Science.gov

Sample records for model theoretical aspects

  1. Theoretical aspects of immunity.

    PubMed

    Deem, Michael W; Hejazi, Pooya

    2010-01-01

    The immune system recognizes a myriad of invading pathogens and their toxic products. It does so with a finite repertoire of antibodies and T cell receptors. We here describe theories that quantify the dynamics of the immune system. We describe how the immune system recognizes antigens by searching the large space of receptor molecules. We consider in some detail the theories that quantify the immune response to influenza and dengue fever. We review theoretical descriptions of the complementary evolution of pathogens that occurs in response to immune system pressure. Methods including bioinformatics, molecular simulation, random energy models, and quantum field theory contribute to a theoretical understanding of aspects of immunity.

  2. Space Service Market (Theoretical Aspect)

    NASA Astrophysics Data System (ADS)

    Prisniakov, V. F.; Prisniakova, L. M.

    The authors propose a mathematical model of the demand and supply in the market economics and in the market of space services, in particular. A theoretical demand formula and a real curve demand are compared. The market equilibrium price is defined. The space market dynamics is studied. The calculations are carried out for the parameters which are close to the market of space services.

  3. Theoretic aspects of the identification of the parameters in the optimal control model

    NASA Technical Reports Server (NTRS)

    Vanwijk, R. A.; Kok, J. J.

    1977-01-01

    The identification of the parameters of the optimal control model from input-output data of the human operator is considered. Accepting the basic structure of the model as a cascade of a full-order observer and a feedback law, and suppressing the inherent optimality of the human controller, the parameters to be identified are the feedback matrix, the observer gain matrix, and the intensity matrices of the observation noise and the motor noise. The identification of the parameters is a statistical problem, because the system and output are corrupted by noise, and therefore the solution must be based on the statistics (probability density function) of the input and output data of the human operator. However, based on the statistics of the input-output data of the human operator, no distinction can be made between the observation and the motor noise, which shows that the model suffers from overparameterization.

  4. Theoretical aspects of cephalosporin isomerism

    SciTech Connect

    Pop, E.; Brewster, M.E.; Bodor, N. Univ. of Florida, Gainesville ); Kaminski, J.J. )

    1989-01-01

    The {triangle}{sup 3} double bond of cephalosporins isomerizes to the {triangle}{sup 2} position, resulting in biological inactivation of these antibiotics. This phenomenon occurs slowly in the case of cephalosporanic acids, but is rapid when the 4-carboxylate moiety is esterified or otherwise derivatized, leading to an equilibrium between the {triangle}{sup 2} and {triangle}{sup 3} forms. A theoretical study of this isomerization is described in the framework of two semiempirical all-valence electron molecular orbital (MO) approximations, namely MNDO and AMI. Specifically, the methyl ester and free carboxylate derivatives of both the {triangle}{sup 3} and {triangle}{sup 2} isomers of 7-phenylacetamidocephalosporin were studied. The results obtained indicated that the {triangle}{sup 3} derivatives were thermodynamically more stable than were the {triangle}{sup 2} isomers both in the case of the free acids and methyl esters. These data are consistent with experimental findings and suggest that the more rapid isomerization demonstrated in the case of the esters is due primarily to kinetic rather than to thermodynamic factors. Examination of the calculated molecular structures lend support to various theories that correlate the inactivity of the {triangle}{sup 2} isomers with spatial considerations and the degree of {beta}-lactam amide resonance.

  5. Some theoretical aspects of orographic precipitation

    NASA Astrophysics Data System (ADS)

    Jiang, Qingfang

    2001-09-01

    Mountains exert a powerful control on the global climate, primarily by their influence on precipitation and water vapor transport. Unfortunately, the physics of orographic precipitation is complex. New observational and theoretical tools need to be developed to understand it. The primary focus of this study is the effect of dynamical and microphysical processes on orographic precipitation. Three closely related issues are addressed in this three-part modeling-based study: the effect of moisture on mountain flow dynamics, the influence of the dynamical processes on orographic precipitation, and the effect of microphysics on orographic precipitation. In the first part of the study, the effect of moisture on flow dynamics is examined. It is demonstrated that moist processes, such as latent heat release and precipitation can modify mountain flow stagnation. The dynamical and thermodynamical features of this modification are diagnosed and discussed based on numerical simulations and theoretical formulation. In the second part of the study, the influence of flow dynamics on precipitation is studied. It is found that the dynamical structure of moist air flow can be critical to both the intensity and distribution of orographic precipitation. For low mountains, the precipitation intensity is roughly proportional to the mountain height and wind-speed as predicted by both the slab model and the ARPS model. For high mountains, the mountain lift effect is reduced as the low level moist flow passes around the peak. The maximum precipitation may occur far upstream of the peak due to the secondary circulation forced by upstream flow blocking/reversal. In the third part of the study, some microphysical timescales are defined. Orographic precipitation features such as Precipitation Efficiency (PE), carry-over, and spill-over are connected to a set of timescales (timescales for advection, hydrometeor falling, aggregation, sublimation, etc) through a box model. The results are

  6. J. J. Sakurai Prize for Theoretical Particle Physics Lecture: Some QCD aspects of physics beyond the standard model

    NASA Astrophysics Data System (ADS)

    Sjostrand, Torbjorn

    2012-03-01

    The nature of observable events at the LHC is mainly determined by QCD physics, i.e. strong interactions. The search for new physics obviously implies a desire to go beyond QCD. Nevertheless, also in cases where non-QCD processes are studied, new aspects of QCD physics may enter the back door. We here give three examples: decays with R-parity violation in SUSY, the formation of long-lived R-hadrons in SUSY, and parton showers and hadronization in Hidden Valley scenarios. These three possibilities have been implemented in the general-purpose PYTHIA event generator, so that detailed studies of consequences can be performed.

  7. Introduction to Theoretical Modelling

    NASA Astrophysics Data System (ADS)

    Davis, Matthew J.; Gardiner, Simon A.; Hanna, Thomas M.; Nygaard, Nicolai; Proukakis, Nick P.; Szymańska, Marzena H.

    2013-02-01

    We briefly overview commonly encountered theoretical notions arising in the modelling of quantum gases, intended to provide a unified background to the `language' and diverse theoretical models presented elsewhere in this book, and aimed particularly at researchers from outside the quantum gases community.

  8. THE USE OF STATIC AND DYNAMIC MECHANICAL MODELS IN TEACHING ASPECTS OF THE THEORETICAL CONCEPT, THE PARTICLE NATURE OF MATTER.

    ERIC Educational Resources Information Center

    PELLA, MILTON O.; ZIEGLER, ROBERT E.

    THE RELATIVE EFFECTIVENESS OF TWO TYPES OF MECHANICAL MODELS FOR TEACHING ELEMENTARY SCHOOL STUDENTS TO USE THE PARTICLE IDEA OF MATTER TO EXPLAIN CERTAIN PHYSICAL PHENOMENA WAS INVESTIGATED. SUBJECTS WERE RANDOMLY SELECTED FROM STUDENTS ENROLLED IN GRADES TWO THROUGH SIX IN A SCHOOL SYSTEM. A SERIES OF DEMONSTRATIONS AND RELATED QUESTIONS WERE…

  9. Theoretical aspects and modelling of cellular decision making, cell killing and information-processing in photodynamic therapy of cancer

    PubMed Central

    2013-01-01

    Background The aim of this report is to provide a mathematical model of the mechanism for making binary fate decisions about cell death or survival, during and after Photodynamic Therapy (PDT) treatment, and to supply the logical design for this decision mechanism as an application of rate distortion theory to the biochemical processing of information by the physical system of a cell. Methods Based on system biology models of the molecular interactions involved in the PDT processes previously established, and regarding a cellular decision-making system as a noisy communication channel, we use rate distortion theory to design a time dependent Blahut-Arimoto algorithm where the input is a stimulus vector composed of the time dependent concentrations of three PDT related cell death signaling molecules and the output is a cell fate decision. The molecular concentrations are determined by a group of rate equations. The basic steps are: initialize the probability of the cell fate decision, compute the conditional probability distribution that minimizes the mutual information between input and output, compute the cell probability of cell fate decision that minimizes the mutual information and repeat the last two steps until the probabilities converge. Advance to the next discrete time point and repeat the process. Results Based on the model from communication theory described in this work, and assuming that the activation of the death signal processing occurs when any of the molecular stimulants increases higher than a predefined threshold (50% of the maximum concentrations), for 1800s of treatment, the cell undergoes necrosis within the first 30 minutes with probability range 90.0%-99.99% and in the case of repair/survival, it goes through apoptosis within 3-4 hours with probability range 90.00%-99.00%. Although, there is no experimental validation of the model at this moment, it reproduces some patterns of survival ratios of predicted experimental data. Conclusions

  10. Acting Out; Theoretical and Clinical Aspects.

    ERIC Educational Resources Information Center

    Abt, Lawrence Edwin, Ed.; Weissman, Stuart L.

    The beneficial and harmful effects of acting out are studied in a series of short essays by numerous authors. Included are four articles on the theoretical and dynamic considerations of acting out, along with five clinical manifestations of acting out involving suicide and criminality in adolescents and adults. Special forms of harmful acting out…

  11. M-theoretic matrix models

    NASA Astrophysics Data System (ADS)

    Grassi, Alba; Mariño, Marcos

    2015-02-01

    Some matrix models admit, on top of the usual 't Hooft expansion, an M-theory-like expansion, i.e. an expansion at large N but where the rest of the parameters are fixed, instead of scaling with N . These models, which we call M-theoretic matrix models, appear in the localization of Chern-Simons-matter theories, and also in two-dimensional statistical physics. Generically, their partition function receives non-perturbative corrections which are not captured by the 't Hooft expansion. In this paper, we discuss general aspects of these type of matrix integrals and we analyze in detail two different examples. The first one is the matrix model computing the partition function of supersymmetric Yang-Mills theory in three dimensions with one adjoint hypermultiplet and N f fundamentals, which has a conjectured M-theory dual, and which we call the N f matrix model. The second one, which we call the polymer matrix model, computes form factors of the 2d Ising model and is related to the physics of 2d polymers. In both cases we determine their exact planar limit. In the N f matrix model, the planar free energy reproduces the expected behavior of the M-theory dual. We also study their M-theory expansion by using Fermi gas techniques, and we find non-perturbative corrections to the 't Hooft expansion.

  12. Preventive chemotherapy in human helminthiasis: theoretical and operational aspects.

    PubMed

    Gabrielli, A-F; Montresor, A; Chitsulo, L; Engels, D; Savioli, L

    2011-12-01

    Preventive chemotherapy (PC), the large-scale distribution of anthelminthic drugs to population groups at risk, is the core intervention recommended by the WHO for reducing morbidity and transmission of the four main helminth infections, namely lymphatic filariasis, onchocerciasis, schistosomiasis and soil-transmitted helminthiasis. The strategy is widely implemented worldwide but its general theoretical foundations have not been described so far in a comprehensive and cohesive manner. Starting from the information available on the biological and epidemiological characteristics of helminth infections, as well as from the experience generated by disease control and elimination interventions across the world, we extrapolate the fundamentals and synthesise the principles that regulate PC and justify its implementation as a sound and essential public health intervention. The outline of the theoretical aspects of PC contributes to a thorough understanding of the different facets of this strategy and helps comprehend opportunities and limits of control and elimination interventions directed against helminth infections.

  13. Production of Electroweak Bosons at Hadron Colliders: Theoretical Aspects

    NASA Astrophysics Data System (ADS)

    Mangano, Michelangelo L.

    2016-10-01

    Since the W± and Z0 discovery, hadron colliders have provided a fertile ground, in which continuously improving measurements and theoretical predictions allow to precisely determine the gauge boson properties, and to probe the dynamics of electroweak and strong interactions. This article will review, from a theoretical perspective, the role played by the study, at hadron colliders, of electroweak boson production properties, from the better understanding of the proton structure, to the discovery and studies of the top quark and of the Higgs, to the searches for new phenomena beyond the Standard Model.

  14. Theoretical behavior of microemulsions: geometrical aspects and dilution properties

    SciTech Connect

    Biais, J.; Bothorel, P.; Clin, B.; Lalanne, P.

    1981-03-01

    A very simple theoretical model for microemulsions is used; introducing the idea of pseudophases, and therefore equilibrium between them, one can account for many experimental properties of such systems. By using two partition coefficients respectively for alcohol and oil, the existence of dilution lines for microemulsions and of excluding domains for spherical objects is justified, and the evolution of some geometrical characteristics is predicted. 17 references.

  15. Theoretical models for supernovae

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1981-09-21

    The results of recent numerical simulations of supernova explosions are presented and a variety of topics discussed. Particular emphasis is given to (i) the nucleosynthesis expected from intermediate mass (10sub solar less than or equal to M less than or equal to 100 Msub solar) Type II supernovae and detonating white dwarf models for Type I supernovae, (ii) a realistic estimate of the ..gamma..-line fluxes expected from this nucleosynthesis, (iii) the continued evolution, in one and two dimensions, of intermediate mass stars wherein iron core collapse does not lead to a strong, mass-ejecting shock wave, and (iv) the evolution and explosion of vary massive stars (M greater than or equal to 100 Msub solar of both Population I and III. In one dimension, nuclear burning following a failed core bounce does not appear likely to lead to a supernova explosion although, in two dimensions, a combination of rotation and nuclear burning may do so. Near solar proportions of elements from neon to calcium and very brilliant optical displays may be created by hypernovae, the explosions of stars in the mass range 100 M/sub solar/ to 300 M/sub solar/. Above approx. 300 M/sub solar/ a black hole is created by stellar collapse following carbon ignition. Still more massive stars may be copious producers of /sup 4/He and /sup 14/N prior to their collapse on the pair instability.

  16. Theoretical aspects of high-energy heavy-ion reactions

    SciTech Connect

    Wong, Cheuk-Yin

    1987-01-01

    An elementary introduction is given to the subject of nucleus-nucleus collisions at high energies. It begins with a discussion on the relevant kinematic variables to establish the language for these collisions. It examines the question of particle production and the characteristics of the loss of baryon energy in an inelastic nucleon-nucleon collision. The geometrical aspect of a nucleus-nucleus collision is then described in terms of the Glauber multiple-collision model. As the theory of relativistic heavy-ion collision has not yet reached a stage whereby the dynamics can be examined from a fundamental theory, various phenomenological models have been proposed. The assumptions used in various models are described. Future use of relativistic heavy-ion collisions to study the quark-gluon plasma is briefly discussed.

  17. Theoretical aspects of the design of a passive radon dosemeter.

    PubMed

    Wilkinson, P; Saunders, B J

    1985-10-01

    Some mathematical aspects of the development and design of a passive radon dosemeter are considered. In particular, a mathematical model is presented that is concerned with the gaseous diffusion of radon into a confined region bounded by a plastic material of known diffusion coefficient. The relationship between the time-integrated radon concentrations, inside and outside a sealed plastic container are derived. Estimates of the exposure of people to radon can be made using the time integrated radon concentration inside a calibrated container containing a CR-39 etched-track device. As a consequence of the analysis, it is possible to design a passive radon dosemeter that will be accurate, resistant to moisture and whose response will be independent of rapid variations in radon concentration. The possibility of using a container of this type for the measurement of diffusion coefficients is discussed.

  18. Theoretical Models of Spintronic Materials

    NASA Astrophysics Data System (ADS)

    Damewood, Liam James

    In the past three decades, spintronic devices have played an important technological role. Half-metallic alloys have drawn much attention due to their special properties and promised spintronic applications. This dissertation describes some theoretical techniques used in first-principal calculations of alloys that may be useful for spintronic device applications with an emphasis on half-metallic ferromagnets. I consider three types of simple spintronic materials using a wide range of theoretical techniques. They are (a) transition metal based half-Heusler alloys, like CrMnSb, where the ordering of the two transition metal elements within the unit cell can cause the material to be ferromagnetic semiconductors or semiconductors with zero net magnetic moment, (b) half-Heusler alloys involving Li, like LiMnSi, where the Li stabilizes the structure and increases the magnetic moment of zinc blende half-metals by one Bohr magneton per formula unit, and (c) zinc blende alloys, like CrAs, where many-body techniques improve the fundamental gap by considering the physical effects of the local field. Also, I provide a survey of the theoretical models and numerical methods used to treat the above systems.

  19. Aspect-Oriented Design with Reusable Aspect Models

    NASA Astrophysics Data System (ADS)

    Kienzle, Jörg; Al Abed, Wisam; Fleurey, Franck; Jézéquel, Jean-Marc; Klein, Jacques

    The idea behind Aspect-Oriented Modeling (AOM) is to apply aspect-oriented techniques to (software) models with the aim of modularizing crosscutting concerns. This can be done within different modeling notations, at different levels of abstraction, and at different moments during the software development process. This paper demonstrates the applicability of AOM during the software design phase by presenting parts of an aspect-oriented design of a crisis management system. The design solution proposed in this paper is based on the Reusable Aspect Models (RAM) approach, which allows a modeler to express the structure and behavior of a complex system using class, state and sequence diagrams encapsulated in several aspect models. The paper describes how the model of the "create mission" functionality of the server backend can be decomposed into 23 inter-dependent aspect models. The presentation of the design is followed by a discussion on the lessons learned from the case study. Next, RAM is compared to 8 other AOM approaches according to 6 criteria: language, concern composition, asymmetric and symmetric composition, maturity, and tool support. To conclude the paper, a discussion section points out the features of RAM that specifically support reuse.

  20. Theoretical Models of Astrochemical Processes

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2009-01-01

    Interstellar chemistry provides a natural laboratory for studying exotic species and processes at densities, temperatures, and reaction rates. that are difficult or impractical to address in the laboratory. Thus, many chemical reactions considered too sloe by the standards of terrestrial chemistry, can be 'observed and modeled. Curious proposals concerning the nature and chemistry of complex interstellar organic molecules will be described. Catalytic reactions on "rain surfaces can, in principle, lead to a lame variety of species and this has motivated many laboratory and theoretical studies. Gas phase processes may also build lame species in molecular clouds. Future laboratory data and computational tools needed to construct accurate chemical models of various astronomical sources to be observed by Herschel and ALMA will be outlined.

  1. Molecular switches in carbon-rich organometallic compounds: Theoretical aspects

    SciTech Connect

    Costuas, Karine

    2015-01-22

    Organometallic complexes associated with an appropriate choice of ancillary ligands reveal to have a wide range of physical properties leading to promising applications when incorporated in nano-size devices. The challenge is to design innovative multifunctional compounds based on redox active carbon-rich organometallics associated with spin carriers and/or photochromic units. A multidisciplinary approach in this area has proved to be efficient in a series a systems combining carbon-rich bridging ligands and redox metallic moieties. In this domain, the role of theoretical investigations based on quantum mechanics tools have a crucial role in rationalizing and in helping designing systems possessing target properties.

  2. Theoretical aspects of product formation from the NCO + NO reaction

    SciTech Connect

    Lin, M.C.; He, Y. ); Melius, C.F. )

    1993-09-09

    The reaction of NCO with NO, an important elementary process involved in the reduction of NO[sub x] by HNCO, has been studied theoretically using the BAC-MP4 technique in conjunction with RRKM calculations. The computed molecular structures and thermochemical data for various intermediates and transition states suggest that the reaction takes place primarily via the singlet, ground electronic state OCNNO molecule according to the following mechanism; (step a) NCO + NO [leftrightarrow] [sup 1]OCNNO [yields] N[sub 2]O + CO; (step b) NCO + NO [leftrightarrow] [sup 1]OCNNO [yields] c-OCNNO[minus] N[sub 2] + CO[sub 2]. The formation of N[sub 2]O + CO occurs by the fragmentation of the singlet OCNNO intermediate step (a), whereas the production of N[sub 2] + CO[sub 2] by cyclization-fragmentation occurs via step b. The tight transition states leading to the formation of these products, coupled with the loose entrance channel, give rise to the experimentally observed strong negative temperature dependence which can be quantitatively accounted for by the results of RRKM calculations based on the BAC-MP4 data. The experimentally measured product branching ratio for channels a and b could be accounted for theoretically by lowering the calculated energy barrier for step a by 3.6 kcal/mol, corresponding to about 15% of the barrier height. 22 refs., 3 figs., 5 tabs.

  3. Computational and theoretical aspects of biomolecular structure and dynamics

    SciTech Connect

    Garcia, A.E.; Berendzen, J.; Catasti, P., Chen, X.

    1996-09-01

    This is the final report for a project that sought to evaluate and develop theoretical, and computational bases for designing, performing, and analyzing experimental studies in structural biology. Simulations of large biomolecular systems in solution, hydrophobic interactions, and quantum chemical calculations for large systems have been performed. We have developed a code that implements the Fast Multipole Algorithm (FMA) that scales linearly in the number of particles simulated in a large system. New methods have been developed for the analysis of multidimensional NMR data in order to obtain high resolution atomic structures. These methods have been applied to the study of DNA sequences in the human centromere, sequences linked to genetic diseases, and the dynamics and structure of myoglobin.

  4. Theoretical aspects of antibiotic diffusion into microbial biofilms.

    PubMed Central

    Stewart, P S

    1996-01-01

    Antibiotic penetration into microbial biofilm was investigated theoretically by the solution of mathematical equations describing various combinations of the processes of diffusion, sorption, and reaction. Unsteady material balances on the antibiotic and on a reactive or sorptive biomass constituent, along with associated boundary and initial conditions, constitute the mathematical formulations. Five cases were examined: diffusion of a noninteracting solute; diffusion of a reversibly sorbing, nonreacting solute; diffusion of an irreversibly sorbing, nonreacting solute; diffusion of a stoichiometrically reacting solute; and diffusion of a catalytically reacting solute. A noninteracting solute was predicted to penetrate biofilms of up to 1 mm in thickness relatively quickly, within a matter of seconds or minutes. In the case of a solute that does not sorb or react in the biofilm, therefore, the diffusion barrier is not nearly large enough to account for the reduced susceptibility of biofilms to antibiotics. Reversible and irreversible sorption retards antibiotic penetration. On the basis of data available in the literature at this point, the extent of retardation of antibiotic diffusion due to sorption does not appear to be sufficient to account for reduced biofilm susceptibility. A catalytic (e.g., enzymatic) reaction, provided it is sufficiently rapid, can lead to severe antibiotic penetration failure. For example, calculation of beta-lactam penetration indicated that the reaction-diffusion mechanism may be a viable explanation for failure of certain of these agents to control biofilm infections. The theory presented in this study provides a framework for the design and analysis of experiments to test these mechanisms of reduced biofilm susceptibility to antibiotics. PMID:8913456

  5. Morphology-dependent stimulated Raman scattering imaging. I. Theoretical aspects

    SciTech Connect

    Aker, P.M.; Moortgat, P.A.; Zhang, J.

    1996-11-01

    Morphology-dependent stimulated Raman scattering is a nonlinear laser Raman spectroscopy that relies on using the cavity modes associated with micron-sized structures to enhance optical signal generation. Since different cavity modes occupy different regions in space, location-specific spectra can be generated. Here we outline the physics behind morphology-dependent stimulated Raman scattering imaging and model the signal generation process. The results show that a simple tailoring of the illumination conditions allows signal from single, but selectable, cavity modes to be generated. Thus, this nonlinear Raman technique can be used to image spatial variations in chemical composition and/or molecular structure within microstructures. {copyright} {ital 1996 American Institute of Physics.}

  6. Theoretical Aspects of Magnetic Fields for Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Hanami, Hitoshi

    We propose magnetic cannon ball mechanism in which the collapse of a magnetosphere onto a black hole can generate strong outward Poynting flux which drives a baryon-free fireball called the magnetic cannon ball. In the early stage, the magnetic fields in the cannon ball can prepare the explanation for the cycrotoron absorptions observed by GINGA. The magnetic cannon ball can drive, in general, a relativistic outflow which interacts with the interstellar matter and forms a shock. The magnetic field in the shock approximately equal to 104 G can induce the synchrotron radiations with peaks at approximately equal to 10^2 keV observed. This magnetic field in the cannon ball can also confine the high energy protons (gamma_p > 30) which are required for delayed photons (>25 GeV) following a burst on 1994 February 17. Accretion induced collapse of a white dwarf of > 109 G, merger of a close binary and failed type Ib supernovae are possible scenarios even without the rotation of the central object. This mechanism works at the final phase of gravitational collapse even after a neutrino driven fireball proposed in most scenarios for gamma ray bursts. Twice bursts, which consist of primary neutrino driven fireball and secondary magnetic cannon ball can be induced sometime, can be explained in this model. It suggests that the magnetic cannon ball works some parts in multiple populations and delayed or multiple burst events. The final remnant in the model should be a black hole. It implies that any gamma ray bursts can have no optical counter part if they do not have a companion in a binary.

  7. Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization.

    PubMed

    Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva

    2015-09-01

    Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea-eb-n} during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This

  8. Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization.

    PubMed

    Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva

    2015-09-01

    Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea-eb-n} during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This

  9. Theoretical Aspects of Ionization in Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Wang, Jianyi

    Mechanisms for ionization resulting from collisions between an ion (or atom) and an atom are discussed and analyzed for slow and fast collisions and for two different collision systems. The first collision system consists of an exactly solvable three-body model in which an electron moves in the field of two centers of zero range potentials travelling at constant speeds. The exact electron emission spectrum shows two important features: (a) Evidence is found for the existence of the so-called "v/2" (or ridge) electrons at intermediate collision speed. These electrons are emitted with about half the speed of the incident ion. It is shown that they are due to promotion to the continuum of the molecular orbitals. v/2 electron emission is strongly influenced by the relative interaction strengths of the electron with the two centers. (b) For fast collisions multiple scattering peaks can be seen to be a dominant feature in the ionization spectrum. Three-body effects are found to be responsible for generation of the peaks. In the second collision system the ionization spectrum resulting from electron loss by the incident ions (atoms) are studied with emphasis on large ejection angles. The ionization spectrum is shown to be composed of two parts: one is caused by the interaction of projectile electron with the mean field of the target core and the other by explicit electron-electron interaction. It is shown that for mean field ionization proper treatment of the off-energy -shell scattering matrix element is required to describe experimental data. The correlated ionization is treated via a double scattering represented by a second Born approximation. It is shown that this two-step mechanism is essential in describing the electron angular and energy distribution, especially on the low energy side of the spectrum for electron loss from atomic hydrogen. For other incident ions (like He ^+) it is found that in addition to double scattering, three-body effects are also very

  10. Explaining Facial Imitation: A Theoretical Model

    PubMed Central

    Meltzoff, Andrew N.; Moore, M. Keith

    2013-01-01

    A long-standing puzzle in developmental psychology is how infants imitate gestures they cannot see themselves perform (facial gestures). Two critical issues are: (a) the metric infants use to detect cross-modal equivalences in human acts and (b) the process by which they correct their imitative errors. We address these issues in a detailed model of the mechanisms underlying facial imitation. The model can be extended to encompass other types of imitation. The model capitalizes on three new theoretical concepts. First, organ identification is the means by which infants relate parts of their own bodies to corresponding ones of the adult’s. Second, body babbling (infants’ movement practice gained through self-generated activity) provides experience mapping movements to the resulting body configurations. Third, organ relations provide the metric by which infant and adult acts are perceived in commensurate terms. In imitating, infants attempt to match the organ relations they see exhibited by the adults with those they feel themselves make. We show how development restructures the meaning and function of early imitation. We argue that important aspects of later social cognition are rooted in the initial cross-modal equivalence between self and other found in newborns. PMID:24634574

  11. Parameters and error of a theoretical model

    SciTech Connect

    Moeller, P.; Nix, J.R.; Swiatecki, W.

    1986-09-01

    We propose a definition for the error of a theoretical model of the type whose parameters are determined from adjustment to experimental data. By applying a standard statistical method, the maximum-likelihoodlmethod, we derive expressions for both the parameters of the theoretical model and its error. We investigate the derived equations by solving them for simulated experimental and theoretical quantities generated by use of random number generators. 2 refs., 4 tabs.

  12. Reduction of melting temperature and enthalpy of drug crystals: theoretical aspects.

    PubMed

    Hasa, Dritan; Voinovich, Dario; Perissutti, Beatrice; Grassi, Gabriele; Fiorentino, Simona; Farra, Rossella; Abrami, Michela; Colombo, Italo; Grassi, Mario

    2013-09-27

    This review deals with the mathematical models describing the reduction of melting temperature and enthalpy of solids in the nano-size range. In particular, the attention focuses on the thermodynamic based models that are theoretically solid and can be suitably used in the case of organic drugs. Indeed, while much effort has been put in the past to study the melting of metal nano-crystals, little work has been done for organic drug nano-crystals. However, due to the high potential of drug nano-crystals (their solubility increases with size reduction), this theme has become more and more important in the pharmaceutical field. Accordingly, this review, after illustrating the physical frame of drug melting, focuses on the thermodynamic aspects required to describe the melting of spherical and not spherical nano-crystals. Finally, the reliability of some models is tested against the results coming from X-rays analysis in the case of two organic drugs (griseofulvin and nifedipine). This test proved models strength.

  13. APPRENTICESHIP--A THEORETICAL MODEL.

    ERIC Educational Resources Information Center

    DUFTY, NORMAN F.

    AN INQUIRY INTO RECRUITMENT OF APPRENTICES TO SKILLED TRADES IN WESTERN AUSTRALIA INDICATED LITTLE CORRELATION BETWEEN THE NUMBER OF NEW APPRENTICES AND THE LEVEL OF INDUSTRIAL EMPLOYMENT OR THE TOTAL NUMBER OF APPRENTICES. THIS ARTICLE ATTEMPTS TO OUTLINE A MATHEMATICAL MODEL OF AN APPRENTICESHIP SYSTEM AND DISCUSS ITS IMPLICATIONS. THE MODEL, A…

  14. Theoretical Modelling of Hot Stars

    NASA Astrophysics Data System (ADS)

    Najarro, F.; Hillier, D. J.; Figer, D. F.; Geballe, T. R.

    1999-06-01

    Recent progress towards model atmospheres for hot stars is discussed. A new generation of NLTE wind blanketed models, together with high S/N spectra of the hot star population in the central parsec, which are currently being obtained, will allow metal abundance determinations (Fe, Si, Mg, Na, etc). Metallicity studies of hot stars in the IR will provide major constraints not only on the theory of evolution of massive stars but also on our efforts to solve the puzzle of the central parsecs of the Galaxy. Preliminary results suggest that the metallicity of the Pistol Star is 3 times solar, thus indicating strong chemical enrichment of the gas in the Galactic Center.

  15. Aspects of skeletal muscle modelling.

    PubMed Central

    Epstein, Marcelo; Herzog, Walter

    2003-01-01

    The modelling of skeletal muscle raises a number of philosophical questions, particularly in the realm of the relationship between different possible levels of representation and explanation. After a brief incursion into this area, a list of desiderata is proposed as a guiding principle for the construction of a viable model, including: comprehensiveness, soundness, experimental consistency, predictive ability and refinability. Each of these principles is illustrated by means of simple examples. The presence of internal constraints, such as incompressibility, may lead to counterintuitive results. A one-panel example is exploited to advocate the use of the principle of virtual work as the ideal tool to deal with these situations. The question of stability in the descending limb of the force-length relation is addressed and a purely mechanical analogue is suggested. New experimental results confirm the assumption that fibre stiffness is positive even in the descending limb. The indeterminacy of the force-sharing problem is traditionally resolved by optimizing a, presumably, physically meaningful target function. After presenting some new results in this area, based on a separation theorem, it is suggested that a more fundamental approach to the problem is the abandoning of optimization criteria in favour of an explicit implementation of activation criteria. PMID:14561335

  16. Theoretical Modeling of Interstellar Chemistry

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2009-01-01

    The chemistry of complex interstellar organic molecules will be described. Gas phase processes that may build large carbon-chain species in cold molecular clouds will be summarized. Catalytic reactions on grain surfaces can lead to a large variety of organic species, and models of molecule formation by atom additions to multiply-bonded molecules will be presented. The subsequent desorption of these mixed molecular ices can initiate a distinctive organic chemistry in hot molecular cores. The general ion-molecule pathways leading to even larger organics will be outlined. The predictions of this theory will be compared with observations to show how possible organic formation pathways in the interstellar medium may be constrained. In particular, the success of the theory in explaining trends in the known interstellar organics, in predicting recently-detected interstellar molecules, and, just as importantly, non-detections, will be discussed.

  17. Theoretical models of helicopter rotor noise

    NASA Technical Reports Server (NTRS)

    Hawkings, D. L.

    1978-01-01

    For low speed rotors, it is shown that unsteady load models are only partially successful in predicting experimental levels. A theoretical model is presented which leads to the concept of unsteady thickness noise. This gives better agreement with test results. For high speed rotors, it is argued that present models are incomplete and that other mechanisms are at work. Some possibilities are briefly discussed.

  18. Theoretical Models and Processes of Reading.

    ERIC Educational Resources Information Center

    Singer, Harry, Ed.; Ruddell, Robert B., Ed.

    The first section of this two-part collection of articles contains six papers and their discussions read at a symposium on Theoretical Models and Processes of Reading. The papers cover the linguistic, perceptual, and cognitive components involved in reading. The models attempt to integrate the variables that influence the perception, recognition,…

  19. A Theoretical Model of Intrapersonal Agenda.

    ERIC Educational Resources Information Center

    Yang, Jian

    Prior research has shown that the media play an agenda-setting role in political campaigns. A theoretical model was developed to investigate intrapersonal agenda's relationship with certain contingent factors. To test the model a study of the intrapersonal agenda (personally perceived salience of public issues) was then conducted as part of the…

  20. Theoretical analysis of the electrical aspects of the basic electro-impulse problem in aircraft de-icing applications

    NASA Technical Reports Server (NTRS)

    Henderson, R. A.; Schrag, R. L.

    1986-01-01

    A summary of modeling the electrical system aspects of a coil and metal target configuration resembling a practical electro-impulse deicing (EIDI) installation, and a simple circuit for providing energy to the coil, was presented. The model was developed in sufficient theoretical detail to allow the generation of computer algorithms for the current in the coil, the magnetic induction on both surfaces of the target, the force between the coil and target, and the impulse delivered to the target. These algorithms were applied to a specific prototype EIDI test system for which the current, magnetic fields near the target surfaces, and impulse were previously measured.

  1. Hybrid quantum teleportation: A theoretical model

    SciTech Connect

    Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria; Yoshikawa, Jun-ichi; Yonezawa, Hidehiro; Furusawa, Akira

    2014-12-04

    Hybrid quantum teleportation – continuous-variable teleportation of qubits – is a promising approach for deterministically teleporting photonic qubits. We propose how to implement it with current technology. Our theoretical model shows that faithful qubit transfer can be achieved for this teleportation by choosing an optimal gain for the teleporter’s classical channel.

  2. Hybrid quantum teleportation: A theoretical model

    NASA Astrophysics Data System (ADS)

    Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria; Yoshikawa, Jun-ichi; Yonezawa, Hidehiro; Furusawa, Akira

    2014-12-01

    Hybrid quantum teleportation - continuous-variable teleportation of qubits - is a promising approach for deterministically teleporting photonic qubits. We propose how to implement it with current technology. Our theoretical model shows that faithful qubit transfer can be achieved for this teleportation by choosing an optimal gain for the teleporter's classical channel.

  3. Theoretical Modeling for Hepatic Microwave Ablation

    PubMed Central

    Prakash, Punit

    2010-01-01

    Thermal tissue ablation is an interventional procedure increasingly being used for treatment of diverse medical conditions. Microwave ablation is emerging as an attractive modality for thermal therapy of large soft tissue targets in short periods of time, making it particularly suitable for ablation of hepatic and other tumors. Theoretical models of the ablation process are a powerful tool for predicting the temperature profile in tissue and resultant tissue damage created by ablation devices. These models play an important role in the design and optimization of devices for microwave tissue ablation. Furthermore, they are a useful tool for exploring and planning treatment delivery strategies. This review describes the status of theoretical models developed for microwave tissue ablation. It also reviews current challenges, research trends and progress towards development of accurate models for high temperature microwave tissue ablation. PMID:20309393

  4. Theoretical models of neural circuit development.

    PubMed

    Simpson, Hugh D; Mortimer, Duncan; Goodhill, Geoffrey J

    2009-01-01

    Proper wiring up of the nervous system is critical to the development of organisms capable of complex and adaptable behaviors. Besides the many experimental advances in determining the cellular and molecular machinery that carries out this remarkable task precisely and robustly, theoretical approaches have also proven to be useful tools in analyzing this machinery. A quantitative understanding of these processes can allow us to make predictions, test hypotheses, and appraise established concepts in a new light. Three areas that have been fruitful in this regard are axon guidance, retinotectal mapping, and activity-dependent development. This chapter reviews some of the contributions made by mathematical modeling in these areas, illustrated by important examples of models in each section. For axon guidance, we discuss models of how growth cones respond to their environment, and how this environment can place constraints on growth cone behavior. Retinotectal mapping looks at computational models for how topography can be generated in populations of neurons based on molecular gradients and other mechanisms such as competition. In activity-dependent development, we discuss theoretical approaches largely based on Hebbian synaptic plasticity rules, and how they can generate maps in the visual cortex very similar to those seen in vivo. We show how theoretical approaches have substantially contributed to the advancement of developmental neuroscience, and discuss future directions for mathematical modeling in the field. PMID:19427515

  5. Simple theoretical models for composite rotor blades

    NASA Technical Reports Server (NTRS)

    Valisetty, R. R.; Rehfield, L. W.

    1984-01-01

    The development of theoretical rotor blade structural models for designs based upon composite construction is discussed. Care was exercised to include a member of nonclassical effects that previous experience indicated would be potentially important to account for. A model, representative of the size of a main rotor blade, is analyzed in order to assess the importance of various influences. The findings of this model study suggest that for the slenderness and closed cell construction considered, the refinements are of little importance and a classical type theory is adequate. The potential of elastic tailoring is dramatically demonstrated, so the generality of arbitrary ply layup in the cell wall is needed to exploit this opportunity.

  6. Theoretical modeling for the stereo mission

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Burlaga, L. F.; Kaiser, M. L.; Ng, C. K.; Reames, D. V.; Reiner, M. J.; Gombosi, T. I.; Lugaz, N.; Manchester, W.; Roussev, I. I.; Zurbuchen, T. H.; Farrugia, C. J.; Galvin, A. B.; Lee, M. A.; Linker, J. A.; Mikić, Z.; Riley, P.; Alexander, D.; Sandman, A. W.; Cook, J. W.; Howard, R. A.; Odstrčil, D.; Pizzo, V. J.; Kóta, J.; Liewer, P. C.; Luhmann, J. G.; Inhester, B.; Schwenn, R. W.; Solanki, S. K.; Vasyliunas, V. M.; Wiegelmann, T.; Blush, L.; Bochsler, P.; Cairns, I. H.; Robinson, P. A.; Bothmer, V.; Kecskemety, K.; Llebaria, A.; Maksimovic, M.; Scholer, M.; Wimmer-Schweingruber, R. F.

    2008-04-01

    We summarize the theory and modeling efforts for the STEREO mission, which will be used to interpret the data of both the remote-sensing (SECCHI, SWAVES) and in-situ instruments (IMPACT, PLASTIC). The modeling includes the coronal plasma, in both open and closed magnetic structures, and the solar wind and its expansion outwards from the Sun, which defines the heliosphere. Particular emphasis is given to modeling of dynamic phenomena associated with the initiation and propagation of coronal mass ejections (CMEs). The modeling of the CME initiation includes magnetic shearing, kink instability, filament eruption, and magnetic reconnection in the flaring lower corona. The modeling of CME propagation entails interplanetary shocks, interplanetary particle beams, solar energetic particles (SEPs), geoeffective connections, and space weather. This review describes mostly existing models of groups that have committed their work to the STEREO mission, but is by no means exhaustive or comprehensive regarding alternative theoretical approaches.

  7. Theoretical Additional Span Loading Characteristics of Wings with Arbitrary Sweep, Aspect Ratio, and Taper Ratio

    NASA Technical Reports Server (NTRS)

    Deyoung, John

    1947-01-01

    The Weissinger method for determining additional span loading has been used to find the lift-curve slope, spanwise center of pressure, aerodynamic center location, and span loading coefficients of untwisted and uncambered wings having a wide range of plan forms characterized by various combinations of sweep, aspect ratio, and taper ratio. The results are presented as variations of the aerodynamic characteristics with sweep angle for various values of aspect ratio and taper ratio. Methods are also included for determining induced drag and the approximate effects of compressibility. Despite the limitations of a lifting line method such as Weissinger's, the good agreement found between experimentally and theoretically determined characteristics warrants confidence in the method. In particular, it is believed that trends observed in results of the Weissinger method should be reliable. One of the most significant results showed that for each angle of sweep there is a taper ratio for which aspect ratio has little effect on the span loading and for which the loading is practically elliptical. This elliptic loading is approached at a taper ratio of 1.39 for 30 degree of sweepforward, 0.45 for zero degree of sweepback. (author)

  8. Theoretical models for polarimetric radar clutter

    NASA Technical Reports Server (NTRS)

    Borgeaud, M.; Shin, R. T.; Kong, J. A.

    1987-01-01

    The Mueller matrix and polarization covariance matrix are described for polarimetric radar systems. The clutter is modeled by a layer of random permittivity, described by a three-dimensional correlation function, with variance, and horizontal and vertical correlation lengths. This model is applied, using the wave theory with Born approximations carried to the second order, to find the backscattering elements of the polarimetric matrices. It is found that 8 out of 16 elements of the Mueller matrix are identically zero, corresponding to a covariance matrix with four zero elements. Theoretical predictions are matched with experimental data for vegetation fields.

  9. Theoretical model of Saturn's kilometric radiation spectrum

    NASA Astrophysics Data System (ADS)

    Galopeau, P.; Zarka, P.; Le Queau, D.

    1989-07-01

    A model was developed, which allowed the theoretical derivation of an envelope for the average spectrum of the Saturnian kilometric radiation (SKR), assuming that the SKR is generated by the cyclotron maser instability. The theoretical SKR spectrum derived was found to exhibit the same spectral features as the observed mean spectra. Namely, the overall shape of both calculated and measured spectra are similar, with the fluxes peaking at frequencies of 100,000 Hz and decreasing abruptly at high frequencies, and more slowly at lower frequencies. The calculated spectral intensity levels exceed the most intense observed intensities by up to 1 order of magnitude, suggesting that the SKR emission is only marginally saturated by nonlinear processes.

  10. Hindlimb unloading rodent model: technical aspects

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily R.; Globus, Ruth K.

    2002-01-01

    Since its inception at the National Aeronautics and Space Administration (NASA) Ames Research Center in the mid-1970s, many laboratories around the world have used the rat hindlimb unloading model to simulate weightlessness and to study various aspects of musculoskeletal loading. In this model, the hindlimbs of rodents are elevated to produce a 30 degrees head-down tilt, which results in a cephalad fluid shift and avoids weightbearing by the hindquarters. Although several reviews have described scientific results obtained with this model, this is the first review to focus on the technical aspects of hindlimb unloading. This review includes a history of the technique, a brief comparison with spaceflight data, technical details, extension of the model to mice, and other important technical considerations (e.g., housing, room temperature, unloading angle, the potential need for multiple control groups, age, body weight, the use of the forelimb tissues as internal controls, and when to remove animals from experiments). This paper is intended as a reference for researchers, reviewers of manuscripts, and institutional animal care and use committees. Over 800 references, related to the hindlimb unloading model, can be accessed via the electronic version of this article.

  11. Theoretical Modeling of Prion Disease Incubation

    PubMed Central

    Kulkarni, R. V.; Slepoy, A.; Singh, R. R. P.; Cox, D. L.; Pázmándi, F.

    2003-01-01

    We apply a theoretical aggregation model to laboratory and epidemiological prion disease incubation time data. In our model, slow growth of misfolded protein aggregates from small initial seeds controls the latent or lag phase; aggregate fissioning and subsequent spreading leads to an exponential growth phase. Our model accounts for the striking reproducibility of incubation times for high dose inoculation of lab animals. In particular, low dose yields broad incubation time distributions, and increasing dose narrows distributions and yields sharply defined onset times. We also explore how incubation time statistics depend upon aggregate morphology. We apply our model to fit the experimental dose-incubation curves for distinct strains of scrapie, and explain logarithmic variation at high dose and deviations from logarithmic behavior at low dose. We use this to make testable predictions for infectivity time-course experiments. PMID:12885622

  12. Theoretical models for supercritical fluid extraction.

    PubMed

    Huang, Zhen; Shi, Xiao-Han; Jiang, Wei-Juan

    2012-08-10

    For the proper design of supercritical fluid extraction processes, it is essential to have a sound knowledge of the mass transfer mechanism of the extraction process and the appropriate mathematical representation. In this paper, the advances and applications of kinetic models for describing supercritical fluid extraction from various solid matrices have been presented. The theoretical models overviewed here include the hot ball diffusion, broken and intact cell, shrinking core and some relatively simple models. Mathematical representations of these models have been in detail interpreted as well as their assumptions, parameter identifications and application examples. Extraction process of the analyte solute from the solid matrix by means of supercritical fluid includes the dissolution of the analyte from the solid, the analyte diffusion in the matrix and its transport to the bulk supercritical fluid. Mechanisms involved in a mass transfer model are discussed in terms of external mass transfer resistance, internal mass transfer resistance, solute-solid interactions and axial dispersion. The correlations of the external mass transfer coefficient and axial dispersion coefficient with certain dimensionless numbers are also discussed. Among these models, the broken and intact cell model seems to be the most relevant mathematical model as it is able to provide realistic description of the plant material structure for better understanding the mass-transfer kinetics and thus it has been widely employed for modeling supercritical fluid extraction of natural matters. PMID:22560346

  13. A Theoretical Model of Water and Trade

    NASA Astrophysics Data System (ADS)

    Dang, Q.; Konar, M.; Reimer, J.; Di Baldassarre, G.; Lin, X.; Zeng, R.

    2015-12-01

    Water is an essential factor of agricultural production. Agriculture, in turn, is globalized through the trade of food commodities. In this paper, we develop a theoretical model of a small open economy that explicitly incorporates water resources. The model emphasizes three tradeoffs involving water decision-making that are important yet not always considered within the existing literature. One tradeoff focuses on competition for water among different sectors when there is a shock to one of the sectors only, such as trade liberalization and consequent higher demand for the product. A second tradeoff concerns the possibility that there may or may not be substitutes for water, such as increased use of sophisticated irrigation technology as a means to increase crop output in the absence of higher water availability. A third tradeoff explores the possibility that the rest of the world can be a source of supply or demand for a country's water-using products. A number of propositions are proven. For example, while trade liberalization tends to increase water use, increased pressure on water supplies can be moderated by way of a tax that is derivable with observable economic phenomena. Another example is that increased riskiness of water availability tends to cause water users to use less water than would be the case under profit maximization. These theoretical model results generate hypotheses that can be tested empirically in future work.

  14. A theoretical model of water and trade

    NASA Astrophysics Data System (ADS)

    Dang, Qian; Konar, Megan; Reimer, Jeffrey J.; Di Baldassarre, Giuliano; Lin, Xiaowen; Zeng, Ruijie

    2016-03-01

    Water is an essential input for agricultural production. Agriculture, in turn, is globalized through the trade of agricultural commodities. In this paper, we develop a theoretical model that emphasizes four tradeoffs involving water-use decision-making that are important yet not always considered in a consistent framework. One tradeoff focuses on competition for water among different economic sectors. A second tradeoff examines the possibility that certain types of agricultural investments can offset water use. A third tradeoff explores the possibility that the rest of the world can be a source of supply or demand for a country's water-using commodities. The fourth tradeoff concerns how variability in water supplies influences farmer decision-making. We show conditions under which trade liberalization affect water use. Two policy scenarios to reduce water use are evaluated. First, we derive a target tax that reduces water use without offsetting the gains from trade liberalization, although important tradeoffs exist between economic performance and resource use. Second, we show how subsidization of water-saving technologies can allow producers to use less water without reducing agricultural production, making such subsidization an indirect means of influencing water use decision-making. Finally, we outline conditions under which riskiness of water availability affects water use. These theoretical model results generate hypotheses that can be tested empirically in future work.

  15. Theoretical Models of the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Shen, Juntai; Li, Zhao-Yu

    Near infrared images from the COBE satellite presented the first clear evidence that our Milky Way galaxy contains a boxy shaped bulge. Recent years have witnessed a gradual paradigm shift in the formation and evolution of the Galactic bulge. Bulges were commonly believed to form in the dynamical violence of galaxy mergers. However, it has become increasingly clear that the main body of the Milky Way bulge is not a classical bulge made by previous major mergers, instead it appears to be a bar seen somewhat end-on. The Milky Way bar can form naturally from a precursor disc and thicken vertically by the internal firehose/buckling instability, giving rise to the boxy appearance. This picture is supported by many lines of evidence, including the asymmetric parallelogram shape, the strong cylindrical rotation (i.e., nearly constant rotation regardless of the height above the disc plane), the existence of an intriguing X-shaped structure in the bulge, and perhaps the metallicity gradients. We review the major theoretical models and techniques to understand the Milky Way bulge. Despite the progresses in recent theoretical attempts, a complete bulge formation model that explains the full kinematics and metallicity distribution is still not fully understood. Upcoming large surveys are expected to shed new light on the formation history of the Galactic bulge.

  16. Modeling generic aspects of ideal fibril formation

    NASA Astrophysics Data System (ADS)

    Michel, D.

    2016-01-01

    Many different proteins self-aggregate into insoluble fibrils growing apically by reversible addition of elementary building blocks. But beyond this common principle, the modalities of fibril formation are very disparate, with various intermediate forms which can be reshuffled by minor modifications of physico-chemical conditions or amino-acid sequences. To bypass this complexity, the multifaceted phenomenon of fibril formation is reduced here to its most elementary principles defined for a linear prototype of fibril. Selected generic features, including nucleation, elongation, and conformational recruitment, are modeled using minimalist hypotheses and tools, by separating equilibrium from kinetic aspects and in vitro from in vivo conditions. These reductionist approaches allow to bring out known and new rudiments, including the kinetic and equilibrium effects of nucleation, the dual influence of elongation on nucleation, the kinetic limitations on nucleation and fibril numbers, and the accumulation of complexes in vivo by rescue from degradation. Overlooked aspects of these processes are also pointed: the exponential distribution of fibril lengths can be recovered using various models because it is attributable to randomness only. It is also suggested that the same term "critical concentration" is used for different things, involved in either nucleation or elongation.

  17. Modeling aspects of the surface reconstruction problem

    NASA Astrophysics Data System (ADS)

    Toth, Charles K.; Melykuti, Gabor

    1994-08-01

    The ultimate goal of digital photogrammetry is to automatically produce digital maps which may in turn form the basis of GIS. Virtually all work in surface reconstruction deals with various kinds of approximations and constraints that are applied. In this paper we extend these concepts in various ways. For one, matching is performed in object space. Thus, matching and densification (modeling) is performed in the same reference system. Another extension concerns the solution of the second sub-problem. Rather than simply densifying (interpolating) the surface, we propose to model it. This combined top-down and bottom-up approach is performed in scale space, whereby the model is refined until compatibility between the data and expectations is reached. The paper focuses on the modeling aspects of the surface reconstruction problem. Obviously, the top-down and bottom-up model descriptions ought to be in a form which allows the generation and verification of hypotheses. Another crucial question is the degree of a priori scene knowledge necessary to constrain the solution space.

  18. Electron microscopy and theoretical modeling of cochleates.

    PubMed

    Nagarsekar, Kalpa; Ashtikar, Mukul; Thamm, Jana; Steiniger, Frank; Schacher, Felix; Fahr, Alfred; May, Sylvio

    2014-11-11

    Cochleates are self-assembled cylindrical condensates that consist of large rolled-up lipid bilayer sheets and represent a novel platform for oral and systemic delivery of therapeutically active medicinal agents. With few preceding investigations, the physical basis of cochleate formation has remained largely unexplored. We address the structure and stability of cochleates in a combined experimental/theoretical approach. Employing different electron microscopy methods, we provide evidence for cochleates consisting of phosphatidylserine and calcium to be hollow tubelike structures with a well-defined constant lamellar repeat distance and statistically varying inner and outer radii. To rationalize the relation between inner and outer radii, we propose a theoretical model. Based on the minimization of a phenomenological free energy expression containing a bending, adhesion, and frustration contribution, we predict the optimal tube dimensions of a cochleate and estimate ratios of material constants for cochleates consisting of phosphatidylserines with varied hydrocarbon chain structures. Knowing and understanding these ratios will ultimately benefit the successful formulation of cochleates for drug delivery applications.

  19. Theoretical aspects of image formation in the aberration-corrected electron microscope.

    PubMed

    Rose, H

    2010-04-01

    The theoretical aspects of image formation in the transmission electron microscope (TEM) are outlined and revisited in detail by taking into account the elastic and inelastic scattering. In particular, the connection between the exit wave and the scattering amplitude is formulated for non-isoplanatic conditions. Different imaging modes are investigated by utilizing the scattering amplitude and employing the generalized optical theorem. A novel obstruction-free anamorphotic phase shifter is proposed which enables one to shift the phase of the scattered wave by an arbitrary amount over a large range of spatial frequencies. In the optimum case, the phase of the scattered wave and the introduced phase shift add up to -pi/2 giving negative contrast. We obtain these optimum imaging conditions by employing an aberration-corrected electron microscope operating at voltages below the knock-on threshold for atom displacement and by shifting optimally the phase of the scattered electron wave. The optimum phase shift is achieved by adjusting appropriately the constant phase shift of the phase plate and the phase shift resulting from the defocus and the spherical aberration of the corrected objective lens. The realization of this imaging mode is the aim of the SALVE project (Sub-A Low-Voltage Electron microscope).

  20. Information-Theoretic Perspectives on Geophysical Models

    NASA Astrophysics Data System (ADS)

    Nearing, Grey

    2016-04-01

    practice of science (except by Gong et al., 2013, whose fundamental insight is the basis for this talk), and here I offer two examples of practical methods that scientists might use to approximately measure ontological information. I place this practical discussion in the context of several recent and high-profile experiments that have found that simple out-of-sample statistical models typically (vastly) outperform our most sophisticated terrestrial hydrology models. I offer some perspective on several open questions about how to use these findings to improve our models and understanding of these systems. Cartwright, N. (1983) How the Laws of Physics Lie. New York, NY: Cambridge Univ Press. Clark, M. P., Kavetski, D. and Fenicia, F. (2011) 'Pursuing the method of multiple working hypotheses for hydrological modeling', Water Resources Research, 47(9). Cover, T. M. and Thomas, J. A. (1991) Elements of Information Theory. New York, NY: Wiley-Interscience. Cox, R. T. (1946) 'Probability, frequency and reasonable expectation', American Journal of Physics, 14, pp. 1-13. Csiszár, I. (1972) 'A Class of Measures of Informativity of Observation Channels', Periodica Mathematica Hungarica, 2(1), pp. 191-213. Davies, P. C. W. (1990) 'Why is the physical world so comprehensible', Complexity, entropy and the physics of information, pp. 61-70. Gong, W., Gupta, H. V., Yang, D., Sricharan, K. and Hero, A. O. (2013) 'Estimating Epistemic & Aleatory Uncertainties During Hydrologic Modeling: An Information Theoretic Approach', Water Resources Research, 49(4), pp. 2253-2273. Jaynes, E. T. (2003) Probability Theory: The Logic of Science. New York, NY: Cambridge University Press. Nearing, G. S. and Gupta, H. V. (2015) 'The quantity and quality of information in hydrologic models', Water Resources Research, 51(1), pp. 524-538. Popper, K. R. (2002) The Logic of Scientific Discovery. New York: Routledge. Van Horn, K. S. (2003) 'Constructing a logic of plausible inference: a guide to cox's theorem

  1. A Review on the Wettability of Dental Implant Surfaces: Theoretical and Experimental Aspects

    PubMed Central

    Rupp, Frank; Gittens, Rolando A.; Scheideler, Lutz; Marmur, Abraham; Boyan, Barbara D.; Schwartz, Zvi; Geis-Gerstorfer, Jürgen

    2014-01-01

    The surface wettability of biomaterials determines the biological cascade of events at the biomaterial/host interface. Wettability is modulated by surface characteristics, such as surface chemistry and surface topography. However, the design of current implant surfaces focuses mainly on specific micro- and nanotopographical features and is still far from predicting the concomitant wetting behavior. There is an increasing interest in understanding the wetting mechanisms of implant surfaces and the role of wettability on the biological response at the implant/bone or implant/soft tissue interface. Fundamental knowledge related to the influence of surface roughness (i.e., a quantification of surface topography) on titanium and titanium alloy surface wettability, and the different associated wetting regimes, can improve our understanding of the role of wettability of rough implant surfaces on the biological outcome. Such an approach has been applied to biomaterial surfaces only in a limited way. Focusing on titanium dental and orthopaedic implants, the present study reviews the current knowledge on the wettability of biomaterial surfaces, encompassing basic and applied aspects that include measurement techniques, thermodynamic aspects of wetting, and models predicting topographical and roughness effects on the wetting behavior. PMID:24590162

  2. Identity and individuality in the nouveau-religious patient: theoretical and clinical aspects.

    PubMed

    Spero, M H

    1987-02-01

    Revitalized interest in the clinical complexities of psychotherapy with religious patients (for example, Bradford 1984; Lovinger 1984; Spero 1985a; Stern 1985) has drawn attention to the need for perspectives on religious personality development that account for healthy and adaptational aspects as well as psychopathological aspects of particular forms and levels of religious beliefs, enabling more creative, enriching psychotherapy. This search represents movement beyond the significance of infantile wish-fulfillment aspects of religiosity toward the broader domain of ego functioning and quality of object relations. Rizzuto (1976, 1979) and McDargh (1983) emphasize qualitative similarities between interpersonal object representations and God representations. Elkind (1971), using a Piagetian model, views religious beliefs and rituals as forms of constructive adaptation to normal cognitive needs for conservation, representation, symbols of relation, and comprehension. Meissner (1984) highlights the role of God concepts as transitional phenomena. In earlier papers, I have demonstrated the relationship between patients' use of religious themes and legends, quality of psychosexual and object relational achievements, and the consolidation of religious identity (Spero 1982a,b, 1986a,b). Throughout the preceding there is unequivocal recognition that religious development recapitulates many important aspects of healthy psychological development, and that in the case of pathological or dysfunctional religiosity something has gone wrong in an otherwise normal process. There is need to understand and if necessary distinguish between the development of religious belief in individuals whose ideological commitment is relatively constant from earliest childhood and its development in those who adopt or modify religious belief in later life, in conjunction with the many technical implications for psychotherapy. Clinical experience has taught that the process of religious change in

  3. Assessing a Theoretical Model on EFL College Students

    ERIC Educational Resources Information Center

    Chang, Yu-Ping

    2011-01-01

    This study aimed to (1) integrate relevant language learning models and theories, (2) construct a theoretical model of college students' English learning performance, and (3) assess the model fit between empirically observed data and the theoretical model proposed by the researchers of this study. Subjects of this study were 1,129 Taiwanese EFL…

  4. How prayer heals: a theoretical model.

    PubMed

    Levin, J S

    1996-01-01

    This article presents a theoretical model that outlines various possible explanations for the healing effects of prayer. Four classes of mechanisms are defined on the basis of whether healing has naturalistic or supernatural origins and whether it operates locally or nonlocally. Through this framework, most of the currently proposed hypotheses for understanding absent healing and other related phenomena-hypotheses that invoke such concepts as subtle energy, psi, consciousness, morphic fields, and extended mind-are shown to be no less naturalistic than the Newtonian, mechanistic forces of allopathic biomedicine so often derided for their materialism. In proposing that prayer may heal through nonlocal means according to mechanisms and theories proposed by the new physics, Dossey is almost alone among medical scholars in suggesting the possible limitations and inadequacies of hypotheses based on energies, forces, and fields. Yet even such nonlocal effects can be conceived of as naturalistic; that is, they are explained by physical laws that may be unbelievable or unfamiliar to most physicians but that are nonetheless becoming recognized as operant laws of the natural universe. The concept of the supernatural, however, is something altogether different, and is, by definition, outside of or beyond nature. Herein may reside an either wholly or partly transcendent Creator-God who is believed by many to heal through means that transcend the laws of the created universe, both its local and nonlocal elements, and that are thus inherently inaccessible to and unknowable by science. Such an explanation for the effects of prayer merits consideration and, despite its unprovability by medical science, should not be dismissed out of hand.

