantum systems

    NASA Astrophysics Data System (ADS)

    Garmon, Savannah; Gianfreda, Mariagiovanna; Hatano, Naomichi

    2015-08-01

    We study a simple open quantum system with a PT -symmetric defect potential as a prototype in order to illustrate a number of general features of PT -symmetric open quantum systems; however, the potential itself could be mimicked by a number of PT systems that have been experimentally studied quite recently. One key feature is the resonance in continuum (RIC), which appears in both the discrete spectrum and the scattering spectrum of such systems. The RIC wave function forms a standing wave extending throughout the spatial extent of the system and in this sense represents a resonance between the open environment associated with the leads of our model and the central PT -symmetric potential. We also illustrate that as one deforms the system parameters, the RIC may exit the continuum by splitting into a bound state and a virtual bound state at the band edge, a process which should be experimentally observable. We also study the exceptional points appearing in the discrete spectrum at which two eigenvalues coalesce; we categorize these as either EP2As, at which two real-valued solutions coalesce before becoming complex-valued, and EP2Bs, for which the two solutions are complex on either side of the exceptional point. The EP2As are associated with PT -symmetry breaking; we argue that these are more stable against parameter perturbation than the EP2Bs. We also study complex-valued solutions of the discrete spectrum for which the wave function is nevertheless spatially localized, something that is not allowed in traditional open quantum systems; we illustrate that these may form quasibound states in continuum under some circumstances. We also study the scattering properties of the system, including states that support invisible propagation and some general features of perfect transmission states. We finally use our model as a prototype for the construction of scattering states that satisfy PT -symmetric boundary conditions; while these states do not conserve the traditional probability current, we introduce the PT current which is preserved. The perfect transmission states appear as a special case of the PT -symmetric scattering states.

  2. Registering Names and Addresses for Information Technology.

    ERIC Educational Resources Information Center

    Knapp, Arthur A.

    The identification of administrative authorities and the development of associated procedures for registering and accessing names and addresses of communications data systems are considered in this paper. It is noted that, for data communications systems using standards based on the Open Systems Interconnection (OSI) Reference Model specified by…

  3. MPPhys—A many-particle simulation package for computational physics education

    NASA Astrophysics Data System (ADS)

    Müller, Thomas

    2014-03-01

    In a first course to classical mechanics elementary physical processes like elastic two-body collisions, the mass-spring model, or the gravitational two-body problem are discussed in detail. The continuation to many-body systems, however, is deferred to graduate courses although the underlying equations of motion are essentially the same and although there is a strong motivation for high-school students in particular because of the use of particle systems in computer games. The missing link between the simple and the more complex problem is a basic introduction to solve the equations of motion numerically which could be illustrated, however, by means of the Euler method. The many-particle physics simulation package MPPhys offers a platform to experiment with simple particle simulations. The aim is to give a principle idea how to implement many-particle simulations and how simulation and visualization can be combined for interactive visual explorations. Catalogue identifier: AERR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERR_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 111327 No. of bytes in distributed program, including test data, etc.: 608411 Distribution format: tar.gz Programming language: C++, OpenGL, GLSL, OpenCL. Computer: Linux and Windows platforms with OpenGL support. Operating system: Linux and Windows. RAM: Source Code 4.5 MB Complete package 242 MB Classification: 14, 16.9. External routines: OpenGL, OpenCL Nature of problem: Integrate N-body simulations, mass-spring models Solution method: Numerical integration of N-body-simulations, 3D-Rendering via OpenGL. Running time: Problem dependent

  4. General Mission Analysis Tool (GMAT) Architectural Specification. Draft

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Conway, Darrel, J.

    2007-01-01

    Early in 2002, Goddard Space Flight Center (GSFC) began to identify requirements for the flight dynamics software needed to fly upcoming missions that use formations of spacecraft to collect data. These requirements ranged from low level modeling features to large scale interoperability requirements. In 2003 we began work on a system designed to meet these requirement; this system is GMAT. The General Mission Analysis Tool (GMAT) is a general purpose flight dynamics modeling tool built on open source principles. The GMAT code is written in C++, and uses modern C++ constructs extensively. GMAT can be run through either a fully functional Graphical User Interface (GUI) or as a command line program with minimal user feedback. The system is built and runs on Microsoft Windows, Linux, and Macintosh OS X platforms. The GMAT GUI is written using wxWidgets, a cross platform library of components that streamlines the development and extension of the user interface Flight dynamics modeling is performed in GMAT by building components that represent the players in the analysis problem that is being modeled. These components interact through the sequential execution of instructions, embodied in the GMAT Mission Sequence. A typical Mission Sequence will model the trajectories of a set of spacecraft evolving over time, calculating relevant parameters during this propagation, and maneuvering individual spacecraft to maintain a set of mission constraints as established by the mission analyst. All of the elements used in GMAT for mission analysis can be viewed in the GMAT GUI or through a custom scripting language. Analysis problems modeled in GMAT are saved as script files, and these files can be read into GMAT. When a script is read into the GMAT GUI, the corresponding user interface elements are constructed in the GMAT GUI. The GMAT system was developed from the ground up to run in a platform agnostic environment. The source code compiles on numerous different platforms, and is regularly exercised running on Windows, Linux and Macintosh computers by the development and analysis teams working on the project. The system can be run using either a graphical user interface, written using the open source wxWidgets framework, or from a text console. The GMAT source code was written using open source tools. GSFC has released the code using the NASA open source license.

  5. Building a Unified Information Network.

    ERIC Educational Resources Information Center

    Avram, Henriette D.

    1988-01-01

    Discusses cooperative efforts between research organizations and libraries to create a national information network. Topics discussed include the Linked System Project (LSP); technical processing versus reference and research functions; Open Systems Interconnection (OSI) Reference Model; the National Science Foundation Network (NSFNET); and…

  6. Mechanism-Based Mathematical Model for Gating of Ionotropic Glutamate Receptors.

    PubMed

    Dai, Jian; Wollmuth, Lonnie P; Zhou, Huan-Xiang

    2015-08-27

    We present a mathematical model for ionotropic glutamate receptors (iGluR's) that is built on mechanistic understanding and yields a number of thermodynamic and kinetic properties of channel gating. iGluR's are ligand-gated ion channels responsible for the vast majority of fast excitatory neurotransmission in the central nervous system. The effects of agonist-induced closure of the ligand-binding domain (LBD) are transmitted to the transmembrane channel (TMC) via interdomain linkers. Our model demonstrates that, relative to full agonists, partial agonists may reduce either the degree of LBD closure or the curvature of the LBD free energy basin, leading to less stabilization of the channel open state and hence lower channel open probability. A rigorous relation is derived between the channel closed-to-open free energy difference and the tension within the linker. Finally, by treating LBD closure and TMC opening as diffusive motions, we obtain gating trajectories that resemble stochastic current traces from single-channel recordings and calculate the rate constants for transitions between the channel open and closed states. Our model can be implemented by molecular dynamics simulations to realistically depict iGluR gating and may guide functional experiments in gaining deeper insight into this essential family of channel proteins.

  7. Interannual sedimentary effluxes of alkalinity in the southern North Sea: model results compared with summer observations

    NASA Astrophysics Data System (ADS)

    Pätsch, Johannes; Kühn, Wilfried; Dorothea Six, Katharina

    2018-06-01

    For the sediments of the central and southern North Sea different sources of alkalinity generation are quantified by a regional modelling system for the period 2000-2014. For this purpose a formerly global ocean sediment model coupled with a pelagic ecosystem model is adapted to shelf sea dynamics, where much larger turnover rates than in the open and deep ocean occur. To track alkalinity changes due to different nitrogen-related processes, the open ocean sediment model was extended by the state variables particulate organic nitrogen (PON) and ammonium. Directly measured alkalinity fluxes and those derived from Ra isotope flux observation from the sediment into the pelagic are reproduced by the model system, but calcite building and calcite dissolution are underestimated. Both fluxes cancel out in terms of alkalinity generation and consumption. Other simulated processes altering alkalinity in the sediment, like net sulfate reduction, denitrification, nitrification, and aerobic degradation, are quantified and compare well with corresponding fluxes derived from observations. Most of these fluxes exhibit a strong positive gradient from the open North Sea to the coast, where large rivers drain nutrients and organic matter. Atmospheric nitrogen deposition also shows a positive gradient from the open sea towards land and supports alkalinity generation in the sediments. An additional source of spatial variability is introduced by the use of a 3-D heterogenous porosity field. Due to realistic porosity variations (0.3-0.5) the alkalinity fluxes vary by about 4 %. The strongest impact on interannual variations of alkalinity fluxes is exhibited by the temporal varying nitrogen inputs from large rivers directly governing the nitrate concentrations in the coastal bottom water, thus providing nitrate necessary for benthic denitrification. Over the time investigated the alkalinity effluxes decrease due to the decrease in the nitrogen supply by the rivers.

  8. Quantitative assessment of the blood-brain barrier opening caused by Streptococcus agalactiae hyaluronidase in a BALB/c mouse model.

    PubMed

    Luo, Su; Cao, Qing; Ma, Ke; Wang, Zhaofei; Liu, Guangjin; Lu, Chengping; Liu, Yongjie

    2017-10-19

    Streptococcus agalactiae is a pathogen causing meningitis in animals and humans. However, little is known about the entry of S. agalactiae into brain tissue. In this study, we developed a BALB/c mouse model based on the intravenous injection of β-galactosidase-positive Escherichia coli M5 as an indicator of blood-brain barrier (BBB) opening. Under physiological conditions, the BBB is impermeable to E. coli M5. In pathological conditions caused by S. agalactiae, E. coli M5 is capable of penetrating the brain through a disrupted BBB. The level of BBB opening can be assessed by quantitative measurement of E. coli M5 loads per gram of brain tissue. Further, we used the model to evaluate the role of S. agalactiae hyaluronidase in BBB opening. The inactivation of hylB gene encoding a hyaluronidase, HylB, resulted in significantly decreased E. coli M5 colonization, and the intravenous injection of purified HylB protein induced BBB opening in a dose-dependent manner. This finding verified the direct role of HylB in BBB invasion and traversal, and further demonstrated the practicability of the in vivo mouse model established in this study. This model will help to understand the S. agalactiae-host interactions that are involved in this bacterial traversal of the BBB and to develop efficacious strategies to prevent central nervous system infections.

  9. A Web-based Tool for Transparent, Collaborative Urban Water System Planning for Monterrey, Mexico

    NASA Astrophysics Data System (ADS)

    Rheinheimer, D. E.; Medellin-Azuara, J.; Garza Díaz, L. E.; Ramírez, A. I.

    2017-12-01

    Recent rapid advances in web technologies and cloud computing show great promise for facilitating collaboration and transparency in water planning efforts. Water resources planning is increasingly in the context of a rapidly urbanizing world, particularly in developing countries. In such countries with democratic traditions, the degree of transparency and collaboration in water planning can mean the difference between success and failure of water planning efforts. This is exemplified in the city of Monterrey, Mexico, where an effort to build a new long-distance aqueduct to increase water supply to the city dramatically failed due to lack of transparency and top-down planning. To help address, we used a new, web-based water system modeling platform, called OpenAgua, to develop a prototype decision support system for water planning in Monterrey. OpenAgua is designed to promote transparency and collaboration, as well as provide strong, cloud-based, water system modeling capabilities. We developed and assessed five water management options intended to increase water supply yield and/or reliability, a dominant water management concern in Latin America generally: 1) a new long-distance source (the previously-rejected project), 2) a new nearby reservoir, 3) expansion/re-operation of an existing major canal, 4) desalination, and 5) industrial water reuse. Using the integrated modeling and analytic capabilities of OpenAgua, and some customization, we assessed the performance of these options for water supply yield and reliability to help identify the most promising ones. In presenting this assessment, we demonstrate the viability of using online, cloud-based modeling systems for improving transparency and collaboration in decision making, reducing the gap between citizens, policy makers and water managers, and future directions.

  10. OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange.

    PubMed

    Seth, Ajay; Sherman, Michael; Reinbolt, Jeffrey A; Delp, Scott L

    Movement science is driven by observation, but observation alone cannot elucidate principles of human and animal movement. Biomechanical modeling and computer simulation complement observations and inform experimental design. Biological models are complex and specialized software is required for building, validating, and studying them. Furthermore, common access is needed so that investigators can contribute models to a broader community and leverage past work. We are developing OpenSim, a freely available musculoskeletal modeling and simulation application and libraries specialized for these purposes, by providing: musculoskeletal modeling elements, such as biomechanical joints, muscle actuators, ligament forces, compliant contact, and controllers; and tools for fitting generic models to subject-specific data, performing inverse kinematics and forward dynamic simulations. OpenSim performs an array of physics-based analyses to delve into the behavior of musculoskeletal models by employing Simbody, an efficient and accurate multibody system dynamics code. Models are publicly available and are often reused for multiple investigations because they provide a rich set of behaviors that enables different lines of inquiry. This report will discuss one model developed to study walking and applied to gain deeper insights into muscle function in pathological gait and during running. We then illustrate how simulations can test fundamental hypotheses and focus the aims of in vivo experiments, with a postural stability platform and human model that provide a research environment for performing human posture experiments in silico . We encourage wide adoption of OpenSim for community exchange of biomechanical models and methods and welcome new contributors.

  11. How should we build a generic open-source water management simulator?

    NASA Astrophysics Data System (ADS)

    Khadem, M.; Meier, P.; Rheinheimer, D. E.; Padula, S.; Matrosov, E.; Selby, P. D.; Knox, S.; Harou, J. J.

    2014-12-01

    Increasing water needs for agriculture, industry and cities mean effective and flexible water resource system management tools will remain in high demand. Currently many regions or countries use simulators that have been adapted over time to their unique system properties and water management rules and realities. Most regions operate with a preferred short-list of water management and planning decision support systems. Is there scope for a simulator, shared within the water management community, that could be adapted to different contexts, integrate community contributions, and connect to generic data and model management software? What role could open-source play in such a project? How could a genericuser-interface and data/model management software sustainably be attached to this model or suite of models? Finally, how could such a system effectively leverage existing model formulations, modeling technologies and software? These questions are addressed by the initial work presented here. We introduce a generic water resource simulation formulation that enables and integrates both rule-based and optimization driven technologies. We suggest how it could be linked to other sub-models allowing for detailed agent-based simulation of water management behaviours. An early formulation is applied as an example to the Thames water resource system in the UK. The model uses centralised optimisation to calculate allocations but allows for rule-based operations as well in an effort to represent observed behaviours and rules with fidelity. The model is linked through import/export commands to a generic network model platform named Hydra. Benefits and limitations of the approach are discussed and planned work and potential use cases are outlined.

  12. Real -time dispatching modelling for trucks with different capacities in open pit mines / Modelowanie w czasie rzeczywistym przewozów ciężarówek o różnej ładowności w kopalni odkrywkowej

    NASA Astrophysics Data System (ADS)

    Ahangaran, Daryoush Kaveh; Yasrebi, Amir Bijan; Wetherelt, Andy; Foster, Patrick

    2012-10-01

    Application of fully automated systems for truck dispatching plays a major role in decreasing the transportation costs which often represent the majority of costs spent on open pit mining. Consequently, the application of a truck dispatching system has become fundamentally important in most of the world's open pit mines. Recent experiences indicate that by decreasing a truck's travelling time and the associated waiting time of its associated shovel then due to the application of a truck dispatching system the rate of production will be considerably improved. Computer-based truck dispatching systems using algorithms, advanced and accurate software are examples of these innovations. Developing an algorithm of a computer- based program appropriated to a specific mine's conditions is considered as one of the most important activities in connection with computer-based dispatching in open pit mines. In this paper the changing trend of programming and dispatching control algorithms and automation conditions will be discussed. Furthermore, since the transportation fleet of most mines use trucks with different capacities, innovative methods, operational optimisation techniques and the best possible methods for developing the required algorithm for real-time dispatching are selected by conducting research on mathematical-based planning methods. Finally, a real-time dispatching model compatible with the requirement of trucks with different capacities is developed by using two techniques of flow networks and integer programming.