  5. How prayer heals: a theoretical model.

    PubMed

    Levin, J S

    1996-01-01

    This article presents a theoretical model that outlines various possible explanations for the healing effects of prayer. Four classes of mechanisms are defined on the basis of whether healing has naturalistic or supernatural origins and whether it operates locally or nonlocally. Through this framework, most of the currently proposed hypotheses for understanding absent healing and other related phenomena-hypotheses that invoke such concepts as subtle energy, psi, consciousness, morphic fields, and extended mind-are shown to be no less naturalistic than the Newtonian, mechanistic forces of allopathic biomedicine so often derided for their materialism. In proposing that prayer may heal through nonlocal means according to mechanisms and theories proposed by the new physics, Dossey is almost alone among medical scholars in suggesting the possible limitations and inadequacies of hypotheses based on energies, forces, and fields. Yet even such nonlocal effects can be conceived of as naturalistic; that is, they are explained by physical laws that may be unbelievable or unfamiliar to most physicians but that are nonetheless becoming recognized as operant laws of the natural universe. The concept of the supernatural, however, is something altogether different, and is, by definition, outside of or beyond nature. Herein may reside an either wholly or partly transcendent Creator-God who is believed by many to heal through means that transcend the laws of the created universe, both its local and nonlocal elements, and that are thus inherently inaccessible to and unknowable by science. Such an explanation for the effects of prayer merits consideration and, despite its unprovability by medical science, should not be dismissed out of hand. PMID:8795874

  6. Thermal Decomposition of 2(3H) and 2(5H) Furanones: Theoretical Aspects.

    PubMed

    Würmel, Judith; Simmie, John M; Losty, Michelle M; McKenna, Cathal D

    2015-07-01

    The thermal decomposition reactions of 2(3H) and 2(5H) furanones and their methyl derivatives are explored. Theoretical calculations of the barriers, reaction enthalpies, and the properties of these and intermediate species are reported using the composite model chemistry CBS-QB3 and also the functional M06-2X allied to the 6-311++G(d,p) basis set. Thus, the bond dissociation enthalpies, ionization energies, and unimolecular chemical kinetic rate constants in the high-pressure limit were computed. We show that flow reactor experiments that intimated that heating the 2(3H) furanone converts it to the isomeric 2(5H) furanone occurs via a 1 → 2 H-transfer reaction to an open ring ketenoic aldehyde. The latter can then ring close to the other isomeric structure. The final products acrolein and carbon monoxide are only formed from 2(3H), and acrolein will further decompose to ethylene and CO. Comparable channels explain the interconversion of 5-methyl-2(3H) furanone to its 2(5H) isomer and to the formation of methyl vinyl ketone and CO. The influence of the methyl group at other positions on the ring is hardly of significance except in the case of 5-methyl-2(5H) furanone where a hydrogen atom transfer from the methyl group leads to the formation of a doubly unsaturated carboxylic compound, 2,4-pentadienoic acid. Studies of the UV photolysis of the parent compounds in both low-temperature inert argon matrices and in solution are broadly in accord with the thermal findings insofar as product formation is concerned and with our theoretical calculations. The dominant features of the early decomposition chemistry of these compounds are simple hydrogen transfer and simultaneous ring opening reactions, which do however result in some quite unusual species.

  7. Theoretical Counseling Orientation: An Initial Aspect of Professional Orientation and Identity

    ERIC Educational Resources Information Center

    Jackson, James Lloyd, Jr.

    2010-01-01

    The literature on counselor development suggests that the development of a professional identity is a fundamental aspect of counselor training. The unique demands placed on counselors to integrate aspects of both personal and professional identity into the therapeutic process (Skovholt & Ronnestad, 1995) make development of a professional identity…

  8. Theoretical aspects of dynamic nuclear polarization in the solid state - The solid effect

    NASA Astrophysics Data System (ADS)

    Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon

    2010-12-01

    Dynamic nuclear polarization has gained high popularity in recent years, due to advances in the experimental aspects of this methodology for increasing the NMR and MRI signals of relevant chemical and biological compounds. The DNP mechanism relies on the microwave (MW) irradiation induced polarization transfer from unpaired electrons to the nuclei in a sample. In this publication we present nuclear polarization enhancements of model systems in the solid state at high magnetic fields. These results were obtained by numerical calculations based on the spin density operator formalism. Here we restrict ourselves to samples with low electron concentrations, where the dipolar electron-electron interactions can be ignored. Thus the DNP enhancement of the polarizations of the nuclei close to the electrons is described by the Solid Effect mechanism. Our numerical results demonstrate the dependence of the polarization enhancement on the MW irradiation power and frequency, the hyperfine and nuclear dipole-dipole spin interactions, and the relaxation parameters of the system. The largest spin system considered in this study contains one electron and eight nuclei. In particular, we discuss the influence of the nuclear concentration and relaxation on the polarization of the core nuclei, which are coupled to an electron, and are responsible for the transfer of polarization to the bulk nuclei in the sample via spin diffusion.

  9. [Nursing practice based on theoretical models: a qualitative study of nurses' perception].

    PubMed

    Amaducci, Giovanna; Iemmi, Marina; Prandi, Marzia; Saffioti, Angelina; Carpanoni, Marika; Mecugni, Daniela

    2013-01-01

    Many faculty argue that theory and theorizing are closely related to the clinical practice, that the disciplinary knowledge grows, more relevantly, from the specific care context in which it takes place and, moreover, that knowledge does not proceed only by the application of general principles of the grand theories to specific cases. Every nurse, in fact, have  a mental model, of what may or may not be aware, that motivate and substantiate every action and choice of career. The study describes what the nursing theoretical model is; the mental model and the tacit  knowledge underlying it. It identifies the explicit theoretical model of the professional group that rapresents nursing partecipants, aspects of continuity with the theoretical model proposed by this degree course in Nursing.. Methods Four focus groups were made which were attended by a total of 22 nurses, rapresentatives of almost every Unit of Reggio Emilia Hospital's. We argue that the theoretical nursing model of each professional group is the result of tacit knowledge, which help to define the personal mental model, and the theoretical model, which explicitly underlying theoretical content learned applied consciously and reverted to / from nursing practice. Reasoning on the use of theory in practice has allowed us to give visibility to a theoretical model explicitly nursing authentically oriented to the needs of the person, in all its complexity in specific contexts.

  10. Expanding Panjabi's stability model to express movement: a theoretical model.

    PubMed

    Hoffman, J; Gabel, P

    2013-06-01

    Novel theoretical models of movement have historically inspired the creation of new methods for the application of human movement. The landmark theoretical model of spinal stability by Panjabi in 1992 led to the creation of an exercise approach to spinal stability. This approach however was later challenged, most significantly due to a lack of favourable clinical effect. The concepts explored in this paper address and consider the deficiencies of Panjabi's model then propose an evolution and expansion from a special model of stability to a general one of movement. It is proposed that two body-wide symbiotic elements are present within all movement systems, stability and mobility. The justification for this is derived from the observable clinical environment. It is clinically recognised that these two elements are present and identifiable throughout the body in different joints and muscles, and the neural conduction system. In order to generalise the Panjabi model of stability to include and illustrate movement, a matching parallel mobility system with the same subsystems was conceptually created. In this expanded theoretical model, the new mobility system is placed beside the existing stability system and subsystems. The ability of both stability and mobility systems to work in harmony will subsequently determine the quality of movement. Conversely, malfunction of either system, or their subsystems, will deleteriously affect all other subsystems and consequently overall movement quality. For this reason, in the rehabilitation exercise environment, focus should be placed on the simultaneous involvement of both the stability and mobility systems. It is suggested that the individual's relevant functional harmonious movements should be challenged at the highest possible level without pain or discomfort. It is anticipated that this conceptual expansion of the theoretical model of stability to one with the symbiotic inclusion of mobility, will provide new understandings

  11. Visual hallucinations in Parkinson's disease: theoretical models.

    PubMed

    Muller, Alana J; Shine, James M; Halliday, Glenda M; Lewis, Simon J G

    2014-11-01

    One of the most challenging tasks in neuroscience is to be able to meaningfully connect information across the different levels of investigation, from molecular or structural biology to the resulting behavior and cognition. Visual hallucinations are a frequent occurrence in Parkinson's disease and significantly contribute to the burden of the disease. Because of the widespread pathological processes implicated in visual hallucinations in Parkinson's disease, a final common mechanism that explains their manifestation will require an integrative approach, in which consideration is taken across all complementary levels of analysis. This review considers the leading hypothetical frameworks for visual hallucinations in Parkinson's disease, summarizing the key aspects of each in an attempt to highlight the aspects of the condition that such a unifying hypothesis must explain. These competing hypotheses include implications of dream imagery intrusion, deficits in reality monitoring, and impairments in visual perception and attention.

  12. A theoretical model of atmospheric ozone depletion

    NASA Astrophysics Data System (ADS)

    Midya, S. K.; Jana, P. K.; Lahiri, T.

    1994-01-01

    A critical study on different ozone depletion and formation processes has been made and following important results are obtained: (i) From analysis it is shown that O3 concentration will decrease very minutely with time for normal atmosphere when [O], [O2] and UV-radiation remain constant. (ii) An empirical equation is established theoretically between the variation of ozone concentration and time. (iii) Special ozone depletion processes are responsible for the dramatic decrease of O3-concentration at Antarctica.

  13. Aspects of Particle Physics Beyond the Standard Model

    NASA Astrophysics Data System (ADS)

    Lu, Xiaochuan

    This dissertation describes a few aspects of particles beyond the Standard Model, with a focus on the remaining questions after the discovery of a Standard Model-like Higgs boson. In specific, three topics are discussed in sequence: neutrino mass and baryon asymmetry, naturalness problem of Higgs mass, and placing constraints on theoretical models from precision measurements. First, the consequence of the neutrino mass anarchy on cosmology is studied. Attentions are paid in particular to the total mass of neutrinos and baryon asymmetry through leptogenesis. With the assumption of independence among mass matrix entries in addition to the basis independence, Gaussian measure is the only choice. On top of Gaussian measure, a simple approximate U(1) flavor symmetry makes leptogenesis highly successful. Correlations between the baryon asymmetry and the light-neutrino quantities are investigated. Also discussed are possible implications of recently suggested large total mass of neutrinos by the SDSS/BOSS data. Second, the Higgs mass implies fine-tuning for minimal theories of weak-scale supersymmetry (SUSY). Non-decoupling effects can boost the Higgs mass when new states interact with the Higgs, but new sources of SUSY breaking that accompany such extensions threaten naturalness. I will show that two singlets with a Dirac mass can increase the Higgs mass while maintaining naturalness in the presence of large SUSY breaking in the singlet sector. The modified Higgs phenomenology of this scenario, termed "Dirac NMSSM", is also studied. Finally, the sensitivities of future precision measurements in probing physics beyond the Standard Model are studied. A practical three-step procedure is presented for using the Standard Model effective field theory (SM EFT) to connect ultraviolet (UV) models of new physics with weak scale precision observables. With this procedure, one can interpret precision measurements as constraints on the UV model concerned. A detailed explanation is

  14. Confronting theoretical models with CANDELS observations

    NASA Astrophysics Data System (ADS)

    Lu, Yu; CANDELS Collaboration

    2014-01-01

    Current galaxy formation models contain large uncertainties in modeling gas accretion, star formation and feedback processes. These uncertainties can only be constrained by comprehensive and careful model-data comparisons. Three independently developed semi-analytic galaxy formation models are adopted to make predictions for CANDELS observations. A comparison study involving the three different models reveals both common features shared by the models and discrepancies between the models. The similarities in the predicted stellar mass functions indicate strong degeneracies between the models, which can only be broken by accurate measurements of the stellar mass functions at multiple redshifts. On the other hand, the models show large discrepancies in their predicted star formation histories and metallicity-stellar mass relations. These discrepancies stem from the uncertainties in modeling gas accretion and galactic outflow powered by feedback. The model comparisons suggest that, other than directly constraining inflow and outflow in observation, more accurate observational measurements for stellar mass, star formation rate and metallicity of galaxies in a large range of cosmic epoch will discriminate between models. Our study involving multiple models and exploration of the high-dimensional parameter space demonstrates that analysis of the full CANDELS dataset, including a self-consistent treatment of star formation rates, stellar masses, galaxy sizes, metallicity relations and their evolution across a broad redshift range, is likely to significantly tighten the data constraints and shed light on understanding the physics governing galaxy formation.

  15. Posttraumatic Stress Disorder: A Theoretical Model of the Hyperarousal Subtype

    PubMed Central

    Weston, Charles Stewart E.

    2014-01-01

    Posttraumatic stress disorder (PTSD) is a frequent and distressing mental disorder, about which much remains to be learned. It is a heterogeneous disorder; the hyperarousal subtype (about 70% of occurrences and simply termed PTSD in this paper) is the topic of this article, but the dissociative subtype (about 30% of occurrences and likely involving quite different brain mechanisms) is outside its scope. A theoretical model is presented that integrates neuroscience data on diverse brain regions known to be involved in PTSD, and extensive psychiatric findings on the disorder. Specifically, the amygdala is a multifunctional brain region that is crucial to PTSD, and processes peritraumatic hyperarousal on grounded cognition principles to produce hyperarousal symptoms. Amygdala activity also modulates hippocampal function, which is supported by a large body of evidence, and likewise amygdala activity modulates several brainstem regions, visual cortex, rostral anterior cingulate cortex (rACC), and medial orbitofrontal cortex (mOFC), to produce diverse startle, visual, memory, numbing, anger, and recklessness symptoms. Additional brain regions process other aspects of peritraumatic responses to produce further symptoms. These contentions are supported by neuroimaging, neuropsychological, neuroanatomical, physiological, cognitive, and behavioral evidence. Collectively, the model offers an account of how responses at the time of trauma are transformed into an extensive array of the 20 PTSD symptoms that are specified in the Diagnostic and Statistical Manual of Mental Disorders, Fifth edition. It elucidates the neural mechanisms of a specific form of psychopathology, and accords with the Research Domain Criteria framework. PMID:24772094

  16. Empathy and Child Neglect: A Theoretical Model

    ERIC Educational Resources Information Center

    De Paul, Joaquin; Guibert, Maria

    2008-01-01

    Objective: To present an explanatory theory-based model of child neglect. This model does not address neglectful behaviors of parents with mental retardation, alcohol or drug abuse, or severe mental health problems. In this model parental behavior aimed to satisfy a child's need is considered a helping behavior and, as a consequence, child neglect…

  17. A theoretical model to study melting of metals under pressure

    NASA Astrophysics Data System (ADS)

    Kholiya, Kuldeep; Chandra, Jeewan

    2015-10-01

    On the basis of the thermal equation-of-state a simple theoretical model is developed to study the pressure dependence of melting temperature. The model is then applied to compute the high pressure melting curve of 10 metals (Cu, Mg, Pb, Al, In, Cd, Zn, Au, Ag and Mn). It is found that the melting temperature is not linear with pressure and the slope dTm/dP of the melting curve decreases continuously with the increase in pressure. The results obtained with the present model are also compared with the previous theoretical and experimental data. A good agreement between theoretical and experimental result supports the validity of the present model.

  18. Theoretical Frameworks for Multiscale Modeling and Simulation

    PubMed Central

    Zhou, Huan-Xiang

    2014-01-01

    Biomolecular systems have been modeled at a variety of scales, ranging from explicit treatment of electrons and nuclei to continuum description of bulk deformation or velocity. Many challenges of interfacing between scales have been overcome. Multiple models at different scales have been used to study the same system or calculate the same property (e.g., channel conductance). Accurate modeling of biochemical processes under in vivo conditions and the bridging of molecular and subcellular scales will likely soon become reality. PMID:24492203

  19. Information-Theoretic Perspectives on Geophysical Models

    NASA Astrophysics Data System (ADS)

    Nearing, Grey

    2016-04-01

    To test any hypothesis about any dynamic system, it is necessary to build a model that places that hypothesis into the context of everything else that we know about the system: initial and boundary conditions and interactions between various governing processes (Hempel and Oppenheim, 1948, Cartwright, 1983). No hypothesis can be tested in isolation, and no hypothesis can be tested without a model (for a geoscience-related discussion see Clark et al., 2011). Science is (currently) fundamentally reductionist in the sense that we seek some small set of governing principles that can explain all phenomena in the universe, and such laws are ontological in the sense that they describe the object under investigation (Davies, 1990 gives several competing perspectives on this claim). However, since we cannot build perfect models of complex systems, any model that does not also contain an epistemological component (i.e., a statement, like a probability distribution, that refers directly to the quality of of the information from the model) is falsified immediately (in the sense of Popper, 2002) given only a small number of observations. Models necessarily contain both ontological and epistemological components, and what this means is that the purpose of any robust scientific method is to measure the amount and quality of information provided by models. I believe that any viable philosophy of science must be reducible to this statement. The first step toward a unified theory of scientific models (and therefore a complete philosophy of science) is a quantitative language that applies to both ontological and epistemological questions. Information theory is one such language: Cox' (1946) theorem (see Van Horn, 2003) tells us that probability theory is the (only) calculus that is consistent with Classical Logic (Jaynes, 2003; chapter 1), and information theory is simply the integration of convex transforms of probability ratios (integration reduces density functions to scalar

  20. Toward a Theoretical Model of Evaluation Utilization.

    ERIC Educational Resources Information Center

    Johnson, R. Burke

    1998-01-01

    A metamodel of evaluation utilization was developed from implicit and explicit process models and ideas developed in recent research. The model depicts evaluation use as occurring in an internal environment situated in an external environment. Background variables, international or social psychological variables, and evaluation use variables are…

  1. Modelling multiscale aspects of colorectal cancer

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Ingeborg M. M.; Byrne, Helen M.; Johnston, Matthew D.; Edwards, Carina M.; Chapman, S. Jonathan; Bodmer, Walter F.; Maini, Philip K.

    2008-01-01

    Colorectal cancer (CRC) is responsible for nearly half a million deaths annually world-wide [11]. We present a series of mathematical models describing the dynamics of the intestinal epithelium and the kinetics of the molecular pathway most commonly mutated in CRC, the Wnt signalling network. We also discuss how we are coupling such models to build a multiscale model of normal and aberrant guts. This will enable us to combine disparate experimental and clinical data, to investigate interactions between phenomena taking place at different levels of organisation and, eventually, to test the efficacy of new drugs on the system as a whole.

  2. Electronic and vibrational spectra of matrix isolated anthracene radical cations - Experimental and theoretical aspects

    NASA Technical Reports Server (NTRS)

    Szczepanski, Jan; Vala, Martin; Talbi, Dahbia; Parisel, Olivier; Ellinger, Yves

    1993-01-01

    The IR vibrational and visible/UV electronic absorption spectra of the anthracene cation, An(+), were studied experimentally, in argon matrices at 12 K, as well as theoretically, using ab initio calculations for the vibrational modes and enhanced semiempirical methods with configuration interaction for the electronic spectra. It was found that both approaches predicted well the observed photoelectron spectrum. The theoretical IR intensities showed some remarkable differences between neutral and ionized species (for example, the CH in-plane bending modes and CC in-plane stretching vibrations were predicted to increase by several orders of magnitude upon ionization). Likewise, estimated experimental IR intensities showed a significant increase in the cation band intensities over the neutrals. The implication of these findings for the hypothesis that polycyclic aromatic hydrocarbon cations are responsible for the unidentified IR emission bands from interstellar space is discussed.

  3. [A framework for evaluating ethical issues of public health initiatives: practical aspects and theoretical implications].

    PubMed

    Petrini, Carlo

    2015-01-01

    The "Framework for the Ethical Conduct of Public Health Initiatives", developed by Public Health Ontario, is a practical guide for assessing the ethical implications of evidence-generating public health initiatives, whether research or non-research activities, involving people, their biological materials or their personal information. The Framework is useful not only to those responsible for determining the ethical acceptability of an initiative, but also to investigators planning new public health initiatives. It is informed by a theoretical approach that draws on widely shared bioethical principles. Two considerations emerge from both the theoretical framework and its practical application: the line between practice and research is often blurred; public health ethics and biomedical research ethics are based on the same common heritage of values.

  4. A Detection-Theoretic Model of Echo Inhibition

    ERIC Educational Resources Information Center

    Saberi, Kourosh; Petrosyan, Agavni

    2004-01-01

    A detection-theoretic analysis of the auditory localization of dual-impulse stimuli is described, and a model for the processing of spatial cues in the echo pulse is developed. Although for over 50 years "echo suppression" has been the topic of intense theoretical and empirical study within the hearing sciences, only a rudimentary understanding of…

  5. A Theoretical Framework for Physics Education Research: Modeling Student Thinking

    ERIC Educational Resources Information Center

    Redish, Edward F.

    2004-01-01

    Education is a goal-oriented field. But if we want to treat education scientifically so we can accumulate, evaluate, and refine what we learn, then we must develop a theoretical framework that is strongly rooted in objective observations and through which different theoretical models of student thinking can be compared. Much that is known in the…

  6. [Theoretical aspects of and technological equipment for hydromonitored microsurgery of the eye].

    PubMed

    Temirov, N E

    1981-01-01

    A new method of removing the cataracta and vitreous body, called less than hydromonitor greater than is grounded theoretically. It is based on the use of destructive properties of superthin, high-speed liquid spray, affected pathological intraocular structures. Surgical tools and a hydro-drive system have already been developed for the accomplishment of hydromonitoring method. It was successfully tried in experiment and clinic and positive evaluations were given to both the method itself and the facilities for its realization.

  7. Statistical aspects of modeling the labor curve.

    PubMed

    Zhang, Jun; Troendle, James; Grantz, Katherine L; Reddy, Uma M

    2015-06-01

    In a recent review by Cohen and Friedman, several statistical questions on modeling labor curves were raised. This article illustrates that asking data to fit a preconceived model or letting a sufficiently flexible model fit observed data is the main difference in principles of statistical modeling between the original Friedman curve and our average labor curve. An evidence-based approach to construct a labor curve and establish normal values should allow the statistical model to fit observed data. In addition, the presence of the deceleration phase in the active phase of an average labor curve was questioned. Forcing a deceleration phase to be part of the labor curve may have artificially raised the speed of progression in the active phase with a particularly large impact on earlier labor between 4 and 6 cm. Finally, any labor curve is illustrative and may not be instructive in managing labor because of variations in individual labor pattern and large errors in measuring cervical dilation. With the tools commonly available, it may be more productive to establish a new partogram that takes the physiology of labor and contemporary obstetric population into account.

  8. Theoretical analysis and modeling for nanoelectronics

    NASA Astrophysics Data System (ADS)

    Baccarani, Giorgio; Gnani, Elena; Gnudi, Antonio; Reggiani, Susanna

    2016-11-01

    In this paper we review the evolution of Microelectronics and its transformation into Nanoelectronics, following the predictions of Moore's law, and some of the issues related with this evolution. Next, we discuss the requirements of device modeling and the solutions proposed throughout the years to address the physical effects related with an extreme device miniaturization, such as hot-electron effects, band splitting into multiple sub-bands, quasi-ballistic transport and electron tunneling. The most important physical models are shortly highlighted, and a few simulation results of heterojunction TFETs are reported and discussed.

  9. Experiments to test theoretical models of the polarization of light by rough surfaces

    NASA Technical Reports Server (NTRS)

    Geake, J. E.; Geake, M.; Zellner, B. H.

    1984-01-01

    A number of attempts have been made to provide theoretical models of the physical processes involved in the polarization of light scattered by a rough surface, such as the regolith of an atmosphereless planet. Some laboratory experiments designed to test different aspects of these models are described. It is concluded that double Fresnel reflection is usually the dominant process in producing negative polarization, but that diffraction effects may play a significant part in double events involving small-scale surface features.

  10. Theoretical Model for Nanoporous Carbon Supercapacitors

    SciTech Connect

    Sumpter, Bobby G; Meunier, Vincent; Huang, Jingsong

    2008-01-01

    The unprecedented anomalous increase in capacitance of nanoporous carbon supercapacitors at pore sizes smaller than 1 nm [Science 2006, 313, 1760.] challenges the long-held presumption that pores smaller than the size of solvated electrolyte ions do not contribute to energy storage. We propose a heuristic model to replace the commonly used model for an electric double-layer capacitor (EDLC) on the basis of an electric double-cylinder capacitor (EDCC) for mesopores (2 {50 nm pore size), which becomes an electric wire-in-cylinder capacitor (EWCC) for micropores (< 2 nm pore size). Our analysis of the available experimental data in the micropore regime is confirmed by 1st principles density functional theory calculations and reveals significant curvature effects for carbon capacitance. The EDCC (and/or EWCC) model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size. The new model not only explains the experimental data, but also offers a practical direction for the optimization of the properties of carbon supercapacitors through experiments.

  11. Theoretical Tinnitus Framework: A Neurofunctional Model.

    PubMed

    Ghodratitoostani, Iman; Zana, Yossi; Delbem, Alexandre C B; Sani, Siamak S; Ekhtiari, Hamed; Sanchez, Tanit G

    2016-01-01

    Subjective tinnitus is the conscious (attended) awareness perception of sound in the absence of an external source and can be classified as an auditory phantom perception. Earlier literature establishes three distinct states of conscious perception as unattended, attended, and attended awareness conscious perception. The current tinnitus development models depend on the role of external events congruently paired with the causal physical events that precipitate the phantom perception. We propose a novel Neurofunctional Tinnitus Model to indicate that the conscious (attended) awareness perception of phantom sound is essential in activating the cognitive-emotional value. The cognitive-emotional value plays a crucial role in governing attention allocation as well as developing annoyance within tinnitus clinical distress. Structurally, the Neurofunctional Tinnitus Model includes the peripheral auditory system, the thalamus, the limbic system, brainstem, basal ganglia, striatum, and the auditory along with prefrontal cortices. Functionally, we assume the model includes presence of continuous or intermittent abnormal signals at the peripheral auditory system or midbrain auditory paths. Depending on the availability of attentional resources, the signals may or may not be perceived. The cognitive valuation process strengthens the lateral-inhibition and noise canceling mechanisms in the mid-brain, which leads to the cessation of sound perception and renders the signal evaluation irrelevant. However, the "sourceless" sound is eventually perceived and can be cognitively interpreted as suspicious or an indication of a disease in which the cortical top-down processes weaken the noise canceling effects. This results in an increase in cognitive and emotional negative reactions such as depression and anxiety. The negative or positive cognitive-emotional feedbacks within the top-down approach may have no relation to the previous experience of the patients. They can also be

  12. Theoretical Tinnitus Framework: A Neurofunctional Model

    PubMed Central

    Ghodratitoostani, Iman; Zana, Yossi; Delbem, Alexandre C. B.; Sani, Siamak S.; Ekhtiari, Hamed; Sanchez, Tanit G.

    2016-01-01

    Subjective tinnitus is the conscious (attended) awareness perception of sound in the absence of an external source and can be classified as an auditory phantom perception. Earlier literature establishes three distinct states of conscious perception as unattended, attended, and attended awareness conscious perception. The current tinnitus development models depend on the role of external events congruently paired with the causal physical events that precipitate the phantom perception. We propose a novel Neurofunctional Tinnitus Model to indicate that the conscious (attended) awareness perception of phantom sound is essential in activating the cognitive-emotional value. The cognitive-emotional value plays a crucial role in governing attention allocation as well as developing annoyance within tinnitus clinical distress. Structurally, the Neurofunctional Tinnitus Model includes the peripheral auditory system, the thalamus, the limbic system, brainstem, basal ganglia, striatum, and the auditory along with prefrontal cortices. Functionally, we assume the model includes presence of continuous or intermittent abnormal signals at the peripheral auditory system or midbrain auditory paths. Depending on the availability of attentional resources, the signals may or may not be perceived. The cognitive valuation process strengthens the lateral-inhibition and noise canceling mechanisms in the mid-brain, which leads to the cessation of sound perception and renders the signal evaluation irrelevant. However, the “sourceless” sound is eventually perceived and can be cognitively interpreted as suspicious or an indication of a disease in which the cortical top-down processes weaken the noise canceling effects. This results in an increase in cognitive and emotional negative reactions such as depression and anxiety. The negative or positive cognitive-emotional feedbacks within the top-down approach may have no relation to the previous experience of the patients. They can also be

  13. Theoretical Tinnitus Framework: A Neurofunctional Model.

    PubMed

    Ghodratitoostani, Iman; Zana, Yossi; Delbem, Alexandre C B; Sani, Siamak S; Ekhtiari, Hamed; Sanchez, Tanit G

    2016-01-01

    Subjective tinnitus is the conscious (attended) awareness perception of sound in the absence of an external source and can be classified as an auditory phantom perception. Earlier literature establishes three distinct states of conscious perception as unattended, attended, and attended awareness conscious perception. The current tinnitus development models depend on the role of external events congruently paired with the causal physical events that precipitate the phantom perception. We propose a novel Neurofunctional Tinnitus Model to indicate that the conscious (attended) awareness perception of phantom sound is essential in activating the cognitive-emotional value. The cognitive-emotional value plays a crucial role in governing attention allocation as well as developing annoyance within tinnitus clinical distress. Structurally, the Neurofunctional Tinnitus Model includes the peripheral auditory system, the thalamus, the limbic system, brainstem, basal ganglia, striatum, and the auditory along with prefrontal cortices. Functionally, we assume the model includes presence of continuous or intermittent abnormal signals at the peripheral auditory system or midbrain auditory paths. Depending on the availability of attentional resources, the signals may or may not be perceived. The cognitive valuation process strengthens the lateral-inhibition and noise canceling mechanisms in the mid-brain, which leads to the cessation of sound perception and renders the signal evaluation irrelevant. However, the "sourceless" sound is eventually perceived and can be cognitively interpreted as suspicious or an indication of a disease in which the cortical top-down processes weaken the noise canceling effects. This results in an increase in cognitive and emotional negative reactions such as depression and anxiety. The negative or positive cognitive-emotional feedbacks within the top-down approach may have no relation to the previous experience of the patients. They can also be

  14. Theoretical Tinnitus Framework: A Neurofunctional Model

    PubMed Central

    Ghodratitoostani, Iman; Zana, Yossi; Delbem, Alexandre C. B.; Sani, Siamak S.; Ekhtiari, Hamed; Sanchez, Tanit G.

    2016-01-01

    Subjective tinnitus is the conscious (attended) awareness perception of sound in the absence of an external source and can be classified as an auditory phantom perception. Earlier literature establishes three distinct states of conscious perception as unattended, attended, and attended awareness conscious perception. The current tinnitus development models depend on the role of external events congruently paired with the causal physical events that precipitate the phantom perception. We propose a novel Neurofunctional Tinnitus Model to indicate that the conscious (attended) awareness perception of phantom sound is essential in activating the cognitive-emotional value. The cognitive-emotional value plays a crucial role in governing attention allocation as well as developing annoyance within tinnitus clinical distress. Structurally, the Neurofunctional Tinnitus Model includes the peripheral auditory system, the thalamus, the limbic system, brainstem, basal ganglia, striatum, and the auditory along with prefrontal cortices. Functionally, we assume the model includes presence of continuous or intermittent abnormal signals at the peripheral auditory system or midbrain auditory paths. Depending on the availability of attentional resources, the signals may or may not be perceived. The cognitive valuation process strengthens the lateral-inhibition and noise canceling mechanisms in the mid-brain, which leads to the cessation of sound perception and renders the signal evaluation irrelevant. However, the “sourceless” sound is eventually perceived and can be cognitively interpreted as suspicious or an indication of a disease in which the cortical top-down processes weaken the noise canceling effects. This results in an increase in cognitive and emotional negative reactions such as depression and anxiety. The negative or positive cognitive-emotional feedbacks within the top-down approach may have no relation to the previous experience of the patients. They can also be

  15. Voronoi cell patterns: Theoretical model and applications

    NASA Astrophysics Data System (ADS)

    González, Diego Luis; Einstein, T. L.

    2011-11-01

    We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We use our model to describe the Voronoi cell patterns of several systems. Specifically, we study the island nucleation with irreversible attachment, the 1D car-parking problem, the formation of second-level administrative divisions, and the pattern formed by the Paris Métro stations.

  16. US-Latin American Workshop on Molecular and Materials Sciences: Theoretical and Computational Aspects

    NASA Astrophysics Data System (ADS)

    Micha, David A.

    1994-08-01

    Partial contents include: time-dependent theory of photoabsorption processes; molecular simulation of a chemical reaction in supercritical water; many-body methods for electron correlation; conformational studies of PAF and PAF-antagonists; electric properties of atomic anions; theoretical interpretation of the Li4(-) spectrum using path integrals and ab initio methods; energy levels and structure of tetra-atomic van der Vaals clusters; technology for modern computational science: the John Slater Computing Facility; carbohydrates on the stabilization of biological structures: molecular dynamics simulation; the role of quantum chemistry in heterogeneous catalysis; and corrections to the Born-Oppenheimer approximation by means of perturbation theory.

  17. Theoretical aspects of light-element alloys under extremely high pressure

    NASA Astrophysics Data System (ADS)

    Feng, Ji

    In this Dissertation, we present theoretical studies on the geometric and electronic structure of light-element alloys under high pressure. The first three Chapters are concerned with specific compounds, namely, SiH 4, CaLi2 and BexLi1- x, and associated structural and electronic phenomena, arising in our computational studies. In the fourth Chapter, we attempt to develop a unified view of the relationship between the electronic and geometric structure of light-element alloys under pressure, by focusing on the states near the Fermi level in these metals.

  18. Some aspects of modeling hydrocarbon oxidation

    SciTech Connect

    Gal, D.; Botar, L.; Danoczy, E.; Hajdu, I.P.; Heberger, K.; Lukacs, J.; Nemes, I.; Vidoczy, T.

    1981-01-01

    A modeling procedure for the study of hydrocarbon oxidation is suggested, and its effectiveness for the oxidation of ethylbenzene is demonstrated. As a first step in modeling, systematization involves compilation of possible mechanisms. Then, by introduction of the concept of kinetic communication, the chaotic set of possible mechanisms is systematized into a network. Experimentation serves both as feedback to the systematic arrangement of information and source of new information. Kinetic treatment of the possible mechanism has been accomplished by two different approaches: by classical inductive calculations starting with a small mechanism and using kinetic approximations, and by computer simulation. The authors have compiled a so-called Main Contributory Mechanism, involving processes - within the possible mechanism - which contribute basically to the formation and consumption of the intermediates, to the consumption of the starting compounds and to the formation of the end products. 24 refs.

  19. Ocean modelling aspects for drift applications

    NASA Astrophysics Data System (ADS)

    Stephane, L.; Pierre, D.

    2010-12-01

    Nowadays, many authorities in charge of rescue-at-sea operations lean on operational oceanography products to outline research perimeters. Moreover, current fields estimated with sophisticated ocean forecasting systems can be used as input data for oil spill/ adrift object fate models. This emphasises the necessity of an accurate sea state forecast, with a mastered level of reliability. This work focuses on several problems inherent to drift modeling, dealing in the first place with the efficiency of the oceanic current field representation. As we want to discriminate the relevance of a particular physical process or modeling option, the idea is to generate series of current fields of different characteristics and then qualify them in term of drift prediction efficiency. Benchmarked drift scenarios were set up from real surface drifters data, collected in the Mediterranean sea and off the coasts of Angola. The time and space scales that we are interested in are about 72 hr forecasts (typical timescale communicated in case of crisis), for distance errors that we hope about a few dozen of km around the forecast (acceptable for reconnaissance by aircrafts) For the ocean prediction, we used some regional oceanic configurations based on the NEMO 2.3 code, nested into Mercator 1/12° operational system. Drift forecasts were computed offline with Mothy (Météo France oil spill modeling system) and Ariane (B. Blanke, 1997), a Lagrangian diagnostic tool. We were particularly interested in the importance of the horizontal resolution, vertical mixing schemes, and any processes that may impact the surface layer. The aim of the study is to ultimately point at the most suitable set of parameters for drift forecast use inside operational oceanic systems. We are also motivated in assessing the relevancy of ensemble forecasts regarding determinist predictions. Several tests showed that mis-described observed trajectories can finally be modelled statistically by using uncertainties

  20. A numerical scheme and some theoretical aspects for the cylindrically and spherically symmetric sine-Gordon equations

    NASA Astrophysics Data System (ADS)

    Nguyen, Lu Trong Khiem

    2016-07-01

    A finite difference formula based on the predictor-corrector technique is presented to integrate the cylindrically and spherically symmetric sine-Gordon equations numerically. Based on various numerical observations, one property of the waves of kink type is conjectured and used to explain their returning effect. Several numerical experiments are carried out and they are in excellent agreement with the existing results. In addition, the corresponding modulation solution for the two-dimensional ring-shaped kink is extended to that in three-dimension. Both numerical and theoretical aspects are utilized to verify the reliability of the proposed numerical scheme and thus the analytical modulation solutions.

  1. Thermodynamical aspects of running vacuum models

    NASA Astrophysics Data System (ADS)

    Lima, J. A. S.; Basilakos, Spyros; Solà, Joan

    2016-04-01

    The thermal history of a large class of running vacuum models in which the effective cosmological term is described by a truncated power series of the Hubble rate, whose dominant term is Λ (H) ∝ H^{n+2}, is discussed in detail. Specifically, by assuming that the ultrarelativistic particles produced by the vacuum decay emerge into space-time in such a way that its energy density ρ _r ∝ T4, the temperature evolution law and the increasing entropy function are analytically calculated. For the whole class of vacuum models explored here we find that the primeval value of the comoving radiation entropy density (associated to effectively massless particles) starts from zero and evolves extremely fast until reaching a maximum near the end of the vacuum decay phase, where it saturates. The late-time conservation of the radiation entropy during the adiabatic FRW phase also guarantees that the whole class of running vacuum models predicts the same correct value of the present day entropy, S0 ˜ 10^{87}-10^{88} (in natural units), independently of the initial conditions. In addition, by assuming Gibbons-Hawking temperature as an initial condition, we find that the ratio between the late-time and primordial vacuum energy densities is in agreement with naive estimates from quantum field theory, namely, ρ _{Λ 0}/ρ _{Λ I} ˜ 10^{-123}. Such results are independent on the power n and suggests that the observed Universe may evolve smoothly between two extreme, unstable, non-singular de Sitter phases.

  2. Theoretical Modelling of Synthetic Molecular Motors

    NASA Astrophysics Data System (ADS)

    Barbu, Corina; Sofo, Jorge; Crespi, Vincent

    2004-03-01

    Synthetic molecular motors with sizes of few nanometers offer prospects to control molecular-scale mechanical motion. Motors with electric dipoles designed into their structure can undergo conformational changes in response to an external electric field and thereby, in principle, perform mechanical work. The synthetic rotary motor of our interest consists of a molecular caltrop with a three-legged base for attachment to a substrate and a molecular shaft functionalized with a molecular rotor at the upper end. Both the static dipole and the electric field-induced dipole of the molecular rotor are relevant to producing rotation. Also, the combination of external electrostatic torque and the internal thermal fluctuations must be sufficient to overcome any rotational barriers on experimentally relevant timescales. Density functional theory calculations at the B3LYP/TZV level coupled to analytical modelling reveal the dynamical response of the motor.

  3. Theoretical model for plasma opening switch

    SciTech Connect

    Baker, L.

    1980-07-01

    The theory of an explosive plasma switch is developed and compared with the experimental results of Pavlovskii and work at Sandia. A simple analytic model is developed, which predicts that such switches may achieve opening times of approximately 100 ns. When the switching time is limited by channel mixing it scales as t = C(m d/sub 0/)/sup 1/2/P/sub 0//sup 2/P/sub e//sup -5/2/ where m is the foil mass per unit area, d/sub 0/ the channel thickness and P/sub 0/ the channel pressure (at explosive breakout), P/sub e/ the explosive pressure, C a constant of order 10 for c.g.s. units. Thus faster switching times may be achieved by minimizing foil mass and channel pressure, or increasing explosive product pressure, with the scaling exponents as shown suggesting that changes in pressures would be more effective.

  4. Dynamics in Higher Education Politics: A Theoretical Model

    ERIC Educational Resources Information Center

    Kauko, Jaakko

    2013-01-01

    This article presents a model for analysing dynamics in higher education politics (DHEP). Theoretically the model draws on the conceptual history of political contingency, agenda-setting theories and previous research on higher education dynamics. According to the model, socio-historical complexity can best be analysed along two dimensions: the…

  5. Aspect-Oriented Model-Driven Software Product Line Engineering

    NASA Astrophysics Data System (ADS)

    Groher, Iris; Voelter, Markus

    Software product line engineering aims to reduce development time, effort, cost, and complexity by taking advantage of the commonality within a portfolio of similar products. The effectiveness of a software product line approach directly depends on how well feature variability within the portfolio is implemented and managed throughout the development lifecycle, from early analysis through maintenance and evolution. This article presents an approach that facilitates variability implementation, management, and tracing by integrating model-driven and aspect-oriented software development. Features are separated in models and composed of aspect-oriented composition techniques on model level. Model transformations support the transition from problem to solution space models. Aspect-oriented techniques enable the explicit expression and modularization of variability on model, template, and code level. The presented concepts are illustrated with a case study of a home automation system.

  6. Testing a Theoretical Model of Immigration Transition and Physical Activity.

    PubMed

    Chang, Sun Ju; Im, Eun-Ok

    2015-01-01

    The purposes of the study were to develop a theoretical model to explain the relationships between immigration transition and midlife women's physical activity and test the relationships among the major variables of the model. A theoretical model, which was developed based on transitions theory and the midlife women's attitudes toward physical activity theory, consists of 4 major variables, including length of stay in the United States, country of birth, level of acculturation, and midlife women's physical activity. To test the theoretical model, a secondary analysis with data from 127 Hispanic women and 123 non-Hispanic (NH) Asian women in a national Internet study was used. Among the major variables of the model, length of stay in the United States was negatively associated with physical activity in Hispanic women. Level of acculturation in NH Asian women was positively correlated with women's physical activity. Country of birth and level of acculturation were significant factors that influenced physical activity in both Hispanic and NH Asian women. The findings support the theoretical model that was developed to examine relationships between immigration transition and physical activity; it shows that immigration transition can play an essential role in influencing health behaviors of immigrant populations in the United States. The NH theoretical model can be widely used in nursing practice and research that focus on immigrant women and their health behaviors. Health care providers need to consider the influences of immigration transition to promote immigrant women's physical activity. PMID:26502554

  7. Testing a Theoretical Model of Immigration Transition and Physical Activity.

    PubMed

    Chang, Sun Ju; Im, Eun-Ok

    2015-01-01

    The purposes of the study were to develop a theoretical model to explain the relationships between immigration transition and midlife women's physical activity and test the relationships among the major variables of the model. A theoretical model, which was developed based on transitions theory and the midlife women's attitudes toward physical activity theory, consists of 4 major variables, including length of stay in the United States, country of birth, level of acculturation, and midlife women's physical activity. To test the theoretical model, a secondary analysis with data from 127 Hispanic women and 123 non-Hispanic (NH) Asian women in a national Internet study was used. Among the major variables of the model, length of stay in the United States was negatively associated with physical activity in Hispanic women. Level of acculturation in NH Asian women was positively correlated with women's physical activity. Country of birth and level of acculturation were significant factors that influenced physical activity in both Hispanic and NH Asian women. The findings support the theoretical model that was developed to examine relationships between immigration transition and physical activity; it shows that immigration transition can play an essential role in influencing health behaviors of immigrant populations in the United States. The NH theoretical model can be widely used in nursing practice and research that focus on immigrant women and their health behaviors. Health care providers need to consider the influences of immigration transition to promote immigrant women's physical activity.

  8. STED Nanoscopy with Time-Gated Detection: Theoretical and Experimental Aspects

    PubMed Central

    Vicidomini, Giuseppe; Schönle, Andreas; Ta, Haisen; Han, Kyu Young; Moneron, Gael; Eggeling, Christian; Hell, Stefan W.

    2013-01-01

    In a stimulated emission depletion (STED) microscope the region in which fluorescence markers can emit spontaneously shrinks with continued STED beam action after a singular excitation event. This fact has been recently used to substantially improve the effective spatial resolution in STED nanoscopy using time-gated detection, pulsed excitation and continuous wave (CW) STED beams. We present a theoretical framework and experimental data that characterize the time evolution of the effective point-spread-function of a STED microscope and illustrate the physical basis, the benefits, and the limitations of time-gated detection both for CW and pulsed STED lasers. While gating hardly improves the effective resolution in the all-pulsed modality, in the CW-STED modality gating strongly suppresses low spatial frequencies in the image. Gated CW-STED nanoscopy is in essence limited (only) by the reduction of the signal that is associated with gating. Time-gated detection also reduces/suppresses the influence of local variations of the fluorescence lifetime on STED microscopy resolution. PMID:23349884

  9. Communication training for aircrews: A review of theoretical and pragmatic aspects of training program design

    NASA Technical Reports Server (NTRS)

    Linde, Charlotte; Goguen, Joseph; Devenish, Linda

    1987-01-01

    This study is the final report of a project studying methods of communications training applicable to both civilian and military aviation personnel, including multiperson teams or single pilot fixed wing or rotary wing aircraft. A review is provided of a number of theories proposed as relevant for producing training materials for improved communications. Criteria are given for evaluating the applicability of training programs to the aviation environment, and these criteria are applied to United Airlines' Resources Management Training, as well as to a number of commercially available general purpose training programs. The report considers in detail assertiveness training and grid management training, examining their theoretical background and attempts made to validate their effectiveness. It was found that there are substantive difficulties in assessing the effectiveness of both training programs, as well as problems with the theories underlying them. However, because the aviation environment offers unique advantages for studying the effectiveness of communications training, recommendations are made on the design of appropriate training programs and on procedures that might be used to validate them.

  10. Empirical and Theoretical Aspects of Generation and Transfer of Information in a Neuromagnetic Source Network

    PubMed Central

    Vakorin, Vasily A.; Mišić, Bratislav; Krakovska, Olga; McIntosh, Anthony Randal

    2011-01-01

    Variability in source dynamics across the sources in an activated network may be indicative of how the information is processed within a network. Information-theoretic tools allow one not only to characterize local brain dynamics but also to describe interactions between distributed brain activity. This study follows such a framework and explores the relations between signal variability and asymmetry in mutual interdependencies in a data-driven pipeline of non-linear analysis of neuromagnetic sources reconstructed from human magnetoencephalographic (MEG) data collected as a reaction to a face recognition task. Asymmetry in non-linear interdependencies in the network was analyzed using transfer entropy, which quantifies predictive information transfer between the sources. Variability of the source activity was estimated using multi-scale entropy, quantifying the rate of which information is generated. The empirical results are supported by an analysis of synthetic data based on the dynamics of coupled systems with time delay in coupling. We found that the amount of information transferred from one source to another was correlated with the difference in variability between the dynamics of these two sources, with the directionality of net information transfer depending on the time scale at which the sample entropy was computed. The results based on synthetic data suggest that both time delay and strength of coupling can contribute to the relations between variability of brain signals and information transfer between them. Our findings support the previous attempts to characterize functional organization of the activated brain, based on a combination of non-linear dynamics and temporal features of brain connectivity, such as time delay. PMID:22131968

  11. A methodology for evacuation design for urban areas: theoretical aspects and experimentation

    NASA Astrophysics Data System (ADS)

    Russo, F.; Vitetta, A.

    2009-04-01

    This paper proposes an unifying approach for the simulation and design of a transportation system under conditions of incoming safety and/or security. Safety and security are concerned with threats generated by very different factors and which, in turn, generate emergency conditions, such as the 9/11, Madrid and London attacks, the Asian tsunami, and the Katrina hurricane; just considering the last five years. In transportation systems, when exogenous events happen and there is a sufficient interval time between the instant when the event happens and the instant when the event has effect on the population, it is possible to reduce the negative effects with the population evacuation. For this event in every case it is possible to prepare with short and long term the evacuation. For other event it is possible also to plan the real time evacuation inside the general risk methodology. The development of models for emergency conditions in transportation systems has not received much attention in the literature. The main findings in this area are limited to only a few public research centres and private companies. In general, there is no systematic analysis of the risk theory applied in the transportation system. Very often, in practice, the vulnerability and exposure in the transportation system are considered as similar variables, or in other worse cases the exposure variables are treated as vulnerability variables. Models and algorithms specified and calibrated in ordinary conditions cannot be directly applied in emergency conditions under the usual hypothesis considered. This paper is developed with the following main objectives: (a) to formalize the risk problem with clear diversification (for the consequences) in the definition of the vulnerability and exposure in a transportation system; thus the book offers improvements over consolidated quantitative risk analysis models, especially transportation risk analysis models (risk assessment); (b) to formalize a system

  12. Cognitive Aspects of Change in Drawings: A Neo-Piagetian Theoretical Account

    ERIC Educational Resources Information Center

    Morra, Sergio

    2005-01-01

    This study reconsiders a series of drawing tasks (Goodnow, 1978) in which children have to modify their stereotypical drawing of the human figure to represent a person in movement. Another task, in which children have to differentiate the drawing of a kangaroo from that of a person, is also considered. According to a neo-Piagetian model of drawing…

  13. Culture and Developmental Trajectories: A Discussion on Contemporary Theoretical Models

    ERIC Educational Resources Information Center

    de Carvalho, Rafael Vera Cruz; Seidl-de-Moura, Maria Lucia; Martins, Gabriela Dal Forno; Vieira, Mauro Luís

    2014-01-01

    This paper aims to describe, compare and discuss the theoretical models proposed by Patricia Greenfield, Çigdem Kagitçibasi and Heidi Keller. Their models have the common goal of understanding the developmental trajectories of self based on dimensions of autonomy and relatedness that are structured according to specific cultural and environmental…

  14. Theoretical models for near forward light scattering by a Plasmodium falciparum infected red blood cell

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.

    2012-12-01

    A number of experimental elastic light scattering studies have been performed in the past few years with the aim of developing automated in vivo tools for differentiating a healthy red blood cell from a Plasmodium falciparum infected cell. This paper examines some theoretical aspects of the problem. An attempt has been made to simulate the scattering patterns of healthy as well as infected individual red blood cells. Two models, namely, a homogeneous sphere model and a coated sphere model have been considered. The scattering patterns predicted by these models are examined. A possible method for discriminating infected red blood cells from healthy ones has been suggested.

  15. Elastic deformation effects on aerodynamic characteristics for a high-aspect-ratio supercritical-wing model

    NASA Technical Reports Server (NTRS)

    Watson, J. J.

    1982-01-01

    The results of an investigation of the deformations of a high-aspect-ratio, force/pressure, supercritical-wing model during wind tunnel tests and the effects these deformations have on the wing aerodynamics are presented. A finite element model of the wing was developed, and then, for conditions corresponding to wind tunnel test points, experimental aerodynamic loads and theoretical aerodynamic loads were applied to the finite element model. Comparisons were made between the results of these load conditions for changes in structural deflections and for changes in aerodynamic characteristics. The results show that the deformations are quite small and that the pressure data are not significantly affected by model deformation.

  16. [Pain and opioid dependency as multilevel network phenomenon : Theoretical and metatheoretical aspects].

    PubMed

    Tretter, F

    2016-08-01

    Methodological reflections on pain research and pain therapy focussing on addiction risks are addressed in this article. Starting from the incompleteness of objectification of the purely subjectively fully understandable phenomena of pain and addiction, the relevance of a comprehensive general psychology is underlined. It is shown that that reduction of pain and addiction to a mainly focally arguing neurobiology is only possible if both disciplines have a systemic concept of pain and addiction. With this aim, parallelized conceptual network models are presented. PMID:27422300

  17. Theoretical aspects of self-assembly of proteins: A Kirkwood-Buff-theory approach

    NASA Astrophysics Data System (ADS)

    Ben-Naim, Arieh

    2013-06-01

    A new approach to the problem of self-assembly of proteins induced by temperature, pressure, or changes in solute concentration is presented. The problem is formulated in terms of Le Chatelier principle, and a solution is sought in terms of the Kirkwood-Buff theory of solutions. In this article we focus on the pressure and solute effects on the association-dissociation equilibrium. We examine the role of both hydrophobic and hydrophilic effects. We argue that the latter are more important than the former. The solute effect, on the other hand, depends on the preferential solvation of the monomer and the aggregate with respect to solvent and co-solvent molecules. An experimental approach based on model compounds to study these effects is suggested.

  18. Theoretical and experimental aspects of laser cutting with a direct diode laser

    NASA Astrophysics Data System (ADS)

    Costa Rodrigues, G.; Pencinovsky, J.; Cuypers, M.; Duflou, J. R.

    2014-10-01

    Recent developments in beam coupling techniques have made it possible to scale up the power of diode lasers with a laser beam quality suitable for laser cutting of metal sheets. In this paper a prototype of a Direct Diode Laser (DDL) source (BPP of 22 mm-mrad) is analyzed in terms of efficiency and cut performance and compared with two established technologies, CO2 and fiber lasers. An analytical model based on absorption calculations is used to predict the performance of the studied laser source with a good agreement with experimental results. Furthermore results of fusion cutting of stainless steel and aluminium alloys as well as oxygen cutting of structural steel are presented, demonstrating that industrial relevant cutting speeds with high cutting quality can now be achieved with DDL.

  19. Theoretical and practical aspects in total uncemented hip arthroplasty by using short femoral stem prosthesis

    PubMed Central

    Moga, M; Pogarasteanu, ME; Barbilian, A

    2015-01-01

    Hip arthrosis, primary or secondary, is an osteoarthritic degenerative process that affects the hip joint. Primary hip arthrosis has an unknown etiology, and secondary hip arthrosis has well defined causes; of these causes, some are known to lead to arthrosis of the hip in the young age patient. The surgical treatment aims either to preserve the patient’s hip joint, or to replace the joint. The most commonly used procedure at this time is the total hip arthroplasty. The femoral component may have a short or a long stem. The short femoral stem prosthesis is usually impacted by using a unique technique and unique instruments, according to the manufacturer’s specifications. There are several models of short stem femoral prosthesis, but no matter which one is chosen, the surgical indication, the surgical technique and a well-conducted recovery program are important. The choosing of each arthroplastic implant must be made with care, taking into consideration the patient’s benefit, his expectations, and also the surgeon’s experience. PMID:26103643

  20. Theoretical Model of God: The Key to Correct Exploration of the Universe

    NASA Astrophysics Data System (ADS)

    Kalanov, Temur Z.

    2007-04-01

    The problem of the correct approach to exploration of the Universe cannot be solved if there is no solution of the problem of existence of God (Creator, Ruler) in science. In this connection, theoretical proof of existence of God is proposed. The theoretical model of God -- as scientific proof of existence of God -- is the consequence of the system of the formulated axioms. The system of the axioms contains, in particular, the following premises: (1) all objects formed (synthesized) by man are characterized by the essential property: namely, divisibility into aspects; (2) objects which can be mentally divided into aspects are objects formed (synthesized); (3) the system ``Universe'' is mentally divided into aspects. Consequently, the Universe represents the system formed (synthesized); (4) the theorem of existence of God (i.e. Absolute, Creator, Ruler) follows from the principle of logical completeness of system of concepts: if the formed (synthesized) system ``Universe'' exists, then God exists as the Absolute, the Creator, the Ruler of essence (i.e. information) and phenomenon (i.e. material objects). Thus, the principle of existence of God -- the content of the theoretical model of God -- must be a starting-point and basis of correct gnosiology and science of 21 century.

  1. Organizational Learning and Product Design Management: Towards a Theoretical Model.

    ERIC Educational Resources Information Center

    Chiva-Gomez, Ricardo; Camison-Zornoza, Cesar; Lapiedra-Alcami, Rafael

    2003-01-01

    Case studies of four Spanish ceramics companies were used to construct a theoretical model of 14 factors essential to organizational learning. One set of factors is related to the conceptual-analytical phase of the product design process and the other to the creative-technical phase. All factors contributed to efficient product design management…

  2. Healing from Childhood Sexual Abuse: A Theoretical Model

    ERIC Educational Resources Information Center

    Draucker, Claire Burke; Martsolf, Donna S.; Roller, Cynthia; Knapik, Gregory; Ross, Ratchneewan; Stidham, Andrea Warner

    2011-01-01

    Childhood sexual abuse is a prevalent social and health care problem. The processes by which individuals heal from childhood sexual abuse are not clearly understood. The purpose of this study was to develop a theoretical model to describe how adults heal from childhood sexual abuse. Community recruitment for an ongoing broader project on sexual…

  3. The Theoretical Basis of the Effective School Improvement Model (ESI)

    ERIC Educational Resources Information Center

    Scheerens, Jaap; Demeuse, Marc

    2005-01-01

    This article describes the process of theoretical reflection that preceded the development and empirical verification of a model of "effective school improvement". The focus is on basic mechanisms that could be seen as underlying "getting things in motion" and change in education systems. Four mechanisms are distinguished: synoptic rational…

  4. [Some aspects of the modeling balanced fetacidic structure in sprets].

    PubMed

    Samoĭlov, A V; Kochetkova, A A; Severinenko, S M; Baĭkov, V G

    2008-01-01

    Information about the development of a method of fatty basis of food inverse emulsion (spread) modeling is given in the article. Theoretical substantiation of creation of a balanced fatty product of functional purpose is described in the article. Practical research results of spread fatty basis creation from palm, soya and rape oil are presented.

  5. Using Spreadsheets to Teach Aspects of Biology Involving Mathematical Models

    ERIC Educational Resources Information Center

    Carlton, Kevin; Nicholls, Mike; Ponsonby, David

    2004-01-01

    Some aspects of biology, for example the Hardy-Weinberg simulation of population genetics or modelling heat flow in lizards, have an undeniable mathematical basis. Students can find the level of mathematical skill required to deal with such concepts to be an insurmountable hurdle to understanding. If not used effectively, spreadsheet models…

  6. Aspects of the Cognitive Model of Physics Problem Solving.

    ERIC Educational Resources Information Center

    Brekke, Stewart E.

    Various aspects of the cognitive model of physics problem solving are discussed in detail including relevant cues, encoding, memory, and input stimuli. The learning process involved in the recognition of familiar and non-familiar sensory stimuli is highlighted. Its four components include selection, acquisition, construction, and integration. The…

  7. A Generalized Information Theoretical Model for Quantum Secret Sharing

    NASA Astrophysics Data System (ADS)

    Bai, Chen-Ming; Li, Zhi-Hui; Xu, Ting-Ting; Li, Yong-Ming

    2016-07-01

    An information theoretical model for quantum secret sharing was introduced by H. Imai et al. (Quantum Inf. Comput. 5(1), 69-80 2005), which was analyzed by quantum information theory. In this paper, we analyze this information theoretical model using the properties of the quantum access structure. By the analysis we propose a generalized model definition for the quantum secret sharing schemes. In our model, there are more quantum access structures which can be realized by our generalized quantum secret sharing schemes than those of the previous one. In addition, we also analyse two kinds of important quantum access structures to illustrate the existence and rationality for the generalized quantum secret sharing schemes and consider the security of the scheme by simple examples.

  8. A theoretical model for smoking prevention studies in preteen children.

    PubMed

    McGahee, T W; Kemp, V; Tingen, M

    2000-01-01

    The age of the onset of smoking is on a continual decline, with the prime age of tobacco use initiation being 12-14 years. A weakness of the limited research conducted on smoking prevention programs designed for preteen children (ages 10-12) is a well-defined theoretical basis. A theoretical perspective is needed in order to make a meaningful transition from empirical analysis to application of knowledge. Bandura's Social Cognitive Theory (1977, 1986), the Theory of Reasoned Action (Ajzen & Fishbein, 1980), and other literature linking various concepts to smoking behaviors in preteens were used to develop a model that may be useful for smoking prevention studies in preteen children.

  9. Chosen aspects of modeling and control of quadrotor platform

    NASA Astrophysics Data System (ADS)

    Zawiski, Radosław; Błachuta, Marian

    2012-11-01

    This article is presenting the extended model of quadrotor platform together with a bespoken control system based on optimal approach. It highlights particular aspects of the derived model, such as inclusion of rotor gyroscopic effects and thrust generation based on momentum theory. The controller's behavior is tested by simulations. Comparisons with literature-available solutions to the problem of full quadrotor optimal control are made and important differences exposed. Conclusions are drawn and future work proposed.

  10. Electromechanical properties of smart aggregate: theoretical modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Wang, Jianjun; Kong, Qingzhao; Shi, Zhifei; Song, Gangbing

    2016-09-01

    Smart aggregate (SA), as a piezoceramic-based multi-functional device, is formed by sandwiching two lead zirconate titanate (PZT) patches with copper shielding between a pair of solid-machined cylindrical marble blocks with epoxy. Previous researches have successfully demonstrated the capability and reliability of versatile SAs to monitor the structural health of concrete structures. However, the previous works concentrated mainly on the applications of SAs in structural health monitoring; no reasonable theoretical model of SAs was proposed. In this paper, electromechanical properties of SAs were investigated using a proposed theoretical model. Based on one dimensional linear theory of piezo-elasticity, the dynamic solutions of a SA subjected to an external harmonic voltage were solved. Further, the electric impedance of the SA was computed, and the resonance and anti-resonance frequencies were calculated based on derived equations. Numerical analysis was conducted to discuss the effects of the thickness of epoxy layer and the dimension of PZT patch on the fundamental resonance and anti-resonance frequencies as well as the corresponding electromechanical coupling factor. The dynamic solutions based on the proposed theoretical model were further experimentally verified with two SA samples. The fundamental resonance and anti-resonance frequencies of SAs show good agreements in both theoretical and experimental results. The presented analysis and results contribute to the overall understanding of SA properties and help to optimize the working frequencies of SAs in structural health monitoring of civil structures.

  11. Theoretical determination of the neuron detection efficiency of plastic track detectors. I. Theoretical model

    NASA Astrophysics Data System (ADS)

    Pretzsch, Gunter

    A theoretical model to determine the neutron detection efficiency of organic solid state nuclear track detectors without external radiator is described. The model involves the following calculation steps: production of heavy charged particles within the detector volume, characterization of the charged particles by appropriate physical quantities, application of suitable registration criteria, formation of etch pits. The etch pits formed are described by means of a distribution function which is doubly differential in both diameter and depth of the etch pits. The distribution function serves as the input value for the calculation of the detection efficiency. The detection efficiency is defined as the measured effect per neutron fluence. Hence it depends on the evaluation technique considered. The calculation of the distribution function is carried out for cellulose triacetate. The determination of the concrete detection efficiency using the light microscope and light transmission measurements as the evaluation technique will be described in further publications.

  12. Theoretical model of infrared radiation of dressed human body indoors

    NASA Astrophysics Data System (ADS)

    Xiong, Zonglong; Yang, Kuntao

    2008-02-01

    The human body detecting by infrared thermography plays an important role in the field of medical treatment, scout and rescuing work after disaster occuring. The infrared image theoretical model is a foundation for a human body detecting because it can improve the ability and efficiency. The essence and significance of the information on the temperature field of the human body in indoor environment is systematically discussed on the basis of physical structure and thermoregulation system. The various factors that influence the body temperature are analyzed, then the method for the calculation of temperature distribution of the surface temperature is introduced. On the basis of the infrared radiation theory, a theoretical model is proposed to calculate the radiant flux intensity of the human body. This model can be applied to many fields.

  13. Theoretical modeling of critical temperature increase in metamaterial superconductors

    NASA Astrophysics Data System (ADS)

    Smolyaninov, Igor I.; Smolyaninova, Vera N.

    2016-05-01

    Recent experiments have demonstrated that the metamaterial approach is capable of a drastic increase of the critical temperature Tc of epsilon near zero (ENZ) metamaterial superconductors. For example, tripling of the critical temperature has been observed in Al -A l2O3 ENZ core-shell metamaterials. Here, we perform theoretical modeling of Tc increase in metamaterial superconductors based on the Maxwell-Garnett approximation of their dielectric response function. Good agreement is demonstrated between theoretical modeling and experimental results in both aluminum- and tin-based metamaterials. Taking advantage of the demonstrated success of this model, the critical temperature of hypothetic niobium-, Mg B2- , and H2S -based metamaterial superconductors is evaluated. The Mg B2 -based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of a H2S -based metamaterial Tc appears to reach ˜250 K.

  14. Modeling and Composing Scenario-Based Requirements with Aspects

    NASA Technical Reports Server (NTRS)

    Araujo, Joao; Whittle, Jon; Ki, Dae-Kyoo

    2004-01-01

    There has been significant recent interest, within the Aspect-Oriented Software Development (AOSD) community, in representing crosscutting concerns at various stages of the software lifecycle. However, most of these efforts have concentrated on the design and implementation phases. We focus in this paper on representing aspects during use case modeling. In particular, we focus on scenario-based requirements and show how to compose aspectual and non-aspectual scenarios so that they can be simulated as a whole. Non-aspectual scenarios are modeled as UML sequence diagram. Aspectual scenarios are modeled as Interaction Pattern Specifications (IPS). In order to simulate them, the scenarios are transformed into a set of executable state machines using an existing state machine synthesis algorithm. Previous work composed aspectual and non-aspectual scenarios at the sequence diagram level. In this paper, the composition is done at the state machine level.

  15. Inhibition-based first-generation electrochemical biosensors: theoretical aspects and application to 2,4-dichlorophenoxy acetic acid detection.

    PubMed

    Bollella, Paolo; Fusco, Giovanni; Tortolini, Cristina; Sanzò, Gabriella; Antiochia, Riccarda; Favero, Gabriele; Mazzei, Franco

    2016-05-01

    In this work, several theoretical aspects involved in the first-generation inhibition-based electrochemical biosensor measurements have been discussed. In particular, we have developed a theoretical-methodological approach for the characterization of the kinetic interaction between alkaline phosphatase (AlP) and 2,4-dichlorophenoxy acetic acid (2,4-D) as representative inhibitor studied by means of cyclic voltammetry and amperometry. Based on these findings, a biosensor for the fast, simple, and inexpensive determination of 2,4-D has been developed. The enzyme has been immobilized on screen-printed electrodes (SPEs). To optimize the biosensor performances, several carbon-based SPEs, namely graphite (G), graphene (GP), and multiwalled carbon nanotubes (MWCNTs), have been evaluated. AlP was immobilized on the electrode surface by means of polyvinyl alcohol with styryl-pyridinium groups (PVA-SbQ) as cross-linking agent. In the presence of ascorbate 2-phosphate (A2P) as substrate, the herbicide has been determined, thanks to its inhibition activity towards the enzyme catalyzing the oxidation of A2P to ascorbic acid (AA). Under optimum experimental conditions, the best performance in terms of catalytic efficiency has been demonstrated by MWCNTs SPE-based biosensor. The inhibition biosensor shows a linearity range towards 2,4-D within 2.1-110 ppb, a LOD of 1 ppb, and acceptable repeatability and stability. This analysis method was applied to fortified lake water samples with recoveries above 90%. The low cost of this device and its good analytical performances suggest its application for the screening and monitoring of 2,4-D in real matrices. PMID:26874693

  16. Field Theoretic and Space-Time Aspects of Supersymmetric Walls and the Space-Time Aspects of Non-Supersymmetric Vacuum Bubbles.

    NASA Astrophysics Data System (ADS)

    Griffies, Stephen Matthew

    1993-01-01

    Field theoretic and spacetime aspects of nontrivial planar supersymmetric bosonic field configurations in d = 3 + 1, N = 1 supergravity coupled to a chiral superfield are presented. They are topologically stable and static domain walls interpolating between non -positive cosmological constant (Lambda<= 0) supersymmetric vacua. They saturate the Bogomol'nyi bound on the energy density and thus satisfy first order differential equations. The induced spacetime is static. An especially novel solution is the Minkowski--anti-de Sitter (AdS_4) wall (Type I wall). Supersymmetric vacua are shown to be absolutely stable (to all orders in Newton's constant) towards quantum decay into another supersymmetric vacuum. The methods of supersymmetry and the language of Coleman's quantum tunneling are employed. This result proves the degeneracy of all supersymmetric vacua in N = 1 supergravity regardless of the relative value of their Lambda<= 0.. Supergravity walls induce non-singular spacetimes exhibiting nontrivial causal structure due to the Cauchy horizons inherited from AdS_4. Lattices of these walls are possible when completing the spacetime manifold which possess causal structures similar to extreme black holes. In these lattices, the time-like boundary of pure AdS_4 is replaced by a wall thus making all affine boundaries null. Quantum field theory on the Type I background indicates that it has zero Hawking temperature and zero spacetime entropy. Generalizations of the supergravity walls to non -supersymmetric non- and ultra-extreme walls are presented. These walls are compact two-spheres corresponding to topological walls formed from the Kibble mechanism (non-extreme: bubbles with two insides) and the classical evolution of quantum tunneling bubbles (ultra-extreme: bubbles with an inside and an outside). Israel's formalism for singular hypersurfaces is used to deduce the local spacetime properties working in the wall's comoving frame. Geodesically complete manifolds are

  17. An information-theoretic model for link prediction in complex networks

    PubMed Central

    Zhu, Boyao; Xia, Yongxiang

    2015-01-01

    Various structural features of networks have been applied to develop link prediction methods. However, because different features highlight different aspects of network structural properties, it is very difficult to benefit from all of the features that might be available. In this paper, we investigate the role of network topology in predicting missing links from the perspective of information theory. In this way, the contributions of different structural features to link prediction are measured in terms of their values of information. Then, an information-theoretic model is proposed that is applicable to multiple structural features. Furthermore, we design a novel link prediction index, called Neighbor Set Information (NSI), based on the information-theoretic model. According to our experimental results, the NSI index performs well in real-world networks, compared with other typical proximity indices. PMID:26335758

  18. Advancing Women Scientists: Exploring a Theoretically Grounded Climate Change Workshop Model

    NASA Astrophysics Data System (ADS)

    Silver, Barbara; Prochaska, Janice; Mederer, Helen; Harlow, Lisa; Sherman, Karen

    Universities in the United States have an increasing need to recruit the best and the brightest faculty to remain globally competitive, but the majority of schools share a profile that includes a low percentage of women in most of the science, technology, engineering, and math (STEM) disciplines. Changes in university culture are needed to enable departmental diversity growth, to expand offerings and perspectives, and to strengthen the view that STEM is an attractive choice for female students and prospective faculty. This paper describes the theoretical models used to develop a prototype workshop series implemented in departments to help faculty progress in their readiness to advance women scientists, defined as collaborating, mentoring, sharing resources, and generating support through community. The three theoretical underpinnings are the gender-as-structure theory of organizational change, Appreciative Inquiry, and the Transtheoretical Model. These workshops are one aspect of the climate change efforts implemented by the ADVANCE program of the University of Rhode Island.

  19. Design, modelling and simulation aspects of an ankle rehabilitation device

    NASA Astrophysics Data System (ADS)

    Racu, C. M.; Doroftei, I.

    2016-08-01

    Ankle injuries are amongst the most common injuries of the lower limb. Besides initial treatment, rehabilitation of the patients plays a crucial role for future activities and proper functionality of the foot. Traditionally, ankle injuries are rehabilitated via physiotherapy, using simple equipment like elastic bands and rollers, requiring intensive efforts of therapists and patients. Thus, the need of robotic devices emerges. In this paper, the design concept and some modelling and simulation aspects of a novel ankle rehabilitation device are presented.

  20. Aspects theoretiques et methodologiques de la recherche sur le traitement discursif des representations sociales (Theoretical and Methodological Aspects of Research on the Discourse Analysis of Social Representations).

    ERIC Educational Resources Information Center

    Matthey, Marinette

    2000-01-01

    This article presents some theoretical reflections on the relationship between social representations-as they are conceptualized in sociopsychology--and discourse. An interdisciplinary point of view is advocated that accounts for both linguistics and sociopsychology. Methodological comments are presented and a way to convey theoretical reflections…

  1. Decision support models for solid waste management: Review and game-theoretic approaches

    SciTech Connect

    Karmperis, Athanasios C.; Aravossis, Konstantinos; Tatsiopoulos, Ilias P.; Sotirchos, Anastasios

    2013-05-15

    Highlights: ► The mainly used decision support frameworks for solid waste management are reviewed. ► The LCA, CBA and MCDM models are presented and their strengths, weaknesses, similarities and possible combinations are analyzed. ► The game-theoretic approach in a solid waste management context is presented. ► The waste management bargaining game is introduced as a specific decision support framework. ► Cooperative and non-cooperative game-theoretic approaches to decision support for solid waste management are discussed. - Abstract: This paper surveys decision support models that are commonly used in the solid waste management area. Most models are mainly developed within three decision support frameworks, which are the life-cycle assessment, the cost–benefit analysis and the multi-criteria decision-making. These frameworks are reviewed and their strengths and weaknesses as well as their critical issues are analyzed, while their possible combinations and extensions are also discussed. Furthermore, the paper presents how cooperative and non-cooperative game-theoretic approaches can be used for the purpose of modeling and analyzing decision-making in situations with multiple stakeholders. Specifically, since a waste management model is sustainable when considering not only environmental and economic but also social aspects, the waste management bargaining game is introduced as a specific decision support framework in which future models can be developed.

  2. Theoretical model of a piezoelectric composite spinal fusion interbody implant.

    PubMed

    Tobaben, Nicholas E; Domann, John P; Arnold, Paul M; Friis, Elizabeth A

    2014-04-01

    Failure rates of spinal fusion are high in smokers and diabetics. The authors are investigating the development of a piezoelectric composite biomaterial and interbody device design that could generate clinically relevant levels of electrical stimulation to help improve the rate of fusion for these patients. A lumped parameter model of the piezoelectric composite implant was developed based on a model that has been utilized to successfully predict power generation for piezoceramics. Seven variables (fiber material, matrix material, fiber volume fraction, fiber aspect ratio, implant cross-sectional area, implant thickness, and electrical load resistance) were parametrically analyzed to determine their effects on power generation within reasonable implant constraints. Influences of implant geometry and fiber aspect ratio were independent of material parameters. For a cyclic force of constant magnitude, implant thickness was directly and cross-sectional area inversely proportional to power generation potential. Fiber aspect ratios above 30 yielded maximum power generation potential while volume fractions above 15% showed superior performance. This investigation demonstrates the feasibility of using composite piezoelectric biomaterials in medical implants to generate therapeutic levels of direct current electrical stimulation. The piezoelectric spinal fusion interbody implant shows promise for helping increase success rates of spinal fusion.

  3. A theoretical model for smoking prevention studies in preteen children.

    PubMed

    McGahee, T W; Kemp, V; Tingen, M

    2000-01-01

    The age of the onset of smoking is on a continual decline, with the prime age of tobacco use initiation being 12-14 years. A weakness of the limited research conducted on smoking prevention programs designed for preteen children (ages 10-12) is a well-defined theoretical basis. A theoretical perspective is needed in order to make a meaningful transition from empirical analysis to application of knowledge. Bandura's Social Cognitive Theory (1977, 1986), the Theory of Reasoned Action (Ajzen & Fishbein, 1980), and other literature linking various concepts to smoking behaviors in preteens were used to develop a model that may be useful for smoking prevention studies in preteen children. PMID:12026266

  4. Theoretical model for plasma expansion generated by hypervelocity impact

    SciTech Connect

    Ju, Yuanyuan; Zhang, Qingming Zhang, Dongjiang; Long, Renrong; Chen, Li; Huang, Fenglei; Gong, Zizheng

    2014-09-15

    The hypervelocity impact experiments of spherical LY12 aluminum projectile diameter of 6.4 mm on LY12 aluminum target thickness of 23 mm have been conducted using a two-stage light gas gun. The impact velocity of the projectile is 5.2, 5.7, and 6.3 km/s, respectively. The experimental results show that the plasma phase transition appears under the current experiment conditions, and the plasma expansion consists of accumulation, equilibrium, and attenuation. The plasma characteristic parameters decrease as the plasma expands outward and are proportional with the third power of the impact velocity, i.e., (T{sub e}, n{sub e}) ∝ v{sub p}{sup 3}. Based on the experimental results, a theoretical model on the plasma expansion is developed and the theoretical results are consistent with the experimental data.

  5. A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids

    PubMed Central

    Dai, Fu-Zhi; Zhou, Yanchun

    2016-01-01

    Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials. PMID:27604165

  6. A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids

    NASA Astrophysics Data System (ADS)

    Dai, Fu-Zhi; Zhou, Yanchun

    2016-09-01

    Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials.

  7. A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids.

    PubMed

    Dai, Fu-Zhi; Zhou, Yanchun

    2016-01-01

    Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials. PMID:27604165

  8. Computational aspects in mechanical modeling of the articular cartilage tissue.

    PubMed

    Mohammadi, Hadi; Mequanint, Kibret; Herzog, Walter

    2013-04-01

    This review focuses on the modeling of articular cartilage (at the tissue level), chondrocyte mechanobiology (at the cell level) and a combination of both in a multiscale computation scheme. The primary objective is to evaluate the advantages and disadvantages of conventional models implemented to study the mechanics of the articular cartilage tissue and chondrocytes. From monophasic material models as the simplest form to more complicated multiscale theories, these approaches have been frequently used to model articular cartilage and have contributed significantly to modeling joint mechanics, addressing and resolving numerous issues regarding cartilage mechanics and function. It should be noted that attentiveness is important when using different modeling approaches, as the choice of the model limits the applications available. In this review, we discuss the conventional models applicable to some of the mechanical aspects of articular cartilage such as lubrication, swelling pressure and chondrocyte mechanics and address some of the issues associated with the current modeling approaches. We then suggest future pathways for a more realistic modeling strategy as applied for the simulation of the mechanics of the cartilage tissue using multiscale and parallelized finite element method.

  9. Healing from Childhood Sexual Abuse: A Theoretical Model

    PubMed Central

    Draucker, Claire Burke; Martsolf, Donna S.; Roller, Cynthia; Knapik, Gregory; Ross, Ratchneewan; Stidham, Andrea Warner

    2014-01-01

    Childhood sexual abuse (CSA) is a prevalent social and healthcare problem. The processes by which individuals heal from CSA are not clearly understood. The purpose of this study was to develop a theoretical model to describe how adults heal from CSA. Community recruitment for an on-going, broader project on sexual violence throughout the lifespan, referred to as the Sexual Violence Study, yielded a subsample of 48 women and 47 men who had experienced CSA. During semi-structured, open-ended interviews, they were asked to describe their experiences with healing from CSA and other victimization throughout their lives. Constructivist grounded theory methods were used with these data to develop constructs and hypotheses about healing. For the Sexual Violence Study, frameworks were developed to describe the participants' life patterns, parenting experiences, disclosures about sexual violence, spirituality, and altruism. Several analytic techniques were used to synthesize the findings of these frameworks to develop an overarching theoretical model that describes healing from CSA. The model includes four stages of healing, five domains of functioning, and six enabling factors that facilitate movement from one stage to the next. The findings indicate that healing is a complex and dynamic trajectory. The model can be used to alert clinicians to a variety of processes and enabling factors that facilitate healing in several domains and to guide discussions on important issues related to healing from CSA. PMID:21812546

  10. Theoretical consideration of a microcontinuum model of graphene

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Huang, Zaixing; Gao, Cun-Fa; Zhang, Bin

    2016-05-01

    A microcontinuum model of graphene is proposed based on micromorphic theory, in which the planar Bravais cell of graphene crystal is taken as the basal element of finite size. Governing equations including the macro-displacements and the micro-deformations of the basal element are modified and derived in global coordinates. Since independent freedom degrees of the basal element are closely related to the modes of phonon dispersions, the secular equations in micromorphic form are obtained by substituting the assumed harmonic wave equations into the governing equations, and simplified further according to the properties of phonon dispersion relations of two-dimensional (2D) crystals. Thus, the constitutive equations of the microcontinuum model are confirmed, in which the constitutive constants are determined by fitting the data of experimental and theoretical phonon dispersion relations in literature respectively. By employing the 2D microcontinuum model, we obtained sound velocities, Rayleigh velocity and elastic moduli of graphene, which show good agreements with available experimental or theoretical values, indicating that the current model would be another efficient and reliable methodology to study the mechanical behaviors of graphene.

  11. The Thomas–Fermi quark model: Non-relativistic aspects

    SciTech Connect

    Liu, Quan Wilcox, Walter

    2014-02-15

    The first numerical investigation of non-relativistic aspects of the Thomas–Fermi (TF) statistical multi-quark model is given. We begin with a review of the traditional TF model without an explicit spin interaction and find that the spin splittings are too small in this approach. An explicit spin interaction is then introduced which entails the definition of a generalized spin “flavor”. We investigate baryonic states in this approach which can be described with two inequivalent wave functions; such states can however apply to multiple degenerate flavors. We find that the model requires a spatial separation of quark flavors, even if completely degenerate. Although the TF model is designed to investigate the possibility of many-quark states, we find surprisingly that it may be used to fit the low energy spectrum of almost all ground state octet and decuplet baryons. The charge radii of such states are determined and compared with lattice calculations and other models. The low energy fit obtained allows us to extrapolate to the six-quark doubly strange H-dibaryon state, flavor symmetric strange states of higher quark content and possible six quark nucleon–nucleon resonances. The emphasis here is on the systematics revealed in this approach. We view our model as a versatile and convenient tool for quickly assessing the characteristics of new, possibly bound, particle states of higher quark number content. -- Highlights: • First application of the statistical Thomas–Fermi quark model to baryonic systems. • Novel aspects: spin as generalized flavor; spatial separation of quark flavor phases. • The model is statistical, but the low energy baryonic spectrum is successfully fit. • Numerical applications include the H-dibaryon, strange states and nucleon resonances. • The statistical point of view does not encourage the idea of bound many-quark baryons.

  12. Game-Theoretic Models of Information Overload in Social Networks

    NASA Astrophysics Data System (ADS)

    Borgs, Christian; Chayes, Jennifer; Karrer, Brian; Meeder, Brendan; Ravi, R.; Reagans, Ray; Sayedi, Amin

    We study the effect of information overload on user engagement in an asymmetric social network like Twitter. We introduce simple game-theoretic models that capture rate competition between celebrities producing updates in such networks where users non-strategically choose a subset of celebrities to follow based on the utility derived from high quality updates as well as disutility derived from having to wade through too many updates. Our two variants model the two behaviors of users dropping some potential connections (followership model) or leaving the network altogether (engagement model). We show that under a simple formulation of celebrity rate competition, there is no pure strategy Nash equilibrium under the first model. We then identify special cases in both models when pure rate equilibria exist for the celebrities: For the followership model, we show existence of a pure rate equilibrium when there is a global ranking of the celebrities in terms of the quality of their updates to users. This result also generalizes to the case when there is a partial order consistent with all the linear orders of the celebrities based on their qualities to the users. Furthermore, these equilibria can be computed in polynomial time. For the engagement model, pure rate equilibria exist when all users are interested in the same number of celebrities, or when they are interested in at most two. Finally, we also give a finite though inefficient procedure to determine if pure equilibria exist in the general case of the followership model.

  13. Information-Theoretic Benchmarking of Land Surface Models

    NASA Astrophysics Data System (ADS)

    Nearing, Grey; Mocko, David; Kumar, Sujay; Peters-Lidard, Christa; Xia, Youlong

    2016-04-01

    Benchmarking is a type of model evaluation that compares model performance against a baseline metric that is derived, typically, from a different existing model. Statistical benchmarking was used to qualitatively show that land surface models do not fully utilize information in boundary conditions [1] several years before Gong et al [2] discovered the particular type of benchmark that makes it possible to *quantify* the amount of information lost by an incorrect or imperfect model structure. This theoretical development laid the foundation for a formal theory of model benchmarking [3]. We here extend that theory to separate uncertainty contributions from the three major components of dynamical systems models [4]: model structures, model parameters, and boundary conditions describe time-dependent details of each prediction scenario. The key to this new development is the use of large-sample [5] data sets that span multiple soil types, climates, and biomes, which allows us to segregate uncertainty due to parameters from the two other sources. The benefit of this approach for uncertainty quantification and segregation is that it does not rely on Bayesian priors (although it is strictly coherent with Bayes' theorem and with probability theory), and therefore the partitioning of uncertainty into different components is *not* dependent on any a priori assumptions. We apply this methodology to assess the information use efficiency of the four land surface models that comprise the North American Land Data Assimilation System (Noah, Mosaic, SAC-SMA, and VIC). Specifically, we looked at the ability of these models to estimate soil moisture and latent heat fluxes. We found that in the case of soil moisture, about 25% of net information loss was from boundary conditions, around 45% was from model parameters, and 30-40% was from the model structures. In the case of latent heat flux, boundary conditions contributed about 50% of net uncertainty, and model structures contributed

  14. Theoretical models for coronary vascular biomechanics: Progress & challenges

    PubMed Central

    Waters, Sarah L.; Alastruey, Jordi; Beard, Daniel A.; Bovendeerd, Peter H.M.; Davies, Peter F.; Jayaraman, Girija; Jensen, Oliver E.; Lee, Jack; Parker, Kim H.; Popel, Aleksander S.; Secomb, Timothy W.; Siebes, Maria; Sherwin, Spencer J.; Shipley, Rebecca J.; Smith, Nicolas P.; van de Vosse, Frans N.

    2013-01-01

    A key aim of the cardiac Physiome Project is to develop theoretical models to simulate the functional behaviour of the heart under physiological and pathophysiological conditions. Heart function is critically dependent on the delivery of an adequate blood supply to the myocardium via the coronary vasculature. Key to this critical function of the coronary vasculature is system dynamics that emerge via the interactions of the numerous constituent components at a range of spatial and temporal scales. Here, we focus on several components for which theoretical approaches can be applied, including vascular structure and mechanics, blood flow and mass transport, flow regulation, angiogenesis and vascular remodelling, and vascular cellular mechanics. For each component, we summarise the current state of the art in model development, and discuss areas requiring further research. We highlight the major challenges associated with integrating the component models to develop a computational tool that can ultimately be used to simulate the responses of the coronary vascular system to changing demands and to diseases and therapies. PMID:21040741

  15. Self-Assembled Magnetic Surface Swimmers: Theoretical Model

    NASA Astrophysics Data System (ADS)

    Aranson, Igor; Belkin, Maxim; Snezhko, Alexey

    2009-03-01

    The mechanisms of self-propulsion of living microorganisms are a fascinating phenomenon attracting enormous attention in the physics community. A new type of self-assembled micro-swimmers, magnetic snakes, is an excellent tool to model locomotion in a simple table-top experiment. The snakes self-assemble from a dispersion of magnetic microparticles suspended on the liquid-air interface and subjected to an alternating magnetic field. Formation and dynamics of these swimmers are captured in the framework of theoretical model coupling paradigm equation for the amplitude of surface waves, conservation law for the density of particles, and the Navier-Stokes equation for hydrodynamic flows. The results of continuum modeling are supported by hybrid molecular dynamics simulations of magnetic particles floating on the surface of fluid.

  16. Theoretical Models and Operational Frameworks in Public Health Ethics

    PubMed Central

    Petrini, Carlo

    2010-01-01

    The article is divided into three sections: (i) an overview of the main ethical models in public health (theoretical foundations); (ii) a summary of several published frameworks for public health ethics (practical frameworks); and (iii) a few general remarks. Rather than maintaining the superiority of one position over the others, the main aim of the article is to summarize the basic approaches proposed thus far concerning the development of public health ethics by describing and comparing the various ideas in the literature. With this in mind, an extensive list of references is provided. PMID:20195441

  17. Theoretical models and operational frameworks in public health ethics.

    PubMed

    Petrini, Carlo

    2010-01-01

    The article is divided into three sections: (i) an overview of the main ethical models in public health (theoretical foundations); (ii) a summary of several published frameworks for public health ethics (practical frameworks); and (iii) a few general remarks. Rather than maintaining the superiority of one position over the others, the main aim of the article is to summarize the basic approaches proposed thus far concerning the development of public health ethics by describing and comparing the various ideas in the literature. With this in mind, an extensive list of references is provided.

  18. Theoretical Modeling of Mechanical-Electrical Coupling of Carbon Nanotubes

    SciTech Connect

    Lu, Jun-Qiang; Jiang, Hanqiang

    2008-01-01

    Carbon nanotubes have been studied extensively due to their unique properties, ranging from electrical, mechanical, optical, to thermal properties. The coupling between the electrical and mechanical properties of carbon nanotubes has emerged as a new field, which raises both interesting fundamental problems and huge application potentials. In this article, we will review our recently work on the theoretical modeling on mechanical-electrical coupling of carbon nanotubes subject to various loading conditions, including tension/compression, torsion, and squashing. Some related work by other groups will be also mentioned.

  19. Accuracy Analysis of a Box-wing Theoretical SRP Model

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoya; Hu, Xiaogong; Zhao, Qunhe; Guo, Rui

    2016-07-01

    For Beidou satellite navigation system (BDS) a high accuracy SRP model is necessary for high precise applications especially with Global BDS establishment in future. The BDS accuracy for broadcast ephemeris need be improved. So, a box-wing theoretical SRP model with fine structure and adding conical shadow factor of earth and moon were established. We verified this SRP model by the GPS Block IIF satellites. The calculation was done with the data of PRN 1, 24, 25, 27 satellites. The results show that the physical SRP model for POD and forecast for GPS IIF satellite has higher accuracy with respect to Bern empirical model. The 3D-RMS of orbit is about 20 centimeters. The POD accuracy for both models is similar but the prediction accuracy with the physical SRP model is more than doubled. We tested 1-day 3-day and 7-day orbit prediction. The longer is the prediction arc length, the more significant is the improvement. The orbit prediction accuracy with the physical SRP model for 1-day, 3-day and 7-day arc length are 0.4m, 2.0m, 10.0m respectively. But they are 0.9m, 5.5m and 30m with Bern empirical model respectively. We apply this means to the BDS and give out a SRP model for Beidou satellites. Then we test and verify the model with Beidou data of one month only for test. Initial results show the model is good but needs more data for verification and improvement. The orbit residual RMS is similar to that with our empirical force model which only estimate the force for along track, across track direction and y-bias. But the orbit overlap and SLR observation evaluation show some improvement. The remaining empirical force is reduced significantly for present Beidou constellation.

  20. Aspects of Mathematical Modelling of Pressure Retarded Osmosis

    PubMed Central

    Anissimov, Yuri G.

    2016-01-01

    In power generating terms, a pressure retarded osmosis (PRO) energy generating plant, on a river entering a sea or ocean, is equivalent to a hydroelectric dam with a height of about 60 meters. Therefore, PRO can add significantly to existing renewable power generation capacity if economical constrains of the method are resolved. PRO energy generation relies on a semipermeable membrane that is permeable to water and impermeable to salt. Mathematical modelling plays an important part in understanding flows of water and salt near and across semipermeable membranes and helps to optimize PRO energy generation. Therefore, the modelling can help realizing PRO energy generation potential. In this work, a few aspects of mathematical modelling of the PRO process are reviewed and discussed. PMID:26848696

  1. Aspects of Mathematical Modelling of Pressure Retarded Osmosis.

    PubMed

    Anissimov, Yuri G

    2016-02-03

    In power generating terms, a pressure retarded osmosis (PRO) energy generating plant, on a river entering a sea or ocean, is equivalent to a hydroelectric dam with a height of about 60 meters. Therefore, PRO can add significantly to existing renewable power generation capacity if economical constrains of the method are resolved. PRO energy generation relies on a semipermeable membrane that is permeable to water and impermeable to salt. Mathematical modelling plays an important part in understanding flows of water and salt near and across semipermeable membranes and helps to optimize PRO energy generation. Therefore, the modelling can help realizing PRO energy generation potential. In this work, a few aspects of mathematical modelling of the PRO process are reviewed and discussed.

  2. Theoretical description of phase coexistence in model C60.

    PubMed

    Costa, D; Pellicane, G; Caccamo, C; Schöll-Paschinger, E; Kahl, G

    2003-08-01

    We have investigated the phase diagram of a pair interaction model of C60 fullerene [L. A. Girifalco, J. Phys. Chem. 96, 858 (1992)], in the framework provided by two integral equation theories of the liquid state, namely, the modified hypernetted chain (MHNC) implemented under a global thermodynamic consistency constraint, and the self-consistent Ornstein-Zernike approximation (SCOZA), and by a perturbation theory (PT) with various degrees of refinement, for the free energy of the solid phase. We present an extended assessment of such theories as set against a recent Monte Carlo study of the same model [D. Costa, G. Pellicane, C. Caccamo, and M. C. Abramo, J. Chem. Phys. 118, 304 (2003)]. We have compared the theoretical predictions with the corresponding simulation results for several thermodynamic properties such as the free energy, the pressure, and the internal energy. Then we have determined the phase diagram of the model, by using either the SCOZA, the MHNC, or the PT predictions for one of the coexisting phases, and the simulation data for the other phase, in order to separately ascertain the accuracy of each theory. It turns out that the overall appearance of the phase portrait is reproduced fairly well by all theories, with remarkable accuracy as for the melting line and the solid-vapor equilibrium. All theories show a more or less pronounced discrepancy with the simulated fluid-solid coexistence pressure, above the triple point. The MHNC and SCOZA results for the liquid-vapor coexistence, as well as for the corresponding critical points, are quite accurate; the SCOZA tends to underestimate the density corresponding to the freezing line. All results are discussed in terms of the basic assumptions underlying each theory. We have then selected the MHNC for the fluid and the first-order PT for the solid phase, as the most accurate tools to investigate the phase behavior of the model in terms of purely theoretical approaches. It emerges that the use of

  3. NMR relaxation induced by iron oxide particles: testing theoretical models

    NASA Astrophysics Data System (ADS)

    Gossuin, Y.; Orlando, T.; Basini, M.; Henrard, D.; Lascialfari, A.; Mattea, C.; Stapf, S.; Vuong, Q. L.

    2016-04-01

    Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water.

  4. NMR relaxation induced by iron oxide particles: testing theoretical models.

    PubMed

    Gossuin, Y; Orlando, T; Basini, M; Henrard, D; Lascialfari, A; Mattea, C; Stapf, S; Vuong, Q L

    2016-04-15

    Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water.

  5. NMR relaxation induced by iron oxide particles: testing theoretical models.

    PubMed

    Gossuin, Y; Orlando, T; Basini, M; Henrard, D; Lascialfari, A; Mattea, C; Stapf, S; Vuong, Q L

    2016-04-15

    Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water. PMID:26933908

  6. Modeling semantic aspects for cross-media image indexing.

    PubMed

    Monay, Florent; Gatica-Perez, Daniel

    2007-10-01

    To go beyond the query-by-example paradigm in image retrieval, there is a need for semantic indexing of large image collections for intuitive text-based image search. Different models have been proposed to learn the dependencies between the visual content of an image set and the associated text captions, then allowing for the automatic creation of semantic indices for unannotated images. The task, however, remains unsolved. In this paper, we present three alternatives to learn a Probabilistic Latent Semantic Analysis model (PLSA) for annotated images, and evaluate their respective performance for automatic image indexing. Under the PLSA assumptions, an image is modeled as a mixture of latent aspects that generates both image features and text captions, and we investigate three ways to learn the mixture of aspects. We also propose a more discriminative image representation than the traditional Blob histogram, concatenating quantized local color information and quantized local texture descriptors. The first learning procedure of a PLSA model for annotated images is a standard EM algorithm, which implicitly assumes that the visual and the textual modalities can be treated equivalently. The other two models are based on an asymmetric PLSA learning, allowing to constrain the definition of the latent space on the visual or on the textual modality. We demonstrate that the textual modality is more appropriate to learn a semantically meaningful latent space, which translates into improved annotation performance. A comparison of our learning algorithms with respect to recent methods on a standard dataset is presented, and a detailed evaluation of the performance shows the validity of our framework. PMID:17699924

  7. Modeling semantic aspects for cross-media image indexing.

    PubMed

    Monay, Florent; Gatica-Perez, Daniel

    2007-10-01

    To go beyond the query-by-example paradigm in image retrieval, there is a need for semantic indexing of large image collections for intuitive text-based image search. Different models have been proposed to learn the dependencies between the visual content of an image set and the associated text captions, then allowing for the automatic creation of semantic indices for unannotated images. The task, however, remains unsolved. In this paper, we present three alternatives to learn a Probabilistic Latent Semantic Analysis model (PLSA) for annotated images, and evaluate their respective performance for automatic image indexing. Under the PLSA assumptions, an image is modeled as a mixture of latent aspects that generates both image features and text captions, and we investigate three ways to learn the mixture of aspects. We also propose a more discriminative image representation than the traditional Blob histogram, concatenating quantized local color information and quantized local texture descriptors. The first learning procedure of a PLSA model for annotated images is a standard EM algorithm, which implicitly assumes that the visual and the textual modalities can be treated equivalently. The other two models are based on an asymmetric PLSA learning, allowing to constrain the definition of the latent space on the visual or on the textual modality. We demonstrate that the textual modality is more appropriate to learn a semantically meaningful latent space, which translates into improved annotation performance. A comparison of our learning algorithms with respect to recent methods on a standard dataset is presented, and a detailed evaluation of the performance shows the validity of our framework.

  8. Vibration exercise for treatment of osteoporosis: a theoretical model.

    PubMed

    Aleyaasin, M; Harrigan, J J

    2008-10-01

    Orthopaedic rehabilitation of osteoporosis by muscle vibration exercise is investigated theoretically using Wolff's theory of strain-induced bone 'remodelling'. The remodelling equation for finite amplitude vibration to be transmitted to the bone via muscle corresponds to a slowly time-varying non-linear dynamic system. This slowly time-varying system is governed by a Riccatti equation with rapidly varying coefficients that oscillate with the frequency of the applied vibration. An averaging technique is used to determine the effective force transmitted to the bone. This force is expressed in terms of the stiffness and damping parameters of the connected muscle. The analytical result predicts that, in order to obtain bone reinforcement, the frequency and amplitude of vibration should not exceed specified levels. Furthermore, low-frequency vibration does not stimulate the bone sufficiently to cause significant remodelling. The theoretical model herein confirms the clinical recommendations regarding vibration exercise and its effects on rehabilitation. In a numerical example, the model predicts that a femur with reduced bone mass as a result of bed rest will be healed completely by vibration consisting of an acceleration of 2g applied at a frequency of 30 Hz over a period of 250 days.

  9. Sampling artifact in volume weighted velocity measurement. I. Theoretical modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Pengjie; Zheng, Yi; Jing, Yipeng

    2015-02-01

    Cosmology based on large scale peculiar velocity prefers volume weighted velocity statistics. However, measuring the volume weighted velocity statistics from inhomogeneously distributed galaxies (simulation particles/halos) suffers from an inevitable and significant sampling artifact. We study this sampling artifact in the velocity power spectrum measured by the nearest particle velocity assignment method by Zheng et al., [Phys. Rev. D 88, 103510 (2013).]. We derive the analytical expression of leading and higher order terms. We find that the sampling artifact suppresses the z =0 E -mode velocity power spectrum by ˜10 % at k =0.1 h /Mpc , for samples with number density 10-3 (Mpc /h )-3 . This suppression becomes larger for larger k and for sparser samples. We argue that this source of systematic errors in peculiar velocity cosmology, albeit severe, can be self-calibrated in the framework of our theoretical modelling. We also work out the sampling artifact in the density-velocity cross power spectrum measurement. A more robust evaluation of related statistics through simulations will be presented in a companion paper by Zheng et al., [Sampling artifact in volume weighted velocity measurement. II. Detection in simulations and comparison with theoretical modelling, arXiv:1409.6809.]. We also argue that similar sampling artifact exists in other velocity assignment methods and hence must be carefully corrected to avoid systematic bias in peculiar velocity cosmology.

  10. Toward a theoretically based measurement model of the good life.

    PubMed

    Cheung, C K

    1997-06-01

    A theoretically based conceptualization of the good life should differentiate 4 dimensions-the hedonist good life, the dialectical good life, the humanist good life, and the formalist good life. These 4 dimensions incorporate previous fragmentary measures, such as life satisfaction, depression, work alienation, and marital satisfaction, to produce an integrative view. In the present study, 276 Hong Kong Chinese husbands and wives responded to a survey of 13 indicators for these 4 good life dimensions. Confirmatory hierarchical factor analysis showed that these indicators identified the 4 dimensions of the good life, which in turn converged to identify a second-order factor of the overall good life. The model demonstrates discriminant validity in that the first-order factors had high loadings on the overall good life factor despite being linked by a social desirability factor. Analysis further showed that the second-order factor model applied equally well to husbands and wives. Thus, the conceptualization appears to be theoretically and empirically adequate in incorporating previous conceptualizations of the good life. PMID:9168589

  11. Theoretical models for Type I and Type II supernova

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1985-01-01

    Recent theoretical progress in understanding the origin and nature of Type I and Type II supernovae is discussed. New Type II presupernova models characterized by a variety of iron core masses at the time of collapse are presented and the sensitivity to the reaction rate /sup 12/C(..cap alpha..,..gamma..)/sup 16/O explained. Stars heavier than about 20 M/sub solar/ must explode by a ''delayed'' mechanism not directly related to the hydrodynamical core bounce and a subset is likely to leave black hole remnants. The isotopic nucleosynthesis expected from these massive stellar explosions is in striking agreement with the sun. Type I supernovae result when an accreting white dwarf undergoes a thermonuclear explosion. The critical role of the velocity of the deflagration front in determining the light curve, spectrum, and, especially, isotopic nucleosynthesis in these models is explored. 76 refs., 8 figs.

  12. A Lifecourse Model of Multimorbidity Resilience: Theoretical and Research Developments.

    PubMed

    Wister, Andrew V; Coatta, Katherine L; Schuurman, Nadine; Lear, Scott A; Rosin, Miriam; MacKey, Dawn

    2016-04-01

    The purpose of this article is to advance a Lifecourse Model of Multimorbidity Resilience. It focuses on the ways in which individuals face adversities associated with multimorbidity and regain a sense of wellness through a complex, dynamic phenomenon termed resilience. A comprehensive review of 112 publications (between 1995 and 2015) was conducted using several comprehensive electronic data bases. Two independent researchers extracted and synthesized resilience literature with specific applications to chronic illness. The article outlines five stages of theoretical development of resilience, synthesizes these with the aging and chronic illness literature, builds a rationale for a lifecourse approach to resilience, and applies the model to multimorbidity. Cultivating and maintaining resilience is fundamental to functioning and quality of life for those with multimorbidity. We found that there are a number of gaps in both basic and applied research that need to be filled to advance knowledge and practice based on resilience approaches. PMID:27076489

  13. Development of theoretical models of integrated millimeter wave antennas

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. Sigfrid; Schaubert, Daniel H.

    1991-01-01

    Extensive radiation patterns for Linear Tapered Slot Antenna (LTSA) Single Elements are presented. The directivity of LTSA elements is predicted correctly by taking the cross polarized pattern into account. A moment method program predicts radiation patterns for air LTSAs with excellent agreement with experimental data. A moment method program was also developed for the task LTSA Array Modeling. Computations performed with this program are in excellent agreement with published results for dipole and monopole arrays, and with waveguide simulator experiments, for more complicated structures. Empirical modeling of LTSA arrays demonstrated that the maximum theoretical element gain can be obtained. Formulations were also developed for calculating the aperture efficiency of LTSA arrays used in reflector systems. It was shown that LTSA arrays used in multibeam systems have a considerable advantage in terms of higher packing density, compared with waveguide feeds. Conversion loss of 10 dB was demonstrated at 35 GHz.

  14. A Lifecourse Model of Multimorbidity Resilience: Theoretical and Research Developments.

    PubMed

    Wister, Andrew V; Coatta, Katherine L; Schuurman, Nadine; Lear, Scott A; Rosin, Miriam; MacKey, Dawn

    2016-04-01

    The purpose of this article is to advance a Lifecourse Model of Multimorbidity Resilience. It focuses on the ways in which individuals face adversities associated with multimorbidity and regain a sense of wellness through a complex, dynamic phenomenon termed resilience. A comprehensive review of 112 publications (between 1995 and 2015) was conducted using several comprehensive electronic data bases. Two independent researchers extracted and synthesized resilience literature with specific applications to chronic illness. The article outlines five stages of theoretical development of resilience, synthesizes these with the aging and chronic illness literature, builds a rationale for a lifecourse approach to resilience, and applies the model to multimorbidity. Cultivating and maintaining resilience is fundamental to functioning and quality of life for those with multimorbidity. We found that there are a number of gaps in both basic and applied research that need to be filled to advance knowledge and practice based on resilience approaches.

  15. NONHOMOGENEOUS TERMS IN THE UNSTEADY FLOW EQUATIONS: MODELING ASPECTS.

    USGS Publications Warehouse

    Lai, Chintu; Schaffranek, Raymond W.; Baltzer, Robert A.

    1987-01-01

    A study is in progress to identify the relative significance, effects, and benefits attributable to the use of one-dimensional, unsteady, open-channel, flow-simulation models employing a variety of nonhomogeneous terms in their equation formulations. Nonhomogeneous terms being analyzed include those representing bed slope, frictional resistance, nonprismatic channel geometry, lateral flow, and (surface) wind stress. After an initial theoretical discussion, the results of a set of numerical experiments are presented that demonstrate cause-and-effect relationships and intercomparisons achieved by neglect or improper treatment of important nonhomogeneous terms. Preliminary results of this study are discussed and presented in this paper, both in the form of qualitative considerations and quantitative tabular findings. These results are expected to yield a definitive set of guidelines and suggestions useful to model engineers.

  16. Theoretical and numerical study of axisymmetric lattice Boltzmann models

    NASA Astrophysics Data System (ADS)

    Huang, Haibo; Lu, Xi-Yun

    2009-07-01

    The forcing term in the lattice Boltzmann equation (LBE) is usually used to mimic Navier-Stokes equations with a body force. To derive axisymmetric model, forcing terms are incorporated into the two-dimensional (2D) LBE to mimic the additional axisymmetric contributions in 2D Navier-Stokes equations in cylindrical coordinates. Many axisymmetric lattice Boltzmann D2Q9 models were obtained through the Chapman-Enskog expansion to recover the 2D Navier-Stokes equations in cylindrical coordinates [I. Halliday , Phys. Rev. E 64, 011208 (2001); K. N. Premnath and J. Abraham, Phys. Rev. E 71, 056706 (2005); T. S. Lee, H. Huang, and C. Shu, Int. J. Mod. Phys. C 17, 645 (2006); T. Reis and T. N. Phillips, Phys. Rev. E 75, 056703 (2007); J. G. Zhou, Phys. Rev. E 78, 036701 (2008)]. The theoretical differences between them are discussed in detail. Numerical studies were also carried out by simulating two different flows to make a comparison on these models’ accuracy and τ sensitivity. It is found all these models are able to obtain accurate results and have the second-order spatial accuracy. However, the model C [J. G. Zhou, Phys. Rev. E 78, 036701 (2008)] is the most stable one in terms of τ sensitivity. It is also found that if density of fluid is defined in its usual way and not directly relevant to source terms, the lattice Boltzmann model seems more stable.

  17. Theoretical and computer models of detonation in solid explosives

    SciTech Connect

    Tarver, C.M.; Urtiew, P.A.

    1997-10-01

    Recent experimental and theoretical advances in understanding energy transfer and chemical kinetics have led to improved models of detonation waves in solid explosives. The Nonequilibrium Zeldovich - von Neumann - Doring (NEZND) model is supported by picosecond laser experiments and molecular dynamics simulations of the multiphonon up-pumping and internal vibrational energy redistribution (IVR) processes by which the unreacted explosive molecules are excited to the transition state(s) preceding reaction behind the leading shock front(s). High temperature, high density transition state theory calculates the induction times measured by laser interferometric techniques. Exothermic chain reactions form product gases in highly excited vibrational states, which have been demonstrated to rapidly equilibrate via supercollisions. Embedded gauge and Fabry-Perot techniques measure the rates of reaction product expansion as thermal and chemical equilibrium is approached. Detonation reaction zone lengths in carbon-rich condensed phase explosives depend on the relatively slow formation of solid graphite or diamond. The Ignition and Growth reactive flow model based on pressure dependent reaction rates and Jones-Wilkins-Lee (JWL) equations of state has reproduced this nanosecond time resolved experimental data and thus has yielded accurate average reaction zone descriptions in one-, two- and three- dimensional hydrodynamic code calculations. The next generation reactive flow model requires improved equations of state and temperature dependent chemical kinetics. Such a model is being developed for the ALE3D hydrodynamic code, in which heat transfer and Arrhenius kinetics are intimately linked to the hydrodynamics.

  18. Charge fractionalization in oxide heterostructures: A field-theoretical model

    NASA Astrophysics Data System (ADS)

    Karthick Selvan, M.; Panigrahi, Prasanta K.

    2016-06-01

    LaAlO3/SrTiO3 heterostructure with polar and non-polar constituents has been shown to exhibit interface metallic conductivity due to fractional charge transfer to the interface. The interface reconstruction by electron redistribution along the (001) orientation, in which half of an electron is transferred per two-dimensional unit cell to the adjacent planes, resulting in a net transfer of half of the charge to both the interface and topmost atomic planes, has been ascribed to a polar discontinuity at the interface in the polar catastrophe model. This avoids the divergence of the electrostatic potential, as the number of layers are increased, producing an oscillatory electric field and finite potential. Akin to the description of charge fractionalization in quasi-one-dimensional polyacetylene by the field-theoretic Jackiw-Rebbi model with fermions interacting with a topologically non-trivial background field, we show an analogous connection between the polar catastrophe model and the Bell-Rajaraman model, where the charge fractionalization occurs in the soliton free sector as an end effect.

  19. Formulation and computational aspects of plasticity and damage models with application to quasi-brittle materials

    SciTech Connect

    Chen, Z.; Schreyer, H.L.

    1995-09-01

    The response of underground structures and transportation facilities under various external loadings and environments is critical for human safety as well as environmental protection. Since quasi-brittle materials such as concrete and rock are commonly used for underground construction, the constitutive modeling of these engineering materials, including post-limit behaviors, is one of the most important aspects in safety assessment. From experimental, theoretical, and computational points of view, this report considers the constitutive modeling of quasi-brittle materials in general and concentrates on concrete in particular. Based on the internal variable theory of thermodynamics, the general formulations of plasticity and damage models are given to simulate two distinct modes of microstructural changes, inelastic flow and degradation of material strength and stiffness, that identify the phenomenological nonlinear behaviors of quasi-brittle materials. The computational aspects of plasticity and damage models are explored with respect to their effects on structural analyses. Specific constitutive models are then developed in a systematic manner according to the degree of completeness. A comprehensive literature survey is made to provide the up-to-date information on prediction of structural failures, which can serve as a reference for future research.

  20. Phenomenological aspects of no-scale inflation models

    SciTech Connect

    Ellis, John; Garcia, Marcos A.G.; Nanopoulos, Dimitri V.; Olive, Keith A.

    2015-10-01

    We discuss phenomenological aspects of inflationary models wiith a no-scale supergravity Kähler potential motivated by compactified string models, in which the inflaton may be identified either as a Kähler modulus or an untwisted matter field, focusing on models that make predictions for the scalar spectral index n{sub s} and the tensor-to-scalar ratio r that are similar to the Starobinsky model. We discuss possible patterns of soft supersymmetry breaking, exhibiting examples of the pure no-scale type m{sub 0}=B{sub 0}=A{sub 0}=0, of the CMSSM type with universal A{sub 0} and m{sub 0}≠0 at a high scale, and of the mSUGRA type with A{sub 0}=B{sub 0}+m{sub 0} boundary conditions at the high input scale. These may be combined with a non-trivial gauge kinetic function that generates gaugino masses m{sub 1/2}≠0, or one may have a pure gravity mediation scenario where trilinear terms and gaugino masses are generated through anomalies. We also discuss inflaton decays and reheating, showing possible decay channels for the inflaton when it is either an untwisted matter field or a Kähler modulus. Reheating is very efficient if a matter field inflaton is directly coupled to MSSM fields, and both candidates lead to sufficient reheating in the presence of a non-trivial gauge kinetic function.

  1. Modeling of rolling element bearing mechanics. Theoretical manual

    NASA Astrophysics Data System (ADS)

    Merchant, David H.; Greenhill, Lyn M.

    1994-10-01

    This report documents the theoretical basis for the Rolling Element Bearing Analysis System (REBANS) analysis code which determines the quasistatic response to external loads or displacement of three types of high-speed rolling element bearings: angular contact ball bearings; duplex angular contact ball bearings; and cylindrical roller bearings. The model includes the effects of bearing ring and support structure flexibility. It is comprised of two main programs: the Preprocessor for Bearing Analysis (PREBAN) which creates the input files for the main analysis program; and Flexibility Enhanced Rolling Element Bearing Analysis (FEREBA), the main analysis program. A companion report addresses the input instructions for and features of the computer codes. REBANS extends the capabilities of the SHABERTH (Shaft and Bearing Thermal Analysis) code to include race and housing flexibility, including such effects as dead band and preload springs.

  2. Modeling an Application's Theoretical Minimum and Average Transactional Response Times

    SciTech Connect

    Paiz, Mary Rose

    2015-04-01

    The theoretical minimum transactional response time of an application serves as a ba- sis for the expected response time. The lower threshold for the minimum response time represents the minimum amount of time that the application should take to complete a transaction. Knowing the lower threshold is beneficial in detecting anomalies that are re- sults of unsuccessful transactions. On the converse, when an application's response time falls above an upper threshold, there is likely an anomaly in the application that is causing unusual performance issues in the transaction. This report explains how the non-stationary Generalized Extreme Value distribution is used to estimate the lower threshold of an ap- plication's daily minimum transactional response time. It also explains how the seasonal Autoregressive Integrated Moving Average time series model is used to estimate the upper threshold for an application's average transactional response time.

  3. Modeling of rolling element bearing mechanics. Theoretical manual

    NASA Technical Reports Server (NTRS)

    Merchant, David H.; Greenhill, Lyn M.

    1994-01-01

    This report documents the theoretical basis for the Rolling Element Bearing Analysis System (REBANS) analysis code which determines the quasistatic response to external loads or displacement of three types of high-speed rolling element bearings: angular contact ball bearings; duplex angular contact ball bearings; and cylindrical roller bearings. The model includes the effects of bearing ring and support structure flexibility. It is comprised of two main programs: the Preprocessor for Bearing Analysis (PREBAN) which creates the input files for the main analysis program; and Flexibility Enhanced Rolling Element Bearing Analysis (FEREBA), the main analysis program. A companion report addresses the input instructions for and features of the computer codes. REBANS extends the capabilities of the SHABERTH (Shaft and Bearing Thermal Analysis) code to include race and housing flexibility, including such effects as dead band and preload springs.

  4. Modeling aspects of human memory for scientific study.

    SciTech Connect

    Caudell, Thomas P.; Watson, Patrick; McDaniel, Mark A.; Eichenbaum, Howard B.; Cohen, Neal J.; Vineyard, Craig Michael; Taylor, Shawn Ellis; Bernard, Michael Lewis; Morrow, James Dan; Verzi, Stephen J.

    2009-10-01

    Working with leading experts in the field of cognitive neuroscience and computational intelligence, SNL has developed a computational architecture that represents neurocognitive mechanisms associated with how humans remember experiences in their past. The architecture represents how knowledge is organized and updated through information from individual experiences (episodes) via the cortical-hippocampal declarative memory system. We compared the simulated behavioral characteristics with those of humans measured under well established experimental standards, controlling for unmodeled aspects of human processing, such as perception. We used this knowledge to create robust simulations of & human memory behaviors that should help move the scientific community closer to understanding how humans remember information. These behaviors were experimentally validated against actual human subjects, which was published. An important outcome of the validation process will be the joining of specific experimental testing procedures from the field of neuroscience with computational representations from the field of cognitive modeling and simulation.

  5. Theoretical model for forming limit diagram predictions without initial inhomogeneity

    NASA Astrophysics Data System (ADS)

    Gologanu, Mihai; Comsa, Dan Sorin; Banabic, Dorel

    2013-05-01

    We report on our attempts to build a theoretical model for determining forming limit diagrams (FLD) based on limit analysis that, contrary to the well-known Marciniak and Kuczynski (M-K) model, does not assume the initial existence of a region with material or geometrical inhomogeneity. We first give a new interpretation based on limit analysis for the onset of necking in the M-K model. Considering the initial thickness defect along a narrow band as postulated by the M-K model, we show that incipient necking is a transition in the plastic mechanism from one of plastic flow in both the sheet and the band to another one where the sheet becomes rigid and all plastic deformation is localized in the band. We then draw on some analogies between the onset of necking in a sheet and the onset of coalescence in a porous bulk body. In fact, the main advance in coalescence modeling has been based on a similar limit analysis with an important new ingredient: the evolution of the spatial distribution of voids, due to the plastic deformation, creating weaker regions with higher porosity surrounded by sound regions with no voids. The onset of coalescence is precisely the transition from a mechanism of plastic deformation in both regions to another one, where the sound regions are rigid. We apply this new ingredient to a necking model based on limit analysis, for the first quadrant of the FLD and a porous sheet. We use Gurson's model with some recent extensions to model the porous material. We follow both the evolution of a homogeneous sheet and the evolution of the distribution of voids. At each moment we test for a potential change of plastic mechanism, by comparing the stresses in the uniform region to those in a virtual band with a larger porosity. The main difference with the coalescence of voids in a bulk solid is that the plastic mechanism for a sheet admits a supplementary degree of freedom, namely the change in the thickness of the virtual band. For strain ratios close to

  6. Theoretical models of adaptive energy management in small wintering birds.

    PubMed

    Brodin, Anders

    2007-10-29

    Many small passerines are resident in forests with very cold winters. Considering their size and the adverse conditions, this is a remarkable feat that requires optimal energy management in several respects, for example regulation of body fat reserves, food hoarding and night-time hypothermia. Besides their beneficial effect on survival, these behaviours also entail various costs. The scenario is complex with many potentially important factors, and this has made 'the little bird in winter' a popular topic for theoretic modellers. Many predictions could have been made intuitively, but models have been especially important when many factors interact. Predictions that hardly could have been made without models include: (i) the minimum mortality occurs at the fat level where the marginal values of starvation risk and predation risk are equal; (ii) starvation risk may also decrease when food requirement increases; (iii) mortality from starvation may correlate positively with fat reserves; (iv) the existence of food stores can increase fitness substantially even if the food is not eaten; (v) environmental changes may induce increases or decreases in the level of reserves depending on whether changes are temporary or permanent; and (vi) hoarding can also evolve under seemingly group-selectionistic conditions.

  7. Computational Graph Theoretical Model of the Zebrafish Sensorimotor Pathway

    NASA Astrophysics Data System (ADS)

    Peterson, Joshua M.; Stobb, Michael; Mazzag, Bori; Gahtan, Ethan

    2011-11-01

    Mapping the detailed connectivity patterns of neural circuits is a central goal of neuroscience and has been the focus of extensive current research [4, 3]. The best quantitative approach to analyze the acquired data is still unclear but graph theory has been used with success [3, 1]. We present a graph theoretical model with vertices and edges representing neurons and synaptic connections, respectively. Our system is the zebrafish posterior lateral line sensorimotor pathway. The goal of our analysis is to elucidate mechanisms of information processing in this neural pathway by comparing the mathematical properties of its graph to those of other, previously described graphs. We create a zebrafish model based on currently known anatomical data. The degree distributions and small-world measures of this model is compared to small-world, random and 3-compartment random graphs of the same size (with over 2500 nodes and 160,000 connections). We find that the zebrafish graph shows small-worldness similar to other neural networks and does not have a scale-free distribution of connections.