  13. OpenDA-WFLOW framework for improving hydrologic predictions using distributed hydrologic models

    NASA Astrophysics Data System (ADS)

    Weerts, Albrecht; Schellekens, Jaap; Kockx, Arno; Hummel, Stef

    2017-04-01

    Data assimilation (DA) holds considerable potential for improving hydrologic predictions (Liu et al., 2012) and increase the potential for early warning and/or smart water management. However, advances in hydrologic DA research have not yet been adequately or timely implemented in operational forecast systems to improve the skill of forecasts for better informed real-world decision making. The objective of this work is to highlight the development of a generic linkage of the open source OpenDA package and the open source community hydrologic modeling framework Openstreams/WFLOW and its application in operational hydrological forecasting on various spatial scales. The coupling between OpenDA and Openstreams/wflow framework is based on the emerging standard Basic Model Interface (BMI) as advocated by CSDMS using cross-platform webservices (i.e. Apache Thrift) developed by Hut et al. (2016). The potential application of the OpenDA-WFLOW for operational hydrologic forecasting including its integration with Delft-FEWS (used by more than 40 operational forecast centers around the world (Werner et al., 2013)) is demonstrated by the presented case studies. We will also highlight the possibility to give real-time insight into the working of the DA methods applied for supporting the forecaster as mentioned as one of the burning issues by Liu et al., (2012).

  14. Application of Method of Variation to Analyze and Predict Human Induced Modifications of Water Resource Systems

    NASA Astrophysics Data System (ADS)

    Dessu, S. B.; Melesse, A. M.; Mahadev, B.; McClain, M.

    2010-12-01

    Water resource systems have often used gravitational surface and subsurface flows because of their practicality in hydrological modeling and prediction. Activities such as inter/intra-basin water transfer, the use of small pumps and the construction of micro-ponds challenge the tradition of natural rivers as water resource management unit. On the contrary, precipitation is barely affected by topography and plot harvesting in wet regions can be more manageable than diverting from rivers. Therefore, it is indicative to attend to systems where precipitation drives the dynamics while the internal mechanics constitutes spectrum of human activity and decision in a network of plots. The trade-in volume and path of harvested precipitation depends on water balance, energy balance and the kinematics of supply and demand. Method of variation can be used to understand and predict the implication of local excess precipitation harvest and exchange on the natural water system. A system model was developed using the variational form of Euler-Bernoulli’s equation for the Kenyan Mara River basin. Satellite derived digital elevation models, precipitation estimates, and surface properties such as fractional impervious surface area, are used to estimate the available water resource. Four management conditions are imposed in the model: gravitational flow, open water extraction and high water use investment at upstream and downstream respectively. According to the model, the first management maintains the basin status quo while the open source management could induce externality. The high water market at the upstream in the third management offers more than 50% of the basin-wide total revenue to the upper third section of the basin thus may promote more harvesting. The open source and upstream exploitation suggest potential drop of water availability to downstream. The model exposed the latent potential of economic gradient to reconfigure the flow network along the direction where the marginal benefit is maximized. Therefore, the variation model can help to predict the possible human induced modification of natural water system in order to gain the maximum productivity and benefit.

  15. Standard-Cell, Open-Architecture Power Conversion Systems

    DTIC Science & Technology

    2005-10-01

    TLmax Maximum junction temperature 423 OK Table 5. 9. PEBB average model description in VTB. Terminal Type Name - 4 -, A Power DC Bus + B Power AC Pole...5 A. Switching models ........................................................................................ 5 B. Average ...11-6 IV. Average Modeling of PEBB-Based Converters...................................................... 11-10 0 IV. 1.Voltage

  16. Development and Implementation of Dynamic Scripts to Execute Cycled WRF/GSI Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Berndt, Emily; Li, Quanli; Watson, Leela

    2014-01-01

    Automating the coupling of data assimilation (DA) and modeling systems is a unique challenge in the numerical weather prediction (NWP) research community. In recent years, the Development Testbed Center (DTC) has released well-documented tools such as the Weather Research and Forecasting (WRF) model and the Gridpoint Statistical Interpolation (GSI) DA system that can be easily downloaded, installed, and run by researchers on their local systems. However, developing a coupled system in which the various preprocessing, DA, model, and postprocessing capabilities are all integrated can be labor-intensive if one has little experience with any of these individual systems. Additionally, operational modeling entities generally have specific coupling methodologies that can take time to understand and develop code to implement properly. To better enable collaborating researchers to perform modeling and DA experiments with GSI, the Short-term Prediction Research and Transition (SPoRT) Center has developed a set of Perl scripts that couple GSI and WRF in a cycling methodology consistent with the use of real-time, regional observation data from the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC). Because Perl is open source, the code can be easily downloaded and executed regardless of the user's native shell environment. This paper will provide a description of this open-source code and descriptions of a number of the use cases that have been performed by SPoRT collaborators using the scripts on different computing systems.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbara Chapman

    OpenMP was not well recognized at the beginning of the project, around year 2003, because of its limited use in DoE production applications and the inmature hardware support for an efficient implementation. Yet in the recent years, it has been graduately adopted both in HPC applications, mostly in the form of MPI+OpenMP hybrid code, and in mid-scale desktop applications for scientific and experimental studies. We have observed this trend and worked deligiently to improve our OpenMP compiler and runtimes, as well as to work with the OpenMP standard organization to make sure OpenMP are evolved in the direction close tomore » DoE missions. In the Center for Programming Models for Scalable Parallel Computing project, the HPCTools team at the University of Houston (UH), directed by Dr. Barbara Chapman, has been working with project partners, external collaborators and hardware vendors to increase the scalability and applicability of OpenMP for multi-core (and future manycore) platforms and for distributed memory systems by exploring different programming models, language extensions, compiler optimizations, as well as runtime library support.« less

  18. An integrated 3D log processing optimization system for small sawmills in central Appalachia

    Treesearch

    Wenshu Lin; Jingxin Wang

    2013-01-01

    An integrated 3D log processing optimization system was developed to perform 3D log generation, opening face determination, headrig log sawing simulation, fl itch edging and trimming simulation, cant resawing, and lumber grading. A circular cross-section model, together with 3D modeling techniques, was used to reconstruct 3D virtual logs. Internal log defects (knots)...

  19. Placing Students at the Heart of the Iron Triangle and the Interaction Equivalence Theorem Models

    ERIC Educational Resources Information Center

    Lane, Andy

    2014-01-01

    A number of visual models have been proposed to help explain the interplay and interactions between specified components of higher education systems at different levels and to take account of emerging trends towards open education systems. At sector and institutional levels the notion of an iron triangle has been posited, linking firstly access,…

  20. Development of the simulation system {open_quotes}IMPACT{close_quotes} for analysis of nuclear power plant severe accidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naitoh, Masanori; Ujita, Hiroshi; Nagumo, Hiroichi

    1997-07-01

    The Nuclear Power Engineering Corporation (NUPEC) has initiated a long-term program to develop the simulation system {open_quotes}IMPACT{close_quotes} for analysis of hypothetical severe accidents in nuclear power plants. IMPACT employs advanced methods of physical modeling and numerical computation, and can simulate a wide spectrum of senarios ranging from normal operation to hypothetical, beyond-design-basis-accident events. Designed as a large-scale system of interconnected, hierarchical modules, IMPACT`s distinguishing features include mechanistic models based on first principles and high speed simulation on parallel processing computers. The present plan is a ten-year program starting from 1993, consisting of the initial one-year of preparatory work followed bymore » three technical phases: Phase-1 for development of a prototype system; Phase-2 for completion of the simulation system, incorporating new achievements from basic studies; and Phase-3 for refinement through extensive verification and validation against test results and available real plant data.« less

  1. Unlocking the full potential of open innovation in the life sciences through a classification system.

    PubMed

    Nilsson, Niclas; Minssen, Timo

    2018-04-01

    A common understanding of expectations and requirements is critical for boosting research-driven business opportunities in open innovation (OI) settings. Transparent communication requires common definitions and standards for OI to align the expectations of both parties. Here, we suggest a five-level classification system for OI models, reflecting the degree of openness. The aim of this classification system is to reduce contract negotiation complexity and times between two parties looking to engage in OI. Systematizing definitions and contractual terms for OI in the life sciences helps to reduce entry barriers and boosts collaborative value generation. By providing a contractual framework with predefined rules, science will be allowed to move more freely, thus maximizing the potential of OI. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Open-cycle systems performance analysis programming guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, D.A.

    1981-12-01

    The Open-Cycle OTEC Systems Performance Analysis Program is an algorithm programmed on SERI's CDC Cyber 170/720 computer to predict the performance of a Claude-cycle, open-cycle OTEC plant. The algorithm models the Claude-cycle system as consisting of an evaporator, a turbine, a condenser, deaerators, a condenser gas exhaust, a cold water pipe and cold and warm seawater pumps. Each component is a separate subroutine in the main program. A description is given of how to write Fortran subroutines to fit into the main program for the components of the OTEC plant. An explanation is provided of how to use the algorithm.more » The main program and existing component subroutines are described. Appropriate common blocks and input and output variables are listed. Preprogrammed thermodynamic property functions for steam, fresh water, and seawater are described.« less

  3. Open-Source Electronic Health Record Systems for Low-Resource Settings: Systematic Review

    PubMed Central

    Zolfo, Maria; Diro, Ermias

    2017-01-01

    Background Despite the great impact of information and communication technologies on clinical practice and on the quality of health services, this trend has been almost exclusive to developed countries, whereas countries with poor resources suffer from many economic and social issues that have hindered the real benefits of electronic health (eHealth) tools. As a component of eHealth systems, electronic health records (EHRs) play a fundamental role in patient management and effective medical care services. Thus, the adoption of EHRs in regions with a lack of infrastructure, untrained staff, and ill-equipped health care providers is an important task. However, the main barrier to adopting EHR software in low- and middle-income countries is the cost of its purchase and maintenance, which highlights the open-source approach as a good solution for these underserved areas. Objective The aim of this study was to conduct a systematic review of open-source EHR systems based on the requirements and limitations of low-resource settings. Methods First, we reviewed existing literature on the comparison of available open-source solutions. In close collaboration with the University of Gondar Hospital, Ethiopia, we identified common limitations in poor resource environments and also the main requirements that EHRs should support. Then, we extensively evaluated the current open-source EHR solutions, discussing their strengths and weaknesses, and their appropriateness to fulfill a predefined set of features relevant for low-resource settings. Results The evaluation methodology allowed assessment of several key aspects of available solutions that are as follows: (1) integrated applications, (2) configurable reports, (3) custom reports, (4) custom forms, (5) interoperability, (6) coding systems, (7) authentication methods, (8) patient portal, (9) access control model, (10) cryptographic features, (11) flexible data model, (12) offline support, (13) native client, (14) Web client,(15) other clients, (16) code-based language, (17) development activity, (18) modularity, (19) user interface, (20) community support, and (21) customization. The quality of each feature is discussed for each of the evaluated solutions and a final comparison is presented. Conclusions There is a clear demand for open-source, reliable, and flexible EHR systems in low-resource settings. In this study, we have evaluated and compared five open-source EHR systems following a multidimensional methodology that can provide informed recommendations to other implementers, developers, and health care professionals. We hope that the results of this comparison can guide decision making when needing to adopt, install, and maintain an open-source EHR solution in low-resource settings. PMID:29133283

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksen, Janus J., E-mail: janusje@chem.au.dk; Jørgensen, Poul; Matthews, Devin A.

    The accuracy at which total energies of open-shell atoms and organic radicals may be calculated is assessed for selected coupled cluster perturbative triples expansions, all of which augment the coupled cluster singles and doubles (CCSD) energy by a non-iterative correction for the effect of triple excitations. Namely, the second- through sixth-order models of the recently proposed CCSD(T–n) triples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the acclaimed CCSD(T) model for both unrestricted as well as restricted open-shell Hartree-Fock (UHF/ROHF) reference determinants. By comparing UHF- and ROHF-based statistical results for a test setmore » of 18 modest-sized open-shell species with comparable RHF-based results, no behavioral differences are observed for the higher-order models of the CCSD(T–n) series in their correlated descriptions of closed- and open-shell species. In particular, we find that the convergence rate throughout the series towards the coupled cluster singles, doubles, and triples (CCSDT) solution is identical for the two cases. For the CCSD(T) model, on the other hand, not only its numerical consistency, but also its established, yet fortuitous cancellation of errors breaks down in the transition from closed- to open-shell systems. The higher-order CCSD(T–n) models (orders n > 3) thus offer a consistent and significant improvement in accuracy relative to CCSDT over the CCSD(T) model, equally for RHF, UHF, and ROHF reference determinants, albeit at an increased computational cost.« less

  5. OpenARC: Extensible OpenACC Compiler Framework for Directive-Based Accelerator Programming Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seyong; Vetter, Jeffrey S

    2014-01-01

    Directive-based, accelerator programming models such as OpenACC have arisen as an alternative solution to program emerging Scalable Heterogeneous Computing (SHC) platforms. However, the increased complexity in the SHC systems incurs several challenges in terms of portability and productivity. This paper presents an open-sourced OpenACC compiler, called OpenARC, which serves as an extensible research framework to address those issues in the directive-based accelerator programming. This paper explains important design strategies and key compiler transformation techniques needed to implement the reference OpenACC compiler. Moreover, this paper demonstrates the efficacy of OpenARC as a research framework for directive-based programming study, by proposing andmore » implementing OpenACC extensions in the OpenARC framework to 1) support hybrid programming of the unified memory and separate memory and 2) exploit architecture-specific features in an abstract manner. Porting thirteen standard OpenACC programs and three extended OpenACC programs to CUDA GPUs shows that OpenARC performs similarly to a commercial OpenACC compiler, while it serves as a high-level research framework.« less

  6. Knowledge assistant for robotic environmental characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feddema, J.; Rivera, J.; Tucker, S.

    1996-08-01

    A prototype sensor fusion framework called the {open_quotes}Knowledge Assistant{close_quotes} has been developed and tested on a gantry robot at Sandia National Laboratories. This Knowledge Assistant guides the robot operator during the planning, execution, and post analysis stages of the characterization process. During the planning stage, the Knowledge Assistant suggests robot paths and speeds based on knowledge of sensors available and their physical characteristics. During execution, the Knowledge Assistant coordinates the collection of data through a data acquisition {open_quotes}specialist.{close_quotes} During execution and postanalysis, the Knowledge Assistant sends raw data to other {open_quotes}specialists,{close_quotes} which include statistical pattern recognition software, a neural network,more » and model-based search software. After the specialists return their results, the Knowledge Assistant consolidates the information and returns a report to the robot control system where the sensed objects and their attributes (e.g., estimated dimensions, weight, material composition, etc.) are displayed in the world model. This report highlights the major components of this system.« less

  7. nmsBuilder: Freeware to create subject-specific musculoskeletal models for OpenSim.

    PubMed

    Valente, Giordano; Crimi, Gianluigi; Vanella, Nicola; Schileo, Enrico; Taddei, Fulvia

    2017-12-01

    Musculoskeletal modeling and simulations of movement have been increasingly used in orthopedic and neurological scenarios, with increased attention to subject-specific applications. In general, musculoskeletal modeling applications have been facilitated by the development of dedicated software tools; however, subject-specific studies have been limited also by time-consuming modeling workflows and high skilled expertise required. In addition, no reference tools exist to standardize the process of musculoskeletal model creation and make it more efficient. Here we present a freely available software application, nmsBuilder 2.0, to create musculoskeletal models in the file format of OpenSim, a widely-used open-source platform for musculoskeletal modeling and simulation. nmsBuilder 2.0 is the result of a major refactoring of a previous implementation that moved a first step toward an efficient workflow for subject-specific model creation. nmsBuilder includes a graphical user interface that provides access to all functionalities, based on a framework for computer-aided medicine written in C++. The operations implemented can be used in a workflow to create OpenSim musculoskeletal models from 3D surfaces. A first step includes data processing to create supporting objects necessary to create models, e.g. surfaces, anatomical landmarks, reference systems; and a second step includes the creation of OpenSim objects, e.g. bodies, joints, muscles, and the corresponding model. We present a case study using nmsBuilder 2.0: the creation of an MRI-based musculoskeletal model of the lower limb. The model included four rigid bodies, five degrees of freedom and 43 musculotendon actuators, and was created from 3D surfaces of the segmented images of a healthy subject through the modeling workflow implemented in the software application. We have presented nmsBuilder 2.0 for the creation of musculoskeletal OpenSim models from image-based data, and made it freely available via nmsbuilder.org. This application provides an efficient workflow for model creation and helps standardize the process. We hope this would help promote personalized applications in musculoskeletal biomechanics, including larger sample size studies, and might also represent a basis for future developments for specific applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The Wildland Fire Emissions Information System: Providing information for carbon cycle studies with open source geospatial tools

    NASA Astrophysics Data System (ADS)

    French, N. H.; Erickson, T.; McKenzie, D.