  8. Mathematical, Theoretical and Phenomenological Challenges Beyond the Standard Model

    NASA Astrophysics Data System (ADS)

    Djordjević, G.; Nešić, L.; Wess, Julius

    2005-03-01

    Integrable structures in the gauge/string corespondence -- Fluxes in M-theory on 7-manifolds: Gz-, SW(3)- and SU( 2)-structures -- Noncommutative quantum field theory: review and its latest achievements -- Shadows of quantum black holes -- Yukawa quasi-unification and inflation -- Supersymmetric grand unification: the quest for the theory -- Spin foam models of quantum gravity -- Riemann-cartan space-time in stringy geometry -- Can black hole relax unitarily? -- Deformed coordinate spaces derivatives.Deformed coherent state solution to multiparticle stochastic processes -- Non-commutative GUTS, standard model and C, P, T properties from seiberg-witten map -- Seesaw, susy and SO(10) -- On the dynamics of BMN operators of finite size and the , model of string bits -- Divergencies in &expanded noncommutative SU( 2) yang-mills theory -- Heterotic string compactifications with fluxes -- Symmetries and supersymmetries of the dirac-type operators on euclidean taub-NUT space -- Real and p-Adic aspects of quantization of tachyons -- Skew-symmetric lax polynomial matrices and integrable rigid body systems -- Supersymmetric quantum field theories -- Parastatistics algebras and combinatorics -- Noncommutative D-branes on group manifolds -- High-energy bounds on the scattering amplitude in noncommutative quantum field theory -- Many faces of D-branes: from flat space, via AdS to pp-waves.

  9. Modeling postpartum depression in rats: theoretic and methodological issues

    PubMed Central

    Ming, LI; Shinn-Yi, CHOU

    2016-01-01

    The postpartum period is when a host of changes occur at molecular, cellular, physiological and behavioral levels to prepare female humans for the challenge of maternity. Alteration or prevention of these normal adaptions is thought to contribute to disruptions of emotion regulation, motivation and cognitive abilities that underlie postpartum mental disorders, such as postpartum depression. Despite the high incidence of this disorder, and the detrimental consequences for both mother and child, its etiology and related neurobiological mechanisms remain poorly understood, partially due to the lack of appropriate animal models. In recent decades, there have been a number of attempts to model postpartum depression disorder in rats. In the present review, we first describe clinical symptoms of postpartum depression and discuss known risk factors, including both genetic and environmental factors. Thereafter, we discuss various rat models that have been developed to capture various aspects of this disorder and knowledge gained from such attempts. In doing so, we focus on the theories behind each attempt and the methods used to achieve their goals. Finally, we point out several understudied areas in this field and make suggestions for future directions. PMID:27469254

  10. Modeling postpartum depression in rats: theoretic and methodological issues.

    PubMed

    Li, Ming; Chou, Shinn-Yi

    2016-07-18

    The postpartum period is when a host of changes occur at molecular, cellular, physiological and behavioral levels to prepare female humans for the challenge of maternity. Alteration or prevention of these normal adaptions is thought to contribute to disruptions of emotion regulation, motivation and cognitive abilities that underlie postpartum mental disorders, such as postpartum depression. Despite the high incidence of this disorder, and the detrimental consequences for both mother and child, its etiology and related neurobiological mechanisms remain poorly understood, partially due to the lack of appropriate animal models. In recent decades, there have been a number of attempts to model postpartum depression disorder in rats. In the present review, we first describe clinical symptoms of postpartum depression and discuss known risk factors, including both genetic and environmental factors. Thereafter, we discuss various rat models that have been developed to capture various aspects of this disorder and knowledge gained from such attempts. In doing so, we focus on the theories behind each attempt and the methods used to achieve their goals. Finally, we point out several understudied areas in this field and make suggestions for future directions. PMID:27469254

  11. Improvements to Nuclear Data and Its Uncertainties by Theoretical Modeling

    SciTech Connect

    Danon, Yaron; Nazarewicz, Witold; Talou, Patrick

    2013-02-18

    This project addresses three important gaps in existing evaluated nuclear data libraries that represent a significant hindrance against highly advanced modeling and simulation capabilities for the Advanced Fuel Cycle Initiative (AFCI). This project will: Develop advanced theoretical tools to compute prompt fission neutrons and gamma-ray characteristics well beyond average spectra and multiplicity, and produce new evaluated files of U and Pu isotopes, along with some minor actinides; Perform state-of-the-art fission cross-section modeling and calculations using global and microscopic model input parameters, leading to truly predictive fission cross-sections capabilities. Consistent calculations for a suite of Pu isotopes will be performed; Implement innovative data assimilation tools, which will reflect the nuclear data evaluation process much more accurately, and lead to a new generation of uncertainty quantification files. New covariance matrices will be obtained for Pu isotopes and compared to existing ones. The deployment of a fleet of safe and efficient advanced reactors that minimize radiotoxic waste and are proliferation-resistant is a clear and ambitious goal of AFCI. While in the past the design, construction and operation of a reactor were supported through empirical trials, this new phase in nuclear energy production is expected to rely heavily on advanced modeling and simulation capabilities. To be truly successful, a program for advanced simulations of innovative reactors will have to develop advanced multi-physics capabilities, to be run on massively parallel super- computers, and to incorporate adequate and precise underlying physics. And all these areas have to be developed simultaneously to achieve those ambitious goals. Of particular interest are reliable fission cross-section uncertainty estimates (including important correlations) and evaluations of prompt fission neutrons and gamma-ray spectra and uncertainties.

  12. A theoretical model for the Lorentz force particle analyzer

    NASA Astrophysics Data System (ADS)

    Moreau, René; Tao, Zhen; Wang, Xiaodong

    2016-07-01

    In a previous paper [X. Wang et al., J. Appl. Phys. 120, 014903 (2016)], several experimental devices have been presented, which demonstrate the efficiency of electromagnetic techniques for detecting and sizing electrically insulating particles entrained in the flow of a molten metal. In each case, a non-uniform magnetic field is applied across the flow of the electrically conducting liquid, thereby generating a braking Lorentz force on this moving medium and a reaction force on the magnet, which tends to be entrained in the flow direction. The purpose of this letter is to derive scaling laws for this Lorentz force from an elementary theoretical model. For simplicity, as in the experiments, the flowing liquid is modeled as a solid body moving with a uniform velocity U. The eddy currents in the moving domain are derived from the classic induction equation and Ohm's law, and expressions for the Lorentz force density j ×B and for its integral over the entire moving domain follow. The insulating particles that are eventually present and entrained with this body are then treated as small disturbances in a classic perturbation analysis, thereby leading to scaling laws for the pulses they generate in the Lorentz force. The purpose of this letter is both to illustrate the eddy currents without and with insulating particles in the electrically conducting liquid and to derive a key relation between the pulses in the Lorentz force and the main parameters (particle volume and dimensions of the region subjected to the magnetic field).

  13. Collective behavior in animal groups: theoretical models and empirical studies

    PubMed Central

    Giardina, Irene

    2008-01-01

    Collective phenomena in animal groups have attracted much attention in the last years, becoming one of the hottest topics in ethology. There are various reasons for this. On the one hand, animal grouping provides a paradigmatic example of self-organization, where collective behavior emerges in absence of centralized control. The mechanism of group formation, where local rules for the individuals lead to a coherent global state, is very general and transcends the detailed nature of its components. In this respect, collective animal behavior is a subject of great interdisciplinary interest. On the other hand, there are several important issues related to the biological function of grouping and its evolutionary success. Research in this field boasts a number of theoretical models, but much less empirical results to compare with. For this reason, even if the general mechanisms through which self-organization is achieved are qualitatively well understood, a quantitative test of the models assumptions is still lacking. New analysis on large groups, which require sophisticated technological procedures, can provide the necessary empirical data. PMID:19404431

  14. A game theoretic model of drug launch in India.

    PubMed

    Bhaduri, Saradindu; Ray, Amit Shovon

    2006-01-01

    There is a popular belief that drug launch is delayed in developing countries like India because of delayed transfer of technology due to a 'post-launch' imitation threat through weak intellectual property rights (IPR). In fact, this belief has been a major reason for the imposition of the Trade Related Intellectual Property Rights regime under the WTO. This construct undermines the fact that in countries like India, with high reverse engineering capabilities, imitation can occur even before the formal technology transfer, and fails to recognize the first mover advantage in pharmaceutical markets. This paper argues that the first mover advantage is important and will vary across therapeutic areas, especially in developing countries with diverse levels of patient enlightenment and quality awareness. We construct a game theoretic model of incomplete information to examine the delay in drug launch in terms of costs and benefits of first move, assumed to be primarily a function of the therapeutic area of the new drug. Our model shows that drug launch will be delayed only for external (infective/communicable) diseases, while drugs for internal, non-communicable diseases (accounting for the overwhelming majority of new drug discovery) will be launched without delay. PMID:18634701

  15. Theoretical model of prion propagation: a misfolded protein induces misfolding.

    PubMed

    Małolepsza, Edyta; Boniecki, Michal; Kolinski, Andrzej; Piela, Lucjan

    2005-05-31

    There is a hypothesis that dangerous diseases such as bovine spongiform encephalopathy, Creutzfeldt-Jakob, Alzheimer's, fatal familial insomnia, and several others are induced by propagation of wrong or misfolded conformations of some vital proteins. If for some reason the misfolded conformations were acquired by many such protein molecules it might lead to a "conformational" disease of the organism. Here, a theoretical model of the molecular mechanism of such a conformational disease is proposed, in which a metastable (or misfolded) form of a protein induces a similar misfolding of another protein molecule (conformational autocatalysis). First, a number of amino acid sequences composed of 32 aa have been designed that fold rapidly into a well defined native-like alpha-helical conformation. From a large number of such sequences a subset of 14 had a specific feature of their energy landscape, a well defined local energy minimum (higher than the global minimum for the alpha-helical fold) corresponding to beta-type structure. Only one of these 14 sequences exhibited a strong autocatalytic tendency to form a beta-sheet dimer capable of further propagation of protofibril-like structure. Simulations were done by using a reduced, although of high resolution, protein model and the replica exchange Monte Carlo sampling procedure. PMID:15911770

  16. Theoretical model of prion propagation: A misfolded protein induces misfolding

    PubMed Central

    Małolepsza, Edyta; Boniecki, Michał; Kolinski, Andrzej; Piela, Lucjan

    2005-01-01

    There is a hypothesis that dangerous diseases such as bovine spongiform encephalopathy, Creutzfeldt-Jakob, Alzheimer's, fatal familial insomnia, and several others are induced by propagation of wrong or misfolded conformations of some vital proteins. If for some reason the misfolded conformations were acquired by many such protein molecules it might lead to a “conformational” disease of the organism. Here, a theoretical model of the molecular mechanism of such a conformational disease is proposed, in which a metastable (or misfolded) form of a protein induces a similar misfolding of another protein molecule (conformational autocatalysis). First, a number of amino acid sequences composed of 32 aa have been designed that fold rapidly into a well defined native-like α-helical conformation. From a large number of such sequences a subset of 14 had a specific feature of their energy landscape, a well defined local energy minimum (higher than the global minimum for the α-helical fold) corresponding to β-type structure. Only one of these 14 sequences exhibited a strong autocatalytic tendency to form a β-sheet dimer capable of further propagation of protofibril-like structure. Simulations were done by using a reduced, although of high resolution, protein model and the replica exchange Monte Carlo sampling procedure. PMID:15911770

  17. Multiscale modeling of lithium ion batteries: thermal aspects

    PubMed Central

    Zausch, Jochen

    2015-01-01

    Summary The thermal behavior of lithium ion batteries has a huge impact on their lifetime and the initiation of degradation processes. The development of hot spots or large local overpotentials leading, e.g., to lithium metal deposition depends on material properties as well as on the nano- und microstructure of the electrodes. In recent years a theoretical structure emerges, which opens the possibility to establish a systematic modeling strategy from atomistic to continuum scale to capture and couple the relevant phenomena on each scale. We outline the building blocks for such a systematic approach and discuss in detail a rigorous approach for the continuum scale based on rational thermodynamics and homogenization theories. Our focus is on the development of a systematic thermodynamically consistent theory for thermal phenomena in batteries at the microstructure scale and at the cell scale. We discuss the importance of carefully defining the continuum fields for being able to compare seemingly different phenomenological theories and for obtaining rules to determine unknown parameters of the theory by experiments or lower-scale theories. The resulting continuum models for the microscopic and the cell scale are numerically solved in full 3D resolution. The complex very localized distributions of heat sources in a microstructure of a battery and the problems of mapping these localized sources on an averaged porous electrode model are discussed by comparing the detailed 3D microstructure-resolved simulations of the heat distribution with the result of the upscaled porous electrode model. It is shown, that not all heat sources that exist on the microstructure scale are represented in the averaged theory due to subtle cancellation effects of interface and bulk heat sources. Nevertheless, we find that in special cases the averaged thermal behavior can be captured very well by porous electrode theory. PMID:25977870

  18. Genetic aspects of autism spectrum disorders: insights from animal models.

    PubMed

    Banerjee, Swati; Riordan, Maeveen; Bhat, Manzoor A

    2014-01-01

    Autism spectrum disorders (ASDs) are a complex neurodevelopmental disorder that display a triad of core behavioral deficits including restricted interests, often accompanied by repetitive behavior, deficits in language and communication, and an inability to engage in reciprocal social interactions. ASD is among the most heritable disorders but is not a simple disorder with a singular pathology and has a rather complex etiology. It is interesting to note that perturbations in synaptic growth, development, and stability underlie a variety of neuropsychiatric disorders, including ASD, schizophrenia, epilepsy, and intellectual disability. Biological characterization of an increasing repertoire of synaptic mutants in various model organisms indicates synaptic dysfunction as causal in the pathophysiology of ASD. Our understanding of the genes and genetic pathways that contribute toward the formation, stabilization, and maintenance of functional synapses coupled with an in-depth phenotypic analysis of the cellular and behavioral characteristics is therefore essential to unraveling the pathogenesis of these disorders. In this review, we discuss the genetic aspects of ASD emphasizing on the well conserved set of genes and genetic pathways implicated in this disorder, many of which contribute to synapse assembly and maintenance across species. We also review how fundamental research using animal models is providing key insights into the various facets of human ASD. PMID:24605088

  19. Relevant Aspects in Modeling of Micro-injection Molding

    NASA Astrophysics Data System (ADS)

    Nguyen-Chung, Tham; Jüttner, Gábor; Pham, Tung; Mennig, Günter

    2008-07-01

    Growing demands in the manufacturing of micro and precision components in plastics require new concepts for molding machines and micro molds on the one hand. On the other hand, a deeper understanding of the filling and solidification process in a micro mold is indispensable. In this work, the filling process of a micro spiral was analyzed by modeling the compressible flow using pressure dependent viscosity and adjusted heat transfer coefficients. At the same time, experimental filling studies were carried out on an accurately controlled micro-injection molding machine. Based on the relationship between the injection pressure and the filling degree, essential factors for the quality of the simulation can be identified. It can be shown that the flow behavior of the melt in a micro cavity of high aspect ratio is extremely dependent on the melt compressibility in the injection cylinder which needs to be considered in the simulation in order to predict an accurate flow rate. Moreover, the heat transfer coefficients between the melt and the mold wall vary significantly when changing cavity thickness and processing conditions. It is believed that a pressure dependent model for the heat transfer coefficient would be able to improve the quality of the process simulation.

  20. The neural mediators of kindness-based meditation: a theoretical model

    PubMed Central

    Mascaro, Jennifer S.; Darcher, Alana; Negi, Lobsang T.; Raison, Charles L.

    2015-01-01

    Although kindness-based contemplative practices are increasingly employed by clinicians and cognitive researchers to enhance prosocial emotions, social cognitive skills, and well-being, and as a tool to understand the basic workings of the social mind, we lack a coherent theoretical model with which to test the mechanisms by which kindness-based meditation may alter the brain and body. Here, we link contemplative accounts of compassion and loving-kindness practices with research from social cognitive neuroscience and social psychology to generate predictions about how diverse practices may alter brain structure and function and related aspects of social cognition. Contingent on the nuances of the practice, kindness-based meditation may enhance the neural systems related to faster and more basic perceptual or motor simulation processes, simulation of another’s affective body state, slower and higher-level perspective-taking, modulatory processes such as emotion regulation and self/other discrimination, and combinations thereof. This theoretical model will be discussed alongside best practices for testing such a model and potential implications and applications of future work. PMID:25729374

  1. The neural mediators of kindness-based meditation: a theoretical model.

    PubMed

    Mascaro, Jennifer S; Darcher, Alana; Negi, Lobsang T; Raison, Charles L

    2015-01-01

    Although kindness-based contemplative practices are increasingly employed by clinicians and cognitive researchers to enhance prosocial emotions, social cognitive skills, and well-being, and as a tool to understand the basic workings of the social mind, we lack a coherent theoretical model with which to test the mechanisms by which kindness-based meditation may alter the brain and body. Here, we link contemplative accounts of compassion and loving-kindness practices with research from social cognitive neuroscience and social psychology to generate predictions about how diverse practices may alter brain structure and function and related aspects of social cognition. Contingent on the nuances of the practice, kindness-based meditation may enhance the neural systems related to faster and more basic perceptual or motor simulation processes, simulation of another's affective body state, slower and higher-level perspective-taking, modulatory processes such as emotion regulation and self/other discrimination, and combinations thereof. This theoretical model will be discussed alongside best practices for testing such a model and potential implications and applications of future work.

  2. Empirical STORM-E Model. [I. Theoretical and Observational Basis

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Xu, Xiaojing; Bilitza, Dieter; Mlynczak, Martin G.; Russell, James M., III

    2013-01-01

    Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region peak electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) volume emission rates (VER) derived from the TIMED/SABER 4.3 lm channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 lm VER is sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 lm VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part II of this series describes the explicit development of the empirical storm-time correction factor for E-region peak electron densities, and shows comparisons of E-region electron densities between STORM-E predictions and incoherent scatter radar measurements. In this paper, Part I of the series, the efficacy of using SABER-derived NO+(v) VER as a proxy for the E-region response to solar-geomagnetic disturbances is presented. Furthermore, a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 lm limb emission measurements is given. Finally, an assessment of key uncertainties in retrieving NO+(v) VER is presented

  3. PREFACE: First International Congress of the International Association of Inverse Problems (IPIA): Applied Inverse Problems 2007: Theoretical and Computational Aspects

    NASA Astrophysics Data System (ADS)

    Uhlmann, Gunther

    2008-07-01

    This volume represents the proceedings of the fourth Applied Inverse Problems (AIP) international conference and the first congress of the Inverse Problems International Association (IPIA) which was held in Vancouver, Canada, June 25 29, 2007. The organizing committee was formed by Uri Ascher, University of British Columbia, Richard Froese, University of British Columbia, Gary Margrave, University of Calgary, and Gunther Uhlmann, University of Washington, chair. The conference was part of the activities of the Pacific Institute of Mathematical Sciences (PIMS) Collaborative Research Group on inverse problems (http://www.pims.math.ca/scientific/collaborative-research-groups/past-crgs). This event was also supported by grants from NSF and MITACS. Inverse Problems (IP) are problems where causes for a desired or an observed effect are to be determined. They lie at the heart of scientific inquiry and technological development. The enormous increase in computing power and the development of powerful algorithms have made it possible to apply the techniques of IP to real-world problems of growing complexity. Applications include a number of medical as well as other imaging techniques, location of oil and mineral deposits in the earth's substructure, creation of astrophysical images from telescope data, finding cracks and interfaces within materials, shape optimization, model identification in growth processes and, more recently, modelling in the life sciences. The series of Applied Inverse Problems (AIP) Conferences aims to provide a primary international forum for academic and industrial researchers working on all aspects of inverse problems, such as mathematical modelling, functional analytic methods, computational approaches, numerical algorithms etc. The steering committee of the AIP conferences consists of Heinz Engl (Johannes Kepler Universität, Austria), Joyce McLaughlin (RPI, USA), William Rundell (Texas A&M, USA), Erkki Somersalo (Helsinki University of Technology

  4. PREFACE: First International Congress of the International Association of Inverse Problems (IPIA): Applied Inverse Problems 2007: Theoretical and Computational Aspects

    NASA Astrophysics Data System (ADS)

    Uhlmann, Gunther

    2008-07-01

    This volume represents the proceedings of the fourth Applied Inverse Problems (AIP) international conference and the first congress of the Inverse Problems International Association (IPIA) which was held in Vancouver, Canada, June 25 29, 2007. The organizing committee was formed by Uri Ascher, University of British Columbia, Richard Froese, University of British Columbia, Gary Margrave, University of Calgary, and Gunther Uhlmann, University of Washington, chair. The conference was part of the activities of the Pacific Institute of Mathematical Sciences (PIMS) Collaborative Research Group on inverse problems (http://www.pims.math.ca/scientific/collaborative-research-groups/past-crgs). This event was also supported by grants from NSF and MITACS. Inverse Problems (IP) are problems where causes for a desired or an observed effect are to be determined. They lie at the heart of scientific inquiry and technological development. The enormous increase in computing power and the development of powerful algorithms have made it possible to apply the techniques of IP to real-world problems of growing complexity. Applications include a number of medical as well as other imaging techniques, location of oil and mineral deposits in the earth's substructure, creation of astrophysical images from telescope data, finding cracks and interfaces within materials, shape optimization, model identification in growth processes and, more recently, modelling in the life sciences. The series of Applied Inverse Problems (AIP) Conferences aims to provide a primary international forum for academic and industrial researchers working on all aspects of inverse problems, such as mathematical modelling, functional analytic methods, computational approaches, numerical algorithms etc. The steering committee of the AIP conferences consists of Heinz Engl (Johannes Kepler Universität, Austria), Joyce McLaughlin (RPI, USA), William Rundell (Texas A&M, USA), Erkki Somersalo (Helsinki University of Technology

  5. Aspects of Cosmology from particle physics beyond the Standard Model

    NASA Astrophysics Data System (ADS)

    Shuhmaher, Natalia

    The interface of Cosmology and High Energy physics is a forefront area of research which is constantly undergoing development. This thesis makes various contributions to this endeavor. String-inspired cosmology is the subject of the first part of the thesis, where we propose both a new inflationary and a new alternative cosmological model. The second part of the thesis concentrates on the problems of integrating cosmology with particle physics beyond the Standard Model. Inspired by new opportunities due to stringy degrees of freedom, we propose a non-inflationary resolution of the entropy and horizon problems. In this string-inspired scenario, 'our' dimensions expand while the extra dimensions first expand and then contract, before eventually stabilizing. The equation of state of the bulk matter (which consists of branes) is negative. Hence, there is a net gain in the total energy of the universe during the pre-stabilization phase. At the end of this phase, the energy stored in the branes is converted into radiation. The result is a large and dense 3-dimensional universe. Making use of similar ideas, we propose a not-fine-tuned model of brane inflation. In this scenario the brane separation, playing the role of the inflaton, is the same as the overall volume modulus. The bulk matter provides an initial expansion phase which drives the inflaton up its potential, so that the conditions for inflation are realized. The specific choice of the inflationary potential nicely fits the cosmological observations. Another aspect of this research concentrates on the cosmological moduli problem: namely, the existence of weakly coupled particles those decay is late enough to interfere with Big Bang Nucleosynthesis. As a solution, we suggest parametric and tachyonic resonances to shorten the decay time. Even heavy moduli are dangerous for cosmology if they cause the overproduction of gravitinos. We find that tachyonic decay channels help to transfer most of the energy of these

  6. Theoretical Biology and Medical Modelling: ensuring continued growth and future leadership.

    PubMed

    Nishiura, Hiroshi; Rietman, Edward A; Wu, Rongling

    2013-07-11

    Theoretical biology encompasses a broad range of biological disciplines ranging from mathematical biology and biomathematics to philosophy of biology. Adopting a broad definition of "biology", Theoretical Biology and Medical Modelling, an open access journal, considers original research studies that focus on theoretical ideas and models associated with developments in biology and medicine.

  7. Sequence design in lattice models by graph theoretical methods

    NASA Astrophysics Data System (ADS)

    Sanjeev, B. S.; Patra, S. M.; Vishveshwara, S.

    2001-01-01

    A general strategy has been developed based on graph theoretical methods, for finding amino acid sequences that take up a desired conformation as the native state. This problem of inverse design has been addressed by assigning topological indices for the monomer sites (vertices) of the polymer on a 3×3×3 cubic lattice. This is a simple design strategy, which takes into account only the topology of the target protein and identifies the best sequence for a given composition. The procedure allows the design of a good sequence for a target native state by assigning weights for the vertices on a lattice site in a given conformation. It is seen across a variety of conformations that the predicted sequences perform well both in sequence and in conformation space, in identifying the target conformation as native state for a fixed composition of amino acids. Although the method is tested in the framework of the HP model [K. F. Lau and K. A. Dill, Macromolecules 22, 3986 (1989)] it can be used in any context if proper potential functions are available, since the procedure derives unique weights for all the sites (vertices, nodes) of the polymer chain of a chosen conformation (graph).

  8. Theoretical model of superconducting spintronic SIsFS devices

    NASA Astrophysics Data System (ADS)

    Bakurskiy, S. V.; Klenov, N. V.; Soloviev, I. I.; Bol'ginov, V. V.; Ryazanov, V. V.; Vernik, I. V.; Mukhanov, O. A.; Kupriyanov, M. Yu.; Golubov, A. A.

    2013-05-01

    Motivated by recent progress in the development of cryogenic memory compatible with single flux quantum (SFQ) circuits, we have performed a theoretical study of magnetic SIsFS Josephson junctions, where "S" is a bulk superconductor, "s" is a thin superconducting film, "F" is a metallic ferromagnet, and "I" is an insulator. We calculate the Josephson current as a function of s and F layers thickness, temperature, and exchange energy of F film. We outline several modes of operation of these junctions and demonstrate their unique ability to have large product of a critical current IC and a normal-state resistance RN in the π state, comparable to that in superconductor-insulator-superconductor tunnel junctions commonly used in SFQ circuits. We develop a model describing switching of the Josephson critical current in these devices by external magnetic field. The results are in good agreement with the experimental data for Nb-Al/AlOx-Nb-Pd0.99Fe0.01-Nb junctions.

  9. Thermophotonic heat pump—a theoretical model and numerical simulations

    NASA Astrophysics Data System (ADS)

    Oksanen, Jani; Tulkki, Jukka

    2010-05-01

    We have recently proposed a solid state heat pump based on photon mediated heat transfer between two large-area light emitting diodes coupled by the electromagnetic field and enclosed in a semiconductor structure with a nearly homogeneous refractive index. Ideally the thermophotonic heat pump (THP) allows heat transfer at Carnot efficiency but in reality there are several factors that limit the efficiency. The efficient operation of the THP is based on the following construction factors and operational characteristics: (1) broad area semiconductor diodes to enable operation at optimal carrier density and high efficiency, (2) recycling of the energy of the emitted photons, (3) elimination of photon extraction losses by integrating the emitting and the absorbing diodes within a single semiconductor structure, and (4) eliminating the reverse thermal conduction by a nanometer scale vacuum layer between the diodes. In this paper we develop a theoretical model for the THP and study the fundamental physical limitations and potential of the concept. The results show that even when the most important losses of the THPs are accounted for, the THP has potential to outperform the thermoelectric coolers especially for heat transfer across large temperature differences and possibly even to compete with conventional small scale compressor based heat pumps.

  10. Membranes and theoretical modeling of membrane distillation: a review.

    PubMed

    Khayet, Mohamed

    2011-05-11

    Membrane distillation (MD) is one of the non-isothermal membrane separation processes used in various applications such desalination, environmental/waste cleanup, food, etc. It is known since 1963 and is still being developed at laboratory stage for different purposes and not fully implemented in industry. An abrupt increase in the number of papers on MD membrane engineering (i.e. design, fabrication and testing in MD) is seen since only 6 years ago. The present paper offers a comprehensive MD state-of-the-art review covering a wide range of commercial membranes, MD membrane engineering, their MD performance, transport mechanisms, experimental and theoretical modeling of different MD configurations as well as recent developments in MD. Improved MD membranes with specific morphology, micro- and nano-structures are highly demanded. Membranes with different pore sizes, porosities, thicknesses and materials as well as novel structures are required in order to carry out systematic MD studies for better understanding mass transport in different MD configurations, thereby improving the MD performance and looking for MD industrialization.

  11. Strengthening Theoretical Testing in Criminology Using Agent-based Modeling

    PubMed Central

    Groff, Elizabeth R.

    2014-01-01

    Objectives: The Journal of Research in Crime and Delinquency (JRCD) has published important contributions to both criminological theory and associated empirical tests. In this article, we consider some of the challenges associated with traditional approaches to social science research, and discuss a complementary approach that is gaining popularity—agent-based computational modeling—that may offer new opportunities to strengthen theories of crime and develop insights into phenomena of interest. Method: Two literature reviews are completed. The aim of the first is to identify those articles published in JRCD that have been the most influential and to classify the theoretical perspectives taken. The second is intended to identify those studies that have used an agent-based model (ABM) to examine criminological theories and to identify which theories have been explored. Results: Ecological theories of crime pattern formation have received the most attention from researchers using ABMs, but many other criminological theories are amenable to testing using such methods. Conclusion: Traditional methods of theory development and testing suffer from a number of potential issues that a more systematic use of ABMs—not without its own issues—may help to overcome. ABMs should become another method in the criminologists toolbox to aid theory testing and falsification. PMID:25419001

  12. Theoretical models for the polarization of astronomical masers

    NASA Astrophysics Data System (ADS)

    Western, L. R.

    Theoretical models for the creation of linear polarization in astronomical masers are developed. Equations are obtained that describe the transfer of the linearly polarized radiation in two and three dimensional astronomical masers. The transfer equations presented here include both polarization and intersecting maser rays. The transfer equations are integrated to find the intensity of radiation emitted by spheres, spherical shells and thin disks. The calculations show that apparent sizes due to beaming are still quite small and comparable to those obtained using the scalar molecular approximation. Long tails and substantial differences between the two linear polarizations occur in the angular distributions calculated here, especially for disk-like geometries, due to the effect of individual magnetic substates. Further calculations show that small anisotropies (approximately 10%) in the excitation can lead to very high linear polarization (approximately 90%) of the radiation from saturated astronomical masers. Separate calculations are performed for the transfer of the vibrational radiation of molecular SiO through a spherical gas shell. A major result is that magnetic fields alone can not account for the high linear polarization observations of the SiO v = 1, J = 2 ranges to 1 astronomical maser.

  13. Information-Theoretic Latent Distribution Modeling: Distinguishing Discrete and Continuous Latent Variable Models

    ERIC Educational Resources Information Center

    Markon, Kristian E.; Krueger, Robert F.

    2006-01-01

    Distinguishing between discrete and continuous latent variable distributions has become increasingly important in numerous domains of behavioral science. Here, the authors explore an information-theoretic approach to latent distribution modeling, in which the ability of latent distribution models to represent statistical information in observed…

  14. Comparison of theoretical and flight-measured local flow aerodynamics for a low-aspect-ratio fin

    NASA Technical Reports Server (NTRS)

    Johnson, J. Blair; Sandlin, Doral R.

    1986-01-01

    Flight test and theoretical aerodynamic data were obtained for a flight test fixture mounted on the underside of an F-104G aircraft. The theoretical data were generated using two codes: a two-dimensional transonic code called code H, and a three-dimensional subsonic and supersonic code called wing-body. Pressure distributions generated by the codes for the flight test fixture, as well as compared with the flight-measured data. The two-dimensional code pressure distributions compared well except at the minimum pressure point and the trailing edge. Shock locations compared well except at high transonic speeds. However, the two-dimensional code did not adequately predict the displacement thickness of the flight test fixture. The three-dimensional code pressure distributions compared well except at the trailing edge of the flight test fixture.

  15. Theoretical study on the inverse modeling of deep body temperature measurement.

    PubMed

    Huang, Ming; Chen, Wenxi

    2012-03-01

    We evaluated the theoretical aspects of monitoring the deep body temperature distribution with the inverse modeling method. A two-dimensional model was built based on anatomical structure to simulate the human abdomen. By integrating biophysical and physiological information, the deep body temperature distribution was estimated from cutaneous surface temperature measurements using an inverse quasilinear method. Simulations were conducted with and without the heat effect of blood perfusion in the muscle and skin layers. The results of the simulations showed consistently that the noise characteristics and arrangement of the temperature sensors were the major factors affecting the accuracy of the inverse solution. With temperature sensors of 0.05 °C systematic error and an optimized 16-sensor arrangement, the inverse method could estimate the deep body temperature distribution with an average absolute error of less than 0.20 °C. The results of this theoretical study suggest that it is possible to reconstruct the deep body temperature distribution with the inverse method and that this approach merits further investigation.

  16. Theoretical aspects of implementation of kilovoltage cone-beam CT onboard linear accelerator for image-guided radiotherapy.

    PubMed

    Rodríguez Cordón, Marta; Ferrer Albiach, Carlos

    2009-08-01

    The main objective of image-guided radiation therapy (IGRT) equipment is to reduce and correct inherent errors in external radiotherapy processes. At the present time, there are different IGRT systems available, but here we will refer exclusively to the kilovoltage cone-beam CT onboard linear accelerator (CBkVCT) and the different aspects that, from a clinical point of view, should be taken into consideration before the implementation of this equipment.

  17. Testing Models: A Key Aspect to Promote Teaching Activities Related to Models and Modelling in Biology Lessons?

    ERIC Educational Resources Information Center

    Krell, Moritz; Krüger, Dirk

    2016-01-01

    This study investigated biology teachers' (N = 148) understanding of models and modelling (MoMo), their model-related teaching activities and relations between the two. A framework which distinguishes five aspects of MoMo in science ("nature of models," "multiple models," "purpose of models," "testing…

  18. Mathematical modeling of synergetic aspects of machine building enterprise management

    NASA Astrophysics Data System (ADS)

    Kazakov, O. D.; Andriyanov, S. V.

    2016-04-01

    The multivariate method of determining the optimal values of leading key performance indicators of production divisions of machine-building enterprises in the aspect of synergetics has been worked out.

  19. A theoretical model of grainsize evolution during deformation

    NASA Astrophysics Data System (ADS)

    Ricard, Y.; Bercovici, D.; Rozel, A.

    2007-12-01

    Lithospheric shear localization, as occurs in the formation of tectonic plate boundaries, is often associated with diminished grainsize (e.g., mylonites). Grainsize reduction is typically attributed to dynamic recrystallization; however, theoretical models of shear-localization arising from this hypothesis are problematic since (1) they require the simultaneous action of two exclusive creep mechanisms (diffusion and dislocation creep), and (2) the grain-growth ("healing") laws employed by these models are derived from static grain-growth or coarsening theory, although the shear-localization setting itself is far from static equilibrium. We present a new first-principles grained-continuum theory which accounts for both coarsening and damage-induced grainsize reduction. Damage per se is the generic process for generation of microcracks, defects, dislocations (including recrystallization), subgrains, nucleii and cataclastic breakdown of grains. The theory contains coupled statistical grain-scale and continuum macroscopic components. The grain-scale element of the theory prescribes both the evolution of the grainsize distribution, and a phenomenological grain-growth law derived from non-equilibrium thermodynamics; grain-growth thus incorporates the free energy differences between grains, including both grain-boundary surface energy (which controls coarsening) and the contribution of deformational work to these free energiesconservation and positivity of entropy production provide the phenomenological law for the statistical grain-growth law. We identify four potential mechanisms that affect the distribution of grainsize; two of them conserve the number of grains but change their relative masses and two of them change the number of grains by sticking them together or breaking them. In the limit of static equilibrium, only the two mechanisms that increase the average grainsize are allowed by the second law of thermodynamics. The first one is a diffusive mass transport

  20. A theoretical microbial contamination model for a human Mars mission

    NASA Astrophysics Data System (ADS)

    Lupisella, Mark Lewis

    Contamination from a human presence on Mars could significantly compromise the search for extraterrestrial life. In particular, the difficulties in controlling microbial contamination, the potential for terrestrial microbes to grow, evolve, compete, and modify the Martian environment, and the likely microbial nature of putative Martian life, make microbial contamination worthy of focus as we begin to plan for a human mission to Mars. This dissertation describes a relatively simple theoretical model that can be used to explore how microbial contamination from a human Mars mission might survive and grow in the Martian soil environment surrounding a habitat. A user interface has been developed to allow a general practitioner to choose values and functions for almost all parameters ranging from the number of astronauts to the half-saturation constants for microbial growth. Systematic deviations from a baseline set of parameter values are explored as potential plausible scenarios for the first human Mars missions. The total viable population and population density are the primary state variables of interest, but other variables such as the total number of births and total dead and viable microbes are also tracked. The general approach was to find the most plausible parameter value combinations that produced a population density of 1 microbe/cm3 or greater, a threshold that was used to categorize the more noteworthy populations for subsequent analysis. Preliminary assessments indicate that terrestrial microbial contamination resulting from leakage from a limited human mission (perhaps lasting up to 5 months) will not likely become a problematic population in the near-term as long as reasonable contamination control measures are implemented (for example, a habitat leak rate no greater than 1% per hour). However, there appear to be plausible, albeit unlikely, scenarios that could cause problematic populations, depending in part on (a) the initial survival fraction and

  1. A theoretical investigation of the aerodynamics of low-aspect-ratio wings with partial leading-edge separation

    NASA Technical Reports Server (NTRS)

    Mehrotra, S. C.; Lan, C. E.

    1978-01-01

    A numerical method is developed to predict distributed and total aerodynamic characteristics for low aspect-ratio wings with partial leading-edge separation. The flow is assumed to be steady and inviscid. The wing boundary condition is formulated by the quasi-vortex-lattice method. The leading-edge separated vortices are represented by discrete free vortex elements which are aligned with the local velocity vector at mid-points to satisfy the force free condition. The wake behind the trailing-edge is also force free. The flow tangency boundary condition is satisfied on the wing, including the leading- and trailing-edges. Comparison of the predicted results with complete leading-edge separation has shown reasonably good agreement. For cases with partial leading-edge separation, the lift is found to be highly nonlinear with angle of attack.

  2. Presenting a Theoretical Model of Four Conceptions of Civic Education

    ERIC Educational Resources Information Center

    Cohen, Aviv

    2010-01-01

    This conceptual study will question the ways different epistemological conceptions of citizenship and education influence the characteristics of civic education. While offering a new theoretical framework, the different undercurrent conceptions that lay at the base of the civic education process shall be brought forth. With the use of the method…

  3. A Dual Aspect Process Model of Intensive Interaction

    ERIC Educational Resources Information Center

    Firth, Graham

    2009-01-01

    Intensive Interaction is an empirically researched approach to developing fundamental communication and sociability for people with severe and profound learning disabilities and/or autism. However, it is the author's contention that certain aspects of Intensive Interaction are not universally conceptualised in a uniform manner, and that there are…

  4. Modelling drying kinetics of thyme (Thymus vulgaris L.): theoretical and empirical models, and neural networks.

    PubMed

    Rodríguez, J; Clemente, G; Sanjuán, N; Bon, J

    2014-01-01

    The drying kinetics of thyme was analyzed by considering different conditions: air temperature of between 40°C  and 70°C , and air velocity of 1 m/s. A theoretical diffusion model and eight different empirical models were fitted to the experimental data. From the theoretical model application, the effective diffusivity per unit area of the thyme was estimated (between 3.68 × 10(-5) and 2.12 × 10 (-4) s(-1)). The temperature dependence of the effective diffusivity was described by the Arrhenius relationship with activation energy of 49.42 kJ/mol. Eight different empirical models were fitted to the experimental data. Additionally, the dependence of the parameters of each model on the drying temperature was determined, obtaining equations that allow estimating the evolution of the moisture content at any temperature in the established range. Furthermore, artificial neural networks were developed and compared with the theoretical and empirical models using the percentage of the relative errors and the explained variance. The artificial neural networks were found to be more accurate predictors of moisture evolution with VAR ≥ 99.3% and ER ≤ 8.7%.

  5. Modelling drying kinetics of thyme (Thymus vulgaris L.): theoretical and empirical models, and neural networks.

    PubMed

    Rodríguez, J; Clemente, G; Sanjuán, N; Bon, J

    2014-01-01

    The drying kinetics of thyme was analyzed by considering different conditions: air temperature of between 40°C  and 70°C , and air velocity of 1 m/s. A theoretical diffusion model and eight different empirical models were fitted to the experimental data. From the theoretical model application, the effective diffusivity per unit area of the thyme was estimated (between 3.68 × 10(-5) and 2.12 × 10 (-4) s(-1)). The temperature dependence of the effective diffusivity was described by the Arrhenius relationship with activation energy of 49.42 kJ/mol. Eight different empirical models were fitted to the experimental data. Additionally, the dependence of the parameters of each model on the drying temperature was determined, obtaining equations that allow estimating the evolution of the moisture content at any temperature in the established range. Furthermore, artificial neural networks were developed and compared with the theoretical and empirical models using the percentage of the relative errors and the explained variance. The artificial neural networks were found to be more accurate predictors of moisture evolution with VAR ≥ 99.3% and ER ≤ 8.7%. PMID:23733820

  6. Theoretical Aspects of Differential Scanning Calorimetry as a Tool for the Studies of Equilibrium Thermodynamics in Pharmaceutical Solid Phase Transitions.

    PubMed

    Faroongsarng, Damrongsak

    2016-06-01

    Although differential scanning calorimetry (DSC) is a non-equilibrium technique, it has been used to gain energetic information that involves phase equilibria. DSC has been widely used to characterize the equilibrium melting parameters of small organic pharmaceutical compounds. An understanding of how DSC measures an equilibrium event could make for a better interpretation of the results. The aim of this mini-review was to provide a theoretical insight into the DSC measurement to obtain the equilibrium thermodynamics of a phase transition especially the melting process. It was demonstrated that the heat quantity obtained from the DSC thermogram (ΔH) was related to the thermodynamic enthalpy of the phase transition (ΔH (P) ) via: ΔH = ΔH (P) /(1 + K (- 1)) where K was the equilibrium constant. In melting, the solid and liquefied phases presumably coexist resulting in a null Gibbs free energy that produces an infinitely larger K. Thus, ΔH could be interpreted as ΔH (P). Issues of DSC investigations on melting behavior of crystalline solids including polymorphism, degradation impurity due to heating in situ, and eutectic melting were discussed. In addition, DSC has been a tool for determination of the impurity based on an ideal solution of the melt that is one of the official methods used to establish the reference standard.

  7. Pathways in coal thermolysis: a theoretical and experimental study with model compounds

    SciTech Connect

    Ekpenyong, I.A.; Virk, P.S.

    1982-01-01

    Fundamental aspects of coal thermolysis were investigated, including how the chemical structures of aromatics, hydroaromatics, and alcohols affect their reactivities as hydrogen donors and acceptors in coal processing. The susceptibilities of substructural entities in coals to fragmentation via a number of thermal pericyclic and free radical mechanisms were probed, as were the factors governing relative reactivities within series of such coal model compounds. The theoretical part of the work applied perturbation molecular orbital (PMO) and frontier orbital theories, in conjunction with ..pi..- and pseudo-..pi.. MO's, to the study of model compound reactivity. This enabled prediction of reactivity patterns of H-donors, H-acceptors and coal-like structures as functions of their ..pi..- and sigma-bond configurations, including heteroatomic effects. Experimentally, the liquid phase reactions of the coal model compound PhOCH/sub 2/Ph (Benzyl phenyl ether, BPE) were detailed for the first time in each of four hydronaphthalene H-donor solvents in the temperature range 220/sup 0/ to 300/sup 0/C. The thermolysis of BPE exhibited a pronounced dependence on solvent structure, both with respect to product selectivities and reaction kinetics. BPE thermolysis pathways were delineated as involving (a) rearrangement, leading to isomerization, (b) hydrogenations, leading ultimately to PhOH and PhCH/sub 3/ products, and (c) addition reactions, engendering heavy products. Pathways (b) and (c) are competitive and, in each, self-reactions of BPE-derivatives vie against reactions between these and the donor solvent. Of the detailed free radical and pericyclic reaction mechanisms postulated, the latter rationalized many more facets of the BPE results than the former. The theoretical and experimental results were appraised against previous coal thermolysis literature.

  8. Theoretical analysis of the electrical aspects of the basic electro-impulse problem in aircraft de-icing applications

    NASA Technical Reports Server (NTRS)

    Henderson, Robert A.; Schrag, Robert L.

    1987-01-01

    A method of modelling a system consisting of a cylindrical coil with its axis perpendicular to a metal plate of finite thickness, and a simple electrical circuit for producing a transient current in the coil, is discussed in the context of using such a system for de-icing aircraft surfaces. A transmission line model of the coil and metal plate is developed as the heart of the system model. It is shown that this transmission model is central to calculation of the coil impedance, the coil current, the magnetic fields established on the surfaces of the metal plate, and the resultant total force between the coil and the plate. FORTRAN algorithms were developed for numerical calculation of each of these quantities, and the algorithms were applied to an experimental prototype system in which these quantities had been measured. Good agreement is seen to exist between the predicted and measured results.

  9. Theoretical Model to Explain Excess of Quasiparticles in Superconductors.

    PubMed

    Bespalov, Anton; Houzet, Manuel; Meyer, Julia S; Nazarov, Yuli V

    2016-09-01

    Experimentally, the concentration of quasiparticles in gapped superconductors always largely exceeds the equilibrium one at low temperatures. Since these quasiparticles are detrimental for many applications, it is important to understand theoretically the origin of the excess. We demonstrate in detail that the dynamics of quasiparticles localized at spatial fluctuations of the gap edge becomes exponentially slow. This gives rise to the observed excess in the presence of a vanishingly weak nonequilibrium agent. PMID:27661716

  10. Theoretical modeling and interpretation of X-ray absorption spectra of liquid water.

    PubMed

    Wang, R L C; Kreuzer, H J; Grunze, M

    2006-11-01

    We report extensive calculations to examine the capability of theory to explain the XAS spectra of liquid water. Several aspects that enter the theoretical model are addressed, such as the quantum mechanical methods, the statistics and the XAS model. As input into our quantum mechanical calculations we will use structural information on liquid water obtained from first principles and from classical molecular dynamics simulations. As XAS models, we will examine the full core hole and the half core hole approximations to transition state theory. The quantum mechanics is performed on the basis of density functional theory. We conclude from this study that recent experimental results are fully consistent with, and can be completely explained by, present day theory, in particular, the pre-edge peak is reproduced. We also find that the average bond coordination in liquid water is 3.1 and that the assertion in a recent paper that the hydrogen bond number is much less than that cannot be substantiated. Our calculations emphasize that further advances in our understanding of water can only be made by more sophisticated spectroscopy with significantly increased resolution.

  11. Suggestion for a theoretical model for secondary-tertiary transition in mathematics

    NASA Astrophysics Data System (ADS)

    Clark, Megan; Lovric, Miroslav

    2008-09-01

    One of most notable features of existing body of research in transition seems to be the absence of a theoretical model. The suggestion we present in this paper—to view and understand the high school to university transition in mathematics as a modern-day rite of passage—is an attempt at defining such framework. Although dominantly reflecting North-American reality, we believe that the model could be found useful in other countries as well. Let us emphasize that our model is not new in the sense that it recognizes the transition as such. In this paper, we try to determine whether (and, if so, how) the notion of a rite of passage—which is a well-understood concept in anthropology, as well as in some other disciplines (e.g. culture shock in cultural studies)—can help us understand mathematics transition issues better. Can it help us systematize existing body of research, and enhance our understanding of transition in mathematics; does it point at something new? We believe so, and by elaborating some traditional aspects of rites of passage, we hope to provide a useful lens through which we can examine the process of transition in mathematics, and make suggestions for improved management of some transitional issues.

  12. The Synthesis of a Theoretical Model of Student Attrition.

    ERIC Educational Resources Information Center

    Bean, John P.

    Models that have appeared in the student attrition literature in the past decade and behavioral models from the social sciences that may help explain the dropout process are examined, and an attempt is made to synthesize a causal model of student attrition. The models of Tinto, Spady, and Rootman in the area of student attrition, and models of…

  13. A Model of Resource Allocation in Public School Districts: A Theoretical and Empirical Analysis.

    ERIC Educational Resources Information Center

    Chambers, Jay G.

    This paper formulates a comprehensive model of resource allocation in a local public school district. The theoretical framework specified could be applied equally well to any number of local public social service agencies. Section 1 develops the theoretical model describing the process of resource allocation. This involves the determination of the…

  14. Improving Mathematics Instruction through Lesson Study: A Theoretical Model and North American Case

    ERIC Educational Resources Information Center

    Lewis, Catherine C.; Perry, Rebecca R.; Hurd, Jacqueline

    2009-01-01

    This article presents a theoretical model of lesson study, an approach to instructional improvement that originated in Japan. The theoretical model includes four lesson study features (investigation, planning, research lesson, and reflection) and three pathways through which lesson study improves instruction: changes in teachers' knowledge and…

  15. Development of Children's Creative Visual Imagination: A Theoretical Model and Enhancement Programmes

    ERIC Educational Resources Information Center

    Dziedziewicz, Dorota; Karwowski, Maciej

    2015-01-01

    This paper presents a new theoretical model of creative imagination and its applications in early education. The model sees creative imagination as composed of three inter-related components: vividness of images, their originality, and the level of transformation of imageries. We explore the theoretical and practical consequences of this new…

  16. A theoretical model of phase changes of a klystron due to variation of operating parameters

    NASA Technical Reports Server (NTRS)

    Kupiszewski, A.

    1980-01-01

    A mathematical model for phase changes of the VA-876 CW klystron amplifier output is presented and variations of several operating parameters are considered. The theoretical approach to the problem is based upon a gridded gap modeling with inclusion of a second order correction term so that actual gap geometry is reflected in the formulation. Physical measurements are contrasted to theoretical calculations.

  17. A theoretical model of barriers having inhomogeneous impedance surfaces.

    PubMed

    Wang, Xu; Wang, Xiaonan; Yu, Wuzhou; Jiang, Zaixiu; Mao, Dongxing

    2016-03-01

    When barriers are placed in parallel on opposite sides of a source, their performance deteriorates markedly. However, barriers made from materials of inhomogeneous impedance eliminate this drawback by altering the behavior of sound as it undergoes multiple reflections between the barriers. In this paper, a theoretical approach is carried out to estimate the performance of the proposed barriers. By combining the ray-tracing method and sound diffraction theory, the existence of different ray paths between the proposed barriers is revealed. Compared to conventional rigid-walled barriers, barriers having inhomogeneous surfaces may have the potential to be widely used in environmental noise control. PMID:27036289

  18. Some Aspects of Mathematical Model of Collaborative Learning

    ERIC Educational Resources Information Center

    Nakamura, Yasuyuki; Yasutake, Koichi; Yamakawa, Osamu

    2012-01-01

    There are some mathematical learning models of collaborative learning, with which we can learn how students obtain knowledge and we expect to design effective education. We put together those models and classify into three categories; model by differential equations, so-called Ising spin and a stochastic process equation. Some of the models do not…

  19. Theoretical modelling of exchange interactions in metal-phthalocyanines

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Fisher, Andrew; Harrison, Nic; Serri, Michele; Wu, Zhenlin; Heutz, Sandrine; Jones, Tim; Aeppli, Gabriel

    2012-02-01

    The theoretical understanding of exchange interactions in organics provides a key foundation for quantum molecular magnetism. Recent SQUID magnetometry of a well know organic semiconductor, copper-phthalocyanine [1,2] (CuPc) shows that it forms quasi-one-dimensional spin chains. Green's function perturbation theory calculation [3] is used to find the dominant exchange mechanism. Hybrid density functional theory simulations [4] give a quantitative insight to exchange interactions and electronic structures. Both calculations are performed for different stacking and sliding angles for lithium-Pc, cobalt-Pc, chromium-Pc, and copper-Pc. The exchange interactions depend strongly on stacking angles, but weakly on sliding angles. Our results qualitatively agree with the experiments, and remarkably α-cobalt-Pc has a very large exchange above liquid-Nitrogen temperature. Our theoretical predictions on the exchange interactions can guide experimentalists to design novel organic semiconductors. [0pt] [1] S. Heutz, et. al., Adv. Mat., 19, 3618 (2007) [2] Hai Wang, et. al., ACS Nano, 4, 3921 (2010) [3] Wei Wu, et. al., Phys. Rev. B 77, 184403 (2008) [4] Wei Wu, et. al., Phys. Rev. B 84, 024427 (2011)

  20. An Extensible Aspect-Oriented Modeling Environment for Constructing Domain-Specific Languages

    NASA Astrophysics Data System (ADS)

    Ubayashi, Naoyasu; Kamei, Yasutaka

    AspectM, an aspect-oriented modeling (AOM) language, provides not only basic modeling constructs but also an extension mechanism called metamodel access protocol (MMAP) that allows a modeler to modify the metamodel. MMAP consists of metamodel extension points, extension operations, and primitive predicates for navigating the metamodel. Although the notion of MMAP is useful, it needs tool support. This paper proposes a method for implementing a MMAP-based AspectM support tool. It consists of model editor, model weaver, and model verifier. We introduce the notion of edit-time structural reflection and extensible model weaving. Using these mechanisms, a modeler can easily construct domain-specific languages (DSLs). We show a case study using the AspectM support tool and discuss the effectiveness of the extension mechanism provided by MMAP. As a case study, we show a UML-based DSL for describing the external contexts of embedded systems.

  1. Information-theoretic model comparison unifies saliency metrics

    PubMed Central

    Kümmerer, Matthias; Wallis, Thomas S. A.; Bethge, Matthias

    2015-01-01

    Learning the properties of an image associated with human gaze placement is important both for understanding how biological systems explore the environment and for computer vision applications. There is a large literature on quantitative eye movement models that seeks to predict fixations from images (sometimes termed “saliency” prediction). A major problem known to the field is that existing model comparison metrics give inconsistent results, causing confusion. We argue that the primary reason for these inconsistencies is because different metrics and models use different definitions of what a “saliency map” entails. For example, some metrics expect a model to account for image-independent central fixation bias whereas others will penalize a model that does. Here we bring saliency evaluation into the domain of information by framing fixation prediction models probabilistically and calculating information gain. We jointly optimize the scale, the center bias, and spatial blurring of all models within this framework. Evaluating existing metrics on these rephrased models produces almost perfect agreement in model rankings across the metrics. Model performance is separated from center bias and spatial blurring, avoiding the confounding of these factors in model comparison. We additionally provide a method to show where and how models fail to capture information in the fixations on the pixel level. These methods are readily extended to spatiotemporal models of fixation scanpaths, and we provide a software package to facilitate their use. PMID:26655340

  2. Information-theoretic model comparison unifies saliency metrics.

    PubMed

    Kümmerer, Matthias; Wallis, Thomas S A; Bethge, Matthias

    2015-12-29

    Learning the properties of an image associated with human gaze placement is important both for understanding how biological systems explore the environment and for computer vision applications. There is a large literature on quantitative eye movement models that seeks to predict fixations from images (sometimes termed "saliency" prediction). A major problem known to the field is that existing model comparison metrics give inconsistent results, causing confusion. We argue that the primary reason for these inconsistencies is because different metrics and models use different definitions of what a "saliency map" entails. For example, some metrics expect a model to account for image-independent central fixation bias whereas others will penalize a model that does. Here we bring saliency evaluation into the domain of information by framing fixation prediction models probabilistically and calculating information gain. We jointly optimize the scale, the center bias, and spatial blurring of all models within this framework. Evaluating existing metrics on these rephrased models produces almost perfect agreement in model rankings across the metrics. Model performance is separated from center bias and spatial blurring, avoiding the confounding of these factors in model comparison. We additionally provide a method to show where and how models fail to capture information in the fixations on the pixel level. These methods are readily extended to spatiotemporal models of fixation scanpaths, and we provide a software package to facilitate their use.

  3. The effect of physical height on workplace success and income: preliminary test of a theoretical model.

    PubMed

    Judge, Timothy A; Cable, Daniel M

    2004-06-01

    In this article, the authors propose a theoretical model of the relationship between physical height and career success. We then test several linkages in the model based on a meta-analysis of the literature, with results indicating that physical height is significantly related to measures of social esteem (rho =.41), leader emergence (rho =.24), and performance (rho =.18). Height was somewhat more strongly related to success for men (rho =.29) than for women (rho =.21), although this difference was not significant. Finally, given that almost no research has examined the relationship between individuals' physical height and their incomes, we present four large-sample studies (total N = 8,590) showing that height is positively related to income (beta =.26) after controlling for sex, age, and weight. Overall, this article presents the most comprehensive analysis of the relationship of height to workplace success to date, and the results suggest that tall individuals have advantages in several important aspects of their careers and organizational lives.

  4. Self-consistent Equilibrium Model of Low-aspect-ratio Toroidal Plasma with Energetic Beam Ions

    SciTech Connect

    E.V. Belova; N.N. Gorelenkov; C.Z. Cheng

    2003-04-09

    A theoretical model is developed which allows the self-consistent inclusion of the effects of energetic beam ions in equilibrium calculations of low-aspect-ratio toroidal devices. A two-component plasma is considered, where the energetic ions are treated using a kinetic Vlasov description, while a one-fluid magnetohydrodynamic description is used to represent the thermal plasma. The model allows for an anisotropic distribution function and a large Larmor radius of the beam ions. Numerical results are obtained for neutral-beam-heated plasmas in the National Spherical Torus Experiment (NSTX). Self-consistent equilibria with an anisotropic fast-ion distribution have been calculated for NSTX. It is shown for typical experimental parameters that the contribution of the energetic neutral-beam ions to the total current can be comparable to that of the background plasma, and that the kinetic modifications of the equilibrium can be significant. The range of validity of the finite-Larmor-radius expansion and of the reduced kinetic descriptions for the beam ions in NSTX is discussed. The calculated kinetic equilibria can be used for self-consistent numerical studies of beam-ion-driven instabilities in NSTX.

  5. College Students Solving Chemistry Problems: A Theoretical Model of Expertise

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Glynn, Shawn M.

    2009-01-01

    A model of expertise in chemistry problem solving was tested on undergraduate science majors enrolled in a chemistry course. The model was based on Anderson's "Adaptive Control of Thought-Rational" (ACT-R) theory. The model shows how conceptualization, self-efficacy, and strategy interact and contribute to the successful solution of quantitative,…

  6. Building a Theoretical Model of Metacognitive Processes in Complex Modeling Activities: A Window into the Development of Students' Metacognitive Abilities

    ERIC Educational Resources Information Center

    Kim, Young Rae

    2013-01-01

    A theoretical model of metacognition in complex modeling activities has been developed based on existing frameworks, by synthesizing the re-conceptualization of metacognition at multiple levels by looking at the three sources that trigger metacognition. Using the theoretical model as a framework, this study was designed to explore how students'…

  7. Theoretical and experimental modeling of a rail gun accelerator

    NASA Astrophysics Data System (ADS)

    Zheleznyj, V. B.; Zagorskij, A. V.; Katsnel'Son, S. S.; Kudryavtsev, A. V.; Plekhanov, A. V.

    1993-04-01

    Results of a series of experiments in the acceleration of macrobodies are analyzed using an integral model of a current arc and a quasi-1D magnetic gasdynamic model. The integral model uses gasdynamic equations averaged by the size of a plasma pump and equations based on the second Kirchhoff's law for electrical current. The quasi-1D model is based on 1D magnetic gasdynamic equations for mean values of density, pressure, velocity, and internal power. Electromagnetic parameters are determined from Maxwell integral equations. It is concluded that the proposed models take into account the major mechanisms of momentum loss and are capable of adequately describing electromagnetic rail accelerators.

  8. Psychosocial stress and prostate cancer: a theoretical model.

    PubMed

    Ellison, G L; Coker, A L; Hebert, J R; Sanderson, S M; Royal, C D; Weinrich, S P

    2001-01-01

    African-American men are more likely to develop and die from prostate cancer than are European-American men; yet, factors responsible for the racial disparity in incidence and mortality have not been elucidated. Socioeconomic disadvantage is more prevalent among African-American than among European-American men. Socioeconomic disadvantage can lead to psychosocial stress and may be linked to negative lifestyle behaviors. Regardless of socioeconomic position, African-American men routinely experience racism-induced stress. We propose a theoretical framework for an association between psychosocial stress and prostate cancer. Within the context of history and culture, we further propose that psychosocial stress may partially explain the variable incidence of prostate cancer between these diverse groups. Psychosocial stress may negatively impact the immune system leaving the individual susceptible to malignancies. Behavioral responses to psychosocial stress are amenable to change. If psychosocial stress is found to negatively impact prostate cancer risk, interventions may be designed to modify reactions to environmental demands.

  9. A graph theoretical perspective of a drug abuse epidemic model

    NASA Astrophysics Data System (ADS)

    Nyabadza, F.; Mukwembi, S.; Rodrigues, B. G.

    2011-05-01

    A drug use epidemic can be represented by a finite number of states and transition rules that govern the dynamics of drug use in each discrete time step. This paper investigates the spread of drug use in a community where some users are in treatment and others are not in treatment, citing South Africa as an example. In our analysis, we consider the neighbourhood prevalence of each individual, i.e., the proportion of the individual’s drug user contacts who are not in treatment amongst all of his or her contacts. We introduce parameters α∗, β∗ and γ∗, depending on the neighbourhood prevalence, which govern the spread of drug use. We examine how changes in α∗, β∗ and γ∗ affect the system dynamics. Simulations presented support the theoretical results.

  10. Theoretical modelling of the semiconductor-electrolyte interface

    NASA Astrophysics Data System (ADS)

    Schelling, Patrick Kenneth

    We have developed tight-binding models of transition metal oxides. In contrast to many tight-binding models, these models include a description of electron-electron interactions. After parameterizing to bulk first-principles calculations, we demonstrated the transferability of the model by calculating atomic and electronic structure of rutile surfaces, which compared well with experiment and first-principles calculations. We also studied the structure of twist grain boundaries in rutile. Molecular dynamics simulations using the model were also carried out to describe polaron localization. We have also demonstrated that tight-binding models can be constructed to describe metallic systems. The computational cost tight-binding simulations was greatly reduced by incorporating O(N) electronic structure methods. We have also interpreted photoluminesence experiments on GaAs electrodes in contact with an electrolyte using drift-diffusion models. Electron transfer velocities were obtained by fitting to experimental results.

  11. Multiscale Aspects of Modeling Gas-Phase Nanoparticle Synthesis

    PubMed Central

    Buesser, B.; Gröhn, A.J.

    2013-01-01

    Aerosol reactors are utilized to manufacture nanoparticles in industrially relevant quantities. The development, understanding and scale-up of aerosol reactors can be facilitated with models and computer simulations. This review aims to provide an overview of recent developments of models and simulations and discuss their interconnection in a multiscale approach. A short introduction of the various aerosol reactor types and gas-phase particle dynamics is presented as a background for the later discussion of the models and simulations. Models are presented with decreasing time and length scales in sections on continuum, mesoscale, molecular dynamics and quantum mechanics models. PMID:23729992

  12. [The ontogenetic model of gravitation and weightlessness: theoretical and applied aspects].

    PubMed

    Meĭgal, A Iu

    2011-01-01

    In the review we discuss the earlier postulated [1] natural motor strategies which are dependent on gravitation and temperature and which evolve during the human life span. The first of them, FM-strategy is the characteristic of the intrauterine immersion in the amniotic fluid and ofmicrogravitation in the spaceflight (G - 0). It is based on domination of fast muscle fibers and phasic movements and forms the fetal strategy to survive in heating, strongly hypoxic, albeit normal for fetus, immersion. In the adults, adaptive response separately to microgravitation, heat stress and hypoxia also shifts muscle fiber properties to faster values. In accordance with that paradigm the process of parturition can be considered as equivalent to cosmonaut's/astronaut's transition from microgravitation back to Earth gravitation (G = 1) during landing. This new GE-strategy) is opposite to the FM-strategy, because it decreases the motor unit firing and "slows" the activity of muscle fibers. The next, SJ-strategy is the characteristic of normal ageing that causes further dominance of slow motor units, thus simulating hypergravitation (>1G). Cooling evokes similar adaptive reactions. The synergy of sensory inputs which act across the motor system within the above said motor strategies suggests their mutual substitution. Thus, even moderate cooling may serve as partial "surrogate" for gravitation (approximately 0.2G), that could be utilized as a prophylactic countermeasure for unfavorable effects of the long term space flight.

  13. Translational neurocardiology: preclinical models and cardioneural integrative aspects.

    PubMed

    Ardell, J L; Andresen, M C; Armour, J A; Billman, G E; Chen, P-S; Foreman, R D; Herring, N; O'Leary, D S; Sabbah, H N; Schultz, H D; Sunagawa, K; Zucker, I H

    2016-07-15

    Neuronal elements distributed throughout the cardiac nervous system, from the level of the insular cortex to the intrinsic cardiac nervous system, are in constant communication with one another to ensure that cardiac output matches the dynamic process of regional blood flow demand. Neural elements in their various 'levels' become differentially recruited in the transduction of sensory inputs arising from the heart, major vessels, other visceral organs and somatic structures to optimize neuronal coordination of regional cardiac function. This White Paper will review the relevant aspects of the structural and functional organization for autonomic control of the heart in normal conditions, how these systems remodel/adapt during cardiac disease, and finally how such knowledge can be leveraged in the evolving realm of autonomic regulation therapy for cardiac therapeutics. PMID:27098459

  14. High-Energy Aspects of Solar Flares: Observations and Models

    SciTech Connect

    Liu, Wei; Guo, Fan

    2015-07-21

    The paper begins by describing the structure of the Sun, with emphasis on the corona. The Sun is a unique plasma laboratory, which can be probed by Sun-grazing comets, and is the driver of space weather. Energization and particle acceleration mechanisms in solar flares is presented; magnetic reconnection is key is understanding stochastic acceleration mechanisms. Then coupling between kinetic and fluid aspects is taken up; the next step is feedback of atmospheric response to the acceleration process – rapid quenching of acceleration. Future challenges include applications of stochastic acceleration to solar energetic particles (SEPs), Fermi γ-rays observations, fast-mode magnetosonic wave trains in a funnel-shaped wave guide associated with flare pulsations, and the new SMEX mission IRIS (Interface Region Imaging Spectrograph),

  15. Theoretical aspects of binary and ternary complexes of aziridine···ammonia ruled by hydrogen bond strength.

    PubMed

    Oliveira, Boaz G; Araújo, Regiane C M U

    2012-06-01

    B3LYP calculations, ChelpG atomic charges, and quantum theory of atoms in molecules (QTAIM) integrations were used to investigate the binary (1:1) and ternary (1:2) hydrogen-bonded complexes formed by aziridine (1) and ammonia (2). In a series of analysis, geometry data, electronic parameters, vibrational oscillators, and topological descriptors were used to evaluate hydrogen bond strength, and additionally to determine the more prominent molecular deformations upon the formation of C(2)H(5)N···NH(3) (1:1) and C(2)H(5)N···2NH(3) (1:2) systems. Taking a spectroscopic viewpoint, results obtained from analysis of the harmonic infrared spectrum were examined. From these, new vibrational modes and red- and blue-shifts related to the stretch frequencies of either donors or acceptors of protons were identified. Furthermore, the molecular topology of the electronic density modeled in accord with QTAIM was absolutely critical in defining bond critical points (BCP) and ring critical points (RCP) on the heterocyclic structures. Taking all the results together allowed us to identify and characterize all the N···H hydrogen bonds, as well as the strain ring of the aziridine and its stability.

  16. Some Thoughts Regarding Theoretical Aspects of the Corrin-Harkins Relation and the Micellization Product of Ionic Micelles.

    PubMed

    Maeda, Hiroshi

    2001-09-01

    The dependence of the stability of ionic micelles on the ionic strength of the medium is examined analytically without recourse to any explicit expression of the surface potential of micelles. The present study is based on the idea developed by Evans, Mitchell, and Ninham (D. F. Evans, D. J. Mitchell, and B. W. Ninham, J. Phys. Chem. 88, 6344 (1984)) that the interfacial free energy at the water/hydrocarbon core interface is independent of the ionic strength of the medium. The Corrin-Harkins (C-H) relation, a linear relation between the logarithm of the critical micelle concentration (cmc) and the logarithm of the counterion concentration n(C), is obtained in the range of n(C) where the salting-out effect is negligible, under the condition that the area per monomer on the micelle surface decreases very weakly with n(C). The "micellization product" of the charged pseudophase model of ionic micelles is discussed. The linear dependence of the surface potential of ionic micelles on n(C) is derived while a part of the effects of salt on the micelle size/shape is allowed. Copyright 2001 Academic Press.

  17. Theoretical development of a simplified wheelset model to evaluate collision-induced derailments of rolling stock

    NASA Astrophysics Data System (ADS)

    Koo, Jeong Seo; Choi, Se Young

    2012-06-01

    A theoretical method is proposed to predict and evaluate collision-induced derailments of rolling stock by using a simplified wheelset model and is verified with dynamic simulations. Because the impact forces occurring during collision are transmitted from the car body to the bogies and axles through suspensions, rolling stock leads to derailment as a result of the combination of horizontal and vertical impact forces applied to the axle and a simplified wheelset model enforced at the axle can be used to theoretically formulate derailment behaviors. The derailment type depends on the combination of the horizontal and vertical forces, the flange angle and the friction coefficient. According to collision conditions, wheel-climb, wheel-lift or roll-over derailment can occur between the wheel and the rail. In this theoretical derailment model of a simplified wheelset, the derailment types are classified as Slip-up, Slip/roll-over, Climb-up, Climb/roll-over and pure Roll-over according to the derailment mechanisms between the wheel and the rail and the theoretical conditions needed to generate each derailment mechanism are proposed. The theoretical wheelset model is verified by dynamic simulation and its applicability is demonstrated by comparing the simulation results of the theoretical wheelset model with those of an actual wheelset model. The theoretical derailment wheelset model is in good agreement with the virtual testing model simulation for a collision-induced derailment of rolling stock.

  18. Theoretical Models for Application in School Health Education Research.

    ERIC Educational Resources Information Center

    Parcel, Guy S.

    1984-01-01

    Selected behavioral change theories, multiple theory models, and teaching models that may be useful to research studies in health education are examined in this article. A brief outline of applications of theory for the field of school health education is offered. (Author/DF)

  19. Raindrop size distribution: Fitting performance of common theoretical models

    NASA Astrophysics Data System (ADS)

    Adirosi, E.; Volpi, E.; Lombardo, F.; Baldini, L.

    2016-10-01

    Modelling raindrop size distribution (DSD) is a fundamental issue to connect remote sensing observations with reliable precipitation products for hydrological applications. To date, various standard probability distributions have been proposed to build DSD models. Relevant questions to ask indeed are how often and how good such models fit empirical data, given that the advances in both data availability and technology used to estimate DSDs have allowed many of the deficiencies of early analyses to be mitigated. Therefore, we present a comprehensive follow-up of a previous study on the comparison of statistical fitting of three common DSD models against 2D-Video Distrometer (2DVD) data, which are unique in that the size of individual drops is determined accurately. By maximum likelihood method, we fit models based on lognormal, gamma and Weibull distributions to more than 42.000 1-minute drop-by-drop data taken from the field campaigns of the NASA Ground Validation program of the Global Precipitation Measurement (GPM) mission. In order to check the adequacy between the models and the measured data, we investigate the goodness of fit of each distribution using the Kolmogorov-Smirnov test. Then, we apply a specific model selection technique to evaluate the relative quality of each model. Results show that the gamma distribution has the lowest KS rejection rate, while the Weibull distribution is the most frequently rejected. Ranking for each minute the statistical models that pass the KS test, it can be argued that the probability distributions whose tails are exponentially bounded, i.e. light-tailed distributions, seem to be adequate to model the natural variability of DSDs. However, in line with our previous study, we also found that frequency distributions of empirical DSDs could be heavy-tailed in a number of cases, which may result in severe uncertainty in estimating statistical moments and bulk variables.

  20. Theoretical Tools in Modeling Communication and Language Dynamics

    NASA Astrophysics Data System (ADS)

    Loreto, Vittorio

    Statistical physics has proven to be a very fruitful framework to describe phenomena outside the realm of traditional physics. In social phenomena, the basic constituents are not particles but humans and every individual interacts with a limited number of peers, usually negligible compared to the total number of people in the system. In spite of that, human societies are characterized by stunning global regularities that naturally call for a statistical physics approach to social behavior, i.e., the attempt to understand regularities at large scale as collective effects of the interaction among single individuals, considered as relatively simple entities. This is the paradigm of Complex Systems: an assembly of many interacting (and simple) units whose collective behavior is not trivially deducible from the knowledge of the rules governing their mutual interactions. In this chapter we review the main theoretical concepts and tools that physics can borrow to socially-motivated problems. Despite their apparent diversity, most research lines in social dynamics are actually closely connected from the point of view of both the methodologies employed and, more importantly, of the general phenomenological questions, e.g., what are the fundamental interaction mechanisms leading to the emergence of consensus on an issue, a shared culture, a common language or a collective motion?

  1. Psychosocial stress and prostate cancer: a theoretical model.

    PubMed

    Ellison, G L; Coker, A L; Hebert, J R; Sanderson, S M; Royal, C D; Weinrich, S P

    2001-01-01

    African-American men are more likely to develop and die from prostate cancer than are European-American men; yet, factors responsible for the racial disparity in incidence and mortality have not been elucidated. Socioeconomic disadvantage is more prevalent among African-American than among European-American men. Socioeconomic disadvantage can lead to psychosocial stress and may be linked to negative lifestyle behaviors. Regardless of socioeconomic position, African-American men routinely experience racism-induced stress. We propose a theoretical framework for an association between psychosocial stress and prostate cancer. Within the context of history and culture, we further propose that psychosocial stress may partially explain the variable incidence of prostate cancer between these diverse groups. Psychosocial stress may negatively impact the immune system leaving the individual susceptible to malignancies. Behavioral responses to psychosocial stress are amenable to change. If psychosocial stress is found to negatively impact prostate cancer risk, interventions may be designed to modify reactions to environmental demands. PMID:11572415

  2. Experimental observations and theoretical models for beam-beam phenomena

    SciTech Connect

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10/sup 10/-10/sup 11/ and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented.

  3. Ignition temperature of magnesium powder clouds: a theoretical model.

    PubMed

    Chunmiao, Yuan; Chang, Li; Gang, Li; Peihong, Zhang

    2012-11-15

    Minimum ignition temperature of dust clouds (MIT-DC) is an important consideration when adopting explosion prevention measures. This paper presents a model for determining minimum ignition temperature for a magnesium powder cloud under conditions simulating a Godbert-Greenwald (GG) furnace. The model is based on heterogeneous oxidation of metal particles and Newton's law of motion, while correlating particle size, dust concentration, and dust dispersion pressure with MIT-DC. The model predicted values in close agreement with experimental data and is especially useful in predicting temperature and velocity change as particles pass through the furnace tube.

  4. Theoretical study of gas hydrate decomposition kinetics: model predictions.

    PubMed

    Windmeier, Christoph; Oellrich, Lothar R

    2013-11-27

    In order to provide an estimate of intrinsic gas hydrate dissolution and dissociation kinetics, the Consecutive Desorption and Melting Model (CDM) was developed in a previous publication (Windmeier, C.; Oellrich, L. R. J. Phys. Chem. A 2013, 117, 10151-10161). In this work, an extensive summary of required model data is given. Obtained model predictions are discussed with respect to their temperature dependence as well as their significance for technically relevant areas of gas hydrate decomposition. As a result, an expression for determination of the intrinsic gas hydrate decomposition kinetics for various hydrate formers is given together with an estimate for the maximum possible rates of gas hydrate decomposition. PMID:24199870

  5. Aspects of B physics

    SciTech Connect

    Gaillard, M.K.

    1987-10-14

    Various aspects of weak decays are commented on. Probing of the standard model and of phenomena beyond the standard model are discussed, followed by a theoretical view of B mesons and some experimental observations on B mesons. The point is made that any data on B decay would be interesting in that it would provide powerful new constraints in analyses of the standard model and extensions thereof. (LEW)

  6. Are animal models relevant to key aspects of human parturition?

    PubMed

    Mitchell, Bryan F; Taggart, Michael J

    2009-09-01

    Preterm birth remains the most serious complication of pregnancy and is associated with increased rates of infant death or permanent neurodevelopmental disability. Our understanding of the regulation of parturition remains inadequate. The scientific literature, largely derived from rodent animal models, suggests two major mechanisms regulating the timing of parturition: the withdrawal of the steroid hormone progesterone and a proinflammatory response by the immune system. However, available evidence strongly suggests that parturition in the human has significantly different regulators and mediators from those in most of the animal models. Our objectives are to critically review the data and concepts that have arisen from use of animal models for parturition and to rationalize the use of a new model. Many animal models have contributed to advances in our understanding of the regulation of parturition. However, we suggest that those animals dependent on progesterone withdrawal to initiate parturition clearly have a limitation to their translation to the human. In such models, a linear sequence of events (e.g., luteolysis, progesterone withdrawal, uterine activation, parturition) gives rise to the concept of a "trigger" mechanism. Conversely, we propose that human parturition may arise from the concomitant maturation of several systems in parallel. We have termed this novel concept "modular accumulation of physiological systems" (MAPS). We also emphasize the urgency to determine the precise role of the immune system in the process of parturition in situations other than intrauterine infection. Finally, we accentuate the need to develop a nonprimate animal model whose physiology is more relevant to human parturition. We suggest that the guinea pig displays several key physiological characteristics of gestation that more closely resemble human pregnancy than do currently favored animal models. We conclude that the application of novel concepts and new models are

  7. Theoretical model of impact damage in structural ceramics

    NASA Technical Reports Server (NTRS)

    Liaw, B. M.; Kobayashi, A. S.; Emery, A. G.

    1984-01-01

    This paper presents a mechanistically consistent model of impact damage based on elastic failures due to tensile and shear overloading. An elastic axisymmetric finite element model is used to determine the dynamic stresses generated by a single particle impact. Local failures in a finite element are assumed to occur when the primary/secondary principal stresses or the maximum shear stress reach critical tensile or shear stresses, respectively. The succession of failed elements thus models macrocrack growth. Sliding motions of cracks, which closed during unloading, are resisted by friction and the unrecovered deformation represents the 'plastic deformation' reported in the literature. The predicted ring cracks on the contact surface, as well as the cone cracks, median cracks, radial cracks, lateral cracks, and damage-induced porous zones in the interior of hot-pressed silicon nitride plates, matched those observed experimentally. The finite element model also predicted the uplifting of the free surface surrounding the impact site.

  8. Theoretical models for duct acoustic propagation and radiation

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    1991-01-01

    The development of computational methods in acoustics has led to the introduction of analysis and design procedures which model the turbofan inlet as a coupled system, simultaneously modeling propagation and radiation in the presence of realistic internal and external flows. Such models are generally large, require substantial computer speed and capacity, and can be expected to be used in the final design stages, with the simpler models being used in the early design iterations. Emphasis is given to practical modeling methods that have been applied to the acoustical design problem in turbofan engines. The mathematical model is established and the simplest case of propagation in a duct with hard walls is solved to introduce concepts and terminologies. An extensive overview is given of methods for the calculation of attenuation in uniform ducts with uniform flow and with shear flow. Subsequent sections deal with numerical techniques which provide an integrated representation of duct propagation and near- and far-field radiation for realistic geometries and flight conditions.

  9. Design theoretic analysis of three system modeling frameworks.

    SciTech Connect

    McDonald, Michael James

    2007-05-01

    This paper analyzes three simulation architectures from the context of modeling scalability to address System of System (SoS) and Complex System problems. The paper first provides an overview of the SoS problem domain and reviews past work in analyzing model and general system complexity issues. It then identifies and explores the issues of vertical and horizontal integration as well as coupling and hierarchical decomposition as the system characteristics and metrics against which the tools are evaluated. In addition, it applies Nam Suh's Axiomatic Design theory as a construct for understanding coupling and its relationship to system feasibility. Next it describes the application of MATLAB, Swarm, and Umbra (three modeling and simulation approaches) to modeling swarms of Unmanned Flying Vehicle (UAV) agents in relation to the chosen characteristics and metrics. Finally, it draws general conclusions for analyzing model architectures that go beyond those analyzed. In particular, it identifies decomposition along phenomena of interaction and modular system composition as enabling features for modeling large heterogeneous complex systems.

  10. Theoretical and computational models of biological ion channels

    NASA Astrophysics Data System (ADS)

    Roux, Benoit

    2004-03-01

    A theoretical framework for describing ion conduction through biological molecular pores is established and explored. The framework is based on a statistical mechanical formulation of the transmembrane potential (1) and of the equilibrium multi-ion potential of mean forces through selective ion channels (2). On the basis of these developments, it is possible to define computational schemes to address questions about the non-equilibrium flow of ions through ion channels. In the case of narrow channels (gramicidin or KcsA), it is possible to characterize the ion conduction in terms of the potential of mean force of the ions along the channel axis (i.e., integrating out the off-axis motions). This has been used for gramicidin (3) and for KcsA (4,5). In the case of wide pores (i.e., OmpF porin), this is no longer a good idea, but it is possible to use a continuum solvent approximations. In this case, a grand canonical monte carlo brownian dynamics algorithm was constructed for simulating the non-equilibrium flow of ions through wide pores. The results were compared with those from the Poisson-Nernst-Planck mean-field electrodiffusion theory (6-8). References; 1. B. Roux, Biophys. J. 73:2980-2989 (1997); 2. B. Roux, Biophys. J. 77, 139-153 (1999); 3. Allen, Andersen and Roux, PNAS (2004, in press); 4. Berneche and Roux. Nature, 414:73-77 (2001); 5. Berneche and Roux. PNAS, 100:8644-8648 (2003); 6. W. Im and S. Seefeld and B. Roux, Biophys. J. 79:788-801 (2000); 7. W. Im and B. Roux, J. Chem. Phys. 115:4850-4861 (2001); 8. W. Im and B. Roux, J. Mol. Biol. 322:851-869 (2002).

  11. Interspecific allometry of bone dimensions: A review of the theoretical models

    NASA Astrophysics Data System (ADS)

    Garcia, Guilherme J. M.; da Silva, Jafferson Kamphorst Leal

    2006-09-01

    A fascinating problem in biological scaling is the variation of long-bone length (or diameter) Y with body mass M in mammals, birds, and other vertebrates. It turns out that Y and M are related by a power law, namely Y=YM, where Y is a constant and b is the so-called allometric exponent. The origin of these power laws is still unclear because, in general, biological laws do not follow from physical ones in a simple manner. Here we make a historical review of this subject, summarizing the main experimental papers as well as discussing the main theoretical proposals. Long-bone allometry seems to be determined by the need to resist the particular loads applied to each bone in each taxon. Experimental measurements of in vivo stresses have found that mammalian long bones are subjected mainly to compression and bending, while avian wing-bones and reptilian limb-bones suffer a high degree of torsion. A recent model, based on the hypothesis that mammalian long-bone allometry is determined by compressive and bending loads, was able elucidate several aspects of mammalian limb-bone scaling. However, an explanation for avian and reptilian long-bone allometry is still missing.

  12. Ray-theoretical modeling of secondary microseism P-waves

    NASA Astrophysics Data System (ADS)

    Farra, V.; Stutzmann, E.; Gualtieri, L.; Schimmel, M.; Ardhuin, F.

    2016-06-01

    Secondary microseism sources are pressure fluctuations close to the ocean surface. They generate acoustic P-waves that propagate in water down to the ocean bottom where they are partly reflected, and partly transmitted into the crust to continue their propagation through the Earth. We present the theory for computing the displacement power spectral density of secondary microseism P-waves recorded by receivers in the far field. In the frequency domain, the P-wave displacement can be modeled as the product of (1) the pressure source, (2) the source site effect that accounts for the constructive interference of multiply reflected P-waves in the ocean, (3) the propagation from the ocean bottom to the stations, (4) the receiver site effect. Secondary microseism P-waves have weak amplitudes, but they can be investigated by beamforming analysis. We validate our approach by analyzing the seismic signals generated by Typhoon Ioke (2006) and recorded by the Southern California Seismic Network. Back projecting the beam onto the ocean surface enables to follow the source motion. The observed beam centroid is in the vicinity of the pressure source derived from the ocean wave model WAVEWATCH IIIR. The pressure source is then used for modeling the beam and a good agreement is obtained between measured and modeled beam amplitude variation over time. This modeling approach can be used to invert P-wave noise data and retrieve the source intensity and lateral extent.

  13. Information-Theoretic Modeling of Trichromacy Coding of Light Spectrum

    NASA Astrophysics Data System (ADS)

    Benoit, Landry; Belin, Étienne; Rousseau, David; Chapeau-Blondeau, François

    2014-07-01

    Trichromacy is the representation of a light spectrum by three scalar coordinates. Such representation is universally implemented by the human visual system and by RGB (Red Green Blue) cameras. We propose here an informational model for trichromacy. Based on a statistical analysis of the dynamics of individual photons, the model demonstrates a possibility for describing trichromacy as an information channel, for which the input-output mutual information can be computed to serve as a measure of performance. The capabilities and significance of the informational model are illustrated and motivated in various situations. The model especially enables an assessment of the influence of the spectral sensitivities of the three types of photodetectors realizing the trichromatic representation. It provides a criterion to optimize possibly adjustable parameters of the spectral sensitivities such as their center wavelength, spectral width or magnitude. The model shows, for instance, the usefulness of some overlap with smooth graded spectral sensitivities, as observed for instance in the human retina. The approach also, starting from hyperspectral images with high spectral resolution measured in the laboratory, can be used to devise low-cost trichromatic imaging systems optimized for observation of specific spectral signatures. This is illustrated with an example from plant science, and demonstrates a potential of application especially to life sciences. The approach particularizes connections between physics, biophysics and information theory.

  14. Ray-theoretical modeling of secondary microseism P waves

    NASA Astrophysics Data System (ADS)

    Farra, V.; Stutzmann, E.; Gualtieri, L.; Schimmel, M.; Ardhuin, F.

    2016-09-01

    Secondary microseism sources are pressure fluctuations close to the ocean surface. They generate acoustic P waves that propagate in water down to the ocean bottom where they are partly reflected and partly transmitted into the crust to continue their propagation through the Earth. We present the theory for computing the displacement power spectral density of secondary microseism P waves recorded by receivers in the far field. In the frequency domain, the P-wave displacement can be modeled as the product of (1) the pressure source, (2) the source site effect that accounts for the constructive interference of multiply reflected P waves in the ocean, (3) the propagation from the ocean bottom to the stations and (4) the receiver site effect. Secondary microseism P waves have weak amplitudes, but they can be investigated by beamforming analysis. We validate our approach by analysing the seismic signals generated by typhoon Ioke (2006) and recorded by the Southern California Seismic Network. Backprojecting the beam onto the ocean surface enables to follow the source motion. The observed beam centroid is in the vicinity of the pressure source derived from the ocean wave model WAVEWATCH IIIR. The pressure source is then used for modeling the beam and a good agreement is obtained between measured and modeled beam amplitude variation over time. This modeling approach can be used to invert P-wave noise data and retrieve the source intensity and lateral extent.

  15. PET-Specific Parameters and Radiotracers in Theoretical Tumour Modelling

    PubMed Central

    Marcu, Loredana G.; Bezak, Eva

    2015-01-01

    The innovation of computational techniques serves as an important step toward optimized, patient-specific management of cancer. In particular, in silico simulation of tumour growth and treatment response may eventually yield accurate information on disease progression, enhance the quality of cancer treatment, and explain why certain therapies are effective where others are not. In silico modelling is demonstrated to considerably benefit from information obtainable with PET and PET/CT. In particular, models have successfully integrated tumour glucose metabolism, cell proliferation, and cell oxygenation from multiple tracers in order to simulate tumour behaviour. With the development of novel radiotracers to image additional tumour phenomena, such as pH and gene expression, the value of PET and PET/CT data for use in tumour models will continue to grow. In this work, the use of PET and PET/CT information in in silico tumour models is reviewed. The various parameters that can be obtained using PET and PET/CT are detailed, as well as the radiotracers that may be used for this purpose, their utility, and limitations. The biophysical measures used to quantify PET and PET/CT data are also described. Finally, a list of in silico models that incorporate PET and/or PET/CT data is provided and reviewed. PMID:25788973

  16. Theoretical modeling of electron mobility in superfluid 4He

    NASA Astrophysics Data System (ADS)

    Aitken, Frédéric; Bonifaci, Nelly; von Haeften, Klaus; Eloranta, Jussi

    2016-07-01

    The Orsay-Trento bosonic density functional theory model is extended to include dissipation due to the viscous response of superfluid 4He present at finite temperatures. The viscous functional is derived from the Navier-Stokes equation by using the Madelung transformation and includes the contribution of interfacial viscous response present at the gas-liquid boundaries. This contribution was obtained by calibrating the model against the experimentally determined electron mobilities from 1.2 K to 2.1 K along the saturated vapor pressure line, where the viscous response is dominated by thermal rotons. The temperature dependence of ion mobility was calculated for several different solvation cavity sizes and the data are rationalized in the context of roton scattering and Stokes limited mobility models. Results are compared to the experimentally observed "exotic ion" data, which provides estimates for the corresponding bubble sizes in the liquid. Possible sources of such ions are briefly discussed.

  17. A control theoretic model of driver steering behavior

    NASA Technical Reports Server (NTRS)

    Donges, E.

    1977-01-01

    A quantitative description of driver steering behavior such as a mathematical model is presented. The steering task is divided into two levels: (1) the guidance level involving the perception of the instantaneous and future course of the forcing function provided by the forward view of the road, and the response to it in an anticipatory open-loop control mode; (2) the stabilization level whereby any occuring deviations from the forcing function are compensated for in a closed-loop control mode. This concept of the duality of the driver's steering activity led to a newly developed two-level model of driver steering behavior. Its parameters are identified on the basis of data measured in driving simulator experiments. The parameter estimates of both levels of the model show significant dependence on the experimental situation which can be characterized by variables such as vehicle speed and desired path curvature.

  18. Theoretical modeling of electron mobility in superfluid (4)He.

    PubMed

    Aitken, Frédéric; Bonifaci, Nelly; von Haeften, Klaus; Eloranta, Jussi

    2016-07-28

    The Orsay-Trento bosonic density functional theory model is extended to include dissipation due to the viscous response of superfluid (4)He present at finite temperatures. The viscous functional is derived from the Navier-Stokes equation by using the Madelung transformation and includes the contribution of interfacial viscous response present at the gas-liquid boundaries. This contribution was obtained by calibrating the model against the experimentally determined electron mobilities from 1.2 K to 2.1 K along the saturated vapor pressure line, where the viscous response is dominated by thermal rotons. The temperature dependence of ion mobility was calculated for several different solvation cavity sizes and the data are rationalized in the context of roton scattering and Stokes limited mobility models. Results are compared to the experimentally observed "exotic ion" data, which provides estimates for the corresponding bubble sizes in the liquid. Possible sources of such ions are briefly discussed. PMID:27475346

  19. Theoretical aspects of color vision

    NASA Technical Reports Server (NTRS)

    Wolbarsht, M. L.

    1972-01-01

    The three color receptors of Young-Helmholtz and the opponent colors type of information processing postulated by Hering are both present in the human visual system. This mixture accounts for both the phenomena of color matching or hue discrimination and such perceptual qualities of color as the division of the spectrum into color bands. The functioning of the cells in the visual system, especially within the retina, and the relation of this function to color perception are discussed.

  20. Aspects of seat modelling for seating comfort analysis.

    PubMed

    Verver, M M; de Lange, R; van Hoof, J; Wismans, J S H M

    2005-01-01

    The development of more comfortable seats is an important issue in the automotive industry. However, the development of new car seats is very time consuming and costly since it is typically based on experimental evaluation using prototypes. Computer models of the human-seat interaction could accelerate this process. The objective of this paper is to establish a protocol for the development of seat models using numerically efficient simulation techniques. The methodology is based on multi-body techniques: arbitrary surfaces, providing an accurate surface description, are attached to rigid bodies. The bodies are connected by kinematic joints, representing the seat back recliner and head restraint joint. Properties of the seat foam and frame have been lumped together. Further, experiments have been defined to characterise the mechanical properties required for the seat model for comfort applications. The protocol has been exemplified using a standard car seat. The seat model has been validated based on experiments with rigid loading devices with human-like shapes in terms of force-deflection characteristics. The response of the seat model agrees well with the experimental results. Therefore the presented method can be a useful tool in the seat development process, especially in early stages of the design process.

  1. Flavor symmetry based MSSM: Theoretical models and phenomenological analysis

    NASA Astrophysics Data System (ADS)

    Babu, K. S.; Gogoladze, Ilia; Raza, Shabbar; Shafi, Qaisar

    2014-09-01

    We present a class of supersymmetric models in which symmetry considerations alone dictate the form of the soft SUSY breaking Lagrangian. We develop a class of minimal models, denoted as sMSSM—for flavor symmetry-based minimal supersymmetric standard model—that respect a grand unified symmetry such as SO(10) and a non-Abelian flavor symmetry H which suppresses SUSY-induced flavor violation. Explicit examples are constructed with the flavor symmetry being gauged SU(2)H and SO(3)H with the three families transforming as 2+1 and 3 representations, respectively. A simple solution is found in the case of SU(2)H for suppressing the flavor violating D-terms based on an exchange symmetry. Explicit models based on SO(3)H without the D-term problem are developed. In addition, models based on discrete non-Abelian flavor groups are presented which are automatically free from D-term issues. The permutation group S3 with a 2+1 family assignment, as well as the tetrahedral group A4 with a 3 assignment are studied. In all cases, a simple solution to the SUSY CP problem is found, based on spontaneous CP violation leading to a complex quark mixing matrix. We develop the phenomenology of the resulting sMSSM, which is controlled by seven soft SUSY breaking parameters for both the 2+1 assignment and the 3 assignment of fermion families. These models are special cases of the phenomenological MSSM (pMSSM), but with symmetry restrictions. We discuss the parameter space of sMSSM compatible with LHC searches, B-physics constraints and dark matter relic abundance. Fine-tuning in these models is relatively mild, since all SUSY particles can have masses below about 3 TeV.

  2. Deterministic versus stochastic aspects of superexponential population growth models

    NASA Astrophysics Data System (ADS)

    Grosjean, Nicolas; Huillet, Thierry

    2016-08-01

    Deterministic population growth models with power-law rates can exhibit a large variety of growth behaviors, ranging from algebraic, exponential to hyperexponential (finite time explosion). In this setup, selfsimilarity considerations play a key role, together with two time substitutions. Two stochastic versions of such models are investigated, showing a much richer variety of behaviors. One is the Lamperti construction of selfsimilar positive stochastic processes based on the exponentiation of spectrally positive processes, followed by an appropriate time change. The other one is based on stable continuous-state branching processes, given by another Lamperti time substitution applied to stable spectrally positive processes.

  3. Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials

    SciTech Connect

    Wen, Shuangchun; Xiang, Yuanjiang; Dai, Xiaoyu; Tang, Zhixiang; Su, Wenhua; Fan, Dianyuan

    2007-03-15

    A metamaterial (MM) differs from an ordinary optical material mainly in that it has a dispersive magnetic permeability and offers greatly enhanced design freedom to alter the linear and nonlinear properties. This makes it possible for us to control the propagation of ultrashort electromagnetic pulses at will. Here we report on generic features of ultrashort electromagnetic pulse propagation and demonstrate the controllability of both the linear and nonlinear parameters of models for pulse propagation in MMs. First, we derive a generalized system of coupled three-dimensional nonlinear Schroedinger equations (NLSEs) suitable for few-cycle pulse propagation in a MM with both nonlinear electric polarization and nonlinear magnetization. The coupled equations recover previous models for pulse propagation in both ordinary material and a MM under the same conditions. Second, by using the coupled NLSEs in the Drude dispersive model as an example, we identify the respective roles of the dispersive electric permittivity and magnetic permeability in ultrashort pulse propagation and disclose some additional features of pulse propagation in MMs. It is shown that, for linear propagation, the sign and magnitude of space-time focusing can be controlled through adjusting the linear dispersive permittivity and permeability. For nonlinear propagation, the linear dispersive permittivity and permeability are incorporated into the nonlinear magnetization and nonlinear polarization, respectively, resulting in controllable magnetic and electric self-steepening effects and higher-order dispersively nonlinear terms in the propagation models.

  4. Photoabsorption spectrum of helium trimer cation—Theoretical modeling

    SciTech Connect

    Kalus, René; Karlický, František; Lepetit, Bruno; Paidarová, Ivana; Gadea, Florent Xavier

    2013-11-28

    The photoabsorption spectrum of He{sub 3}{sup +} is calculated for two semiempirical models of intracluster interactions and compared with available experimental data reported in the middle UV range [H. Haberland and B. von Issendorff, J. Chem. Phys. 102, 8773 (1995)]. Nuclear delocalization effects are investigated via several approaches comprising quantum samplings using either exact or approximate (harmonic) nuclear wavefunctions, as well as classical samplings based on the Monte Carlo methodology. Good agreement with the experiment is achieved for the model by Knowles et al., [Mol. Phys. 85, 243 (1995); Mol. Phys. 87, 827 (1996)] whereas the model by Calvo et al., [J. Chem. Phys. 135, 124308 (2011)] exhibits non-negligible deviations from the experiment. Predictions of far UV absorption spectrum of He{sub 3}{sup +}, for which no experimental data are presently available, are reported for both models and compared to each other as well as to the photoabsorption spectrum of He{sub 2}{sup +}. A simple semiempirical point-charge approximation for calculating transition probabilities is shown to perform well for He{sub 3}{sup +}.

  5. SBS mitigation with 'two-tone' amplification: a theoretical model

    NASA Astrophysics Data System (ADS)

    Bronder, T. J.; Shay, T. M.; Dajani, I.; Gavrielides, A.; Robin, C. A.; Lu, C. A.

    2008-02-01

    A new technique for mitigating stimulated Brillouin scattering (SBS) effects in narrow-linewidth Yb-doped fiber amplifiers is demonstrated with a model that reduces to solving an 8×8 system of coupled nonlinear equations with the gain, SBS, and four-wave mixing (FMW) incorporated into the model. This technique uses two seed signals, or 'two-tones', with each tone reaching its SBS threshold almost independently and thus increasing the overall threshold for SBS in the fiber amplifier. The wavelength separation of these signals is also selected to avoid FWM, which in this case possesses the next lowest nonlinear effects threshold. This model predicts an output power increase of 86% (at SBS threshold with no signs of FWM) for a 'two-tone' amplifier with seed signals at 1064nm and 1068nm, compared to a conventional fiber amplifier with a single 1064nm seed. The model is also used to simulate an SBS-suppressing fiber amplifier to test the regime where FWM is the limiting factor. In this case, an optimum wavelength separation of 3nm to 10nm prevents FWM from reaching threshold. The optimum ratio of the input power for the two seed signals in 'two-tone' amplification is also tested. Future experimental verification of this 'two-tone' technique is discussed.

  6. Voronoi Cell Patterns: theoretical model and application to submonolayer growth

    NASA Astrophysics Data System (ADS)

    González, Diego Luis; Einstein, T. L.

    2012-02-01

    We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We apply our model to describe the Voronoi cell patterns of island nucleation for critical island sizes i=0,1,2,3. Experimental results for the Voronoi cells of InAs/GaAs quantum dots are also described by our model.

  7. [Theoretical model for rocky desertification control in karst area].

    PubMed

    Liang, Liang; Liu, Zhi-Xiao; Zhang, Dai-Gui; Deng, Kai-Dong; Zhang, You-Xiang

    2007-03-01

    Based on the basic principles of restoration ecology, the trigger-action model for rocky desertification control was proposed, i. e. , the ability that an ecosystem enables itself to develop was called dominant force, and the interfering factor resulting in the deviation of the climax of ecological succession from its preconcerted status was called trigger factor. The ultimate status of ecological succession was determined by the interaction of dominant force and trigger factor. Rocky desertification was the result of serious malignant triggers, and its control was the process of benign triggers in using the ecological restoration method of artificial designs to activate the natural designing ability of an ecosystem. The ecosystem of Karst rocky desertification in Fenghuang County with restoration measures was taken as a case to test the model, and the results showed that the restoration measures based on trigger-action model markedly improved the physical and chemical properties of soil and increased the diversity of plant. There was a benign trigger between the restoration measures and the Karst area. The rationality of the trigger-action model was primarily tested by the results in practice. PMID:17552199

  8. Testing Theoretical Models of Magnetic Damping Using an Air Track

    ERIC Educational Resources Information Center

    Vidaurre, Ana; Riera, Jaime; Monsoriu, Juan A.; Gimenez, Marcos H.

    2008-01-01

    Magnetic braking is a long-established application of Lenz's law. A rigorous analysis of the laws governing this problem involves solving Maxwell's equations in a time-dependent situation. Approximate models have been developed to describe different experimental results related to this phenomenon. In this paper we present a new method for the…

  9. Control theoretic model of automobile demand and gasoline consumption

    SciTech Connect

    Panerali, R.B.

    1982-01-01

    The purpose of this research is to examine the controllability of gasoline consumption and automobile demand using gasoline price as a policy instrument. The author examines the problem of replacing the standby motor-fuel rationing plan with use of the federal excise tax on gasoline. It is demonstrated that the standby targets are attainable with the tax. The problem of multiple control of automobile demand and gasoline consumption is also addressed. When the federal gasoline excise tax is used to control gasoline consumption, the policy maker can also use the tax to direct automobile demand. There exists a trade-off between various automobile demand targets and the target implied for gasoline consumption. We seek to measure this trade-off and use the results for planning. This research employs a time series of cross section data base with a disaggregated model of automobile demand, and an aggregate model of gasoline consumption. Automobile demand is divided into five mutually exclusive classes of cars. Gasoline demand is model as the sum of regular, premium, and unleaded gasoline. The pooled data base is comprised of a quarterly time series running from 1963 quarter one through 1979 quarter four, for each of the 48 continuous states. The demand equations are modelled using dynamic theories of demand. Estimates of the respective equations are made with error components and covariance techniques. Optimal control is applied to examine the gasoline-control problem.

  10. A Theoretical Model of Sexual Assault: An Empirical Test.

    ERIC Educational Resources Information Center

    White, Jacquelyn W.; Humphrey, John A.

    Koss and Dinero's (1987) comprehensive developmental model of sexual aggression asserts that sexual assault is in part a result of early sexual experiences and family violence; that sexually aggressive behaviors may be predicted by such "releaser" variables as current sexual behavior, alcohol use, and peer group support; and that use of aggression…

  11. Interpreting Unfamiliar Graphs: A Generative, Activity Theoretic Model

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael; Lee, Yew Jin

    2004-01-01

    Research on graphing presents its results as if knowing and understanding were something stored in peoples' minds independent of the situation that they find themselves in. Thus, there are no models that situate interview responses to graphing tasks. How, then, we question, are the interview texts produced? How do respondents begin and end…

  12. Geometric Aspects of Force Controllability for a Swimming Model

    SciTech Connect

    Khapalov, A. Y.

    2008-02-15

    We study controllability properties (swimming capabilities) of a mathematical model of an abstract object which 'swims' in the 2-D Stokes fluid. Our goal is to investigate how the geometric shape of this object affects the forces acting upon it. Such problems are of interest in biology and engineering applications dealing with propulsion systems in fluids.

  13. Insights on non-perturbative aspects of TMDs from models

    SciTech Connect

    H. Avakian, A. Efremov, P. Schweitzer, O. Teryaev, F. Yuan, P. Zavada

    2009-12-01

    Transverse momentum dependent parton distribution functions are a key ingredient in the description of spin and azimuthal asymmetries in deep-inelastic scattering processes. Recent results from non-perturbative calculations in effective approaches are reviewed, with focus on relations among different parton distribution functions in QCD and models.

  14. Modeling Spatial and Temporal Aspects of Visual Backward Masking

    ERIC Educational Resources Information Center

    Hermens, Frouke; Luksys, Gediminas; Gerstner, Wulfram; Herzog, Michael H.; Ernst, Udo

    2008-01-01

    Visual backward masking is a versatile tool for understanding principles and limitations of visual information processing in the human brain. However, the mechanisms underlying masking are still poorly understood. In the current contribution, the authors show that a structurally simple mathematical model can explain many spatial and temporal…

  15. Theoretical model for morphogenesis and cell sorting in Dictyostelium discoideum

    NASA Astrophysics Data System (ADS)

    Umeda, T.; Inouye, K.

    1999-02-01

    The morphogenetic movement and cell sorting in cell aggregates from the mound stage to the migrating slug stage of the cellular slime mold Dictyostelium discoideum were studied using a mathematical model. The model postulates that the motive force generated by the cells is in equilibrium with the internal pressure and mechanical resistance. The moving boundary problem derived from the force balance equation and the continuity equation has stationary solutions in which the aggregate takes the shape of a spheroid (or an ellipse in two-dimensional space) with the pacemaker at one of its foci, moving at a constant speed. Numerical calculations in two-dimensional space showed that an irregularly shaped aggregate changes its shape to become an ellipse as it moves. Cell aggregates consisting of two cell types differing in motive force exhibit cell sorting and become elongated, suggesting the importance of prestalk/prespore differentiation in the morphogenesis of Dictyostelium.

  16. Modeling energetic and theoretical costs of thermoregulatory strategy.

    PubMed

    Alford, John G; Lutterschmidt, William I

    2012-01-01

    Poikilothermic ectotherms have evolved behaviours that help them maintain or regulate their body temperature (T (b)) around a preferred or 'set point' temperature (T (set)). Thermoregulatory behaviors may range from body positioning to optimize heat gain to shuttling among preferred microhabitats to find appropriate environmental temperatures. We have modelled movement patterns between an active and non-active shuttling behaviour within a habitat (as a biased random walk) to investigate the potential cost of two thermoregulatory strategies. Generally, small-bodied ectotherms actively thermoregulate while large-bodied ectotherms may passively thermoconform to their environment. We were interested in the potential energetic cost for a large-bodied ectotherm if it were forced to actively thermoregulate rather than thermoconform. We therefore modelled movements and the resulting and comparative energetic costs in precisely maintaining a T (set) for a small-bodied versus large-bodied ectotherm to study and evaluate the thermoregulatory strategy.

  17. BL Herculis stars - Theoretical models for field variables

    NASA Technical Reports Server (NTRS)

    Carson, R.; Stothers, R.

    1982-01-01

    Type II Cepheids with periods between 1 and 3 days, commonly designated as Bl Herculis stars, have been modeled here with the aim of interpreting the wide variety of light curves observed among the field variables. Previously modeled globular cluster members are used as standard calibration objects. The major finding is that only a small range of luminosities is capable of generating a large variety of light curve types at a given period. For a mass of approximately 0.60 solar mass, the models are able to reproduce the observed mean luminosities, dispersion of mean luminosities, periods, light amplitudes, light asymmetries, and phases of secondary features in the light curves of known BL Her stars. It is possible that the metal-rich variables (which are found only in the field) have luminosities lower than those of most metal-poor variables. The present revised mass for BL Her, a metal-rich object, is not significantly different from the mean mass of the metal-poor variables.

  18. A dynamic game-theoretic model of parental care.

    PubMed

    Mcnamara, J M; Székely, T; Webb, J N; Houston, A I

    2000-08-21

    We present a model in which members of a mated pair decide whether to care for their offspring or desert them. There is a breeding season of finite length during which it is possible to produce and raise several batches of offspring. On deserting its offspring, an individual can search for a new mate. The probability of finding a mate depends on the number of individuals of each sex that are searching, which in turn depends upon the previous care and desertion decisions of all population members. We find the evolutionarily stable pattern of care over the breeding season. The feedback between behaviour and mating opportunity can result in a pattern of stable oscillations between different forms of care over the breeding season. Oscillations can also arise because the best thing for an individual to do at a particular time in the season depends on future behaviour of all population members. In the baseline model, a pair splits up after a breeding attempt, even if they both care for the offspring. In a version of the model in which a pair stays together if they both care, the feedback between behaviour and mating opportunity can lead to more than one evolutionarily stable form of care.

  19. A dynamic game-theoretic model of parental care.

    PubMed

    Mcnamara, J M; Székely, T; Webb, J N; Houston, A I

    2000-08-21

    We present a model in which members of a mated pair decide whether to care for their offspring or desert them. There is a breeding season of finite length during which it is possible to produce and raise several batches of offspring. On deserting its offspring, an individual can search for a new mate. The probability of finding a mate depends on the number of individuals of each sex that are searching, which in turn depends upon the previous care and desertion decisions of all population members. We find the evolutionarily stable pattern of care over the breeding season. The feedback between behaviour and mating opportunity can result in a pattern of stable oscillations between different forms of care over the breeding season. Oscillations can also arise because the best thing for an individual to do at a particular time in the season depends on future behaviour of all population members. In the baseline model, a pair splits up after a breeding attempt, even if they both care for the offspring. In a version of the model in which a pair stays together if they both care, the feedback between behaviour and mating opportunity can lead to more than one evolutionarily stable form of care. PMID:10931755

  20. A Theoretical Model for the Associative Nature of Conference Participation

    PubMed Central

    Smiljanić, Jelena; Chatterjee, Arnab; Kauppinen, Tomi; Mitrović Dankulov, Marija

    2016-01-01

    Participation in conferences is an important part of every scientific career. Conferences provide an opportunity for a fast dissemination of latest results, discussion and exchange of ideas, and broadening of scientists’ collaboration network. The decision to participate in a conference depends on several factors like the location, cost, popularity of keynote speakers, and the scientist’s association with the community. Here we discuss and formulate the problem of discovering how a scientist’s previous participation affects her/his future participations in the same conference series. We develop a stochastic model to examine scientists’ participation patterns in conferences and compare our model with data from six conferences across various scientific fields and communities. Our model shows that the probability for a scientist to participate in a given conference series strongly depends on the balance between the number of participations and non-participations during his/her early connections with the community. An active participation in a conference series strengthens the scientist’s association with that particular conference community and thus increases the probability of future participations. PMID:26859404

  1. Theoretical models for the emergence of biomolecular homochirality

    NASA Astrophysics Data System (ADS)

    Walker, Sara Imari

    Little is known about the emergence of life from nonliving precursors. A key missing-piece is the origin of homochirality: nearly all life is characterized by exclusively dextrorotary sugars and levorotary amino acids. The research presented in this thesis addresses the challenge of uncovering mechanisms for chiral symmetry breaking in a prebiotic environment and implications for the origin of life on Earth. Expanding on a well-known model for chiral selection through polymerization, and modeling the spatiotemporal dynamics starting from near-racemic initial conditions, it is demonstrated that the net chirality of molecular building blocks grows with the longest polymer in the reaction network (of length N) with critical behavior for the onset of chiral asymmetry determined by the value of N. This surprising result indicates that significant chiral asymmetry occurs only for systems which permit growth of long polymers. Expanding on this work, the effects of environmental disturbances on the evolution of chirality in prebiotic reaction-diffusion networks are studied via the implementation of a stochastic spatiotemporal Langevin equation. The results show that environmental interactions can have significant impact on the evolution of prebiotic chirality: the history of prebiotic chirality is therefore interwoven with the Earths early environmental history in a mechanism we call punctuated chirality. This result establishes that the onset of homochirality is not an isolated phenomenon: chiral selection must occur in tandem with the transition from chemistry to biology, otherwise the prebiotic soup is unstable to environmental events. Addressing the challenge of understanding the role of chirality in the transition from non-life to life, the diffusive slowdown of reaction networks induced, for example, through tidal cycles or evaporating pools, is modeled. The results of this study demonstrate that such diffusive slowdown leads to the stabilization of homochiral

  2. GSTARS computer models and their applications, part I: theoretical development

    USGS Publications Warehouse

    Yang, C.T.; Simoes, F.J.M.

    2008-01-01

    GSTARS is a series of computer models developed by the U.S. Bureau of Reclamation for alluvial river and reservoir sedimentation studies while the authors were employed by that agency. The first version of GSTARS was released in 1986 using Fortran IV for mainframe computers. GSTARS 2.0 was released in 1998 for personal computer application with most of the code in the original GSTARS revised, improved, and expanded using Fortran IV/77. GSTARS 2.1 is an improved and revised GSTARS 2.0 with graphical user interface. The unique features of all GSTARS models are the conjunctive use of the stream tube concept and of the minimum stream power theory. The application of minimum stream power theory allows the determination of optimum channel geometry with variable channel width and cross-sectional shape. The use of the stream tube concept enables the simulation of river hydraulics using one-dimensional numerical solutions to obtain a semi-two- dimensional presentation of the hydraulic conditions along and across an alluvial channel. According to the stream tube concept, no water or sediment particles can cross the walls of stream tubes, which is valid for many natural rivers. At and near sharp bends, however, sediment particles may cross the boundaries of stream tubes. GSTARS3, based on FORTRAN 90/95, addresses this phenomenon and further expands the capabilities of GSTARS 2.1 for cohesive and non-cohesive sediment transport in rivers and reservoirs. This paper presents the concepts, methods, and techniques used to develop the GSTARS series of computer models, especially GSTARS3. ?? 2008 International Research and Training Centre on Erosion and Sedimentation and the World Association for Sedimentation and Erosion Research.

  3. The Grain Structure of Castings: Some Aspects of Modelling

    NASA Technical Reports Server (NTRS)

    Hellawell, A.

    1995-01-01

    The efficacy of the modelling of the solidification of castings is typically tested against observed cooling curves and the final grain structures and sizes. Without thermo solutal convection, equiaxed grain formation is promoted by introduction of heterogeneous substrates into the melt, as grain refiners. With efficient thermo solutal convection, dendrite fragments from the mushy zone can act as an intrinsic source of equiaxed grains and resort to grain refining additions is unnecessary. The mechanisms of dendrite fragmentation and transport of these fragments are briefly considered.

  4. Modeling Hydrologic and Geochemical Aspects of Rapid Infiltration Basins

    NASA Astrophysics Data System (ADS)

    Akhavan, M.; Imhoff, P. T.; Andres, S.; Finsterle, S.; Gu, C.; Maggi, F.

    2010-12-01

    Land-based wastewater treatment is the controlled application of wastewater to soil to remove wastewater constituents. A Rapid Infiltration Basin (RIB) is a major land treatment technique where treated wastewater is infiltrated at high rates in shallow basins, with further treatment occurring in soil and the vadose zone before the water recharges groundwater. Because the influent wastewater is usually enriched in nitrogen compounds, there is particular concern that a RIB may contaminant groundwater or nearby surface waters if not designed and operated properly. RIBs are operated in repetitive cycles of flooding, infiltration, and drying. Key operational parameters include the ratio of wetting to drying time and the hydraulic loading rate, which affect pollutant residence time and water table rise in shallow groundwater systems. They also alter water saturation and air content in the vadose zone, which have an impact on denitrification. Optimum values of the wetting-drying cycle ratio and the hydraulic loading rate are expected to vary with the quality of applied wastewater, soil type, treatment objective, and climate. Soil development within the basins may have an important effect on RIB performance. In this study, numerical modeling is used to obtain optimum values for the wetting-drying cycle ratio and hydraulic loading rate for different soil types and environmental conditions. TOUGH2/ iTOUGH2, a general-purpose numerical simulation program for multi-phase fluid flow in porous media, is used for modeling fluid movement. Overland flow within RIBs is coupled with subsurface flow to investigate the influence of non-uniform application of wastewater on hydraulic performance. TOUGHREACT v1.1 is used for modeling nitrogen fate and transport. Flow simulations indicate that using a long flooding cycle results in more water spreading over the basin and higher vadose zone water saturations than more frequent short-duration flooding events. Results of modeling fate and

  5. Modeling aspects of the dynamic response of heterogeneous materials

    SciTech Connect

    Ionita, Axinte; Clements, Brad; Mas, Eric

    2009-01-01

    In numerical simulations of engineering applications involving heterogeneous materials capturing the local response coming from a distribution of heterogeneities can lead to a very large model thus making simulations difficult. The use of homogenization techniques can reduce the size of the problem but will miss the local effects. Homogenization can also be difficult if the constituents obey different types of constitutive laws. Additional complications arise if inelastic deformation. In such cases a two-scale approach is prefened and tills work addresses these issues in the context of a two-scale Finite Element Method (FEM). Examples of using two-scale FEM approaches are presented.

  6. Theoretical Modeling of Various Spectroscopies for Cuprates and Topological Insulators

    NASA Astrophysics Data System (ADS)

    Basak, Susmita

    Spectroscopies resolved highly in momentum, energy and/or spatial dimensions are playing an important role in unraveling key properties of wide classes of novel materials. However, spectroscopies do not usually provide a direct map of the underlying electronic spectrum, but act as a complex 'filter' to produce a 'mapping' of the underlying energy levels, Fermi surfaces (FSs) and excitation spectra. The connection between the electronic spectrum and the measured spectra is described as a generalized 'matrix element effect'. The nature of the matrix element involved differs greatly between different spectroscopies. For example, in angle-resolved photoemission (ARPES) an incoming photon knocks out an electron from the sample and the energy and momentum of the photoemitted electron is measured. This is quite different from what happens in K-edge resonant inelastic X-ray scattering (RIXS), where an X-ray photon is scattered after inducing electronic transitions near the Fermi energy through an indirect second order process, or in Compton scattering where the incident X-ray photon is scattered inelastically from an electron transferring energy and momentum to the scattering electron. For any given spectroscopy, the matrix element is, in general, a complex function of the phase space of the experiment, e.g. energy/polarization of the incoming photon and the energy/momentum/spin of the photoemitted electron in the case of ARPES. The matrix element can enhance or suppress signals from specific states, or merge signals of groups of states, making a good understanding of the matrix element effects important for not only a robust interpretation of the spectra, but also for ascertaining optimal regions of the experimental phase space for zooming in on states of the greatest interest. In this thesis I discuss a comprehensive scheme for modeling various highly resolved spectroscopies of the cuprates and topological insulators (TIs) where effects of matrix element, crystal

  7. Polarimetric signatures of sea ice. 1: Theoretical model

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.

    1995-01-01

    Physical, structral, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in sea ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarmetric signatures of sea ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. Sea ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing sea ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies to interpretation of sea ice polarimetric signatures.

  8. Polarimetric Signatures of Sea Ice. Part 1; Theoretical Model

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.

    1995-01-01

    Physical, structural, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in sea ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarimetric signatures of sea ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. Sea ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing sea ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies for interpretation of sea ice polarimetric signatures.

  9. Modeling socioeconomic and ecologic aspects of land-use change

    SciTech Connect

    Dale, V.H.; Pedlowski, M.A.; O'Neill, R.V.; Southworth, F.

    1992-01-01

    Land use change is one of the major factors affecting global environmental conditions. Prevalent types of land-use change include replacing forests with agriculture, mines or ranches; forest degradation from collection of firewood; and forest logging. A global effect of wide-scale deforestation is an increase in atmospheric carbon dioxide concentration, which may affect climate. Regional effects include loss of biodiversity and disruption of hydrologic regimes. Local effects include soil erosion, siltation and decreases in soil fertility, loss of extractive reserves, and disruption of indigenous people. Modeling land use change requires combining socioeconomic and ecological factors because socioeconomic forces frequently initiate land-use change and are affected by the subsequent ecological degradation. This paper describes a modeling system that integrates submodels of human colonization and impacts to estimate patterns and rates of deforestation under different immigration and land use scenarios. Immigration which follows road building or paving is a major factor in the rapid deforestation of previously inaccessible areas. Roads facilitate colonization, allow access for large machines, and provide transportation routes for mort of raw materials and produce.