    2008-12-01

    A major goal of the North American Carbon Program is to resolve uncertainties in understanding and managing the carbon cycle of North America. As carbon modeling tools become more comprehensive and spatially oriented, accurate datasets to spatially quantify carbon emissions from fire are needed, and these data resources need to be accessible to users for decision-making. Under a new NASA Carbon Cycle Science project, Drs. Nancy French and Tyler Erickson, of the Michigan Technological University, Michigan Tech Research Institute (MTRI), are teaming with specialists with the USDA Forest Service Fire and Environmental Research Applications (FERA) team to provide information for mapping fire-derived carbon emissions to users. The project focus includes development of a web-based system to provide spatially resolved fire emissions estimates for North America in a user-friendly environment. The web-based Decision Support System will be based on a variety of open source technologies. The Fuel Characteristic Classification System (FCCS) raster map of fuels and MODIS-derived burned area vector maps will be processed using the Geographic Data Abstraction Library (GDAL) and OGR Simple Features Library. Tabular and spatial project data will be stored in a PostgreSQL/PostGIS, a spatially enabled relational database server. The browser-based user interface will be created using the Django web page framework to allow user input for the decision support system. The OpenLayers mapping framework will be used to provide users with interactive maps within the browser. In addition, the data products will be made available in standard open data formats such as KML, to allow for easy integration into other spatial models and data systems.

  9. An R Package for Open, Reproducible Analysis of Urban Water Systems, With Application to Chicago

    EPA Science Inventory

    Urban water systems consist of natural and engineered flows of water interacting in complex ways. System complexity can be understood via mass conservative models that account for the interrelationships among all major flows and storages. We have developed a generic urban water s...

  10. Manual versus Automated Rodent Behavioral Assessment: Comparing Efficacy and Ease of Bederson and Garcia Neurological Deficit Scores to an Open Field Video-Tracking System.

    PubMed

    Desland, Fiona A; Afzal, Aqeela; Warraich, Zuha; Mocco, J

    2014-01-01

    Animal models of stroke have been crucial in advancing our understanding of the pathophysiology of cerebral ischemia. Currently, the standards for determining neurological deficit in rodents are the Bederson and Garcia scales, manual assessments scoring animals based on parameters ranked on a narrow scale of severity. Automated open field analysis of a live-video tracking system that analyzes animal behavior may provide a more sensitive test. Results obtained from the manual Bederson and Garcia scales did not show significant differences between pre- and post-stroke animals in a small cohort. When using the same cohort, however, post-stroke data obtained from automated open field analysis showed significant differences in several parameters. Furthermore, large cohort analysis also demonstrated increased sensitivity with automated open field analysis versus the Bederson and Garcia scales. These early data indicate use of automated open field analysis software may provide a more sensitive assessment when compared to traditional Bederson and Garcia scales.

  11. Explicit least squares system parameter identification for exact differential input/output models

    NASA Technical Reports Server (NTRS)

    Pearson, A. E.

    1993-01-01

    The equation error for a class of systems modeled by input/output differential operator equations has the potential to be integrated exactly, given the input/output data on a finite time interval, thereby opening up the possibility of using an explicit least squares estimation technique for system parameter identification. The paper delineates the class of models for which this is possible and shows how the explicit least squares cost function can be obtained in a way that obviates dealing with unknown initial and boundary conditions. The approach is illustrated by two examples: a second order chemical kinetics model and a third order system of Lorenz equations.

  12. A Framework System for Intelligent Support in Open Distributed Learning Environments--A Look Back from 16 Years Later

    ERIC Educational Resources Information Center

    Hoppe, H. Ulrich

    2016-01-01

    The 1998 paper by Martin Mühlenbrock, Frank Tewissen, and myself introduced a multi-agent architecture and a component engineering approach for building open distributed learning environments to support group learning in different types of classroom settings. It took up prior work on "multiple student modeling" as a method to configure…

  13. The impact of in-canopy wind attenuation formulations onheat flux estimation using the remote sensing-based two-source model for an open orchard canopy in southern Italy

    USDA-ARS?s Scientific Manuscript database

    For open orchard and vineyard canopies containing significant fractions of exposed soil (>50%), typical of Mediterranean agricultural regions, the energy balance of the vegetation elements is strongly influenced by heat exchange with the bare soil/substrate. For these agricultural systems a “two-sou...

  14. An Open IMS-Based User Modelling Approach for Developing Adaptive Learning Management Systems

    ERIC Educational Resources Information Center

    Boticario, Jesus G.; Santos, Olga C.

    2007-01-01

    Adaptive LMS have not yet reached the eLearning marketplace due to methodological, technological and management open issues. At aDeNu group, we have been working on two key challenges for the last five years in related research projects. Firstly, develop the general framework and a running architecture to support the adaptive life cycle (i.e.,…

  15. Evaluating the Validity and Applicability of Automated Essay Scoring in Two Massive Open Online Courses

    ERIC Educational Resources Information Center

    Reilly, Erin Dawna; Stafford, Rose Eleanore; Williams, Kyle Marie; Corliss, Stephanie Brooks

    2014-01-01

    The use of massive open online courses (MOOCs) to expand students' access to higher education has raised questions regarding the extent to which this course model can provide and assess authentic, higher level student learning. In response to this need, MOOC platforms have begun utilizing automated essay scoring (AES) systems that allow…

  16. Structure of amplitude correlations in open chaotic systems

    NASA Astrophysics Data System (ADS)

    Ericson, Torleif E. O.

    2013-02-01

    The Verbaarschot-Weidenmüller-Zirnbauer (VWZ) model is believed to correctly represent the correlations of two S-matrix elements for an open quantum chaotic system, but the solution has considerable complexity and is presently only accessed numerically. Here a procedure is developed to deduce its features over the full range of the parameter space in a transparent and simple analytical form preserving accuracy to a considerable degree. The bulk of the VWZ correlations are described by the Gorin-Seligman expression for the two-amplitude correlations of the Ericson-Gorin-Seligman model. The structure of the remaining correction factors for correlation functions is discussed with special emphasis of the rôle of the level correlation hole both for inelastic and elastic correlations.

  17. A Model-Based Probabilistic Inversion Framework for Wire Fault Detection Using TDR

    NASA Technical Reports Server (NTRS)

    Schuet, Stefan R.; Timucin, Dogan A.; Wheeler, Kevin R.

    2010-01-01

    Time-domain reflectometry (TDR) is one of the standard methods for diagnosing faults in electrical wiring and interconnect systems, with a long-standing history focused mainly on hardware development of both high-fidelity systems for laboratory use and portable hand-held devices for field deployment. While these devices can easily assess distance to hard faults such as sustained opens or shorts, their ability to assess subtle but important degradation such as chafing remains an open question. This paper presents a unified framework for TDR-based chafing fault detection in lossy coaxial cables by combining an S-parameter based forward modeling approach with a probabilistic (Bayesian) inference algorithm. Results are presented for the estimation of nominal and faulty cable parameters from laboratory data.

  18. OpenROCS: a software tool to control robotic observatories

    NASA Astrophysics Data System (ADS)

    Colomé, Josep; Sanz, Josep; Vilardell, Francesc; Ribas, Ignasi; Gil, Pere

    2012-09-01

    We present the Open Robotic Observatory Control System (OpenROCS), an open source software platform developed for the robotic control of telescopes. It acts as a software infrastructure that executes all the necessary processes to implement responses to the system events that appear in the routine and non-routine operations associated to data-flow and housekeeping control. The OpenROCS software design and implementation provides a high flexibility to be adapted to different observatory configurations and event-action specifications. It is based on an abstract model that is independent of the specific hardware or software and is highly configurable. Interfaces to the system components are defined in a simple manner to achieve this goal. We give a detailed description of the version 2.0 of this software, based on a modular architecture developed in PHP and XML configuration files, and using standard communication protocols to interface with applications for hardware monitoring and control, environment monitoring, scheduling of tasks, image processing and data quality control. We provide two examples of how it is used as the core element of the control system in two robotic observatories: the Joan Oró Telescope at the Montsec Astronomical Observatory (Catalonia, Spain) and the SuperWASP Qatar Telescope at the Roque de los Muchachos Observatory (Canary Islands, Spain).

  19. Experiences of building a medical data acquisition system based on two-level modeling.

    PubMed

    Li, Bei; Li, Jianbin; Lan, Xiaoyun; An, Ying; Gao, Wuqiang; Jiang, Yuqiao

    2018-04-01

    Compared to traditional software development strategies, the two-level modeling approach is more flexible and applicable to build an information system in the medical domain. However, the standards of two-level modeling such as openEHR appear complex to medical professionals. This study aims to investigate, implement, and improve the two-level modeling approach, and discusses the experience of building a unified data acquisition system for four affiliated university hospitals based on this approach. After the investigation, we simplified the approach of archetype modeling and developed a medical data acquisition system where medical experts can define the metadata for their own specialties by using a visual easy-to-use tool. The medical data acquisition system for multiple centers, clinical specialties, and diseases has been developed, and integrates the functions of metadata modeling, form design, and data acquisition. To date, 93,353 data items and 6,017 categories for 285 specific diseases have been created by medical experts, and over 25,000 patients' information has been collected. OpenEHR is an advanced two-level modeling method for medical data, but its idea to separate domain knowledge and technical concern is not easy to realize. Moreover, it is difficult to reach an agreement on archetype definition. Therefore, we adopted simpler metadata modeling, and employed What-You-See-Is-What-You-Get (WYSIWYG) tools to further improve the usability of the system. Compared with the archetype definition, our approach lowers the difficulty. Nevertheless, to build such a system, every participant should have some knowledge in both medicine and information technology domains, as these interdisciplinary talents are necessary. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Behavioural system identification of visual flight speed control in Drosophila melanogaster

    PubMed Central

    Rohrseitz, Nicola; Fry, Steven N.

    2011-01-01

    Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles. PMID:20525744

  1. Behavioural system identification of visual flight speed control in Drosophila melanogaster.

    PubMed

    Rohrseitz, Nicola; Fry, Steven N

    2011-02-06

    Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles.

  2. Open Vessel Data Management (OpenVDM), Open-source Software to Assist Vessel Operators with the Task of Ship-wide Data Management.

    NASA Astrophysics Data System (ADS)

    Pinner, J. W., IV

    2016-02-01

    Data from shipboard oceanographic sensors are collected in various ASCii, binary, open and proprietary formats. Acquiring all of these formats using single, monolithic data acquisition system (DAS) can be cumbersome, complex and difficult to adapt for the ever changing suite of emerging oceanographic sensors. Another approach to the at-sea data acquisition challenge is to utilize multiple DAS software packages and corral the resulting data files with a ship-wide data management system. The Open Vessel Data Management project (OpenVDM) implements this second approach to ship-wide data management and over the last three years has successfully demonstrated it's ability to deliver a consistent cruise data package to scientists while reducing the workload placed on marine technicians. In addition to meeting the at-sea and post-cruise needs of scientists OpenVDM is helping vessel operators better adhere to the recommendations and best practices set forth by 3rd party data management and data quality groups such as R2R and SAMOS. OpenVDM also includes tools for supporting telepresence-enabled ocean research/exploration such as bandwidth-efficient ship-to-shore data transfers, shore-side data access, data visualization and near-real-time data quality tests and data statistics. OpenVDM is currently operating aboard three vessels. The R/V Endeavor, operated by the University of Rhode Island, is a regional-class UNOLS research vessel operating under the traditional NFS, P.I. driven model. The E/V Nautilus, operated by the Ocean Exploration Trust specializes in ROV-based, telepresence-enabled oceanographic research. The R/V Falkor operated by the Schmidt Ocean Institute is an ocean research platform focusing on cutting-edge technology development. These three vessels all have different missions, sensor suites and operating models yet all are able to leverage OpenVDM for managing their unique datasets and delivering a more consistent cruise data package to scientists and data archives.

  3. Open-source software for collision detection in external beam radiation therapy

    NASA Astrophysics Data System (ADS)

    Suriyakumar, Vinith M.; Xu, Renee; Pinter, Csaba; Fichtinger, Gabor

    2017-03-01

    PURPOSE: Collision detection for external beam radiation therapy (RT) is important for eliminating the need for dryruns that aim to ensure patient safety. Commercial treatment planning systems (TPS) offer this feature but they are expensive and proprietary. Cobalt-60 RT machines are a viable solution to RT practice in low-budget scenarios. However, such clinics are hesitant to invest in these machines due to a lack of affordable treatment planning software. We propose the creation of an open-source room's eye view visualization module with automated collision detection as part of the development of an open-source TPS. METHODS: An openly accessible linac 3D geometry model is sliced into the different components of the treatment machine. The model's movements are based on the International Electrotechnical Commission standard. Automated collision detection is implemented between the treatment machine's components. RESULTS: The room's eye view module was built in C++ as part of SlicerRT, an RT research toolkit built on 3D Slicer. The module was tested using head and neck and prostate RT plans. These tests verified that the module accurately modeled the movements of the treatment machine and radiation beam. Automated collision detection was verified using tests where geometric parameters of the machine's components were changed, demonstrating accurate collision detection. CONCLUSION: Room's eye view visualization and automated collision detection are essential in a Cobalt-60 treatment planning system. Development of these features will advance the creation of an open-source TPS that will potentially help increase the feasibility of adopting Cobalt-60 RT.

  4. Variable structure control of nonlinear systems through simplified uncertain models

    NASA Technical Reports Server (NTRS)

    Sira-Ramirez, Hebertt

    1986-01-01

    A variable structure control approach is presented for the robust stabilization of feedback equivalent nonlinear systems whose proposed model lies in the same structural orbit of a linear system in Brunovsky's canonical form. An attempt to linearize exactly the nonlinear plant on the basis of the feedback control law derived for the available model results in a nonlinearly perturbed canonical system for the expanded class of possible equivalent control functions. Conservatism tends to grow as modeling errors become larger. In order to preserve the internal controllability structure of the plant, it is proposed that model simplification be carried out on the open-loop-transformed system. As an example, a controller is developed for a single link manipulator with an elastic joint.

  5. Advancing Collaboration through Hydrologic Data and Model Sharing

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Idaszak, R.; Horsburgh, J. S.; Ames, D. P.; Goodall, J. L.; Band, L. E.; Merwade, V.; Couch, A.; Hooper, R. P.; Maidment, D. R.; Dash, P. K.; Stealey, M.; Yi, H.; Gan, T.; Castronova, A. M.; Miles, B.; Li, Z.; Morsy, M. M.

    2015-12-01

    HydroShare is an online, collaborative system for open sharing of hydrologic data, analytical tools, and models. It supports the sharing of and collaboration around "resources" which are defined primarily by standardized metadata, content data models for each resource type, and an overarching resource data model based on the Open Archives Initiative's Object Reuse and Exchange (OAI-ORE) standard and a hierarchical file packaging system called "BagIt". HydroShare expands the data sharing capability of the CUAHSI Hydrologic Information System by broadening the classes of data accommodated to include geospatial and multidimensional space-time datasets commonly used in hydrology. HydroShare also includes new capability for sharing models, model components, and analytical tools and will take advantage of emerging social media functionality to enhance information about and collaboration around hydrologic data and models. It also supports web services and server/cloud based computation operating on resources for the execution of hydrologic models and analysis and visualization of hydrologic data. HydroShare uses iRODS as a network file system for underlying storage of datasets and models. Collaboration is enabled by casting datasets and models as "social objects". Social functions include both private and public sharing, formation of collaborative groups of users, and value-added annotation of shared datasets and models. The HydroShare web interface and social media functions were developed using the Django web application framework coupled to iRODS. Data visualization and analysis is supported through the Tethys Platform web GIS software stack. Links to external systems are supported by RESTful web service interfaces to HydroShare's content. This presentation will introduce the HydroShare functionality developed to date and describe ongoing development of functionality to support collaboration and integration of data and models.