  10. Modeling Connectionist Networks: Categorical, Geometric Aspects (Towards ``Homomorphic Learning'')

    NASA Astrophysics Data System (ADS)

    Pfalzgraf, Jochen

    2004-08-01

    Work in interdisciplinary fields is very interesting and always a great challenge. We present work on applications of mathematical methods to modeling problems arising in the area of artificial neural networks (ANN). We concentrate on modeling network structures that are motivated and based on knowledge about net structures coming from neurophysiology. In past years such insights have been exploited already in computer based ANN-simulations which are well suited for industrial applications. In the analysis of network structures, considering assemblies of cells (neurons) in biological nets, from a geometric point of view one can indentify and interpret, locally, what is called a geometric configuration. Following notions from algebraic topology, we are speaking about simplicial configurations (e.g. triangular, tetrahedral configurations, etc.). It turns out that category theory, geometry, algebra (group theory), graph theory (more general, net theory) come together, in a natural interdisciplinary way. Simplices are of basic importance.The interpretation of a learning step as a morphism in categorical terms suggests the opening of a systematic theory of learning (we call it "Homomorphic Learning").

  11. Theoretical model for assessing properties of local structures in metalloprotein

    NASA Astrophysics Data System (ADS)

    Koyimatu, M.; Shimahara, H.; Iwayama, M.; Sugimori, K.; Kawaguchi, K.; Saito, H.; Nagao, H.

    2013-02-01

    For model structures containing two aromatic rings such as the indole of Trp5 and the imidazole of His64 in human carbonic anhydrase (hCAII), the location and orientation of the rings with regard to each other contribute to the magnitude of the entire interaction energy. Here the energetic contribution of the indole ring of Trp5 on the imidazole ring of the "out" conformation of His64 were calculated to compare with that of the alternative "in" conformation of His64 by using the MP2/6-311++G(d,p)//B3LYP/6-31G(d,p) method. We suggest that 1) Trp5 and the "out" conformation of His64 are predicted to form a stack of planar parallel rings via π-stacking interaction and 2) the energy is 1.73-1.83 kcal/mol to stabilize the "out" conformation, compared with the "in" conformation.

  12. [A theoretical model of the transition phase in human locomotion].

    PubMed

    Beuter, A; Lefebvre, R

    1988-12-01

    In this study we examine the bifurcation of the transition between walking and running. Beuter and Lalonde (1986) have conjectured that the pertinent parameters separating walking and running can be described by a cusp singularity (Thom, 1972). In this model, the unidimensional state space is characterized by support duration and the bidimensional parameter space is characterized by the subject's weight and speed. To test this model eight males walked and ran on a motor driven treadmill at an increasing or decreasing speed with or without additional loads corresponding to 0%, 7% and 14% of their body weight. Velocities corresponding to transitions between the two modes of locomotion indicate that on the average the walk-run transition occurs at higher speed than the run-walk transition illustrating an hysteresis effect. In addition, the average difference between the transitions decreases as the load increases [mean 0 = 0.235 m/s, +/- 0.09 m/s, mean 7 = 0.104 m/s, +/- 0.07 m/s and mean 14 = 0.041 m/s, +/- 0.06 m/s] corresponding to an F ratio of F = 2.72, 0.05 less than p less than 0.1. A comparison of the differences in transition velocity at 0% and 14% is statistically different (t = 2.8, p less than 0.025). These results tend to support the existence of an elementary cusp singularity separating the two locomotion modes and suggest that the mechanisms controlling these transitions can be described by a hysterisis cycle and a small number of parameters. PMID:3219673

  13. Random walk on lattices: Graph-theoretic approach to simulating long-range diffusion-attachment growth models

    NASA Astrophysics Data System (ADS)

    Limkumnerd, Surachate

    2014-03-01

    Interest in thin-film fabrication for industrial applications have driven both theoretical and computational aspects of modeling its growth. One of the earliest attempts toward understanding the morphological structure of a film's surface is through a class of solid-on-solid limited-mobility growth models such as the Family, Wolf-Villain, or Das Sarma-Tamborenea models, which have produced fascinating surface roughening behaviors. These models, however, restrict the motion of an incidence atom to be within the neighborhood of its landing site, which renders them inept for simulating long-distance surface diffusion such as that observed in thin-film growth using a molecular-beam epitaxy technique. Naive extension of these models by repeatedly applying the local diffusion rules for each hop to simulate large diffusion length can be computationally very costly when certain statistical aspects are demanded. We present a graph-theoretic approach to simulating a long-range diffusion-attachment growth model. Using the Markovian assumption and given a local diffusion bias, we derive the transition probabilities for a random walker to traverse from one lattice site to the others after a large, possibly infinite, number of steps. Only computation with linear-time complexity is required for the surface morphology calculation without other probabilistic measures. The formalism is applied, as illustrations, to simulate surface growth on a two-dimensional flat substrate and around a screw dislocation under the modified Wolf-Villain diffusion rule. A rectangular spiral ridge is observed in the latter case with a smooth front feature similar to that obtained from simulations using the well-known multiple registration technique. An algorithm for computing the inverse of a class of substochastic matrices is derived as a corollary.

  14. Theoretical conditions for the stationary reproduction of model protocells.

    PubMed

    Mavelli, Fabio; Ruiz-Mirazo, Kepa

    2013-02-01

    In previous works we have explored the dynamics of chemically reacting proto-cellular systems, under different experimental conditions and kinetic parameters, by means of our stochastic simulation platform 'ENVIRONMENT'. In this paper we, somehow, turn the question around: accepting some broad modeling assumptions, we investigate the conditions under which simple protocells will spontaneously settle into a stationary reproducing regime, characterized by a regular growth/division cycle and the maintenance of a certain standard size and chemical composition across generations. In the first part, starting from purely geometric considerations, the condition for stationary reproduction of a protocell will be expressed in terms of a growth control coefficient (γ). Then, an explicit relationship, the osmotic synchronization condition, will be analytically derived under a set of kinetic simplifications and taking into account the osmotic pressure balance operating across the protocell membrane. In the second part of the paper, this general condition that constrains different molecular/kinetic parameters and features of the system (reaction rates, permeability coefficients, metabolite concentrations, system volume) will be applied to different cases of self-producing vesicles, predicting the stationary protocell size or lifetime. Finally, in order to test the validity of our analytic results and predictions, the case study is contrasted with data obtained through both stochastic and deterministic computational algorithms. PMID:23233152

  15. TURBULENT CONVECTION MODEL IN THE OVERSHOOTING REGION. II. THEORETICAL ANALYSIS

    SciTech Connect

    Zhang, Q. S.; Li, Y. E-mail: ly@ynao.ac.cn

    2012-05-01

    Turbulent convection models (TCMs) are thought to be good tools to deal with the convective overshooting in the stellar interior. However, they are too complex to be applied to calculations of stellar structure and evolution. In order to understand the physical processes of the convective overshooting and to simplify the application of TCMs, a semi-analytic solution is necessary. We obtain the approximate solution and asymptotic solution of the TCM in the overshooting region, and find some important properties of the convective overshooting. (1) The overshooting region can be partitioned into three parts: a thin region just outside the convective boundary with high efficiency of turbulent heat transfer, a power-law dissipation region of turbulent kinetic energy in the middle, and a thermal dissipation area with rapidly decreasing turbulent kinetic energy. The decaying indices of the turbulent correlations k, u{sub r}'T'-bar, and T'T'-bar are only determined by the parameters of the TCM, and there is an equilibrium value of the anisotropic degree {omega}. (2) The overshooting length of the turbulent heat flux u{sub r}'T'-bar is about 1H{sub k} (H{sub k} = |dr/dln k|). (3) The value of the turbulent kinetic energy at the convective boundary k{sub C} can be estimated by a method called the maximum of diffusion. Turbulent correlations in the overshooting region can be estimated by using k{sub C} and exponentially decreasing functions with the decaying indices.

  16. Theoretical Modeling of (99)Tc NMR Chemical Shifts.

    PubMed

    Hall, Gabriel B; Andersen, Amity; Washton, Nancy M; Chatterjee, Sayandev; Levitskaia, Tatiana G

    2016-09-01

    Technetium-99 (Tc) displays a rich chemistry due to its wide range of accessible oxidation states (from -I to +VII) and ability to form coordination compounds. Determination of Tc speciation in complex mixtures is a major challenge, and (99)Tc nuclear magnetic resonance (NMR) spectroscopy is widely used to probe chemical environments of Tc in odd oxidation states. However, interpretation of (99)Tc NMR data is hindered by the lack of reference compounds. Density functional theory (DFT) calculations can help to fill this gap, but to date few computational studies have focused on (99)Tc NMR of compounds and complexes. This work evaluates the effectiveness of both pure generalized gradient approximation and their corresponding hybrid functionals, both with and without the inclusion of scalar relativistic effects, to model the (99)Tc NMR spectra of Tc(I) carbonyl compounds. With the exception of BLYP, which performed exceptionally well overall, hybrid functionals with inclusion of scalar relativistic effects are found to be necessary to accurately calculate (99)Tc NMR spectra. The computational method developed was used to tentatively assign an experimentally observed (99)Tc NMR peak at -1204 ppm to fac-Tc(CO)3(OH)3(2-). This study examines the effectiveness of DFT computations for interpretation of the (99)Tc NMR spectra of Tc(I) coordination compounds in high salt alkaline solutions. PMID:27518482

  17. A Measurement-Theoretic Analysis of the Fuzzy Logic Model of Perception.

    ERIC Educational Resources Information Center

    Crowther, Court S.; And Others

    1995-01-01

    The fuzzy logic model of perception (FLMP) is analyzed from a measurement-theoretic perspective. The choice rule of FLMP is shown to be equivalent to a version of the Rasch model. In fact, FLMP can be reparameterized as a simple two-category logit model. (SLD)

  18. Multi-aspect target discrimination using hidden Markov models and neural networks.

    PubMed

    Robinson, Marc; Azimi-Sadjadi, Mahmood R; Salazar, Jaime

    2005-03-01

    This paper presents a new multi-aspect pattern classification method using hidden Markov models (HMMs). Models are defined for each class, with the probability found by each model determining class membership. Each HMM model is enhanced by the use of a multilayer perception (MLP) network to generate emission probabilities. This hybrid system uses the MLP to find the probability of a state for an unknown pattern and the HMM to model the process underlying the state transitions. A new batch gradient descent-based method is introduced for optimal estimation of the transition and emission probabilities. A prediction method in conjunction with HMM model is also presented that attempts to improve the computation of transition probabilities by using the previous states to predict the next state. This method exploits the correlation information between consecutive aspects. These algorithms are then implemented and benchmarked on a multi-aspect underwater target classification problem using a realistic sonar data set collected in different bottom conditions.

  19. The Impact of Personality on Training-Related Aspects of Motivation: Test of a Longitudinal Model

    ERIC Educational Resources Information Center

    Rowold, Jens

    2007-01-01

    A model that proposed dispositional influences on training-related aspects of motivation was developed. More specifically, the model predicted influences of the Big Five personality variables on motivation to learn and transfer motivation, while controlling for general attitudes toward training. The model was tested empirically, drawing on a…

  20. The abelian confinement mechanism revisited: New aspects of the Georgi–Glashow model

    SciTech Connect

    Anber, Mohamed M.

    2014-02-15

    The confinement problem remains one of the most difficult problems in theoretical physics. An important step toward the solution of this problem is Polyakov’s work on abelian confinement. The Georgi–Glashow model is a natural testing ground for this mechanism which has been surprising us by its richness and wide applicability. In this work, we shed light on two new aspects of this model in 2+1 D. First, we develop a many-body description of the effective degrees of freedom. Namely, we consider a non-relativistic gas of W-bosons in the background of monopole–instanton plasma. Many-body treatment is a standard toolkit in condensed matter physics. However, we add a new twist by supplying the monopole–instantons as external background field. Using this construction along with a mean-field approximation, we calculate the form of the potential between two electric probes as a function of their separation. This potential is expressed in terms of the Meijer-G function which interpolates between logarithmic and linear behavior at small and large distances, respectively. Second, we develop a systematic approach to integrate out the effect of the W-bosons at finite temperature in the range 0≤Tmodel. Using a heat kernel expansion that takes into account the non-trivial thermal holonomy, we show that the partition function describes a three-dimensional two-component Coulomb gas. We repeat our analysis using the many-body description which yields the same result and provides a check on our formalism. At temperatures close to the deconfinement temperature, the gas becomes essentially two-dimensional recovering the partition function of the dual sine-Gordon model that was considered in a previous work. -- Highlights: • We consider the problem of abelian confinement in the Georgi–Glashow model from a new perspective. • We develop a many

  1. Theoretical Studies of Proton-Coupled Electron Transfer: Models and Concepts Relevant to Bioenergetics

    PubMed Central

    Hatcher, Elizabeth; Ishikita, Hiroshi; Skone, Jonathan H.; Soudackov, Alexander V.

    2010-01-01

    Theoretical studies of proton-coupled electron transfer (PCET) reactions for model systems provide insight into fundamental concepts relevant to bioenergetics. A dynamical theoretical formulation for vibronically nonadiabatic PCET reactions has been developed. This theory enables the calculation of rates and kinetic isotope effects, as well as the pH and temperature dependences, of PCET reactions. Methods for calculating the vibronic couplings for PCET systems have also been developed and implemented. These theoretical approaches have been applied to a wide range of PCET reactions, including tyrosyl radical generation in a tyrosine-bound rhenium polypyridyl complex, phenoxyl/phenol and benzyl/toluene self-exchange reactions, and hydrogen abstraction catalyzed by the enzyme lipoxygenase. These applications have elucidated some of the key underlying physical principles of PCET reactions. The tools and concepts derived from these theoretical studies provide the foundation for future theoretical studies of PCET in more complex bioenergetic systems such as Photosystem II. PMID:21057592

  2. A beginner's guide to writing the nursing conceptual model-based theoretical rationale.

    PubMed

    Gigliotti, Eileen; Manister, Nancy N

    2012-10-01

    Writing the theoretical rationale for a study can be a daunting prospect for novice researchers. Nursing's conceptual models provide excellent frameworks for placement of study variables, but moving from the very abstract concepts of the nursing model to the less abstract concepts of the study variables is difficult. Similar to the five-paragraph essay used by writing teachers to assist beginning writers to construct a logical thesis, the authors of this column present guidelines that beginners can follow to construct their theoretical rationale. This guide can be used with any nursing conceptual model but Neuman's model was chosen here as the exemplar.

  3. Stellar granulation as seen in disk-integrated intensity. I. Simplified theoretical modeling

    NASA Astrophysics Data System (ADS)

    Samadi, R.; Belkacem, K.; Ludwig, H.-G.

    2013-11-01

    Context. Solar granulation has been known for a long time to be a surface manifestation of convection. The space-borne missions CoRoT and Kepler enable us to observe the signature of this phenomena in disk-integrated intensity on a large number of stars. Aims: The space-based photometric measurements show that the global brightness fluctuations and the lifetime associated with granulation obeys characteristic scaling relations. We thus aimed at providing simple theoretical modeling to reproduce these scaling relations, and subsequently at inferring the physical properties of granulation across the Hertzsprung-Russell diagram. Methods: We developed a simple 1D theoretical model. The input parameters were extracted from 3D hydrodynamical models of the surface layers of stars, and the free parameters involved in the model were calibrated with solar observations. Two different prescriptions for representing the Fourier transform of the time-correlation of the eddy velocity were compared: a Lorentzian and an exponential form. Finally, we compared our theoretical prediction with 3D radiative hydrodynamical (RHD) numerical modeling of stellar granulation (hereafter ab initio approach). Results: Provided that the free parameters are appropriately adjusted, our theoretical model reproduces the observed solar granulation spectrum quite satisfactorily; the best agreement is obtained for an exponential form. Furthermore, our model results in granulation spectra that agree well with the ab initio approach using two 3D RHD models that are representative of the surface layers of an F-dwarf and a red-giant star. Conclusions: We have developed a theoretical model that satisfactory reproduces the solar granulation spectrum and gives results consistent with the ab initio approach. The model is used in a companion paper as theoretical framework for interpretating the observed scaling relations. Appendices are available in electronic form at http://www.aanda.org

  4. Nurses' self-relation--becoming theoretically competent: the SAUC model for confirming nursing.

    PubMed

    Gustafsson, Barbro; Willman, Ania M

    2003-07-01

    The purpose of this study was to acquire an understanding of how nurses' self-relation (view of themselves as nurses) was influenced in connection with implementation of a nursing theory, the sympathy-acceptance-understanding-competence model for confirming nursing. This model was developed by Gustafsson and Pörn. Twenty-two nurses' written statements evaluating mentoring during the six-month implementation process in elder care, were analyzed hermeneutically with the hypothetic-deductive method. An action-theoretic and confirmatory approach was used for facilitating theoretically specified hypotheses. The nurses increased their ability to describe nursing theoretically and gained a foundation of common nursing values. The results provided an understanding of how nurses' self-relation was strengthened by becoming theoretically competent. PMID:12876885

  5. Nurses' self-relation--becoming theoretically competent: the SAUC model for confirming nursing.

    PubMed

    Gustafsson, Barbro; Willman, Ania M

    2003-07-01

    The purpose of this study was to acquire an understanding of how nurses' self-relation (view of themselves as nurses) was influenced in connection with implementation of a nursing theory, the sympathy-acceptance-understanding-competence model for confirming nursing. This model was developed by Gustafsson and Pörn. Twenty-two nurses' written statements evaluating mentoring during the six-month implementation process in elder care, were analyzed hermeneutically with the hypothetic-deductive method. An action-theoretic and confirmatory approach was used for facilitating theoretically specified hypotheses. The nurses increased their ability to describe nursing theoretically and gained a foundation of common nursing values. The results provided an understanding of how nurses' self-relation was strengthened by becoming theoretically competent.

  6. Single Droplet on Micro Square-Post Patterned Surfaces – Theoretical Model and Numerical Simulation

    PubMed Central

    Zu, Y. Q.; Yan, Y. Y.

    2016-01-01

    In this study, the wetting behaviors of single droplet on a micro square-post patterned surface with different geometrical parameters are investigated theoretically and numerically. A theoretical model is proposed for the prediction of wetting transition from the Cassie to Wenzel regimes. In addition, due to the limitation of theoretical method, a numerical simulation is performed, which helps get a view of dynamic contact lines, detailed velocity fields, etc., even if the droplet size is comparable with the scale of the surface micro-structures. It is found that the numerical results of the liquid drop behaviours on the square-post patterned surface are in good agreement with the predicted values by the theoretical model. PMID:26775561

  7. Single Droplet on Micro Square-Post Patterned Surfaces - Theoretical Model and Numerical Simulation.

    PubMed

    Zu, Y Q; Yan, Y Y

    2016-01-01

    In this study, the wetting behaviors of single droplet on a micro square-post patterned surface with different geometrical parameters are investigated theoretically and numerically. A theoretical model is proposed for the prediction of wetting transition from the Cassie to Wenzel regimes. In addition, due to the limitation of theoretical method, a numerical simulation is performed, which helps get a view of dynamic contact lines, detailed velocity fields, etc., even if the droplet size is comparable with the scale of the surface micro-structures. It is found that the numerical results of the liquid drop behaviours on the square-post patterned surface are in good agreement with the predicted values by the theoretical model.

  8. Comparison of analytical and experimental subsonic steady and unsteady pressure distributions for a high-aspect-ratio-supercritical wing model with oscillating control surfaces

    NASA Technical Reports Server (NTRS)

    Mccain, W. E.

    1982-01-01

    The results of a comparative study using the unsteady aerodynamic lifting surface theory, known as the Doublet Lattice method, and experimental subsonic steady- and unsteady-pressure measurements, are presented for a high-aspect-ratio supercritical wing model. Comparisons of pressure distributions due to wing angle of attack and control-surface deflections were made. In general, good correlation existed between experimental and theoretical data over most of the wing planform. The more significant deviations found between experimental and theoretical data were in the vicinity of control surfaces for both static and oscillatory control-surface deflections.

  9. The BLOW-3A: A theoretical model to describe transient two phase flow conditions in Liquid Metal Fast Breeder Reactor (LMFBR) coolant channels

    NASA Astrophysics Data System (ADS)

    Bottoni, M.; Struwe, D.

    The theoretical background of the BLOW-3A program is reported, including the basic equations used to determine temperature fields in the fuel, clad, coolant and structure material as well as the coolant dynamics in single and two-phase flow conditions. The two-phase flow model assumes an annular flow regime. Special aspects to calculate two-phase pressure drops for these conditions are discussed. Examples of the experimental validation of the program are given.

  10. Simple control-theoretic models of human steering activity in visually guided vehicle control

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1991-01-01

    A simple control theoretic model of human steering or control activity in the lateral-directional control of vehicles such as automobiles and rotorcraft is discussed. The term 'control theoretic' is used to emphasize the fact that the model is derived from a consideration of well-known control system design principles as opposed to psychological theories regarding egomotion, etc. The model is employed to emphasize the 'closed-loop' nature of tasks involving the visually guided control of vehicles upon, or in close proximity to, the earth and to hypothesize how changes in vehicle dynamics can significantly alter the nature of the visual cues which a human might use in such tasks.

  11. A Theoretical Model for Thin Film Ferroelectric Coupled Microstripline Phase Shifters

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Quereshi, A. H.

    2000-01-01

    Novel microwave phase shifters consisting of coupled microstriplines on thin ferroelectric films have been demonstrated recently. A theoretical model useful for predicting the propagation characteristics (insertion phase shift, dielectric loss, impedance, and bandwidth) is presented here. The model is based on a variational solution for line capacitance and coupled strip transmission line theory.

  12. The Road Not Taken: An Integrative Theoretical Model of Reading Disability.

    ERIC Educational Resources Information Center

    Spear-Swerling, Louise; Sternberg, Robert J.

    1994-01-01

    This article describes a theoretical model of reading disability that integrates research findings in cognitive psychology, reading, and education. The model identifies four patterns of reading disability: (1) nonalphabetic readers, (2) compensatory readers, (3) nonautomatic readers, and (4) readers delayed in the acquisition of word recognition…

  13. Cross-Cultural Teamwork in End User Computing: A Theoretical Model.

    ERIC Educational Resources Information Center

    Bento, Regina F.

    1995-01-01

    Presents a theoretical model explaining how cultural influences may affect the open, dynamic system of a cross-cultural, end-user computing team. Discusses the relationship between cross-cultural factors and various parts of the model such as: input variables, the system itself, outputs, and implications for the management of such teams. (JKP)

  14. Undergraduate Engineering Students' Beliefs, Coping Strategies, and Academic Performance: An Evaluation of Theoretical Models

    ERIC Educational Resources Information Center

    Hsieh, Pei-Hsuan; Sullivan, Jeremy R.; Sass, Daniel A.; Guerra, Norma S.

    2012-01-01

    Research has identified factors associated with academic success by evaluating relations among psychological and academic variables, although few studies have examined theoretical models to understand the complex links. This study used structural equation modeling to investigate whether the relation between test anxiety and final course grades was…

  15. Achievement Goals and Discrete Achievement Emotions: A Theoretical Model and Prospective Test

    ERIC Educational Resources Information Center

    Pekrun, Reinhard; Elliot, Andrew J.; Maier, Markus A.

    2006-01-01

    A theoretical model linking achievement goals to discrete achievement emotions is proposed. The model posits relations between the goals of the trichotomous achievement goal framework and 8 commonly experienced achievement emotions organized in a 2 (activity/outcome focus) x 2 (positive/negative valence) taxonomy. Two prospective studies tested…

  16. Exploring Environmental Factors in Nursing Workplaces That Promote Psychological Resilience: Constructing a Unified Theoretical Model.

    PubMed

    Cusack, Lynette; Smith, Morgan; Hegney, Desley; Rees, Clare S; Breen, Lauren J; Witt, Regina R; Rogers, Cath; Williams, Allison; Cross, Wendy; Cheung, Kin

    2016-01-01

    Building nurses' resilience to complex and stressful practice environments is necessary to keep skilled nurses in the workplace and ensuring safe patient care. A unified theoretical framework titled Health Services Workplace Environmental Resilience Model (HSWERM), is presented to explain the environmental factors in the workplace that promote nurses' resilience. The framework builds on a previously-published theoretical model of individual resilience, which identified the key constructs of psychological resilience as self-efficacy, coping and mindfulness, but did not examine environmental factors in the workplace that promote nurses' resilience. This unified theoretical framework was developed using a literary synthesis drawing on data from international studies and literature reviews on the nursing workforce in hospitals. The most frequent workplace environmental factors were identified, extracted and clustered in alignment with key constructs for psychological resilience. Six major organizational concepts emerged that related to a positive resilience-building workplace and formed the foundation of the theoretical model. Three concepts related to nursing staff support (professional, practice, personal) and three related to nursing staff development (professional, practice, personal) within the workplace environment. The unified theoretical model incorporates these concepts within the workplace context, linking to the nurse, and then impacting on personal resilience and workplace outcomes, and its use has the potential to increase staff retention and quality of patient care. PMID:27242567

  17. Exploring Environmental Factors in Nursing Workplaces That Promote Psychological Resilience: Constructing a Unified Theoretical Model

    PubMed Central

    Cusack, Lynette; Smith, Morgan; Hegney, Desley; Rees, Clare S.; Breen, Lauren J.; Witt, Regina R.; Rogers, Cath; Williams, Allison; Cross, Wendy; Cheung, Kin

    2016-01-01

    Building nurses' resilience to complex and stressful practice environments is necessary to keep skilled nurses in the workplace and ensuring safe patient care. A unified theoretical framework titled Health Services Workplace Environmental Resilience Model (HSWERM), is presented to explain the environmental factors in the workplace that promote nurses' resilience. The framework builds on a previously-published theoretical model of individual resilience, which identified the key constructs of psychological resilience as self-efficacy, coping and mindfulness, but did not examine environmental factors in the workplace that promote nurses' resilience. This unified theoretical framework was developed using a literary synthesis drawing on data from international studies and literature reviews on the nursing workforce in hospitals. The most frequent workplace environmental factors were identified, extracted and clustered in alignment with key constructs for psychological resilience. Six major organizational concepts emerged that related to a positive resilience-building workplace and formed the foundation of the theoretical model. Three concepts related to nursing staff support (professional, practice, personal) and three related to nursing staff development (professional, practice, personal) within the workplace environment. The unified theoretical model incorporates these concepts within the workplace context, linking to the nurse, and then impacting on personal resilience and workplace outcomes, and its use has the potential to increase staff retention and quality of patient care. PMID:27242567

  18. Exploring Environmental Factors in Nursing Workplaces That Promote Psychological Resilience: Constructing a Unified Theoretical Model.

    PubMed

    Cusack, Lynette; Smith, Morgan; Hegney, Desley; Rees, Clare S; Breen, Lauren J; Witt, Regina R; Rogers, Cath; Williams, Allison; Cross, Wendy; Cheung, Kin

    2016-01-01

    Building nurses' resilience to complex and stressful practice environments is necessary to keep skilled nurses in the workplace and ensuring safe patient care. A unified theoretical framework titled Health Services Workplace Environmental Resilience Model (HSWERM), is presented to explain the environmental factors in the workplace that promote nurses' resilience. The framework builds on a previously-published theoretical model of individual resilience, which identified the key constructs of psychological resilience as self-efficacy, coping and mindfulness, but did not examine environmental factors in the workplace that promote nurses' resilience. This unified theoretical framework was developed using a literary synthesis drawing on data from international studies and literature reviews on the nursing workforce in hospitals. The most frequent workplace environmental factors were identified, extracted and clustered in alignment with key constructs for psychological resilience. Six major organizational concepts emerged that related to a positive resilience-building workplace and formed the foundation of the theoretical model. Three concepts related to nursing staff support (professional, practice, personal) and three related to nursing staff development (professional, practice, personal) within the workplace environment. The unified theoretical model incorporates these concepts within the workplace context, linking to the nurse, and then impacting on personal resilience and workplace outcomes, and its use has the potential to increase staff retention and quality of patient care.

  19. Aspect Ratio Model for Radiation-Tolerant Dummy Gate-Assisted n-MOSFET Layout

    PubMed Central

    Lee, Min Su; Lee, Hee Chul

    2014-01-01

    In order to acquire radiation-tolerant characteristics in integrated circuits, a dummy gate-assisted n-type metal oxide semiconductor field effect transistor (DGA n-MOSFET) layout was adopted. The DGA n-MOSFET has a different channel shape compared with the standard n-MOSFET. The standard n-MOSFET has a rectangular channel shape, whereas the DGA n-MOSFET has an extended rectangular shape at the edge of the source and drain, which affects its aspect ratio. In order to increase its practical use, a new aspect ratio model is proposed for the DGA n-MOSFET and this model is evaluated through three-dimensional simulations and measurements of the fabricated devices. The proposed aspect ratio model for the DGA n-MOSFET exhibits good agreement with the simulation and measurement results. PMID:27350975

  20. Models and Messengers of Resilience: A Theoretical Model of College Students' Resilience, Regulatory Strategy Use, and Academic Achievement

    ERIC Educational Resources Information Center

    Johnson, Marcus L.; Taasoobshirazi, Gita; Kestler, Jessica L.; Cordova, Jackie R.

    2015-01-01

    We tested a theoretical model of college students' ratings of messengers of resilience and models of resilience, students' own perceived resilience, regulatory strategy use and achievement. A total of 116 undergraduates participated in this study. The results of a path analysis indicated that ratings of models of resilience had a direct effect on…

  1. Deriving Theoretical Boundaries to Address Domain and Resolution Dependencies of Triangle Models for Evapotranspiration Estimation

    NASA Astrophysics Data System (ADS)

    Long, D.; Singh, V. P.; Scanlon, B. R.

    2011-12-01

    Satellite-based triangle models for evapotranspiration (ET) are unique in interpreting the contextual relationship between Normalized Difference Vegetation Index (NDVI)/factional vegetation cover (fc) and surface radiative temperature (Trad) to deduce evaporative fraction (EF) and ET across large heterogeneous areas. The outputs and performance of some satellite-based ET algorithms may be dependent on the domain of a study site being considered and the resolution of satellite imagery being used. These attributes are referred to as domain dependence and resolution dependence. To unravel the domain and resolution dependencies of the triangle models and test the utility of the triangle models using high spatial resolution images, the triangle models were applied to areas with progressively growing domains and to Landsat TM/ETM+ and MODIS sensors, respectively, at the Soil Moisture-Atmosphere Coupling Experiment (SMACEX) site in central Iowa, U.S. on Day of Year (DOY) 174 and 182 in year 2002. Results indicate that the triangle models can be domain-dependent and resolution-dependent, showing large uncertainties in the evaporative fraction estimates in terms of a Mean Absolute Percentage Difference (MAPD) up to ~50%. We derived the theoretical boundaries of the fc-Trad space to restrain the domain and resolution dependencies of the triangle models. The theoretical warm edge was derived by solving for temperatures of the driest bare surface and the fully vegetated surface with the largest water stress implicit in both radiation budget and energy balance equations. The areal average temperature can be taken as the theoretical cold edge. The triangle models appear to perform well across large areas but fail to predict the evaporative fraction over small areas. However, performance of the triangle models across small domains can be improved by incorporating the theoretical boundaries. Combining the triangle models with the theoretical boundaries can effectively reduce

  2. Depression in Black Single Mothers: A Test of a Theoretical Model.

    PubMed

    Atkins, Rahshida

    2015-06-01

    The aim of this study was to test a theoretical model of depression for Black single mothers. Participants were 208 Black single mothers, aged 18 to 45, recruited from community settings. The a priori over-identified recursive theoretical model was tested via the LISREL 9.1 program using a maximum likelihood estimation for structural equation modeling. The chi-square indicated that there was an excellent fit of the model with the data, χ(2)(1, N = 208) = .05, p = .82. The fit indices for the model were excellent. Path coefficients were statistically significant for seven out of eight of the direct paths within the model (p < .05). The two indirect paths were also statistically significant. The theory was supported and can be applied by health care professionals when working with depressed Black single mothers.

  3. The calculation of theoretical chromospheric models and predicted OSO 1 spectra

    NASA Technical Reports Server (NTRS)

    Avrett, E. H.

    1975-01-01

    Theoretical solar chromospheric and photospheric models are computed for use in analyzing OSO 8 spectra. The Vernazza, Avrett, and Loeser (1976) solar model is updated and self-consistent non-LTE number densities for H I, He I, He II, C I, Mg I, Al I, Si I, and H(-) are produced. These number densities are used in the calculation of a theoretical solar spectrum from 90 to 250 nm, including approximately 7000 lines in non-LTE. More than 60,000 lines of other elements are treated with approximate source functions.

  4. On the theoretical model for vertical ozone density distributions in the mesosphere and upper stratosphere.

    NASA Technical Reports Server (NTRS)

    Shimazaki, T.; Wuebbles, D. J.

    1973-01-01

    Calculations based on an improved, time-dependent theoretical model for the vertical ozone density distribution in the upper atmosphere are shown to clarify the cause and determine the appearance precondition for the depression at the 70-85 km altitude region in the ozone density distribution suggested by several theoretical models and only sometimes experimentally observed. It is concluded that the depression develops at night through the effects of hydrogen-oxygen and nitrogen-oxygen reactions, as well as those of eddy diffusion transports.

  5. Operational and research aspects of a radio-controlled model flight test program

    NASA Technical Reports Server (NTRS)

    Budd, Gerald D.; Gilman, Ronald L.; Eichstedt, David

    1993-01-01

    The operational and research aspects of a subscale, radio-controlled model flight test program are presented. By using low-cost free-flying models, an approach was developed for obtaining research-quality vehicle performance and aerodynamic information. The advantages and limitations learned by applying this approach to a specific flight test program are described. The research quality of the data acquired shows that model flight testing is practical for obtaining consistent and repeatable flight data.

  6. Statistical aspects of carbon fiber risk assessment modeling. [fire accidents involving aircraft

    NASA Technical Reports Server (NTRS)

    Gross, D.; Miller, D. R.; Soland, R. M.

    1980-01-01

    The probabilistic and statistical aspects of the carbon fiber risk assessment modeling of fire accidents involving commercial aircraft are examined. Three major sources of uncertainty in the modeling effort are identified. These are: (1) imprecise knowledge in establishing the model; (2) parameter estimation; and (3)Monte Carlo sampling error. All three sources of uncertainty are treated and statistical procedures are utilized and/or developed to control them wherever possible.

  7. Using VCL as an Aspect-Oriented Approach to Requirements Modelling

    NASA Astrophysics Data System (ADS)

    Amálio, Nuno; Kelsen, Pierre; Ma, Qin; Glodt, Christian

    Software systems are becoming larger and more complex. By tackling the modularisation of crosscutting concerns, aspect orientation draws attention to modularity as a means to address the problems of scalability, complexity and evolution in software systems development. Aspect-oriented modelling (AOM) applies aspect-orientation to the construction of models. Most existing AOM approaches are designed without a formal semantics, and use multi-view partial descriptions of behaviour. This paper presents an AOM approach based on the Visual Contract Language (VCL): a visual language for abstract and precise modelling, designed with a formal semantics, and comprising a novel approach to visual behavioural modelling based on design by contract where behavioural descriptions are total. By applying VCL to a large case study of a car-crash crisis management system, the paper demonstrates how modularity of VCL's constructs, at different levels of granularity, help to tackle complexity. In particular, it shows how VCL's package construct and its associated composition mechanisms are key in supporting separation of concerns, coarse-grained problem decomposition and aspect-orientation. The case study's modelling solution has a clear and well-defined modular structure; the backbone of this structure is a collection of packages encapsulating local solutions to concerns.

  8. Requirements Modeling with the Aspect-oriented User Requirements Notation (AoURN): A Case Study

    NASA Astrophysics Data System (ADS)

    Mussbacher, Gunter; Amyot, Daniel; Araújo, João; Moreira, Ana

    The User Requirements Notation (URN) is a recent ITU-T standard that supports requirements engineering activities. The Aspect-oriented URN (AoURN) adds aspect-oriented concepts to URN, creating a unified framework that allows for scenario-based, goal-oriented, and aspect-oriented modeling. AoURN is applied to the car crash crisis management system (CCCMS), modeling its functional and non-functional requirements (NFRs). AoURN generally models all use cases, NFRs, and stakeholders as individual concerns and provides general guidelines for concern identification. AoURN handles interactions between concerns, capturing their dependencies and conflicts as well as the resolutions. We present a qualitative comparison of aspect-oriented techniques for scenario-based and goal-oriented requirements engineering. An evaluation carried out based on the metrics adapted from literature and a task-based evaluation suggest that AoURN models are more scalable than URN models and exhibit better modularity, reusability, and maintainability.

  9. A theoretical model to describe progressions and regressions for exercise rehabilitation.

    PubMed

    Blanchard, Sam; Glasgow, Phil

    2014-08-01

    This article aims to describe a new theoretical model to simplify and aid visualisation of the clinical reasoning process involved in progressing a single exercise. Exercise prescription is a core skill for physiotherapists but is an area that is lacking in theoretical models to assist clinicians when designing exercise programs to aid rehabilitation from injury. Historical models of periodization and motor learning theories lack any visual aids to assist clinicians. The concept of the proposed model is that new stimuli can be added or exchanged with other stimuli, either intrinsic or extrinsic to the participant, in order to gradually progress an exercise whilst remaining safe and effective. The proposed model maintains the core skills of physiotherapists by assisting clinical reasoning skills, exercise prescription and goal setting. It is not limited to any one pathology or rehabilitation setting and can adapted by any level of skilled clinician.

  10. Theoretical results on the tandem junction solar cell based on its Ebers-Moll transistor model

    NASA Technical Reports Server (NTRS)

    Goradia, C.; Vaughn, J.; Baraona, C. R.

    1980-01-01

    A one-dimensional theoretical model of the tandem junction solar cell (TJC) with base resistivity greater than about 1 ohm-cm and under low level injection has been derived. This model extends a previously published conceptual model which treats the TJC as an npn transistor. The model gives theoretical expressions for each of the Ebers-Moll type currents of the illuminated TJC and allows for the calculation of the spectral response, I(sc), V(oc), FF and eta under variation of one or more of the geometrical and material parameters and 1MeV electron fluence. Results of computer calculations based on this model are presented and discussed. These results indicate that for space applications, both a high beginning of life efficiency, greater than 15% AM0, and a high radiation tolerance can be achieved only with thin (less than 50 microns) TJC's with high base resistivity (greater than 10 ohm-cm).

  11. Postscript: Making Important Distinctions--Diagnostic Models, Theoretical Models, and the Mnemonic Model of PTSD

    ERIC Educational Resources Information Center

    Monroe, Scott M.; Mineka, Susan

    2008-01-01

    Our commentary was intended to stimulate discussion about what we perceive to be shortcomings of the mnemonic model and its research base, in the hope of shedding some light on key questions for understanding posttraumatic stress disorder (PTSD). In our view, Berntsen, Rubin, and Bohni have responded only to what they perceive to be shortcomings…

  12. A Physically Based Theoretical Model of Spore Deposition for Predicting Spread of Plant Diseases.

    PubMed

    Isard, Scott A; Chamecki, Marcelo

    2016-03-01

    A physically based theory for predicting spore deposition downwind from an area source of inoculum is presented. The modeling framework is based on theories of turbulence dispersion in the atmospheric boundary layer and applies only to spores that escape from plant canopies. A "disease resistance" coefficient is introduced to convert the theoretical spore deposition model into a simple tool for predicting disease spread at the field scale. Results from the model agree well with published measurements of Uromyces phaseoli spore deposition and measurements of wheat leaf rust disease severity. The theoretical model has the advantage over empirical models in that it can be used to assess the influence of source distribution and geometry, spore characteristics, and meteorological conditions on spore deposition and disease spread. The modeling framework is refined to predict the detailed two-dimensional spatial pattern of disease spread from an infection focus. Accounting for the time variations of wind speed and direction in the refined modeling procedure improves predictions, especially near the inoculum source, and enables application of the theoretical modeling framework to field experiment design. PMID:26595112

  13. A Physically Based Theoretical Model of Spore Deposition for Predicting Spread of Plant Diseases.

    PubMed

    Isard, Scott A; Chamecki, Marcelo

    2016-03-01

    A physically based theory for predicting spore deposition downwind from an area source of inoculum is presented. The modeling framework is based on theories of turbulence dispersion in the atmospheric boundary layer and applies only to spores that escape from plant canopies. A "disease resistance" coefficient is introduced to convert the theoretical spore deposition model into a simple tool for predicting disease spread at the field scale. Results from the model agree well with published measurements of Uromyces phaseoli spore deposition and measurements of wheat leaf rust disease severity. The theoretical model has the advantage over empirical models in that it can be used to assess the influence of source distribution and geometry, spore characteristics, and meteorological conditions on spore deposition and disease spread. The modeling framework is refined to predict the detailed two-dimensional spatial pattern of disease spread from an infection focus. Accounting for the time variations of wind speed and direction in the refined modeling procedure improves predictions, especially near the inoculum source, and enables application of the theoretical modeling framework to field experiment design.

  14. How parents choose to use CAM: a systematic review of theoretical models

    PubMed Central

    Lorenc, Ava; Ilan-Clarke, Yael; Robinson, Nicola; Blair, Mitch

    2009-01-01

    Background Complementary and Alternative Medicine (CAM) is widely used throughout the UK and the Western world. CAM is commonly used for children and the decision-making process to use CAM is affected by numerous factors. Most research on CAM use lacks a theoretical framework and is largely based on bivariate statistics. The aim of this review was to identify a conceptual model which could be used to explain the decision-making process in parental choice of CAM. Methods A systematic search of the literature was carried out. A two-stage selection process with predetermined inclusion/exclusion criteria identified studies using a theoretical framework depicting the interaction of psychological factors involved in the CAM decision process. Papers were critically appraised and findings summarised. Results Twenty two studies using a theoretical model to predict CAM use were included in the final review; only one examined child use. Seven different models were identified. The most commonly used and successful model was Andersen's Sociobehavioural Model (SBM). Two papers proposed modifications to the SBM for CAM use. Six qualitative studies developed their own model. Conclusion The SBM modified for CAM use, which incorporates both psychological and pragmatic determinants, was identified as the best conceptual model of CAM use. This model provides a valuable framework for future research, and could be used to explain child CAM use. An understanding of the decision making process is crucial in promoting shared decision making between healthcare practitioners and parents and could inform service delivery, guidance and policy. PMID:19386106

  15. Rethinking High School Principal Compensation Practices: An Analysis of Salaries in South Carolina and Theoretical Models

    ERIC Educational Resources Information Center

    Newman, Tim A.

    2012-01-01

    This study described the current state of principal salaries in South Carolina and compared the salaries of similar size schools by specific report card performance and demographic variables. Based on the findings, theoretical models were proposed, and comparisons were made with current salary data. School boards, human resource personnel and…

  16. Retaliation and antisocial punishment are overlooked in many theoretical models as well as behavioral experiments.

    PubMed

    Dreber, Anna; Rand, David G

    2012-02-01

    Guala argues that there is a mismatch between most laboratory experiments on costly punishment and behavior in the field. In the lab, experimental designs typically suppress retaliation. The same is true for most theoretical models of the co-evolution of costly punishment and cooperation, which a priori exclude the possibility of defectors punishing cooperators.

  17. Conceptualizing a Theoretical Model for School-Centered Adolescent Physical Activity Intervention Research

    ERIC Educational Resources Information Center

    Chen, Ang; Hancock, Gregory R.

    2006-01-01

    Adolescent physical inactivity has risen to an alarming rate. Several theoretical frameworks (models) have been proposed and tested in school-based interventions. The results are mixed, indicating a similar weakness as that observed in community-based physical activity interventions (Baranowski, Lin, Wetter, Resnicow, & Hearn, 1997). The…

  18. Unconscious Determinants of Career Choice and Burnout: Theoretical Model and Counseling Strategy.

    ERIC Educational Resources Information Center

    Malach-Pines, Ayala; Yafe-Yanai, Oreniya

    2001-01-01

    Proposes a psychodynamic-existential perspective as a theoretical model that explains career burnout and serves as a basis for a counseling strategy. According to existential theory, the root of career burnout lies in people's need to find existential significance in their life and their sense that their work does not provide it. (Contains 40…

  19. A Game-Theoretic Model of Grounding for Referential Communication Tasks

    ERIC Educational Resources Information Center

    Thompson, William

    2009-01-01

    Conversational grounding theory proposes that language use is a form of rational joint action, by which dialog participants systematically and collaboratively add to their common ground of shared knowledge and beliefs. Following recent work applying "game theory" to pragmatics, this thesis develops a game-theoretic model of grounding that…

  20. How Students Experience and Navigate Transitions in Undergraduate Medical Education: An Application of Bourdieu's Theoretical Model

    ERIC Educational Resources Information Center

    Balmer, Dorene F.; Richards, Boyd F.; Varpio, Lara

    2015-01-01

    Using Bourdieu's theoretical model as a lens for analysis, we sought to understand how students experience the undergraduate medical education (UME) milieu, focusing on how they navigate transitions from the preclinical phase, to the major clinical year (MCY), and to the preparation for residency phase. Twenty-two medical students participated in…

  1. On the Grammar and Model-Theoretic Semantics of Children's Noun Phrases.

    ERIC Educational Resources Information Center

    Suppes, Patrick

    The paper shows informally how model-theoretical semantics may be used by a computer to give a straight-forward analysis of the meaning of children's language. This approach to semantics grows out of the main thrust of work in mathematical logic. It is discussed in the framework of generative grammar and is based on the application of the…

  2. E-Learning Systems Support of Collaborative Agreements: A Theoretical Model

    ERIC Educational Resources Information Center

    Aguirre, Sandra; Quemada, Juan

    2012-01-01

    This paper introduces a theoretical model for developing integrated degree programmes through e-learning systems as stipulated by a collaboration agreement signed by two universities. We have analysed several collaboration agreements between universities at the national, European, and transatlantic level as well as various e-learning frameworks. A…

  3. Models of the Bilingual Lexicon and Their Theoretical Implications for CLIL

    ERIC Educational Resources Information Center

    Heine, Lena

    2014-01-01

    Although many advances have been made in recent years concerning the theoretical dimensions of content and language integrated learning (CLIL), research still has to meet the necessity to come up with integrative models that adequately map the interrelation between content and language learning in CLIL contexts. This article will suggest that…

  4. Education, Labour Market and Human Capital Models: Swedish Experiences and Theoretical Analyses.

    ERIC Educational Resources Information Center

    Sohlman, Asa

    An empirical study concerning development of the Swedish educational system from a labor market point of view, and a theoretical study on human capital models are discussed. In "Education and Labour Market; The Swedish Experience 1900-1975," attention is directed to the following concerns: the official educational policy regarding education and…

  5. Suggestion for a Theoretical Model for Secondary-Tertiary Transition in Mathematics

    ERIC Educational Resources Information Center

    Clark, Megan; Lovric, Miroslav

    2008-01-01

    One of most notable features of existing body of research in transition seems to be the absence of a theoretical model. The suggestion we present in this paper--to view and understand the high school to university transition in mathematics as a modern-day rite of passage--is an attempt at defining such framework. Although dominantly reflecting…

  6. Falling Chains as Variable-Mass Systems: Theoretical Model and Experimental Analysis

    ERIC Educational Resources Information Center

    de Sousa, Celia A.; Gordo, Paulo M.; Costa, Pedro

    2012-01-01

    In this paper, we revisit, theoretically and experimentally, the fall of a folded U-chain and of a pile-chain. The model calculation implies the division of the whole system into two subsystems of variable mass, allowing us to explore the role of tensional contact forces at the boundary of the subsystems. This justifies, for instance, that the…

  7. A Model for the Social Aspects of Classroom Organization. Final Report.

    ERIC Educational Resources Information Center

    Talavage, Joseph

    An initial effort is made to investigate social aspects of the classroom within a mathematical framework called general system theory. The objective of the study is to set the stage for a theory of social behavior in the large which, when verified, may be employed to guide computer simulations of detailed social situations. A model of a…

  8. Fisherian and Wrightian perspectives in evolutionary genetics and model-mediated imposition of theoretical assumptions.

    PubMed

    Winther, Rasmus Grønfeldt

    2006-05-21

    I investigate how theoretical assumptions, pertinent to different perspectives and operative during the modeling process, are central in determining how nature is actually taken to be. I explore two different models by Michael Turelli and Steve Frank of the evolution of parasite-mediated cytoplasmic incompatility, guided, respectively, by Fisherian and Wrightian perspectives. Since the two models can be shown to be commensurable both with respect to mathematics and data, I argue that the differences between them in the (1) mathematical presentation of the models, (2) explanations, and (3) objectified ontologies stem neither from differences in mathematical method nor the employed data, but from differences in the theoretical assumptions, especially regarding ontology, already present in the respective perspectives. I use my "set up, mathematically manipulate, explain, and objectify" (SMEO) account of the modeling process to track the model-mediated imposition of theoretical assumptions. I conclude with a discussion of the general implications of my analysis of these models for the controversy between Fisherian and Wrightian perspectives. PMID:16263132

  9. Ocean color spectrum calculations. [theoretical models relating oceanographic parameters to upwelling radiances

    NASA Technical Reports Server (NTRS)

    Mccluney, W. R.

    1974-01-01

    The development is considered of procedures for measuring a number of subsurface oceanographic parameters using remotely sensed ocean color data. It is proposed that the first step in this effort should be the development of adequate theoretical models relating the desired oceanographic parameters to the upwelling radiances to be observed. A portion of a contributory theoretical model is shown to be described by a modified single scattering approach based upon a simple treatment of multiple scattering. The resulting quasi-single scattering model can be used to predict the upwelling distribution of spectral radiance emerging from the sea. The shape of the radiance spectrum predicted by this model for clear ocean water shows encouraging agreement with measurments made at the edge of the Sargasso Sea off Cape Hatteras.

  10. Rational Design of Lanthanoid Single-Ion Magnets: Predictive Power of the Theoretical Models.

    PubMed

    Baldoví, José J; Duan, Yan; Morales, Roser; Gaita-Ariño, Alejandro; Ruiz, Eliseo; Coronado, Eugenio

    2016-09-12

    We report two new single-ion magnets (SIMs) of a family of oxydiacetate lanthanide complexes with D3 symmetry to test the predictive capabilities of complete active space ab initio methods (CASSCF and CASPT2) and the semiempirical radial effective charge (REC) model. Comparison of the theoretical predictions of the energy levels, wave functions and magnetic properties with detailed spectroscopic and magnetic characterisation is used to critically discuss the limitations of these theoretical approaches. The need for spectroscopic information for a reliable description of the properties of lanthanide SIMs is emphasised. PMID:27465352

  11. Rational Design of Lanthanoid Single-Ion Magnets: Predictive Power of the Theoretical Models.

    PubMed

    Baldoví, José J; Duan, Yan; Morales, Roser; Gaita-Ariño, Alejandro; Ruiz, Eliseo; Coronado, Eugenio

    2016-09-12

    We report two new single-ion magnets (SIMs) of a family of oxydiacetate lanthanide complexes with D3 symmetry to test the predictive capabilities of complete active space ab initio methods (CASSCF and CASPT2) and the semiempirical radial effective charge (REC) model. Comparison of the theoretical predictions of the energy levels, wave functions and magnetic properties with detailed spectroscopic and magnetic characterisation is used to critically discuss the limitations of these theoretical approaches. The need for spectroscopic information for a reliable description of the properties of lanthanide SIMs is emphasised.

  12. Error control in the GCF: An information-theoretic model for error analysis and coding

    NASA Technical Reports Server (NTRS)

    Adeyemi, O.

    1974-01-01

    The structure of data-transmission errors within the Ground Communications Facility is analyzed in order to provide error control (both forward error correction and feedback retransmission) for improved communication. Emphasis is placed on constructing a theoretical model of errors and obtaining from it all the relevant statistics for error control. No specific coding strategy is analyzed, but references to the significance of certain error pattern distributions, as predicted by the model, to error correction are made.

  13. Theoretical analysis of triple concentric-tube heat exchangers. Part 1: Mathematical modelling

    SciTech Connect

    Uenal, A.

    1998-10-01

    A theoretical study consisting of two parts is conducted on triple concentric tube heat exchangers. This paper presents the first part of the study and deals with mathematical modeling. The model includes the derivation and possible solutions of the governing differential equations for both counter-flow and parallel-flow arrangements. In the second part of the study, which is under its way for publication, the results of several case studies will be presented.

  14. Cognitive-Existential Family Therapy: A Proposed Theoretical Integration Model for Pastoral Counselors.

    PubMed

    Saunders, James A

    2015-03-01

    Fundamental Christianity and psychology are frequently viewed as incompatible pursuits. However, proponents of the integrationist movement posit that pastoral counselors can utilize principles from psychology if they adopt the premise that all truth is God's truth. Assuming this perspective, Cognitive-Existential Family Therapy (CEFT) - a theoretical integration model compatible with Christian fundamentalism - is proposed. The philosophical assumptions and models of personality, health, and abnormality are explored. Additionally, the article provides an overview of the therapeutic process.

  15. Refinement and validation of two digital Microwave Landing System (MLS) theoretical models

    NASA Technical Reports Server (NTRS)

    Duff, W. G.; Guarino, C. R.

    1975-01-01

    Two digital microwave landing system theoretical models are considered which are generic models for the Doppler and scanning-beam frequency reference versions of the MLS. These models represent errors resulting from both system noise and discrete multipath. The data used for the validation effort were obtained from the Texas Instrument conventional scanning beam and the Hazeltine Doppler feasibility hardware versions of the MLS. Topics discussed include tape read software, time history plots, computation of power spectral density, smoothed power spectra, best-fit models, different equations for digital simulation, and discrete multipath errors.

  16. A review of game-theoretic models of road user behaviour.

    PubMed

    Elvik, Rune

    2014-01-01

    This paper reviews game-theoretic models that have been developed to explain road user behaviour in situations where road users interact with each other. The paper includes the following game-theoretic models: 1.A general model of the interaction between road users and their possible reaction to measures improving safety (behavioural adaptation).2.Choice of vehicle size as a Prisoners’ dilemma game.3.Speed choice as a co-ordination game.4.Speed compliance as a game between drivers and the police.5.Merging into traffic from an acceleration lane as a mixed-strategy game.6.Choice of level of attention in following situations as an evolutionary game.7.Choice of departure time to avoid congestion as variant of a Prisoners’ dilemma game.8.Interaction between cyclists crossing the road and car drivers.9.Dipping headlights at night well ahead of the point when glare becomes noticeable.10.Choice of evasive action in a situation when cars are on collision course. The models reviewed are different in many respects, but a common feature of the models is that they can explain how informal norms of behaviour can develop among road users and be sustained even if these informal norms violate the formal regulations of the traffic code. Game-theoretic models are not applicable to every conceivable interaction between road users or to situations in which road users choose behaviour without interacting with other road users. Nevertheless, it is likely that game-theoretic models can be applied more widely than they have been until now.

  17. Theoretical model for torque differential magnetometry of single-domain magnets

    NASA Astrophysics Data System (ADS)

    Kamra, Akashdeep; Schreier, Michael; Huebl, Hans; Goennenwein, Sebastian T. B.

    2014-05-01

    We present a generic theoretical model for torque differential magnetometry (TDM)—an experimental method for determining the magnetic properties of a magnetic specimen by recording the resonance frequency of a mechanical oscillator, on which the magnetic specimen has been mounted, as a function of the applied magnetic field. The effective stiffness change, and hence the resonance frequency shift, of the oscillator due to the magnetic torque on the specimen is calculated, treating the magnetic specimen as a single magnetic domain. Our model can deal with an arbitrary magnetic free-energy density characterizing the specimen, as well as any relative orientation of the applied magnetic field, the specimen, and the oscillator. Our calculations agree well with published experimental data. The theoretical model presented here allows one to take full advantage of TDM as an efficient magnetometry method.

  18. Petri nets modeling and analysis using extended bag-theoretic relational algebra.

    PubMed

    Kim, Y C; Kim, T G

    1996-01-01

    Petri nets are a powerful modeling tool for studying reactive, concurrent systems. Analysis of the nets can reveal important information concerning the behavior of a modeled system. While various means for the analysis of the nets has been developed, a major limitation in the analysis, is explosion of large states space in simulation. An efficient method to manage large states space would overcome such a limitation. This paper proposes a framework for the modeling and analysis of Petri nets using relational database technologies. Formalism of the framework is based on a bag-theoretic relational algebra extended from the conventional, Within the framework, Petri nets are formalized by bag relations, and analysis algorithms are developed based on such formal relations. Properties associated with the nets are formalized by queries described in terms of the bag-theoretic relational algebra. The framework has been realized in a commercial relational database system using a standard SQL.

  19. Theoretical modeling of the catch-slip bond transition in biological adhesion

    NASA Astrophysics Data System (ADS)

    Gunnerson, Kim; Pereverzev, Yuriy; Prezhdo, Oleg

    2006-05-01

    The mechanism by which leukocytes leave the blood stream and enter inflamed tissue is called extravasation. This process is facilitated by the ability of selectin proteins, produced by the endothelial cells of blood vessels, to form transient bonds with the leukocytes. In the case of P-selectin, the protein bonds with P-selectin glycoprotein ligands (PSGL-1) produced by the leukocyte. Recent atomic force microscopy and flow chamber analyses of the binding of P-selectin to PSGL-1 provide evidence for an unusual biphasic catch-bond/slip-bond behavior in response to the strength of exerted force. This biphasic process is not well-understood. There are several theoretical models for describing this phenomenon. These models use different profiles for potential energy landscapes and how they change under forces. We are exploring these changes using molecular dynamics. We will present a simple theoretical model as well as share some of our early MD results for describing this phenomenon.

  20. New theoretical model and experiments on the leakage of refrigerant mixtures in a tank

    SciTech Connect

    Gao, Z.; Schreiber, W.; Ma, Y.

    1999-07-01

    A theoretical model of the isothermal leakage of refrigerant mixtures from a tank is presented. The model analyzes the isothermal leakage process of non-azeotropic mixture and the influence of leakage ratio on composition shift, vapor quality, and pressure. A simulation based on the model shows: (1) the composition shift caused by vapor leakage is more pronounced than by liquid leakage; (2) with the leakage ratio increasing, the composition shift trend varies with initial mass capacity, particularly when the leakage ratio is greater than 0.8; (3) the pressure drop is pronounced during the vapor leakage, but does not change during liquid leakage unless the leakage ratio is high. A series of leakage experiments are performed in a newly developed experimental system. The theoretical and experimental results match closely.

  1. [Sutureless hepatic transection using a new radiofrequency assisted device. Theoretical model, experimental study and clinic trial].

    PubMed

    Martínez-Serrano, María Ángeles; Grande, Luis; Burdío, Fernando; Berjano, Enrique; Poves, Ignasi; Quesada, Rita

    2011-03-01

    The ideal instrument for performing hepatic transection should combine safe and rapid haemostasis in a single tool. We present a new multidisciplinary investigation designed to develop a hepatic transection device assisted by radiofrequency (RF); the investigation included: a computerised theoretical model, and experimental study and a clinical trial of this device. The theoretic modelling was performed by computer, based on the Finite Elements Method (FEM), with the objective of studying the distribution of electrical energy and temperature in the tissue, and to assess the effect of the characteristics of the instrument. The experimental study, based on an in vivo porcine model, suggested that the new instrument would allow the transection velocity of the hepatic parenchyma to be increased with lower bleeding per transection area compared with other techniques extensively used in liver surgery. These data should enable the first phase of clinical trial to be conducted, with preliminary results that suggest that the new device is safe and effective.

  2. Understanding intention to use electronic information resources: A theoretical extension of the technology acceptance model (TAM).

    PubMed

    Tao, Donghua

    2008-11-06

    This study extended the Technology Acceptance Model (TAM) by examining the roles of two aspects of e-resource characteristics, namely, information quality and system quality, in predicting public health students' intention to use e-resources for completing research paper assignments. Both focus groups and a questionnaire were used to collect data. Descriptive analysis, data screening, and Structural Equation Modeling (SEM) techniques were used for data analysis. The study found that perceived usefulness played a major role in determining students' intention to use e-resources. Perceived usefulness and perceived ease of use fully mediated the impact that information quality and system quality had on behavior intention. The research model enriches the existing technology acceptance literature by extending TAM. Representing two aspects of e-resource characteristics provides greater explanatory information for diagnosing problems of system design, development, and implementation.

  3. A novel scaffold geometry for chondral applications: theoretical model and in vivo validation.

    PubMed

    Scaglione, Silvia; Ceseracciu, Luca; Aiello, Maurizio; Coluccino, Luca; Ferrazzo, Federica; Giannoni, Paolo; Quarto, Rodolfo

    2014-10-01

    A theoretical model of the 3D scaffold internal architecture has been implemented with the aim to predict the effects of some geometrical parameters on total porosity, Young modulus, buckling resistance and permeability of the graft. This model has been adopted to produce porous poly-caprolacton based grafts for chondral tissue engineering applications, best tuning mechanical and functional features of the scaffolds. Material prototypes were produced with an internal geometry with parallel oriented cylindrical pores of 200 μm of radius (r) and an interpore distance/pores radius (d/r) ratio of 1. The scaffolds have been then extensively characterized; progenitor cells were then used to test their capability to support cartilaginous matrix deposition in an ectopic model. Scaffold prototypes fulfill both the chemical-physical requirements, in terms of Young's modulus and permeability, and the functional needs, such as surface area per volume and total porosity, for an enhanced cellular colonization and matrix deposition. Moreover, the grafts showed interesting chondrogenic potential in vivo, besides offering adequate mechanical performances in vitro, thus becoming a promising candidate for chondral tissues repair. Finally, a very good agreement was found between the prediction of the theoretical model and the experimental data. Many assumption of this theoretical model, hereby applied to cartilage, may be transposed to other tissue engineering applications, such as bone substitutes.

  4. A Knowledge Based Expert System to Aid Theoretical Ultrasonic Flaw Modelling

    NASA Astrophysics Data System (ADS)

    Robinson, Robert J.; McNab, Alistair

    2005-04-01

    This paper describes the culmination of three years work at the University of Strathclyde in developing an Expert System to aid theoretical flaw modelling. The Expert System utilises four validated models to simulate flaw modelling scenarios. Under certain conditions the models may break down and produce flaw responses which cannot be considered accurate. Previously a suitably qualified NDT engineer would have to interpret these results and update the original flaw model simulation in order to produce valid results. This was a laborious process and was restricted to those persons who had an in-depth knowledge in the operation of the validated models. The Expert System is capable of interpreting these warning flags and updating the original simulation to produce a valid modelling scenario. This paper gives a brief outline of how the Expert System operates before comparing the response of the system to that of a suitable qualified NDT engineer for a number of defect scenarios.

  5. Clusters of DNA induced by ionizing radiation: formation of short DNA fragments. I. Theoretical modeling

    NASA Technical Reports Server (NTRS)

    Holley, W. R.; Chatterjee, A.

    1996-01-01

    We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the

  6. Clusters of DNA induced by ionizing radiation: formation of short DNA fragments. I. Theoretical modeling.

    PubMed

    Holley, W R; Chatterjee, A

    1996-02-01

    We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the

  7. A note on Black-Scholes pricing model for theoretical values of stock options

    NASA Astrophysics Data System (ADS)

    Edeki, S. O.; Ugbebor, O. O.; Owoloko, E. A.

    2016-02-01

    In this paper, we consider some conditions that transform the classical Black-Scholes Model for stock options valuation from its partial differential equation (PDE) form to an equivalent ordinary differential equation (ODE) form. In addition, we propose a relatively new semi-analytical method for the solution of the transformed Black-Scholes model. The obtained solutions via this method can be used to find the theoretical values of the stock options in relation to their fair prices. In considering the reliability and efficiency of the models, we test some cases and the results are in good agreement with the exact solution.

  8. Two phase discharge of liquefied gases through pipes. Field experiments with ammonia and theoretical model

    NASA Astrophysics Data System (ADS)

    Nyren, K.; Winter, S.

    1984-01-01

    Field experiments with full scale releases of pressurized through siphon pipes from a storage tank were performed. It is found that the flow is a damped critical flow causing a violent turbulent spray jet. The pronounced atomization of the liquid and the quick air entrainment prevent rainout and no traces of land spills are observed. A theoretical model is also presented. Comparisons with the field experiments and laboratory experiments show that the model gives very good predictions of the mass flow rate and the jet determining parameters. The model is useful also for long pipe systems as it takes into account friction and other resistances.

  9. A theoretical model to predict tensile deformation behavior of balloon catheter.

    PubMed

    Todo, Mitsugu; Yoshiya, Keiji; Matsumoto, Takuya

    2016-09-01

    In this technical note, a simple theoretical model was proposed to express the tensile deformation and fracture of balloon catheter tested by the ISO standard using piece-wise linear force-displacement relations. The model was then validated by comparing with the tensile force-displacement behaviors of two types of typical balloon catheters clinically used worldwide. It was shown that the proposed model can effectively be used to express the tensile deformation behavior and easily be handled by physicians who are not familiar with mechanics of materials. PMID:27214691

  10. Field-theoretic model of inhomogeneous supramolecular polymer networks and gels

    NASA Astrophysics Data System (ADS)

    Mohan, Aruna; Elliot, Richard; Fredrickson, Glenn H.

    2010-11-01

    We present a field-theoretic model of the gelation transition in inhomogeneous reversibly bonding systems and demonstrate that our model reproduces the classical Flory-Stockmayer theory of gelation in the homogeneous limit. As an illustration of our model in the context of inhomogeneous gelation, we analyze the mean-field behavior of an equilibrium system of reacting trifunctional units in a good solvent confined within a slit bounded by parallel, repulsive walls. Our results indicate higher conversions and, consequently, higher concentrations of gel following the gelation transition near the center of the slit relative to the edges.

  11. Field-theoretic model of inhomogeneous supramolecular polymer networks and gels.

    PubMed

    Mohan, Aruna; Elliot, Richard; Fredrickson, Glenn H

    2010-11-01

    We present a field-theoretic model of the gelation transition in inhomogeneous reversibly bonding systems and demonstrate that our model reproduces the classical Flory-Stockmayer theory of gelation in the homogeneous limit. As an illustration of our model in the context of inhomogeneous gelation, we analyze the mean-field behavior of an equilibrium system of reacting trifunctional units in a good solvent confined within a slit bounded by parallel, repulsive walls. Our results indicate higher conversions and, consequently, higher concentrations of gel following the gelation transition near the center of the slit relative to the edges. PMID:21054065

  12. [Nursing and the environmental question: proposal of a theoretical model for the professional practice].

    PubMed

    Ribeiro, M C; Bertolozzi, M R

    1999-01-01

    Considering the side effects of environmental changes over the population's health, a theoretical model is proposed in this study in order to incorporate ecologic matters into the nursing practices. The reference for this work is the eco-socialist-marxist theory. The model is based on the analysis of the capitalist economic process, its production technologies and consumption. It is known that this economic model generates ecoinequalities and anthropogenic impacts that rebound on the health-disease profile of the population. The nursing action, permeated by ecological awareness, can prevent and also combat ecoinequalities and destructive human actions on the environment. PMID:12138633

  13. An Empirical Jet-Surface Interaction Noise Model with Temperature and Nozzle Aspect Ratio Effects

    NASA Technical Reports Server (NTRS)

    Brown, Cliff

    2015-01-01

    An empirical model for jet-surface interaction (JSI) noise produced by a round jet near a flat plate is described and the resulting model evaluated. The model covers unheated and hot jet conditions (1 less than or equal to jet total temperature ratio less than or equal to 2.7) in the subsonic range (0.5 less than or equal to M(sub a) less than or equal to 0.9), surface lengths 0.6 less than or equal to (axial distance from jet exit to surface trailing edge (inches)/nozzle exit diameter) less than or equal to 10, and surface standoff distances (0 less than or equal to (radial distance from jet lipline to surface (inches)/axial distance from jet exit to surface trailing edge (inches)) less than or equal to 1) using only second-order polynomials to provide predictable behavior. The JSI noise model is combined with an existing jet mixing noise model to produce exhaust noise predictions. Fit quality metrics and comparisons to between the predicted and experimental data indicate that the model is suitable for many system level studies. A first-order correction to the JSI source model that accounts for the effect of nozzle aspect ratio is also explored. This correction is based on changes to the potential core length and frequency scaling associated with rectangular nozzles up to 8:1 aspect ratio. However, more work is needed to refine these findings into a formal model.

  14. Abelian p-form (p = 1, 2, 3) gauge theories as the field theoretic models for the Hodge theory

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Krishna, S.; Shukla, A.; Malik, R. P.

    2014-09-01

    Taking the simple examples of an Abelian 1-form gauge theory in two (1+1)-dimensions, a 2-form gauge theory in four (3+1)-dimensions and a 3-form gauge theory in six (5+1)-dimensions of space-time, we establish that such gauge theories respect, in addition to the gauge symmetry transformations that are generated by the first-class constraints of the theory, additional continuous symmetry transformations. We christen the latter symmetry transformations as the dual-gauge transformations. We generalize the above gauge and dual-gauge transformations to obtain the proper (anti-)BRST and (anti-)dual-BRST transformations for the Abelian 3-form gauge theory within the framework of BRST formalism. We concisely mention such symmetries for the 2D free Abelian 1-form and 4D free Abelian 2-form gauge theories and briefly discuss their topological aspects in our present endeavor. We conjecture that any arbitrary Abelian p-form gauge theory would respect the above cited additional symmetry in D = 2p(p = 1, 2, 3, …) dimensions of space-time. By exploiting the above inputs, we establish that the Abelian 3-form gauge theory, in six (5+1)-dimensions of space-time, is a perfect model for the Hodge theory whose discrete and continuous symmetry transformations provide the physical realizations of all aspects of the de Rham cohomological operators of differential geometry. As far as the physical utility of the above nilpotent symmetries is concerned, we demonstrate that the 2D Abelian 1-form gauge theory is a perfect model of a new class of topological theory and 4D Abelian 2-form as well as 6D Abelian 3-form gauge theories are the field theoretic models for the quasi-topological field theory.

  15. A Hebbian learning rule gives rise to mirror neurons and links them to control theoretic inverse models.

    PubMed

    Hanuschkin, A; Ganguli, S; Hahnloser, R H R

    2013-01-01

    Mirror neurons are neurons whose responses to the observation of a motor act resemble responses measured during production of that act. Computationally, mirror neurons have been viewed as evidence for the existence of internal inverse models. Such models, rooted within control theory, map-desired sensory targets onto the motor commands required to generate those targets. To jointly explore both the formation of mirrored responses and their functional contribution to inverse models, we develop a correlation-based theory of interactions between a sensory and a motor area. We show that a simple eligibility-weighted Hebbian learning rule, operating within a sensorimotor loop during motor explorations and stabilized by heterosynaptic competition, naturally gives rise to mirror neurons as well as control theoretic inverse models encoded in the synaptic weights from sensory to motor neurons. Crucially, we find that the correlational structure or stereotypy of the neural code underlying motor explorations determines the nature of the learned inverse model: random motor codes lead to causal inverses that map sensory activity patterns to their motor causes; such inverses are maximally useful, by allowing the imitation of arbitrary sensory target sequences. By contrast, stereotyped motor codes lead to less useful predictive inverses that map sensory activity to future motor actions. Our theory generalizes previous work on inverse models by showing that such models can be learned in a simple Hebbian framework without the need for error signals or backpropagation, and it makes new conceptual connections between the causal nature of inverse models, the statistical structure of motor variability, and the time-lag between sensory and motor responses of mirror neurons. Applied to bird song learning, our theory can account for puzzling aspects of the song system, including necessity of sensorimotor gating and selectivity of auditory responses to bird's own song (BOS) stimuli.

  16. A theoretical study of aqueous solvation of K+ comparing ab initio, polarizable, and fixed-charge models

    PubMed Central

    Whitfield, Troy W.; Varma, Sameer; Harder, Edward; Lamoureux, Guillaume; Rempe, Susan B.; Roux, Benoît

    2011-01-01

    The hydration of K+ is studied using a hierarchy of theoretical approaches, including ab initio Born-Oppenheimer molecular dynamics and Car-Parrinello molecular dynamics, a polarizable force field model based on classical Drude oscillators, and a nonpolarizable fixed-charge potential based on the TIP3P water model. While models based more directly on quantum mechanics offer the possibility to account for complex electronic effects, polarizable and fixed-charges force fields allow for simulations of large systems and the calculation of thermodynamic observables with relatively modest computational costs. A particular emphasis is placed on investigating the sensitivity of the polarizable model to reproduce key aspects of aqueous K+, such as the coordination structure, the bulk hydration free energy, and the self diffusion of K+. It is generally found that, while the simple functional form of the polarizable Drude model imposes some restrictions on the range of properties that can simultaneously be fitted, the resulting hydration structure for aqueous K+ agrees well with experiment and with more sophisticated computational models. A counterintuitive result, seen in Car-Parrinello molecular dynamics and in simulations with the Drude polarizable force field, is that the average induced molecular dipole of the water molecules within the first hydration shell around K+ is slightly smaller than the corresponding value in the bulk. In final analysis, the perspective of K+ hydration emerging from the various computational models is broadly consistent with experimental data, though at a finer level there remain a number of issues that should be resolved to further our ability in modeling ion hydration accurately. PMID:21785577

  17. Deriving theoretical boundaries to address scale dependencies of triangle models for evapotranspiration estimation

    NASA Astrophysics Data System (ADS)

    Long, Di; Singh, Vijay P.; Scanlon, Bridget R.

    2012-03-01

    Satellite-based triangle models for evapotranspiration estimation are unique in interpreting the relationship between the normalized difference vegetation index (NDVI)/factional vegetation cover (fc) and surface radiative temperature (Trad) across large heterogeneous areas. However, output and performance of triangle models may depend on the size of the domain being studied and resolution of the satellite images being used. The objective of this study was to assess domain and resolution dependencies of triangle models using progressively larger domains and Landsat Thematic Mapper/Enhanced Thematic Mapper Plus and Moderate Resolution Imaging Spectroradiometer sensors at the Soil Moisture-Atmosphere Coupling Experiment site in central Iowa on days of year 174 and 182 in 2002. Results show domain and resolution dependencies of the triangle models with large uncertainties in evaporative fraction (EF) estimates in terms of a mean absolute percentage difference (MAPD) up to ˜50%. A trapezoid model which requires derivation of theoretical limiting edges of the NDVI-Trad space is proposed to constrain domain and resolution dependencies of triangle models. The theoretical warm edge can be derived by solving for temperatures of the driest bare surface and the fully vegetated surface with the largest water stress implicit in both radiation budget and energy balance equations. Areal average air temperature can be taken as the theoretical cold edge. The triangle model appears to perform well across large areas (˜104 km2) but fails to predict EF over small areas (˜102 km2). The trapezoid model can effectively reduce domain and resolution dependencies and constrain errors of the EF estimates with an MAPD of ˜10%.

  18. Theoretical modeling of the plasma-assisted catalytic growth and field emission properties of graphene sheet

    SciTech Connect

    Sharma, Suresh C.; Gupta, Neha

    2015-12-15

    A theoretical modeling for the catalyst-assisted growth of graphene sheet in the presence of plasma has been investigated. It is observed that the plasma parameters can strongly affect the growth and field emission properties of graphene sheet. The model developed accounts for the charging rate of the graphene sheet; number density of electrons, ions, and neutral atoms; various elementary processes on the surface of the catalyst nanoparticle; surface diffusion and accretion of ions; and formation of carbon-clusters and large graphene islands. In our investigation, it is found that the thickness of the graphene sheet decreases with the plasma parameters, number density of hydrogen ions and RF power, and consequently, the field emission of electrons from the graphene sheet surface increases. The time evolution of the height of graphene sheet with ion density and sticking coefficient of carbon species has also been examined. Some of our theoretical results are in compliance with the experimental observations.

  19. Theoretical-computational modeling of photo-induced charge separation spectra and charge recombination kinetics in solution.

    PubMed

    Piacente, Giovanni; Amadei, Andrea; D'Abramo, Marco; Daidone, Isabella; Aschi, Massimiliano

    2014-10-14

    In this study we propose a theoretical-computational method, essentially based on molecular dynamics simulations and quantum-chemical calculations, for modelling the photo-induced charge separation (CS) and the subsequent charge recombination (CR) processes in solution. In particular we have reproduced the low-energy UV-Vis spectra of systems composed by an aromatic species (Ar = benzene or indene) and tetracyanoethylene (TCNE) in chloroform solution, dominated by the formation of the Ar(+)-TCNE(-) ion pair (IP) complex. The kinetics of the charge recombination process leading to the regeneration of Ar and TCNE has also been modelled. In both the cases the agreement with the experimental data is satisfactory. Although the presence of systematic deficiencies makes our approach unable to address some key aspects of the above processes (e.g. the ultrafast internal vibrational redistribution), it appears to be a rather promising tool for modelling the CS-CR process for atomic-molecular systems of very high complexity. The involvement of the triplet IP complex has also been discussed. PMID:25157909

  20. A theoretical model for the cross spectra between pressure and temperature downstream of a combustor

    NASA Technical Reports Server (NTRS)

    Miles, J. H.; Krejsa, E. A.

    1984-01-01

    A theoretical model developed to calculate pressure-temperature cross spectra, pressure spectra, temperature spectra and pressure cross spectra in a ducted combustion system is presented. The model assumes the presence of a fluctuating-volumetric-heat-release-rate disk source and takes into account the spatial distribution of the steady-state volumetric-heat flux. Using the model, pressure, velocity, and temperature perturbation relationships can be obtained. The theoretical results show that, at a given air mass flow rate, the calculated pressure-temperature cross spectra phase angle at the combustor exit depends on the model selected for the steady-state volumetric-heat flux in the combustor. Using measurements of the phase angle, an appropriate source region model was selected. The model calculations are compared with the data. The comparison shows good agreement and indicates that with the use of this model the pressure-temperature cross spectra measurements provide useful information on the physical mechanisms active at the combustion noise source.

  1. Dynamical gap generation in graphene nanoribbons: An effective relativistic field theoretical model

    SciTech Connect

    Chaves, A. J.; Paula, W. de; Frederico, T.; Lima, G. D.; Cordeiro, C. E.; Delfino, A.

    2011-04-15

    We show that the assumption of a nontrivial zero band gap for a graphene sheet within an effective relativistic field theoretical model description of interacting Dirac electrons on the surface of graphene describes the experimental band gap of graphene nanoribbons for a wide range of widths. The graphene band gap is dynamically generated, corresponding to a nontrivial gapless solution, found in the limit of an infinitely wide graphene ribbon. The nanoribbon band gap is determined by the experimental graphene work function.

  2. A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials

    PubMed Central

    2011-01-01

    Background The most common causes of granulomatous inflammation are persistent pathogens and poorly-degradable irritating materials. A characteristic pathological reaction to intratracheal instillation, pharyngeal aspiration, or inhalation of carbon nanotubes is formation of epithelioid granulomas accompanied by interstitial fibrosis in the lungs. In the mesothelium, a similar response is induced by high aspect ratio nanomaterials, including asbestos fibers, following intraperitoneal injection. This asbestos-like behaviour of some engineered nanomaterials is a concern for their potential adverse health effects in the lungs and mesothelium. We hypothesize that high aspect ratio nanomaterials will induce epithelioid granulomas in nonadherent macrophages in 3D cultures. Results Carbon black particles (Printex 90) and crocidolite asbestos fibers were used as well-characterized reference materials and compared with three commercial samples of multiwalled carbon nanotubes (MWCNTs). Doses were identified in 2D and 3D cultures in order to minimize acute toxicity and to reflect realistic occupational exposures in humans and in previous inhalation studies in rodents. Under serum-free conditions, exposure of nonadherent primary murine bone marrow-derived macrophages to 0.5 μg/ml (0.38 μg/cm2) of crocidolite asbestos fibers or MWCNTs, but not carbon black, induced macrophage differentiation into epithelioid cells and formation of stable aggregates with the characteristic morphology of granulomas. Formation of multinucleated giant cells was also induced by asbestos fibers or MWCNTs in this 3D in vitro model. After 7-14 days, macrophages exposed to high aspect ratio nanomaterials co-expressed proinflammatory (M1) as well as profibrotic (M2) phenotypic markers. Conclusions Induction of epithelioid granulomas appears to correlate with high aspect ratio and complex 3D structure of carbon nanotubes, not with their iron content or surface area. This model offers a time- and cost

  3. Aspects of model-based rocket engine condition monitoring and control

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R.; Helmicki, Arthur J.

    1994-01-01

    A rigorous propulsion system modelling method suitable for control and condition monitoring purposes is developed. Previously developed control oriented methods yielding nominal models for gaseous medium propulsion systems are extended to include both nominal and anomalous models for liquid mediums in the following two ways. First, thermodynamic and fluid dynamic properties for liquids such as liquid hydrogen are incorporated into the governing equations. Second, anomalous conditions are captured in ways compatible with existing system theoretic design tools so that anomalous models can be constructed. Control and condition monitoring based methods are seen as an improvement over some existing modelling methods because such methods typically do not rigorously lead to low order models nor do they provide a means for capturing anomalous conditions. Applications to the nominal SSME HPFP and degraded HPFP serve to illustrate the approach.

  4. Meta-Theoretical Contributions to the Constitution of a Model-Based Didactics of Science

    NASA Astrophysics Data System (ADS)

    Ariza, Yefrin; Lorenzano, Pablo; Adúriz-Bravo, Agustín

    2016-07-01

    There is nowadays consensus in the community of didactics of science (i.e. science education understood as an academic discipline) regarding the need to include the philosophy of science in didactical research, science teacher education, curriculum design, and the practice of science education in all educational levels. Some authors have identified an ever-increasing use of the concept of `theoretical model', stemming from the so-called semantic view of scientific theories. However, it can be recognised that, in didactics of science, there are over-simplified transpositions of the idea of model (and of other meta-theoretical ideas). In this sense, contemporary philosophy of science is often blurred or distorted in the science education literature. In this paper, we address the discussion around some meta-theoretical concepts that are introduced into didactics of science due to their perceived educational value. We argue for the existence of a `semantic family', and we characterise four different versions of semantic views existing within the family. In particular, we seek to contribute to establishing a model-based didactics of science mainly supported in this semantic family.

  5. On Accounting for the Interplay of Kinetic and Non-Kinetic Aspects in Population Mobility Models

    SciTech Connect

    Perumalla, Kalyan S; Bhaduri, Budhendra L

    2006-01-01

    Several important applications are placing demands on satisfactory characterization of the bi-directional interaction between kinetic and non-kinetic aspects in the mobility of people and commodities. Example applications include: emergency planning which needs to account for strong interplay of vehicular transport with inventory levels of critical supplies and/or people's psychologies; energy planning for normal day-to-day activities which considers the relation between travel patterns and energy usage; and, policy making for futuristic scenarios which examines the correlation between transportation behaviors and environmental/economic concerns. All these require new and holistic approaches for capturing the interplay of kinetic and non-kinetic aspects of mobility, as those aspects cannot be treated separately. Accurate characterization of such interplay requires proper integration of three distinct components, namely, data, models and computation. The availability of new sources of high-resolution data, and of detailed models together with recent advances in scalable computational methods now permits accurate capture of such an important interplay. This paper serves to highlight and argue that the interplay can in fact be captured in a high level of detail in simulations, enabled by the availability of new data, models and computational capabilities. Some of the challenges that are encountered in incorporating the interplay are outlined and plausible solution approaches are described in the context of large-scale scenarios involving mobility of people and commodities.

  6. Representing general theoretical concepts in structural equation models: The role of composite variables

    USGS Publications Warehouse

    Grace, J.B.; Bollen, K.A.

    2008-01-01

    Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically-based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling heterogeneous concepts of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially-reduced-form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influence of suites of variables are often of interest. ?? Springer Science+Business Media, LLC 2007.

  7. Information-theoretic model-averaged benchmark dose analysis in environmental risk assessment

    PubMed Central

    Piegorsch, Walter W.; An, Lingling; Wickens, Alissa A.; West, R. Webster; Peña, Edsel A.; Wu, Wensong

    2013-01-01

    An important objective in environmental risk assessment is estimation of minimum exposure levels, called Benchmark Doses (BMDs), that induce a pre-specified Benchmark Response (BMR) in a dose-response experiment. In such settings, representations of the risk are traditionally based on a specified parametric model. It is a well-known concern, however, that existing parametric estimation techniques are sensitive to the form employed for modeling the dose response. If the chosen parametric model is in fact misspecified, this can lead to inaccurate low-dose inferences. Indeed, avoiding the impact of model selection was one early motivating issue behind development of the BMD technology. Here, we apply a frequentist model averaging approach for estimating benchmark doses, based on information-theoretic weights. We explore how the strategy can be used to build one-sided lower confidence limits on the BMD, and we study the confidence limits’ small-sample properties via a simulation study. An example from environmental carcinogenicity testing illustrates the calculations. It is seen that application of this information-theoretic, model averaging methodology to benchmark analysis can improve environmental health planning and risk regulation when dealing with low-level exposures to hazardous agents. PMID:24039461

  8. Thermal conductivity of molten salt mixtures: Theoretical model supported by equilibrium molecular dynamics simulations.

    PubMed

    Gheribi, Aïmen E; Chartrand, Patrice

    2016-02-28

    A theoretical model for the description of thermal conductivity of molten salt mixtures as a function of composition and temperature is presented. The model is derived by considering the classical kinetic theory and requires, for its parametrization, only information on thermal conductivity of pure compounds. In this sense, the model is predictive. For most molten salt mixtures, no experimental data on thermal conductivity are available in the literature. This is a hindrance for many industrial applications (in particular for thermal energy storage technologies) as well as an obvious barrier for the validation of the theoretical model. To alleviate this lack of data, a series of equilibrium molecular dynamics (EMD) simulations has been performed on several molten chloride systems in order to determine their thermal conductivity in the entire range of composition at two different temperatures: 1200 K and 1300 K. The EMD simulations are first principles type, as the potentials used to describe the interactions have been parametrized on the basis of first principle electronic structure calculations. In addition to the molten chlorides system, the model predictions are also compared to a recent similar EMD study on molten fluorides and with the few reliable experimental data available in the literature. The accuracy of the proposed model is within the reported numerical and/or experimental errors.

  9. Thermal conductivity of molten salt mixtures: Theoretical model supported by equilibrium molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Gheribi, Aïmen E.; Chartrand, Patrice

    2016-02-01

    A theoretical model for the description of thermal conductivity of molten salt mixtures as a function of composition and temperature is presented. The model is derived by considering the classical kinetic theory and requires, for its parametrization, only information on thermal conductivity of pure compounds. In this sense, the model is predictive. For most molten salt mixtures, no experimental data on thermal conductivity are available in the literature. This is a hindrance for many industrial applications (in particular for thermal energy storage technologies) as well as an obvious barrier for the validation of the theoretical model. To alleviate this lack of data, a series of equilibrium molecular dynamics (EMD) simulations has been performed on several molten chloride systems in order to determine their thermal conductivity in the entire range of composition at two different temperatures: 1200 K and 1300 K. The EMD simulations are first principles type, as the potentials used to describe the interactions have been parametrized on the basis of first principle electronic structure calculations. In addition to the molten chlorides system, the model predictions are also compared to a recent similar EMD study on molten fluorides and with the few reliable experimental data available in the literature. The accuracy of the proposed model is within the reported numerical and/or experimental errors.

  10. Thermal conductivity of molten salt mixtures: Theoretical model supported by equilibrium molecular dynamics simulations.

    PubMed

    Gheribi, Aïmen E; Chartrand, Patrice

    2016-02-28

    A theoretical model for the description of thermal conductivity of molten salt mixtures as a function of composition and temperature is presented. The model is derived by considering the classical kinetic theory and requires, for its parametrization, only information on thermal conductivity of pure compounds. In this sense, the model is predictive. For most molten salt mixtures, no experimental data on thermal conductivity are available in the literature. This is a hindrance for many industrial applications (in particular for thermal energy storage technologies) as well as an obvious barrier for the validation of the theoretical model. To alleviate this lack of data, a series of equilibrium molecular dynamics (EMD) simulations has been performed on several molten chloride systems in order to determine their thermal conductivity in the entire range of composition at two different temperatures: 1200 K and 1300 K. The EMD simulations are first principles type, as the potentials used to describe the interactions have been parametrized on the basis of first principle electronic structure calculations. In addition to the molten chlorides system, the model predictions are also compared to a recent similar EMD study on molten fluorides and with the few reliable experimental data available in the literature. The accuracy of the proposed model is within the reported numerical and/or experimental errors. PMID:26931711

  11. Reality-Theoretical Models-Mathematics: A Ternary Perspective on Physics Lessons in Upper-Secondary School

    ERIC Educational Resources Information Center

    Hansson, Lena; Hansson, Örjan; Juter, Kristina; Redfors, Andreas

    2015-01-01

    This article discusses the role of mathematics during physics lessons in upper-secondary school. Mathematics is an inherent part of theoretical models in physics and makes powerful predictions of natural phenomena possible. Ability to use both theoretical models and mathematics is central in physics. This paper takes as a starting point that the…

  12. Development Mechanism of an Integrated Model for Training of a Specialist and Conceptual-Theoretical Activity of a Teacher

    ERIC Educational Resources Information Center

    Marasulov, Akhmat; Saipov, Amangeldi; ?rymbayeva, Kulimkhan; Zhiyentayeva, Begaim; Demeuov, Akhan; Konakbaeva, Ulzhamal; Bekbolatova, Akbota

    2016-01-01

    The aim of the study is to examine the methodological-theoretical construction bases for development mechanism of an integrated model for a specialist's training and teacher's conceptual-theoretical activity. Using the methods of generalization of teaching experience, pedagogical modeling and forecasting, the authors determine the urgent problems…

  13. A theoretical model for the prediction of vertical axis wind turbine performance

    NASA Astrophysics Data System (ADS)

    Fortunato, B.; Dadone, A.; Trifoni, V.

    1993-01-01

    The present paper provides a two-dimensional model for the computation of the flow field around vertical axis wind turbines. The model considers the effect of the blades in a time averaged sense by means of an actuator porous cylinder, having the turbine radius. The numerical method here employed is the 'fast solver', which is a natural extension of the classical lambda formulation and is based on the integration of the compatibility conditions along bicharacteristic lines. The vertical axis wind turbine performance obtained with the present method are compared with other theoretical and experimental results.

  14. Theoretical modelling of the feedback stabilization of external MHD modes in toroidal geometry

    NASA Astrophysics Data System (ADS)

    Chance, M. S.; Chu, M. S.; Okabayashi, M.; Turnbull, A. D.

    2002-03-01

    A theoretical framework for understanding the feedback mechanism for stabilization of external MHD modes has been formulated. Efficient computational tools - the GATO stability code coupled with a substantially modified VACUUM code - have been developed to effectively design viable feedback systems against these modes. The analysis assumed a thin resistive shell and a feedback coil structure accurately modelled in θ and phi, albeit with only a single harmonic variation in phi. Time constants and induced currents in the enclosing resistive shell are calculated. An optimized configuration based on an idealized model has been computed for the DIII-D device. Up to 90% of the effectiveness of an ideal wall can be achieved.

  15. Crisis Management Systems: A Case Study for Aspect-Oriented Modeling

    NASA Astrophysics Data System (ADS)

    Kienzle, Jörg; Guelfi, Nicolas; Mustafiz, Sadaf

    The intent of this document is to define a common case study for the aspect-oriented modeling research community. The domain of the case study is crisis management systems, i.e., systems that help in identifying, assessing, and handling a crisis situation by orchestrating the communication between all parties involved in handling the crisis, by allocating and managing resources, and by providing access to relevant crisis-related information to authorized users. This document contains informal requirements of crisis management systems (CMSs) in general, a feature model for a CMS product line, use case models for a car crash CMS (CCCMS), a domain model for the CCCMS, an informal physical architecture description of the CCCMS, as well as some design models of a possible object-oriented implementation of parts of the CCCMS backend. AOM researchers who want to demonstrate the power of their AOM approach or technique can hence apply the approach at the most appropriate level of abstraction.

  16. 3-D Human body models in C.A.D. : Anthropometric Aspects

    NASA Astrophysics Data System (ADS)

    Renaud, C.; Steck, R.; Pineau, J. C.

    1986-07-01

    Modeling and simulation methods of man-machine systems are developed at the laboratory by interactive infography and C.A.D. technics. In order to better apprehend the morphological variability of populations we have enriched the 3-D model with a parametric function using classical anthropometric dimensions. We have selected reference, associate and complementary dimensions : lengths, breadths, circumferences and depths, which depend on operator's tasks and characteristics of workplaces. All anthropometric values come from the International Data Bank of Human Biometry of ERGODATA System. The utilization of the parametric function brings a quick and accurate description of morphology for theoretic subjects and can be used in C.A.D. analysis.

  17. Theoretical foundation, methods, and criteria for calibrating human vibration models using frequency response functions

    PubMed Central

    Dong, Ren G.; Welcome, Daniel E.; McDowell, Thomas W.; Wu, John Z.

    2015-01-01

    While simulations of the measured biodynamic responses of the whole human body or body segments to vibration are conventionally interpreted as summaries of biodynamic measurements, and the resulting models are considered quantitative, this study looked at these simulations from a different angle: model calibration. The specific aims of this study are to review and clarify the theoretical basis for model calibration, to help formulate the criteria for calibration validation, and to help appropriately select and apply calibration methods. In addition to established vibration theory, a novel theorem of mechanical vibration is also used to enhance the understanding of the mathematical and physical principles of the calibration. Based on this enhanced understanding, a set of criteria was proposed and used to systematically examine the calibration methods. Besides theoretical analyses, a numerical testing method is also used in the examination. This study identified the basic requirements for each calibration method to obtain a unique calibration solution. This study also confirmed that the solution becomes more robust if more than sufficient calibration references are provided. Practically, however, as more references are used, more inconsistencies can arise among the measured data for representing the biodynamic properties. To help account for the relative reliabilities of the references, a baseline weighting scheme is proposed. The analyses suggest that the best choice of calibration method depends on the modeling purpose, the model structure, and the availability and reliability of representative reference data. PMID:26740726

  18. Experimental verification of a theoretical model of an active cladding optical fiber fluorosensor

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia; Briant, Alvin L.; Egalon, Claudio O.; Rogowski, Robert S.; Nankung, Juock S.

    1993-01-01

    Experiments were conducted to verify a theoretical model on the injection efficiency of sources in the cladding of an optical fiber. The theoretical results predicted an increase in the injection efficiency for higher differences in refractive indices between the core and cladding. The experimental apparatus used consisted of a glass rod 50 cm long, coated at one end with a thin film of fluorescent substance. The fluorescent substance was excited with side illumination, perpendicular to the rod axis, using a 476 nm Argon-ion laser. Part of the excited fluorescence was injected into the core and guided to a detector. The signal was measured for several different cladding refractive indices. The cladding consisted of sugar dissolved in water and the refractive index was changed by varying the sugar concentration in the solution. The results indicate that the power injected into the rod, due to evanescent wave injection, increases with the difference in refractive index which is in qualitative agreement with theory.

  19. Theoretical model and optimization of a novel temperature sensor based on quartz tuning fork resonators

    NASA Astrophysics Data System (ADS)

    Jun, Xu; Bo, You; Xin, Li; Juan, Cui

    2007-12-01

    To accurately measure temperatures, a novel temperature sensor based on a quartz tuning fork resonator has been designed. The principle of the quartz tuning fork temperature sensor is that the resonant frequency of the quartz resonator changes with the variation in temperature. This type of tuning fork resonator has been designed with a new doubly rotated cut work at flexural vibration mode as temperature sensor. The characteristics of the temperature sensor were evaluated and the results sufficiently met the target of development for temperature sensor. The theoretical model for temperature sensing has been developed and built. The sensor structure was analysed by finite element method (FEM) and optimized, including tuning fork geometry, tine electrode pattern and the sensor's elements size. The performance curve of output versus measured temperature is given. The results from theoretical analysis and experiments indicate that the sensor's sensitivity can reach 60 ppm °C-1 with the measured temperature range varying from 0 to 100 °C.

  20. High density monolayers of plasmid protein on latex particles: experiments and theoretical modeling

    NASA Astrophysics Data System (ADS)

    Kujda, Marta; Adamczyk, Zbigniew; Cieśla, Michał; Adamczyk, Małgorzata

    2015-04-01

    Monolayers obtained by adsorption of the plasmid protein KfrA on negatively charged polystyrene latex particles under diffusion-controlled conditions at pH 3.5 were interpreted in terms of the random sequential adsorption (RSA) model. A quantitative agreement of the theoretical results derived from these calculations with experimental data was attained for the ionic strength from 0.15 up to 10-2 M. This confirmed the adsorption mechanism of KfrA molecules on latex in the form of tetramers up to 10-2 M. On the other hand, for the ionic strength of 10-3 M the experimental coverage agreed with theoretical predictions under the assumption that screening of electrostatic interaction is enhanced by the presence of counterions and negatively charged polymer chains stemming from latex particles.

  1. Propagation predictions and studies using a ray tracing program combined with a theoretical ionospheric model

    NASA Technical Reports Server (NTRS)

    Lee, M. K.; Nisbet, J. S.

    1975-01-01

    Radio wave propagation predictions are described in which modern comprehensive theoretical ionospheric models are coupled with ray-tracing programs. In the computer code described, a network of electron density and collision frequency parameters along a band about the great circle path is calculated by specifying the transmitter and receiver geographic coordinates, time, the day number, and the 2800-MHz solar flux. The ray paths are calculated on specifying the frequency, mode, range of elevation angles, and range of azimuth angles from the great circle direction. The current program uses a combination of the Penn State MKI E and F region models and the Mitra-Rowe D and E region model. Application of the technique to the prediction of satellite to ground propagation and calculation of oblique incidence propagation paths and absorption are described. The implications of the study to the development of the next generation of ionospheric models are discussed.

  2. A Thematic Analysis of Theoretical Models for Translational Science in Nursing: Mapping the Field

    PubMed Central

    Mitchell, Sandra A.; Fisher, Cheryl A.; Hastings, Clare E.; Silverman, Leanne B.; Wallen, Gwenyth R.

    2010-01-01

    Background The quantity and diversity of conceptual models in translational science may complicate rather than advance the use of theory. Purpose This paper offers a comparative thematic analysis of the models available to inform knowledge development, transfer, and utilization. Method Literature searches identified 47 models for knowledge translation. Four thematic areas emerged: (1) evidence-based practice and knowledge transformation processes; (2) strategic change to promote adoption of new knowledge; (3) knowledge exchange and synthesis for application and inquiry; (4) designing and interpreting dissemination research. Discussion This analysis distinguishes the contributions made by leaders and researchers at each phase in the process of discovery, development, and service delivery. It also informs the selection of models to guide activities in knowledge translation. Conclusions A flexible theoretical stance is essential to simultaneously develop new knowledge and accelerate the translation of that knowledge into practice behaviors and programs of care that support optimal patient outcomes. PMID:21074646

  3. Absorption of Fast Waves at Moderate to High Ion Cyclotron Harmonics: Experimental Results and Theoretical Models

    NASA Astrophysics Data System (ADS)

    Pinsker, R. I.; Choi, M.; Prater, R.; Heidbrink, W. W.; Luo, Y.; Baity, F. W.; Murakami, M.; Porkolab, M.

    2006-10-01

    Strong absorption of fast Alfvén waves (FW) by ion cyclotron damping has been observed in DIII-D at the 4th and 5th harmonic of an injected beam while only weak absorption is observed at the 8th harmonic. The experimental results are compared with three different theoretical models; differences between the predictions of the models suggest the possible importance of finite-width orbit effects at high harmonics. In a linear model, it is found that damping on fast ions from neutral beam injection can be significant even at the 8th harmonic under experimentally relevant conditions. This is tested in experiments in DIII-D with FW power at 60 MHz and at 116 MHz. A novel Dα charge exchange recombination diagnostic is used to observe interaction of the FW power with beam ions. The results are compared with modeling with quasilinear and with orbit-following codes.

  4. Constraints on field theoretical models for variation of the fine structure constant

    NASA Astrophysics Data System (ADS)

    Steinhardt, Charles L.

    2005-02-01

    Recent theoretical ideas and observational claims suggest that the fine structure constant α may be variable. We examine a spectrum of models in which α is a function of a scalar field. Specifically, we consider three scenarios: oscillating α, monotonic time variation of α, and time-independent α that is spatially varying. We examine the constraints imposed upon these theories by cosmological observations, particle detector experiments, and “fifth force” experiments. These constraints are very strong on models involving oscillation but cannot compete with bounds from the Oklo subnuclear reactor on models with monotonic timelike variation of α. One particular model with spatial variation is consistent with all current experimental and observational measurements, including those from two seemingly conflicting measurements of the fine structure constant using the many multiplet method on absorption lines.

  5. Bridging the gap between theoretical ecology and real ecosystems: modeling invertebrate community composition in streams.

    PubMed

    Schuwirth, Nele; Reichert, Peter

    2013-02-01

    For the first time, we combine concepts of theoretical food web modeling, the metabolic theory of ecology, and ecological stoichiometry with the use of functional trait databases to predict the coexistence of invertebrate taxa in streams. We developed a mechanistic model that describes growth, death, and respiration of different taxa dependent on various environmental influence factors to estimate survival or extinction. Parameter and input uncertainty is propagated to model results. Such a model is needed to test our current quantitative understanding of ecosystem structure and function and to predict effects of anthropogenic impacts and restoration efforts. The model was tested using macroinvertebrate monitoring data from a catchment of the Swiss Plateau. Even without fitting model parameters, the model is able to represent key patterns of the coexistence structure of invertebrates at sites varying in external conditions (litter input, shading, water quality). This confirms the suitability of the model concept. More comprehensive testing and resulting model adaptations will further increase the predictive accuracy of the model.

  6. YAC 1.2.0: new aspects for coupling software in Earth system modelling

    NASA Astrophysics Data System (ADS)

    Hanke, Moritz; Redler, René; Holfeld, Teresa; Yastremsky, Maxim

    2016-08-01

    A lightweight software library has been developed to realise the coupling of Earth system model components. The software provides parallelised two-dimensional neighbourhood search, interpolation, and communication for the coupling between any two model components. The software offers flexible coupling of physical fields defined on regular and irregular grids on the sphere without a priori assumptions about grid structure or grid element types. All supported grids can be combined with any of the supported interpolations. We describe the new aspects of our approach and provide an overview of the implemented functionality and of some algorithms we use. Preliminary performance measurements for a set of realistic use cases are presented to demonstrate the potential performance and scalability of our approach. YAC 1.2.0 is now used for the coupling of the model components in the Icosahedral Nonhydrostatic (ICON) general circulation model.

  7. Theoretical Hill-Type Muscle and Stability: Numerical Model and Application

    PubMed Central

    Schmitt, S.; Günther, M.; Rupp, T.; Bayer, A.; Häufle, D.

    2013-01-01

    The construction of artificial muscles is one of the most challenging developments in today's biomedical science. The application of artificial muscles is focused both on the construction of orthotics and prosthetics for rehabilitation and prevention purposes and on building humanoid walking machines for robotics research. Research in biomechanics tries to explain the functioning and design of real biological muscles and therefore lays the fundament for the development of functional artificial muscles. Recently, the hyperbolic Hill-type force-velocity relation was derived from simple mechanical components. In this contribution, this theoretical yet biomechanical model is transferred to a numerical model and applied for presenting a proof-of-concept of a functional artificial muscle. Additionally, this validated theoretical model is used to determine force-velocity relations of different animal species that are based on the literature data from biological experiments. Moreover, it is shown that an antagonistic muscle actuator can help in stabilising a single inverted pendulum model in favour of a control approach using a linear torque generator. PMID:24319495

  8. A comprehensive theoretical model for on-chip microring-based photonic fractional differentiators

    PubMed Central

    Jin, Boyuan; Yuan, Jinhui; Wang, Kuiru; Sang, Xinzhu; Yan, Binbin; Wu, Qiang; Li, Feng; Zhou, Xian; Zhou, Guiyao; Yu, Chongxiu; Lu, Chao; Yaw Tam, Hwa; Wai, P. K. A.

    2015-01-01

    Microring-based photonic fractional differentiators play an important role in the on-chip all-optical signal processing. Unfortunately, the previous works do not consider the time-reversal and the time delay characteristics of the microring-based fractional differentiator. They also do not include the effect of input pulse width on the output. In particular, it cannot explain why the microring-based differentiator with the differentiation order n > 1 has larger output deviation than that with n < 1, and why the microring-based differentiator cannot reproduce the three-peak output waveform of an ideal differentiator with n > 1. In this paper, a comprehensive theoretical model is proposed. The critically-coupled microring resonator is modeled as an ideal first-order differentiator, while the under-coupled and over-coupled resonators are modeled as the time-reversed ideal fractional differentiators. Traditionally, the over-coupled microring resonators are used to form the differentiators with 1 < n < 2. However, we demonstrate that smaller fitting error can be obtained if the over-coupled microring resonator is fitted by an ideal differentiator with n < 1. The time delay of the differentiator is also considered. Finally, the influences of some key factors on the output waveform and deviation are discussed. The proposed theoretical model is beneficial for the design and application of the microring-based fractional differentiators. PMID:26381934

  9. Resource holding potential, subjective resource value, and game theoretical models of aggressiveness signalling.

    PubMed

    Hurd, Peter L

    2006-08-01

    Empirical evidence suggests that aggressiveness (willingness to enter into, or escalate an aggressive interaction) may be more important than the ability to win fights in some species. Both empirical and theoretical traditions treat aggressiveness as a distinct property from the ability (RHP) or motivation (subjective resource value) to win a fight. I examine how these three traits are clearly distinct when modelled using a simple strategic model of escalation. I then examine game theoretical models of agonistic communication and demonstrate that models in which aggressiveness is signalled require: (1) a trait, aggressiveness, which is neither a correlate, nor consequence of RHP or motivation, (2) a handicap which negates any benefit to be gained through the use of a particular signal, and (3) the absence of any other asymmetry which could be used to assign roles to players. I conclude that it is unlikely that these assumptions are ever met, and that empirical examples of "aggressiveness" are far more likely to represent long-term differences in subjective resource value.

  10. Theoretical Hill-type muscle and stability: numerical model and application.

    PubMed

    Schmitt, S; Günther, M; Rupp, T; Bayer, A; Häufle, D

    2013-01-01

    The construction of artificial muscles is one of the most challenging developments in today's biomedical science. The application of artificial muscles is focused both on the construction of orthotics and prosthetics for rehabilitation and prevention purposes and on building humanoid walking machines for robotics research. Research in biomechanics tries to explain the functioning and design of real biological muscles and therefore lays the fundament for the development of functional artificial muscles. Recently, the hyperbolic Hill-type force-velocity relation was derived from simple mechanical components. In this contribution, this theoretical yet biomechanical model is transferred to a numerical model and applied for presenting a proof-of-concept of a functional artificial muscle. Additionally, this validated theoretical model is used to determine force-velocity relations of different animal species that are based on the literature data from biological experiments. Moreover, it is shown that an antagonistic muscle actuator can help in stabilising a single inverted pendulum model in favour of a control approach using a linear torque generator. PMID:24319495

  11. Cohesive surface model for fracture based on a two-scale formulation: computational implementation aspects

    NASA Astrophysics Data System (ADS)

    Toro, S.; Sánchez, P. J.; Podestá, J. M.; Blanco, P. J.; Huespe, A. E.; Feijóo, R. A.

    2016-10-01

    The paper describes the computational aspects and numerical implementation of a two-scale cohesive surface methodology developed for analyzing fracture in heterogeneous materials with complex micro-structures. This approach can be categorized as a semi-concurrent model using the representative volume element concept. A variational multi-scale formulation of the methodology has been previously presented by the authors. Subsequently, the formulation has been generalized and improved in two aspects: (i) cohesive surfaces have been introduced at both scales of analysis, they are modeled with a strong discontinuity kinematics (new equations describing the insertion of the macro-scale strains, into the micro-scale and the posterior homogenization procedure have been considered); (ii) the computational procedure and numerical implementation have been adapted for this formulation. The first point has been presented elsewhere, and it is summarized here. Instead, the main objective of this paper is to address a rather detailed presentation of the second point. Finite element techniques for modeling cohesive surfaces at both scales of analysis (FE^2 approach) are described: (i) finite elements with embedded strong discontinuities are used for the macro-scale simulation, and (ii) continuum-type finite elements with high aspect ratios, mimicking cohesive surfaces, are adopted for simulating the failure mechanisms at the micro-scale. The methodology is validated through numerical simulation of a quasi-brittle concrete fracture problem. The proposed multi-scale model is capable of unveiling the mechanisms that lead from the material degradation phenomenon at the meso-structural level to the activation and propagation of cohesive surfaces at the structural scale.

  12. Cohesive surface model for fracture based on a two-scale formulation: computational implementation aspects

    NASA Astrophysics Data System (ADS)

    Toro, S.; Sánchez, P. J.; Podestá, J. M.; Blanco, P. J.; Huespe, A. E.; Feijóo, R. A.

    2016-07-01

    The paper describes the computational aspects and numerical implementation of a two-scale cohesive surface methodology developed for analyzing fracture in heterogeneous materials with complex micro-structures. This approach can be categorized as a semi-concurrent model using the representative volume element concept. A variational multi-scale formulation of the methodology has been previously presented by the authors. Subsequently, the formulation has been generalized and improved in two aspects: (i) cohesive surfaces have been introduced at both scales of analysis, they are modeled with a strong discontinuity kinematics (new equations describing the insertion of the macro-scale strains, into the micro-scale and the posterior homogenization procedure have been considered); (ii) the computational procedure and numerical implementation have been adapted for this formulation. The first point has been presented elsewhere, and it is summarized here. Instead, the main objective of this paper is to address a rather detailed presentation of the second point. Finite element techniques for modeling cohesive surfaces at both scales of analysis (FE^2 approach) are described: (i) finite elements with embedded strong discontinuities are used for the macro-scale simulation, and (ii) continuum-type finite elements with high aspect ratios, mimicking cohesive surfaces, are adopted for simulating the failure mechanisms at the micro-scale. The methodology is validated through numerical simulation of a quasi-brittle concrete fracture problem. The proposed multi-scale model is capable of unveiling the mechanisms that lead from the material degradation phenomenon at the meso-structural level to the activation and propagation of cohesive surfaces at the structural scale.

  13. Assessment of Behaviors Modeling Aspects of Schizophrenia in Csmd1 Mutant Mice

    PubMed Central

    Distler, Margaret G.; Opal, Mark D.; Dulawa, Stephanie C.; Palmer, Abraham A.

    2012-01-01

    Schizophrenia is a debilitating psychotic disorder that affects up to 1.5% of the population worldwide. Two recent studies in humans identified genome-wide significant associations between schizophrenia and single-nucleotide polymorphisms (SNPs) in an intron of CSMD1. The effect of deleting CSMD1 on mouse behavior is unknown. The present study utilized mice with a mutant Csmd1 allele in which the first exon had been ablated (KO mice). All Csmd1 transcripts that included the first exon were absent in the brains of KO mice, but there was persistent expression of at least one other transcript that does not include the first exon. Wild type (WT), heterozygous (HET), and KO mice were assessed using several well-established behavioral paradigms that model aspects of schizophrenia. Csmd1 KO mice did not differ from wild-type littermates for sensorimotor gating (measured as prepulse inhibition), social interaction, anhedonia (measured by sucrose preference), or sensitivity to the locomotor stimulant effects of the dopaminergic agent d-amphetamine. These data demonstrate that loss of Csmd1 transcripts that include the first exon does not alter multiple well-established behaviors that model aspects of schizophrenia. The SNP most strongly associated with schizophrenia in humans is between exons 3 and 4; therefore, ablation of exon 1 appeared to be a logical animal model. Nevertheless, future studies should consider alternative mouse models including gain-of-function mutations, and loss-of-function mutations that target alternative transcripts of Csmd1. PMID:23284669

  14. Estimating Young's modulus of zona pellucida by micropipette aspiration in combination with theoretical models of ovum.

    PubMed

    Khalilian, Morteza; Navidbakhsh, Mahdi; Valojerdi, Mojtaba Rezazadeh; Chizari, Mahmoud; Yazdi, Poopak Eftekhari

    2010-04-01

    The zona pellucida (ZP) is the spherical layer that surrounds the mammalian oocyte. The physical hardness of this layer plays a crucial role in fertilization and is largely unknown because of the lack of appropriate measuring and modelling methods. The aim of this study is to measure the biomechanical properties of the ZP of human/mouse ovum and to test the hypothesis that Young's modulus of the ZP varies with fertilization. Young's moduli of ZP are determined before and after fertilization by using the micropipette aspiration technique, coupled with theoretical models of the oocyte as an elastic incompressible half-space (half-space model), an elastic compressible bilayer (layered model) or an elastic compressible shell (shell model). Comparison of the models shows that incorporation of the layered geometry of the ovum and the compressibility of the ZP in the layered and shell models may provide a means of more accurately characterizing ZP elasticity. Evaluation of results shows that although the results of the models are different, all confirm that the hardening of ZP will increase following fertilization. As can be seen, different choices of models and experimental parameters can affect the interpretation of experimental data and lead to differing mechanical properties.

  15. A Theoretical Model of Thermoelectric Transport Properties for Electrons and Phonons

    NASA Astrophysics Data System (ADS)

    Lee, HoSung

    2016-02-01

    A generic theoretical model for five bulk thermoelectric materials (PbTe, Bi2Te3, SnSe, Si0.7Ge0.3, and Mg2Si) has been developed based on the semiclassical model incorporating nonparabolicity, the two-band Kane model, the Hall factor, and the Debye-Callaway model for electrons and phonons. It is used to calculate thermoelectric transport properties, viz. the Seebeck coefficient, electrical conductivity, and electronic and lattice thermal conductivities, in the temperature range from room temperature up to 1200 K. The present model differs from others in the following regards: Firstly, thorough verification of modified electron scattering mechanisms is carried out by comparison with reported experimental data; Secondly, extensive verification of the model is presented, with concomitant agreement between calculations and reported measurements of effective masses, electron and hole concentrations, Seebeck coefficient, electrical conductivity, and electronic and lattice thermal conductivities; Thirdly, the present model provides the Fermi energy as a function of temperature and doping concentration; Fourthly, the velocities of sound are calculated using the Debye model rather than taken from literature. After verification of the present model, we were able to examine the recently attractive material SnSe, indicating a significant improvement in the dimensionless figure of merit.

  16. A theoretical plate model accounting for slow kinetics in chromatographic elution.

    PubMed

    Baeza-Baeza, J J; García-Álvarez-Coque, M C

    2011-08-01

    The chromatographic elution has been studied from different perspectives. However, in spite of the simplicity and evident deficiencies of the plate model proposed by Martin and Synge, it has served as a basis for the characterization of columns up-to-date. This approach envisions the chromatographic column as an arbitrary number of theoretical plates, each of them consisting of identical repeating portions of mobile phase and stationary phase. Solutes partition between both phases, reaching the equilibrium. Mobile phase transference between the theoretical plates is assumed to be infinitesimally stepwise (or continuous), giving rise to the mixing of the solutions in adjacent plates. This yields an additional peak broadening, which is added to the dispersion associated to the equilibrium conditions. It is commonly assumed that when the solute concentration is sufficiently small, chromatographic elution is carried out under linear conditions, which is the case in almost all analytical applications. When the solute concentration increases above a value where the stationary phase approximates saturation (i.e. becomes overloaded), non-linear elution is obtained. In addition to overloading, another source of non-linearity can be a slow mass transfer. An extended Martin and Synge model is here proposed to include slow mass-transfer kinetics (with respect to flow rate) between the mobile phase and stationary phase. We show that there is a linear relationship between the variance and the ratio of the kinetic constants for the mass transfer in the flow direction (τ) and the mass transfer between the mobile phase and stationary phase (ν), which has been called the kinetic ratio (κ=τ/ν). The proposed model was validated with data obtained according to an approach that simulates the solute migration through the theoretical plates. An experimental approach to measure the deviation from the equilibrium conditions using the experimental peak variances and retention times at

  17. Inclusion of persistence length-based secondary structure in replica field theoretic models of heteropolymer freezing

    NASA Astrophysics Data System (ADS)

    Weber, Jeffrey K.; Pande, Vijay S.

    2013-09-01

    The protein folding problem has long represented a "holy grail" in statistical physics due to its physical complexity and its relevance to many human diseases. While past theoretical work has yielded apt descriptions of protein folding landscapes, recent large-scale simulations have provided insights into protein folding that were impractical to obtain from early theories. In particular, the role that non-native contacts play in protein folding, and their relation to the existence of misfolded, β-sheet rich trap states on folding landscapes, has emerged as a topic of interest in the field. In this paper, we present a modified model of heteropolymer freezing that includes explicit secondary structural characteristics which allow observations of "intramolecular amyloid" states to be probed from a theoretical perspective. We introduce a variable persistence length-based energy penalty to a model Hamiltonian, and we illustrate how this modification alters the phase transitions present in the theory. We find, in particular, that inclusion of this variable persistence length increases both generic freezing and folding temperatures in the model, allowing both folding and glass transitions to occur in a more highly optimized fashion. We go on to discuss how these changes might relate to protein evolution, misfolding, and the emergence of intramolecular amyloid states.

  18. Theoretical model for the evaporation loss of PM2.5 during filter sampling

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Nan; Lin, Sih-Fan; Tsai, Chuen-Jinn; Wu, Yueh-Chuen; Chen, Chung-Fang

    2015-05-01

    The evaporation losses of PM2.5 particles in eight different size ranges corresponding to the 4th-10th stages and after filter of the MOUDI were calculated theoretically and then integrated to obtain the total PM2.5 evaporation loss. Results show that when PM2.5 particles are nearly neutral with pH in the range of 7-8, the evaporated concentrations predicted by the present model agree well with the experimental data with an average absolute difference of 20.2 ± 11.1%. When PM2.5 aerosols are acidic with pH less than 3.5, additional loss of nitrate and chloride can occur due to chemical interactions between collected particles and strong acids which are not considered in the present model. Under pH neutral conditions, the theoretical model was then used to examine the effect of PM2.5 concentration, gas-to-particle ratio, ambient temperature and relative humidity on the extent of evaporation loss. Results show that evaporated PM2.5 concentration increases with increasing temperature and decreasing relative humidity, PM2.5 concentration and gas-to-particle ratio.

  19. The nature of voids - I. Watershed void finders and their connection with theoretical models

    NASA Astrophysics Data System (ADS)

    Nadathur, S.; Hotchkiss, S.

    2015-12-01

    The statistical study of voids in the matter distribution promises to be an important tool for precision cosmology, but there are known discrepancies between theoretical models of voids and the voids actually found in large simulations or galaxy surveys. The empirical properties of observed voids are also not well understood. In this paper, we study voids in an N-body simulation, using the ZOBOV watershed algorithm. As in other studies, we use sets of subsampled dark matter particles as tracers to identify voids, but we use the full-resolution simulation output to measure dark matter densities at the identified locations. Voids span a wide range of sizes and densities, but there is a clear trend towards larger voids containing deeper density minima, a trend which is expected for all watershed void finders. We also find that the tracer density at void locations is usually smaller than the true density, and that this relationship depends on the sampling density of tracers. We show that fits given in the literature fail to match the observed density profiles of voids. The average enclosed density contrast within watershed voids varies widely with both the size of the void and the minimum density within it, but is always far from the shell-crossing threshold expected from theoretical models. Voids with deeper density minima also show much broader density profiles. We discuss the implications of these results for the excursion set approach to modelling such voids.