  6. Weather forecasting with open source software

    NASA Astrophysics Data System (ADS)

    Rautenhaus, Marc; Dörnbrack, Andreas

    2013-04-01

    To forecast the weather situation during aircraft-based atmospheric field campaigns, we employ a tool chain of existing and self-developed open source software tools and open standards. Of particular value are the Python programming language with its extension libraries NumPy, SciPy, PyQt4, Matplotlib and the basemap toolkit, the NetCDF standard with the Climate and Forecast (CF) Metadata conventions, and the Open Geospatial Consortium Web Map Service standard. These open source libraries and open standards helped to implement the "Mission Support System", a Web Map Service based tool to support weather forecasting and flight planning during field campaigns. The tool has been implemented in Python and has also been released as open source (Rautenhaus et al., Geosci. Model Dev., 5, 55-71, 2012). In this presentation we discuss the usage of free and open source software for weather forecasting in the context of research flight planning, and highlight how the field campaign work benefits from using open source tools and open standards.

  7. Understanding the Quality Factors That Influence the Continuance Intention of Students toward Participation in MOOCs

    ERIC Educational Resources Information Center

    Yang, Ming; Shao, Zhen; Liu, Qian; Liu, Chuiyi

    2017-01-01

    The massive open online course (MOOC) is emerging as the new paradigm for modern education. The success of MOOCs depends on learners' continued usage. Drawing upon the information systems success model (IS success model) and technology acceptance model, a theoretical model for studying learners' continuance intentions toward participation in MOOCs…

  8. Development of a novel parallel-spool pilot operated high-pressure solenoid valve with high flow rate and high speed

    NASA Astrophysics Data System (ADS)

    Dong, Dai; Li, Xiaoning

    2015-03-01

    High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system. However, traditional single spool pilot operated valve cannot meet the demands of both high flow rate and high speed simultaneously. A new structure for a high pressure solenoid valve is needed to meet the demand of the underwater driving system. A novel parallel-spool pilot operated high-pressure solenoid valve is proposed to overcome the drawback of the current single spool design. Mathematical models of the opening process and flow rate of the valve are established. Opening response time of the valve is subdivided into 4 parts to analyze the properties of the opening response. Corresponding formulas to solve 4 parts of the response time are derived. Key factors that influence the opening response time are analyzed. According to the mathematical model of the valve, a simulation of the opening process is carried out by MATLAB. Parameters are chosen based on theoretical analysis to design the test prototype of the new type of valve. Opening response time of the designed valve is tested by verifying response of the current in the coil and displacement of the main valve spool. The experimental results are in agreement with the simulated results, therefore the validity of the theoretical analysis is verified. Experimental opening response time of the valve is 48.3 ms at working pressure of 10 MPa. The flow capacity test shows that the largest effective area is 126 mm2 and the largest air flow rate is 2320 L/s. According to the result of the load driving test, the valve can meet the demands of the driving system. The proposed valve with parallel spools provides a new method for the design of a high-pressure valve with fast response and large flow rate.

  9. Technical Note: FreeCT_ICD: An Open Source Implementation of a Model-Based Iterative Reconstruction Method using Coordinate Descent Optimization for CT Imaging Investigations.

    PubMed

    Hoffman, John M; Noo, Frédéric; Young, Stefano; Hsieh, Scott S; McNitt-Gray, Michael

    2018-06-01

    To facilitate investigations into the impacts of acquisition and reconstruction parameters on quantitative imaging, radiomics and CAD using CT imaging, we previously released an open source implementation of a conventional weighted filtered backprojection reconstruction called FreeCT_wFBP. Our purpose was to extend that work by providing an open-source implementation of a model-based iterative reconstruction method using coordinate descent optimization, called FreeCT_ICD. Model-based iterative reconstruction offers the potential for substantial radiation dose reduction, but can impose substantial computational processing and storage requirements. FreeCT_ICD is an open source implementation of a model-based iterative reconstruction method that provides a reasonable tradeoff between these requirements. This was accomplished by adapting a previously proposed method that allows the system matrix to be stored with a reasonable memory requirement. The method amounts to describing the attenuation coefficient using rotating slices that follow the helical geometry. In the initially-proposed version, the rotating slices are themselves described using blobs. We have replaced this description by a unique model that relies on tri-linear interpolation together with the principles of Joseph's method. This model offers an improvement in memory requirement while still allowing highly accurate reconstruction for conventional CT geometries. The system matrix is stored column-wise and combined with an iterative coordinate descent (ICD) optimization. The result is FreeCT_ICD, which is a reconstruction program developed on the Linux platform using C++ libraries and the open source GNU GPL v2.0 license. The software is capable of reconstructing raw projection data of helical CT scans. In this work, the software has been described and evaluated by reconstructing datasets exported from a clinical scanner which consisted of an ACR accreditation phantom dataset and a clinical pediatric thoracic scan. For the ACR phantom, image quality was comparable to clinical reconstructions as well as reconstructions using open-source FreeCT_wFBP software. The pediatric thoracic scan also yielded acceptable results. In addition, we did not observe any deleterious impact in image quality associated with the utilization of rotating slices. These evaluations also demonstrated reasonable tradeoffs in storage requirements and computational demands. FreeCT_ICD is an open-source implementation of a model-based iterative reconstruction method that extends the capabilities of previously released open source reconstruction software and provides the ability to perform vendor-independent reconstructions of clinically acquired raw projection data. This implementation represents a reasonable tradeoff between storage and computational requirements and has demonstrated acceptable image quality in both simulated and clinical image datasets. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. PsiQuaSP-A library for efficient computation of symmetric open quantum systems.

    PubMed

    Gegg, Michael; Richter, Marten

    2017-11-24

    In a recent publication we showed that permutation symmetry reduces the numerical complexity of Lindblad quantum master equations for identical multi-level systems from exponential to polynomial scaling. This is important for open system dynamics including realistic system bath interactions and dephasing in, for instance, the Dicke model, multi-Λ system setups etc. Here we present an object-oriented C++ library that allows to setup and solve arbitrary quantum optical Lindblad master equations, especially those that are permutationally symmetric in the multi-level systems. PsiQuaSP (Permutation symmetry for identical Quantum Systems Package) uses the PETSc package for sparse linear algebra methods and differential equations as basis. The aim of PsiQuaSP is to provide flexible, storage efficient and scalable code while being as user friendly as possible. It is easily applied to many quantum optical or quantum information systems with more than one multi-level system. We first review the basics of the permutation symmetry for multi-level systems in quantum master equations. The application of PsiQuaSP to quantum dynamical problems is illustrated with several typical, simple examples of open quantum optical systems.

  11. OpenCMISS: a multi-physics & multi-scale computational infrastructure for the VPH/Physiome project.

    PubMed

    Bradley, Chris; Bowery, Andy; Britten, Randall; Budelmann, Vincent; Camara, Oscar; Christie, Richard; Cookson, Andrew; Frangi, Alejandro F; Gamage, Thiranja Babarenda; Heidlauf, Thomas; Krittian, Sebastian; Ladd, David; Little, Caton; Mithraratne, Kumar; Nash, Martyn; Nickerson, David; Nielsen, Poul; Nordbø, Oyvind; Omholt, Stig; Pashaei, Ali; Paterson, David; Rajagopal, Vijayaraghavan; Reeve, Adam; Röhrle, Oliver; Safaei, Soroush; Sebastián, Rafael; Steghöfer, Martin; Wu, Tim; Yu, Ting; Zhang, Heye; Hunter, Peter

    2011-10-01

    The VPH/Physiome Project is developing the model encoding standards CellML (cellml.org) and FieldML (fieldml.org) as well as web-accessible model repositories based on these standards (models.physiome.org). Freely available open source computational modelling software is also being developed to solve the partial differential equations described by the models and to visualise results. The OpenCMISS code (opencmiss.org), described here, has been developed by the authors over the last six years to replace the CMISS code that has supported a number of organ system Physiome projects. OpenCMISS is designed to encompass multiple sets of physical equations and to link subcellular and tissue-level biophysical processes into organ-level processes. In the Heart Physiome project, for example, the large deformation mechanics of the myocardial wall need to be coupled to both ventricular flow and embedded coronary flow, and the reaction-diffusion equations that govern the propagation of electrical waves through myocardial tissue need to be coupled with equations that describe the ion channel currents that flow through the cardiac cell membranes. In this paper we discuss the design principles and distributed memory architecture behind the OpenCMISS code. We also discuss the design of the interfaces that link the sets of physical equations across common boundaries (such as fluid-structure coupling), or between spatial fields over the same domain (such as coupled electromechanics), and the concepts behind CellML and FieldML that are embodied in the OpenCMISS data structures. We show how all of these provide a flexible infrastructure for combining models developed across the VPH/Physiome community. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Akuna: An Open Source User Environment for Managing Subsurface Simulation Workflows

    NASA Astrophysics Data System (ADS)

    Freedman, V. L.; Agarwal, D.; Bensema, K.; Finsterle, S.; Gable, C. W.; Keating, E. H.; Krishnan, H.; Lansing, C.; Moeglein, W.; Pau, G. S. H.; Porter, E.; Scheibe, T. D.

    2014-12-01

    The U.S. Department of Energy (DOE) is investing in development of a numerical modeling toolset called ASCEM (Advanced Simulation Capability for Environmental Management) to support modeling analyses at legacy waste sites. ASCEM is an open source and modular computing framework that incorporates new advances and tools for predicting contaminant fate and transport in natural and engineered systems. The ASCEM toolset includes both a Platform with Integrated Toolsets (called Akuna) and a High-Performance Computing multi-process simulator (called Amanzi). The focus of this presentation is on Akuna, an open-source user environment that manages subsurface simulation workflows and associated data and metadata. In this presentation, key elements of Akuna are demonstrated, which includes toolsets for model setup, database management, sensitivity analysis, parameter estimation, uncertainty quantification, and visualization of both model setup and simulation results. A key component of the workflow is in the automated job launching and monitoring capabilities, which allow a user to submit and monitor simulation runs on high-performance, parallel computers. Visualization of large outputs can also be performed without moving data back to local resources. These capabilities make high-performance computing accessible to the users who might not be familiar with batch queue systems and usage protocols on different supercomputers and clusters.

  13. Thermodynamically consistent model calibration in chemical kinetics

    PubMed Central

    2011-01-01

    Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC) method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints) into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new models. Furthermore, TCMC can provide dimensionality reduction, better estimation performance, and lower computational complexity, and can help to alleviate the problem of data overfitting. PMID:21548948

  14. GENERATING SOPHISTICATED SPATIAL SURROGATES USING THE MIMS SPATIAL ALLOCATOR

    EPA Science Inventory

    The Multimedia Integrated Modeling System (MIMS) Spatial Allocator is open-source software for generating spatial surrogates for emissions modeling, changing the map projection of Shapefiles, and performing other types of spatial allocation that does not require the use of a comm...

  15. Organizational Effectiveness: Toward an Integrated Model for Schools of Nursing.

    ERIC Educational Resources Information Center

    Baker, Constance M.; And Others

    1997-01-01

    Literature review on organizational effectiveness focuses on major assessment models: goal attainment, human relations, open systems, internal processes, culture, and life cycle. A review of studies of nursing school effectiveness is used to present an agenda for nursing research. (SK)

  16. Opendf - An Implementation of the Dual Fermion Method for Strongly Correlated Systems

    NASA Astrophysics Data System (ADS)

    Antipov, Andrey E.; LeBlanc, James P. F.; Gull, Emanuel

    The dual fermion method is a multiscale approach for solving lattice problems of interacting strongly correlated systems. In this paper, we present the opendfcode, an open-source implementation of the dual fermion method applicable to fermionic single- orbital lattice models in dimensions D = 1, 2, 3 and 4. The method is built on a dynamical mean field starting point, which neglects all local correlations, and perturbatively adds spatial correlations. Our code is distributed as an open-source package under the GNU public license version 2.

  17. Theoretical study of the tunnel-boundary lift interference due to slotted walls in the presence of the trailing-vortex system of a lifting model

    NASA Technical Reports Server (NTRS)

    Matthews, Clarence W

    1955-01-01

    The equations presented in this report give the interference on the trailing-vortex system of a uniformly loaded finite-span wing in a circular tunnel containing partly open and partly closed walls, with special reference to symmetrical arrangements of the open and closed portions. Methods are given for extending the equations to include tunnel shapes other than circular. The rectangular tunnel is used to demonstrate these methods. The equations are also extended to nonuniformly loaded wings.

  18. ESTCP UXO Innovation Technology Transfer Project. ESTCP Project MM-0744: GEMTADS Demonstration at F.E. Warren AFB Demonstration Data Report

    DTIC Science & Technology

    2011-06-06

    8  Figure 2-10 – Peak anomaly amplitude results from the GEMTADS and pit measurements of the 4.2-in mortar (open diamonds). The modeled system...projectiles in the FEW GPO. The modeled system response for the most (red) and least (blue) favorable orientations of the mortar are shown as lines...and measurements of the emplaced 75-mm projectiles in the FEW GPO. The modeled system response for the most (red) and least (blue) favorable

  19. System/observer/controller identification toolbox

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Horta, Lucas G.; Phan, Minh

    1992-01-01

    System Identification is the process of constructing a mathematical model from input and output data for a system under testing, and characterizing the system uncertainties and measurement noises. The mathematical model structure can take various forms depending upon the intended use. The SYSTEM/OBSERVER/CONTROLLER IDENTIFICATION TOOLBOX (SOCIT) is a collection of functions, written in MATLAB language and expressed in M-files, that implements a variety of modern system identification techniques. For an open loop system, the central features of the SOCIT are functions for identification of a system model and its corresponding forward and backward observers directly from input and output data. The system and observers are represented by a discrete model. The identified model and observers may be used for controller design of linear systems as well as identification of modal parameters such as dampings, frequencies, and mode shapes. For a closed-loop system, an observer and its corresponding controller gain directly from input and output data.

  20. Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation

    PubMed Central

    Zbrzeski, Adeline; Bornat, Yannick; Hillen, Brian; Siu, Ricardo; Abbas, James; Jung, Ranu; Renaud, Sylvie

    2016-01-01

    Cervical spinal cord injury can disrupt connections between the brain respiratory network and the respiratory muscles which can lead to partial or complete loss of ventilatory control and require ventilatory assistance. Unlike current open-loop technology, a closed-loop diaphragmatic pacing system could overcome the drawbacks of manual titration as well as respond to changing ventilation requirements. We present an original bio-inspired assistive technology for real-time ventilation assistance, implemented in a digital configurable Field Programmable Gate Array (FPGA). The bio-inspired controller, which is a spiking neural network (SNN) inspired by the medullary respiratory network, is as robust as a classic controller while having a flexible, low-power and low-cost hardware design. The system was simulated in MATLAB with FPGA-specific constraints and tested with a computational model of rat breathing; the model reproduced experimentally collected respiratory data in eupneic animals. The open-loop version of the bio-inspired controller was implemented on the FPGA. Electrical test bench characterizations confirmed the system functionality. Open and closed-loop paradigm simulations were simulated to test the FPGA system real-time behavior using the rat computational model. The closed-loop system monitors breathing and changes in respiratory demands to drive diaphragmatic stimulation. The simulated results inform future acute animal experiments and constitute the first step toward the development of a neuromorphic, adaptive, compact, low-power, implantable device. The bio-inspired hardware design optimizes the FPGA resource and time costs while harnessing the computational power of spike-based neuromorphic hardware. Its real-time feature makes it suitable for in vivo applications. PMID:27378844

  1. The Open System Interconnection as a building block in a health sciences information network.

    PubMed Central

    Boss, R W

    1985-01-01

    The interconnection of integrated health sciences library systems with other health sciences computer systems to achieve information networks will require either custom linkages among specific devices or the adoption of standards that all systems support. The most appropriate standards appear to be those being developed under the Open System Interconnection (OSI) reference model, which specifies a set of rules and functions that computers must follow to exchange information. The protocols have been modularized into seven different layers. The lowest three layers are generally available as off-the-shelf interfacing products. The higher layers require special development for particular applications. This paper describes the OSI, its application in health sciences networks, and specific tasks that remain to be undertaken. PMID:4052672

  2. An open-loop ground-water heat pump system: transient numerical modeling and site experimental results

    NASA Astrophysics Data System (ADS)

    Lo Russo, S.; Taddia, G.; Gnavi, L.

    2012-04-01

    KEY WORDS: Open-loop ground water heat pump; Feflow; Low-enthalpy; Thermal Affected Zone; Turin; Italy The increasing diffusion of low-enthalpy geothermal open-loop Groundwater Heat Pumps (GWHP) providing buildings air conditioning requires a careful assessment of the overall effects on groundwater system, especially in the urban areas where several plants can be close together and interfere. One of the fundamental aspects in the realization of an open loop low-enthalpy geothermal system is therefore the capacity to forecast the effects of thermal alteration produced in the ground, induced by the geothermal system itself. The impact on the groundwater temperature in the surrounding area of the re-injection well (Thermal Affected Zone - TAZ) is directly linked to the aquifer properties. The transient dynamic of groundwater discharge and temperature variations should be also considered to assess the subsurface environmental effects of the plant. The experimental groundwater heat pump system used in this study is installed at the "Politecnico di Torino" (NW Italy, Piedmont Region). This plant provides summer cooling needs for the university buildings. This system is composed by a pumping well, a downgradient injection well and a control piezometer. The system is constantly monitored by multiparameter probes measuring the dynamic of groundwater temperature. A finite element subsurface flow and transport simulator (FEFLOW) was used to investigate the thermal aquifer alteration. Simulations were continuously performed during May-October 2010 (cooling period). The numerical simulation of the heat transport in the aquifer was solved with transient conditions. The simulation was performed by considering only the heat transfer within the saturated aquifer, without any heat dispersion above or below the saturated zone due to the lack of detailed information regarding the unsaturated zone. Model results were compared with experimental temperature data derived from groundwater monitoring in the surrounding area of the injection well. Such analysis showed that the measured values differ slightly from the simulated values. That small difference is probably due to the simplification assumptions in the modelling. This hypothesis is still under investigation.

  3. Quantum Stochastic Trajectories: The Fokker-Planck-Bohm Equation Driven by the Reduced Density Matrix.

    PubMed

    Avanzini, Francesco; Moro, Giorgio J

    2018-03-15

    The quantum molecular trajectory is the deterministic trajectory, arising from the Bohm theory, that describes the instantaneous positions of the nuclei of molecules by assuring the agreement with the predictions of quantum mechanics. Therefore, it provides the suitable framework for representing the geometry and the motions of molecules without neglecting their quantum nature. However, the quantum molecular trajectory is extremely demanding from the computational point of view, and this strongly limits its applications. To overcome such a drawback, we derive a stochastic representation of the quantum molecular trajectory, through projection operator techniques, for the degrees of freedom of an open quantum system. The resulting Fokker-Planck operator is parametrically dependent upon the reduced density matrix of the open system. Because of the pilot role played by the reduced density matrix, this stochastic approach is able to represent accurately the main features of the open system motions both at equilibrium and out of equilibrium with the environment. To verify this procedure, the predictions of the stochastic and deterministic representation are compared for a model system of six interacting harmonic oscillators, where one oscillator is taken as the open quantum system of interest. The undeniable advantage of the stochastic approach is that of providing a simplified and self-contained representation of the dynamics of the open system coordinates. Furthermore, it can be employed to study the out of equilibrium dynamics and the relaxation of quantum molecular motions during photoinduced processes, like photoinduced conformational changes and proton transfers.

  4. A linear acoustic model for intake wave dynamics in IC engines

    NASA Astrophysics Data System (ADS)

    Harrison, M. F.; Stanev, P. T.

    2004-01-01

    In this paper, a linear acoustic model is described that has proven useful in obtaining a better understanding of the nature of acoustic wave dynamics in the intake system of an internal combustion (IC) engine. The model described has been developed alongside a set of measurements made on a Ricardo E6 single cylinder research engine. The simplified linear acoustic model reported here produces a calculation of the pressure time-history in the port of an IC engine that agrees fairly well with measured data obtained on the engine fitted with a simple intake system. The model has proved useful in identifying the role of pipe resonance in the intake process and has led to the development of a simple hypothesis to explain the structure of the intake pressure time history: the early stages of the intake process are governed by the instantaneous values of the piston velocity and the open area under the valve. Thereafter, resonant wave action dominates the process. The depth of the early depression caused by the moving piston governs the intensity of the wave action that follows. A pressure ratio across the valve that is favourable to inflow is maintained and maximized when the open period of the valve is such to allow at least, but no more than, one complete oscillation of the pressure at its resonant frequency to occur while the valve is open.

  5. A survey on hysteresis modeling, identification and control

    NASA Astrophysics Data System (ADS)

    Hassani, Vahid; Tjahjowidodo, Tegoeh; Do, Thanh Nho

    2014-12-01

    The various mathematical models for hysteresis such as Preisach, Krasnosel'skii-Pokrovskii (KP), Prandtl-Ishlinskii (PI), Maxwell-Slip, Bouc-Wen and Duhem are surveyed in terms of their applications in modeling, control and identification of dynamical systems. In the first step, the classical formalisms of the models are presented to the reader, and more broadly, the utilization of the classical models is considered for development of more comprehensive models and appropriate controllers for corresponding systems. In addition, the authors attempt to encourage the reader to follow the existing mathematical models of hysteresis to resolve the open problems.

  6. Unstructured-grid coastal ocean modelling in Southern Adriatic and Northern Ionian Seas

    NASA Astrophysics Data System (ADS)

    Federico, Ivan; Pinardi, Nadia; Coppini, Giovanni; Oddo, Paolo

    2016-04-01

    The Southern Adriatic Northern Ionian coastal Forecasting System (SANIFS) is a short-term forecasting system based on unstructured grid approach. The model component is built on SHYFEM finite element three-dimensional hydrodynamic model. The operational chain exploits a downscaling approach starting from the Mediterranean oceanographic-scale model MFS (Mediterranean Forecasting System, operated by INGV). The implementation set-up has been designed to provide accurate hydrodynamics and active tracer processes in the coastal waters of Southern Eastern Italy (Apulia, Basilicata and Calabria regions), where the model is characterized by a variable resolution in range of 50-500 m. The horizontal resolution is also high in open-sea areas, where the elements size is approximately 3 km. The model is forced: (i) at the lateral open boundaries through a full nesting strategy directly with the MFS (temperature, salinity, non-tidal sea surface height and currents) and OTPS (tidal forcing) fields; (ii) at surface through two alternative atmospheric forcing datasets (ECMWF and COSMOME) via MFS-bulk-formulae. Given that the coastal fields are driven by a combination of both local/coastal and deep ocean forcings propagating along the shelf, the performance of SANIFS was verified first (i) at the large and shelf-coastal scales by comparing with a large scale CTD survey and then (ii) at the coastal-harbour scale by comparison with CTD, ADCP and tide gauge data. Sensitivity tests were performed on initialization conditions (mainly focused on spin-up procedures) and on surface boundary conditions by assessing the reliability of two alternative datasets at different horizontal resolution (12.5 and 7 km). The present work highlights how downscaling could improve the simulation of the flow field going from typical open-ocean scales of the order of several km to the coastal (and harbour) scales of tens to hundreds of meters.

  7. Methods, Knowledge Support, and Experimental Tools for Modeling

    DTIC Science & Technology

    2006-10-01

    open source software entities: the PostgreSQL relational database management system (http://www.postgres.org), the Apache web server (http...past. The revision control system allows the program to capture disagreements, and allows users to explore the history of such disagreements by

  8. Design and Application of an Ontology for Component-Based Modeling of Water Systems

    NASA Astrophysics Data System (ADS)

    Elag, M.; Goodall, J. L.

    2012-12-01

    Many Earth system modeling frameworks have adopted an approach of componentizing models so that a large model can be assembled by linking a set of smaller model components. These model components can then be more easily reused, extended, and maintained by a large group of model developers and end users. While there has been a notable increase in component-based model frameworks in the Earth sciences in recent years, there has been less work on creating framework-agnostic metadata and ontologies for model components. Well defined model component metadata is needed, however, to facilitate sharing, reuse, and interoperability both within and across Earth system modeling frameworks. To address this need, we have designed an ontology for the water resources community named the Water Resources Component (WRC) ontology in order to advance the application of component-based modeling frameworks across water related disciplines. Here we present the design of the WRC ontology and demonstrate its application for integration of model components used in watershed management. First we show how the watershed modeling system Soil and Water Assessment Tool (SWAT) can be decomposed into a set of hydrological and ecological components that adopt the Open Modeling Interface (OpenMI) standard. Then we show how the components can be used to estimate nitrogen losses from land to surface water for the Baltimore Ecosystem study area. Results of this work are (i) a demonstration of how the WRC ontology advances the conceptual integration between components of water related disciplines by handling the semantic and syntactic heterogeneity present when describing components from different disciplines and (ii) an investigation of a methodology by which large models can be decomposed into a set of model components that can be well described by populating metadata according to the WRC ontology.

  9. Addressing Hydro-economic Modeling Limitations - A Limited Foresight Sacramento Valley Model and an Open-source Modeling Platform

    NASA Astrophysics Data System (ADS)

    Harou, J. J.; Hansen, K. M.

    2008-12-01

    Increased scarcity of world water resources is inevitable given the limited supply and increased human pressures. The idea that "some scarcity is optimal" must be accepted for rational resource use and infrastructure management decisions to be made. Hydro-economic systems models are unique at representing the overlap of economic drivers, socio-political forces and distributed water resource systems. They demonstrate the tangible benefits of cooperation and integrated flexible system management. Further improvement of models, quality control practices and software will be needed for these academic policy tools to become accepted into mainstream water resource practice. Promising features include: calibration methods, limited foresight optimization formulations, linked simulation-optimization approaches (e.g. embedding pre-existing calibrated simulation models), spatial groundwater models, stream-aquifer interactions and stream routing, etc.. Conventional user-friendly decision support systems helped spread simulation models on a massive scale. Hydro-economic models must also find a means to facilitate construction, distribution and use. Some of these issues and model features are illustrated with a hydro-economic optimization model of the Sacramento Valley. Carry-over storage value functions are used to limit hydrologic foresight of the multi- period optimization model. Pumping costs are included in the formulation by tracking regional piezometric head of groundwater sub-basins. To help build and maintain this type of network model, an open-source water management modeling software platform is described and initial project work is discussed. The objective is to generically facilitate the connection of models, such as those developed in a modeling environment (GAMS, MatLab, Octave, "), to a geographic user interface (drag and drop node-link network) and a database (topology, parameters and time series). These features aim to incrementally move hydro- economic models in the direction of more practical implementation.

  10. OCSEGen: Open Components and Systems Environment Generator

    NASA Technical Reports Server (NTRS)

    Tkachuk, Oksana

    2014-01-01

    To analyze a large system, one often needs to break it into smaller components.To analyze a component or unit under analysis, one needs to model its context of execution, called environment, which represents the components with which the unit interacts. Environment generation is a challenging problem, because the environment needs to be general enough to uncover unit errors, yet precise enough to make the analysis tractable. In this paper, we present a tool for automated environment generation for open components and systems. The tool, called OCSEGen, is implemented on top of the Soot framework. We present the tool's current support and discuss its possible future extensions.

  11. Amnioserosa cell constriction but not epidermal actin cable tension autonomously drives dorsal closure.

    PubMed

    Pasakarnis, Laurynas; Frei, Erich; Caussinus, Emmanuel; Affolter, Markus; Brunner, Damian

    2016-11-01

    Tissue morphogenesis requires coordination of multiple force-producing components. During dorsal closure in fly embryogenesis, an epidermis opening closes. A tensioned epidermal actin/MyosinII cable, which surrounds the opening, produces a force that is thought to combine with another MyosinII force mediating apical constriction of the amnioserosa cells that fill the opening. A model proposing that each force could autonomously drive dorsal closure was recently challenged by a model in which the two forces combine in a ratchet mechanism. Acute force elimination via selective MyosinII depletion in one or the other tissue shows that the amnioserosa tissue autonomously drives dorsal closure while the actin/MyosinII cable cannot. These findings exclude both previous models, although a contribution of the ratchet mechanism at dorsal closure onset remains likely. This shifts the current view of dorsal closure being a combinatorial force-component system to a single tissue-driven closure event.

  12. Querying Archetype-Based Electronic Health Records Using Hadoop and Dewey Encoding of openEHR Models.

    PubMed

    Sundvall, Erik; Wei-Kleiner, Fang; Freire, Sergio M; Lambrix, Patrick

    2017-01-01

    Archetype-based Electronic Health Record (EHR) systems using generic reference models from e.g. openEHR, ISO 13606 or CIMI should be easy to update and reconfigure with new types (or versions) of data models or entries, ideally with very limited programming or manual database tweaking. Exploratory research (e.g. epidemiology) leading to ad-hoc querying on a population-wide scale can be a challenge in such environments. This publication describes implementation and test of an archetype-aware Dewey encoding optimization that can be used to produce such systems in environments supporting relational operations, e.g. RDBMs and distributed map-reduce frameworks like Hadoop. Initial testing was done using a nine-node 2.2 GHz quad-core Hadoop cluster querying a dataset consisting of targeted extracts from 4+ million real patient EHRs, query results with sub-minute response time were obtained.

  13. Quantum Brownian motion model for the stock market

    NASA Astrophysics Data System (ADS)

    Meng, Xiangyi; Zhang, Jian-Wei; Guo, Hong

    2016-06-01

    It is believed by the majority today that the efficient market hypothesis is imperfect because of market irrationality. Using the physical concepts and mathematical structures of quantum mechanics, we construct an econophysical framework for the stock market, based on which we analogously map massive numbers of single stocks into a reservoir consisting of many quantum harmonic oscillators and their stock index into a typical quantum open system-a quantum Brownian particle. In particular, the irrationality of stock transactions is quantitatively considered as the Planck constant within Heisenberg's uncertainty relationship of quantum mechanics in an analogous manner. We analyze real stock data of Shanghai Stock Exchange of China and investigate fat-tail phenomena and non-Markovian behaviors of the stock index with the assistance of the quantum Brownian motion model, thereby interpreting and studying the limitations of the classical Brownian motion model for the efficient market hypothesis from a new perspective of quantum open system dynamics.

  14. Infrastructure Suitability Assessment Modeling for Cloud Computing Solutions

    DTIC Science & Technology

    2011-09-01

    Virtualization vs . Para-Virtualization .......................................................10 Figure 4. Modeling alternatives in relation to model...the conceptual difference between full virtualization and para-virtualization. Figure 3. Full Virtualization vs . Para-Virtualization 2. XEN...Besides Microsoft’s own client implementations, dubbed “Remote Desktop Con- nection Client” for Windows® and Apple ® operating systems, various open

  15. A Conceptual Systems Model to Facilitate Hypothesis-driven Ecotoxicogenomics Research on the Teleost Brain-pituitary-gonadal Axis

    EPA Science Inventory

    This provides an overview of a novel open-source conceptuial model of molecular and biochemical pathways involved in the regulation of fish reproduction. Further, it provides concrete examples of how such models can be used to design and conduct hypothesis-driven "omics" experim...

  16. OSeMOSYS Energy Modeling Using an Extended UTOPIA Model

    ERIC Educational Resources Information Center

    Lavigne, Denis

    2017-01-01

    The OSeMOSYS project offers open-access energy modeling to a wide audience. Its relative simplicity makes it appealing for academic research and governmental organizations to study the impacts of policy decisions on an energy system in the context of possibly severe greenhouse gases emissions limitations. OSeMOSYS is a tool that enhances the…

  17. Model Based Verification of Cyber Range Event Environments

    DTIC Science & Technology

    2015-11-13

    Commercial and Open Source Systems," in SOSP, Cascais, Portugal, 2011. [3] Sanjai Narain, Sharad Malik, and Ehab Al-Shaer, "Towards Eliminating...Configuration Errors in Cyber Infrastructure," in 4th IEEE Symposium on Configuration Analytics and Automation, Arlington, VA, 2011. [4] Sanjai Narain...Verlag, 2010. [5] Sanjai Narain, "Network Configuration Management via Model Finding," in 19th Large Installation System Administration Conference, San

  18. Modelling and simulation of wood chip combustion in a hot air generator system.

    PubMed

    Rajika, J K A T; Narayana, Mahinsasa

    2016-01-01

    This study focuses on modelling and simulation of horizontal moving bed/grate wood chip combustor. A standalone finite volume based 2-D steady state Euler-Euler Computational Fluid Dynamics (CFD) model was developed for packed bed combustion. Packed bed combustion of a medium scale biomass combustor, which was retrofitted from wood log to wood chip feeding for Tea drying in Sri Lanka, was evaluated by a CFD simulation study. The model was validated by the experimental results of an industrial biomass combustor for a hot air generation system in tea industry. Open-source CFD tool; OpenFOAM was used to generate CFD model source code for the packed bed combustion and simulated along with an available solver for free board region modelling in the CFD tool. Height of the packed bed is about 20 cm and biomass particles are assumed to be spherical shape with constant surface area to volume ratio. Temperature measurements of the combustor are well agreed with simulation results while gas phase compositions have discrepancies. Combustion efficiency of the validated hot air generator is around 52.2 %.

  19. Mixed Single/Double Precision in OpenIFS: A Detailed Study of Energy Savings, Scaling Effects, Architectural Effects, and Compilation Effects

    NASA Astrophysics Data System (ADS)

    Fagan, Mike; Dueben, Peter; Palem, Krishna; Carver, Glenn; Chantry, Matthew; Palmer, Tim; Schlacter, Jeremy

    2017-04-01

    It has been shown that a mixed precision approach that judiciously replaces double precision with single precision calculations can speed-up global simulations. In particular, a mixed precision variation of the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) showed virtually the same quality model results as the standard double precision version (Vana et al., Single precision in weather forecasting models: An evaluation with the IFS, Monthly Weather Review, in print). In this study, we perform detailed measurements of savings in computing time and energy using a mixed precision variation of the -OpenIFS- model. The mixed precision variation of OpenIFS is analogous to the IFS variation used in Vana et al. We (1) present results for energy measurements for simulations in single and double precision using Intel's RAPL technology, (2) conduct a -scaling- study to quantify the effects that increasing model resolution has on both energy dissipation and computing cycles, (3) analyze the differences between single core and multicore processing, and (4) compare the effects of different compiler technologies on the mixed precision OpenIFS code. In particular, we compare intel icc/ifort with gnu gcc/gfortran.

  20. Open Science and eGEMs: Our Role in Supporting a Culture of Collaboration in Learning Health Systems.

    PubMed

    Holve, Erin

    2016-01-01

    "Open science" includes a variety of approaches to facilitate greater access to data and the information produced by processes of scientific inquiry. Recently, the health sciences community has been grappling with the issue of potential pathways and models to achieve the goals of open science-namely, to create and rapidly share reproducible health research. eGEMs' continued dedication to and milestones regarding the publication of innovative, useful, and timely research to help contribute to the push towards open science is discussed, as well as the EDM Forum's new data sharing platform, CIELO. Although strides have been made, there is still more work to be done to help health sciences community truly embrace open science.

  1. A Compact Energy Harvesting System for Outdoor Wireless Sensor Nodes Based on a Low-Cost In Situ Photovoltaic Panel Characterization-Modelling Unit

    PubMed Central

    Antolín, Diego; Calvo, Belén; Martínez, Pedro A.

    2017-01-01

    This paper presents a low-cost high-efficiency solar energy harvesting system to power outdoor wireless sensor nodes. It is based on a Voltage Open Circuit (VOC) algorithm that estimates the open-circuit voltage by means of a multilayer perceptron neural network model trained using local experimental characterization data, which are acquired through a novel low cost characterization system incorporated into the deployed node. Both units—characterization and modelling—are controlled by the same low-cost microcontroller, providing a complete solution which can be understood as a virtual pilot cell, with identical characteristics to those of the specific small solar cell installed on the sensor node, that besides allows an easy adaptation to changes in the actual environmental conditions, panel aging, etc. Experimental comparison to a classical pilot panel based VOC algorithm show better efficiency under the same tested conditions. PMID:28777330

  2. A research of the community’s opening to the outside world

    NASA Astrophysics Data System (ADS)

    Xu, Lan; Liu, Xiangzhuo

    2017-03-01

    Closed residential areas, called community, the traffic network and result in various degrees of traffic congestion such as amputating, dead ends and T-shaped roads. In order to reveal the mechanism of the congestion, establish an effective evaluation index system and finally provide theoretical basis for the study of traffic congestion, we have done researches on factors for traffic congestion and have established a scientific evaluation index system combining experiences home and abroad, based on domestic congestion status. Firstly, we analyse the traffic network as the entry point, and then establish the evaluation model of road capacity with the method of AHP index system. Secondly, we divide the condition of urban congestion into 5 levels from congestion to smoothness. Besides, with VISSIM software, simulations about traffic capacity before and after community opening are carried out. Finally, we provide forward reasonable suggestions upon the combination of models and reality.

  3. Sustainable, Reliable Mission-Systems Architecture

    NASA Technical Reports Server (NTRS)

    O'Neil, Graham; Orr, James K.; Watson, Steve

    2005-01-01

    A mission-systems architecture, based on a highly modular infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is essential for affordable md sustainable space exploration programs. This mission-systems architecture requires (8) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, end verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered systems are applied to define the model. Technology projections reaching out 5 years are made to refine model details.

  4. Sustainable, Reliable Mission-Systems Architecture

    NASA Technical Reports Server (NTRS)

    O'Neil, Graham; Orr, James K.; Watson, Steve

    2007-01-01

    A mission-systems architecture, based on a highly modular infrastructure utilizing: open-standards hardware and software interfaces as the enabling technology is essential for affordable and sustainable space exploration programs. This mission-systems architecture requires (a) robust communication between heterogeneous system, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered system are applied to define the model. Technology projections reaching out 5 years are mde to refine model details.

  5. Mapping chemicals in air using an environmental CAT scanning system: evaluation of algorithms

    NASA Astrophysics Data System (ADS)

    Samanta, A.; Todd, L. A.

    A new technique is being developed which creates near real-time maps of chemical concentrations in air for environmental and occupational environmental applications. This technique, we call Environmental CAT Scanning, combines the real-time measuring technique of open-path Fourier transform infrared spectroscopy with the mapping capabilitites of computed tomography to produce two-dimensional concentration maps. With this system, a network of open-path measurements is obtained over an area; measurements are then processed using a tomographic algorithm to reconstruct the concentrations. This research focussed on the process of evaluating and selecting appropriate reconstruction algorithms, for use in the field, by using test concentration data from both computer simultation and laboratory chamber studies. Four algorithms were tested using three types of data: (1) experimental open-path data from studies that used a prototype opne-path Fourier transform/computed tomography system in an exposure chamber; (2) synthetic open-path data generated from maps created by kriging point samples taken in the chamber studies (in 1), and; (3) synthetic open-path data generated using a chemical dispersion model to create time seires maps. The iterative algorithms used to reconstruct the concentration data were: Algebraic Reconstruction Technique without Weights (ART1), Algebraic Reconstruction Technique with Weights (ARTW), Maximum Likelihood with Expectation Maximization (MLEM) and Multiplicative Algebraic Reconstruction Technique (MART). Maps were evaluated quantitatively and qualitatively. In general, MART and MLEM performed best, followed by ARTW and ART1. However, algorithm performance varied under different contaminant scenarios. This study showed the importance of using a variety of maps, particulary those generated using dispersion models. The time series maps provided a more rigorous test of the algorithms and allowed distinctions to be made among the algorithms. A comprehensive evaluation of algorithms, for the environmental application of tomography, requires the use of a battery of test concentration data before field implementation, which models reality and tests the limits of the algorithms.

  6. Coupled RipCAS-DFLOW (CoRD) Software and Data Management System for Reproducible Floodplain Vegetation Succession Modeling

    NASA Astrophysics Data System (ADS)

    Turner, M. A.; Miller, S.; Gregory, A.; Cadol, D. D.; Stone, M. C.; Sheneman, L.

    2016-12-01

    We present the Coupled RipCAS-DFLOW (CoRD) modeling system created to encapsulate the workflow to analyze the effects of stream flooding on vegetation succession. CoRD provides an intuitive command-line and web interface to run DFLOW and RipCAS in succession over many years automatically, which is a challenge because, for our application, DFLOW must be run on a supercomputing cluster via the PBS job scheduler. RipCAS is a vegetation succession model, and DFLOW is a 2D open channel flow model. Data adaptors have been developed to seamlessly connect DFLOW output data to be RipCAS inputs, and vice-versa. CoRD provides automated statistical analysis and visualization, plus automatic syncing of input and output files and model run metadata to the hydrological data management system HydroShare using its excellent Python REST client. This combination of technologies and data management techniques allows the results to be shared with collaborators and eventually published. Perhaps most importantly, it allows results to be easily reproduced via either the command-line or web user interface. This system is a result of collaboration between software developers and hydrologists participating in the Western Consortium for Watershed Analysis, Visualization, and Exploration (WC-WAVE). Because of the computing-intensive nature of this particular workflow, including automating job submission/monitoring and data adaptors, software engineering expertise is required. However, the hydrologists provide the software developers with a purpose and ensure a useful, intuitive tool is developed. Our hydrologists contribute software, too: RipCAS was developed from scratch by hydrologists on the team as a specialized, open-source version of the Computer Aided Simulation Model for Instream Flow and Riparia (CASiMiR) vegetation model; our hydrologists running DFLOW provided numerous examples and help with the supercomputing system. This project is written in Python, a popular language in the geosciences and a good beginner programming language, and is completely open source. It can be accessed at https://github.com/VirtualWatershed/CoRD with documentation available at http://virtualwatershed.github.io/CoRD. These facts enable continued development and use beyond the involvement of the current authors.

  7. Smoke and Emissions Model Intercomparison Project (SEMIP)

    NASA Astrophysics Data System (ADS)

    Larkin, N. K.; Raffuse, S.; Strand, T.; Solomon, R.; Sullivan, D.; Wheeler, N.

    2008-12-01

    Fire emissions and smoke impacts from wildland fire are a growing concern due to increasing fire season severity, dwindling tolerance of smoke by the public, tightening air quality regulations, and their role in climate change issues. Unfortunately, while a number of models and modeling system solutions are available to address these issues, the lack of quantitative information on the limitations and difference between smoke and emissions models impedes the use of these tools for real-world applications (JFSP, 2007). We describe a new, open-access project to directly address this issue, the open-access Smoke Emissions Model Intercomparison Project (SEMIP) and invite the community to participate. Preliminary work utilizing the modular BlueSky framework to directly compare fire location and size information, fuel loading amounts, fuel consumption rates, and fire emissions from a number of current models that has found model-to-model variability as high as two orders of magnitude for an individual fire. Fire emissions inventories also show significant variability on both regional and national scales that are dependant on the fire location information used (ground report vs. satellite), the fuel loading maps assumed, and the fire consumption models employed. SEMIP expands on this work and creates an open-access database of model results and observations with the goal of furthering model development and model prediction usability for real-world decision support.

  8. OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange

    PubMed Central

    Seth, Ajay; Sherman, Michael; Reinbolt, Jeffrey A.; Delp, Scott L.

    2015-01-01

    Movement science is driven by observation, but observation alone cannot elucidate principles of human and animal movement. Biomechanical modeling and computer simulation complement observations and inform experimental design. Biological models are complex and specialized software is required for building, validating, and studying them. Furthermore, common access is needed so that investigators can contribute models to a broader community and leverage past work. We are developing OpenSim, a freely available musculoskeletal modeling and simulation application and libraries specialized for these purposes, by providing: musculoskeletal modeling elements, such as biomechanical joints, muscle actuators, ligament forces, compliant contact, and controllers; and tools for fitting generic models to subject-specific data, performing inverse kinematics and forward dynamic simulations. OpenSim performs an array of physics-based analyses to delve into the behavior of musculoskeletal models by employing Simbody, an efficient and accurate multibody system dynamics code. Models are publicly available and are often reused for multiple investigations because they provide a rich set of behaviors that enables different lines of inquiry. This report will discuss one model developed to study walking and applied to gain deeper insights into muscle function in pathological gait and during running. We then illustrate how simulations can test fundamental hypotheses and focus the aims of in vivo experiments, with a postural stability platform and human model that provide a research environment for performing human posture experiments in silico. We encourage wide adoption of OpenSim for community exchange of biomechanical models and methods and welcome new contributors. PMID:25893160

  9. ETV Report:Siemens Model H-4XE-HO Open Channel UV System

    EPA Science Inventory

    Verification testing of the Siemens Barrier Sunligt H-4XE-HO UV System was completed at the UV Validation and Research Center of New York (UV Center), located in Johnstown, NY. The H-4XE System utilizes 16 high-output, low-pressure lamps oriented horizontally and parallel to the...

  10. ETV Report: Siemens Model V-40R-A150 Open Channel UV System

    EPA Science Inventory

    Verification testing of the Siemens Barrier Sunlight V-40R-A150 UV System was completed at the UV Validation and Research Center of New York (UV Center), located in Johnstown, NY. The V-40R System supplied by Siemens utilizes 40 high-output, low-pressure amalgam lamps, oriented ...

  11. Long-range interacting systems in the unconstrained ensemble.

    PubMed

    Latella, Ivan; Pérez-Madrid, Agustín; Campa, Alessandro; Casetti, Lapo; Ruffo, Stefano

    2017-01-01

    Completely open systems can exchange heat, work, and matter with the environment. While energy, volume, and number of particles fluctuate under completely open conditions, the equilibrium states of the system, if they exist, can be specified using the temperature, pressure, and chemical potential as control parameters. The unconstrained ensemble is the statistical ensemble describing completely open systems and the replica energy is the appropriate free energy for these control parameters from which the thermodynamics must be derived. It turns out that macroscopic systems with short-range interactions cannot attain equilibrium configurations in the unconstrained ensemble, since temperature, pressure, and chemical potential cannot be taken as a set of independent variables in this case. In contrast, we show that systems with long-range interactions can reach states of thermodynamic equilibrium in the unconstrained ensemble. To illustrate this fact, we consider a modification of the Thirring model and compare the unconstrained ensemble with the canonical and grand-canonical ones: The more the ensemble is constrained by fixing the volume or number of particles, the larger the space of parameters defining the equilibrium configurations.

  12. 3D Surveying, Modeling and Geo-Information System of the New Campus of ITB-Indonesia

    NASA Astrophysics Data System (ADS)

    Suwardhi, D.; Trisyanti, S. W.; Ainiyah, N.; Fajri, M. N.; Hanan, H.; Virtriana, R.; Edmarani, A. A.

    2016-10-01

    The new campus of ITB-Indonesia, which is located at Jatinangor, requires good facilities and infrastructures to supporting all of campus activities. Those can not be separated from procurement and maintenance activities. Technology for procurement and maintenance of facilities and infrastructures -based computer (information system)- has been known as Building Information Modeling (BIM). Nowadays, that technology is more affordable with some of free software that easy to use and tailored to user needs. BIM has some disadvantages and it requires other technologies to complete it, namely Geographic Information System (GIS). BIM and GIS require surveying data to visualized landscape and buildings on Jatinangor ITB campus. This paper presents the on-going of an internal service program conducted by the researcher, academic staff and students for the university. The program including 3D surveying to support the data requirements for 3D modeling of buildings in CityGML and Industry Foundation Classes (IFC) data model. The entire 3D surveying will produce point clouds that can be used to make 3D model. The 3D modeling is divided into low and high levels of detail modeling. The low levels model is stored in 3D CityGML database, and the high levels model including interiors is stored in BIM Server. 3D model can be used to visualized the building and site of Jatinangor ITB campus. For facility management of campus, an geo-information system is developed that can be used for planning, constructing, and maintaining Jatinangor ITB's facilities and infrastructures. The system uses openMAINT, an open source solution for the Property & Facility Management.

  13. Novel Door-opening Method for Six-legged Robots Based on Only Force Sensing

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Jun; Gao, Feng; Pan, Yang

    2017-09-01

    Current door-opening methods are mainly developed on tracked, wheeled and biped robots by applying multi-DOF manipulators and vision systems. However, door-opening methods for six-legged robots are seldom studied, especially using 0-DOF tools to operate and only force sensing to detect. A novel door-opening method for six-legged robots is developed and implemented to the six-parallel-legged robot. The kinematic model of the six-parallel-legged robot is established and the model of measuring the positional relationship between the robot and the door is proposed. The measurement model is completely based on only force sensing. The real-time trajectory planning method and the control strategy are designed. The trajectory planning method allows the maximum angle between the sagittal axis of the robot body and the normal line of the door plane to be 45º. A 0-DOF tool mounted to the robot body is applied to operate. By integrating with the body, the tool has 6 DOFs and enough workspace to operate. The loose grasp achieved by the tool helps release the inner force in the tool. Experiments are carried out to validate the method. The results show that the method is effective and robust in opening doors wider than 1 m. This paper proposes a novel door-opening method for six-legged robots, which notably uses a 0-DOF tool and only force sensing to detect and open the door.

  14. Simulation of partially coherent light propagation using parallel computing devices

    NASA Astrophysics Data System (ADS)

    Magalhães, Tiago C.; Rebordão, José M.

    2017-08-01

    Light acquires or loses coherence and coherence is one of the few optical observables. Spectra can be derived from coherence functions and understanding any interferometric experiment is also relying upon coherence functions. Beyond the two limiting cases (full coherence or incoherence) the coherence of light is always partial and it changes with propagation. We have implemented a code to compute the propagation of partially coherent light from the source plane to the observation plane using parallel computing devices (PCDs). In this paper, we restrict the propagation in free space only. To this end, we used the Open Computing Language (OpenCL) and the open-source toolkit PyOpenCL, which gives access to OpenCL parallel computation through Python. To test our code, we chose two coherence source models: an incoherent source and a Gaussian Schell-model source. In the former case, we divided into two different source shapes: circular and rectangular. The results were compared to the theoretical values. Our implemented code allows one to choose between the PyOpenCL implementation and a standard one, i.e using the CPU only. To test the computation time for each implementation (PyOpenCL and standard), we used several computer systems with different CPUs and GPUs. We used powers of two for the dimensions of the cross-spectral density matrix (e.g. 324, 644) and a significant speed increase is observed in the PyOpenCL implementation when compared to the standard one. This can be an important tool for studying new source models.

  15. Numerical Modeling of Permeability Enhancement by Hydroshearing: the Case of Phase I Reservoir Creation at Fenton Hill

    NASA Astrophysics Data System (ADS)

    Rutqvist, J.; Rinaldi, A. P.

    2017-12-01

    The exploitation of a geothermal system is one of the most promising clean and almost inexhaustible forms of energy production. However, the exploitation of hot dry rock (HDR) reservoirs at depth requires circulation of a large amount of fluids. Indeed, the conceptual model of an Enhanced Geothermal System (EGS) requires that the circulation is enhanced by fluid injection. The pioneering experiments at Fenton Hill demonstrated the feasibility of EGS by producing the world's first HDR reservoirs. Such pioneering project demonstrated that the fluid circulation can be effectively enhanced by stimulating a preexisting fracture zone. The so-called "hydroshearing" involving shear activation of preexisting fractures is recognized as one of the main processes effectively enhancing permeability. The goal of this work is to quantify the effect of shear reactivation on permeability by proposing a model that accounts for fracture opening and shearing. We develop a case base on a pressure stimulation experiment at Fenton Hill, in which observation suggest that a fracture was jacked open by pressure increase. The proposed model can successfully reproduce such a behavior, and we compare the base case of pure elastic opening with the hydroshearing model to demonstrate that this latter could have occurred at the field, although no "felt" seismicity was observed. Then we investigate on the sensitivity of the proposed model by varying some of the critical parameters such as the maximum aperture, the dilation angle, as well as the fracture density.

  16. Integrative structure modeling with the Integrative Modeling Platform.

    PubMed

    Webb, Benjamin; Viswanath, Shruthi; Bonomi, Massimiliano; Pellarin, Riccardo; Greenberg, Charles H; Saltzberg, Daniel; Sali, Andrej

    2018-01-01

    Building models of a biological system that are consistent with the myriad data available is one of the key challenges in biology. Modeling the structure and dynamics of macromolecular assemblies, for example, can give insights into how biological systems work, evolved, might be controlled, and even designed. Integrative structure modeling casts the building of structural models as a computational optimization problem, for which information about the assembly is encoded into a scoring function that evaluates candidate models. Here, we describe our open source software suite for integrative structure modeling, Integrative Modeling Platform (https://integrativemodeling.org), and demonstrate its use. © 2017 The Protein Society.

  17. Identification of market trends with string and D2-brane maps

    NASA Astrophysics Data System (ADS)

    Bartoš, Erik; Pinčák, Richard

    2017-08-01

    The multidimensional string objects are introduced as a new alternative for an application of string models for time series forecasting in trading on financial markets. The objects are represented by open string with 2-endpoints and D2-brane, which are continuous enhancement of 1-endpoint open string model. We show how new object properties can change the statistics of the predictors, which makes them the candidates for modeling a wide range of time series systems. String angular momentum is proposed as another tool to analyze the stability of currency rates except the historical volatility. To show the reliability of our approach with application of string models for time series forecasting we present the results of real demo simulations for four currency exchange pairs.

  18. A National Crop Progress Monitoring System Based on NASA Earth Science Results

    NASA Astrophysics Data System (ADS)

    Di, L.; Yu, G.; Zhang, B.; Deng, M.; Yang, Z.

    2011-12-01

    Crop progress is an important piece of information for food security and agricultural commodities. Timely monitoring and reporting are mandated for the operation of agricultural statistical agencies. Traditionally, the weekly reporting issued by the National Agricultural Statistics Service (NASS) of the United States Department of Agriculture (USDA) is based on reports from the knowledgeable state and county agricultural officials and farmers. The results are spatially coarse and subjective. In this project, a remote-sensing-supported crop progress monitoring system is being developed intensively using the data and derived products from NASA Earth Observing satellites. Moderate Resolution Imaging Spectroradiometer (MODIS) Level 3 product - MOD09 (Surface Reflectance) is used for deriving daily normalized vegetation index (NDVI), vegetation condition index (VCI), and mean vegetation condition index (MVCI). Ratio change to previous year and multiple year mean can be also produced on demand. The time-series vegetation condition indices are further combined with the NASS' remote-sensing-derived Cropland Data Layer (CDL) to estimate crop condition and progress crop by crop. To facilitate the operational requirement and increase the accessibility of data and products by different users, each component of the system has being developed and implemented following open specifications under the Web Service reference model of Open Geospatial Consortium Inc. Sensor observations and data are accessed through Web Coverage Service (WCS), Web Feature Service (WFS), or Sensor Observation Service (SOS) if available. Products are also served through such open-specification-compliant services. For rendering and presentation, Web Map Service (WMS) is used. A Web-service based system is set up and deployed at dss.csiss.gmu.edu/NDVIDownload. Further development will adopt crop growth models, feed the models with remotely sensed precipitation and soil moisture information, and incorporate the model results with vegetation-index time series for crop progress stage estimation.

  19. Cadmium cycling in the water column of the Kuroshio-Oyashio Extension region: Insights from dissolved and particulate isotopic composition

    NASA Astrophysics Data System (ADS)

    Yang, Shun-Chung; Zhang, Jing; Sohrin, Yoshiki; Ho, Tung-Yuan

    2018-07-01

    We measured dissolved and particulate Cd isotopic composition in the water column of a meridional transect across the Kuroshio-Oyashio Extension region in a Japanese GEOTRACES cruise to investigate the relative influence of physical and biogeochemical processes on Cd cycling in the Northwestern Pacific Ocean. Located at 30-50°N along 165°E, the transect across the extension region possesses dramatic hydrographic contrast. Cold surface water and a relatively narrow and shallow thermocline characterizes the Oyashio Extension region in contrast to a relatively warm and highly stratified surface water and thermocline in the Kuroshio Extension region. The contrasting hydrographic distinction at the study site provides us with an ideal platform to investigate the spatial variations of Cd isotope fractionation systems in the ocean. Particulate samples demonstrated biologically preferential uptake of light Cd isotopes, and the fractionation effect varied dramatically in the surface water of the two regions, with relatively large fractionation factors in the Oyashio region. Based on the relationship of dissolved Cd concentrations and isotopic composition, we found that a closed system fractionation model can reasonably explain the relationship in the Kuroshio region. However, using dissolved Cd isotopic data, either a closed system or steady-state open system fractionation model may explain the relationship in the surface water of the Oyashio region. Particulate δ114/110Cd data further supports that the surface water of the Oyashio region matches a steady-state open system model more closely. Contrary to the surface water, the distribution of potential density exhibits comparable patterns with Cd elemental and isotopic composition in the thermocline and deep water in the two extension regions, showing that physical processes are the dominant forcing controlling Cd cycling in the deep waters. The results demonstrate that Cd isotope fractionation can match either a closed or open system Rayleigh fractionation model, depending on the relative contribution of physical and biogeochemical processes on its cycling.

  20. Urban Climate Resilience - Connecting climate models with decision support cyberinfrastructure using open standards

    NASA Astrophysics Data System (ADS)

    Bermudez, L. E.; Percivall, G.; Idol, T. A.

    2015-12-01

    Experts in climate modeling, remote sensing of the Earth, and cyber infrastructure must work together in order to make climate predictions available to decision makers. Such experts and decision makers worked together in the Open Geospatial Consortium's (OGC) Testbed 11 to address a scenario of population displacement by coastal inundation due to the predicted sea level rise. In a Policy Fact Sheet "Harnessing Climate Data to Boost Ecosystem & Water Resilience", issued by White House Office of Science and Technology (OSTP) in December 2014, OGC committed to increase access to climate change information using open standards. In July 2015, the OGC Testbed 11 Urban Climate Resilience activity delivered on that commitment with open standards based support for climate-change preparedness. Using open standards such as the OGC Web Coverage Service and Web Processing Service and the NetCDF and GMLJP2 encoding standards, Testbed 11 deployed an interoperable high-resolution flood model to bring climate model outputs together with global change assessment models and other remote sensing data for decision support. Methods to confirm model predictions and to allow "what-if-scenarios" included in-situ sensor webs and crowdsourcing. A scenario was in two locations: San Francisco Bay Area and Mozambique. The scenarios demonstrated interoperation and capabilities of open geospatial specifications in supporting data services and processing services. The resultant High Resolution Flood Information System addressed access and control of simulation models and high-resolution data in an open, worldwide, collaborative Web environment. The scenarios examined the feasibility and capability of existing OGC geospatial Web service specifications in supporting the on-demand, dynamic serving of flood information from models with forecasting capacity. Results of this testbed included identification of standards and best practices that help researchers and cities deal with climate-related issues. Results of the testbeds will now be deployed in pilot applications. The testbed also identified areas of additional development needed to help identify scientific investments and cyberinfrastructure approaches needed to improve the application of climate science research results to urban climate resilence.

  1. OpenMP parallelization of a gridded SWAT (SWATG)

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Hou, Jinliang; Cao, Yongpan; Gu, Juan; Huang, Chunlin

    2017-12-01

    Large-scale, long-term and high spatial resolution simulation is a common issue in environmental modeling. A Gridded Hydrologic Response Unit (HRU)-based Soil and Water Assessment Tool (SWATG) that integrates grid modeling scheme with different spatial representations also presents such problems. The time-consuming problem affects applications of very high resolution large-scale watershed modeling. The OpenMP (Open Multi-Processing) parallel application interface is integrated with SWATG (called SWATGP) to accelerate grid modeling based on the HRU level. Such parallel implementation takes better advantage of the computational power of a shared memory computer system. We conducted two experiments at multiple temporal and spatial scales of hydrological modeling using SWATG and SWATGP on a high-end server. At 500-m resolution, SWATGP was found to be up to nine times faster than SWATG in modeling over a roughly 2000 km2 watershed with 1 CPU and a 15 thread configuration. The study results demonstrate that parallel models save considerable time relative to traditional sequential simulation runs. Parallel computations of environmental models are beneficial for model applications, especially at large spatial and temporal scales and at high resolutions. The proposed SWATGP model is thus a promising tool for large-scale and high-resolution water resources research and management in addition to offering data fusion and model coupling ability.

  2. An open source web interface for linking models to infrastructure system databases

    NASA Astrophysics Data System (ADS)

    Knox, S.; Mohamed, K.; Harou, J. J.; Rheinheimer, D. E.; Medellin-Azuara, J.; Meier, P.; Tilmant, A.; Rosenberg, D. E.

    2016-12-01

    Models of networked engineered resource systems such as water or energy systems are often built collaboratively with developers from different domains working at different locations. These models can be linked to large scale real world databases, and they are constantly being improved and extended. As the development and application of these models becomes more sophisticated, and the computing power required for simulations and/or optimisations increases, so has the need for online services and tools which enable the efficient development and deployment of these models. Hydra Platform is an open source, web-based data management system, which allows modellers of network-based models to remotely store network topology and associated data in a generalised manner, allowing it to serve multiple disciplines. Hydra Platform uses a web API using JSON to allow external programs (referred to as `Apps') to interact with its stored networks and perform actions such as importing data, running models, or exporting the networks to different formats. Hydra Platform supports multiple users accessing the same network and has a suite of functions for managing users and data. We present ongoing development in Hydra Platform, the Hydra Web User Interface, through which users can collaboratively manage network data and models in a web browser. The web interface allows multiple users to graphically access, edit and share their networks, run apps and view results. Through apps, which are located on the server, the web interface can give users access to external data sources and models without the need to install or configure any software. This also ensures model results can be reproduced by removing platform or version dependence. Managing data and deploying models via the web interface provides a way for multiple modellers to collaboratively manage data, deploy and monitor model runs and analyse results.

  3. Standardization as an Arena for Open Innovation

    NASA Astrophysics Data System (ADS)

    Grøtnes, Endre

    This paper argues that anticipatory standardization can be viewed as an arena for open innovation and shows this through two cases from mobile telecommunication standardization. One case is the Android initiative by Google and the Open Handset Alliance, while the second case is the general standardization work of the Open Mobile Alliance. The paper shows how anticipatory standardization intentionally uses inbound and outbound streams of research and intellectual property to create new innovations. This is at the heart of the open innovation model. The standardization activities use both pooling of R&D and the distribution of freely available toolkits to create products and architectures that can be utilized by the participants and third parties to leverage their innovation. The paper shows that the technology being standardized needs to have a systemic nature to be part of an open innovation process.

  4. Dissipative open systems theory as a foundation for the thermodynamics of linear systems.

    PubMed

    Delvenne, Jean-Charles; Sandberg, Henrik

    2017-03-06

    In this paper, we advocate the use of open dynamical systems, i.e. systems sharing input and output variables with their environment, and the dissipativity theory initiated by Jan Willems as models of thermodynamical systems, at the microscopic and macroscopic level alike. We take linear systems as a study case, where we show how to derive a global Lyapunov function to analyse networks of interconnected systems. We define a suitable notion of dynamic non-equilibrium temperature that allows us to derive a discrete Fourier law ruling the exchange of heat between lumped, discrete-space systems, enriched with the Maxwell-Cattaneo correction. We complete these results by a brief recall of the steps that allow complete derivation of the dissipation and fluctuation in macroscopic systems (i.e. at the level of probability distributions) from lossless and deterministic systems.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).

  5. Extent of reaction in open systems with multiple heterogeneous reactions

    USGS Publications Warehouse

    Friedly, John C.

    1991-01-01

    The familiar batch concept of extent of reaction is reexamined for systems of reactions occurring in open systems. Because species concentrations change as a result of transport processes as well as reactions in open systems, the extent of reaction has been less useful in practice in these applications. It is shown that by defining the extent of the equivalent batch reaction and a second contribution to the extent of reaction due to the transport processes, it is possible to treat the description of the dynamics of flow through porous media accompanied by many chemical reactions in a uniform, concise manner. This approach tends to isolate the reaction terms among themselves and away from the model partial differential equations, thereby enabling treatment of large problems involving both equilibrium and kinetically controlled reactions. Implications on the number of coupled partial differential equations necessary to be solved and on numerical algorithms for solving such problems are discussed. Examples provided illustrate the theory applied to solute transport in groundwater flow.

  6. Open-closed-loop iterative learning control for a class of nonlinear systems with random data dropouts

    NASA Astrophysics Data System (ADS)

    Cheng, X. Y.; Wang, H. B.; Jia, Y. L.; Dong, YH

    2018-05-01

    In this paper, an open-closed-loop iterative learning control (ILC) algorithm is constructed for a class of nonlinear systems subjecting to random data dropouts. The ILC algorithm is implemented by a networked control system (NCS), where only the off-line data is transmitted by network while the real-time data is delivered in the point-to-point way. Thus, there are two controllers rather than one in the control system, which makes better use of the saved and current information and thereby improves the performance achieved by open-loop control alone. During the transfer of off-line data between the nonlinear plant and the remote controller data dropout occurs randomly and the data dropout rate is modeled as a binary Bernoulli random variable. Both measurement and control data dropouts are taken into consideration simultaneously. The convergence criterion is derived based on rigorous analysis. Finally, the simulation results verify the effectiveness of the proposed method.

  7. Open-source framework for power system transmission and distribution dynamics co-simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Renke; Fan, Rui; Daily, Jeff

    The promise of the smart grid entails more interactions between the transmission and distribution networks, and there is an immediate need for tools to provide the comprehensive modelling and simulation required to integrate operations at both transmission and distribution levels. Existing electromagnetic transient simulators can perform simulations with integration of transmission and distribution systems, but the computational burden is high for large-scale system analysis. For transient stability analysis, currently there are only separate tools for simulating transient dynamics of the transmission and distribution systems. In this paper, we introduce an open source co-simulation framework “Framework for Network Co-Simulation” (FNCS), togethermore » with the decoupled simulation approach that links existing transmission and distribution dynamic simulators through FNCS. FNCS is a middleware interface and framework that manages the interaction and synchronization of the transmission and distribution simulators. Preliminary testing results show the validity and capability of the proposed open-source co-simulation framework and the decoupled co-simulation methodology.« less

  8. Theoretical modeling of the MILES hit profiles in military weapon low-data rate simulators

    NASA Astrophysics Data System (ADS)

    Andrews, L. C.; Phillips, R. L.; Smith, C. A.; Belichki, S. B.; Crabbs, R.; Cofarro, J. T.; Fountain, W.; Tucker, F. M.; Parrish, B. J.

    2016-09-01

    Math modeling of a low-data-rate optical communication system is presented and compared with recent testing results over ranges up to 100 m in an indoor tunnel at Kennedy Space Center. Additional modeling of outdoor testing results at longer ranges in the open atmosphere is also presented. The system modeled is the Army's Multiple Integrated Laser Engagement System (MILES) that has been used as a tactical training system since the early 1980s. The objective of the current modeling and testing is to obtain target hit zone profiles for the M16A2/M4 rifles and establish a data baseline for MILES that will aid in its upgrade using more recently developed lasers and detectors.

  9. An open CAM system for dentistry on the basis of China-made 5-axis simultaneous contouring CNC machine tool and industrial CAM software.

    PubMed

    Lu, Li; Liu, Shusheng; Shi, Shenggen; Yang, Jianzhong

    2011-10-01

    China-made 5-axis simultaneous contouring CNC machine tool and domestically developed industrial computer-aided manufacture (CAM) technology were used for full crown fabrication and measurement of crown accuracy, with an attempt to establish an open CAM system for dental processing and to promote the introduction of domestic dental computer-aided design (CAD)/CAM system. Commercially available scanning equipment was used to make a basic digital tooth model after preparation of crown, and CAD software that comes with the scanning device was employed to design the crown by using domestic industrial CAM software to process the crown data in order to generate a solid model for machining purpose, and then China-made 5-axis simultaneous contouring CNC machine tool was used to complete machining of the whole crown and the internal accuracy of the crown internal was measured by using 3D-MicroCT. The results showed that China-made 5-axis simultaneous contouring CNC machine tool in combination with domestic industrial CAM technology can be used for crown making and the crown was well positioned in die. The internal accuracy was successfully measured by using 3D-MicroCT. It is concluded that an open CAM system for dentistry on the basis of China-made 5-axis simultaneous contouring CNC machine tool and domestic industrial CAM software has been established, and development of the system will promote the introduction of domestically-produced dental CAD/CAM system.

  10. Effect of initial densities in the lattice Boltzmann model for non-ideal fluid with curved interface

    NASA Astrophysics Data System (ADS)

    Gong, Jiaming; Oshima, Nobuyuki

    2017-06-01

    The effect of initial densities in a free energy based two-phase-flow lattice Boltzmann method for non-ideal fluids with a curved interface was investigated in the present work. To investigate this effect, the initial densities in the liquid and gas phases coming from the saturation points and the equilibrium state were adopted in the simulation of a static droplet in an open and a closed system. For the purpose of simplicity and easier comparison, the closed system is fabricated by the implementation of the periodic boundary condition at the inlet and outlet of a gas channel, and the open system is fabricated by the implementation of a constant flux boundary condition at the inlet and a free-out boundary condition at the outlet of the same gas channel. By comparing the simulation results from the two types of initial densities in the open and closed systems, it is proven that the commonly used saturation initial densities setting is the reason for droplet mass and volume variation which occurred in the simulation, particularly in the open system with a constant flux boundary condition. Such problems are believed to come from the curvature effect of the surface tension and can be greatly reduced by adopting the initial densities in the two phases from equilibrium state.

  11. IMPROVED O3, SO2 AND HNO3 VEGETATION-ATMOSPHERE EXCHANGE MODELING FOR NETWORK APPLICATIONS

    EPA Science Inventory

    A long term goal of multimedia environmental management is to achieve sustainable ecological resources. Progress towards this goal rests on a foundation of science-based methods and data integrated into predictive multimedia, multi-stressor open architecture modeling systems. The...

  12. PyFLOWGO: An open-source platform for simulation of channelized lava thermo-rheological properties

    NASA Astrophysics Data System (ADS)

    Chevrel, Magdalena Oryaëlle; Labroquère, Jérémie; Harris, Andrew J. L.; Rowland, Scott K.

    2018-02-01

    Lava flow advance can be modeled through tracking the evolution of the thermo-rheological properties of a control volume of lava as it cools and crystallizes. An example of such a model was conceived by Harris and Rowland (2001) who developed a 1-D model, FLOWGO, in which the velocity of a control volume flowing down a channel depends on rheological properties computed following the thermal path estimated via a heat balance box model. We provide here an updated version of FLOWGO written in Python that is an open-source, modern and flexible language. Our software, named PyFLOWGO, allows selection of heat fluxes and rheological models of the user's choice to simulate the thermo-rheological evolution of the lava control volume. We describe its architecture which offers more flexibility while reducing the risk of making error when changing models in comparison to the previous FLOWGO version. Three cases are tested using actual data from channel-fed lava flow systems and results are discussed in terms of model validation and convergence. PyFLOWGO is open-source and packaged in a Python library to be imported and reused in any Python program (https://github.com/pyflowgo/pyflowgo)

  13. Model Predictive Flight Control System with Full State Observer using H∞ Method

    NASA Astrophysics Data System (ADS)

    Sanwale, Jitu; Singh, Dhan Jeet

    2018-03-01

    This paper presents the application of the model predictive approach to design a flight control system (FCS) for longitudinal dynamics of a fixed wing aircraft. Longitudinal dynamics is derived for a conventional aircraft. Open loop aircraft response analysis is carried out. Simulation studies are illustrated to prove the efficacy of the proposed model predictive controller using H ∞ state observer. The estimation criterion used in the {H}_{∞} observer design is to minimize the worst possible effects of the modelling errors and additive noise on the parameter estimation.

  14. OpenDMAP: An open source, ontology-driven concept analysis engine, with applications to capturing knowledge regarding protein transport, protein interactions and cell-type-specific gene expression

    PubMed Central

    Hunter, Lawrence; Lu, Zhiyong; Firby, James; Baumgartner, William A; Johnson, Helen L; Ogren, Philip V; Cohen, K Bretonnel

    2008-01-01

    Background Information extraction (IE) efforts are widely acknowledged to be important in harnessing the rapid advance of biomedical knowledge, particularly in areas where important factual information is published in a diverse literature. Here we report on the design, implementation and several evaluations of OpenDMAP, an ontology-driven, integrated concept analysis system. It significantly advances the state of the art in information extraction by leveraging knowledge in ontological resources, integrating diverse text processing applications, and using an expanded pattern language that allows the mixing of syntactic and semantic elements and variable ordering. Results OpenDMAP information extraction systems were produced for extracting protein transport assertions (transport), protein-protein interaction assertions (interaction) and assertions that a gene is expressed in a cell type (expression). Evaluations were performed on each system, resulting in F-scores ranging from .26 – .72 (precision .39 – .85, recall .16 – .85). Additionally, each of these systems was run over all abstracts in MEDLINE, producing a total of 72,460 transport instances, 265,795 interaction instances and 176,153 expression instances. Conclusion OpenDMAP advances the performance standards for extracting protein-protein interaction predications from the full texts of biomedical research articles. Furthermore, this level of performance appears to generalize to other information extraction tasks, including extracting information about predicates of more than two arguments. The output of the information extraction system is always constructed from elements of an ontology, ensuring that the knowledge representation is grounded with respect to a carefully constructed model of reality. The results of these efforts can be used to increase the efficiency of manual curation efforts and to provide additional features in systems that integrate multiple sources for information extraction. The open source OpenDMAP code library is freely available at PMID:18237434

  15. Hydrodynamics and Eutrophication Model Study of Indian River and Rehoboth Bay, Delaware

    DTIC Science & Technology

    1994-05-01

    Station, Vicksburg, MS. V Chapter I: Introduction The Study System Indian River and Rehoboth Bay (Figure 1-1) are two water bodies that form part of the...and mass trans- port throughout the system . Objectives The primary objective of this study is to provide a hydrodynamic/ water quality model packge of...portion opens out into Indian River Bay (Figure 3-1). The cooling water diversion was included in the hydrodynamic model. Flow through the power plant, at

  16. OpenSHS: Open Smart Home Simulator.

    PubMed

    Alshammari, Nasser; Alshammari, Talal; Sedky, Mohamed; Champion, Justin; Bauer, Carolin

    2017-05-02

    This paper develops a new hybrid, open-source, cross-platform 3D smart home simulator, OpenSHS, for dataset generation. OpenSHS offers an opportunity for researchers in the field of the Internet of Things (IoT) and machine learning to test and evaluate their models. Following a hybrid approach, OpenSHS combines advantages from both interactive and model-based approaches. This approach reduces the time and efforts required to generate simulated smart home datasets. We have designed a replication algorithm for extending and expanding a dataset. A small sample dataset produced, by OpenSHS, can be extended without affecting the logical order of the events. The replication provides a solution for generating large representative smart home datasets. We have built an extensible library of smart devices that facilitates the simulation of current and future smart home environments. Our tool divides the dataset generation process into three distinct phases: first design: the researcher designs the initial virtual environment by building the home, importing smart devices and creating contexts; second, simulation: the participant simulates his/her context-specific events; and third, aggregation: the researcher applies the replication algorithm to generate the final dataset. We conducted a study to assess the ease of use of our tool on the System Usability Scale (SUS).

  17. OpenSHS: Open Smart Home Simulator

    PubMed Central

    Alshammari, Nasser; Alshammari, Talal; Sedky, Mohamed; Champion, Justin; Bauer, Carolin

    2017-01-01

    This paper develops a new hybrid, open-source, cross-platform 3D smart home simulator, OpenSHS, for dataset generation. OpenSHS offers an opportunity for researchers in the field of the Internet of Things (IoT) and machine learning to test and evaluate their models. Following a hybrid approach, OpenSHS combines advantages from both interactive and model-based approaches. This approach reduces the time and efforts required to generate simulated smart home datasets. We have designed a replication algorithm for extending and expanding a dataset. A small sample dataset produced, by OpenSHS, can be extended without affecting the logical order of the events. The replication provides a solution for generating large representative smart home datasets. We have built an extensible library of smart devices that facilitates the simulation of current and future smart home environments. Our tool divides the dataset generation process into three distinct phases: first design: the researcher designs the initial virtual environment by building the home, importing smart devices and creating contexts; second, simulation: the participant simulates his/her context-specific events; and third, aggregation: the researcher applies the replication algorithm to generate the final dataset. We conducted a study to assess the ease of use of our tool on the System Usability Scale (SUS). PMID:28468330

  18. Airborne particle dispersion to an operating room environment during sliding and hinged door opening.

    PubMed

    Sadrizadeh, Sasan; Pantelic, Jovan; Sherman, Max; Clark, Jordan; Abouali, Omid

    2018-03-08

    Operating rooms (ORs) are usually over-pressurized in order to prevent the penetration of contaminated air and the consequent risk of surgical site infection. However, a door-opening can result in the rapid disappearance of pressure and contaminants can then easily penetrate into the surgical zone. Therefore, a broad knowledge and understanding of OR ventilation systems and their protective potential is essential for optimizing the surgical environment. This study investigated the air quality and level of airborne particles during a single and multiple door-opening cycles in an operating room supplied by a turbulent-mixing ventilation system. The exploration was carried out numerically using computational fluid dynamics. Model validation was performed to ensure the validity of the achieved results. The OR was initially over-pressurized by approximately 15Pa, relative to the adjacent corridors. Both sliding and hinged doors were simulated and compared. Penetration of bacteria carrying particles from the corridors to the OR can be successfully restricted by using a positive-pressure system. However, the results clearly indicate that frequent door opening can interfere with airflow ventilation systems, alter the pressure gradient, and increase the infection risk for the patient undergoing surgical intervention. Door-opening disturbs the airflow field and could result in containment failure. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. 4BMS-X Design and Test Activation

    NASA Technical Reports Server (NTRS)

    Peters, Warren T.; Knox, James C.

    2017-01-01

    In support of the NASA goals to reduce power, volume and mass requirements on future CO2 (Carbon Dioxide) removal systems for exploration missions, a 4BMS (Four Bed Molecular Sieve) test bed was fabricated and activated at the NASA Marshall Space Flight Center. The 4BMS-X (Four Bed Molecular Sieve-Exploration) test bed used components similar in size, spacing, and function to those on the flight ISS flight CDRA system, but were assembled in an open framework. This open framework allows for quick integration of changes to components, beds and material systems. The test stand is highly instrumented to provide data necessary to anchor predictive modeling efforts occurring in parallel to testing. System architecture and test data collected on the initial configurations will be presented.

  20. Harvest: an open platform for developing web-based biomedical data discovery and reporting applications.

    PubMed

    Pennington, Jeffrey W; Ruth, Byron; Italia, Michael J; Miller, Jeffrey; Wrazien, Stacey; Loutrel, Jennifer G; Crenshaw, E Bryan; White, Peter S

    2014-01-01

    Biomedical researchers share a common challenge of making complex data understandable and accessible as they seek inherent relationships between attributes in disparate data types. Data discovery in this context is limited by a lack of query systems that efficiently show relationships between individual variables, but without the need to navigate underlying data models. We have addressed this need by developing Harvest, an open-source framework of modular components, and using it for the rapid development and deployment of custom data discovery software applications. Harvest incorporates visualizations of highly dimensional data in a web-based interface that promotes rapid exploration and export of any type of biomedical information, without exposing researchers to underlying data models. We evaluated Harvest with two cases: clinical data from pediatric cardiology and demonstration data from the OpenMRS project. Harvest's architecture and public open-source code offer a set of rapid application development tools to build data discovery applications for domain-specific biomedical data repositories. All resources, including the OpenMRS demonstration, can be found at http://harvest.research.chop.edu.

Top