  20. A theoretical model of speed-dependent steering torque for rolling tyres

    NASA Astrophysics Data System (ADS)

    Wei, Yintao; Oertel, Christian; Liu, Yahui; Li, Xuebing

    2016-04-01

    It is well known that the tyre steering torque is highly dependent on the tyre rolling speed. In limited cases, i.e. parking manoeuvre, the steering torque approaches the maximum. With the increasing tyre speed, the steering torque decreased rapidly. Accurate modelling of the speed-dependent behaviour for the tyre steering torque is a key factor to calibrate the electric power steering (EPS) system and tune the handling performance of vehicles. However, no satisfactory theoretical model can be found in the existing literature to explain this phenomenon. This paper proposes a new theoretical framework to model this important tyre behaviour, which includes three key factors: (1) tyre three-dimensional transient rolling kinematics with turn-slip; (2) dynamical force and moment generation; and (3) the mixed Lagrange-Euler method for contact deformation solving. A nonlinear finite-element code has been developed to implement the proposed approach. It can be found that the main mechanism for the speed-dependent steering torque is due to turn-slip-related kinematics. This paper provides a theory to explain the complex mechanism of the tyre steering torque generation, which helps to understand the speed-dependent tyre steering torque, tyre road feeling and EPS calibration.

  1. Poroelastic behaviors of the osteon: A comparison of two theoretical osteon models

    NASA Astrophysics Data System (ADS)

    Wu, Xiao-Gang; Chen, Wei-Yi

    2013-08-01

    In the paper, two theoretical poroelastic osteon models are presented to compare their poroelastic behaviors, one is the hollow osteon model (Haversian fluid is neglected) and the other is the osteon model with Haversian fluid considered. They both have the same two types of impermeable exterior boundary conditions, one is elastic restraint and the other is displacement constrained, which can be used for analyzing other experiments performed on similarly shaped poroelastic specimens. The obtained analytical pressure and velocity solutions demonstrate the effects of the loading factors and the material parameters, which may have a significant stimulus to the mechanotransduction of bone remodeling signals. Model comparisons indicate: (1) The Haversian fluid can enhance the whole osteonal fluid pressure and velocity fields. (2) In the hollow model, the key loading factor governing the poroelastic behavior of the osteon is strain rate, while in the model with Haversian fluid considered, the strain rate governs only the velocity. (3) The pressure amplitude is proportional to the loading frequency in the hollow model, while in the model with Haversian fluid considered, the loading frequency has little effect on the pressure amplitude.

  2. Theoretical Model for the Formation of Caveolae and Similar Membrane Invaginations

    PubMed Central

    Sens, Pierre; Turner, Matthew S.

    2004-01-01

    We study a physical model for the formation of bud-like invaginations on fluid lipid membranes under tension, and apply this model to caveolae formation. We demonstrate that budding can be driven by membrane-bound proteins, provided that they exert asymmetric forces on the membrane that give rise to bending moments. In particular, caveolae formation does not necessarily require forces to be applied by the cytoskeleton. Our theoretical model is able to explain several features observed experimentally in caveolae, where proteins in the caveolin family are known to play a crucial role in the formation of caveolae buds. These include 1), the formation of caveolae buds with sizes in the 100-nm range and 2), that certain N- and C-termini deletion mutants result in vesicles that are an order-of-magnitude larger. Finally, we discuss the possible origin of the morphological striations that are observed on the surfaces of the caveolae. PMID:15041647

  3. Theoretical models of interstellar shocks. I - Radiative transfer and UV precursors

    NASA Technical Reports Server (NTRS)

    Shull, J. M.; Mckee, C. F.

    1979-01-01

    Theoretical models of interstellar radiative shocks are constructed, with special attention to the transfer of ionizing radiation. These models are 'self-consistent' in the sense that the emergent ionizing radiation (the UV precursor) is coupled with the ionization state of H, He, and the metals in the preshock gas. For shock velocities of at least 110 km/s the shocks generate sufficient UV radiation for complete preionization of H and He, the latter to He(+). At lower velocities the preionization can be much smaller, with important consequences for the cooling function, the shock structure, and the emission. For models with shock velocities of 40 to 130 km/s the intensities of the strongest emission lines in the UV, optical, and infrared are tabulated, as well as postshock column densities of metal ions potentially observable by UV absorption spectroscopy. Possible applications to supernova remnants and high-velocity interstellar gas are assessed.

  4. Inference of ICF implosion core mix using experimental data and theoretical mix modeling

    SciTech Connect

    Sherrill, Leslie Welser; Haynes, Donald A; Cooley, James H; Sherrill, Manolo E; Mancini, Roberto C; Tommasini, Riccardo; Golovkin, Igor E; Haan, Steven W

    2009-01-01

    The mixing between fuel and shell materials in Inertial Confinement Fusion (lCF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model predicted trends in the width of the mix layer as a function of initial shell thickness. These results contribute to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increasing confidence in the methods used to extract mixing information from experimental data.

  5. B → K∗ ℓ + ℓ - decays at large recoil in the Standard Model: a theoretical reappraisal

    NASA Astrophysics Data System (ADS)

    Ciuchini, Marco; Fedele, Marco; Franco, Enrico; Mishima, Satoshi; Paul, Ayan; Silvestrini, Luca; Valli, Mauro

    2016-06-01

    We critically reassess the theoretical uncertainties in the Standard Model calculation of the B → K ∗ ℓ + ℓ - observables, focusing on the low q 2 region. We point out that even optimized observables are affected by sizable uncertainties, since hadronic contributions generated by current-current operators with charm are difficult to estimate, especially for q 2 ˜ 4 m c 2 ≃ 6.8 GeV2. We perform a detailed numerical analysis and present both predictions and results from the fit obtained using most recent data. We find that non-factorizable power corrections of the expected order of magnitude are sufficient to give a good description of current experimental data within the Standard Model. We discuss in detail the q 2 dependence of the corrections and their possible interpretation as shifts of the Standard Model Wilson coefficients.

  6. The calculation of theoretical chromospheric models and the interpretation of solar spectra from rockets and spacecraft

    NASA Technical Reports Server (NTRS)

    Avrett, E. H.

    1984-01-01

    Models and spectra of sunspots were studied, because they are important to energy balance and variability discussions. Sunspot observations in the ultraviolet region 140 to 168 nn was obtained by the NRL High Resolution Telescope and Spectrograph. Extensive photometric observations of sunspot umbrae and prenumbrae in 10 chanels covering the wavelength region 387 to 3800 nm were made. Cool star opacities and model atmospheres were computed. The Sun is the first testcase, both to check the opacity calculations against the observed solar spectrum, and to check the purely theoretical model calculation against the observed solar energy distribution. Line lists were finally completed for all the molecules that are important in computing statistical opacities for energy balance and for radiative rate calculations in the Sun (except perhaps for sunspots). Because many of these bands are incompletely analyzed in the laboratory, the energy levels are not well enough known to predict wavelengths accurately for spectrum synthesis and for detailed comparison with the observations.

  7. Theoretical shell-model signatures in heavy-ion, coherent pion production

    NASA Technical Reports Server (NTRS)

    Maung, Khin M.; Deutchman, P. A.; Buvel, R. L.

    1992-01-01

    A comprehensive summary of a many-body, microscopic, particle-hole formalism is presented that describes coherent, subthreshold, pion production in peripheral, heavy-ion collisions. The formalism uses a new separable model transition interaction that produces Delta-hole states in either the projectile or target nucleus. Shell-model states described by harmonic oscillator functions are used in the calculation of Delta formation and decay and Lorentz-contraction effects of the nucleus not at rest are included. An analytical expression to lowest multipole order for the differential cross section is examined. The sensitivity of the theoretical results to the shell-model states is determined with preliminary shape results compared with data. The effects of higher multipoles are examined with attention paid to the second-order multipole value.

  8. Theoretical analysis of electronic absorption spectra of vitamin B12 models

    NASA Astrophysics Data System (ADS)

    Andruniow, Tadeusz; Kozlowski, Pawel M.; Zgierski, Marek Z.

    2001-10-01

    Time-dependent density-functional theory (TD-DFT) is applied to analyze the electronic absorption spectra of vitamin B12. To accomplish this two model systems were considered: CN-[CoIII-corrin]-CN (dicyanocobinamide, DCC) and imidazole-[CoIII-corrin]-CN (cyanocobalamin, ImCC). For both models 30 lowest excited states were calculated together with transition dipole moments. When the results of TD-DFT calculations were directly compared with experiment it was found that the theoretical values systematically overestimate experimental data by approximately 0.5 eV. The uniform adjustment of the calculated transition energies allowed detailed analysis of electronic absorption spectra of vitamin B12 models. All absorption bands in spectral range 2.0-5.0 eV were readily assigned. In particular, TD-DFT calculations were able to explain the origin of the shift of the lowest absorption band caused by replacement of the-CN axial ligand by imidazole.

  9. (A whistle-stop tour of) theoretical models of diffraction in DIS

    SciTech Connect

    McDermott, M. F.

    1997-04-20

    The purpose of this talk was to present a very brief overview of theoretical models of diffraction in deep inelastic scattering (DIS). In particular, predictions for the behaviour of the diffractive structure functions F{sub 2}{sup D}, R{sup D} are presented. The measurement of these functions at both small and high values of the variable {beta} and their evolution with Q{sup 2} is expected to reveal crucial information concerning the underlying dynamics. This talk is based on the more extensive review which also discusses expectations for charm in diffraction and contains a more complete list of references.

  10. Multimode cavity QED 2: Parameter dependence and limitations through theoretical modeling

    NASA Astrophysics Data System (ADS)

    Groszkowski, Peter; Leung, Nelson; Naik, Ravi; Chakram, Srivatsan; Schuster, David; Koch, Jens

    Superconducting circuits are well-established as promising building blocks for future quantum information processing devices. While in recent years gate and readout fidelities have improved significantly, superconducting qubits can still benefit greatly from added intrinsic robustness and improved error resilience. In this talk, we present results for qubits based on the modes of a 1d resonator array, where qubit manipulation and readout are achieved by interaction with a parametrically driven superconducting transmon. Through theoretical modeling, we provide insight into mode addressability as well as crosstalk, and their dependence on the system's size in various parameter regimes.

  11. Hospital design and face-to-face interaction among clinicians: a theoretical model.

    PubMed

    Rashid, Mahbub

    2009-01-01

    A growing body of literature suggests that face-to-face interaction among clinicians in hospitals affects patient outcomes. How can face-to-face interaction among clinicians be influenced positively to improve patient outcomes in hospitals? So far, most strategies for improving face-to-face interaction in hospitals have focused on changing organizational culture. In contrast, this paper proposes a theoretical model that shows how spatial program and structure can help face-to-face interaction fulfill its purposes in hospitals by controlling the interfaces among different communities of clinicians. PMID:21165842

  12. Morphology of synthetic chrysoberyl and alexandrite crystals: Analysis of experimental data and theoretical modeling

    NASA Astrophysics Data System (ADS)

    Gromalova, N. A.; Eremin, N. N.; Dorokhova, G. I.; Urusov, V. S.

    2012-07-01

    A morphological analysis of chrysoberyl and alexandrite crystals obtained by flux crystallization has been performed. Seven morphological types of crystals are selected. The surface energies of the faces of chrysoberyl and alexandrite crystals and their isostructural analogs, BeCr2O4 and BeFe2O4, have been calculated by atomistic computer modeling using the Metadise program. A "combined" approach is proposed which takes into account both the structural geometry and the surface energy of the faces and thus provides better agreement between the theoretical and experimentally observed faceting of chrysoberyl and alexandrite crystals.

  13. Theoretical model study of dynamic ferromagnetic susceptibility in mono-layer graphene

    NASA Astrophysics Data System (ADS)

    Sahu, Sivabrata; Parashar, S. K. S.; Rout, G. C.

    2016-04-01

    We report here a microscopic theoretical study of dynamic ferromagnetic spin susceptibility of electrons for graphene systems, which deal with a tight-binding model Hamiltonian consisting of the hopping of electrons up to third-nearest-neighbors, impurity and substrate effects besides Coulomb interaction of electrons at A-and B- sub- lattices. The spin susceptibility involves four two-particle Green's functions, which are calculated by Zubarev's Green's function technique. The up and down electron occupancies at A and B sub-lattices are computed numerically and self-consistently. The temperature dependent susceptibility shows a pronounced peak at Curie temperature for critical Coulomb interaction Uc = 2.2t1.

  14. Microscopic theoretical model study of band gap opening in AA-stacked bi-layer graphene

    NASA Astrophysics Data System (ADS)

    Sahu, Sivabrata; Parashar, S. K. S.; Rout, G. C.

    2016-05-01

    We address here a tight-binding theoretical model calculation for AA-stacked bi-layer graphene taking into account of a biased potential between two layers to study the density of states and the band dispersion within the total Brillouin zone. We have calculated the electronic Green's function for electron operator corresponding to A and B sub lattices by Zubarev's Green's function technique from which the electronic density of states and the electron band energy dispersion are calculated. The numerically computed density of states and band energy dispersions are investigated by tuning the biased potential to exhibit the band gap by varying the different physical parameters.

  15. Information-theoretic model selection and model averaging for closed-population capture-recapture studies

    USGS Publications Warehouse

    Stanley, T.R.; Burnham, K.P.

    1998-01-01

    Specification of an appropriate model is critical to valid stalistical inference. Given the "true model" for the data is unknown, the goal of model selection is to select a plausible approximating model that balances model bias and sampling variance. Model selection based on information criteria such as AIC or its variant AICc, or criteria like CAIC, has proven useful in a variety of contexts including the analysis of open-population capture-recapture data. These criteria have not been intensively evaluated for closed-population capture-recapture models, which are integer parameter models used to estimate population size (N), and there is concern that they will not perform well. To address this concern, we evaluated AIC, AICc, and CAIC model selection for closed-population capture-recapture models by empirically assessing the quality of inference for the population size parameter N. We found that AIC-, AICc-, and CAIC-selected models had smaller relative mean squared errors than randomly selected models, but that confidence interval coverage on N was poor unless unconditional variance estimates (which incorporate model uncertainty) were used to compute confidence intervals. Overall, AIC and AICc outperformed CAIC, and are preferred to CAIC for selection among the closed-population capture-recapture models we investigated. A model averaging approach to estimation, using AIC. AICc, or CAIC to estimate weights, was also investigated and proved superior to estimation using AIC-, AICc-, or CAIC-selected models. Our results suggested that, for model averaging, AIC or AICc. should be favored over CAIC for estimating weights.

  16. Some aspects of the comparison of model and full-scale tests

    NASA Technical Reports Server (NTRS)

    Taylor, D W

    1926-01-01

    This paper was delivered before the Royal Aeronautical Society as the 1925 Wilbur Wright Memorial lecture. It treats the subject of scale effect from the standpoint of the engineer rather than the physicist, in that it shows what compromises are necessary to secure satisfactory engineering model test data and how these test data compare with full scale or with theoretical values. The paper consists essentially of three parts: (1) a brief exposition of the theory of dynamic similarity, (2) application of the theory to airplane model tests, illustrated by test data on airfoils from the National Advisory Committee for Aeronautics variable-density wind tunnel, and (3) application of the theory to propeller testing, illustrated by comparisons of model and full-scale results.

  17. Practical aspects of backward bifurcation in a mathematical model for tuberculosis.

    PubMed

    Gerberry, David J

    2016-01-01

    In this work, we examine practical aspects of backward bifurcation for a data-based model of tuberculosis that incorporates multiple features which have previously been shown to produce backward bifurcation (e.g. exogenous reinfection and imperfect vaccination) and new considerations such as the treatment of latent TB infection (LTBI) and the BCG vaccine's interference with detecting LTBI. Understanding the interplay between these multiple factors and backward bifurcation is particularly timely given that new diagnostic tests for LTBI detection could dramatically increase rates of both LTBI detection and vaccination in the coming decades. By establishing analytic thresholds for the existence of backward bifurcation, we identify those aspects of TB's complicated pathology that make backward bifurcation more or less likely to occur. We also examine the magnitude of the backward bifurcation produced by the model and its sensitivity to various model parameters. We find that backward bifurcation is unlikely to occur. While increased vaccine coverage and/or increased detection and treatment of LTBI can push the threshold for backward bifurcation into the region of biological plausibility, the resulting bifurcations may still be too small to have any noticeable epidemiological impact.

  18. Aspect Ratio of Receiver Node Geometry based Indoor WLAN Propagation Model

    NASA Astrophysics Data System (ADS)

    Naik, Udaykumar; Bapat, Vishram N.

    2016-09-01

    This paper presents validation of indoor wireless local area network (WLAN) propagation model for varying rectangular receiver node geometry. The rectangular client node configuration is a standard node arrangement in computer laboratories of academic institutes and research organizations. The model assists to install network nodes for the better signal coverage. The proposed model is backed by wide ranging real time received signal strength measurements at 2.4 GHz. The shadow fading component of signal propagation under realistic indoor environment is modelled with the dependency on varying aspect ratio of the client node geometry. The developed new model is useful in predicting indoor path loss for IEEE 802.11b/g WLAN. The new model provides better performance in comparison to well known International Telecommunication Union and free space propagation models. It is shown that the proposed model is simple and can be a useful tool for indoor WLAN node deployment planning and quick method for the best utilisation of the office space.

  19. Anorexia in human and experimental animal models: physiological aspects related to neuropeptides.

    PubMed

    Yoshimura, Mitsuhiro; Uezono, Yasuhito; Ueta, Yoichi

    2015-09-01

    Anorexia, a loss of appetite for food, can be caused by various physiological and pathophysiological conditions. In this review, firstly, clinical aspects of anorexia nervosa are summarized in brief. Secondly, hypothalamic neuropeptides responsible for feeding regulation in each hypothalamic nucleus are discussed. Finally, three different types of anorexigenic animal models; dehydration-induced anorexia, cisplatin-induced anorexia and cancer anorexia-cachexia, are introduced. In conclusion, hypothalamic neuropeptides may give us novel insight to understand and find effective therapeutics strategy essential for various kinds of anorexia.

  20. Game Theoretic Modeling of Water Resources Allocation Under Hydro-Climatic Uncertainty

    NASA Astrophysics Data System (ADS)

    Brown, C.; Lall, U.; Siegfried, T.

    2005-12-01

    Typical hydrologic and economic modeling approaches rely on assumptions of climate stationarity and economic conditions of ideal markets and rational decision-makers. In this study, we incorporate hydroclimatic variability with a game theoretic approach to simulate and evaluate common water allocation paradigms. Game Theory may be particularly appropriate for modeling water allocation decisions. First, a game theoretic approach allows economic analysis in situations where price theory doesn't apply, which is typically the case in water resources where markets are thin, players are few, and rules of exchange are highly constrained by legal or cultural traditions. Previous studies confirm that game theory is applicable to water resources decision problems, yet applications and modeling based on these principles is only rarely observed in the literature. Second, there are numerous existing theoretical and empirical studies of specific games and human behavior that may be applied in the development of predictive water allocation models. With this framework, one can evaluate alternative orderings and rules regarding the fraction of available water that one is allowed to appropriate. Specific attributes of the players involved in water resources management complicate the determination of solutions to game theory models. While an analytical approach will be useful for providing general insights, the variety of preference structures of individual players in a realistic water scenario will likely require a simulation approach. We propose a simulation approach incorporating the rationality, self-interest and equilibrium concepts of game theory with an agent-based modeling framework that allows the distinct properties of each player to be expressed and allows the performance of the system to manifest the integrative effect of these factors. Underlying this framework, we apply a realistic representation of spatio-temporal hydrologic variability and incorporate the impact of

  1. Ground Effects on the Longitudinal Characteristics of Two Models with Wings Having Low Aspect Ratio and Pointed Tips

    NASA Technical Reports Server (NTRS)

    Buell, Donald A; Tinling, Bruce E

    1957-01-01

    Wind-tunnel tests were conducted to determine the ground effects on a tailless model with a wing of aspect ratio 2 and infinite taper, and on a tailed model with a triangular wing of aspect ratio 3, with flaps. Control-surface hinge moments were measured on the tailless model. The results are compared with the predictions of the theory of Tani, et al.

  2. Toward a Theoretical Model of Decision-Making and Resistance to Change among Higher Education Online Course Designers

    ERIC Educational Resources Information Center

    Dodd, Bucky J.

    2013-01-01

    Online course design is an emerging practice in higher education, yet few theoretical models currently exist to explain or predict how the diffusion of innovations occurs in this space. This study used a descriptive, quantitative survey research design to examine theoretical relationships between decision-making style and resistance to change…

  3. Experimental observation, theoretical models, and biomechanical inference in the study of mandibular form.

    PubMed

    Daegling, D J; Hylander, W L

    2000-08-01

    Experimental studies and mathematical models are disparate approaches for inferring the stress and strain environment in mammalian jaws. Experimental designs offer accurate, although limited, characterization of biomechanical behavior, while mathematical approaches (finite element modeling in particular) offer unparalleled precision in depiction of strain magnitudes, directions, and gradients throughout the mandible. Because the empirical (experimental) and theoretical (mathematical) perspectives differ in their initial assumptions and their proximate goals, the two methods can yield divergent conclusions about how masticatory stresses are distributed in the dentary. These different sources of inference may, therefore, tangibly influence subsequent biological interpretation. In vitro observation of bone strain in primate mandibles under controlled loading conditions offers a test of finite element model predictions. Two issues which have been addressed by both finite element models and experimental approaches are: (1) the distribution of torsional shear strains in anthropoid jaws and (2) the dissipation of bite forces in the human alveolar process. Not surprisingly, the experimental data and mathematical models agree on some issues, but on others exhibit discordance. Achieving congruence between these methods is critical if the nature of the relationship of masticatory stress to mandibular form is to be intelligently assessed. A case study of functional/mechanical significance of gnathic morphology in the hominid genus Paranthropus offers insight into the potential benefit of combining theoretical and experimental approaches. Certain finite element analyses claim to have identified a biomechanical problem unrecognized in previous comparative work, which, in essence, is that the enlarged transverse dimensions of the postcanine corpus may have a less important role in resisting torsional stresses than previously thought. Experimental data have identified

  4. Experimental observation, theoretical models, and biomechanical inference in the study of mandibular form.

    PubMed

    Daegling, D J; Hylander, W L

    2000-08-01

    Experimental studies and mathematical models are disparate approaches for inferring the stress and strain environment in mammalian jaws. Experimental designs offer accurate, although limited, characterization of biomechanical behavior, while mathematical approaches (finite element modeling in particular) offer unparalleled precision in depiction of strain magnitudes, directions, and gradients throughout the mandible. Because the empirical (experimental) and theoretical (mathematical) perspectives differ in their initial assumptions and their proximate goals, the two methods can yield divergent conclusions about how masticatory stresses are distributed in the dentary. These different sources of inference may, therefore, tangibly influence subsequent biological interpretation. In vitro observation of bone strain in primate mandibles under controlled loading conditions offers a test of finite element model predictions. Two issues which have been addressed by both finite element models and experimental approaches are: (1) the distribution of torsional shear strains in anthropoid jaws and (2) the dissipation of bite forces in the human alveolar process. Not surprisingly, the experimental data and mathematical models agree on some issues, but on others exhibit discordance. Achieving congruence between these methods is critical if the nature of the relationship of masticatory stress to mandibular form is to be intelligently assessed. A case study of functional/mechanical significance of gnathic morphology in the hominid genus Paranthropus offers insight into the potential benefit of combining theoretical and experimental approaches. Certain finite element analyses claim to have identified a biomechanical problem unrecognized in previous comparative work, which, in essence, is that the enlarged transverse dimensions of the postcanine corpus may have a less important role in resisting torsional stresses than previously thought. Experimental data have identified

  5. Prefission Constriction of Golgi Tubular Carriers Driven by Local Lipid Metabolism: A Theoretical Model

    PubMed Central

    Shemesh, Tom; Luini, Alberto; Malhotra, Vivek; Burger, Koert N. J.; Kozlov, Michael M.

    2003-01-01

    Membrane transport within mammalian cells is mediated by small vesicular as well as large pleiomorphic transport carriers (TCs). A major step in the formation of TCs is the creation and subsequent narrowing of a membrane neck connecting the emerging carrier with the initial membrane. In the case of small vesicular TCs, neck formation may be directly induced by the coat proteins that cover the emerging vesicle. However, the mechanism underlying the creation and narrowing of a membrane neck in the generation of large TCs remains unknown. We present a theoretical model for neck formation based on the elastic model of membranes. Our calculations suggest a lipid-driven mechanism with a central role for diacylglycerol (DAG). The model is applied to a well-characterized in vitro system that reconstitutes TC formation from the Golgi complex, namely the pearling and fission of Golgi tubules induced by CtBP/BARS, a protein that catalyzes the conversion of lysophosphatidic acid into phosphatidic acid. In view of the importance of a PA-DAG cycle in the formation of Golgi TCs, we assume that the newly formed phosphatidic acid undergoes rapid dephosphorylation into DAG. DAG possesses a unique molecular shape characterized by an extremely large negative spontaneous curvature, and it redistributes rapidly between the membrane monolayers and along the membrane surface. Coupling between local membrane curvature and local lipid composition results, by mutual enhancement, in constrictions of the tubule into membrane necks, and a related inhomogeneous lateral partitioning of DAG. Our theoretical model predicts the exact dimensions of the constrictions observed in the pearling Golgi tubules. Moreover, the model is able to explain membrane neck formation by physiologically relevant mole fractions of DAG. PMID:14645071

  6. [Oxygen-dependent energy deficit as related to the problems of ontogenetic development disorders and human sociobiological adaptation (theoretical and applied aspects)].

    PubMed

    Ilyukhina, V A; Kataeva, G V; Korotkov, A D; Chernysheva, E M

    2015-01-01

    The review states and argues theoretical propositions on the pathogenetic role of pre- and perinatal hypoxic-ischemic brain damage in the formation of sustained oxygen-dependent energy deficit underlying in further ontogenesis the following neurobiological abnormalities: a) a decline in the level of health and compensatory-adaptive capacities of the organism, b) disorders of the psycho-speech development and adaptive behavior in children, c) early development of neuropsychic diseases, g) addition of other types of brain energy metabolism (including glucose metabolism) disorders in chronic polyetiologic diseases young and middle-aged individuals. We highlight and theoretically substantiate the integrated physiological parameters of the oxygen-dependent energy deficit types. We address the features of abnormalities in neuroreflectory and neurohumora regulatory mechanisms of the wakefulness level and its vegetative and hemodynamic provision in different types of energy deficit in children with DSMD, ADHD and school maladjustment. The use of the state-of-the-art neuroimaging techniques significantly increased the possibility of the disintegration of regulatory processes and cognitive functions in children with psycho-speech delays and in a wide range of chronic polyetiologic diseases. PMID:26027380

  7. [Oxygen-dependent energy deficit as related to the problems of ontogenetic development disorders and human sociobiological adaptation (theoretical and applied aspects)].

    PubMed

    Ilyukhina, V A; Kataeva, G V; Korotkov, A D; Chernysheva, E M

    2015-01-01

    The review states and argues theoretical propositions on the pathogenetic role of pre- and perinatal hypoxic-ischemic brain damage in the formation of sustained oxygen-dependent energy deficit underlying in further ontogenesis the following neurobiological abnormalities: a) a decline in the level of health and compensatory-adaptive capacities of the organism, b) disorders of the psycho-speech development and adaptive behavior in children, c) early development of neuropsychic diseases, g) addition of other types of brain energy metabolism (including glucose metabolism) disorders in chronic polyetiologic diseases young and middle-aged individuals. We highlight and theoretically substantiate the integrated physiological parameters of the oxygen-dependent energy deficit types. We address the features of abnormalities in neuroreflectory and neurohumora regulatory mechanisms of the wakefulness level and its vegetative and hemodynamic provision in different types of energy deficit in children with DSMD, ADHD and school maladjustment. The use of the state-of-the-art neuroimaging techniques significantly increased the possibility of the disintegration of regulatory processes and cognitive functions in children with psycho-speech delays and in a wide range of chronic polyetiologic diseases.

  8. Ultraviolet Properties of Primeval Galaxies: Theoretical Models from Stellar Population Synthesis

    NASA Astrophysics Data System (ADS)

    Buzzoni, Alberto

    2002-03-01

    The ultraviolet luminosity evolution of star-forming galaxies is explored from the theoretical point of view, especially focusing on the theory of UV energetics in simple and composite stellar populations and its relationship to the star formation rate and other main evolutionary parameters. Galaxy emission below λ<3000 Å directly correlates with actual star formation, not depending on the total mass of the system. A straightforward calibration is obtained, in this sense, from the theoretical models at 1600, 2000, and 2800 Å, and a full comparison is carried out with IUE data and other balloon-borne observations for local galaxies. The claimed role of late-type systems as prevailing contributors to the cosmic UV background is reinforced by our results; at 2000 Å, Im irregulars are found in fact nearly 4 orders of magnitude brighter than ellipticals, per unit luminous mass. The role of dust absorption in the observation of high-redshift galaxies is assessed, comparing the model output and observed spectral energy distribution of local galaxy samples. Similar to what we observe in our own galaxy, a quick evolution in the dust environment might be envisaged in primeval galaxies, with an increasing fraction of luminous matter that would escape the regions of harder and ``clumpy'' dust absorption on a timescale of some 107 yr, comparable to the lifetime of stars of 5-10 Msolar.

  9. Theoretical study of haemoperfusion: drugs obeying a one-compartment pharmacokinetics model.

    PubMed

    Guenzet, J; Bourin, M; Laurent, D; Aminou, T

    1985-05-01

    A general theory of haemoperfusion for drugs obeying the one-compartment pharmacokinetics model is proposed. The following theoretical cases are investigated: First case Adsorption and desorption are first-order reactions without biotransformation, and elimination rate is first-order. Two particular cases are examined: no desorption and alpha = beta. Second case: Adsorption and desorption rates are first-order, without biotransformation, and elimination rate is zero-order. Third case: Adsorption rate is first-order and desorption rate is zero-order, without biotransformation, and elimination is either first-order or zero-order. Fourth case Adsorption rate is zero-order and desorption rate is first-order, without biotransformation, and elimination is either first-order or zero-order. Fifth case: Adsorption and desorption rates are first-order, with biotransformation. In all these pharmacokinetics models for haemoperfusion, theoretical computations lead to the values of adsorbed amount and plasma level, in relation to time. Clearances are also computed. In most cases, haemoperfusion must be performed quickly because of the desorption phenomenon. Parameters modulating the adsorption process are: surface area, blood flow, drug concentration in blood, adsorbent nature and adsorbent quantity.

  10. Theoretical modeling for radiofrequency ablation: state-of-the-art and challenges for the future

    PubMed Central

    Berjano, Enrique J

    2006-01-01

    Radiofrequency ablation is an interventional technique that in recent years has come to be employed in very different medical fields, such as the elimination of cardiac arrhythmias or the destruction of tumors in different locations. In order to investigate and develop new techniques, and also to improve those currently employed, theoretical models and computer simulations are a powerful tool since they provide vital information on the electrical and thermal behavior of ablation rapidly and at low cost. In the future they could even help to plan individual treatment for each patient. This review analyzes the state-of-the-art in theoretical modeling as applied to the study of radiofrequency ablation techniques. Firstly, it describes the most important issues involved in this methodology, including the experimental validation. Secondly, it points out the present limitations, especially those related to the lack of an accurate characterization of the biological tissues. After analyzing the current and future benefits of this technique it finally suggests future lines and trends in the research of this area. PMID:16620380

  11. A theoretical analysis model of realizing wavelength converter based on saturable absorber

    NASA Astrophysics Data System (ADS)

    Zhao, Tonggang; Ren, Jianhua; Zhao, Ronghua; Wang, Lili; Rao, Lan; Lin, Jintong

    2005-02-01

    As the key apparatus, the All optical Wavelength Converter (AOWC) will play an important role in future optical communication and optical signal processing system. In this paper, switching characteristics of wavelength converter based on saturable absorber in semiconductor lasers will be researched. This kind of conversion mechanism possesses some advantage, such as simple structure, low cost, high stability and so on. This paper is organized as follows: Firstly, utilizing rate equations, a new theoretical model on wavelength conversion based on saturable absorber is put forward. Nextly, the frequency modulation response of wavelength conversion will be discussed under the small-signal analysis based on the theoretical model. Lastly, Numerical value solution results will be given out when external signal light injects in saturable absorber region of semiconductor lasers. The characteristics of wavelength conversion are simulated in different optical parameters including the injection current, the input signal optical power and bit rate. Those results are useful to realization and the optimal design of the wavelength converter based on saturable absorber.

  12. Transport of fluorobenzoate tracers in a vegetated hydrologic control volume: 2. Theoretical inferences and modeling

    NASA Astrophysics Data System (ADS)

    Queloz, Pierre; Carraro, Luca; Benettin, Paolo; Botter, Gianluca; Rinaldo, Andrea; Bertuzzo, Enrico

    2015-04-01

    A theoretical analysis of transport in a controlled hydrologic volume, inclusive of two willow trees and forced by erratic water inputs, is carried out contrasting the experimental data described in a companion paper. The data refer to the hydrologic transport in a large lysimeter of different fluorobenzoic acids seen as tracers. Export of solute is modeled through a recently developed framework which accounts for nonstationary travel time distributions where we parameterize how output fluxes (namely, discharge and evapotranspiration) sample the available water ages in storage. The relevance of this work lies in the study of hydrologic drivers of the nonstationary character of residence and travel time distributions, whose definition and computation shape this theoretical transport study. Our results show that a large fraction of the different behaviors exhibited by the tracers may be charged to the variability of the hydrologic forcings experienced after the injection. Moreover, the results highlight the crucial, and often overlooked, role of evapotranspiration and plant uptake in determining the transport of water and solutes. This application also suggests that the ways evapotranspiration selects water with different ages in storage can be inferred through model calibration contrasting only tracer concentrations in the discharge. A view on upscaled transport volumes like hillslopes or catchments is maintained throughout the paper.

  13. Theoretical modeling of single-molecule fluorescence with complicated photon statistics

    NASA Astrophysics Data System (ADS)

    Osad'ko, I. S.; Naumov, A. V.; Eremchev, I. Yu.; Vainer, Yu. G.; Kador, L.

    2012-11-01

    The use of techniques for analyzing the fluorescence photon statistics of a single molecule for modeling single-emitter dynamics is demonstrated. The photon distribution function measured in the fluorescence of a single tetra-tert-butylterrylene molecule embedded in polyisobutylene is used to devise a theoretical model for single emitters with complicated fluorescence photon statistics. Our analysis was carried out with the theoretical approach developed by Osad'ko and co-workers [J. Chem. Phys.JCPSA60021-960610.1063/1.3055287 130, 064904 (2009); J. Phys. Chem. C10.1021/jp1014093 114, 10349 (2010)] for photon distribution functions. Although the experimental data were obtained at cryogenic temperature where narrow zero-phonon lines are present, the method is based on a purely statistical approach and does not require spectrally resolved data. It can also be applied to the analysis of broad fluorescence bands as measured at room temperature. Therefore, the method has prospects for revealing the quantum dynamics of single biological objects and other single quantum emitters in ambient conditions.

  14. A model-based analysis of a display for helicopter landing approach. [control theoretical model of human pilot

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Wheat, L. W.

    1975-01-01

    A control theoretic model of the human pilot was used to analyze a baseline electronic cockpit display in a helicopter landing approach task. The head down display was created on a stroke written cathode ray tube and the vehicle was a UH-1H helicopter. The landing approach task consisted of maintaining prescribed groundspeed and glideslope in the presence of random vertical and horizontal turbulence. The pilot model was also used to generate and evaluate display quickening laws designed to improve pilot vehicle performance. A simple fixed base simulation provided comparative tracking data.

  15. FUNDAMENTAL ASPECTS OF EPISODIC ACCRETION CHEMISTRY EXPLORED WITH SINGLE-POINT MODELS

    SciTech Connect

    Visser, Ruud; Bergin, Edwin A.

    2012-07-20

    We explore a set of single-point chemical models to study the fundamental chemical aspects of episodic accretion in low-mass embedded protostars. Our goal is twofold: (1) to understand how the repeated heating and cooling of the envelope affects the abundances of CO and related species; and (2) to identify chemical tracers that can be used as a novel probe of the timescales and other physical aspects of episodic accretion. We develop a set of single-point models that serve as a general prescription for how the chemical composition of a protostellar envelope is altered by episodic accretion. The main effect of each accretion burst is to drive CO ice off the grains in part of the envelope. The duration of the subsequent quiescent stage (before the next burst hits) is similar to or shorter than the freeze-out timescale of CO, allowing the chemical effects of a burst to linger long after the burst has ended. We predict that the resulting excess of gas-phase CO can be observed with single-dish or interferometer facilities as evidence of an accretion burst in the past 10{sup 3}-10{sup 4} yr.

  16. Theoretical uncertainties due to AGN subgrid models in predictions of galaxy cluster observable properties

    NASA Astrophysics Data System (ADS)

    Yang, H.-Y. Karen; Sutter, P. M.; Ricker, Paul M.

    2012-12-01

    Cosmological constraints derived from galaxy clusters rely on accurate predictions of cluster observable properties, in which feedback from active galactic nuclei (AGN) is a critical component. In order to model the physical effects due to supermassive black holes (SMBH) on cosmological scales, subgrid modelling is required, and a variety of implementations have been developed in the literature. However, theoretical uncertainties due to model and parameter variations are not yet well understood, limiting the predictive power of simulations including AGN feedback. By performing a detailed parameter-sensitivity study in a single cluster using several commonly adopted AGN accretion and feedback models with FLASH, we quantify the model uncertainties in predictions of cluster integrated properties. We find that quantities that are more sensitive to gas density have larger uncertainties (˜20 per cent for Mgas and a factor of ˜2 for LX at R500), whereas TX, YSZ and YX are more robust (˜10-20 per cent at R500). To make predictions beyond this level of accuracy would require more constraints on the most relevant parameters: the accretion model, mechanical heating efficiency and size of feedback region. By studying the impact of AGN feedback on the scaling relations, we find that an anti-correlation exists between Mgas and TX, which is another reason why YSZ and YX are excellent mass proxies. This anti-correlation also implies that AGN feedback is likely to be an important source of intrinsic scatter in the Mgas-TX and LX-TX relations.

  17. Accountability and pediatric physician-researchers: are theoretical models compatible with Canadian lived experience?

    PubMed Central

    2011-01-01

    Physician-researchers are bound by professional obligations stemming from both the role of the physician and the role of the researcher. Currently, the dominant models for understanding the relationship between physician-researchers' clinical duties and research duties fit into three categories: the similarity position, the difference position and the middle ground. The law may be said to offer a fourth "model" that is independent from these three categories. These models frame the expectations placed upon physician-researchers by colleagues, regulators, patients and research participants. This paper examines the extent to which the data from semi-structured interviews with 30 physician-researchers at three major pediatric hospitals in Canada reflect these traditional models. It seeks to determine the extent to which existing models align with the described lived experience of the pediatric physician-researchers interviewed. Ultimately, we find that although some physician-researchers make references to something like the weak version of the similarity position, the pediatric-researchers interviewed in this study did not describe their dual roles in a way that tightly mirrors any of the existing theoretical frameworks. We thus conclude that either physician-researchers are in need of better training regarding the nature of the accountability relationships that flow from their dual roles or that models setting out these roles and relationships must be altered to better reflect what we can reasonably expect of physician-researchers in a real-world environment. PMID:21974866

  18. Accountability and pediatric physician-researchers: are theoretical models compatible with Canadian lived experience?

    PubMed

    Czoli, Christine; Da Silva, Michael; Shaul, Randi Zlotnik; d'Agincourt-Canning, Lori; Simpson, Christy; Boydell, Katherine; Rashkovan, Natalie; Vanin, Sharon

    2011-01-01

    Physician-researchers are bound by professional obligations stemming from both the role of the physician and the role of the researcher. Currently, the dominant models for understanding the relationship between physician-researchers' clinical duties and research duties fit into three categories: the similarity position, the difference position and the middle ground. The law may be said to offer a fourth "model" that is independent from these three categories.These models frame the expectations placed upon physician-researchers by colleagues, regulators, patients and research participants. This paper examines the extent to which the data from semi-structured interviews with 30 physician-researchers at three major pediatric hospitals in Canada reflect these traditional models. It seeks to determine the extent to which existing models align with the described lived experience of the pediatric physician-researchers interviewed.Ultimately, we find that although some physician-researchers make references to something like the weak version of the similarity position, the pediatric-researchers interviewed in this study did not describe their dual roles in a way that tightly mirrors any of the existing theoretical frameworks. We thus conclude that either physician-researchers are in need of better training regarding the nature of the accountability relationships that flow from their dual roles or that models setting out these roles and relationships must be altered to better reflect what we can reasonably expect of physician-researchers in a real-world environment. PMID:21974866

  19. Implications of resonant inelastic x-ray scattering data for theoretical models of cuprates

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Sushkov, Oleg P.

    2013-11-01

    There are two commonly discussed points of view in theoretical description of cuprate superconductors: (i) Cuprates can be described by the modified t-J model; (ii) overdoped cuprates are close to the regime of normal Fermi liquid (NFL). We argue that recent resonant inelastic x-ray scattering data challenge both points. While the modified t-J model describes well the strongly underdoped regime, it fails to describe high energy magnetic excitations when approaching optimal doping. This probably indicates failure of the Zhang-Rice singlet picture. In the overdoped regime the momentum-integrated spin structure factor S(ω) has the same intensity and energy distribution as that in an undoped parent compound. This implies that the entire spin spectral sum rule is saturated at ω≈2J, while in an NFL the spectral weight should saturate only at the total bandwidth which is much larger than 2J.

  20. Toward a unifying model of identification with groups: integrating theoretical perspectives.

    PubMed

    Roccas, Sonia; Sagiv, Lilach; Schwartz, Shalom; Halevy, Nir; Eidelson, Roy

    2008-08-01

    Building on the contributions of diverse theoretical approaches, the authors present a multidimensional model of group identification. Integrating conceptions from the social identity perspective with those from research on individualism-collectivism, nationalism- patriotism, and identification with organizations, we propose four conceptually distinct modes of identification: importance (how much I view the group as part of who I am), commitment (how much I want to benefit the group), superiority (how much I view my group as superior to other groups), and deference (how much I honor, revere, and submit to the group's norms, symbols, and leaders). We present an instrument for assessing the four modes of identification and review initial empirical findings that validate the proposed model and show its utility in understanding antecedents and consequences of identification. PMID:18641386

  1. Angular anisotropy in valence photoionization of Na clusters: theoretical investigation using jellium model

    NASA Astrophysics Data System (ADS)

    Jänkälä, Kari

    2013-03-01

    Calculation of the behaviour of photoelectron angular anisotropy in valence ionization of initially neutral NaX (X = 34-58) clusters is provided. The calculations are carried out for 1p, 1d and 1g jellium orbitals as a function of photon energy. The adapted theoretical framework is spherical jellium model using Woods-Saxon potential, which is modified to account for the long-range Coulomb tail in the final state. We discuss on the observed dramatic variations of the angular anisotropy parameter β as a function incident photon energy. It is shown that the behaviour is connected to the oscillation of the valence photoionization cross sections, that is a specific interference property of such metallic clusters whose valence structure can be described using the jellium model. ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters, edited by Kristiaan Temst, Margriet J. Van Bael, Ewald Janssens, H.-G. Boyen and Françoise Remacle.

  2. Food addiction spectrum: a theoretical model from normality to eating and overeating disorders.

    PubMed

    Piccinni, Armando; Marazziti, Donatella; Vanelli, Federica; Franceschini, Caterina; Baroni, Stefano; Costanzo, Davide; Cremone, Ivan Mirko; Veltri, Antonello; Dell'Osso, Liliana

    2015-01-01

    The authors comment on the recently proposed food addiction spectrum that represents a theoretical model to understand the continuum between several conditions ranging from normality to pathological states, including eating disorders and obesity, as well as why some individuals show a peculiar attachment to food that can become an addiction. Further, they review the possible neurobiological underpinnings of these conditions that include dopaminergic neurotransmission and circuits that have long been implicated in drug addiction. The aim of this article is also that at stimulating a debate regarding the possible model of a food (or eating) addiction spectrum that may be helpful towards the search of novel therapeutic approaches to different pathological states related to disturbed feeding or overeating.

  3. From moral theory to penal attitudes and back: a theoretically integrated modeling approach.

    PubMed

    de Keijser, Jan W; van der Leeden, Rien; Jackson, Janet L

    2002-01-01

    From a moral standpoint, we would expect the practice of punishment to reflect a solid and commonly shared legitimizing framework. Several moral legal theories explicitly aim to provide such frameworks. Based on the theories of Retributivism, Utilitarianism, and Restorative Justice, this article first sets out to develop a theoretically integrated model of penal attitudes and then explores the extent to which Dutch judges' attitudes to punishment fit the model. Results indicate that penal attitudes can be measured in a meaningful way that is consistent with an integrated approach to moral theory. The general structure of penal attitudes among Dutch judges suggests a streamlined and pragmatic approach to legal punishment that is identifiably founded on the separate concepts central to moral theories of punishment. While Restorative Justice is frequently presented as an alternative paradigm, results show it to be smoothly incorporated within the streamlined approach.

  4. The self-schema model: a theoretical approach to the self-concept in eating disorders.

    PubMed

    Stein, K F

    1996-04-01

    Over the last several decades, the self-concept has been implicated as a important determinant of eating disorders (ED). Although considerable progress has been made, questions remain unanswered about the properties of self-concept that distinguish women with an ED from other populations, and mechanisms that link the self-concept to the disordered behaviors. Markus's self-schema model is presented as a theoretical approach to explore the role of the self-concept in ED. To show how the schema model can be integrated with existing work on the self-concept in ED, a framework is proposed that addresses the number, content, and accessibility of the self-schemas. More specifically, it is posited that a limited collection of positive self-schemas available in memory, in combination with a chronically and inflexibly accessible body-weight self-schema, lead to the disordered behaviors associated with anorexia nervosa and bulimia nervosa.

  5. Toward a unifying model of identification with groups: integrating theoretical perspectives.

    PubMed

    Roccas, Sonia; Sagiv, Lilach; Schwartz, Shalom; Halevy, Nir; Eidelson, Roy

    2008-08-01

    Building on the contributions of diverse theoretical approaches, the authors present a multidimensional model of group identification. Integrating conceptions from the social identity perspective with those from research on individualism-collectivism, nationalism- patriotism, and identification with organizations, we propose four conceptually distinct modes of identification: importance (how much I view the group as part of who I am), commitment (how much I want to benefit the group), superiority (how much I view my group as superior to other groups), and deference (how much I honor, revere, and submit to the group's norms, symbols, and leaders). We present an instrument for assessing the four modes of identification and review initial empirical findings that validate the proposed model and show its utility in understanding antecedents and consequences of identification.

  6. Modeling and optimization aspects of radiation induced grafting of 4-vinylpyridene onto partially fluorinated films

    NASA Astrophysics Data System (ADS)

    Nasef, Mohamed Mahmoud; Ahmad Ali, Amgad; Saidi, Hamdani; Ahmad, Arshad

    2014-01-01

    Modeling and optimization aspects of radiation induced grafting (RIG) of 4-vinylpyridine (4-VP) onto partially fluorinated polymers such as poly(ethylene-co-tetrafluoroethene) (ETFE) and poly(vinylidene fluoride) (PVDF) films were comparatively investigated using response surface method (RSM). The effects of independent parameters: absorbed dose, monomer concentration, grafting time and reaction temperature on the response, grafting yield (GY) were correlated through two quadratic models. The results of this work confirm that RSM is a reliable tool not only for optimization of the reaction parameters and prediction of GY in RIG processes, but also for the reduction of the number of the experiments, monomer consumption and absorbed dose leading to an improvement of the overall reaction cost.

  7. Some aspects of the chiral Potts model and the Ising model

    NASA Astrophysics Data System (ADS)

    Jin, Bai-Qi

    Scope and method of study. In this thesis, we study two-dimensional statistical physics models. In the first three chapters, the 3-state chiral Potts model is used to study the question of the existence of a Lifshitz point and its related phase transitions. After an introduction in Chapter 1, the mean-field transfer matrix method with effective field determined by Bogoliubov's variational inequality is used to explore the phase diagram of this model in Chapter 2. In Chapter 3, we study this problem by the mean-field transfer matrix method with Weiss- and Bethe-type mean-field approximations respectively, and analyze the nature of the phase transition with the coherent anomaly method. Chapters 4 and 5 are contributions to the study of the Z-invariant Icing model and the quasi periodic Icing model. In Chapter 6, functional relations are used for the calculation of the exact free energy of the integrable chiral Potts model. Findings and conclusions. Our numerical studies indicate that possibly no Lifshitz point exists at finite chirality in the 3-state chiral Potts model. This result is in contrast with many other numerical studies. Furthermore, the coherent anomaly behaviors are examined in these mean-field transfer matrix approximations. Although the coherent anomaly method does give some interesting indications, we find that either much larger systems or some exact information are necessary for us to make a definite conclusion about the nature of the phase transitions in this model. In Chapter 4, the scaling form of the correlation function in the inhomogeneous Z-invariant Icing model is presented and it is applied to the study of quasi-periodic Icing models in Chapter 5. The results provide evidence that the ferromagnetic quasi-periodic Icing model with different strengths of interactions is not much different from the regular Icing model but significantly different---in its wavevector-dependent susceptibility pattern---from the case with both ferro- and

  8. Comparison of statistical and theoretical habitat models for conservation planning: the benefit of ensemble prediction

    USGS Publications Warehouse

    Jones-Farrand, D. Todd; Fearer, Todd M.; Thogmartin, Wayne E.; Thompson, Frank R.; Nelson, Mark D.; Tirpak, John M.

    2011-01-01

    Selection of a modeling approach is an important step in the conservation planning process, but little guidance is available. We compared two statistical and three theoretical habitat modeling approaches representing those currently being used for avian conservation planning at landscape and regional scales: hierarchical spatial count (HSC), classification and regression tree (CRT), habitat suitability index (HSI), forest structure database (FS), and habitat association database (HA). We focused our comparison on models for five priority forest-breeding species in the Central Hardwoods Bird Conservation Region: Acadian Flycatcher, Cerulean Warbler, Prairie Warbler, Red-headed Woodpecker, and Worm-eating Warbler. Lacking complete knowledge on the distribution and abundance of each species with which we could illuminate differences between approaches and provide strong grounds for recommending one approach over another, we used two approaches to compare models: rank correlations among model outputs and comparison of spatial correspondence. In general, rank correlations were significantly positive among models for each species, indicating general agreement among the models. Worm-eating Warblers had the highest pairwise correlations, all of which were significant (P , 0.05). Red-headed Woodpeckers had the lowest agreement among models, suggesting greater uncertainty in the relative conservation value of areas within the region. We assessed model uncertainty by mapping the spatial congruence in priorities (i.e., top ranks) resulting from each model for each species and calculating the coefficient of variation across model ranks for each location. This allowed identification of areas more likely to be good targets of conservation effort for a species, those areas that were least likely, and those in between where uncertainty is higher and thus conservation action incorporates more risk. Based on our results, models developed independently for the same purpose

  9. Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models.

    PubMed

    Rao, Nageswara S V; Poole, Stephen W; Ma, Chris Y T; He, Fei; Zhuang, Jun; Yau, David K Y

    2016-04-01

    The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities, expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical subinfrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein their components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures, are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. The analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures.

  10. Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models.

    PubMed

    Rao, Nageswara S V; Poole, Stephen W; Ma, Chris Y T; He, Fei; Zhuang, Jun; Yau, David K Y

    2016-04-01

    The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities, expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical subinfrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein their components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures, are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. The analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures. PMID:25847370

  11. Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models

    DOE PAGES

    Rao, Nageswara S. V.; Poole, Stephen W.; Ma, Chris Y. T.; He, Fei; Zhuang, Jun; Yau, David K. Y.

    2015-04-06

    The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical sub-infrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein theirmore » components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. In conclusion, the analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures.« less

  12. Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models

    SciTech Connect

    Rao, Nageswara S. V.; Poole, Stephen W.; Ma, Chris Y. T.; He, Fei; Zhuang, Jun; Yau, David K. Y.

    2015-04-06

    The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical sub-infrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein their components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. In conclusion, the analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures.

  13. Theoretical model for coupled radial and translational motion of two bubbles at arbitrary separation distances.

    PubMed

    Doinikov, Alexander A; Bouakaz, Ayache

    2015-10-01

    A theoretical model is developed that describes nonlinear spherical pulsations and translational motions of two interacting bubbles at arbitrary separation distances between the bubbles. The derivation of the model is based on the multipole expansion of the bubble velocity potentials and the use of the Lagrangian formalism. The model consists of four coupled ordinary differential equations. Two of them are modified Rayleigh-Plesset equations for the radial oscillations of the bubbles and the other two describe the translational displacement of the bubble centers. The equations are not subject to the assumption that the distance between the bubbles is large compared to the bubble radii and hence make it possible to simulate the bubble dynamics starting from large separation distances up to contact between the bubbles providing that the deviation of the bubble shape from sphericity is negligible. Numerical simulations are carried out to demonstrate the capabilities of the developed model. It is shown that the correct modeling of the translational dynamics of the bubbles at small separation distances requires terms accurate up to ninth order in the inverse separation distance. Physical mechanisms are analyzed that lead to the change of the direction of the relative translational motion of the bubbles in finite-amplitude acoustic fields.

  14. MIP models for connected facility location: A theoretical and computational study☆

    PubMed Central

    Gollowitzer, Stefan; Ljubić, Ivana

    2011-01-01

    This article comprises the first theoretical and computational study on mixed integer programming (MIP) models for the connected facility location problem (ConFL). ConFL combines facility location and Steiner trees: given a set of customers, a set of potential facility locations and some inter-connection nodes, ConFL searches for the minimum-cost way of assigning each customer to exactly one open facility, and connecting the open facilities via a Steiner tree. The costs needed for building the Steiner tree, facility opening costs and the assignment costs need to be minimized. We model ConFL using seven compact and three mixed integer programming formulations of exponential size. We also show how to transform ConFL into the Steiner arborescence problem. A full hierarchy between the models is provided. For two exponential size models we develop a branch-and-cut algorithm. An extensive computational study is based on two benchmark sets of randomly generated instances with up to 1300 nodes and 115,000 edges. We empirically compare the presented models with respect to the quality of obtained bounds and the corresponding running time. We report optimal values for all but 16 instances for which the obtained gaps are below 0.6%. PMID:25009366

  15. Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows

    NASA Astrophysics Data System (ADS)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-06-01

    In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.

  16. N=2 Landau-Ginzburg VS. Calabi-Yau σ-MODELS:. Non-Perturbative Aspects

    NASA Astrophysics Data System (ADS)

    Cecotti, S.

    We discuss some nonperturbative aspects of the correspondence between N=2 Landau-Ginzburg orbifolds and Calabi-Yau σ-models. We suggest that the correct framework is Deligne’s theory of mixed Hodge structures (closely related to catastrophe theory). We derive a general topological formula for the chiral ring OPE coefficients of any Landau-Ginzburg model, including the absolute normalization. This follows from the identification of spectral flow with Grothendieck’s local duality. Wherever the LG model has a CY interpretation, its OPE coefficients are equal to those of the σ-model as given by intersection theory, including normalization. We discuss at length the tricky case of a number of LG fields greater than c/3+2, presenting explicit examples. In passing, we get many results about the geometry of moduli spaces for such conformal theories. We explain the beautiful algebraic geometry connected with a remarkable model pointed out by Vafa, and its relations with moduli space geometry.

  17. Bayesian Fundamentalism or Enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition.

    PubMed

    Jones, Matt; Love, Bradley C

    2011-08-01

    The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology - namely, Behaviorism and evolutionary psychology - that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls

  18. Theoretical model of internally cooled interstitial ultrasound applicators for thermal therapy

    NASA Astrophysics Data System (ADS)

    Tyréus, Per Daniel; Diederich, Chris J.

    2002-04-01

    Interstitial ultrasound applicators for high-temperature thermal therapy are currently being developed for treating cancerous and benign disease. Internally cooled, direct-coupled (ICDC) applicators, composed of a segmented array of cylindrical ultrasound transducers, have demonstrated capabilities of producing controllable and conformal heating distributions along the applicator length and angular orientation. In this study, 2D transient acoustic and biothermal models of ICDC applicators were developed using a mixed implicit and explicit finite difference solution with variable node spacing in cylindrical coordinates for enhanced speed, stability and accuracy. The model incorporates dynamic behaviour of acoustic parameters and blood perfusion as a function of temperature and thermal dose. Acoustic intensity distributions were modelled as a composite of measured and theoretical intensity distributions. The shape and time evolution of temperature contours and thermal lesions for 90°, 200° and 360° angularly directional applicators and multi-transducer applicators were modelled for heating durations between 1 and 5 min. Model parameters were selected to match previously reported ex vivo and in vivo studies of 2.2 mm diameter ICDC devices in thigh muscle and liver (15-30 W cm-2 applied power density, 0.5-5 min treatment times, 2.8-3.6 cm diameter thermal lesions). The temperatures and lethal thermal dose (600 EM43 °C) contours calculated using the models were in excellent agreement with temperatures and thermal lesion dimensions (visible coagulation) determined experimentally. The differences between maximum radial depths of coagulation calculated using the r-z and r-θ models were small, less than ~2 mm for 10-15 mm lesions. There was a strong correlation between the calculated 50 °C contour and the radial, angular and axial lesion dimensions obtained for 3-5 min heating protocols. The models developed in this study have significant application in design studies

  19. Structure of trailing vortices: Comparison between particle image velocimetry measurements and theoretical models

    NASA Astrophysics Data System (ADS)

    del Pino, C.; Parras, L.; Felli, M.; Fernandez-Feria, R.

    2011-01-01

    The velocity field of the trailing vortex behind a wing at different angles of attack has been measured through the stereo particle image velocimetry technique in a water tunnel for Reynolds numbers between 20 000 and 40 000, and for several distances to the wing tip. After filtering out the vortex meandering, the radial profiles of the axial and the azimuthal velocity components and of the radial profiles of the vorticity were compared to the theoretical models for trailing vortices by [G. K. Batchelor, J. Fluid Mech. 20, 645 (1964)] and by [D. W. Moore and P. G. Saffman, Proc. R. Soc. London, Ser. A 333, 491 (1973)], whose main features are conveniently summarized. We take into account the downstream evolution of these profiles from just a fraction of the wing chord to more than ten chords. The radial profiles of the vorticity and the azimuthal velocity are shown to fit quite well to Moore and Saffman's trailing vortex model, while Batchelor's model does not fit so well, especially in the tails of the profiles. At the downstream distances considered, the radial profiles of the axial velocity do not adjust so well to Moore and Saffman's model as the azimuthal velocity profiles do, but the disagreement with Batchelor's model is quite manifested, especially at the axis. Thus, the details of the flow structure are in better agreement with the predictions of Moore and Saffman's model. The downstream evolution of several key features of the measured velocity profiles is also in agreement with the predictions of Moore and Saffman's model, within the dispersion of the experimental data, but up to the largest axial distance considered in this work we cannot decide if they follow the asymptotic behavior predicted by this model.

  20. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models

    SciTech Connect

    Kempton, Eliza M.-R.; Perna, Rosalba; Heng, Kevin

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup –1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption