Sample records for model vibration tests

  1. Summary of the modeling and test correlations of a NASTRAN finite element vibrations model for the AH-1G helicopter, task 1

    NASA Technical Reports Server (NTRS)

    Cronkhite, J. D.; Berry, V. L.; Dompka, R. V.

    1987-01-01

    The AH-1G NASTRAN finite element model (FEM) is described and the correlations with measured data that were conducted to verify the model are summarized. Comparisons of the AH-1G NASTRAN FEM calculations with measured data include the following: (1) fuselage and tailboom static load deflection (stiffness) testing, (2) airframe ground vibration testing (0-30 H<), (3) airframe flight vibration testing (main rotor, 2,4, and 6/rev), and (4) tailboom effective skin static testing. A description of the modeling rationale and techniques used to develop the NASTRAN FEM is presented in conjunction with all previous correlation work. In general, the correlations show good agreement between analysis and test in stiffness and vibration response through 15 to 20 Hz. For higher frequencies (equal to or greater than 4/rev (21.6 Hz)), the vibration responses generally did not agree well. Also, the lateral (2/rev (10.8 Hz)) flight vibration responses were much lower in the FEM than test, indicating that there is a significant excitation source other than at the main rotor hub that is affecting the lateral vibrations, such as downwash impingement on the vertical tail.

  2. National Transonic Facility model and model support vibration problems

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Popernack, Thomas G., Jr.; Gloss, Blair B.

    1990-01-01

    Vibrations of models and model support system were encountered during testing in the National Transonic Facility. Model support system yaw plane vibrations have resulted in model strain gage balance design load limits being reached. These high levels of vibrations resulted in limited aerodynamic testing for several wind tunnel models. The yaw vibration problem was the subject of an intensive experimental and analytical investigation which identified the primary source of the yaw excitation and resulted in attenuation of the yaw oscillations to acceptable levels. This paper presents the principal results of analyses and experimental investigation of the yaw plane vibration problems. Also, an overview of plans for development and installation of a permanent model system dynamic and aeroelastic response measurement and monitoring system for the National Transonic Facility is presented.

  3. Developing Uncertainty Models for Robust Flutter Analysis Using Ground Vibration Test Data

    NASA Technical Reports Server (NTRS)

    Potter, Starr; Lind, Rick; Kehoe, Michael W. (Technical Monitor)

    2001-01-01

    A ground vibration test can be used to obtain information about structural dynamics that is important for flutter analysis. Traditionally, this information#such as natural frequencies of modes#is used to update analytical models used to predict flutter speeds. The ground vibration test can also be used to obtain uncertainty models, such as natural frequencies and their associated variations, that can update analytical models for the purpose of predicting robust flutter speeds. Analyzing test data using the -norm, rather than the traditional 2-norm, is shown to lead to a minimum-size uncertainty description and, consequently, a least-conservative robust flutter speed. This approach is demonstrated using ground vibration test data for the Aerostructures Test Wing. Different norms are used to formulate uncertainty models and their associated robust flutter speeds to evaluate which norm is least conservative.

  4. Neural Network Modeling of UH-60A Pilot Vibration

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi

    2003-01-01

    Full-scale flight-test pilot floor vibration is modeled using neural networks and full-scale wind tunnel test data for low speed level flight conditions. Neural network connections between the wind tunnel test data and the tlxee flight test pilot vibration components (vertical, lateral, and longitudinal) are studied. Two full-scale UH-60A Black Hawk databases are used. The first database is the NASMArmy UH-60A Airloads Program flight test database. The second database is the UH-60A rotor-only wind tunnel database that was acquired in the NASA Ames SO- by 120- Foot Wind Tunnel with the Large Rotor Test Apparatus (LRTA). Using neural networks, the flight-test pilot vibration is modeled using the wind tunnel rotating system hub accelerations, and separately, using the hub loads. The results show that the wind tunnel rotating system hub accelerations and the operating parameters can represent the flight test pilot vibration. The six components of the wind tunnel N/rev balance-system hub loads and the operating parameters can also represent the flight test pilot vibration. The present neural network connections can significandy increase the value of wind tunnel testing.

  5. Ground vibration test results for Drones for Aerodynamic and Structural Testing (DAST)/Aeroelastic Research Wing (ARW-1R) aircraft

    NASA Technical Reports Server (NTRS)

    Cox, T. H.; Gilyard, G. B.

    1986-01-01

    The drones for aerodynamic and structural testing (DAST) project was designed to control flutter actively at high subsonic speeds. Accurate knowledge of the structural model was critical for the successful design of the control system. A ground vibration test was conducted on the DAST vehicle to determine the structural model characteristics. This report presents and discusses the vibration and test equipment, the test setup and procedures, and the antisymmetric and symmetric mode shape results. The modal characteristics were subsequently used to update the structural model employed in the control law design process.

  6. Modal simulation of gearbox vibration with experimental correlation

    NASA Technical Reports Server (NTRS)

    Choy, Fred K.; Ruan, Yeefeng F.; Zakrajsek, James J.; Oswald, Fred B.

    1992-01-01

    A newly developed global dynamic model was used to simulate the dynamics of a gear noise rig at NASA Lewis Research Center. Experimental results from the test rig were used to verify the analytical model. In this global dynamic model, the number of degrees of freedom of the system are reduced by transforming the system equations of motion into modal coordinates. The vibration of the individual gear-shaft system are coupled through the gear mesh forces. A three-dimensional, axial-lateral coupled, bearing model was used to couple the casing structural vibration to the gear-rotor dynamics. The coupled system of modal equations is solved to predict the resulting vibration at several locations on the test rig. Experimental vibration data was compared to the predictions of the global dynamic model. There is excellent agreement between the vibration results from analysis and experiment.

  7. Vibrational response analysis of tires using a three-dimensional flexible ring-based model

    NASA Astrophysics Data System (ADS)

    Matsubara, Masami; Tajiri, Daiki; Ise, Tomohiko; Kawamura, Shozo

    2017-11-01

    Tire vibration characteristics influence noise, vibration, and harshness. Hence, there have been many investigations of the dynamic responses of tires. In this paper, we present new formulations for the prediction of tire tread vibrations below 150 Hz using a three-dimensional flexible ring-based model. The ring represents the tread including the belt, and the springs represent the tire sidewall stiffness. The equations of motion for lateral, longitudinal, and radial vibration on the tread are derived based on the assumption of inextensional deformation. Many of the associated numerical parameters are identified from experimental tests. Unlike most studies of flexible ring models, which mainly discussed radial and circumferential vibration, this study presents steady response functions concerning not only radial and circumferential but also lateral vibration using the three-dimensional flexible ring-based model. The results of impact tests described confirm the theoretical findings. The results show reasonable agreement with the predictions.

  8. Performance Characterization and Vibration Testing of 30-cm Carbon-Carbon Ion Optics

    NASA Technical Reports Server (NTRS)

    Steven Snyder, John; Brophy, John R.

    2004-01-01

    Carbon-based ion optics have the potential to significantly increase the operable life and power ranges of ion thrusters because of reduced erosion rates compared to molybdenum optics. The development of 15-cm and larger diameter grids has encountered many problems, however, not the least of which is the ability to pass vibration testing. JPL has recently developed a new generation of 30-cm carbon-carbon ion optics in order to address these problems and demonstrate the viability of the technology. Perveance, electron backstreaming, and screen grid transparency data are presented for two sets of optics. Vibration testing was successfully performed on two different sets of ion optics with no damage and the results of those tests are compared to models of grid vibrational behavior. It will be shown that the vibration model is a conservative predictor of grid response and can accurately describe test results. There was no change in grid alignment as a result of vibration testing and a slight improvement, if any change at all, in optics performance.

  9. Incorporating Vibration Test Results for the Advanced Stirling Convertor into the System Dynamic Model

    NASA Technical Reports Server (NTRS)

    Meer, David W.; Lewandowski, Edward J.

    2010-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. As part of the extended operation testing of this power system, the Advanced Stirling Convertors (ASC) at NASA GRC undergo a vibration test sequence intended to simulate the vibration history that an ASC would experience when used in an ASRG for a space mission. During these tests, a data system collects several performance-related parameters from the convertor under test for health monitoring and analysis. Recently, an additional sensor recorded the slip table position during vibration testing to qualification level. The System Dynamic Model (SDM) integrates Stirling cycle thermodynamics, heat flow, mechanical mass, spring, damper systems, and electrical characteristics of the linear alternator and controller. This Paper presents a comparison of the performance of the ASC when exposed to vibration to that predicted by the SDM when exposed to the same vibration.

  10. Development of rotorcraft interior noise control concepts. Phase 2: Full scale testing, revision 1

    NASA Technical Reports Server (NTRS)

    Yoerkie, C. A.; Gintoli, P. J.; Moore, J. A.

    1986-01-01

    The phase 2 effort consisted of a series of ground and flight test measurements to obtain data for validation of the Statistical Energy Analysis (SEA) model. Included in the gound tests were various transfer function measurements between vibratory and acoustic subsystems, vibration and acoustic decay rate measurements, and coherent source measurements. The bulk of these, the vibration transfer functions, were used for SEA model validation, while the others provided information for characterization of damping and reverberation time of the subsystems. The flight test program included measurements of cabin and cockpit sound pressure level, frame and panel vibration level, and vibration levels at the main transmission attachment locations. Comparisons between measured and predicted subsystem excitation levels from both ground and flight testing were evaluated. The ground test data show good correlation with predictions of vibration levels throughout the cabin overhead for all excitations. The flight test results also indicate excellent correlation of inflight sound pressure measurements to sound pressure levels predicted by the SEA model, where the average aircraft speech interference level is predicted within 0.2 dB.

  11. Portable Life Support Stretcher Unit (PLSSU) Environmental Tests: Preproduction Model.

    DTIC Science & Technology

    1982-06-01

    fixture was taken out by fluttering of the castering wheels since the securing straps were too soft to transmit the motion. At higher frequencies, it was...5 3.3 Proof Tests . . . 6 3.4 Vibration Tests . . . 9 3.4.1 General . . . 9 3.4.2 Pretest Inspection . . . 12 3.4.3 Vertical Vibration on Wheels ...14 3.4.4 Horizontal Vibration on Wheels . . . 15 3.4.5 Horizontal Vibration with Handle Suspension . . . 16 3.4.6 Vertical Vibration with Handle

  12. An electromechanical coupling model of a bending vibration type piezoelectric ultrasonic transducer.

    PubMed

    Zhang, Qiang; Shi, Shengjun; Chen, Weishan

    2016-03-01

    An electromechanical coupling model of a bending vibration type piezoelectric ultrasonic transducer is proposed. The transducer is a Langevin type transducer which is composed of an exponential horn, four groups of PZT ceramics and a back beam. The exponential horn can focus the vibration energy, and can enlarge vibration amplitude and velocity efficiently. A bending vibration model of the transducer is first constructed, and subsequently an electromechanical coupling model is constructed based on the vibration model. In order to obtain the most suitable excitation position of the PZT ceramics, the effective electromechanical coupling coefficient is optimized by means of the quadratic interpolation method. When the effective electromechanical coupling coefficient reaches the peak value of 42.59%, the optimal excitation position (L1=22.52 mm) is found. The FEM method and the experimental method are used to validate the developed analytical model. Two groups of the FEM model (the Group A center bolt is not considered, and but the Group B center bolt is considered) are constructed and separately compared with the analytical model and the experimental model. Four prototype transducers around the peak value are fabricated and tested to validate the analytical model. A scanning laser Doppler vibrometer is employed to test the bending vibration shape and resonance frequency. Finally, the electromechanical coupling coefficient is tested indirectly through an impedance analyzer. Comparisons of the analytical results, FEM results and experiment results are presented, and the results show good agreement. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Viking Mars lander 1975 dynamic test model/orbiter developmental test model forced vibration test

    NASA Technical Reports Server (NTRS)

    Fortenberry, J.; Brownlee, G. R.

    1974-01-01

    The Viking Mars Lander 1975 dynamic test model and orbiter developmental test model were subjected to forced vibration sine tests. Flight acceptance (FA) and type approval (TA) test levels were applied to the spacecraft structure in a longitudinal test configuration using a 133,440-N (30,000-lb) force shaker. Testing in the two lateral axes (X, Y) was performed at lower levels using four 667-N (150-lb) force shakers. Forced vibration qualification (TA) test levels were successfully imposed on the spacecraft at frequencies down to 10 Hz. Measured responses showed the same character as analytical predictions, and correlation was reasonably good. Because of control system test tolerances, orbiter primary structure generally did not reach the design load limits attained in earlier static testing. A post-test examination of critical orbiter structure disclosed no apparent damage to the structure as a result of the test environment.

  14. Vibration characteristics of 1/8-scale dynamic models of the space-shuttle solid-rocket boosters

    NASA Technical Reports Server (NTRS)

    Leadbetter, S. A.; Stephens, W.; Sewall, J. L.; Majka, J. W.; Barret, J. R.

    1976-01-01

    Vibration tests and analyses of six 1/8 scale models of the space shuttle solid rocket boosters are reported. Natural vibration frequencies and mode shapes were obtained for these aluminum shell models having internal solid fuel configurations corresponding to launch, midburn (maximum dynamic pressure), and near endburn (burnout) flight conditions. Test results for longitudinal, torsional, bending, and shell vibration frequencies are compared with analytical predictions derived from thin shell theory and from finite element plate and beam theory. The lowest analytical longitudinal, torsional, bending, and shell vibration frequencies were within + or - 10 percent of experimental values. The effects of damping and asymmetric end skirts on natural vibration frequency were also considered. The analytical frequencies of an idealized full scale space shuttle solid rocket boosted structure are computed with and without internal pressure and are compared with the 1/8 scale model results.

  15. Transient vibration analytical modeling and suppressing for vibration absorber system under impulse excitation

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Yang, Bintang; Yu, Hu; Gao, Yulong

    2017-04-01

    The impulse excitation of mechanism causes transient vibration. In order to achieve adaptive transient vibration control, a method which can exactly model the response need to be proposed. This paper presents an analytical model to obtain the response of the primary system attached with dynamic vibration absorber (DVA) under impulse excitation. The impulse excitation which can be divided into single-impulse excitation and multi-impulse excitation is simplified as sinusoidal wave to establish the analytical model. To decouple the differential governing equations, a transform matrix is applied to convert the response from the physical coordinate to model coordinate. Therefore, the analytical response in the physical coordinate can be obtained by inverse transformation. The numerical Runge-Kutta method and experimental tests have demonstrated the effectiveness of the analytical model proposed. The wavelet of the response indicates that the transient vibration consists of components with multiple frequencies, and it shows that the modeling results coincide with the experiments. The optimizing simulations based on genetic algorithm and experimental tests demonstrate that the transient vibration of the primary system can be decreased by changing the stiffness of the DVA. The results presented in this paper are the foundations for us to develop the adaptive transient vibration absorber in the future.

  16. Effect of vibration on retention characteristics of screen acquisition systems. [for surface tension propellant acquisition

    NASA Technical Reports Server (NTRS)

    Tegart, J. R.; Aydelott, J. C.

    1978-01-01

    The design of surface tension propellant acquisition systems using fine-mesh screen must take into account all factors that influence the liquid pressure differentials within the system. One of those factors is spacecraft vibration. Analytical models to predict the effects of vibration have been developed. A test program to verify the analytical models and to allow a comparative evaluation of the parameters influencing the response to vibration was performed. Screen specimens were tested under conditions simulating the operation of an acquisition system, considering the effects of such parameters as screen orientation and configuration, screen support method, screen mesh, liquid flow and liquid properties. An analytical model, based on empirical coefficients, was most successful in predicting the effects of vibration.

  17. Coupled Facility/Payload Vibration Modeling Improvements

    NASA Technical Reports Server (NTRS)

    Carnahan, Timothy M.; Kaiser, Michael

    2015-01-01

    A major phase of aerospace hardware verification is vibration testing. The standard approach for such testing is to use a shaker to induce loads into the payload. In preparation for vibration testing at NASA/GSFC there is an analysis to assess the responses of the payload. A new method of modeling the test is presented that takes into account dynamic interactions between the facility and the payload. This dynamic interaction has affected testing in the past, but been ignored or adjusted for during testing. By modeling the combination of the facility and test article (payload) it is possible to improve the prediction of hardware responses. Many aerospace test facilities work in similar way to those at NASA Goddard Space Flight Center. Lessons learned here should be applicable to other test facilities with similar setups.

  18. Deducing Electronic Unit Internal Response During a Vibration Test Using a Lumped Parameter Modeling Approach

    NASA Technical Reports Server (NTRS)

    Van Dyke, Michael B.

    2014-01-01

    During random vibration testing of electronic boxes there is often a desire to know the dynamic response of certain internal printed wiring boards (PWBs) for the purpose of monitoring the response of sensitive hardware or for post-test forensic analysis in support of anomaly investigation. Due to restrictions on internally mounted accelerometers for most flight hardware there is usually no means to empirically observe the internal dynamics of the unit, so one must resort to crude and highly uncertain approximations. One common practice is to apply Miles Equation, which does not account for the coupled response of the board in the chassis, resulting in significant over- or under-prediction. This paper explores the application of simple multiple-degree-of-freedom lumped parameter modeling to predict the coupled random vibration response of the PWBs in their fundamental modes of vibration. A simple tool using this approach could be used during or following a random vibration test to interpret vibration test data from a single external chassis measurement to deduce internal board dynamics by means of a rapid correlation analysis. Such a tool might also be useful in early design stages as a supplemental analysis to a more detailed finite element analysis to quickly prototype and analyze the dynamics of various design iterations. After developing the theoretical basis, a lumped parameter modeling approach is applied to an electronic unit for which both external and internal test vibration response measurements are available for direct comparison. Reasonable correlation of the results demonstrates the potential viability of such an approach. Further development of the preliminary approach presented in this paper will involve correlation with detailed finite element models and additional relevant test data.

  19. Coupled rotor/fuselage dynamic analysis of the AH-1G helicopter and correlation with flight vibrations data

    NASA Technical Reports Server (NTRS)

    Corrigan, J. C.; Cronkhite, J. D.; Dompka, R. V.; Perry, K. S.; Rogers, J. P.; Sadler, S. G.

    1989-01-01

    Under a research program designated Design Analysis Methods for VIBrationS (DAMVIBS), existing analytical methods are used for calculating coupled rotor-fuselage vibrations of the AH-1G helicopter for correlation with flight test data from an AH-1G Operational Load Survey (OLS) test program. The analytical representation of the fuselage structure is based on a NASTRAN finite element model (FEM), which has been developed, extensively documented, and correlated with ground vibration test. One procedure that was used for predicting coupled rotor-fuselage vibrations using the advanced Rotorcraft Flight Simulation Program C81 and NASTRAN is summarized. Detailed descriptions of the analytical formulation of rotor dynamics equations, fuselage dynamic equations, coupling between the rotor and fuselage, and solutions to the total system of equations in C81 are included. Analytical predictions of hub shears for main rotor harmonics 2p, 4p, and 6p generated by C81 are used in conjunction with 2p OLS measured control loads and a 2p lateral tail rotor gearbox force, representing downwash impingement on the vertical fin, to excite the NASTRAN model. NASTRAN is then used to correlate with measured OLS flight test vibrations. Blade load comparisons predicted by C81 showed good agreement. In general, the fuselage vibration correlations show good agreement between anslysis and test in vibration response through 15 to 20 Hz.

  20. Rate coefficients of exchange reactions accounting for vibrational excitation of reagents and products

    NASA Astrophysics Data System (ADS)

    Kustova, E. V.; Savelev, A. S.; Kunova, O. V.

    2018-05-01

    Theoretical models for the vibrational state-resolved Zeldovich reaction are assessed by comparison with the results of quasi-classical trajectory (QCT) calculations. An error in the model of Aliat is corrected; the model is generalized taking into account NO vibrational states. The proposed model is fairly simple and can be easily implemented to the software for non-equilibrium flow modeling. It provides a good agreement with the QCT rate coefficients in the whole range of temperatures and reagent/product vibrational states. The developed models are tested in simulations of vibrational and chemical relaxation of air mixture behind a shock wave. The importance of accounting for excitated NO vibrational states and accurate prediction of Zeldovich reactions rates is shown.

  1. Dynamic response tests of inertial and optical wind-tunnel model attitude measurement devices

    NASA Technical Reports Server (NTRS)

    Buehrle, R. D.; Young, C. P., Jr.; Burner, A. W.; Tripp, J. S.; Tcheng, P.; Finley, T. D.; Popernack, T. G., Jr.

    1995-01-01

    Results are presented for an experimental study of the response of inertial and optical wind-tunnel model attitude measurement systems in a wind-off simulated dynamic environment. This study is part of an ongoing activity at the NASA Langley Research Center to develop high accuracy, advanced model attitude measurement systems that can be used in a dynamic wind-tunnel environment. This activity was prompted by the inertial model attitude sensor response observed during high levels of model vibration which results in a model attitude measurement bias error. Significant bias errors in model attitude measurement were found for the measurement using the inertial device during wind-off dynamic testing of a model system. The amount of bias present during wind-tunnel tests will depend on the amplitudes of the model dynamic response and the modal characteristics of the model system. Correction models are presented that predict the vibration-induced bias errors to a high degree of accuracy for the vibration modes characterized in the simulated dynamic environment. The optical system results were uncorrupted by model vibration in the laboratory setup.

  2. Correlation of AH-1G airframe test data with a NASTRAN mathematical model

    NASA Technical Reports Server (NTRS)

    Cronkhite, J. D.; Berry, V. L.

    1976-01-01

    Test data was provided for evaluating a mathematical vibration model of the Bell AH-1G helicopter airframe. The math model was developed and analyzed using the NASTRAN structural analysis computer program. Data from static and dynamic tests were used for comparison with the math model. Static tests of the fuselage and tailboom were conducted to verify the stiffness representation of the NASTRAN model. Dynamic test data were obtained from shake tests of the airframe and were used to evaluate the NASTRAN model for representing the low frequency (below 30 Hz) vibration response of the airframe.

  3. Coupled Facility-Payload Vibration Modeling Improvements

    NASA Technical Reports Server (NTRS)

    Carnahan, Timothy M.; Kaiser, Michael A.

    2015-01-01

    A major phase of aerospace hardware verification is vibration testing. The standard approach for such testing is to use a shaker to induce loads into the payload. In preparation for vibration testing at National Aeronautics and Space Administration/Goddard Space Flight Center an analysis is performed to assess the responses of the payload. A new method of modeling the test is presented that takes into account dynamic interactions between the facility and the payload. This dynamic interaction has affected testing in the past, but been ignored or adjusted for during testing. By modeling the combined dynamics of the facility and test article (payload) it is possible to improve the prediction of hardware responses. Many aerospace test facilities work in similar way to those at NASA/Goddard Space Flight Center. Lessons learned here should be applicable to other test facilities with similar setups.

  4. The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program: McDonnell-Douglas Helicopter Company achievements

    NASA Technical Reports Server (NTRS)

    Toossi, Mostafa; Weisenburger, Richard; Hashemi-Kia, Mostafa

    1993-01-01

    This paper presents a summary of some of the work performed by McDonnell Douglas Helicopter Company under NASA Langley-sponsored rotorcraft structural dynamics program known as DAMVIBS (Design Analysis Methods for VIBrationS). A set of guidelines which is applicable to dynamic modeling, analysis, testing, and correlation of both helicopter airframes and a large variety of structural finite element models is presented. Utilization of these guidelines and the key features of their applications to vibration modeling of helicopter airframes are discussed. Correlation studies with the test data, together with the development and applications of a set of efficient finite element model checkout procedures, are demonstrated on a large helicopter airframe finite element model. Finally, the lessons learned and the benefits resulting from this program are summarized.

  5. Wind tunnel balance system for determination of wind-induced vibrations of a rigid shuttle model in the launch configuration

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A wind tunnel balance system was designed to determine the wind-induced vibrations of a space shuttle model. The balance utilizes a flexible sting mounting in conjunction with a geometrically scaled rigid model. Bending and torsional displacements are determined through strain-gauge-instrumented spring bar mechanisms. The natural frequency of the string-model system can be varied continuously throughout the expected scaled frequency range of the shuttle vehicle while a test is in progress by the use of moveable riders on the spring bar mechanism. Through the use of a frequency analyzer, the output can be used to determine troublesome vibrational frequencies. A dimensional analysis of the wind-induced vibration problem is also presented which suggests a test procedure. In addition a computer program for analytical studies of the forced vibration problem is presented.

  6. Advanced superposition methods for high speed turbopump vibration analysis

    NASA Technical Reports Server (NTRS)

    Nielson, C. E.; Campany, A. D.

    1981-01-01

    The small, high pressure Mark 48 liquid hydrogen turbopump was analyzed and dynamically tested to determine the cause of high speed vibration at an operating speed of 92,400 rpm. This approaches the design point operating speed of 95,000 rpm. The initial dynamic analysis in the design stage and subsequent further analysis of the rotor only dynamics failed to predict the vibration characteristics found during testing. An advanced procedure for dynamics analysis was used in this investigation. The procedure involves developing accurate dynamic models of the rotor assembly and casing assembly by finite element analysis. The dynamically instrumented assemblies are independently rap tested to verify the analytical models. The verified models are then combined by modal superposition techniques to develop a completed turbopump model where dynamic characteristics are determined. The results of the dynamic testing and analysis obtained are presented and methods of moving the high speed vibration characteristics to speeds above the operating range are recommended. Recommendations for use of these advanced dynamic analysis procedures during initial design phases are given.

  7. Ground Vibration Testing Options for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Patterson, Alan; Smith, Robert K.; Goggin, David; Newsom, Jerry

    2011-01-01

    New NASA launch vehicles will require development of robust systems in a fiscally-constrained environment. NASA, Department of Defense (DoD), and commercial space companies routinely conduct ground vibration tests as an essential part of math model validation and launch vehicle certification. Although ground vibration testing must be a part of the integrated test planning process, more affordable approaches must also be considered. A study evaluated several ground vibration test options for the NASA Constellation Program flight test vehicles, Orion-1 and Orion-2, which concluded that more affordable ground vibration test options are available. The motivation for ground vibration testing is supported by historical examples from NASA and DoD. The approach used in the present study employed surveys of ground vibration test subject-matter experts that provided data to qualitatively rank six test options. Twenty-five experts from NASA, DoD, and industry provided scoring and comments for this study. The current study determined that both element-level modal tests and integrated vehicle modal tests have technical merits. Both have been successful in validating structural dynamic math models of launch vehicles. However, element-level testing has less overall cost and schedule risk as compared to integrated vehicle testing. Future NASA launch vehicle development programs should anticipate that some structural dynamics testing will be necessary. Analysis alone will be inadequate to certify a crew-capable launch vehicle. At a minimum, component and element structural dynamic tests are recommended for new vehicle elements. Three viable structural dynamic test options were identified. Modal testing of the new vehicle elements and an integrated vehicle test on the mobile launcher provided the optimal trade between technical, cost, and schedule.

  8. Field Telemetry of Blade-rotor Coupled Torsional Vibration at Matuura Power Station Number 1 Unit

    NASA Technical Reports Server (NTRS)

    Isii, Kuniyoshi; Murakami, Hideaki; Otawara, Yasuhiko; Okabe, Akira

    1991-01-01

    The quasi-modal reduction technique and finite element model (FEM) were used to construct an analytical model for the blade-rotor coupled torsional vibration of a steam turbine generator of the Matuura Power Station. A single rotor test was executed in order to evaluate umbrella vibration characteristics. Based on the single rotor test results and the quasi-modal procedure, the total rotor system was analyzed to predict coupled torsional frequencies. Finally, field measurement of the vibration of the last stage buckets was made, which confirmed that the double synchronous resonance was 124.2 Hz, meaning that the machine can be safely operated. The measured eigen values are very close to the predicted value. The single rotor test and this analytical procedure thus proved to be a valid technique to estimate coupled torsional vibration.

  9. Method for Vibration Response Simulation and Sensor Placement Optimization of a Machine Tool Spindle System with a Bearing Defect

    PubMed Central

    Cao, Hongrui; Niu, Linkai; He, Zhengjia

    2012-01-01

    Bearing defects are one of the most important mechanical sources for vibration and noise generation in machine tool spindles. In this study, an integrated finite element (FE) model is proposed to predict the vibration responses of a spindle bearing system with localized bearing defects and then the sensor placement for better detection of bearing faults is optimized. A nonlinear bearing model is developed based on Jones' bearing theory, while the drawbar, shaft and housing are modeled as Timoshenko's beam. The bearing model is then integrated into the FE model of drawbar/shaft/housing by assembling equations of motion. The Newmark time integration method is used to solve the vibration responses numerically. The FE model of the spindle-bearing system was verified by conducting dynamic tests. Then, the localized bearing defects were modeled and vibration responses generated by the outer ring defect were simulated as an illustration. The optimization scheme of the sensor placement was carried out on the test spindle. The results proved that, the optimal sensor placement depends on the vibration modes under different boundary conditions and the transfer path between the excitation and the response. PMID:23012514

  10. Lumped Parameter Modeling for Rapid Vibration Response Prototyping and Test Correlation for Electronic Units

    NASA Technical Reports Server (NTRS)

    Van Dyke, Michael B.

    2013-01-01

    Present preliminary work using lumped parameter models to approximate dynamic response of electronic units to random vibration; Derive a general N-DOF model for application to electronic units; Illustrate parametric influence of model parameters; Implication of coupled dynamics for unit/board design; Demonstrate use of model to infer printed wiring board (PWB) dynamics from external chassis test measurement.

  11. Investigation of difficult component effects on finite element model vibration prediction for the Bell AH-1G helicopter. Volume 1: Ground vibration test results

    NASA Technical Reports Server (NTRS)

    Dompka, R. V.

    1989-01-01

    Under the NASA-sponsored Design Analysis Methods for VIBrationS (DAMVIBS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AH-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, fuel, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the ground vibration testing are presented.

  12. Force Limited Vibration Testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry; Chang, Kurng Y.

    2005-01-01

    This slide presentation reviews the concept and applications of Force Limited Vibration Testing. The goal of vibration testing of aerospace hardware is to identify problems that would result in flight failures. The commonly used aerospace vibration tests uses artificially high shaker forces and responses at the resonance frequencies of the test item. It has become common to limit the acceleration responses in the test to those predicted for the flight. This requires an analysis of the acceleration response, and requires placing accelerometers on the test item. With the advent of piezoelectric gages it has become possible to improve vibration testing. The basic equations have are reviewed. Force limits are analogous and complementary to the acceleration specifications used in conventional vibration testing. Just as the acceleration specification is the frequency spectrum envelope of the in-flight acceleration at the interface between the test item and flight mounting structure, the force limit is the envelope of the in-flight force at the interface . In force limited vibration tests, both the acceleration and force specifications are needed, and the force specification is generally based on and proportional to the acceleration specification. Therefore, force limiting does not compensate for errors in the development of the acceleration specification, e.g., too much conservatism or the lack thereof. These errors will carry over into the force specification. Since in-flight vibratory force data are scarce, force limits are often derived from coupled system analyses and impedance information obtained from measurements or finite element models (FEM). Fortunately, data on the interface forces between systems and components are now available from system acoustic and vibration tests of development test models and from a few flight experiments. Semi-empirical methods of predicting force limits are currently being developed on the basis of the limited flight and system test data. A simple two degree of freedom system is shown and the governing equations for basic force limiting results for this system are reviewed. The design and results of the shuttle vibration forces (SVF) experiments are reviewed. The Advanced Composition Explorer (ACE) also was used to validate force limiting. Test instrumentation and supporting equipment are reviewed including piezo-electric force transducers, signal processing and conditioning systems, test fixtures, and vibration controller systems. Several examples of force limited vibration testing are presented with some results.

  13. Vibration test of 1/5 scale H-II launch vehicle

    NASA Astrophysics Data System (ADS)

    Morino, Yoshiki; Komatsu, Keiji; Sano, Masaaki; Minegishi, Masakatsu; Morita, Toshiyuki; Kohsetsu, Y.

    In order to predict dynamic loads on the newly designed Japanese H-II launch vehicle, the adequacy of prediction methods has been assessed by the dynamic scale model testing. The three-dimensional dynamic model was used in the analysis to express coupling effects among axial, lateral (pitch and yaw) and torsional vibrations. The liquid/tank interaction was considered by use of a boundary element method. The 1/5 scale model of the H-II launch vehicle was designed to simulate stiffness and mass properties of important structural parts, such as core/SRB junctions, first and second stage Lox tanks and engine mount structures. Modal excitation of the test vehicle was accomplished with 100-1000 N shakers which produced random or sinusoidal vibrational forces. The vibrational response of the test vehicle was measured at various locations with accelerometers and pressure sensor. In the lower frequency range, corresmpondence between analysis and experiment was generally good. The basic procedures in analysis seem to be adequate so far, but some improvements in mathematical modeling are suggested by comparison of test and analysis.

  14. A piezoelectric six-DOF vibration energy harvester based on parallel mechanism: dynamic modeling, simulation, and experiment

    NASA Astrophysics Data System (ADS)

    Yuan, G.; Wang, D. H.

    2017-03-01

    Multi-directional and multi-degree-of-freedom (multi-DOF) vibration energy harvesting are attracting more and more research interest in recent years. In this paper, the principle of a piezoelectric six-DOF vibration energy harvester based on parallel mechanism is proposed to convert the energy of the six-DOF vibration to single-DOF vibrations of the limbs on the energy harvester and output voltages. The dynamic model of the piezoelectric six-DOF vibration energy harvester is established to estimate the vibrations of the limbs. On this basis, a Stewart-type piezoelectric six-DOF vibration energy harvester is developed and explored. In order to validate the established dynamic model and the analysis results, the simulation model of the Stewart-type piezoelectric six-DOF vibration energy harvester is built and tested with different vibration excitations by SimMechanics, and some preliminary experiments are carried out. The results show that the vibration of the limbs on the piezoelectric six-DOF vibration energy harvester can be estimated by the established dynamic model. The developed Stewart-type piezoelectric six-DOF vibration energy harvester can harvest the energy of multi-directional linear vibration and multi-axis rotating vibration with resonance frequencies of 17 Hz, 25 Hz, and 47 Hz. Moreover, the resonance frequencies of the developed piezoelectric six-DOF vibration energy harvester are not affected by the direction changing of the vibration excitation.

  15. Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance

    NASA Technical Reports Server (NTRS)

    Ricci, Stefano; Peeters, Bart; Fetter, Rebecca; Boland, Doug; Debille, Jan

    2008-01-01

    In the field of vibration testing, the interaction between the structure being tested and the instrumentation hardware used to perform the test is a critical issue. This is particularly true when testing massive structures (e.g. satellites), because due to physical design and manufacturing limits, the dynamics of the testing facility often couples with the test specimen one in the frequency range of interest. A further issue in this field is the standard use of a closed loop real-time vibration control scheme, which could potentially shift poles and change damping of the aforementioned coupled system. Virtual shaker testing is a novel approach to deal with these issues. It means performing a simulation which closely represents the real vibration test on the specific facility by taking into account all parameters which might impact the dynamic behavior of the specimen. In this paper, such a virtual shaker testing approach is developed. It consists of the following components: (1) Either a physical-based or an equation-based coupled electro-mechanical lumped parameter shaker model is created. The model parameters are obtained from manufacturer's specifications or by carrying out some dedicated experiments; (2) Existing real-time vibration control algorithm are ported to the virtual simulation environment; and (3) A structural model of the test object is created and after defining proper interface conditions structural modes are computed by means of the well-established Craig-Bampton CMS technique. At this stage, a virtual shaker test has been run, by coupling the three described models (shaker, control loop, structure) in a co-simulation routine. Numerical results have eventually been correlated with experimental ones in order to assess the robustness of the proposed methodology.

  16. Vibration and noise characteristics of an elevated box girder paved with different track structures

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhen; Liang, Lin; Wang, Dangxiong

    2018-07-01

    The vibration and noise of elevated concrete box girders (ECBGs) are now among the most concerned issues in the field of urban rail transit (URT) systems. The track structure, belonging to critical load-transfer components, directly affects the characteristics of loading transmission into bridge, as well as the noise radiation from such system, which further determines the reduction of vibration and noise in ECBGs significantly. In order to investigate the influence of different track structures on the vibration and structure-borne noise of ECBGs, a frequency-domain theoretical model of vehicle-track coupled system, taking into account the effect of multiple wheels, is firstly established in the present work. The analysis of track structures focuses on embedded sleepers, trapezoidal sleepers, and steel-spring floating slabs (SSFS). Next, a vibration and noise field test was performed, with regard to a 30 m simple supported ECBG (with the embedded-sleeper track structure) of an URT system. Based on the tested results, two numerical models, involving a finite element model for the vibration analysis, as well as a statistical energy analysis (SEA) model for the prediction of the noise radiation, are established and validated. The results of the numerical simulations and the field tests are well matched, which offers opportunities to predict the vibration and structure-borne noise of ECBGs by the proposed modelling methodology. From the comparison between the different types of track structures, the spatial distribution and reduction effect of vibration and noise are lastly studied. The force applied on ECBG is substantially determined by both the wheel-rail force (external factor) and the transmission rate of track structure (internal factor). The SSFS track is the most effective for vibration and noise reduction of ECBGs, followed in descending order by the trapezoidal-sleeper and embedded-sleeper tracks. The above result provides a theoretical basis for the vibration and noise reduction design of urban rail transit systems.

  17. Modeling and dynamic environment analysis technology for spacecraft

    NASA Astrophysics Data System (ADS)

    Fang, Ren; Zhaohong, Qin; Zhong, Zhang; Zhenhao, Liu; Kai, Yuan; Long, Wei

    Spacecraft sustains complex and severe vibrations and acoustic environments during flight. Predicting the resulting structures, including numerical predictions of fluctuating pressure, updating models and random vibration and acoustic analysis, plays an important role during the design, manufacture and ground testing of spacecraft. In this paper, Monotony Integrative Large Eddy Simulation (MILES) is introduced to predict the fluctuating pressure of the fairing. The exact flow structures of the fairing wall surface under different Mach numbers are obtained, then a spacecraft model is constructed using the finite element method (FEM). According to the modal test data, the model is updated by the penalty method. On this basis, the random vibration and acoustic responses of the fairing and satellite are analyzed by different methods. The simulated results agree well with the experimental ones, which shows the validity of the modeling and dynamic environment analysis technology. This information can better support test planning, defining test conditions and designing optimal structures.

  18. 3D digital image correlation methods for full-field vibration measurement

    NASA Astrophysics Data System (ADS)

    Helfrick, Mark N.; Niezrecki, Christopher; Avitabile, Peter; Schmidt, Timothy

    2011-04-01

    In the area of modal test/analysis/correlation, significant effort has been expended over the past twenty years in order to make reduced models and to expand test data for correlation and eventual updating of the finite element models. This has been restricted by vibration measurements which are traditionally limited to the location of relatively few applied sensors. Advances in computers and digital imaging technology have allowed 3D digital image correlation (DIC) methods to measure the shape and deformation of a vibrating structure. This technique allows for full-field measurement of structural response, thus providing a wealth of simultaneous test data. This paper presents some preliminary results for the test/analysis/correlation of data measured using the DIC approach along with traditional accelerometers and a scanning laser vibrometer for comparison to a finite element model. The results indicate that all three approaches correlated well with the finite element model and provide validation for the DIC approach for full-field vibration measurement. Some of the advantages and limitations of the technique are presented and discussed.

  19. Vibration characteristics of dental high-speed turbines and speed-increasing handpieces.

    PubMed

    Poole, Ruth L; Lea, Simon C; Dyson, John E; Shortall, Adrian C C; Walmsley, A Damien

    2008-07-01

    Vibrations of dental handpieces may contribute to symptoms of hand-arm vibration syndrome in dental personnel and iatrogenic enamel cracking in teeth. However, methods for measuring dental handpiece vibrations have previously been limited and information about vibration characteristics is sparse. This preliminary study aimed to use a novel approach to assess the vibrations of unloaded high-speed handpieces in vitro. Maximum vibration displacement amplitudes of five air turbines and two speed-increasing handpieces were recorded whilst they were operated with and without a rotary cutting instrument (RCI) using a scanning laser vibrometer (SLV). RCI rotation speeds, calculated from frequency peaks, were consistent with expected values. ANOVA statistical analysis indicated significant differences in vibrations between handpiece models (p<0.01), although post hoc tests revealed that differences between most individual models were not significant (p>0.11). Operating handpieces with a RCI resulted in greater vibrations than with no RCI (p<0.01). Points on the head of the handpiece showed greater vibration displacement amplitudes than points along the body (p<0.01). Although no single measurement exceeded 4 microm for the handpieces in the current test setup (implying that these vibrations may be unlikely to cause adverse effects), this study has formed the basis for future work which will include handpiece vibration measurements whilst cutting under clinically representative loads.

  20. Finite element analysis using NASTRAN applied to helicopter transmission vibration/noise reduction

    NASA Technical Reports Server (NTRS)

    Howells, R. W.; Sciarra, J. J.

    1975-01-01

    A finite element NASTRAN model of the complete forward rotor transmission housing for the Boeing Vertol CH-47 helicopter was developed and applied to reduce transmission vibration/noise at its source. In addition to a description of the model, a technique for vibration/noise prediction and reduction is outlined. Also included are the dynamic response as predicted by NASTRAN, test data, the use of strain energy methods to optimize the housing for minimum vibration/noise, and determination of design modifications which will be manufactured and tested. The techniques presented are not restricted to helicopters but are applicable to any power transmission system. The transmission housing model developed can be used further to evaluate static and dynamic stresses, thermal distortions, deflections and load paths, fail-safety/vulnerability, and composite materials.

  1. Experimental validation of a numerical 3-D finite model applied to wind turbines design under vibration constraints: TREVISE platform

    NASA Astrophysics Data System (ADS)

    Sellami, Takwa; Jelassi, Sana; Darcherif, Abdel Moumen; Berriri, Hanen; Mimouni, Med Faouzi

    2018-04-01

    With the advancement of wind turbines towards complex structures, the requirement of trusty structural models has become more apparent. Hence, the vibration characteristics of the wind turbine components, like the blades and the tower, have to be extracted under vibration constraints. Although extracting the modal properties of blades is a simple task, calculating precise modal data for the whole wind turbine coupled to its tower/foundation is still a perplexing task. In this framework, this paper focuses on the investigation of the structural modeling approach of modern commercial micro-turbines. Thus, the structural model a complex designed wind turbine, which is Rutland 504, is established based on both experimental and numerical methods. A three-dimensional (3-D) numerical model of the structure was set up based on the finite volume method (FVM) using the academic finite element analysis software ANSYS. To validate the created model, experimental vibration tests were carried out using the vibration test system of TREVISE platform at ECAM-EPMI. The tests were based on the experimental modal analysis (EMA) technique, which is one of the most efficient techniques for identifying structures parameters. Indeed, the poles and residues of the frequency response functions (FRF), between input and output spectra, were calculated to extract the mode shapes and the natural frequencies of the structure. Based on the obtained modal parameters, the numerical designed model was up-dated.

  2. A method of real-time fault diagnosis for power transformers based on vibration analysis

    NASA Astrophysics Data System (ADS)

    Hong, Kaixing; Huang, Hai; Zhou, Jianping; Shen, Yimin; Li, Yujie

    2015-11-01

    In this paper, a novel probability-based classification model is proposed for real-time fault detection of power transformers. First, the transformer vibration principle is introduced, and two effective feature extraction techniques are presented. Next, the details of the classification model based on support vector machine (SVM) are shown. The model also includes a binary decision tree (BDT) which divides transformers into different classes according to health state. The trained model produces posterior probabilities of membership to each predefined class for a tested vibration sample. During the experiments, the vibrations of transformers under different conditions are acquired, and the corresponding feature vectors are used to train the SVM classifiers. The effectiveness of this model is illustrated experimentally on typical in-service transformers. The consistency between the results of the proposed model and the actual condition of the test transformers indicates that the model can be used as a reliable method for transformer fault detection.

  3. Vortex Shedding from a Vibrating Cable with Attached Spherical Bodies in a Linear Shear Flow.

    DTIC Science & Technology

    1982-10-27

    correlation and strengthened parallel vo:tex shedding. The test model used in the present study was a flexible cable. The vortex street wake behind a vibrating...pattern, different tha. the characteristic patterns associated with either the stationary or vibrating locked-on vortex street wakes was observed... vortex shedding to the vibration of a rigid or flexible cylinder has been explored by Griffin [17]. He presents a model for a universal wake Strouhal

  4. Research on mining truck vibration control based on particle damping

    NASA Astrophysics Data System (ADS)

    Liming, Song; Wangqiang, Xiao; Zeguang, Li; Haiquan, Guo; Zhe, Yang

    2018-03-01

    More and more attentions were got by people about the research on mining truck driving comfort. As the vibration transfer terminal, cab is one of the important part of mining truck vibration control. In this paper, based on particle damping technology and its application characteristics, through the discrete element modeling, DEM & FEM coupling simulation and analysis, lab test verification and actual test in the truck, particle damping technology was successfully used in driver’s seat base of mining truck, cab vibration was reduced obviously, meanwhile applied research and method of particle damping technology in mining truck vibration control were provided.

  5. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades

    NASA Technical Reports Server (NTRS)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas

    2012-01-01

    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  6. Diesel engine torsional vibration control coupling with speed control system

    NASA Astrophysics Data System (ADS)

    Guo, Yibin; Li, Wanyou; Yu, Shuwen; Han, Xiao; Yuan, Yunbo; Wang, Zhipeng; Ma, Xiuzhen

    2017-09-01

    The coupling problems between shafting torsional vibration and speed control system of diesel engine are very common. Neglecting the coupling problems sometimes lead to serious oscillation and vibration during the operation of engines. For example, during the propulsion shafting operation of a diesel engine, the oscillation of engine speed and the severe vibration of gear box occur which cause the engine is unable to operate. To find the cause of the malfunctions, a simulation model coupling the speed control system with the torsional vibration of deformable shafting is proposed and investigated. In the coupling model, the shafting is simplified to be a deformable one which consists of several inertias and shaft sections and with characteristics of torsional vibration. The results of instantaneous rotation speed from this proposed model agree with the test results very well and are successful in reflecting the real oscillation state of the engine operation. Furthermore, using the proposed model, the speed control parameters can be tuned up to predict the diesel engine a stable and safe running. The results from the tests on the diesel engine with a set of tuned control parameters are consistent with the simulation results very well.

  7. An integrated draft gear model with the consideration of wagon body structural characteristics

    NASA Astrophysics Data System (ADS)

    Chang, Gao; Liangliang, Yang; Weihua, Ma; Min, Zhang; Shihui, Luo

    2018-03-01

    With the increase of railway wagon axle load and the growth of marshalling quantity, the problem caused by impact and vibration of vehicles is increasingly serious, which leads to the damage of vehicle structures and the components. In order to improve the reliability of longitudinal connection model for vehicle impact tests, a new railway wagon longitudinal connection model was developed to simulate and analyse vehicle impact tests. The new model is based on characteristics of longitudinal force transmission for vehicles and parts. In this model, carbodies and bogies were simplified to a particle system that can vibrate in the longitudinal direction, which corresponded to a stiffness-damping vibration system. The model consists of three sub-models, that is, coupler and draft gear sub-model, centre plate sub-model and carbody structure sub-model. Compared with conventional draft gear models, the new model was proposed with geometrical and mechanical relations of friction draft gears considered and with behaviours of sticking, sliding and impact between centre plate and centre bowl added. Besides, virtual springs between discrete carbodies were built to describe the structural deformation of carbody. A computation program for longitudinal dynamics based on vehicle impact tests was accomplished to simulate. Comparisons and analyses regarding the train dynamics outputs and vehicle impact tests were conducted. Simulation results indicate that the new wagon longitudinal connection model can provide a practical application environment for wagons, and the outputs of vehicle impact tests agree with those of field tests. The new model can also be used to study on longitudinal vibrations of different vehicles, of carbody and bogie, and of carbody itself.

  8. Ground vibration test of the XV-15 Tiltrotor Research Aircraft and pretest predictions

    NASA Technical Reports Server (NTRS)

    Studebaker, Karen; Abrego, Anita

    1994-01-01

    The first comprehensive ground vibration survey was performed on the XV-15 Tiltrotor Research Aircraft to measure the vibration modes of the airframe and to provide data critical for determining whirl flutter stability margins. The aircraft was suspended by the wings with bungee cords and cables. A NASTRAN finite element model was used in the design of the suspension system to minimize its interference with the wing modes. The primary objective of the test was to measure the dynamic characteristics of the wings and pylons for aeroelastic stability analysis. In addition, over 130 accelerometers were placed on the airframe to characterize the fuselage, wing, and tail vibration. Pretest predictions were made with the NASTRAN model as well as correlations with the test data. The results showed that the suspension system provided the isolation necessary for modal measurements.

  9. Fast Bayesian approach for modal identification using free vibration data, Part I - Most probable value

    NASA Astrophysics Data System (ADS)

    Zhang, Feng-Liang; Ni, Yan-Chun; Au, Siu-Kui; Lam, Heung-Fai

    2016-03-01

    The identification of modal properties from field testing of civil engineering structures is becoming economically viable, thanks to the advent of modern sensor and data acquisition technology. Its demand is driven by innovative structural designs and increased performance requirements of dynamic-prone structures that call for a close cross-checking or monitoring of their dynamic properties and responses. Existing instrumentation capabilities and modal identification techniques allow structures to be tested under free vibration, forced vibration (known input) or ambient vibration (unknown broadband loading). These tests can be considered complementary rather than competing as they are based on different modeling assumptions in the identification model and have different implications on costs and benefits. Uncertainty arises naturally in the dynamic testing of structures due to measurement noise, sensor alignment error, modeling error, etc. This is especially relevant in field vibration tests because the test condition in the field environment can hardly be controlled. In this work, a Bayesian statistical approach is developed for modal identification using the free vibration response of structures. A frequency domain formulation is proposed that makes statistical inference based on the Fast Fourier Transform (FFT) of the data in a selected frequency band. This significantly simplifies the identification model because only the modes dominating the frequency band need to be included. It also legitimately ignores the information in the excluded frequency bands that are either irrelevant or difficult to model, thereby significantly reducing modeling error risk. The posterior probability density function (PDF) of the modal parameters is derived rigorously from modeling assumptions and Bayesian probability logic. Computational difficulties associated with calculating the posterior statistics, including the most probable value (MPV) and the posterior covariance matrix, are addressed. Fast computational algorithms for determining the MPV are proposed so that the method can be practically implemented. In the companion paper (Part II), analytical formulae are derived for the posterior covariance matrix so that it can be evaluated without resorting to finite difference method. The proposed method is verified using synthetic data. It is also applied to modal identification of full-scale field structures.

  10. Dynamic Model of Aircraft Passenger Seats for Vibration Comfort Evaluation and Control

    NASA Astrophysics Data System (ADS)

    Šika, Z.; Valášek, Michael; Vampola, T.; Füllekrug, U.; Klimmek, T.

    The paper deals with the development of the seat dynamical model for vibration comfort evaluation and control. The aircraft seats have been tested extensively by vibrations on the 6 DOF vibrating platform. The importance of the careful comfort control together with the flight mechanics control is namely stressed for the blended wing body (BWB) aircrafts. They have a very large fuselage, where the mechanical properties (accelerations, angular accelerations) vary considerably for different seat places. The model have been improved by adding of dynamical models of the aircraft passenger seats identified by the measurements on the 6 DOF vibrating platform. The experiments, their results and the identification of the dynamical seat model are described. The model is further modified by adding of the comfort evaluation norms represented by dynamical filters. The structure and identification of the seat model is briefly described and discussed.

  11. Inficon Transpector MPH Mass Spectrometer Random Vibration Test Report

    NASA Technical Reports Server (NTRS)

    Santiago-Bond, Jo; Captain, Janine

    2015-01-01

    The purpose of this test report is to summarize results from the vibration testing of the INFICON Transpector MPH100M model Mass Spectrometer. It also identifies requirements satisfied, and procedures used in the test. As a payload of Resource Prospector, it is necessary to determine the survivability of the mass spectrometer to proto-qualification level random vibration. Changes in sensitivity of the mass spectrometer can be interpreted as a change in alignment of the instrument. The results of this test will be used to determine any necessary design changes as the team moves forward with flight design.

  12. Air injection test on a Kaplan turbine: prototype - model comparison

    NASA Astrophysics Data System (ADS)

    Angulo, M.; Rivetti, A.; Díaz, L.; Liscia, S.

    2016-11-01

    Air injection is a very well-known resource to reduce pressure pulsation magnitude in turbines, especially on Francis type. In the case of large Kaplan designs, even when not so usual, it could be a solution to mitigate vibrations arising when tip vortex cavitation phenomenon becomes erosive and induces structural vibrations. In order to study this alternative, aeration tests were performed on a Kaplan turbine at model and prototype scales. The research was focused on efficiency of different air flow rates injected in reducing vibrations, especially at the draft tube and the discharge ring and also in the efficiency drop magnitude. It was found that results on both scales presents the same trend in particular for vibration levels at the discharge ring. The efficiency drop was overestimated on model tests while on prototype were less than 0.2 % for all power output. On prototype, air has a beneficial effect in reducing pressure fluctuations up to 0.2 ‰ of air flow rate. On model high speed image computing helped to quantify the volume of tip vortex cavitation that is strongly correlated with the vibration level. The hydrophone measurements did not capture the cavitation intensity when air is injected, however on prototype, it was detected by a sonometer installed at the draft tube access gallery.

  13. The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program: Boeing Helicopters airframe finite element modeling

    NASA Technical Reports Server (NTRS)

    Gabel, R.; Lang, P.; Reed, D.

    1993-01-01

    Mathematical models based on the finite element method of structural analysis, as embodied in the NASTRAN computer code, are routinely used by the helicopter industry to calculate airframe static internal loads used for sizing structural members. Historically, less reliance has been placed on the vibration predictions based on these models. Beginning in the early 1980's NASA's Langley Research Center initiated an industry wide program with the objective of engendering the needed trust in vibration predictions using these models and establishing a body of modeling guides which would enable confident future prediction of airframe vibration as part of the regular design process. Emphasis in this paper is placed on the successful modeling of the Army/Boeing CH-47D which showed reasonable correlation with test data. A principal finding indicates that improved dynamic analysis requires greater attention to detail and perhaps a finer mesh, especially the mass distribution, than the usual stress model. Post program modeling efforts show improved correlation placing key modal frequencies in the b/rev range with 4 percent of the test frequencies.

  14. Vibration Control of Deployable Astromast Boom: Preliminary Experiments

    NASA Technical Reports Server (NTRS)

    Swaminadham, M.; Hamilton, David A.

    1994-01-01

    This paper deals with the dynamic characterization of a flexible aerospace solar boom. The modeling issues and sine dwell vibration testing to determine natural frequencies and mode shapes of a continuous-longer on deployable ASTROMAST lattice boom are discussed. The details of the proof-of-concept piezoelectric active vibration experiments on a simple cantilever beam to control its vibrations are presented. The control parameters like voltage to the controller crystal and its location are investigated, to determine the effectiveness of control element to suppress selected resonant vibrations of the test specimen. Details of this experiment and plans for its future adaptation to the prototype structure are also discussed.

  15. The Shock and Vibration Bulletin. Part 3. Shock Testing, Shock Analysis

    DTIC Science & Technology

    1974-08-01

    APPROXIMATE TRANSFORMATION C.S. O’Hearne and J.W. Shipley, Martin Marietta Aerospace, Orlando, Florida LINEAR LUMPED-MASS MODELING TECHNIQUES FOR BLAST LOADED...Leppert, B.K. Wada, Jet Propulsion Laboratory, Pasadena, California, and R. Miyakawa, Martin - Marietta Aerospace, Denver, Colorado (assigned to the Jet...Wilmington, Delaware Vibration Testing and Analysis DEVELOPMENT OF SAM-D MISSILE RANDOM VIBRATION RESPONSE LOADS P.G. Hahn, Martin Marietta Aerospace

  16. Specific modes of vibratory technological machines: mathematical models, peculiarities of interaction of system elements

    NASA Astrophysics Data System (ADS)

    Eliseev, A. V.; Sitov, I. S.; Eliseev, S. V.

    2018-03-01

    The methodological basis of constructing mathematical models of vibratory technological machines is developed in the article. An approach is proposed that makes it possible to introduce a vibration table in a specific mode that provides conditions for the dynamic damping of oscillations for the zone of placement of a vibration exciter while providing specified vibration parameters in the working zone of the vibration table. The aim of the work is to develop methods of mathematical modeling, oriented to technological processes with long cycles. The technologies of structural mathematical modeling are used with structural schemes, transfer functions and amplitude-frequency characteristics. The concept of the work is to test the possibilities of combining the conditions for reducing loads with working components of a vibration exciter while simultaneously maintaining sufficiently wide limits in variating the parameters of the vibrational field.

  17. The Shock and Vibration Digest. Volume 14, Number 1, January 1982

    DTIC Science & Technology

    1982-01-01

    vibration, ity of the examples in those days. Morris and Head non4inear vibration, acoustics , and modeling and [45] discusses the ’escalator’ method which...with modeling and acoustic emission view on the testing techniques, philosophies, and monitoring. This session also contained several relationship of... Modelling R.K. Jeyapalan and NA. Halliwell Inst. Sound Vib. Res., Univ. of Southampton, South- ampton, UK, Appl. Acoust .. 1A (5), pp 361-376 (Sept

  18. Modeling of UH-60A Hub Accelerations with Neural Networks

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi

    2002-01-01

    Neural network relationships between the full-scale, flight test hub accelerations and the corresponding three N/rev pilot floor vibration components (vertical, lateral, and longitudinal) are studied. The present quantitative effort on the UH-60A Black Hawk hub accelerations considers the lateral and longitudinal vibrations. An earlier study had considered the vertical vibration. The NASA/Army UH-60A Airloads Program flight test database is used. A physics based "maneuver-effect-factor (MEF)", derived using the roll-angle and the pitch-rate, is used. Fundamentally, the lateral vibration data show high vibration levels (up to 0.3 g's) at low airspeeds (for example, during landing flares) and at high airspeeds (for example, during turns). The results show that the advance ratio and the gross weight together can predict the vertical and the longitudinal vibration. However, the advance ratio and the gross weight together cannot predict the lateral vibration. The hub accelerations and the advance ratio can be used to satisfactorily predict the vertical, lateral, and longitudinal vibration. The present study shows that neural network based representations of all three UH-60A pilot floor vibration components (vertical, lateral, and longitudinal) can be obtained using the hub accelerations along with the gross weight and the advance ratio. The hub accelerations are clearly a factor in determining the pilot vibration. The present conclusions potentially allow for the identification of neural network relationships between the experimental hub accelerations obtained from wind tunnel testing and the experimental pilot vibration data obtained from flight testing. A successful establishment of the above neural network based link between the wind tunnel hub accelerations and the flight test vibration data can increase the value of wind tunnel testing.

  19. The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program : Bell Helicopter Textron accomplishments

    NASA Technical Reports Server (NTRS)

    Cronkhite, James D.

    1993-01-01

    Accurate vibration prediction for helicopter airframes is needed to 'fly from the drawing board' without costly development testing to solve vibration problems. The principal analytical tool for vibration prediction within the U.S. helicopter industry is the NASTRAN finite element analysis. Under the NASA DAMVIBS research program, Bell conducted NASTRAN modeling, ground vibration testing, and correlations of both metallic (AH-1G) and composite (ACAP) airframes. The objectives of the program were to assess NASTRAN airframe vibration correlations, to investigate contributors to poor agreement, and to improve modeling techniques. In the past, there has been low confidence in higher frequency vibration prediction for helicopters that have multibladed rotors (three or more blades) with predominant excitation frequencies typically above 15 Hz. Bell's findings under the DAMVIBS program, discussed in this paper, included the following: (1) accuracy of finite element models (FEM) for composite and metallic airframes generally were found to be comparable; (2) more detail is needed in the FEM to improve higher frequency prediction; (3) secondary structure not normally included in the FEM can provide significant stiffening; (4) damping can significantly affect phase response at higher frequencies; and (5) future work is needed in the areas of determination of rotor-induced vibratory loads and optimization.

  20. Whole body vibration in helicopters: risk assessment in relation to low back pain.

    PubMed

    Kåsin, Jan Ivar; Mansfield, Neil; Wagstaff, Anthony

    2011-08-01

    Helicopter pilots are exposed to whole body vibration (WBV) in their working environment. WBV has been associated with low back pain (LBP) and helicopter pilots have a high prevalence for LBP compared with other professions. The aim of this study was to develop a test protocol for measuring helicopters with ISO 2631-1 and to perform a whole body vibration risk assessment based on the European Vibration Directive in a number of commonly used military and civilian helicopters. Both absolute values and individual difference in current helicopter types are of interest in order to evaluate the possible role of vibration in LBP in helicopter pilots. In operationally relevant maneuvers, six helicopters were tested. In order to standardize measurements, each continuous flight was split into 15 separate maneuvers. A model of a working day exposure pattern was used to calculate A(8) vibration magnitudes for each helicopter. The vibration A(8) exposure estimates ranged from 0.32-0.51 m x s(-2) during an 8-h working day A(8). This compares with EU and ISO lower bounds risk criteria of 0.5 and 0.43 m x s(-2) A(8), respectively. Despite the vibration levels being relatively low, helicopter pilots report a high incidence of LBP. It is possible that helicopter pilot postures increase the risk of LBP when combined with WBV. The test protocol used in this study could be generally applied for other rotary winged aircraft testing to allow for comparison of WBV results. Data from different flight phases could be used to model different exposure profiles.

  1. Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects

    NASA Technical Reports Server (NTRS)

    Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.

    2011-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.

  2. Correlation of finite-element structural dynamic analysis with measured free vibration characteristics for a full-scale helicopter fuselage

    NASA Technical Reports Server (NTRS)

    Kenigsberg, I. J.; Dean, M. W.; Malatino, R.

    1974-01-01

    The correlation achieved with each program provides the material for a discussion of modeling techniques developed for general application to finite-element dynamic analyses of helicopter airframes. Included are the selection of static and dynamic degrees of freedom, cockpit structural modeling, and the extent of flexible-frame modeling in the transmission support region and in the vicinity of large cut-outs. The sensitivity of predicted results to these modeling assumptions are discussed. Both the Sikorsky Finite-Element Airframe Vibration analysis Program (FRAN/Vibration Analysis) and the NASA Structural Analysis Program (NASTRAN) have been correlated with data taken in full-scale vibration tests of a modified CH-53A helicopter.

  3. Viking 1975 Orbiter Development Test Model/Lander Dynamic Test Model dynamic environmental testing - An overview

    NASA Technical Reports Server (NTRS)

    Milder, G.

    1975-01-01

    The current work presents an overview of the Viking 1975 environmental testing from an engineering standpoint. An extremely large vibration test fixture had to be designed, analyzed, and integrated into a test setup that employed hydrostatic bearings in a new fashion. A vibration control system was also required that would allow for thirty-six channels of sine-wave peak select control from acceleration, force-of-strain transducers. In addition, some 68 channels of peak limiting shutdown capability were needed for backup and monitoring of other data during the forced vibration test. Pretesting included analyses of the fixture design, overturning moment, control system capabilities, and response of the entire spacecraft/fixture/exciter system to the test environment. Closed-loop control for acoustic testing was a necessity due to the fact that the Viking spacecraft took up a major portion of the volume of the 10,000 cu ft chamber. The spacecraft emerged from testing undamaged.

  4. Measurement of ground and nearby building vibration and noise induced by trains in a metro depot.

    PubMed

    Zou, Chao; Wang, Yimin; Wang, Peng; Guo, Jixing

    2015-12-01

    Metro depots are where subway trains are parked and where maintenance is carried out. They usually occupy the largest ground areas in metro projects. Due to land utilization problems, Chinese cities have begun to develop over-track buildings above metro depots for people's life and work. The frequently moving trains, when going into and out of metro depots, can cause excessive vibration and noise to over-track buildings and adversely affect the living quality of the building occupants. Considering the current need of reliable experimental data for the construction of metro depots, field measurements of vibration and noise on the ground and inside a nearby 3-story building subjected to moving subway trains were conducted in a metro depot at Guangzhou, China. The amplitudes and frequency contents of velocity levels were quantified and compared. The composite A-weighted equivalent sound levels and maximum sound levels were captured. The predicted models for vibration and noise of metro depot were proposed based on existing models and verified. It was found that the vertical vibrations were significantly greater than the horizontal vibrations on the ground and inside the building near the testing line. While at the throat area, the horizontal vibrations near the curved track were remarkably greater than the vertical vibrations. The attenuation of the vibrations with frequencies above 50 Hz was larger than the ones below 50 Hz, and the frequencies of vibration transmitting to adjacent buildings were mainly within 10-50 Hz. The largest equivalent sound level generated in the throat area was smaller than the testing line one, but the instantaneous maximum sound level induced by wheels squeal, contact between wheels and rail joints as well as turnout was close to or even greater than the testing line one. The predicted models gave a first estimation for design and assessment of newly built metro depots. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Verification of a 2 kWe Closed-Brayton-Cycle Power Conversion System Mechanical Dynamics Model

    NASA Technical Reports Server (NTRS)

    Ludwiczak, Damian R.; Le, Dzu K.; McNelis, Anne M.; Yu, Albert C.; Samorezov, Sergey; Hervol, Dave S.

    2005-01-01

    Vibration test data from an operating 2 kWe closed-Brayton-cycle (CBC) power conversion system (PCS) located at the NASA Glenn Research Center was used for a comparison with a dynamic disturbance model of the same unit. This effort was performed to show that a dynamic disturbance model of a CBC PCS can be developed that can accurately predict the torque and vibration disturbance fields of such class of rotating machinery. The ability to accurately predict these disturbance fields is required before such hardware can be confidently integrated onto a spacecraft mission. Accurate predictions of CBC disturbance fields will be used for spacecraft control/structure interaction analyses and for understanding the vibration disturbances affecting the scientific instrumentation onboard. This paper discusses how test cell data measurements for the 2 kWe CBC PCS were obtained, the development of a dynamic disturbance model used to predict the transient torque and steady state vibration fields of the same unit, and a comparison of the two sets of data.

  6. Actively Controlled Landing Gear for Aircraft Vibration Reduction

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Daugherty, Robert H.; Martinson, Veloria J.

    1999-01-01

    Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible fuselages. One aspect often overlooked is ground induced vibration of these aircraft. This paper presents an analytical and experimental study of reducing ground-induced aircraft vibration loads using actively controlled landing gears. A facility has been developed to test various active landing gear control concepts and their performance. The facility uses a NAVY A6-intruder landing gear fitted with an auxiliary hydraulic supply electronically controlled by servo valves. An analytical model of the gear is presented including modifications to actuate the gear externally and test data is used to validate the model. The control design is described and closed-loop test and analysis comparisons are presented.

  7. Effect of temperature- and frequency-dependent dynamic properties of rail pads on high-speed vehicle-track coupled vibrations

    NASA Astrophysics Data System (ADS)

    Wei, Kai; Wang, Feng; Wang, Ping; Liu, Zi-xuan; Zhang, Pan

    2017-03-01

    The soft under baseplate pad of WJ-8 rail fastener frequently used in China's high-speed railways was taken as the study subject, and a laboratory test was performed to measure its temperature and frequency-dependent dynamic performance at 0.3 Hz and at -60°C to 20°C with intervals of 2.5°C. Its higher frequency-dependent results at different temperatures were then further predicted based on the time-temperature superposition (TTS) and Williams-Landel-Ferry (WLF) formula. The fractional derivative Kelvin-Voigt (FDKV) model was used to represent the temperature- and frequency-dependent dynamic properties of the tested rail pad. By means of the FDKV model for rail pads and vehicle-track coupled dynamic theory, high-speed vehicle-track coupled vibrations due to temperature- and frequency-dependent dynamic properties of rail pads was investigated. Finally, further combining with the measured frequency-dependent dynamic performance of vehicle's rubber primary suspension, the high-speed vehicle-track coupled vibration responses were discussed. It is found that the storage stiffness and loss factor of the tested rail pad are sensitive to low temperatures or high frequencies. The proposed FDKV model for the frequency-dependent storage stiffness and loss factors of the tested rail pad can basically meet the fitting precision, especially at ordinary temperatures. The numerical simulation results indicate that the vertical vibration levels of high-speed vehicle-track coupled systems calculated with the FDKV model for rail pads in time domain are higher than those calculated with the ordinary Kelvin-Voigt (KV) model for rail pads. Additionally, the temperature- and frequency-dependent dynamic properties of the tested rail pads would alter the vertical vibration acceleration levels (VALs) of the car body and bogie in 1/3 octave frequencies above 31.5 Hz, especially enlarge the vertical VALs of the wheel set and rail in 1/3 octave frequencies of 31.5-100 Hz and above 315 Hz, which are the dominant frequencies of ground vibration acceleration and rolling noise (or bridge noise) caused by high-speed railways respectively. Since the fractional derivative value of the adopted rubber primary suspension, unlike the tested rail pad, is very close to 1, its frequency-dependent dynamic performance has little effect on high-speed vehicle-track coupled vibration responses.

  8. Exploring Modeling Options and Conversion of Average Response to Appropriate Vibration Envelopes for a Typical Cylindrical Vehicle Panel with Rib-stiffened Design

    NASA Technical Reports Server (NTRS)

    Harrison, Phil; LaVerde, Bruce; Teague, David

    2009-01-01

    Although applications for Statistical Energy Analysis (SEA) techniques are more widely used in the aerospace industry today, opportunities to anchor the response predictions using measured data from a flight-like launch vehicle structure are still quite valuable. Response and excitation data from a ground acoustic test at the Marshall Space Flight Center permitted the authors to compare and evaluate several modeling techniques available in the SEA module of the commercial code VA One. This paper provides an example of vibration response estimates developed using different modeling approaches to both approximate and bound the response of a flight-like vehicle panel. Since both vibration response and acoustic levels near the panel were available from the ground test, the evaluation provided an opportunity to learn how well the different modeling options can match band-averaged spectra developed from the test data. Additional work was performed to understand the spatial averaging of the measurements across the panel from measured data. Finally an evaluation/comparison of two conversion approaches from the statistical average response results that are output from an SEA analysis to a more useful envelope of response spectra appropriate to specify design and test vibration levels for a new vehicle.

  9. Predictive discomfort in single- and combined-axis whole-body vibration considering different seated postures.

    PubMed

    DeShaw, Jonathan; Rahmatalla, Salam

    2014-08-01

    The aim of this study was to develop a predictive discomfort model in single-axis, 3-D, and 6-D combined-axis whole-body vibrations of seated occupants considering different postures. Non-neutral postures in seated whole-body vibration play a significant role in the resulting level of perceived discomfort and potential long-term injury. The current international standards address contact points but not postures. The proposed model computes discomfort on the basis of static deviation of human joints from their neutral positions and how fast humans rotate their joints under vibration. Four seated postures were investigated. For practical implications, the coefficients of the predictive discomfort model were changed into the Borg scale with psychophysical data from 12 volunteers in different vibration conditions (single-axis random fore-aft, lateral, and vertical and two magnitudes of 3-D). The model was tested under two magnitudes of 6-D vibration. Significant correlations (R = .93) were found between the predictive discomfort model and the reported discomfort with different postures and vibrations. The ISO 2631-1 correlated very well with discomfort (R2 = .89) but was not able to predict the effect of posture. Human discomfort in seated whole-body vibration with different non-neutral postures can be closely predicted by a combination of static posture and the angular velocities of the joint. The predictive discomfort model can assist ergonomists and human factors researchers design safer environments for seated operators under vibration. The model can be integrated with advanced computer biomechanical models to investigate the complex interaction between posture and vibration.

  10. Adaptive Neuro-Fuzzy Modeling of UH-60A Pilot Vibration

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi; Malki, Heidar A.; Langari, Reza

    2003-01-01

    Adaptive neuro-fuzzy relationships have been developed to model the UH-60A Black Hawk pilot floor vertical vibration. A 200 point database that approximates the entire UH-60A helicopter flight envelope is used for training and testing purposes. The NASA/Army Airloads Program flight test database was the source of the 200 point database. The present study is conducted in two parts. The first part involves level flight conditions and the second part involves the entire (200 point) database including maneuver conditions. The results show that a neuro-fuzzy model can successfully predict the pilot vibration. Also, it is found that the training phase of this neuro-fuzzy model takes only two or three iterations to converge for most cases. Thus, the proposed approach produces a potentially viable model for real-time implementation.

  11. Vibration-reducing gloves: transmissibility at the palm of the hand in three orthogonal directions.

    PubMed

    McDowell, Thomas W; Dong, Ren G; Welcome, Daniel E; Xu, Xueyan S; Warren, Christopher

    2013-01-01

    Vibration-reducing (VR) gloves are commonly used as a means to help control exposures to hand-transmitted vibrations generated by powered hand tools. The objective of this study was to characterise the vibration transmissibility spectra and frequency-weighted vibration transmissibility of VR gloves at the palm of the hand in three orthogonal directions. Seven adult males participated in the evaluation of seven glove models using a three-dimensional hand-arm vibration test system. Three levels of hand coupling force were applied in the experiment. This study found that, in general, VR gloves are most effective at reducing vibrations transmitted to the palm along the forearm direction. Gloves that are found to be superior at reducing vibrations in the forearm direction may not be more effective in the other directions when compared with other VR gloves. This casts doubts on the validity of the standardised glove screening test. Practitioner Summary: This study used human subjects to measure three-dimensional vibration transmissibility of vibration-reducing gloves at the palm and identified their vibration attenuation characteristics. This study found the gloves to be most effective at reducing vibrations along the forearm direction. These gloves did not effectively attenuate vibration along the handle axial direction.

  12. Correlation of finite element free vibration predictions using random vibration test data. M.S. Thesis - Cleveland State Univ.

    NASA Technical Reports Server (NTRS)

    Chambers, Jeffrey A.

    1994-01-01

    Finite element analysis is regularly used during the engineering cycle of mechanical systems to predict the response to static, thermal, and dynamic loads. The finite element model (FEM) used to represent the system is often correlated with physical test results to determine the validity of analytical results provided. Results from dynamic testing provide one means for performing this correlation. One of the most common methods of measuring accuracy is by classical modal testing, whereby vibratory mode shapes are compared to mode shapes provided by finite element analysis. The degree of correlation between the test and analytical mode shapes can be shown mathematically using the cross orthogonality check. A great deal of time and effort can be exhausted in generating the set of test acquired mode shapes needed for the cross orthogonality check. In most situations response data from vibration tests are digitally processed to generate the mode shapes from a combination of modal parameters, forcing functions, and recorded response data. An alternate method is proposed in which the same correlation of analytical and test acquired mode shapes can be achieved without conducting the modal survey. Instead a procedure is detailed in which a minimum of test information, specifically the acceleration response data from a random vibration test, is used to generate a set of equivalent local accelerations to be applied to the reduced analytical model at discrete points corresponding to the test measurement locations. The static solution of the analytical model then produces a set of deformations that once normalized can be used to represent the test acquired mode shapes in the cross orthogonality relation. The method proposed has been shown to provide accurate results for both a simple analytical model as well as a complex space flight structure.

  13. Ground shake test of the UH-60A helicopter airframe and comparison with NASTRAN finite element model predictions

    NASA Technical Reports Server (NTRS)

    Howland, G. R.; Durno, J. A.; Twomey, W. J.

    1990-01-01

    Sikorsky Aircraft, together with the other major helicopter airframe manufacturers, is engaged in a study to improve the use of finite element analysis to predict the dynamic behavior of helicopter airframes, under a rotorcraft structural dynamics program called DAMVIBS (Design Analysis Methods for VIBrationS), sponsored by the NASA-Langley. The test plan and test results are presented for a shake test of the UH-60A BLACK HAWK helicopter. A comparison is also presented of test results with results obtained from analysis using a NASTRAN finite element model.

  14. Vibration Isolation for Launch of a Space Station Orbital Replacement Unit

    NASA Technical Reports Server (NTRS)

    Maly, Joseph R.; Sills, Joel W., Jr.; Pendleton, Scott C.; James, George H., III; Mimovich, Mark

    2004-01-01

    Delivery of Orbital Replacement Units (ORUs) to on-orbit destinations such a the International Space Station (ISS) and the Hubble Space Telescope is an important component of the space program. ORUs are integrated on orbit with space assets to maintain and upgrade functionality. For ORUs comprised of sensitive equipment, the dynamic launch environment drives design and testing requirements, and high frequency random vibrations are generally the cause for failure. Vibration isolation can mitigate the structure-borne vibration environment during launch, and hardware has been developed that can provide a reduced environment for current and future launch environments. Random vibration testing of one ORU to equivalent Space Shuttle launch levels revealed that its qualification and acceptance requirements were exceeded. An isolation system was designed to mitigate the structure-borne launch vibration environment. To protect this ORU, the random vibration levels at 50 Hz must be attenuated by a factor of two and those at higher frequencies even more. Design load factors for Shuttle launch are high, so a metallic load path is needed to maintain strength margins. Isolation system design was performed using a finite element model of the ORU on its carrier with representative disturbance inputs. Iterations on the modelled to an optimized design based on flight proven SoftRide MultiFlex isolators. Component testing has been performed on prototype isolators to validate analytical predictions.

  15. Use of piezoelectric actuators in active vibration control of rotating machinery

    NASA Technical Reports Server (NTRS)

    Lin, Reng Rong; Palazzolo, Alan B.; Kascak, Albert F.; Montague, Gerald

    1990-01-01

    Theoretical and test results for the development of piezoelectric-actuator-based active vibration control (AVC) are presented. The evolution of this technology starts with an ideal model of the actuator and progresses to a more sophisticated model where the pushers force the squirrel cage ball bearing supports of a rotating shaft. The piezoelectric pushers consist of a stack of piezoelectric ceramic disks that are arranged on top of one another and connected in parallel electrically. This model consists of a prescribed displacement that is proportional to the input voltage and a spring that represents the stiffness of the stack of piezoelectric disks. System tests were carried out to stabilize the AVC system, verify its effectiveness in controlling vibration, and confirm the theory presented.

  16. Global dynamic modeling of a transmission system

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Qian, W.

    1993-01-01

    The work performed on global dynamic simulation and noise correlation of gear transmission systems at the University of Akron is outlined. The objective is to develop a comprehensive procedure to simulate the dynamics of the gear transmission system coupled with the effects of gear box vibrations. The developed numerical model is benchmarked with results from experimental tests at NASA Lewis Research Center. The modal synthesis approach is used to develop the global transient vibration analysis procedure used in the model. Modal dynamic characteristics of the rotor-gear-bearing system are calculated by the matrix transfer method while those of the gear box are evaluated by the finite element method (NASTRAN). A three-dimensional, axial-lateral coupled bearing model is used to couple the rotor vibrations with the gear box motion. The vibrations between the individual rotor systems are coupled through the nonlinear gear mesh interactions. The global equations of motion are solved in modal coordinates and the transient vibration of the system is evaluated by a variable time-stepping integration scheme. The relationship between housing vibration and resulting noise of the gear transmission system is generated by linear transfer functions using experimental data. A nonlinear relationship of the noise components to the fundamental mesh frequency is developed using the hypercoherence function. The numerically simulated vibrations and predicted noise of the gear transmission system are compared with the experimental results from the gear noise test rig at NASA Lewis Research Center. Results of the comparison indicate that the global dynamic model developed can accurately simulate the dynamics of a gear transmission system.

  17. Modeling of Aerodynamic Force Acting in Tunnel for Analysis of Riding Comfort in a Train

    NASA Astrophysics Data System (ADS)

    Kikko, Satoshi; Tanifuji, Katsuya; Sakanoue, Kei; Nanba, Kouichiro

    In this paper, we aimed to model the aerodynamic force that acts on a train running at high speed in a tunnel. An analytical model of the aerodynamic force is developed from pressure data measured on car-body sides of a test train running at the maximum revenue operation speed. The simulation of an 8-car train running while being subjected to the modeled aerodynamic force gives the following results. The simulated car-body vibration corresponds to the actual vibration both qualitatively and quantitatively for the cars at the rear of the train. The separation of the airflow at the tail-end of the train increases the yawing vibration of the tail-end car while it has little effect on the car-body vibration of the adjoining car. Also, the effect of the moving velocity of the aerodynamic force on the car-body vibration is clarified that the simulation under the assumption of a stationary aerodynamic force can markedly increase the car-body vibration.

  18. Nonlinear dynamic analysis of rigid rotor supported by gas foil bearings: Effects of gas film and foil structure on subsynchronous vibrations

    NASA Astrophysics Data System (ADS)

    Guo, Zhiyang; Feng, Kai; Liu, Tianyu; Lyu, Peng; Zhang, Tao

    2018-07-01

    Highly nonlinear subsynchronous vibrations are the main causing factors of failure in gas foil bearing (GFB)-rotor systems. Thus, investigating the vibration generation mechanisms and the relationship between subsynchronous vibrations and GFBs is necessary to ensure the healthy operation of rotor systems. In this study, an integrated nonlinear dynamic model with the consideration of shaft motion, unsteady gas film, and deformations of foil structure is established to investigate the effect of gas film and foil structure on system subsynchronous response. One test rig of GFB-rotor system is developed for model comparison. High agreement is shown between the prediction and test data, especially in the frequency domain. The nonlinear dynamic response is analyzed using waterfall plots, operation deflection shapes, journal orbits, Poincaré maps, and fast Fourier transforms. The parameter studies reveal that subsynchronous vibrations are highly related to gas film and foil structure. Subsynchronous vibrations can be adjusted by parameters such as bump stiffness, nominal clearance, and static loads. Therefore, gas foil bearing parameters should be carefully adjusted by system manufacturers to achieve the best rotordynamic performance.

  19. Digital evaluation of sitting posture comfort in human-vehicle system under Industry 4.0 framework

    NASA Astrophysics Data System (ADS)

    Tao, Qing; Kang, Jinsheng; Sun, Wenlei; Li, Zhaobo; Huo, Xiao

    2016-09-01

    Most of the previous studies on the vibration ride comfort of the human-vehicle system were focused only on one or two aspects of the investigation. A hybrid approach which integrates all kinds of investigation methods in real environment and virtual environment is described. The real experimental environment includes the WBV(whole body vibration) test, questionnaires for human subjective sensation and motion capture. The virtual experimental environment includes the theoretical calculation on simplified 5-DOF human body vibration model, the vibration simulation and analysis within ADAMS/VibrationTM module, and the digital human biomechanics and occupational health analysis in Jack software. While the real experimental environment provides realistic and accurate test results, it also serves as core and validation for the virtual experimental environment. The virtual experimental environment takes full advantages of current available vibration simulation and digital human modelling software, and makes it possible to evaluate the sitting posture comfort in a human-vehicle system with various human anthropometric parameters. How this digital evaluation system for car seat comfort design is fitted in the Industry 4.0 framework is also proposed.

  20. Influence of tyre-road contact model on vehicle vibration response

    NASA Astrophysics Data System (ADS)

    Múčka, Peter; Gagnon, Louis

    2015-09-01

    The influence of the tyre-road contact model on the simulated vertical vibration response was analysed. Three contact models were compared: tyre-road point contact model, moving averaged profile and tyre-enveloping model. In total, 1600 real asphalt concrete and Portland cement concrete longitudinal road profiles were processed. The linear planar model of automobile with 12 degrees of freedom (DOF) was used. Five vibration responses as the measures of ride comfort, ride safety and dynamic load of cargo were investigated. The results were calculated as a function of vibration response, vehicle velocity, road quality and road surface type. The marked differences in the dynamic tyre forces and the negligible differences in the ride comfort quantities were observed among the tyre-road contact models. The seat acceleration response for three contact models and 331 DOF multibody model of the truck semi-trailer was compared with the measured response for a known profile of test section.

  1. Time-domain parameter identification of aeroelastic loads by forced-vibration method for response of flexible structures subject to transient wind

    NASA Astrophysics Data System (ADS)

    Cao, Bochao

    Slender structures representing civil, mechanical and aerospace systems such as long-span bridges, high-rise buildings, stay cables, power-line cables, high light mast poles, crane-booms and aircraft wings could experience vortex-induced and buffeting excitations below their design wind speeds and divergent self-excited oscillations (flutter) beyond a critical wind speed because these are flexible. Traditional linear aerodynamic theories that are routinely applied for their response prediction are not valid in the galloping, or near-flutter regime, where large-amplitude vibrations could occur and during non-stationary and transient wind excitations that occur, for example, during hurricanes, thunderstorms and gust fronts. The linear aerodynamic load formulation for lift, drag and moment are expressed in terms of aerodynamic functions in frequency domain that are valid for straight-line winds which are stationary or weakly-stationary. Application of the frequency domain formulation is restricted from use in the nonlinear and transient domain because these are valid for linear models and stationary wind. The time-domain aerodynamic force formulations are suitable for finite element modeling, feedback-dependent structural control mechanism, fatigue-life prediction, and above all modeling of transient structural behavior during non-stationary wind phenomena. This has motivated the developing of time-domain models of aerodynamic loads that are in parallel to the existing frequency-dependent models. Parameters defining these time-domain models can be now extracted from wind tunnel tests, for example, the Rational Function Coefficients defining the self-excited wind loads can be extracted using section model tests using the free vibration technique. However, the free vibration method has some limitations because it is difficult to apply at high wind speeds, in turbulent wind environment, or on unstable cross sections with negative aerodynamic damping. In the current research, new algorithms were developed based on forced vibration technique for direct extraction of the Rational Functions. The first of the two algorithms developed uses the two angular phase lag values between the measured vertical or torsional displacement and the measured aerodynamic lift and moment produced on the section model subject to forced vibration to identify the Rational Functions. This algorithm uses two separate one-degree-of-freedom tests (vertical or torsional) to identify all the four Rational Functions or corresponding Rational Function Coefficients for a two degrees-of-freedom (DOF) vertical-torsional vibration model. It was applied to a streamlined section model and the results compared well with those obtained from earlier free vibration experiment. The second algorithm that was developed is based on direct least squares method. It uses all the data points of displacements and aerodynamic lift and moment instead of phase lag values for more accurate estimates. This algorithm can be used for one-, two- and three-degree-of-freedom motions. A two-degree-of-freedom forced vibration system was developed and the algorithm was shown to work well for both streamlined and bluff section models. The uniqueness of the second algorithms lies in the fact that it requires testing the model at only two wind speeds for extraction of all four Rational Functions. The Rational Function Coefficients that were extracted for a streamlined section model using the two-DOF Least Squares algorithm were validated in a separate wind tunnel by testing a larger scaled model subject to straight-line, gusty and boundary-layer wind.

  2. Ambient Vibration Testing for Story Stiffness Estimation of a Heritage Timber Building

    PubMed Central

    Min, Kyung-Won; Kim, Junhee; Park, Sung-Ah; Park, Chan-Soo

    2013-01-01

    This paper investigates dynamic characteristics of a historic wooden structure by ambient vibration testing, presenting a novel estimation methodology of story stiffness for the purpose of vibration-based structural health monitoring. As for the ambient vibration testing, measured structural responses are analyzed by two output-only system identification methods (i.e., frequency domain decomposition and stochastic subspace identification) to estimate modal parameters. The proposed methodology of story stiffness is estimation based on an eigenvalue problem derived from a vibratory rigid body model. Using the identified natural frequencies, the eigenvalue problem is efficiently solved and uniquely yields story stiffness. It is noteworthy that application of the proposed methodology is not necessarily confined to the wooden structure exampled in the paper. PMID:24227999

  3. Active vibration control of thin-plate structures with partial SCLD treatment

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Wang, Pan; Zhan, Zhenfei

    2017-02-01

    To effectively suppress the low-frequency vibration of a thin-plate, the strategy adopted is to develop a model-based approach to the investigation on the active vibration control of a clamped-clamped plate with partial SCLD treatment. Firstly, a finite element model is developed based on the constitutive equations of elastic, piezoelectric and viscoelastic materials. The characteristics of viscoelastic materials varying with temperature and frequency are described by GHM damping model. A low-dimensional real modal control model which can be used as the basis for active vibration control is then obtained from the combined reduction. The emphasis is placed on the feedback control system to attenuate the vibration of plates with SCLD treatments. A modal controller in conjunction with modal state estimator is designed to solve the problem of full state feedback, making it much more feasible to real-time control. Finally, the theoretical model is verified by modal test, and an active vibration control is validated by hardware-in-the-loop experiment under different external excitations. The numerical and experimental study demonstrate how the piezoelectric actuators actively control the lower modes (first bending and torsional modes) using modal controller, while the higher frequency vibration attenuated by viscoelastic passive damping layer.

  4. Analyses of the most influential factors for vibration monitoring of planetary power transmissions in pellet mills by adaptive neuro-fuzzy technique

    NASA Astrophysics Data System (ADS)

    Milovančević, Miloš; Nikolić, Vlastimir; Anđelković, Boban

    2017-01-01

    Vibration-based structural health monitoring is widely recognized as an attractive strategy for early damage detection in civil structures. Vibration monitoring and prediction is important for any system since it can save many unpredictable behaviors of the system. If the vibration monitoring is properly managed, that can ensure economic and safe operations. Potentials for further improvement of vibration monitoring lie in the improvement of current control strategies. One of the options is the introduction of model predictive control. Multistep ahead predictive models of vibration are a starting point for creating a successful model predictive strategy. For the purpose of this article, predictive models of are created for vibration monitoring of planetary power transmissions in pellet mills. The models were developed using the novel method based on ANFIS (adaptive neuro fuzzy inference system). The aim of this study is to investigate the potential of ANFIS for selecting the most relevant variables for predictive models of vibration monitoring of pellet mills power transmission. The vibration data are collected by PIC (Programmable Interface Controller) microcontrollers. The goal of the predictive vibration monitoring of planetary power transmissions in pellet mills is to indicate deterioration in the vibration of the power transmissions before the actual failure occurs. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of vibration monitoring. It was also used to select the minimal input subset of variables from the initial set of input variables - current and lagged variables (up to 11 steps) of vibration. The obtained results could be used for simplification of predictive methods so as to avoid multiple input variables. It was preferable to used models with less inputs because of overfitting between training and testing data. While the obtained results are promising, further work is required in order to get results that could be directly applied in practice.

  5. Ambient Vibration Tests of an Arch Dam with Different Reservoir Water Levels: Experimental Results and Comparison with Finite Element Modelling

    PubMed Central

    Ranieri, Gaetano

    2014-01-01

    This paper deals with the ambient vibration tests performed in an arch dam in two different working conditions in order to assess the effect produced by two different reservoir water levels on the structural vibration properties. The study consists of an experimental part and a numerical part. The experimental tests were carried out in two different periods of the year, at the beginning of autumn (October 2012) and at the end of winter (March 2013), respectively. The measurements were performed using a fast technique based on asynchronous records of microtremor time-series. In-contact single-station measurements were done by means of one single high resolution triaxial tromometer and two low-frequency seismometers, placed in different points of the structure. The Standard Spectral Ratio method has been used to evaluate the natural frequencies of vibration of the structure. A 3D finite element model of the arch dam-reservoir-foundation system has been developed to verify analytically determined vibration properties, such as natural frequencies and mode shapes, and their changes linked to water level with the experimental results. PMID:25003146

  6. Vibration-reducing gloves: transmissibility at the palm of the hand in three orthogonal directions

    PubMed Central

    McDowell, Thomas W.; Dong, Ren G.; Welcome, Daniel E.; Xu, Xueyan S.; Warren, Christopher

    2015-01-01

    Vibration-reducing (VR) gloves are commonly used as a means to help control exposures to hand-transmitted vibrations generated by powered hand tools. The objective of this study was to characterise the vibration transmissibility spectra and frequency-weighted vibration transmissibility of VR gloves at the palm of the hand in three orthogonal directions. Seven adult males participated in the evaluation of seven glove models using a three-dimensional hand–arm vibration test system. Three levels of hand coupling force were applied in the experiment. This study found that, in general, VR gloves are most effective at reducing vibrations transmitted to the palm along the forearm direction. Gloves that are found to be superior at reducing vibrations in the forearm direction may not be more effective in the other directions when compared with other VR gloves. This casts doubts on the validity of the standardised glove screening test. Practitioner Summary This study used human subjects to measure three-dimensional vibration transmissibility of vibration-reducing gloves at the palm and identified their vibration attenuation characteristics. This study found the gloves to be most effective at reducing vibrations along the forearm direction. These gloves did not effectively attenuate vibration along the handle axial direction. PMID:24160755

  7. Mated vertical ground vibration test

    NASA Technical Reports Server (NTRS)

    Ivey, E. W.

    1980-01-01

    The Mated Vertical Ground Vibration Test (MVGVT) was considered to provide an experimental base in the form of structural dynamic characteristics for the shuttle vehicle. This data base was used in developing high confidence analytical models for the prediction and design of loads, pogo controls, and flutter criteria under various payloads and operational missions. The MVGVT boost and launch program evolution, test configurations, and their suspensions are described. Test results are compared with predicted analytical results.

  8. Study of providing omnidirectional vibration isolation to entire space shuttle payload packages

    NASA Technical Reports Server (NTRS)

    Chang, C. S.; Robinson, G. D.; Weber, D. E.

    1974-01-01

    Techniques to provide omnidirectional vibration isolation for a space shuttle payload package were investigated via a reduced-scale model. Development, design, fabrication, assembly and test evaluation of a 0.125-scale isolation model are described. Final drawings for fabricated mechanical components are identified, and prints of all drawings are included.

  9. Nerve regeneration in nerve grafts conditioned by vibration exposure.

    PubMed

    Bergman, S; Widerberg, A; Danielsen, N; Lundborg, G; Dahlin, L B

    1995-01-01

    Regeneration distances were studied in nerves from vibration-exposed limbs. One hind limb of anaesthetized rats was attached to a vibration exciter and exposed to vibration (80 Hz/32 m/s2) for 5 h/day for 2 or 5 days. Seven days after the latest vibration period a 10-mm long nerve graft was taken from the vibrated sciatic nerve and sutured into a corresponding defect in the con-tralateral sciatic nerve and vice versa, thereby creating two different models within the same animal: (i) regeneration from a freshly transected unvibrated nerve into a vibrated graft and (ii) regeneration from a vibrated nerve into a fresh nerve graft (vibrated recipient side). Four, 6 or 8 days postoperatively (p.o.) the distances achieved by the regenerating axons were determined using the pinch reflex test. Two days of vibration did not influence the regeneration, but 5 days of vibration reduced the initial delay period and a slight reduction of regeneration rate was observed. After 5 days of vibration an increased regeneration distance was observed in both models at day 4 p.o. and at day 6 p.o. in vibrated grafts. This study demonstrates that vibration can condition peripheral nerves and this may be caused by local changes in the peripheral nerve trunk and in the neuron itself.

  10. The choice of boundary conditions and mesh for scaffolding FEM model on the basis of natural vibrations measurements

    NASA Astrophysics Data System (ADS)

    Cyniak, Patrycja; Błazik-Borowa, Ewa; Szer, Jacek; Lipecki, Tomasz; Szer, Iwona

    2018-01-01

    Scaffolding is a specific construction with high susceptibility to low frequency vibrations. The numerical model of scaffolding presented in this paper contains real imperfections received from geodetic measurements of real construction. Boundary conditions were verified on the basis of measured free vibrations. A simulation of a man walking on penultimate working level as a dynamic load variable in time was made for verified model. The paper presents procedure for a choice of selected parameters of the scaffolding FEM model. The main aim of analysis is the best projection of the real construction and correct modeling of worker walking on the scaffolding. Different boundary conditions are considered, because of their impact on construction vibrations. Natural vibrations obtained from FEM calculations are compared with free vibrations measured during in-situ tests. Structure accelerations caused by walking human are then considered in this paper. Methodology of creating numerical models of scaffoldings and analysis of dynamic effects during human walking are starting points for further considerations about dynamic loads acting on such structures and effects of these loads to construction and workers, whose workplaces are situated on the scaffolding.

  11. Lightweight Solar Paddle with High Specific Power of 150 W/Kg

    NASA Astrophysics Data System (ADS)

    Shimazaki, Kazunori; Takahashi, Masato; Imaizumi, Mitsuru; Takamoto, Tatsuya; Ito, Takehiko; Nozaki, Yukishige; Kusawake, Hiroaki

    2014-08-01

    A lightweight solar paddle using space solar sheet (SSS) is currently being developed, which uses glass-type SSS (G-SSS) comprising InGaP/GaAs/InGaAs triple- junction high-efficiency thin-film solar cells. To avoid damage to the G-SSS due to vibration during launch, we adopted a new architecture on a panel. This panel employed a curved frame-type structure, on which the G-SSS is mounted and test models were manufactured to evaluate the vibration tolerance. The dimensions of the 1.0-cm-thick unit panel were about 1.0 × 1.0 m. Acoustic and sine vibration tests were performed on the model and the results demonstrated the high durability of the curved panel in an acoustic and vibration environments. The specific power of the solar paddle using the curved panel is estimated at approximately 150 W/kg at an array power of about 10 kW.

  12. Fluid-structure coupling in the guide vanes cascade of a pump-turbine scale model

    NASA Astrophysics Data System (ADS)

    Roth, S.; Hasmatuchi, V.; Botero, F.; Farhat, M.; Avellan, F.

    2010-08-01

    The present study concerns fluid-structure coupling phenomena occurring in a guide vane cascade of a pump-turbine scale model placed in the EPFL PF3 test rig. An advanced instrument set is used to monitor both vibrating structures and the surrounding flow. The paper highlights the interaction between vibrating guide vanes and the flow behavior. The pressure fluctuations in the stay vanes region are found to be strongly influenced by the amplitude of the vibrating guide vanes. Moreover, the flow induces different hydrodynamic damping on the vibrating guide vanes depending on the operating point of the pump-turbine.

  13. Summary of AH-1G flight vibration data for validation of coupled rotor-fuselage analyses

    NASA Technical Reports Server (NTRS)

    Dompka, R. V.; Cronkhite, J. D.

    1986-01-01

    Under a NASA research program designated DAMVIBS (Design Analysis Methods for VIBrationS), four U. S. helicopter industry participants (Bell Helicopter, Boeing Vertol, McDonnell Douglas Helicopter, and Sikorsky Aircraft) are to apply existing analytical methods for calculating coupled rotor-fuselage vibrations of the AH-1G helicopter for correlation with flight test data from an AH-1G Operational Load Survey (OLS) test program. Bell Helicopter, as the manufacturer of the AH-1G, was asked to provide pertinent rotor data and to collect the OLS flight vibration data needed to perform the correlations. The analytical representation of the fuselage structure is based on a NASTRAN finite element model (FEM) developed by Bell which has been extensively documented and correlated with ground vibration tests.The AH-1G FEM was provided to each of the participants for use in their coupled rotor-fuselage analyses. This report describes the AH-1G OLS flight test program and provides the flight conditions and measured vibration data to be used by each participant in their correlation effort. In addition, the mechanical, structural, inertial and aerodynamic data for the AH-1G two-bladed teetering main rotor system are presented. Furthermore, modifications to the NASTRAN FEM of the fuselage structure that are necessary to make it compatible with the OLS test article are described. The AH-1G OLS flight test data was found to be well documented and provide a sound basis for evaluating currently existing analysis methods used for calculation of coupled rotor-fuselage vibrations.

  14. Payload test philosophy. [to provide confidence in Shuttle structural math models

    NASA Technical Reports Server (NTRS)

    Mayhew, D.

    1979-01-01

    Shuttle payload test philosophy is discussed with reference to testing to provide confidence in Shuttle structural math models. Particular attention is given the Shuttle quarter-scale program and the Mated Vertical Ground Vibration Test Program.

  15. Identification and calibration of the structural model of historical masonry building damaged during the 2016 Italian earthquakes: The case study of Palazzo del Podestà in Montelupone

    NASA Astrophysics Data System (ADS)

    Catinari, Federico; Pierdicca, Alessio; Clementi, Francesco; Lenci, Stefano

    2017-11-01

    The results of an ambient-vibration based investigation conducted on the "Palazzo del Podesta" in Montelupone (Italy) is presented. The case study was damaged during the 20I6 Italian earthquakes that stroke the central part of the Italy. The assessment procedure includes full-scale ambient vibration testing, modal identification from ambient vibration responses, finite element modeling and dynamic-based identification of the uncertain structural parameters of the model. A very good match between theoretical and experimental modal parameters was reached and the model updating has been performed identifying some structural parameters.

  16. Force Limited Random Vibration Test of TESS Camera Mass Model

    NASA Technical Reports Server (NTRS)

    Karlicek, Alexandra; Hwang, James Ho-Jin; Rey, Justin J.

    2015-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a spaceborne instrument consisting of four wide field-of-view-CCD cameras dedicated to the discovery of exoplanets around the brightest stars. As part of the environmental testing campaign, force limiting was used to simulate a realistic random vibration launch environment. While the force limit vibration test method is a standard approach used at multiple institutions including Jet Propulsion Laboratory (JPL), NASA Goddard Space Flight Center (GSFC), European Space Research and Technology Center (ESTEC), and Japan Aerospace Exploration Agency (JAXA), it is still difficult to find an actual implementation process in the literature. This paper describes the step-by-step process on how the force limit method was developed and applied on the TESS camera mass model. The process description includes the design of special fixtures to mount the test article for properly installing force transducers, development of the force spectral density using the semi-empirical method, estimation of the fuzzy factor (C2) based on the mass ratio between the supporting structure and the test article, subsequent validating of the C2 factor during the vibration test, and calculation of the C.G. accelerations using the Root Mean Square (RMS) reaction force in the spectral domain and the peak reaction force in the time domain.

  17. Investigation of difficult component effects on finite element model vibration prediction for the Bell AG-1G helicopter. Volume 2: Correlation results

    NASA Technical Reports Server (NTRS)

    Dompka, R. V.

    1989-01-01

    Under the NASA-sponsored DAMVIBS (Design Analysis Methods for VIBrationS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AG-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, furl, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the NASTRAN FEM correlations are given.

  18. Vibration analysis of printed circuit boards: Effect of boundary condition

    NASA Astrophysics Data System (ADS)

    Prashanth, M. D.

    2018-04-01

    A spacecraft consists of a number of electronic packages to meet the functional requirements. An electronic package is generally an assembly of printed circuit boards placed in a mechanical housing. A number of electronic components are mounted on the printed circuit board (PCB). A spacecraft experiences various types of loads during its launch such as vibration, acoustic and shock loads. Prediction of response for printed circuit boards due to vibration loads is important for mechanical design and reliability of electronic packages. The modeling and analysis of printed circuit boards is required for accurate prediction of response due to vibration loads. The response of PCB is highly dependent on the mounting configuration of PCB. In addition, anti-vibration mounts or stiffeners are used to reduce the PCB response. Vibration analysis of printed circuit boards is carried out using finite element method. The objective of this paper is to determine the dynamic characteristics of a printed circuit board. Modeling and analysis of PCB shall be carried out to study the effect of boundary conditions on the vibration response. The modeling of stiffeners or ribs shall also be considered in detail. The analysis results shall be validated using vibration tests of PCB.

  19. Predictive Feedback and Feedforward Control for Systems with Unknown Disturbances

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Eure, Kenneth W.

    1998-01-01

    Predictive feedback control has been successfully used in the regulation of plate vibrations when no reference signal is available for feedforward control. However, if a reference signal is available it may be used to enhance regulation by incorporating a feedforward path in the feedback controller. Such a controller is known as a hybrid controller. This paper presents the theory and implementation of the hybrid controller for general linear systems, in particular for structural vibration induced by acoustic noise. The generalized predictive control is extended to include a feedforward path in the multi-input multi-output case and implemented on a single-input single-output test plant to achieve plate vibration regulation. There are cases in acoustic-induce vibration where the disturbance signal is not available to be used by the hybrid controller, but a disturbance model is available. In this case the disturbance model may be used in the feedback controller to enhance performance. In practice, however, neither the disturbance signal nor the disturbance model is available. This paper presents the theory of identifying and incorporating the noise model into the feedback controller. Implementations are performed on a test plant and regulation improvements over the case where no noise model is used are demonstrated.

  20. Ball bearing vibrations amplitude modeling and test comparisons

    NASA Technical Reports Server (NTRS)

    Hightower, Richard A., III; Bailey, Dave

    1995-01-01

    Bearings generate disturbances that, when combined with structural gains of a momentum wheel, contribute to induced vibration in the wheel. The frequencies generated by a ball bearing are defined by the bearing's geometry and defects. The amplitudes at these frequencies are dependent upon the actual geometry variations from perfection; therefore, a geometrically perfect bearing will produce no amplitudes at the kinematic frequencies that the design generates. Because perfect geometry can only be approached, emitted vibrations do occur. The most significant vibration is at the spin frequency and can be balanced out in the build process. Other frequencies' amplitudes, however, cannot be balanced out. Momentum wheels are usually the single largest source of vibrations in a spacecraft and can contribute to pointing inaccuracies if emitted vibrations ring the structure or are in the high-gain bandwidth of a sensitive pointing control loop. It is therefore important to be able to provide an a priori knowledge of possible amplitudes that are singular in source or are a result of interacting defects that do not reveal themselves in normal frequency prediction equations. This paper will describe the computer model that provides for the incorporation of bearing geometry errors and then develops an estimation of actual amplitudes and frequencies. Test results were correlated with the model. A momentum wheel was producing an unacceptable 74 Hz amplitude. The model was used to simulate geometry errors and proved successful in identifying a cause that was verified when the parts were inspected.

  1. Disk Crack Detection for Seeded Fault Engine Test

    NASA Technical Reports Server (NTRS)

    Luo, Huageng; Rodriguez, Hector; Hallman, Darren; Corbly, Dennis; Lewicki, David G. (Technical Monitor)

    2004-01-01

    Work was performed to develop and demonstrate vibration diagnostic techniques for the on-line detection of engine rotor disk cracks and other anomalies through a real engine test. An existing single-degree-of-freedom non-resonance-based vibration algorithm was extended to a multi-degree-of-freedom model. In addition, a resonance-based algorithm was also proposed for the case of one or more resonances. The algorithms were integrated into a diagnostic system using state-of-the- art commercial analysis equipment. The system required only non-rotating vibration signals, such as accelerometers and proximity probes, and the rotor shaft 1/rev signal to conduct the health monitoring. Before the engine test, the integrated system was tested in the laboratory by using a small rotor with controlled mass unbalances. The laboratory tests verified the system integration and both the non-resonance and the resonance-based algorithm implementations. In the engine test, the system concluded that after two weeks of cycling, the seeded fan disk flaw did not propagate to a large enough size to be detected by changes in the synchronous vibration. The unbalance induced by mass shifting during the start up and coast down was still the dominant response in the synchronous vibration.

  2. Principal Components Analysis of Triaxial Vibration Data From Helicopter Transmissions

    NASA Technical Reports Server (NTRS)

    Tumer, Irem Y.; Huff, Edward M.

    2001-01-01

    Research on the nature of the vibration data collected from helicopter transmissions during flight experiments has led to several crucial observations believed to be responsible for the high rates of false alarms and missed detections in aircraft vibration monitoring systems. This work focuses on one such finding, namely, the need to consider additional sources of information about system vibrations. In this light, helicopter transmission vibration data, collected using triaxial accelerometers, were explored in three different directions, analyzed for content, and then combined using Principal Components Analysis (PCA) to analyze changes in directionality. In this paper, the PCA transformation is applied to 176 test conditions/data sets collected from an OH58C helicopter to derive the overall experiment-wide covariance matrix and its principal eigenvectors. The experiment-wide eigenvectors. are then projected onto the individual test conditions to evaluate changes and similarities in their directionality based on the various experimental factors. The paper will present the foundations of the proposed approach, addressing the question of whether experiment-wide eigenvectors accurately model the vibration modes in individual test conditions. The results will further determine the value of using directionality and triaxial accelerometers for vibration monitoring and anomaly detection.

  3. Effects of vibration on inertial wind-tunnel model attitude measurement devices

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Buehrle, Ralph D.; Balakrishna, S.; Kilgore, W. Allen

    1994-01-01

    Results of an experimental study of a wind tunnel model inertial angle-of-attack sensor response to a simulated dynamic environment are presented. The inertial device cannot distinguish between the gravity vector and the centrifugal accelerations associated with wind tunnel model vibration, this situation results in a model attitude measurement bias error. Significant bias error in model attitude measurement was found for the model system tested. The model attitude bias error was found to be vibration mode and amplitude dependent. A first order correction model was developed and used for estimating attitude measurement bias error due to dynamic motion. A method for correcting the output of the model attitude inertial sensor in the presence of model dynamics during on-line wind tunnel operation is proposed.

  4. Analysis of Piezoelectric Actuator for Vibration Control of Composite plate

    NASA Astrophysics Data System (ADS)

    Gomaa, Ahmed R.; Hai, Huang

    2017-07-01

    Vibration analysis is studied numerically in this paper for a simply supported composite plate subjected to external loadings. Vibrations are controlled by using piezoelectric patches. Finite element method (ANSYS) is used for obtaining finite element model of the smart plate structure, a layered composite plate is manufactured experimentally and tested to obtain the structure mechanical properties. Different piezoelectric patch areas and different applied gain voltage effects on vibration attenuation is studied. The numerical solution is compared with the experimental work, a good agreement achieved.

  5. Investigation of vibration characteristics of electric motors

    NASA Technical Reports Server (NTRS)

    Bakshis, A. K.; Tamoshyunas, Y. K.

    1973-01-01

    The vibration characteristics of electric motors were analyzed using mathematical statistics methods. The equipment used and the method of conducting the test are described. Curves are developed to show the visualization of the electric motor vibrations in the vertical direction. Additional curves are included to show the amplitude-phase frequency characteristic of dynamic rotor-housing vibrations at the first lug and the same data for the second lug of the electric motor. Mathematical models were created to show the transmission function of the dynamic rotor housing system.

  6. System Dynamic Analysis of a Wind Tunnel Model with Applications to Improve Aerodynamic Data Quality

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph David

    1997-01-01

    The research investigates the effect of wind tunnel model system dynamics on measured aerodynamic data. During wind tunnel tests designed to obtain lift and drag data, the required aerodynamic measurements are the steady-state balance forces and moments, pressures, and model attitude. However, the wind tunnel model system can be subjected to unsteady aerodynamic and inertial loads which result in oscillatory translations and angular rotations. The steady-state force balance and inertial model attitude measurements are obtained by filtering and averaging data taken during conditions of high model vibrations. The main goals of this research are to characterize the effects of model system dynamics on the measured steady-state aerodynamic data and develop a correction technique to compensate for dynamically induced errors. Equations of motion are formulated for the dynamic response of the model system subjected to arbitrary aerodynamic and inertial inputs. The resulting modal model is examined to study the effects of the model system dynamic response on the aerodynamic data. In particular, the equations of motion are used to describe the effect of dynamics on the inertial model attitude, or angle of attack, measurement system that is used routinely at the NASA Langley Research Center and other wind tunnel facilities throughout the world. This activity was prompted by the inertial model attitude sensor response observed during high levels of model vibration while testing in the National Transonic Facility at the NASA Langley Research Center. The inertial attitude sensor cannot distinguish between the gravitational acceleration and centrifugal accelerations associated with wind tunnel model system vibration, which results in a model attitude measurement bias error. Bias errors over an order of magnitude greater than the required device accuracy were found in the inertial model attitude measurements during dynamic testing of two model systems. Based on a theoretical modal approach, a method using measured vibration amplitudes and measured or calculated modal characteristics of the model system is developed to correct for dynamic bias errors in the model attitude measurements. The correction method is verified through dynamic response tests on two model systems and actual wind tunnel test data.

  7. Testing accelerometer rectification error caused by multidimensional composite inputs with double turntable centrifuge.

    PubMed

    Guan, W; Meng, X F; Dong, X M

    2014-12-01

    Rectification error is a critical characteristic of inertial accelerometers. Accelerometers working in operational situations are stimulated by composite inputs, including constant acceleration and vibration, from multiple directions. However, traditional methods for evaluating rectification error only use one-dimensional vibration. In this paper, a double turntable centrifuge (DTC) was utilized to produce the constant acceleration and vibration simultaneously and we tested the rectification error due to the composite accelerations. At first, we deduced the expression of the rectification error with the output of the DTC and a static model of the single-axis pendulous accelerometer under test. Theoretical investigation and analysis were carried out in accordance with the rectification error model. Then a detailed experimental procedure and testing results were described. We measured the rectification error with various constant accelerations at different frequencies and amplitudes of the vibration. The experimental results showed the distinguished characteristics of the rectification error caused by the composite accelerations. The linear relation between the constant acceleration and the rectification error was proved. The experimental procedure and results presented in this context can be referenced for the investigation of the characteristics of accelerometer with multiple inputs.

  8. Identification of walking human model using agent-based modelling

    NASA Astrophysics Data System (ADS)

    Shahabpoor, Erfan; Pavic, Aleksandar; Racic, Vitomir

    2018-03-01

    The interaction of walking people with large vibrating structures, such as footbridges and floors, in the vertical direction is an important yet challenging phenomenon to describe mathematically. Several different models have been proposed in the literature to simulate interaction of stationary people with vibrating structures. However, the research on moving (walking) human models, explicitly identified for vibration serviceability assessment of civil structures, is still sparse. In this study, the results of a comprehensive set of FRF-based modal tests were used, in which, over a hundred test subjects walked in different group sizes and walking patterns on a test structure. An agent-based model was used to simulate discrete traffic-structure interactions. The occupied structure modal parameters found in tests were used to identify the parameters of the walking individual's single-degree-of-freedom (SDOF) mass-spring-damper model using 'reverse engineering' methodology. The analysis of the results suggested that the normal distribution with the average of μ = 2.85Hz and standard deviation of σ = 0.34Hz can describe human SDOF model natural frequency. Similarly, the normal distribution with μ = 0.295 and σ = 0.047 can describe the human model damping ratio. Compared to the previous studies, the agent-based modelling methodology proposed in this paper offers significant flexibility in simulating multi-pedestrian walking traffics, external forces and simulating different mechanisms of human-structure and human-environment interaction at the same time.

  9. Electromechanical simulation and test of rotating systems with magnetic bearing or piezoelectric actuator active vibration control

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.; Tang, Punan; Kim, Chaesil; Manchala, Daniel; Barrett, Tim; Kascak, Albert F.; Brown, Gerald; Montague, Gerald; Dirusso, Eliseo; Klusman, Steve

    1994-01-01

    This paper contains a summary of the experience of the authors in the field of electromechanical modeling for rotating machinery - active vibration control. Piezoelectric and magnetic bearing actuator based control are discussed.

  10. Assembly, Integration, and Test Methods for Operationally Responsive Space Satellites

    DTIC Science & Technology

    2010-03-01

    like assembly and vibration tests, to ensure there have been no failures induced by the activities. External thermal control blankets and radiator...configuration of the satellite post- vibration test and adds time to the process. • Thermal blanketing is not realistic with current technology or...patterns for thermal blankets and radiator tape. The computer aided drawing (CAD) solid model was used to generate patterns that were cut and applied real

  11. Optimized Non-Obstructive Particle Damping (NOPD) Treatment for Composite Honeycomb Structures

    NASA Technical Reports Server (NTRS)

    Panossian, H.

    2008-01-01

    Non-Obstructive Particle Damping (NOPD) technology is a passive vibration damping approach whereby metallic or non-metallic particles in spherical or irregular shapes, of heavy or light consistency, and even liquid particles are placed inside cavities or attached to structures by an appropriate means at strategic locations, to absorb vibration energy. The objective of the work described herein is the development of a design optimization procedure and discussion of test results for such a NOPD treatment on honeycomb (HC) composite structures, based on finite element modeling (FEM) analyses, optimization and tests. Modeling and predictions were performed and tests were carried out to correlate the test data with the FEM. The optimization procedure consisted of defining a global objective function, using finite difference methods, to determine the optimal values of the design variables through quadratic linear programming. The optimization process was carried out by targeting the highest dynamic displacements of several vibration modes of the structure and finding an optimal treatment configuration that will minimize them. An optimal design was thus derived and laboratory tests were conducted to evaluate its performance under different vibration environments. Three honeycomb composite beams, with Nomex core and aluminum face sheets, empty (untreated), uniformly treated with NOPD, and optimally treated with NOPD, according to the analytically predicted optimal design configuration, were tested in the laboratory. It is shown that the beam with optimal treatment has the lowest response amplitude. Described below are results of modal vibration tests and FEM analyses from predictions of the modal characteristics of honeycomb beams under zero, 50% uniform treatment and an optimal NOPD treatment design configuration and verification with test data.

  12. Vibration reduction of pneumatic percussive rivet tools: mechanical and ergonomic re-design approaches.

    PubMed

    Cherng, John G; Eksioglu, Mahmut; Kizilaslan, Kemal

    2009-03-01

    This paper presents a systematic design approach, which is the result of years of research effort, to ergonomic re-design of rivet tools, i.e. rivet hammers and bucking bars. The investigation was carried out using both ergonomic approach and mechanical analysis of the rivet tools dynamic behavior. The optimal mechanical design parameters of the re-designed rivet tools were determined by Taguchi method. Two ergonomically re-designed rivet tools with vibration damping/isolation mechanisms were tested against two conventional rivet tools in both laboratory and field tests. Vibration characteristics of both types of tools were measured by laboratory tests using a custom-made test fixture. The subjective field evaluations of the tools were performed by six experienced riveters at an aircraft repair shop. Results indicate that the isolation spring and polymer damper are very effective in reducing the overall level of vibration under both unweighted and weighted acceleration conditions. The mass of the dolly head and the housing played a significant role in the vibration absorption of the bucking bars. Another important result was that the duct iron has better vibration reducing capability compared to steel and aluminum for bucking bars. Mathematical simulation results were also consistent with the experimental results. Overall conclusion obtained from the study was that by applying the design principles of ergonomics and by adding vibration damping/isolation mechanisms to the rivet tools, the vibration level can significantly be reduced and the tools become safer and user friendly. The details of the experience learned, design modifications, test methods, mathematical models and the results are included in the paper.

  13. A new portable vibrator for plaster pouring: effect on the marginal fit at cylinder-abutment

    PubMed Central

    de ANDRADE, Pâmela Cândida Aires Ribas; LUTHI, Leonardo Flores; STANLEY, Kyle; CARDOSO, Antônio Carlos

    2012-01-01

    Objective The aim of this study was to test a new portable vibrator for plaster pouring (developed for this purpose), comparing the effect of its use on the accuracy of working cast of implant-supported restorations to the conventional vibrator. Material and methods From a master cast with 2 implants, 30 transfer moldings were made randomly and divided into three groups: Group I (GI): pouring performed in an outsourced dental laboratory with conventional plaster vibrator (10 casts), Group II (GII): pouring performed in the laboratory of the Federal University of Santa Catarina (UFSC) with conventional plaster vibrator (10 casts) and Group III (GIII): pouring performed with the portable vibrator fabricated for this study (10 casts). The position of the analogue and marginal adaptation of the infrastructure were verified by testing the single screw on the master model and on the working model. The measurement of misfit was blindly performed with a precision microscope and analyzing unit, Quadra-Check 200. The data were statistically analyzed by analysis of variance (ANOVA) and the Holm-Sidak test (α=0.05). Results Means±standard deviations were as follows: GI: 19.19±4.73 µm; GII: 21.72±5.41 µm; GIII: 13.5±2.39 µm (P<0.05), with GIII significantly lower as compared to the other groups. Conclusion Within the limitations of this study, it was concluded that a greater accuracy of working cast was achieved when a portable vibrator was used for casting molds. PMID:23138736

  14. Comparison of NASTRAN analysis with ground vibration results of UH-60A NASA/AEFA test configuration

    NASA Technical Reports Server (NTRS)

    Idosor, Florentino; Seible, Frieder

    1990-01-01

    Preceding program flight tests, a ground vibration test and modal test analysis of a UH-60A Black Hawk helicopter was conducted by Sikorsky Aircraft to complement the UH-60A test plan and NASA/ARMY Modern Technology Rotor Airloads Program. The 'NASA/AEFA' shake test configuration was tested for modal frequencies and shapes and compared with its NASTRAN finite element model counterpart to give correlative results. Based upon previous findings, significant differences in modal data existed and were attributed to assumptions regarding the influence of secondary structure contributions in the preliminary NASTRAN modeling. An analysis of an updated finite element model including several secondary structural additions has confirmed that the inclusion of specific secondary components produces a significant effect on modal frequency and free-response shapes and improves correlations at lower frequencies with shake test data.

  15. Measurement and Simulation of Low Frequency Impulse Noise and Ground Vibration from Airblasts

    NASA Astrophysics Data System (ADS)

    Hole, L. R.; Kaynia, A. M.; Madshus, C.

    1998-07-01

    This paper presents numerical simulations of low frequency ground vibration and dynamic overpressure in air using two different numerical models. Analysis is based on actual recordings during blast tests at Haslemoen test site in Norway in June 1994. It is attempted to use the collected airblast-induced overpressures and ground vibrations in order to asses the applicability of the two models. The first model is a computer code which is based on a global representation of ground and atmospheric layers, a so-called Fast Field Program (FFP). A viscoelastic and a poroelastic version of this model is used. The second model is a two-dimensionalmoving-loadformulation for the propagation of airblast over ground. The poroelastic FFP gives the most complete and realistic reproduction of the processes involved, including decay of peak overpressure amplitude and dominant frequency of signals with range. It turns out that themoving-loadformulation does not provide a complete description of the physics involved when the speed of sound in air is different from the ground wavespeeds.

  16. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    A rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for a curved orthogrid panel typical of launch vehicle skin structures. Several test article configurations were produced by adding component equipment of differing weights to the flight-like vehicle panel. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was employed to describe the assumed correlation of phased input sound pressures across the energized panel. This application demonstrates the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software modules developed for the RPTF method can be easily adapted for quick replacement of the diffuse acoustic field with other pressure field models; for example a turbulent boundary layer (TBL) model suitable for vehicle ascent. Wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this type of environment. Finally, component vibration environments for design were developed from the measured and predicted responses and compared with those derived from traditional techniques such as Barrett scaling methods for unloaded and component-loaded panels.

  17. Vibration based condition monitoring of a multistage epicyclic gearbox in lifting cranes

    NASA Astrophysics Data System (ADS)

    Assaad, Bassel; Eltabach, Mario; Antoni, Jérôme

    2014-01-01

    This paper proposes a model-based technique for detecting wear in a multistage planetary gearbox used by lifting cranes. The proposed method establishes a vibration signal model which deals with cyclostationary and autoregressive models. First-order cyclostationarity is addressed by the analysis of the time synchronous average (TSA) of the angular resampled vibration signal. Then an autoregressive model (AR) is applied to the TSA part in order to extract a residual signal containing pertinent fault signatures. The paper also explores a number of methods commonly used in vibration monitoring of planetary gearboxes, in order to make comparisons. In the experimental part of this study, these techniques are applied to accelerated lifetime test bench data for the lifting winch. After processing raw signals recorded with an accelerometer mounted on the outside of the gearbox, a number of condition indicators (CIs) are derived from the TSA signal, the residual autoregressive signal and other signals derived using standard signal processing methods. The goal is to check the evolution of the CIs during the accelerated lifetime test (ALT). Clarity and fluctuation level of the historical trends are finally considered as a criteria for comparing between the extracted CIs.

  18. High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple

    NASA Astrophysics Data System (ADS)

    Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei

    2017-07-01

    With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.

  19. Plan, formulate, discuss and correlate a NASTRAN finite element vibrations model of the Boeing Model 360 helicopter airframe

    NASA Technical Reports Server (NTRS)

    Gabel, R.; Lang, P. F.; Smith, L. A.; Reed, D. A.

    1989-01-01

    Boeing Helicopter, together with other United States helicopter manufacturers, participated in a finite element applications program to emplace in the United States a superior capability to utilize finite element analysis models in support of helicopter airframe design. The activities relating to planning and creating a finite element vibrations model of the Boeing Model 36-0 composite airframe are summarized, along with the subsequent analytical correlation with ground shake test data.

  20. Development of an unsteady aerodynamics model to improve correlation of computed blade stresses with test data

    NASA Technical Reports Server (NTRS)

    Gangwani, S. T.

    1985-01-01

    A reliable rotor aeroelastic analysis operational that correctly predicts the vibration levels for a helicopter is utilized to test various unsteady aerodynamics models with the objective of improving the correlation between test and theory. This analysis called Rotor Aeroelastic Vibration (RAVIB) computer program is based on a frequency domain forced response analysis which utilizes the transfer matrix techniques to model helicopter/rotor dynamic systems of varying degrees of complexity. The results for the AH-1G helicopter rotor were compared with the flight test data during high speed operation and they indicated a reasonably good correlation for the beamwise and chordwise blade bending moments, but for torsional moments the correlation was poor. As a result, a new aerodynamics model based on unstalled synthesized data derived from the large amplitude oscillating airfoil experiments was developed and tested.

  1. Vibration mode and vibration shape under excitation of a three phase model transformer core

    NASA Astrophysics Data System (ADS)

    Okabe, Seiji; Ishigaki, Yusuke; Omura, Takeshi

    2018-04-01

    Structural vibration characteristics and vibration shapes under three-phase excitation of a archetype transformer core were investigated to consider their influences on transformer noise. Acoustic noise and vibration behavior were measured in a three-limb model transformer core. Experimental modal analysis by impact test was performed. The vibration shapes were measured by a laser scanning vibrometer at different exciting frequencies. Vibration amplitude of the core in out-of-plane direction were relatively larger than those in other two in-plane directions. It was consistent with the result that the frequency response function of the core in out-of-plane direction was larger by about 20 dB or more than those in in-plane directions. There were many vibration modes having bending deformation of limbs in out-of-plane direction. The vibration shapes of the core when excited at 50 Hz and 60 Hz were almost the same because the fundamental frequencies of the vibration were not close to the resonance frequencies. When excitation frequency was 69 Hz which was half of one of the resonance frequencies, the vibration shape changed to the one similar to the resonance vibration mode. Existence of many vibration modes in out-of-plane direction of the core was presumed to be a reason why frequency characteristics of magnetostriction and transformer noise do not coincide.

  2. Technology Transferred to the Kirby Company

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA Lewis Research Center's Propulsion Systems Branch, evaluated the structural and vibration characteristics of the Kirby Model G-4 fan. Modes of vibration and resonance potential were evaluated in the Holography Test Lab at Lewis. As a result of the Lewis tests and rotor structural evaluation, Kirby engineers gained new insights into their existing design, enabling them to develop a more robust fan for use in their vacuum cleaners.

  3. Modelling of magnetostriction of transformer magnetic core for vibration analysis

    NASA Astrophysics Data System (ADS)

    Marks, Janis; Vitolina, Sandra

    2017-12-01

    Magnetostriction is a phenomenon occurring in transformer core in normal operation mode. Yet in time, it can cause the delamination of magnetic core resulting in higher level of vibrations that are measured on the surface of transformer tank during diagnostic tests. The aim of this paper is to create a model for evaluating elastic deformations in magnetic core that can be used for power transformers with intensive vibrations in order to eliminate magnetostriction as a their cause. Description of the developed model in Matlab and COMSOL software is provided including restrictions concerning geometry and properties of materials, and the results of performed research on magnetic core anisotropy are provided. As a case study modelling of magnetostriction for 5-legged 200 MVA power transformer with the rated voltage of 13.8/137kV is conducted, based on which comparative analysis of vibration levels and elastic deformations is performed.

  4. Analysis of the Vibration Propagation in the Subsoil

    NASA Astrophysics Data System (ADS)

    Jastrzębska, Małgorzata; Łupieżowiec, Marian; Uliniarz, Rafał; Jaroń, Artur

    2015-02-01

    The paper presents in a comprehensive way issues related to propagation in a soil environment of vibrations originating during sheet piling vibratory driving. Considerations carried out comprised the FEM analysis of initial-boundary behaviour of the subsoil during impacts accompanying the works performed. The analysis has used the authors' RU+MCC constitutive model, which can realistically describe complex deformation characteristics in soils in the field of small strains, which accompany the phenomenon of shock propagation. The basis for model creation and for specification of material parameters of the presented model consisted of first-class tests performed in a triaxial apparatus using proximity detectors guaranteeing a proper measurement of strains ranging from 10-1 to 10-3% and bender elements. Results obtained from numerical analyses were confronted with results of field tests consisting in measurements of acceleration amplitudes generated on the ground surface due to technological impacts versus the distance from vibration source.

  5. Application of Steinberg vibration fatigue model for structural verification of space instruments

    NASA Astrophysics Data System (ADS)

    García, Andrés; Sorribes-Palmer, Félix; Alonso, Gustavo

    2018-01-01

    Electronic components in spaceships are subjected to vibration loads during the ascent phase of the launcher. It is important to verify by tests and analysis that all parts can survive in the most severe load cases. The purpose of this paper is to present the methodology and results of the application of the Steinberg's fatigue model to estimate the life of electronic components of the EPT-HET instrument for the Solar Orbiter space mission. A Nastran finite element model (FEM) of the EPT-HET instrument was created and used for the structural analysis. The methodology is based on the use of the FEM of the entire instrument to calculate the relative displacement RDSD and RMS values of the PCBs from random vibration analysis. These values are used to estimate the fatigue life of the most susceptible electronic components with the Steinberg's fatigue damage equation and the Miner's cumulative fatigue index. The estimations are calculated for two different configurations of the instrument and three different inputs in order to support the redesign process. Finally, these analytical results are contrasted with the inspections and the functional tests made after the vibration tests, concluding that this methodology can adequately predict the fatigue damage or survival of the electronic components.

  6. Induced vibrations increase performance of a winged self-righting robot

    NASA Astrophysics Data System (ADS)

    Othayoth, Ratan; Xuan, Qihan; Li, Chen

    When upside down, cockroaches can open their wings to dynamically self-right. In this process, an animal often has to perform multiple unsuccessful maneuvers to eventually right, and often flails its legs. Here, we developed a cockroach-inspired winged self-righting robot capable of controlled body vibrations to test the hypothesis that vibrations assist self-righting transitions. Robot body vibrations were induced by an oscillating mass (10% of body mass) and varied by changing oscillation frequency. We discovered that, as the robot's body vibrations increased, righting probability increased, and righting time decreased (P <0.0001, ANOVA), confirming our hypothesis. To begin to understand the underlying physics, we developed a locomotion energy landscape model. Our model revealed that the kinetic energy fluctuations due to vibrations were comparable to the potential energy barriers required to transition from a metastable overturned orientation to an upright orientation. Our study supports the plausibility of locomotion energy landscapes for understanding locomotor transitions, but highlights the need for further stochastic modeling to capture the uncertain nature of when righting maneuvers result in successful righting.

  7. Combined Euler column vibration isolation and energy harvesting

    NASA Astrophysics Data System (ADS)

    Davis, R. B.; McDowell, M. D.

    2017-05-01

    A new device that combines vibration isolation and energy harvesting is modeled, simulated, and tested. The vibration isolating portion of the device uses post-buckled beams as its spring elements. Piezoelectric film is applied to the beams to harvest energy from their dynamic flexure. The entire device operates passively on applied base excitation and requires no external power or control system. The structural system is modeled using the elastica, and the structural response is applied as forcing on the electric circuit equation to predict the output voltage and the corresponding harvested power. The vibration isolation and energy harvesting performance is simulated across a large parameter space and the modeling approach is validated with experimental results. Experimental transmissibilities of 2% and harvested power levels of 0.36 μW are simultaneously demonstrated. Both theoretical and experimental data suggest that there is not necessarily a trade-off between vibration isolation and harvested power. That is, within the practical operational range of the device, improved vibration isolation will be accompanied by an increase in the harvested power as the forcing frequency is increased.

  8. Vibration Propagation of Gear Dynamics in a Gear-Bearing-Housing System Using Mathematical Modeling and Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Parker, Robert G.; Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.

    2012-01-01

    Vibration and noise caused by gear dynamics at the meshing teeth propagate through power transmission components to the surrounding environment. This study is devoted to developing computational tools to investigate the vibro-acoustic propagation of gear dynamics through a gearbox using different bearings. Detailed finite element/contact mechanics and boundary element models of the gear/bearing/housing system are established to compute the system vibration and noise propagation. Both vibration and acoustic models are validated by experiments including the vibration modal testing and sound field measurements. The effectiveness of each bearing type to disrupt vibration propagation is speed-dependent. Housing plays an important role in noise radiation .It, however, has limited effects on gear dynamics. Bearings are critical components in drivetrains. Accurate modeling of rolling element bearings is essential to assess vibration and noise of drivetrain systems. This study also seeks to fully describe the vibro-acoustic propagation of gear dynamics through a power-transmission system using rolling element and fluid film wave bearings. Fluid film wave bearings, which have higher damping than rolling element bearings, could offer an energy dissipation mechanism that reduces the gearbox noise. The effectiveness of each bearing type to disrupt vibration propagation in explored using multi-body computational models. These models include gears, shafts, rolling element and fluid film wave bearings, and the housing. Radiated noise is mapped from the gearbox surface to surrounding environment. The effectiveness of rolling element and fluid film wave bearings in breaking the vibro-acoustic propagation path from the gear to the housing is investigated.

  9. The NASA/industry design analysis methods for vibrations (DAMVIBS) program - Accomplishments and contributions

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    1991-01-01

    A NASA Langley-sponsored rotorcraft structural dynamics program, known as Design Analysis Methods for VIBrationS (DAMVIBS), has been under development since 1984. The objective of this program was to establish the technology base needed by the industry to develop an advanced finite-element-based dynamics design analysis capability for vibrations. Under the program, teams from the four major helicopter manufacturers have formed finite-element models, conducted ground vibration tests, made test/analysis comparisons of both metal and composite airframes, performed 'difficult components' studies on airframes to identify components which need more complete finite-element representation for improved correlation, and evaluated industry codes for computing coupled rotor-airframe vibrations. Studies aimed at establishing the role that structural optimization can play in airframe vibrations design work have also been initiated. Five government/industry meetings were held in connection with these activities during the course of the program. Because the DAMVIBS Program is coming to an end, the fifth meeting included a brief assessment of the program and its benefits to the industry.

  10. The NASA/industry design analysis methods for vibrations (DAMVIBS) program: Accomplishments and contributions

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    1991-01-01

    A NASA Langley-sponsored rotorcraft structural dynamics program, known as Design Analysis Methods for VIBrationS (DAMVIBS), has been under development since 1984. The objective of this program was to establish the technology base needed by the industry to develop an advanced finite-element-based dynamics design analysis capability for vibrations. Under the program, teams from the four major helicopter manufacturers have formed finite-element models, conducted ground vibration tests, made test/analysis comparisons of both metal and composite airframes, performed 'difficult components' studies on airframes to identify components which need more complete finite-element representation for improved correlation, and evaluated industry codes for computing coupled rotor-airframe vibrations. Studies aimed at establishing the role that structural optimization can play in airframe vibrations design work have also been initiated. Five government/industry meetings were held in connection with these activities during the course of the program. Because the DAMVIBS Program is coming to an end, the fifth meeting included a brief assessment of the program and its benefits to the industry.

  11. Analysis and demonstration of vibration waveform reconstruction in distributed optical fiber vibration sensing system

    NASA Astrophysics Data System (ADS)

    Zhu, Hui; Shan, Xuekang; Sun, Xiaohan

    2017-10-01

    A method for reconstructing the vibration waveform from the optical time-domain backscattering pulses in the distributed optical fiber sensing system (DOFSS) is proposed, which allows for extracting and recovering the external vibration signal from the tested pulses by analog signal processing, so that can obtain vibration location and waveform simultaneously. We establish the response model of DOFSS to the external vibration and analyze the effects of system parameters on the operational performance. The main parts of the DOFSS are optimized, including delay fiber length and wavelength, to improve the sensitivity of the system. The experimental system is set up and the vibration amplitudes and reconstructed waveforms are fit well with the original driving signal. The experimental results demonstrate that the performance of vibration waveform reconstruction is good with SNR of 15 dB whenever the external vibrations with different intensities and frequencies exert on the sensing fiber.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xian-Xu, E-mail: bai@hfut.edu.cn; Wereley, Norman M.; Hu, Wei

    A single-degree-of-freedom (SDOF) semi-active vibration control system based on a magnetorheological (MR) damper with an inner bypass is investigated in this paper. The MR damper employing a pair of concentric tubes, between which the key structure, i.e., the inner bypass, is formed and MR fluids are energized, is designed to provide large dynamic range (i.e., ratio of field-on damping force to field-off damping force) and damping force range. The damping force performance of the MR damper is modeled using phenomenological model and verified by the experimental tests. In order to assess its feasibility and capability in vibration control systems, themore » mathematical model of a SDOF semi-active vibration control system based on the MR damper and skyhook control strategy is established. Using an MTS 244 hydraulic vibration exciter system and a dSPACE DS1103 real-time simulation system, experimental study for the SDOF semi-active vibration control system is also conducted. Simulation results are compared to experimental measurements.« less

  13. Fast Bayesian approach for modal identification using forced vibration data considering the ambient effect

    NASA Astrophysics Data System (ADS)

    Ni, Yan-Chun; Zhang, Feng-Liang

    2018-05-01

    Modal identification based on vibration response measured from real structures is becoming more popular, especially after benefiting from the great improvement of the measurement technology. The results are reliable to estimate the dynamic performance, which fits the increasing requirement of different design configurations of the new structures. However, the high-quality vibration data collection technology calls for a more accurate modal identification method to improve the accuracy of the results. Through the whole measurement process of dynamic testing, there are many aspects that will cause the rise of uncertainty, such as measurement noise, alignment error and modeling error, since the test conditions are not directly controlled. Depending on these demands, a Bayesian statistical approach is developed in this work to estimate the modal parameters using the forced vibration response of structures, simultaneously considering the effect of the ambient vibration. This method makes use of the Fast Fourier Transform (FFT) of the data in a selected frequency band to identify the modal parameters of the mode dominating this frequency band and estimate the remaining uncertainty of the parameters correspondingly. In the existing modal identification methods for forced vibration, it is generally assumed that the forced vibration response dominates the measurement data and the influence of the ambient vibration response is ignored. However, ambient vibration will cause modeling error and affect the accuracy of the identified results. The influence is shown in the spectra as some phenomena that are difficult to explain and irrelevant to the mode to be identified. These issues all mean that careful choice of assumptions in the identification model and fundamental formulation to account for uncertainty are necessary. During the calculation, computational difficulties associated with calculating the posterior statistics are addressed. Finally, a fast computational algorithm is proposed so that the method can be practically implemented. Numerical verification with synthetic data and applicable investigation with full-scale field structures data are all carried out for the proposed method.

  14. The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program: Sikorsky Aircraft: Advances toward interacting with the airframe design process

    NASA Technical Reports Server (NTRS)

    Twomey, William J.

    1993-01-01

    A short history is traced of the work done at Sikorsky Aircraft under the NASA/industry DAMVIBS program. This includes both work directly funded by the program as well as work which was internally funded but which received its initial impetus from DAMVIBS. The development of a finite element model of the UH-60A airframe having a marked improvement in vibration-predicting ability is described. A new program, PAREDYM, developed at Sikorsky, which automatically adjusts an FEM so that its modal characteristics match test values, is described, as well as the part this program played in the improvement of the UH-60A model. Effects of the bungee suspension system on the shake test data used for model verification are described. The impetus given by the modeling improvement, as well as the recent availability of PAREDYM, has brought for the first time the introduction of low-vibration design into the design cycle at Sikorsky.

  15. The Shock and Vibration Digest. Volume 18, Number 8

    DTIC Science & Technology

    1986-08-01

    the swash plate . This is an active that vibration can be reduced by separation of control system...element program model . ture-borne sound intensity has been tried earlier The agreement is shown to be very good. A on thin- plate constructions in ...predicting the response of two displacement controlled laboratory tests that were used for the determination of the model parameters. 86-1532

  16. Ground vibration tests of a high fidelity truss for verification of on orbit damage location techniques

    NASA Technical Reports Server (NTRS)

    Kashangaki, Thomas A. L.

    1992-01-01

    This paper describes a series of modal tests that were performed on a cantilevered truss structure. The goal of the tests was to assemble a large database of high quality modal test data for use in verification of proposed methods for on orbit model verification and damage detection in flexible truss structures. A description of the hardware is provided along with details of the experimental setup and procedures for 16 damage cases. Results from selected cases are presented and discussed. Differences between ground vibration testing and on orbit modal testing are also described.

  17. Operational modal analysis of a high-rise multi-function building with dampers by a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Ni, Yanchun; Lu, Xilin; Lu, Wensheng

    2017-03-01

    The field non-destructive vibration test plays an important role in the area of structural health monitoring. It assists in monitoring the health status and reducing the risk caused by the poor performance of structures. As the most economic field test among the various vibration tests, the ambient vibration test is the most popular and is widely used to assess the physical condition of a structure under operational service. Based on the ambient vibration data, modal identification can help provide significant previous study for model updating and damage detection during the service life of a structure. It has been proved that modal identification works well in the investigation of the dynamic performance of different kinds of structures. In this paper, the objective structure is a high-rise multi-function office building. The whole building is composed of seven three-story structural units. Each unit comprises one complete floor and two L shaped floors to form large spaces along the vertical direction. There are 56 viscous dampers installed in the building to improve the energy dissipation capacity. Due to the special feature of the structure, field vibration tests and further modal identification were performed to investigate its dynamic performance. Twenty-nine setups were designed to cover all the degrees of freedom of interest. About two years later, another field test was carried out to measure the building for 48 h to investigate the performance variance and the distribution of the modal parameters. A Fast Bayesian FFT method was employed to perform the modal identification. This Bayesian method not only provides the most probable values of the modal parameters but also assesses the associated posterior uncertainty analytically, which is especially relevant in field vibration tests arising due to measurement noise, sensor alignment error, modelling error, etc. A shaking table test was also implemented including cases with and without dampers, which assists in investigating the effect of dampers. The modal parameters obtained from different tests were investigated separately and then compared with each other.

  18. A novel approach for simulating the optical misalignment caused by satellite platform vibration in the ground test of satellite optical communication systems.

    PubMed

    Wang, Qiang; Tan, Liying; Ma, Jing; Yu, Siyuan; Jiang, Yijun

    2012-01-16

    Satellite platform vibration causes the misalignment between incident direction of the beacon and optical axis of the satellite optical communication system, which also leads to the instability of the laser link and reduces the precision of the system. So how to simulate the satellite platform vibration is a very important work in the ground test of satellite optical communication systems. In general, a vibration device is used for simulating the satellite platform vibration, but the simulation effect is not ideal because of the limited randomness. An approach is reasonable, which uses a natural random process for simulating the satellite platform vibration. In this paper, we discuss feasibility of the concept that the effect of angle of arrival fluctuation is taken as an effective simulation of satellite platform vibration in the ground test of the satellite optical communication system. Spectrum characteristic of satellite platform vibration is introduced, referring to the model used by the European Space Agency (ESA) in the SILEX program and that given by National Aeronautics and Space Development Agency (NASDA) of Japan. Spectrum characteristic of angle of arrival fluctuation is analyzed based on the measured data from an 11.16km bi-directional free space laser transmission experiment. Spectrum characteristic of these two effects is compared. The results show that spectra of these two effects have similar variation trend with the variation of frequency and feasibility of the concept is proved by the comparison results. At last the procedure of this method is proposed, which uses the power spectra of angle of arrival fluctuation to simulate that of the satellite platform vibration. The new approach is good for the ground test of satellite optical communication systems.

  19. Accelerated lifetime test of vibration isolator made of Metal Rubber material

    NASA Astrophysics Data System (ADS)

    Ao, Hongrui; Ma, Yong; Wang, Xianbiao; Chen, Jianye; Jiang, Hongyuan

    2017-01-01

    The Metal Rubber material (MR) is a kind of material with nonlinear damping characteristics for its application in the field of aerospace, petrochemical industry and so on. The study on the lifetime of MR material is impendent to its application in engineering. Based on the dynamic characteristic of MR, the accelerated lifetime experiments of vibration isolators made of MR working under random vibration load were conducted. The effects of structural parameters of MR components on the lifetime of isolators were studied and modelled with the fitting curves of degradation data. The lifetime prediction methods were proposed based on the models.

  20. 49 CFR 178.819 - Vibration test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.819 Section 178.819... Testing of IBCs § 178.819 Vibration test. (a) General. The vibration test must be conducted for the... vibration test. (b) Test method. (1) A sample IBC, selected at random, must be filled and closed as for...

  1. Wireless vibration monitoring for damage detection of highway bridges

    NASA Astrophysics Data System (ADS)

    Whelan, Matthew J.; Gangone, Michael V.; Janoyan, Kerop D.; Jha, Ratneshwar

    2008-03-01

    The development of low-cost wireless sensor networks has resulted in resurgence in the development of ambient vibration monitoring methods to assess the in-service condition of highway bridges. However, a reliable approach towards assessing the health of an in-service bridge and identifying and localizing damage without a priori knowledge of the vibration response history has yet to be formulated. A two-part study is in progress to evaluate and develop existing and proposed damage detection schemes. The first phase utilizes a laboratory bridge model to investigate the vibration response characteristics induced through introduction of changes to structural members, connections, and support conditions. A second phase of the study will validate the damage detection methods developed from the laboratory testing with progressive damage testing of an in-service highway bridge scheduled for replacement. The laboratory bridge features a four meter span, one meter wide, steel frame with a steel and cement board deck composed of sheet layers to regulate mass loading and simulate deck wear. Bolted connections and elastomeric bearings provide a means for prescribing variable local stiffness and damping effects to the laboratory model. A wireless sensor network consisting of fifty-six accelerometers accommodated by twenty-eight local nodes facilitates simultaneous, real-time and high-rate acquisition of the vibrations throughout the bridge structure. Measurement redundancy is provided by an array of wired linear displacement sensors as well as a scanning laser vibrometer. This paper presents the laboratory model and damage scenarios, a brief description of the developed wireless sensor network platform, an overview of available test and measurement instrumentation within the laboratory, and baseline measurements of dynamic response of the laboratory bridge model.

  2. 49 CFR 178.819 - Vibration test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Vibration test. 178.819 Section 178.819... Vibration test. (a) General. The vibration test must be conducted for the qualification of all rigid IBC design types. Flexible IBC design types must be capable of withstanding the vibration test. (b) Test...

  3. 49 CFR 178.819 - Vibration test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Vibration test. 178.819 Section 178.819... Vibration test. (a) General. The vibration test must be conducted for the qualification of all rigid IBC design types. Flexible IBC design types must be capable of withstanding the vibration test. (b) Test...

  4. 49 CFR 178.819 - Vibration test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Vibration test. 178.819 Section 178.819... Vibration test. (a) General. The vibration test must be conducted for the qualification of all rigid IBC design types. Flexible IBC design types must be capable of withstanding the vibration test. (b) Test...

  5. 49 CFR 178.819 - Vibration test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Vibration test. 178.819 Section 178.819... Vibration test. (a) General. The vibration test must be conducted for the qualification of all rigid IBC design types. Flexible IBC design types must be capable of withstanding the vibration test. (b) Test...

  6. Magnetic shielding and vacuum test for passive hydrogen masers

    NASA Technical Reports Server (NTRS)

    Gubser, D. U.; Wolf, S. A.; Jacoby, A. B.; Jones, L. D.

    1982-01-01

    Vibration tests on high permeability magnetic shields used in the SAO-NRL Advanced Development Model (ADM) hydrogen maser were made. Magnetic shielding factors were measured before and after vibration. Preliminary results indicate considerable (25%) degradation. Test results on the NRL designed vacuum pumping station for the ADM hydrogen maser are also discussed. This system employs sintered zirconium carbon getter pumps to pump hydrogen plus small ion pumps to pump the inert gases. In situ activation tests and pumping characteristics indicate that the system can meet design specifications.

  7. Modal Analysis of MARS Solar Panel and Planar Vibrations

    NASA Technical Reports Server (NTRS)

    Simonyan, Andranik; Williams, R. Brett

    2007-01-01

    This slide presentation reviews the modal analysis of MARS solar panels and the planar vibrations. Included are views of the solar panels mock-up assembly, a view of the test seup,a view of the plot from the test, with the raw numbers of the frequencies in Hz values with the mode number, the spatial acceleration plots of Center sub panel at resonant frequencies, predictions from the Finite element models, an explanation of the two test that were done on the plate and the results from both tests,

  8. Application of the Semi-Empirical Force-Limiting Approach for the CoNNeCT SCAN Testbed

    NASA Technical Reports Server (NTRS)

    Staab, Lucas D.; McNelis, Mark E.; Akers, James C.; Suarez, Vicente J.; Jones, Trevor M.

    2012-01-01

    The semi-empirical force-limiting vibration method was developed and implemented for payload testing to limit the structural impedance mismatch (high force) that occurs during shaker vibration testing. The method has since been extended for use in analytical models. The Space Communications and Navigation Testbed (SCAN Testbed), known at NASA as, the Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT), project utilized force-limiting testing and analysis following the semi-empirical approach. This paper presents the steps in performing a force-limiting analysis and then compares the results to test data recovered during the CoNNeCT force-limiting random vibration qualification test that took place at NASA Glenn Research Center (GRC) in the Structural Dynamics Laboratory (SDL) December 19, 2010 to January 7, 2011. A compilation of lessons learned and considerations for future force-limiting tests is also included.

  9. Quiet Spike(TradeMark) Build-up Ground Vibration Testing Approach

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie D.; Herrera, Claudia Y.; Truax, Roger; Pak, Chan-gi; Freund, Donald

    2007-01-01

    Flight tests of the Gulfstream Aerospace Corporation s Quiet Spike(TradeMark) hardware were recently completed on the National Aeronautics and Space Administration Dryden Flight Research Center F-15B airplane. NASA Dryden uses a modified F-15B (836) airplane as a testbed aircraft to cost-effectively fly flight research experiments that are typically mounted underneath the airplane, along the fuselage centerline. For the Quiet Spike(TradeMark) experiment, instead of a centerline mounting, a forward-pointing boom was attached to the radar bulkhead of the airplane. The Quiet Spike(TradeMark) experiment is a stepping-stone to airframe structural morphing technologies designed to mitigate the sonic-boom strength of business jets flying over land. Prior to flying the Quiet Spike(TradeMark) experiment on the F-15B airplane several ground vibration tests were required to understand the Quiet Spike(TradeMark) modal characteristics and coupling effects with the F-15B airplane. Because of flight hardware availability and compressed schedule requirements, a "traditional" ground vibration test of the mated F-15B Quiet Spike(TradeMark) ready-for-flight configuration did not leave sufficient time available for the finite element model update and flutter analyses before flight-testing. Therefore, a "nontraditional" ground vibration testing approach was taken. This report provides an overview of each phase of the "nontraditional" ground vibration testing completed for the Quiet Spike(TradeMark) project.

  10. Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing

    NASA Technical Reports Server (NTRS)

    Tuma, M. L.; Chenevert, D. J.

    2009-01-01

    Ground vibration testing has been an integral tool for developing new launch vehicles throughout the space age. Several launch vehicles have been lost due to problems that would have been detected by early vibration testing, including Ariane 5, Delta III, and Falcon 1. NASA will leverage experience and testing hardware developed during the Saturn and Shuttle programs to perform ground vibration testing (GVT) on the Ares I crew launch vehicle and Ares V cargo launch vehicle stacks. NASA performed dynamic vehicle testing (DVT) for Saturn and mated vehicle ground vibration testing (MVGVT) for Shuttle at the Dynamic Test Stand (Test Stand 4550) at Marshall Space Flight Center (MSFC) in Huntsville, Alabama, and is now modifying that facility to support Ares I integrated vehicle ground vibration testing (IVGVT) beginning in 2012. The Ares IVGVT schedule shows most of its work being completed between 2010 and 2014. Integrated 2nd Stage Ares IVGVT will begin in 2012 and IVGVT of the entire Ares launch stack will begin in 2013. The IVGVT data is needed for the human-rated Orion launch vehicle's Design Certification Review (DCR) in early 2015. During the Apollo program, GVT detected several serious design concerns, which NASA was able to address before Saturn V flew, eliminating costly failures and potential losses of mission or crew. During the late 1970s, Test Stand 4550 was modified to support the four-body structure of the Space Shuttle. Vibration testing confirmed that the vehicle's mode shapes and frequencies were better than analytical models suggested, however, the testing also identified challenges with the rate gyro assemblies, which could have created flight instability and possibly resulted in loss of the vehicle. Today, NASA has begun modifying Test Stand 4550 to accommodate Ares I, including removing platforms needed for Shuttle testing and upgrading the dynamic test facilities to characterize the mode shapes and resonant frequencies of the vehicle. The IVGVT team expects to collect important information about the new launch vehicles, greatly increasing astronaut safety as NASA prepares to explore the Moon and beyond.

  11. An improved design method of a tuned mass damper for an in-service footbridge

    NASA Astrophysics Data System (ADS)

    Shi, Weixing; Wang, Liangkun; Lu, Zheng

    2018-03-01

    Tuned mass damper (TMD) has a wide range of applications in the vibration control of footbridges. However, the traditional engineering design method may lead to a mistuned TMD. In this paper, an improved TMD design method based on the model updating is proposed. Firstly, the original finite element model (FEM) is studied and the natural characteristics of the in-service or newly built footbridge is identified by field test, and then the original FEM is updated. TMD is designed according to the new updated FEM, and it is optimized according to the simulation on vibration control effects. Finally, the installation and field measurement of TMD are carried out. The improved design method can be applied to both in-service and newly built footbridges. This paper illustrates the improved design method with an engineering example. The frequency identification results of field test and original FEM show that there is a relatively large difference between them. The TMD designed according to the updated FEM has better vibration control effect than the TMD designed according to the original FEM. The site test results show that TMD has good effect on controlling human-induced vibrations.

  12. Modeling and analysis of wet friction clutch engagement dynamics

    NASA Astrophysics Data System (ADS)

    Iqbal, Shoaib; Al-Bender, Farid; Ompusunggu, Agusmian P.; Pluymers, Bert; Desmet, Wim

    2015-08-01

    In recent years, there has been a significant increase in the usage of wet-friction clutches. Presently researchers across the globe are involved in improving the performance and lifetime of clutches through testing and simulation. To understand the clutch vibrational and dynamical behavior, an SAE#2 test setup mathematical model based on extended reset-integrator friction model is developed in this paper. In order to take into account the different phases of fluid lubrication during engagement cycle, the model includes the experimentally determined Stribeck function. In addition the model considers the viscous effect and the delay in the actuation pressure signal. The model is validated with the experiments performed on the SAE#2 test setup in both time and frequency domains. By analyzing the set of experimental results, we confirmed that the amplitude of shudder vibration is independent of the amplitude of applied contact pressure fluctuation.

  13. Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control.

    PubMed

    Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele

    2016-09-25

    This paper proposes an innovative mechatronic piezo-actuated module to control vibrations in modern machine tools. Vibrations represent one of the main issues that seriously compromise the quality of the workpiece. The active vibration control (AVC) device is composed of a host part integrated with sensors and actuators synchronized by a regulator; it is able to make a self-assessment and adjust to alterations in the environment. In particular, an innovative smart actuator has been designed and developed to satisfy machining requirements during active vibration control. This study presents the mechatronic model based on the kinematic and dynamic analysis of the AVC device. To ensure a real time performance, a H2-LQG controller has been developed and validated by simulations involving a machine tool, PZT actuator and controller models. The Hardware in the Loop (HIL) architecture is adopted to control and attenuate the vibrations. A set of experimental tests has been performed to validate the AVC module on a commercial machine tool. The feasibility of the real time vibration damping is demonstrated and the simulation accuracy is evaluated.

  14. Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control

    PubMed Central

    Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele

    2016-01-01

    This paper proposes an innovative mechatronic piezo-actuated module to control vibrations in modern machine tools. Vibrations represent one of the main issues that seriously compromise the quality of the workpiece. The active vibration control (AVC) device is composed of a host part integrated with sensors and actuators synchronized by a regulator; it is able to make a self-assessment and adjust to alterations in the environment. In particular, an innovative smart actuator has been designed and developed to satisfy machining requirements during active vibration control. This study presents the mechatronic model based on the kinematic and dynamic analysis of the AVC device. To ensure a real time performance, a H2-LQG controller has been developed and validated by simulations involving a machine tool, PZT actuator and controller models. The Hardware in the Loop (HIL) architecture is adopted to control and attenuate the vibrations. A set of experimental tests has been performed to validate the AVC module on a commercial machine tool. The feasibility of the real time vibration damping is demonstrated and the simulation accuracy is evaluated. PMID:27681732

  15. Fixed gain and adaptive techniques for rotorcraft vibration control

    NASA Technical Reports Server (NTRS)

    Roy, R. H.; Saberi, H. A.; Walker, R. A.

    1985-01-01

    The results of an analysis effort performed to demonstrate the feasibility of employing approximate dynamical models and frequency shaped cost functional control law desgin techniques for helicopter vibration suppression are presented. Both fixed gain and adaptive control designs based on linear second order dynamical models were implemented in a detailed Rotor Systems Research Aircraft (RSRA) simulation to validate these active vibration suppression control laws. Approximate models of fuselage flexibility were included in the RSRA simulation in order to more accurately characterize the structural dynamics. The results for both the fixed gain and adaptive approaches are promising and provide a foundation for pursuing further validation in more extensive simulation studies and in wind tunnel and/or flight tests.

  16. Validation of Methods to Predict Vibration of a Panel in the Near Field of a Hot Supersonic Rocket Plume

    NASA Technical Reports Server (NTRS)

    Bremner, P. G.; Blelloch, P. A.; Hutchings, A.; Shah, P.; Streett, C. L.; Larsen, C. E.

    2011-01-01

    This paper describes the measurement and analysis of surface fluctuating pressure level (FPL) data and vibration data from a plume impingement aero-acoustic and vibration (PIAAV) test to validate NASA s physics-based modeling methods for prediction of panel vibration in the near field of a hot supersonic rocket plume. For this test - reported more fully in a companion paper by Osterholt & Knox at 26th Aerospace Testing Seminar, 2011 - the flexible panel was located 2.4 nozzle diameters from the plume centerline and 4.3 nozzle diameters downstream from the nozzle exit. The FPL loading is analyzed in terms of its auto spectrum, its cross spectrum, its spatial correlation parameters and its statistical properties. The panel vibration data is used to estimate the in-situ damping under plume FPL loading conditions and to validate both finite element analysis (FEA) and statistical energy analysis (SEA) methods for prediction of panel response. An assessment is also made of the effects of non-linearity in the panel elasticity.

  17. Robust energy-absorbing compensators for the ACTEX II test article

    NASA Astrophysics Data System (ADS)

    Blaurock, Carl A.; Miller, David W.; Nye, Ted

    1995-05-01

    The paper addresses the problem of satellite solar panel vibration. A multi-layer vibration control scheme is investigated using a flight test article. Key issues in the active control portion are presented in the paper. The paper discusses the primary control design drivers, which are the time variations in modal frequencies due to configuration and thermal changes. A local control design approach is investigated, but found to be unworkable due to sensor/actuator non-collocation. An alternate design process uses linear robust control techniques, by describing the modal shifts as uncertainties. Multiple modal design, alpha- shifted multiple model, and a feedthrough compensation scheme are examined. Ground and simulation tests demonstrate that the resulting controllers provide significant vibration reduction in the presence of expected system variations.

  18. High force vibration testing with wide frequency range

    DOEpatents

    Romero, Edward F.; Jepsen, Richard A.; Gregory, Danny Lynn

    2013-04-02

    A shaker assembly for vibration testing includes first and second shakers, where the first shaker includes a piezo-electric material for generating vibration. A support structure permits a test object to be supported for vibration of the test object by both shakers. An input permits an external vibration controller to control vibration of the shakers.

  19. Ares I-X Launch Abort System, Crew Module, and Upper Stage Simulator Vibroacoustic Flight Data Evaluation, Comparison to Predictions, and Recommendations for Adjustments to Prediction Methodology and Assumptions

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; Harrison, Phil

    2010-01-01

    The National Aeronautics and Space Administration (NASA) Constellation Program (CxP) has identified a series of tests to provide insight into the design and development of the Crew Launch Vehicle (CLV) and Crew Exploration Vehicle (CEV). Ares I-X was selected as the first suborbital development flight test to help meet CxP objectives. The Ares I-X flight test vehicle (FTV) is an early operational model of CLV, with specific emphasis on CLV and ground operation characteristics necessary to meet Ares I-X flight test objectives. The in-flight part of the test includes a trajectory to simulate maximum dynamic pressure during flight and perform a stage separation of the Upper Stage Simulator (USS) from the First Stage (FS). The in-flight test also includes recovery of the FS. The random vibration response from the ARES 1-X flight will be reconstructed for a few specific locations that were instrumented with accelerometers. This recorded data will be helpful in validating and refining vibration prediction tools and methodology. Measured vibroacoustic environments associated with lift off and ascent phases of the Ares I-X mission will be compared with pre-flight vibration predictions. The measured flight data was given as time histories which will be converted into power spectral density plots for comparison with the maximum predicted environments. The maximum predicted environments are documented in the Vibroacoustics and Shock Environment Data Book, AI1-SYS-ACOv4.10 Vibration predictions made using statistical energy analysis (SEA) VAOne computer program will also be incorporated in the comparisons. Ascent and lift off measured acoustics will also be compared to predictions to assess whether any discrepancies between the predicted vibration levels and measured vibration levels are attributable to inaccurate acoustic predictions. These comparisons will also be helpful in assessing whether adjustments to prediction methodologies are needed to improve agreement between the predicted and measured flight data. Future assessment will incorporate hybrid methods in VAOne analysis (i.e., boundary element methods, BEM and finite element methods, FEM). These hybrid methods will enable the ability to import NASTRAN models providing much more detailed modeling of the underlying beams and support structure of the ARES 1-X test vehicle. Measured acoustic data will be incorporated into these analyses to improve correlation for additional post flight analysis.

  20. Environmental test of the BGO calorimeter for DArk Matter Particle Explorer

    NASA Astrophysics Data System (ADS)

    Hu, Yi-Ming; Chang, Jin; Chen, Deng-Yi; Guo, Jian-Hua; Zhang, Yun-Long; Feng, Chang-Qing

    2016-11-01

    DArk Matter Particle Explorer (DAMPE) is the first Chinese astronomical satellite, successfully launched on Dec. 17 2015. As the most important payload of DAMPE, the BGO calorimeter contains 308 bismuth germanate crystals, with 616 photomultiplier tubes, one coupled to each end of every crystal. Environmental tests have been carried out to explore the environmental adaptability of the flight model of the BGO calorimeter. In this work we report the results of the vibration tests. During the vibration tests, no visible damage occurred in the mechanical assembly. After random or sinusoidal vibrations, the change of the first order natural frequency of BGO calorimeter during the modal surveys is less than 5%. The shift ratio of Most Probable Value of MIPs changes in cosmic-ray tests are shown, the mean value of which is about -4%. The comparison of results of cosmic-ray tests before and after the vibration shows no significant change in the performance of the BGO calorimeter. All these results suggest that the calorimeter and its structure have passed through the environment tests successfully. Supported by National Natural Science Foundation of China (11203090, 11003051, 11273070) and Strategic Priority Research Program on Space Science of Chinese Academy of Sciences (XDA04040202)

  1. Development of an integrated aeroservoelastic analysis program and correlation with test data

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.; Brenner, M. J.; Voelker, L. S.

    1991-01-01

    The details and results are presented of the general-purpose finite element STructural Analysis RoutineS (STARS) to perform a complete linear aeroelastic and aeroservoelastic analysis. The earlier version of the STARS computer program enabled effective finite element modeling as well as static, vibration, buckling, and dynamic response of damped and undamped systems, including those with pre-stressed and spinning structures. Additions to the STARS program include aeroelastic modeling for flutter and divergence solutions, and hybrid control system augmentation for aeroservoelastic analysis. Numerical results of the X-29A aircraft pertaining to vibration, flutter-divergence, and open- and closed-loop aeroservoelastic controls analysis are compared to ground vibration, wind-tunnel, and flight-test results. The open- and closed-loop aeroservoelastic control analyses are based on a hybrid formulation representing the interaction of structural, aerodynamic, and flight-control dynamics.

  2. Unsteady Flowfield in a High-Pressure Turbine Modeled by TURBO

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Mehmed, Oral

    2003-01-01

    Forced response, or resonant vibrations, in turbomachinery components can cause blades to crack or fail because of the large vibratory blade stresses and subsequent high-cycle fatigue. Forced-response vibrations occur when turbomachinery blades are subjected to periodic excitation at a frequency close to their natural frequency. Rotor blades in a turbine are constantly subjected to periodic excitations when they pass through the spatially nonuniform flowfield created by upstream vanes. Accurate numerical prediction of the unsteady aerodynamics phenomena that cause forced-response vibrations can lead to an improved understanding of the problem and offer potential approaches to reduce or eliminate specific forced-response problems. The objective of the current work was to validate an unsteady aerodynamics code (named TURBO) for the modeling of the unsteady blade row interactions that can cause forced response vibrations. The three-dimensional, unsteady, multi-blade-row, Reynolds-averaged Navier-Stokes turbomachinery code named TURBO was used to model a high-pressure turbine stage for which benchmark data were recently acquired under a NASA contract by researchers at the Ohio State University. The test article was an initial design for a high-pressure turbine stage that experienced forced-response vibrations which were eliminated by increasing the axial gap. The data, acquired in a short duration or shock tunnel test facility, included unsteady blade surface pressures and vibratory strains.

  3. Human-simulated intelligent control of train braking response of bridge with MRB

    NASA Astrophysics Data System (ADS)

    Li, Rui; Zhou, Hongli; Wu, Yueyuan; Wang, Xiaojie

    2016-04-01

    The urgent train braking could bring structural response menace to the bridge under passive control. Based on the analysis of breaking dynamics of a train-bridge vibration system, a magnetorheological elastomeric bearing (MRB) whose mechanical parameters are adjustable is designed, tested and modeled. A finite element method (FEM) is carried out to model and optimize a full scale vibration isolation system for railway bridge based on MRB. According to the model above, we also consider the effect of different braking stop positions on the vibration isolation system and classify the bridge longitudinal vibration characteristics into several cases. Because the train-bridge vibration isolation system has multiple vibration states and strongly coupling with nonlinear characteristics, a human-simulated intelligent control (HSIC) algorithm for isolating the bridge vibration under the impact of train braking is proposed, in which the peak shear force of pier top, the displacement of beam and the acceleration of beam are chosen as control goals. The simulation of longitudinal vibration control system under the condition of train braking is achieved by MATLAB. The results indicate that different braking stop positions significantly affect the vibration isolation system and the structural response is the most drastic when the train stops at the third cross-span. With the proposed HSIC smart isolation system, the displacement of bridge beam and peak shear force of pier top is reduced by 53.8% and 34.4%, respectively. Moreover, the acceleration of bridge beam is effectively controlled within limited range.

  4. Modelling and study of active vibration control for off-road vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Junwei; Chen, Sizhong

    2014-05-01

    In view of special working characteristics and structure, engineering machineries do not have conventional suspension system typically. Consequently, operators have to endure severe vibrations which are detrimental both to their health and to the productivity of the loader. Based on displacement control, a kind of active damping method is developed for a skid-steer loader. In this paper, the whole hydraulic system for active damping method is modelled which include swash plate dynamics model, proportional valve model, piston accumulator model, pilot-operated check valve model, relief valve model, pump loss model, and cylinder model. A new road excitation model is developed for the skid-steer loader specially. The response of chassis vibration acceleration to road excitation is verified through simulation. The simulation result of passive accumulator damping is compared with measurements and the comparison shows that they are close. Based on this, parallel PID controller and track PID controller with acceleration feedback are brought into the simulation model, and the simulation results are compared with passive accumulator damping. It shows that the active damping methods with PID controllers are better in reducing chassis vibration acceleration and pitch movement. In the end, the test work for active damping method is proposed for the future work.

  5. Design and performance analysis of a rotary traveling wave ultrasonic motor with double vibrators.

    PubMed

    Dong, Zhaopeng; Yang, Ming; Chen, Zhangqi; Xu, Liang; Meng, Fan; Ou, Wenchu

    2016-09-01

    This paper presents the development of a rotary traveling wave ultrasonic motor, in which a vibrating stator and vibrating rotor are combined in one motor. The stator and rotor are designed as similar structures an elastic body and a piezoelectric ceramic ring. In exciting of the piezoelectric ceramics, the elastic body of the stator and rotor will generate respective traveling waves, which force each other forward in the contact zone. Based on the elliptical rule of particle motion and matching principle of vibration, the design rules of two vibrators are determined. The finite element method is used to design the sizes of vibrators to ensure that they operate in resonance, and the simulation is verified by measuring the vibration with an impedance analyzer. It is found out that to maintain an appropriate contact between the stator and rotor, two vibrators need to be designed with close resonance frequencies, different vibration amplitudes, and be driven by an identical driving frequency. To analyze this innovative contact mechanism, particle velocity synthesis theory and contact force analysis using Hertz contact model are carried out. Finally, a prototype is fabricated and tested to verify the theoretical results. The test results show that the output performance of the motor driven by the two vibrators is significantly improved compared to the motor driven by a sole stator or rotor, which confirms the validity of the double-vibrator motor concept. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Space Shuttle Crawler Transporter Vibration Analysis in Support of Rollout Fatigue Load Spectra Verification Program

    NASA Technical Reports Server (NTRS)

    Margasahayam, Ravi N.; Meyer, Karl A.; Nerolich, Shaun M.; Burton, Roy C.; Gosselin, Armand M.

    2004-01-01

    The Crawler Transporter (CT), designed and built for the Apollo Program in the 1960's and surpassing its initial operational life, has become an integral part of the Space Shuttle Program (SSP). The CT transports the Space Shuttle Vehicle (SSV) stack, atop the Mobile Launch Platform (MLP), from the Vehicle Assembly Building (VAB) to the launch pad. This support structure provides hydraulic jacking, leveling and load equalization for the 12 million pound stack on its 3.5-5.0 mile rollout to the launch pad. Major elements of the SSV, consisting of the orbiter, solid rocket boosters (SRB) and external tank (ET) have required fatigue analyses as part of the mission life certification. Compared to rollout vibration, the SSV sees relatively high vibration loads during launch, ascent, descent and landing phases of the mission. Although preliminary measured SRB vibration levels during rollout were of low amplitude and frequency, the duration of the rollout phase is typically high, from 5-6 hours. As part of an expanded mission life assessment, additional certification effort was initiated to define fatigue load spectra for rollout. This study addresses the CT vibration analyses in support of the rollout fatigue study. Structural models developed for modal and vibration analyses were used to identify unique CT, CT/MLP and CT/MLP/SRB vibration characteristics for comparison to instrumented rollout tests. Whereas the main structural and vibration characteristics of the SSV are well defined, minimum analytical and vibration test data on the Crawler Transporter were available. Unique vibration characteristics of the CT are attributable to the drive mechanism, hydraulic jacking system, structural framing and the CT-to-MLP support pad restraints. Initial tests performed on the CT/MLP/SRB configuration showed reasonable correlation with predicted mode shapes and frequencies.

  7. Force Limited Vibration Testing: Computation C2 for Real Load and Probabilistic Source

    NASA Astrophysics Data System (ADS)

    Wijker, J. J.; de Boer, A.; Ellenbroek, M. H. M.

    2014-06-01

    To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications, in which the factor C2 is besides the random vibration specification, the total mass and the turnover frequency of the load(test item), a very important parameter. A number of computational methods to estimate C2 are described in the literature, i.e. the simple and the complex two degrees of freedom system, STDFS and CTDFS, respectively. Both the STDFS and the CTDFS describe in a very reduced (simplified) manner the load and the source (adjacent structure to test item transferring the excitation forces, i.e. spacecraft supporting an instrument).The motivation of this work is to establish a method for the computation of a realistic value of C2 to perform a representative random vibration test based on force limitation, when the adjacent structure (source) description is more or less unknown. Marchand formulated a conservative estimation of C2 based on maximum modal effective mass and damping of the test item (load) , when no description of the supporting structure (source) is available [13].Marchand discussed the formal description of getting C 2 , using the maximum PSD of the acceleration and maximum PSD of the force, both at the interface between load and source, in combination with the apparent mass and total mass of the the load. This method is very convenient to compute the factor C 2 . However, finite element models are needed to compute the spectra of the PSD of both the acceleration and force at the interface between load and source.Stevens presented the coupled systems modal approach (CSMA), where simplified asparagus patch models (parallel-oscillator representation) of load and source are connected, consisting of modal effective masses and the spring stiffnesses associated with the natural frequencies. When the random acceleration vibration specification is given the CMSA method is suitable to compute the valueof the parameter C 2 .When no mathematical model of the source can be made available, estimations of the value C2 can be find in literature.In this paper a probabilistic mathematical representation of the unknown source is proposed, such that the asparagus patch model of the source can be approximated. The computation of the value C2 can be done in conjunction with the CMSA method, knowing the apparent mass of the load and the random acceleration specification at the interface between load and source, respectively.Strength & stiffness design rules for spacecraft, instrumentation, units, etc. will be practiced, as mentioned in ECSS Standards and Handbooks, Launch Vehicle User's manuals, papers, books , etc. A probabilistic description of the design parameters is foreseen.As an example a simple experiment has been worked out.

  8. Experiments and numerical simulations of nonlinear vibration responses of an assembly with friction joints - Application on a test structure named "Harmony"

    NASA Astrophysics Data System (ADS)

    Claeys, M.; Sinou, J.-J.; Lambelin, J.-P.; Todeschini, R.

    2016-03-01

    In presence of friction, the frequency response function of a metallic assembly is strongly dependent on the excitation level. The local stick-slip behavior at the friction interfaces induces energy dissipation and local stiffness softening. These phenomena are studied both experimentally and numerically on a test structure named "Harmony". Concerning the numerical part, a classical complete methodology from the finite element and friction modeling to the prediction of the nonlinear vibrational response is implemented. The well-known Harmonic Balance Method with a specific condensation process on the nonlinear frictional elements is achieved. Also, vibration experiments are performed to validate not only the finite element model of the test structure named "Harmony" at low excitation levels but also to investigate the nonlinear behavior of the system on several excitation levels. A scanning laser vibrometer is used to measure the nonlinear behavior and the local stick-slip movement near the contacts.

  9. Objectives and Progress on Integrated Vehicle Ground Vibration Testing for the Ares Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Asloms. Brice R.

    2009-01-01

    As NASA begins design and development of the Ares launch vehicles to replace the Space Shuttle and explore beyond low Earth orbit, Integrated Vehicle Ground Vibration Testing (IVGVT) will be a vital component of ensuring that those vehicles can perform the missions assigned to them. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. This data is then used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. The Ares Flight & Integrated Test Office (FITO) will be conducting IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2011 to 2012 using the venerable Test Stand (TS) 4550, which supported similar tests for the Saturn V and Space Shuttle vehicle stacks.

  10. Quiet Spike(TradeMark) Build-up Ground Vibration Testing Approach

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie D.; Herrera, Claudia Y.; Truax, Roger; Pak, Chan-gi; Freund, Donald

    2007-01-01

    Flight tests of Gulfstream Aerospace Corporation s Quiet Spike(TradeMark) hardware were recently completed on the NASA Dryden Flight Research Center F-15B airplane. NASA Dryden uses a modified F-15B airplane as a testbed aircraft to cost-effectively fly flight research experiments that are typically mounted underneath the F-15B airplane, along the fuselage centerline. For the Quiet Spike(TradeMark) experiment, however, instead of a centerline mounting, a relatively long forward-pointing boom was attached to the radar bulkhead of the F-15B airplane. The Quiet Spike(TradeMark) experiment is a stepping-stone to airframe structural morphing technologies designed to mitigate the sonic-boom strength of business jets over land. The Quiet Spike(TradeMark) boom is a concept in which an aircraft s noseboom would be extended prior to supersonic acceleration. This morphing effectively lengthens the aircraft, thus reducing the peak sonic-boom amplitude, but is also expected to partition the otherwise strong bow shock into a series of reduced-strength, noncoalescing shocklets. Prior to flying the Quiet Spike(TradeMark) experiment on the F-15B airplane several ground vibration tests were required to understand the Quiet Spike(TradeMark) modal characteristics and coupling effects with the F-15B airplane. However, due to the flight hardware availability and compressed schedule requirements, a "traditional" ground vibration test of the mated F-15B Quiet Spike(TradeMark) ready-for- flight configuration did not leave sufficient time available for the finite element model update and flutter analyses before flight testing. Therefore, a "nontraditional" ground vibration testing approach was taken. This paper provides an overview of each phase of the "nontraditional" ground vibration testing completed for the Quiet Spike(TradeMark) project which includes the test setup details, instrumentation layout, and modal results obtained in support of the structural dynamic modeling and flutter analyses.

  11. On 4-degree-of-freedom biodynamic models of seated occupants: Lumped-parameter modeling

    NASA Astrophysics Data System (ADS)

    Bai, Xian-Xu; Xu, Shi-Xu; Cheng, Wei; Qian, Li-Jun

    2017-08-01

    It is useful to develop an effective biodynamic model of seated human occupants to help understand the human vibration exposure to transportation vehicle vibrations and to help design and improve the anti-vibration devices and/or test dummies. This study proposed and demonstrated a methodology for systematically identifying the best configuration or structure of a 4-degree-of-freedom (4DOF) human vibration model and for its parameter identification. First, an equivalent simplification expression for the models was made. Second, all of the possible 23 structural configurations of the models were identified. Third, each of them was calibrated using the frequency response functions recommended in a biodynamic standard. An improved version of non-dominated sorting genetic algorithm (NSGA-II) based on Pareto optimization principle was used to determine the model parameters. Finally, a model evaluation criterion proposed in this study was used to assess the models and to identify the best one, which was based on both the goodness of curve fits and comprehensive goodness of the fits. The identified top configurations were better than those reported in the literature. This methodology may also be extended and used to develop the models with other DOFs.

  12. Modeling and Validation of a Navy A6-Intruder Actively Controlled Landing Gear System

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Daugherty, Robert H.; Martinson, Veloria J.

    1999-01-01

    Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible fuselages. One aspect often overlooked is ground-induced vibration of these aircraft. This paper presents an analytical and experimental study of reducing ground-induced aircraft vibration loads by using actively controlled landing gear. A facility has been developed to test various active landing gear control concepts and their performance, The facility uses a Navy A6 Intruder landing gear fitted with an auxiliary hydraulic supply electronically controlled by servo valves. An analytical model of the gear is presented, including modifications to actuate the gear externally, and test data are used to validate the model. The control design is described and closed-loop test and analysis comparisons are presented.

  13. Decentralized semi-active damping of free structural vibrations by means of structural nodes with an on/off ability to transmit moments

    NASA Astrophysics Data System (ADS)

    Poplawski, Blazej; Mikułowski, Grzegorz; Mróz, Arkadiusz; Jankowski, Łukasz

    2018-02-01

    This paper proposes, tests numerically and verifies experimentally a decentralized control algorithm with local feedback for semi-active mitigation of free vibrations in frame structures. The algorithm aims at transferring the vibration energy of low-order, lightly-damped structural modes into high-frequency modes of vibration, where it is quickly damped by natural mechanisms of material damping. Such an approach to mitigation of vibrations, known as the prestress-accumulation release (PAR) strategy, has been earlier applied only in global control schemes to the fundamental vibration mode of a cantilever beam. In contrast, the decentralization and local feedback allows the approach proposed here to be applied to more complex frame structures and vibration patterns, where the global control ceases to be intuitively obvious. The actuators (truss-frame nodes with controllable ability to transmit moments) are essentially unblockable hinges that become unblocked only for very short time periods in order to trigger local modal transfer of energy. The paper proposes a computationally simple model of the controllable nodes, specifies the control performance measure, yields basic characteristics of the optimum control, proposes the control algorithm and then tests it in numerical and experimental examples.

  14. 14 CFR 33.83 - Vibration test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine must undergo vibration surveys to establish that the vibration characteristics of those components that...

  15. Finite-Element Vibration Analysis and Modal Testing of Graphite Epoxy Tubes and Correlation Between the Data

    NASA Technical Reports Server (NTRS)

    Taleghani, Barmac K.; Pappa, Richard S.

    1996-01-01

    Structural materials in the form of graphite epoxy composites with embedded rubber layers are being used to reduce vibrations in rocket motor tubes. Four filament-wound, graphite epoxy tubes were studied to evaluate the effects of the rubber layer on the modal parameters (natural vibration frequencies, damping, and mode shapes). Tube 1 contained six alternating layers of 30-degree helical wraps and 90-degree hoop wraps. Tube 2 was identical to tube 1 with the addition of an embedded 0.030-inch-thick rubber layer. Tubes 3 and 4 were identical to tubes 1 and 2, respectively, with the addition of a Textron Kelpoxy elastomer. This report compares experimental modal parameters obtained by impact testing with analytical modal parameters obtained by NASTRAN finite-element analysis. Four test modes of tube 1 and five test modes of tube 3 correlate highly with corresponding analytical predictions. Unsatisfactory correlation of test and analysis results occurred for tubes 2 and 4 and these comparisons are not shown. Work is underway to improve the analytical models of these tubes. Test results clearly show that the embedded rubber layers significantly increase structural modal damping as well as decrease natural vibration frequencies.

  16. The influence of flywheel micro vibration on space camera and vibration suppression

    NASA Astrophysics Data System (ADS)

    Li, Lin; Tan, Luyang; Kong, Lin; Wang, Dong; Yang, Hongbo

    2018-02-01

    Studied the impact of flywheel micro vibration on a high resolution optical satellite that space-borne integrated. By testing the flywheel micro vibration with six-component test bench, the flywheel disturbance data is acquired. The finite element model of the satellite was established and the unit force/torque were applied at the flywheel mounting position to obtain the micro vibration data of the camera. Integrated analysis of the data of the two parts showed that the influence of flywheel micro vibration on the camera is mainly concentrated around 60-80 Hz and 170-230 Hz, the largest angular displacement of the secondary mirror along the optical axis direction is 0.04″ and the maximum angular displacement vertical to optical axis is 0.032″. After the design and installation of vibration isolator, the maximum angular displacement of the secondary mirror is 0.011″, the decay rate of root mean square value of the angular displacement is more than 50% and the maximum is 96.78%. The whole satellite was suspended to simulate the boundary condition on orbit; the imaging experiment results show that the image motion caused by the flywheel micro vibrationis less than 0.1 pixel after installing the vibration isolator.

  17. Microgravity Vibration Control and Civil Applications

    NASA Technical Reports Server (NTRS)

    Whorton, Mark Stephen; Alhorn, Dean Carl

    1998-01-01

    Controlling vibration of structures is essential for both space structures as well as terrestrial structures. Due to the ambient acceleration levels anticipated for the International Space Station, active vibration isolation is required to provide a quiescent acceleration environment for many science experiments. An overview is given of systems developed and flight tested in orbit for microgravity vibration isolation. Technology developed for vibration control of flexible space structures may also be applied to control of terrestrial structures such as buildings and bridges subject to wind loading or earthquake excitation. Recent developments in modern robust control for flexible space structures are shown to provide good structural vibration control while maintaining robustness to model uncertainties. Results of a mixed H-2/H-infinity control design are provided for a benchmark problem in structural control for earthquake resistant buildings.

  18. Assessment of vibration produced by the grinders used in the shipbuilding industry of Korea.

    PubMed

    Park, Hee-Sok; Yim, Sang-Hyuk

    2007-04-01

    The objective of this study is to estimate the prevalence of finger blanching among the workers in a shipyard of Korea using the dose-response relationship suggested by ISO 5349. The characteristics of vibration exposure produced by six types of grinders were investigated. Vibration measurement was made under the real work conditions. Exposure time was estimated by questionnaire and direct observation. In addition, cold provocation tests were performed, and the results from the tests were compared with the estimated prevalence. As a result, 4 hour-energy-equivalent frequency-weighted accelerations of the finishing grinding (FG) and the prepainting grinding (PG) jobs were 6.23 m/s(2) and 13.39 m/s(2), respectively. The mean exposure time for holding the grinders was 4.64 h per day. Using the ISO 5349 method, it was predicted that after exposure to vibration for 10.79 yr, about a half of the FG workers could develop finger blanching. For the PG workers, the corresponding predicted latency was 5.02 yr. A discrepancy was found between the results from the ISO relationship and those from the cold provocation tests. A linear regression model was suggested employing vibration acceleration and vibration exposure time as explanatory variables for vascular dysfunction.

  19. Experimental Influence Coefficients and Vibration Modes

    NASA Technical Reports Server (NTRS)

    Weidman, Deene J.; Kordes, Eldon E.

    1959-01-01

    Test results are presented for both symmetrical and antisymmetrical static loading of a wing model mounted on a three-point support system. The first six free-free vibration modes were determined experimentally. A comparison is made of the symmetrical nodal patterns and frequencies with the symmetrical nodal patterns and frequencies calculated from the experimental influence coefficients.

  20. Aerodynamic calculations of the Sienna towers buildings complex with respect to human vibrations comfort of their users

    NASA Astrophysics Data System (ADS)

    Krajewski, Piotr; Flaga, Łukasz; Flaga, Andrzej

    2018-01-01

    The paper presents aerodynamic calculations of the Sienna Towers high buildings complex in Warsaw using authors mathematical model of the considered issue. Human vibrations comfort criteria were checked according to ISO/6897. Dynamic coefficients used in the calculations were obtained from wind tunnel tests.

  1. Experimental validation of finite element and boundary element methods for predicting structural vibration and radiated noise

    NASA Technical Reports Server (NTRS)

    Seybert, A. F.; Wu, T. W.; Wu, X. F.

    1994-01-01

    This research report is presented in three parts. In the first part, acoustical analyses were performed on modes of vibration of the housing of a transmission of a gear test rig developed by NASA. The modes of vibration of the transmission housing were measured using experimental modal analysis. The boundary element method (BEM) was used to calculate the sound pressure and sound intensity on the surface of the housing and the radiation efficiency of each mode. The radiation efficiency of each of the transmission housing modes was then compared to theoretical results for a finite baffled plate. In the second part, analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise level radiated from the box. The FEM was used to predict the vibration, while the BEM was used to predict the sound intensity and total radiated sound power using surface vibration as the input data. Vibration predicted by the FEM model was validated by experimental modal analysis; noise predicted by the BEM was validated by measurements of sound intensity. Three types of results are presented for the total radiated sound power: sound power predicted by the BEM model using vibration data measured on the surface of the box; sound power predicted by the FEM/BEM model; and sound power measured by an acoustic intensity scan. In the third part, the structure used in part two was modified. A rib was attached to the top plate of the structure. The FEM and BEM were then used to predict structural vibration and radiated noise respectively. The predicted vibration and radiated noise were then validated through experimentation.

  2. Parameter optimization of an inerter-based isolator for passive vibration control of Michelangelo's Rondanini Pietà

    NASA Astrophysics Data System (ADS)

    Siami, A.; Karimi, H. R.; Cigada, A.; Zappa, E.; Sabbioni, E.

    2018-01-01

    Preserving cultural heritage against earthquake and ambient vibrations can be an attractive topic in the field of vibration control. This paper proposes a passive vibration isolator methodology based on inerters for improving the performance of the isolation system of the famous statue of Michelangelo Buonarroti Pietà Rondanini. More specifically, a five-degree-of-freedom (5DOF) model of the statue and the anti-seismic and anti-vibration base is presented and experimentally validated. The parameters of this model are tuned according to the experimental tests performed on the assembly of the isolator and the structure. Then, the developed model is used to investigate the impact of actuation devices such as tuned mass-damper (TMD) and tuned mass-damper-inerter (TMDI) in vibration reduction of the structure. The effect of implementation of TMDI on the 5DOF model is shown based on physical limitations of the system parameters. Simulation results are provided to illustrate effectiveness of the passive element of TMDI in reduction of the vibration transmitted to the statue in vertical direction. Moreover, the optimal design parameters of the passive system such as frequency and damping coefficient will be calculated using two different performance indexes. The obtained optimal parameters have been evaluated by using two different optimization algorithms: the sequential quadratic programming method and the Firefly algorithm. The results prove significant reduction in the transmitted vibration to the structure in the presence of the proposed tuned TMDI, without imposing a large amount of mass or modification to the structure of the isolator.

  3. Vibration isolation/suppression: research experience for undergraduates in mechatronics and smart structures

    NASA Astrophysics Data System (ADS)

    Fonda, James; Rao, Vittal S.; Sana, Sridhar

    2001-08-01

    This paper provides an account of a student research project conducted under the sponsoring of the National Science Foundation (NSF) program on Research Experience for Undergraduates (REU) in Mechatronics and Smart Strictures in the summer of 2000. The objective of the research is to design and test a stand-alone controller for a vibration isolation/suppression system. The design specification for the control system is to suppress the vibrations induced by the external disturbances by at least fiver times and hence to achieve vibration isolation. Piezo-electric sensors and actuators are utilized for suppression of unwanted vibrations. Various steps such as modeling of the system, controller design, simulation, closed-loop testing using d- Space rapid prototyping system, and analog control implementation are discussed in the paper. Procedures for data collection, the trade-offs carried out in the design, and analog controller implementation issues are also presented in the paper. The performances of various controllers are compared. The experiences of an undergraduate student are summarized in the conclusion of the paper.

  4. A new robust adaptive controller for vibration control of active engine mount subjected to large uncertainties

    NASA Astrophysics Data System (ADS)

    Fakhari, Vahid; Choi, Seung-Bok; Cho, Chang-Hyun

    2015-04-01

    This work presents a new robust model reference adaptive control (MRAC) for vibration control caused from vehicle engine using an electromagnetic type of active engine mount. Vibration isolation performances of the active mount associated with the robust controller are evaluated in the presence of large uncertainties. As a first step, an active mount with linear solenoid actuator is prepared and its dynamic model is identified via experimental test. Subsequently, a new robust MRAC based on the gradient method with σ-modification is designed by selecting a proper reference model. In designing the robust adaptive control, structured (parametric) uncertainties in the stiffness of the passive part of the mount and in damping ratio of the active part of the mount are considered to investigate the robustness of the proposed controller. Experimental and simulation results are presented to evaluate performance focusing on the robustness behavior of the controller in the face of large uncertainties. The obtained results show that the proposed controller can sufficiently provide the robust vibration control performance even in the presence of large uncertainties showing an effective vibration isolation.

  5. Stochastic output error vibration-based damage detection and assessment in structures under earthquake excitation

    NASA Astrophysics Data System (ADS)

    Sakellariou, J. S.; Fassois, S. D.

    2006-11-01

    A stochastic output error (OE) vibration-based methodology for damage detection and assessment (localization and quantification) in structures under earthquake excitation is introduced. The methodology is intended for assessing the state of a structure following potential damage occurrence by exploiting vibration signal measurements produced by low-level earthquake excitations. It is based upon (a) stochastic OE model identification, (b) statistical hypothesis testing procedures for damage detection, and (c) a geometric method (GM) for damage assessment. The methodology's advantages include the effective use of the non-stationary and limited duration earthquake excitation, the handling of stochastic uncertainties, the tackling of the damage localization and quantification subproblems, the use of "small" size, simple and partial (in both the spatial and frequency bandwidth senses) identified OE-type models, and the use of a minimal number of measured vibration signals. Its feasibility and effectiveness are assessed via Monte Carlo experiments employing a simple simulation model of a 6 storey building. It is demonstrated that damage levels of 5% and 20% reduction in a storey's stiffness characteristics may be properly detected and assessed using noise-corrupted vibration signals.

  6. Electronic damping of anharmonic adsorbate vibrations at metallic surfaces

    NASA Astrophysics Data System (ADS)

    Tremblay, Jean Christophe; Monturet, Serge; Saalfrank, Peter

    2010-03-01

    The nonadiabatic coupling of an adsorbate close to a metallic surface leads to electronic damping of adsorbate vibrations and line broadening in vibrational spectroscopy. Here, a perturbative treatment of the electronic contribution to the lifetime broadening serves as a building block for a new approach, in which anharmonic vibrational transition rates are calculated from a position-dependent coupling function. Different models for the coupling function will be tested, all related to embedding theory. The first two are models based on a scattering approach with (i) a jellium-type and (ii) a density functional theory based embedding density, respectively. In a third variant a further refined model is used for the embedding density, and a semiempirical approach is taken in which a scaling factor is chosen to match harmonic, single-site, first-principles transition rates, obtained from periodic density functional theory. For the example of hydrogen atoms on (adsorption) and below (subsurface absorption) a Pd(111) surface, lifetimes of and transition rates between vibrational levels are computed. The transition rates emerging from different models serve as input for the selective subsurface adsorption of hydrogen in palladium starting from an adsorption site, by using sequences of infrared laser pulses in a laser distillation scheme.

  7. Active vibration control on a quarter-car for cancellation of road noise disturbance

    NASA Astrophysics Data System (ADS)

    Belgacem, Walid; Berry, Alain; Masson, Patrice

    2012-07-01

    In this paper, a methodology is presented for the cancellation of road noise, from the analysis of vibration transmission paths for an automotive suspension to the design of an active control system using inertial actuators on a suspension to reduce the vibrations transmitted to the chassis. First, experiments were conducted on a Chevrolet Epica LS automobile on a concrete test track to measure accelerations induced on the suspension by the road. These measurements were combined with experimental Frequency Response Functions (FRFs) measured on a quarter-car test bench to reconstruct an equivalent three dimensional force applied on the wheel hub. Second, FRFs measured on the test bench between the three-dimensional driving force and forces at each suspension/chassis linkage were used to characterize the different transmission paths of vibration energy to the chassis. Third, an experimental model of the suspension was constructed to simulate the configuration of the active control system, using the primary (disturbance) FRFs and secondary (control) FRFs also measured on the test bench. This model was used to optimize the configuration of the control actuators and to evaluate the required forces. Finally, a prototype of an active suspension was implemented and measurements were performed in order to assess the performance of the control approach. A 4.6 dB attenuation on transmitted forces was obtained in the 50-250 Hz range.

  8. Study on the effect of transition curve to the dynamic characteristics of high-temperature superconducting maglev

    NASA Astrophysics Data System (ADS)

    Qian, Nan; Zheng, Botian; Gou, Yanfeng; Chen, Ping; Zheng, Jun; Deng, Zigang

    2015-12-01

    High temperature superconducting (HTS) maglev technology is becoming more and more mature, and many key technologies have been deeply studied. However, the transition curve plays a key role in HTS maglev system, and related studies have not been carried out. In this paper series of simulations were conducted to test the lateral and vertical vibration of HTS maglev when passing through curves. Two magnetic guideways, of which one has transition curves but the other does not, are designed to test the vibration characteristics of a mini HTS maglev model running though curves. Results show that after adding transition curves between straight line and circular curve the vibration of HTS maglev model in lateral and vertical directions are all weakened in different degrees. It proves that adding transition curve into HTS maglev system is favorable and necessary.

  9. 49 CFR Appendix C to Part 173 - Procedure for Base-level Vibration Testing

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Procedure for Base-level Vibration Testing C... Base-level Vibration Testing Base-level vibration testing shall be conducted as follows: 1. Three... platform. 4. Immediately following the period of vibration, each package shall be removed from the platform...

  10. Comparative studies of perceived vibration strength for commercial mobile phones.

    PubMed

    Lee, Heow Pueh; Lim, Siak Piang

    2014-05-01

    A mobile phone, also known as cell phone or hand phone, is among the most popular electrical devices used by people all over the world. The present study examines the vibration perception of mobile phones by co-relating the relevant design parameters such as excitation frequency, and size and mass of mobile phones to the vibration perception survey by volunteers. Five popular commercially available mobile phone models were tested. The main findings for the perception surveys were that higher vibration frequency and amplitude of the peak acceleration would result in stronger vibration perception of the mobile phones. A larger contact surface area with the palms and figures, higher peak acceleration and the associated larger peak inertia force may be the main factors for the relatively higher vibration perception. The future design for the vibration alert of the mobile phones is likely to follow this trend. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  11. Comparison of wavelet based denoising schemes for gear condition monitoring: An Artificial Neural Network based Approach

    NASA Astrophysics Data System (ADS)

    Ahmed, Rounaq; Srinivasa Pai, P.; Sriram, N. S.; Bhat, Vasudeva

    2018-02-01

    Vibration Analysis has been extensively used in recent past for gear fault diagnosis. The vibration signals extracted is usually contaminated with noise and may lead to wrong interpretation of results. The denoising of extracted vibration signals helps the fault diagnosis by giving meaningful results. Wavelet Transform (WT) increases signal to noise ratio (SNR), reduces root mean square error (RMSE) and is effective to denoise the gear vibration signals. The extracted signals have to be denoised by selecting a proper denoising scheme in order to prevent the loss of signal information along with noise. An approach has been made in this work to show the effectiveness of Principal Component Analysis (PCA) to denoise gear vibration signal. In this regard three selected wavelet based denoising schemes namely PCA, Empirical Mode Decomposition (EMD), Neighcoeff Coefficient (NC), has been compared with Adaptive Threshold (AT) an extensively used wavelet based denoising scheme for gear vibration signal. The vibration signals acquired from a customized gear test rig were denoised by above mentioned four denoising schemes. The fault identification capability as well as SNR, Kurtosis and RMSE for the four denoising schemes have been compared. Features extracted from the denoised signals have been used to train and test artificial neural network (ANN) models. The performances of the four denoising schemes have been evaluated based on the performance of the ANN models. The best denoising scheme has been identified, based on the classification accuracy results. PCA is effective in all the regards as a best denoising scheme.

  12. 49 CFR 178.985 - Vibration test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.985 Section 178.985... Testing of Large Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A...

  13. Fine-tuning molecular acoustic models: sensitivity of the predicted attenuation to the Lennard-Jones parameters

    NASA Astrophysics Data System (ADS)

    Petculescu, Andi G.; Lueptow, Richard M.

    2005-01-01

    In a previous paper [Y. Dain and R. M. Lueptow, J. Acoust. Soc. Am. 109, 1955 (2001)], a model of acoustic attenuation due to vibration-translation and vibration-vibration relaxation in multiple polyatomic gas mixtures was developed. In this paper, the model is improved by treating binary molecular collisions via fully pairwise vibrational transition probabilities. The sensitivity of the model to small variations in the Lennard-Jones parameters-collision diameter (σ) and potential depth (ɛ)-is investigated for nitrogen-water-methane mixtures. For a N2(98.97%)-H2O(338 ppm)-CH4(1%) test mixture, the transition probabilities and acoustic absorption curves are much more sensitive to σ than they are to ɛ. Additionally, when the 1% methane is replaced by nitrogen, the resulting mixture [N2(99.97%)-H2O(338 ppm)] becomes considerably more sensitive to changes of σwater. The current model minimizes the underprediction of the acoustic absorption peak magnitudes reported by S. G. Ejakov et al. [J. Acoust. Soc. Am. 113, 1871 (2003)]. .

  14. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: AMSU-A1 EOS Instrument, (S/N 202) Qualification Level Vibration Tests of August/September 1998, (S/O 565632, OC-417) Plus Addendum A

    NASA Technical Reports Server (NTRS)

    Heffer, R.

    1998-01-01

    The purpose of this report is to present a qualification level vibration testing performed on the S/N 202, EOS AMSU-A1 Instrument was vibration tested to qualification levels per the Ref. 1 shop order. The instrument withstood the 8 g sine sweep test, the 7.5 Grms random vibration test, and the 18.75 g sine burst test in each of the three orthogonal axes. Some loss of transmissibility, however, is seen in the lower reflector after Z-axis random vibration. The test sequence was not without incidence. Failure of Channel 7 in the Limited Performance Test (LPT) performed after completion of the 1 st (X-axis) axis vibration sequence, required replacement of the DRO and subsequent re-testing of the instrument. The post-vibration comprehensive performance test (CPT) was successfully run after completion of the three axes of vibration with the replacement component installed in the instrument. Passing the CPT signified the successful completion of the S/N 202 A1 qualification vibration testing.

  15. Investigation of the vibration and EMC characteristics of miniature Stirling electric coolers for space applications

    NASA Astrophysics Data System (ADS)

    Kondratjev, V.; Gostilo, V.; Owens, anb A.

    2017-08-01

    We present the results of an investigation into the detrimental effects that electromechanical coolers can have on the spectral performance of compact, large volume HPGe spectrometers for space applications. Both mechanical vibration and electromagnetic pickup effects were considered, as well as a comparative assessment between three miniature Stirling cycle coolers—two Ricor model K508 coolers and one Thales model RM3 cooler. In spite of the limited number of coolers tested, the following conclusions can be made. There are significant differences in the vibration characteristics not only between the various types of cooler but also between coolers of the same type. It was also found that compared to the noise induced by mechanical vibrations, electromagnetic interference emanating from the embedded controllers does not significantly impact the energy resolution of detectors.

  16. Application of analysis techniques for low frequency interior noise and vibration of commercial aircraft

    NASA Technical Reports Server (NTRS)

    Landmann, A. E.; Tillema, H. F.; Macgregor, G. R.

    1992-01-01

    Finite element analysis (FEA), statistical energy analysis (SEA), and a power flow method (computer program PAIN) were used to assess low frequency interior noise associated with advanced propeller installations. FEA and SEA models were used to predict cabin noise and vibration and evaluate suppression concepts for structure-borne noise associated with the shaft rotational frequency and harmonics (less than 100 Hz). SEA and PAIN models were used to predict cabin noise and vibration and evaluate suppression concepts for airborne noise associated with engine radiated propeller tones. Both aft-mounted and wing-mounted propeller configurations were evaluated. Ground vibration test data from a 727 airplane modified to accept a propeller engine were used to compare with predictions for the aft-mounted propeller. Similar data from the 767 airplane was used for the wing-mounted comparisons.

  17. Evaluation of EDR-3 vibration, shock, temperature, and humidity recording unit

    NASA Technical Reports Server (NTRS)

    Rees, Kevin G.; Mondale, C. F.

    1990-01-01

    The purpose of this evaluation was to determine if the self-contained, off-the-shelf, Environmental Data Recorder 3 (EDR-3) could be qualified to monitor shock, vibration, and temperature during rail transportation of space shuttle solid rocket components. The evaluation testing started in November 1989 and continued until June 1990. Two EDR-3 units were used to monitor both on- and off-plant shipments of shuttle components. In addition, extensive testing was performed at Thiokol's Vibration Test facility, T-53. Testing demonstrated that the EDR-3 is capable of successfully monitoring actual shipments of solid rocket hardware. Thiokol metrology has verified the accuracy of temperature monitoring. In addition, calibrated shock/vibration testing demonstrated that the EDR-3 does accurately record acceleration. It is recommended that the vendor modify the EDR-3 data recovery system to allow remote communication via a 30-foot cable. This would permit communication with the unit mounted on a case segment after a rail car cover is installed. The vendor will make this change and produce a new model, designated EDR-3-10. It is further recommended that Thiokol qualify the EDR-3-10 for transportation monitoring of redesigned solid rocket motor (RSRM) components.

  18. Noncontact Electromagnetic Vibration Source

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Fulton, James P.; Wincheski, Buzz A.

    1994-01-01

    Metal aircraft skins scanned rapidly in vibration tests. Relatively simple combination of permanent magnets and electromagnet serves as noncontact vibration source for nondestructive testing of metal aircraft skins. In test, source excites vibrations, and vibration waveforms measured, then analyzed for changes in resonances signifying cracks and other flaws.

  19. System reliability of randomly vibrating structures: Computational modeling and laboratory testing

    NASA Astrophysics Data System (ADS)

    Sundar, V. S.; Ammanagi, S.; Manohar, C. S.

    2015-09-01

    The problem of determination of system reliability of randomly vibrating structures arises in many application areas of engineering. We discuss in this paper approaches based on Monte Carlo simulations and laboratory testing to tackle problems of time variant system reliability estimation. The strategy we adopt is based on the application of Girsanov's transformation to the governing stochastic differential equations which enables estimation of probability of failure with significantly reduced number of samples than what is needed in a direct simulation study. Notably, we show that the ideas from Girsanov's transformation based Monte Carlo simulations can be extended to conduct laboratory testing to assess system reliability of engineering structures with reduced number of samples and hence with reduced testing times. Illustrative examples include computational studies on a 10-degree of freedom nonlinear system model and laboratory/computational investigations on road load response of an automotive system tested on a four-post test rig.

  20. Ground test for vibration control demonstrator

    NASA Astrophysics Data System (ADS)

    Meyer, C.; Prodigue, J.; Broux, G.; Cantinaud, O.; Poussot-Vassal, C.

    2016-09-01

    In the objective of maximizing comfort in Falcon jets, Dassault Aviation is developing an innovative vibration control technology. Vibrations of the structure are measured at several locations and sent to a dedicated high performance vibration control computer. Control laws are implemented in this computer to analyse the vibrations in real time, and then elaborate orders sent to the existing control surfaces to counteract vibrations. After detailing the technology principles, this paper focuses on the vibration control ground demonstration that was performed by Dassault Aviation in May 2015 on Falcon 7X business jet. The goal of this test was to attenuate vibrations resulting from fixed forced excitation delivered by shakers. The ground test demonstrated the capability to implement an efficient closed-loop vibration control with a significant vibration level reduction and validated the vibration control law design methodology. This successful ground test was a prerequisite before the flight test demonstration that is now being prepared. This study has been partly supported by the JTI CleanSky SFWA-ITD.

  1. Turbine Engine Research Center (TERC) Data System Enhancement and Test Article Evaluation. Delivery Order 0002: TERC Aeromechanical Characterization

    DTIC Science & Technology

    2005-06-01

    test, the entire turbulence model was changed from standard k- epsilon to Spalart- Allmaras. Using these different tools of turbulence models, a few...this research, leaving only pre-existing finite element models to be used. At some point a NASTRAN model was developed for vibrations analysis but

  2. Structural-Vibration-Response Data Analysis

    NASA Technical Reports Server (NTRS)

    Smith, W. R.; Hechenlaible, R. N.; Perez, R. C.

    1983-01-01

    Computer program developed as structural-vibration-response data analysis tool for use in dynamic testing of Space Shuttle. Program provides fast and efficient time-domain least-squares curve-fitting procedure for reducing transient response data to obtain structural model frequencies and dampings from free-decay records. Procedure simultaneously identifies frequencies, damping values, and participation factors for noisy multiple-response records.

  3. Nondestructive assessment of timber bridges using a vibration-based method

    Treesearch

    Xiping Wang; James P. Wacker; Robert J. Ross; Brian K. Brashaw

    2005-01-01

    This paper describes an effort to develop a global dynamic testing technique for evaluating the overall stiffness of timber bridge superstructures. A forced vibration method was used to measure the natural frequency of single-span timber bridges in the laboratory and field. An analytical model based on simple beam theory was proposed to represent the relationship...

  4. Analytical and experimental vibration analysis of a faulty gear system

    NASA Astrophysics Data System (ADS)

    Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.

    1994-10-01

    A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structures. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville Distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  5. Analytical and experimental vibration analysis of a faulty gear system

    NASA Astrophysics Data System (ADS)

    Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.

    1994-10-01

    A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structure. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  6. Analytical and Experimental Vibration Analysis of a Faulty Gear System

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.

    1994-01-01

    A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structure. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  7. Rail Shock and Vibration Pre-Test Modeling of a Used Nuclear Fuel Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Steven B.; Klymyshyn, Nicholas A.; Jensen, Philip J.

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology, has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel (UNF) and high-level radioactive waste (HLW). The mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and HLW generated by existing and future nuclear fuel cycles. The Storage and Transportation staff within the UFDC is responsible for addressing issues regarding the long-term or extendedmore » storage (ES) of UNF and its subsequent transportation. Available information is not sufficient to determine the ability of ES UNF, including high-burnup fuel, to withstand shock and vibration forces that could occur when the UNF is shipped by rail from nuclear power plant sites to a storage or disposal facility. There are three major gaps in the available information – 1) the forces that UNF assemblies would be subjected to when transported by rail, 2) the mechanical characteristics of fuel rod cladding, which is an essential structure for controlling the geometry of the UNF, a safety related feature, and 3) modeling methodologies to evaluate multiple possible degradation or damage mechanisms over the UNF lifetime. In order to address the first gap, options for tests to determine the physical response of surrogate UNF assemblies subjected to shock and vibration forces that are expected to be experienced during normal conditions of transportation (NCT) by rail must be identified and evaluated. The objective of the rail shock and vibration tests is to obtain data that will help researchers understand the mechanical loads that ES UNF assemblies would be subjected to under normal conditions of transportation and to fortify the computer modeling that will be necessary to evaluate the impact those loads may have on the integrity of the UNF assembly. The shock and vibration testing along with computer modeling is a vital part of research to achieve closure of a gap in information related to the ability of ES UNF to maintain its safety function when subjected to NCT. In support of this effort, preliminary structural dynamics modeling is presented herein. The modeling investigates the rigidity of a hypothetical cask and cradle structure by comparing it to a monolithic concrete mass. The concrete mass represents a practical option for achieving the necessary cask and cradle mass on a flatbed railcar, but this comparative modeling study investigates whether or not the dynamic loads transmitted through a monolithic concrete configuration are adequately representative of a realistic cask and cradle system. This modeling highlights the need for rail testing by reporting the phenomenon of structural transmissibility. As shown herein, this structural transmissibility can cause an amplification of shock and vibration loads through the structure, which could potentially lead to accelerated mechanical degradation of UNF under NCT.« less

  8. Higher Harmonic Control for Tiltrotor Vibration Reduction

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Kvaternik, Raymond G.; Settle, T. Ben

    1997-01-01

    The results of a joint NASA/Army/Bell Helicopter Textron wind-tunnel test to assess the potential of higher harmonic control (HHC) for reducing vibrations in tiltrotor aircraft operating in the airplane mode of flight, and to evaluate the effectiveness of a Bell-developed HHC algorithm called MAVSS (Multipoint Adaptive Vibration Suppression System) are presented. The test was conducted in the Langley Transonic Dynamics Tunnel using an unpowered 1/5- scale semispan aeroelastic model of the V-22 which was modified to incorporate an HHC system employing both the rotor swashplate and the wing flaperon. The effectiveness of the swashplate and the flaperon acting either singly or in combination in reducing 1P and 3P wing vibrations over a wide range of tunnel airspeeds and rotor rotational speeds was demonstrated. The MAVSS algorithm was found to be robust to variations in tunnel airspeed and rotor speed, requiring only occasion-al on-line recalculations of the system transfer matrix.

  9. Dissociative chemisorption of methane on metal surfaces: Tests of dynamical assumptions using quantum models and ab initio molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Bret, E-mail: jackson@chem.umass.edu; Nattino, Francesco; Kroes, Geert-Jan

    The dissociative chemisorption of methane on metal surfaces is of great practical and fundamental importance. Not only is it the rate-limiting step in the steam reforming of natural gas, the reaction exhibits interesting mode-selective behavior and a strong dependence on the temperature of the metal. We present a quantum model for this reaction on Ni(100) and Ni(111) surfaces based on the reaction path Hamiltonian. The dissociative sticking probabilities computed using this model agree well with available experimental data with regard to variation with incident energy, substrate temperature, and the vibrational state of the incident molecule. We significantly expand the vibrationalmore » basis set relative to earlier studies, which allows reaction probabilities to be calculated for doubly excited initial vibrational states, though it does not lead to appreciable changes in the reaction probabilities for singly excited initial states. Sudden models used to treat the center of mass motion parallel to the surface are compared with results from ab initio molecular dynamics and found to be reasonable. Similar comparisons for molecular rotation suggest that our rotationally adiabatic model is incorrect, and that sudden behavior is closer to reality. Such a model is proposed and tested. A model for predicting mode-selective behavior is tested, with mixed results, though we find it is consistent with experimental studies of normal vs. total (kinetic) energy scaling. Models for energy transfer into lattice vibrations are also examined.« less

  10. 49 CFR 178.985 - Vibration test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Vibration test. 178.985 Section 178.985... Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A sample Large...

  11. 49 CFR 178.985 - Vibration test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Vibration test. 178.985 Section 178.985... Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A sample Large...

  12. 30 CFR 27.39 - Tests to determine resistance to vibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests to determine resistance to vibration. 27... determine resistance to vibration. (a) Laboratory tests for reliability and durability. Components... two separate vibration tests, each of one-hour duration. The first test shall be conducted at a...

  13. 49 CFR 178.985 - Vibration test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Vibration test. 178.985 Section 178.985... Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A sample Large...

  14. 30 CFR 27.39 - Tests to determine resistance to vibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests to determine resistance to vibration. 27... determine resistance to vibration. (a) Laboratory tests for reliability and durability. Components... two separate vibration tests, each of one-hour duration. The first test shall be conducted at a...

  15. 30 CFR 27.39 - Tests to determine resistance to vibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests to determine resistance to vibration. 27... determine resistance to vibration. (a) Laboratory tests for reliability and durability. Components... two separate vibration tests, each of one-hour duration. The first test shall be conducted at a...

  16. 30 CFR 27.39 - Tests to determine resistance to vibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests to determine resistance to vibration. 27... determine resistance to vibration. (a) Laboratory tests for reliability and durability. Components... two separate vibration tests, each of one-hour duration. The first test shall be conducted at a...

  17. 49 CFR 178.985 - Vibration test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Vibration test. 178.985 Section 178.985... Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A sample Large...

  18. Qualitative models of seat discomfort including static and dynamic factors.

    PubMed

    Ebe, K; Griffin, M J

    2000-06-01

    Judgements of overall seating comfort in dynamic conditions sometimes correlate better with the static characteristics of a seat than with measures of the dynamic environment. This study developed qualitative models of overall seat discomfort to include both static and dynamic seat characteristics. A dynamic factor that reflected how vibration discomfort increased as vibration magnitude increased was combined with a static seat factor which reflected seating comfort without vibration. The ability of the model to predict the relative and overall importance of dynamic and static seat characteristics on comfort was tested in two experiments. A paired comparison experiment, using four polyurethane foam cushions (50, 70, 100, 120 mm thick), provided different static and dynamic comfort when 12 subjects were exposed to one-third octave band random vertical vibration with centre frequencies of 2.5 and 5.5 Hz, at magnitudes of 0.00, 0.25 and 0.50 m x s(-2) rms measured beneath the foam samples. Subject judgements of the relative discomfort of the different conditions depended on both static and dynamic characteristics in a manner consistent with the model. The effect of static and dynamic seat factors on overall seat discomfort was investigated by magnitude estimation using three foam cushions (of different hardness) and a rigid wooden seat at six vibration magnitudes with 20 subjects. Static seat factors (i.e. cushion stiffness) affected the manner in which vibration influenced the overall discomfort: cushions with lower stiffness were more comfortable and more sensitive to changes in vibration magnitude than those with higher stiffness. The experiments confirm that judgements of overall seat discomfort can be affected by both the static and dynamic characteristics of a seat, with the effect depending on vibration magnitude: when vibration magnitude was low, discomfort was dominated by static seat factors; as the vibration magnitude increased, discomfort became dominated by dynamic factors.

  19. Internal rotor friction instability

    NASA Technical Reports Server (NTRS)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1990-01-01

    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.

  20. Analysis tool and methodology design for electronic vibration stress understanding and prediction

    NASA Astrophysics Data System (ADS)

    Hsieh, Sheng-Jen; Crane, Robert L.; Sathish, Shamachary

    2005-03-01

    The objectives of this research were to (1) understand the impact of vibration on electronic components under ultrasound excitation; (2) model the thermal profile presented under vibration stress; and (3) predict stress level given a thermal profile of an electronic component. Research tasks included: (1) retrofit of current ultrasonic/infrared nondestructive testing system with sensory devices for temperature readings; (2) design of software tool to process images acquired from the ultrasonic/infrared system; (3) developing hypotheses and conducting experiments; and (4) modeling and evaluation of electronic vibration stress levels using a neural network model. Results suggest that (1) an ultrasonic/infrared system can be used to mimic short burst high vibration loads for electronics components; (2) temperature readings for electronic components under vibration stress are consistent and repeatable; (3) as stress load and excitation time increase, temperature differences also increase; (4) components that are subjected to a relatively high pre-stress load, followed by a normal operating load, have a higher heating rate and lower cooling rate. These findings are based on grayscale changes in images captured during experimentation. Discriminating variables and a neural network model were designed to predict stress levels given temperature and/or grayscale readings. Preliminary results suggest a 15.3% error when using grayscale change rate and 12.8% error when using average heating rate within the neural network model. Data were obtained from a high stress point (the corner) of the chip.

  1. Development of hardware system using temperature and vibration maintenance models integration concepts for conventional machines monitoring: a case study

    NASA Astrophysics Data System (ADS)

    Adeyeri, Michael Kanisuru; Mpofu, Khumbulani; Kareem, Buliaminu

    2016-03-01

    This article describes the integration of temperature and vibration models for maintenance monitoring of conventional machinery parts in which their optimal and best functionalities are affected by abnormal changes in temperature and vibration values thereby resulting in machine failures, machines breakdown, poor quality of products, inability to meeting customers' demand, poor inventory control and just to mention a few. The work entails the use of temperature and vibration sensors as monitoring probes programmed in microcontroller using C language. The developed hardware consists of vibration sensor of ADXL345, temperature sensor of AD594/595 of type K thermocouple, microcontroller, graphic liquid crystal display, real time clock, etc. The hardware is divided into two: one is based at the workstation (majorly meant to monitor machines behaviour) and the other at the base station (meant to receive transmission of machines information sent from the workstation), working cooperatively for effective functionalities. The resulting hardware built was calibrated, tested using model verification and validated through principles pivoted on least square and regression analysis approach using data read from the gear boxes of extruding and cutting machines used for polyethylene bag production. The results got therein confirmed related correlation existing between time, vibration and temperature, which are reflections of effective formulation of the developed concept.

  2. ANTIVIBRATION GLOVES: EFFECTS ON VASCULAR AND SENSORINEURAL FUNCTION, AN ANIMAL MODEL

    PubMed Central

    Krajnak, K.; Waugh, S.; Johnson, C.; Miller, R. G.; Welcome, D.; Xu, X.; Warren, C.; Sarkisian, S.; Andrew, M.; Dong, R. G.

    2015-01-01

    Anti-vibration gloves have been used to block the transmission of vibration from powered hand tools to the user, and to protect users from the negative health consequences associated with exposure to vibration. However, there are conflicting reports as to the efficacy of gloves in protecting workers. The goal of this study was to use a characterized animal model of vibration-induced peripheral vascular and nerve injury to determine whether antivibration materials reduced or inhibited the effects of vibration on these physiological symptoms. Rats were exposed to 4 h of tail vibration at 125 Hz with an acceleration 49 m/s2. The platform was either bare or covered with antivibrating glove material. Rats were tested for tactile sensitivity to applied pressure before and after vibration exposure. One day following the exposure, ventral tail arteries were assessed for sensitivity to vasodilating and vasoconstricting factors and nerves were examined histologically for early indicators of edema and inflammation. Ventral tail artery responses to an α2C-adrenoreceptor agonist were enhanced in arteries from vibration-exposed rats compared to controls, regardless of whether antivibration materials were used or not. Rats exposed to vibration were also less sensitive to pressure after exposure. These findings are consistent with experimental findings in humans suggesting that antivibration gloves may not provide protection against the adverse health consequences of vibration exposure in all conditions. Additional studies need to be done examining newer antivibration materials. PMID:25965192

  3. Track/train dynamics test procedure transfer function test

    NASA Technical Reports Server (NTRS)

    Vigil, R. A.

    1975-01-01

    A transfer function vibration test was made on an 80 ton open hopper freight car in an effort to obtain validation data on the car's nonlinear elastic model. Test configuration, handling, test facilities, test operations, and data acquisition/reduction activities necessary to meet the conditions of test requirements are given.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sels, Seppe, E-mail: Seppe.Sels@uantwerpen.be; Ribbens, Bart; Mertens, Luc

    Scanning laser Doppler vibrometers (LDV) are used to measure full-field vibration shapes of products and structures. In most commercially available scanning laser Doppler vibrometer systems the user manually draws a grid of measurement locations on a 2D camera image of the product. The determination of the correct physical measurement locations can be a time consuming and diffcult task. In this paper we present a new methodology for product testing and quality control that integrates 3D imaging techniques with vibration measurements. This procedure allows to test prototypes in a shorter period because physical measurements locations will be located automatically. The proposedmore » methodology uses a 3D time-of-flight camera to measure the location and orientation of the test-object. The 3D image of the time-of-flight camera is then matched with the 3D-CAD model of the object in which measurement locations are pre-defined. A time of flight camera operates strictly in the near infrared spectrum. To improve the signal to noise ratio in the time-of-flight measurement, a time-of-flight camera uses a band filter. As a result of this filter, the laser spot of most laser vibrometers is invisible in the time-of-flight image. Therefore a 2D RGB-camera is used to find the laser-spot of the vibrometer. The laser spot is matched to the 3D image obtained by the time-of-flight camera. Next an automatic calibration procedure is used to aim the laser at the (pre)defined locations. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. Secondly the orientation of the CAD model is known with respect to the laser beam. This information can be used to find the direction of the measured vibration relatively to the surface of the object. With this direction, the vibration measurements can be compared more precisely with numerical experiments.« less

  5. Fluorescence Imaging of Rotational and Vibrational Temperature in a Shock Tunnel Nozzle Flow

    NASA Technical Reports Server (NTRS)

    Palma, Philip C.; Danehy, Paul M.; Houwing, A. F. P.

    2003-01-01

    Two-dimensional rotational and vibrational temperature measurements were made at the nozzle exit of a free-piston shock tunnel using planar laser-induced fluorescence. The Mach 7 flow consisted predominantly of nitrogen with a trace quantity of nitric oxide. Nitric oxide was employed as the probe species and was excited at 225 nm. Nonuniformities in the distribution of nitric oxide in the test gas were observed and were concluded to be due to contamination of the test gas by driver gas or cold test gas.The nozzle-exit rotational temperature was measured and is in reasonable agreement with computational modeling. Nonlinearities in the detection system were responsible for systematic errors in the measurements. The vibrational temperature was measured to be constant with distance from the nozzle exit, indicating it had frozen during the nozzle expansion.

  6. A data driven control method for structure vibration suppression

    NASA Astrophysics Data System (ADS)

    Xie, Yangmin; Wang, Chao; Shi, Hang; Shi, Junwei

    2018-02-01

    High radio-frequency space applications have motivated continuous research on vibration suppression of large space structures both in academia and industry. This paper introduces a novel data driven control method to suppress vibrations of flexible structures and experimentally validates the suppression performance. Unlike model-based control approaches, the data driven control method designs a controller directly from the input-output test data of the structure, without requiring parametric dynamics and hence free of system modeling. It utilizes the discrete frequency response via spectral analysis technique and formulates a non-convex optimization problem to obtain optimized controller parameters with a predefined controller structure. Such approach is then experimentally applied on an end-driving flexible beam-mass structure. The experiment results show that the presented method can achieve competitive disturbance rejections compared to a model-based mixed sensitivity controller under the same design criterion but with much less orders and design efforts, demonstrating the proposed data driven control is an effective approach for vibration suppression of flexible structures.

  7. Design and test of aircraft engine isolators for reduced interior noise

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.

    1982-01-01

    Improved engine vibration isolation was proposed to be the most weight and cost efficient retrofit structure-borne noise control measure for single engine general aviation aircraft. A study was carried out the objectives: (1) to develop an engine isolator design specification for reduced interior noise transmission, (2) select/design candidate isolators to meet a 15 dB noise reduction design goal, and (3) carry out a proof of concept evaluation test. Analytical model of the engine, vibration isolators and engine mount structure were coupled to an empirical model of the fuselage for noise transmission evaluation. The model was used to develop engine isolator dynamic properties design specification for reduced noise transmission. Candidate isolators ere chosen from available product literature and retrofit to a test aircraft. A laboratory based test procedure was then developed to simulate engine induced noise transmission in the aircraft for a proof of concept evaluation test. Three candidate isolator configurations were evaluated for reduced structure-borne noise transmission relative to the original equipment isolators.

  8. Used fuel rail shock and vibration testing options analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Steven B.; Best, Ralph E.; Klymyshyn, Nicholas A.

    2014-09-25

    The objective of the rail shock and vibration tests is to complete the framework needed to quantify loads of fuel assembly components that are necessary to guide materials research and establish a technical basis for review organizations such as the U.S. Nuclear Regulatory Commission (NRC). A significant body of experimental and numerical modeling data exists to quantify loads and failure limits applicable to normal conditions of transport (NCT) rail transport, but the data are based on assumptions that can only be verified through experimental testing. The test options presented in this report represent possible paths for acquiring the data thatmore » are needed to confirm the assumptions of previous work, validate modeling methods that will be needed for evaluating transported fuel on a case-by-case basis, and inform material test campaigns on the anticipated range of fuel loading. The ultimate goal of this testing is to close all of the existing knowledge gaps related to the loading of used fuel under NCT conditions and inform the experiments and analysis program on specific endpoints for their research. The options include tests that would use an actual railcar, surrogate assemblies, and real or simulated rail transportation casks. The railcar carrying the cradle, cask, and surrogate fuel assembly payload would be moved in a train operating over rail track modified or selected to impart shock and vibration forces that occur during normal rail transportation. Computer modeling would be used to help design surrogates that may be needed for a rail cask, a cask’s internal basket, and a transport cradle. The objective of the design of surrogate components would be to provide a test platform that effectively simulates responses to rail shock and vibration loads that would be exhibited by state-of-the-art rail cask, basket, and/or cradle structures. The computer models would also be used to help determine the placement of instrumentation (accelerometers and strain gauges) on the surrogate fuel assemblies, cask and cradle structures, and the railcar so that forces and deflections that would result in the greatest potential for damage to high burnup and long-cooled UNF can be determined. For purposes of this report we consider testing on controlled track when we have control of the track and speed to facilitate modeling.« less

  9. Field testing of the Wolf Creek curved girder bridge : part I : vibration tests.

    DOT National Transportation Integrated Search

    2009-01-01

    The Wolf Creek Bridge is a curved, multi-girder three span steel composite bridge located south of Narrows, Virginia, that was completed in 2006. A finite element model of the bridge revealed that pier flexibility may be important in modeling the bri...

  10. Benefits of Spacecraft Level Vibration Testing

    NASA Technical Reports Server (NTRS)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  11. An Evaluation of Reaction Wheel Emitted Vibrations for Large Space Telescope

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Emitted force and torque vibration were measured in three axes for three Sperry reaction wheels. Data were taken for both hard and soft mounts; tests were conducted at constant speeds and during runup-rundown over a 0 to 5000 rpm range. A FSC, 7 ft-lb-sec and HEAO, 30 ft-lb-sec ball bearing reaction wheel and a model magnetic bearing were tested. Data analysis was conducted to identify the principal resonances in the 10 to 120 Hz region. Although some particular phenomena remain unexplained, in general good agreement is attained between the analytical predictions and test data. Predictions were also made of the expected emitted vibrations for an LST sized ball bearing and magnetic bearing reaction wheel using engineering judgment and the test data obtained. Additional tests were also run on the 101H duplex bearing pairs used in the reaction wheel suspension to determine bearing stiffness characteristics in the pre-breakaway zero speed region.

  12. Resolution of Forces and Strain Measurements from an Acoustic Ground Test

    NASA Technical Reports Server (NTRS)

    Smith, Andrew M.; LaVerde, Bruce T.; Hunt, Ronald; Waldon, James M.

    2013-01-01

    The Conservatism in Typical Vibration Tests was Demonstrated: Vibration test at component level produced conservative force reactions by approximately a factor of 4 (approx.12 dB) as compared to the integrated acoustic test in 2 out of 3 axes. Reaction Forces Estimated at the Base of Equipment Using a Finite Element Based Method were Validated: FEM based estimate of interface forces may be adequate to guide development of vibration test criteria with less conservatism. Element Forces Estimated in Secondary Structure Struts were Validated: Finite element approach provided best estimate of axial strut forces in frequency range below 200 Hz where a rigid lumped mass assumption for the entire electronics box was valid. Models with enough fidelity to represent diminishing apparent mass of equipment are better suited for estimating force reactions across the frequency range. Forward Work: Demonstrate the reduction in conservatism provided by; Current force limited approach and an FEM guided approach. Validate proposed CMS approach to estimate coupled response from uncoupled system characteristics for vibroacoustics.

  13. Analysis of crack initiation and growth in the high level vibration test at Tadotsu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassir, M.K.; Park, Y.J.; Hofmayer, C.H.

    1993-08-01

    The High Level Vibration Test data are used to assess the accuracy and usefulness of current engineering methodologies for predicting crack initiation and growth in a cast stainless steel pipe elbow under complex, large amplitude loading. The data were obtained by testing at room temperature a large scale modified model of one loop of a PWR primary coolant system at the Tadotsu Engineering Laboratory in Japan. Fatigue crack initiation time is reasonably predicted by applying a modified local strain approach (Coffin-Mason-Goodman equation) in conjunction with Miner`s rule of cumulative damage. Three fracture mechanics methodologies are applied to investigate the crackmore » growth behavior observed in the hot leg of the model. These are: the {Delta}K methodology (Paris law), {Delta}J concepts and a recently developed limit load stress-range criterion. The report includes a discussion on the pros and cons of the analysis involved in each of the methods, the role played by the key parameters influencing the formulation and a comparison of the results with the actual crack growth behavior observed in the vibration test program. Some conclusions and recommendations for improvement of the methodologies are also provided.« less

  14. Simulation analysis of the EUSAMA Plus suspension testing method including the impact of the vehicle untested side

    NASA Astrophysics Data System (ADS)

    Dobaj, K.

    2016-09-01

    The work deals with the simulation analysis of the half car vehicle model parameters on the suspension testing results. The Matlab simulation software was used. The considered model parameters are involved with the shock absorber damping coefficient, the tire radial stiffness, the car width and the rocker arm length. The consistent vibrations of both test plates were considered. Both wheels of the car were subjected to identical vibration, with frequency changed similar to the EUSAMA Plus principle. The shock absorber damping coefficient (for several values of the car width and rocker arm length) was changed on one and both sides of the vehicle. The obtained results are essential for the new suspension testing algorithm (basing on the EUSAMA Plus principle), which will be the aim of the further author's work.

  15. Experiments on reduction of propeller induced interior noise by active control of cylinder vibration

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.; Jones, J. D.

    1987-01-01

    The feasibility of reducing interior noise caused by advanced turbo propellers by controlling the vibration of aircraft fuselages was investigated by performing experiments in an anechoic chamber with an aircraft model test rig and apparatus. It was found that active vibration control provides reasonable global attenuation of interior noise levels for the cases of resonant (at 576 Hz) and forced (at 708 Hz) system response. The controlling mechanism behind the effect is structural-acoustic coupling between the shell and the contained field, termed interface modal filtering.

  16. 49 CFR Appendix C to Part 173 - Procedure for Base-level Vibration Testing

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Procedure for Base-level Vibration Testing C Appendix C to Part 173 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Base-level Vibration Testing Base-level vibration testing shall be conducted as follows: 1. Three...

  17. 49 CFR Appendix C to Part 173 - Procedure for Base-level Vibration Testing

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Procedure for Base-level Vibration Testing C Appendix C to Part 173 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Base-level Vibration Testing Base-level vibration testing shall be conducted as follows: 1. Three...

  18. Adaptive PI control strategy for flat permanent magnet linear synchronous motor vibration suppression

    NASA Astrophysics Data System (ADS)

    Meng, Fanwei; Liu, Chengying; Li, Zhijun; Wang, Liping

    2013-01-01

    Due to low damping ratio, flat permanent magnet linear synchronous motor's vibration is difficult to be damped and the accuracy is limited. The vibration suppressing results are not good enough in the existing research because only the longitudinal direction vibration is considered while the normal direction vibration is neglected. The parameters of the direct-axis current controller are set to be the same as those of the quadrature-axis current controller commonly. This causes contradiction between signal noise and response. To suppress the vibration, the electromagnetic force model of the flat permanent magnet synchronous linear motor is formulated first. Through the analysis of the effect that direct-axis current noise and quadrature-axis current noise have on both direction vibration, it can be declared that the conclusion that longitudinal direction vibration is only related to the quadrature-axis current noise while the normal direction vibration is related to both the quadrature-axis current noise and direct-axis current noise. Then, the simulation test on current loop with a low-pass filter is conducted and the results show that the low-pass filter can not suppress the vibration but makes the vibration more severe. So a vibration suppressing strategy that the proportional gain of direct-axis current controller adapted according to quadrature-axis reference current is proposed. This control strategy can suppress motor vibration by suppressing direct-axis current noise. The experiments results about the effect of K p and T i on normal direction vibration, longitudinal vibration and the position step response show that this strategy suppresses vibration effectively while the motor's motion performance is not affected. The maximum reduction of vibration can be up to 40%. In addition, current test under rated load condition is also conducted and the results show that the control strategy can avoid the conflict between the direct-axis current and the quadrature-axis current under typical load. Adaptive PI control strategy can effectively suppress the flat permanent magnet linear synchronous motor's vibration without affecting the motor's performance.

  19. Vibration and Acoustic Testing for Mars Micromission Spacecraft

    NASA Technical Reports Server (NTRS)

    Kern, Dennis L.; Scharton, Terry D.

    1999-01-01

    The objective of the Mars Micromission program being managed by the Jet Propulsion Laboratory (JPL) for NASA is to develop a common spacecraft that can carry telecommunications equipment and a variety of science payloads for exploration of Mars. The spacecraft will be capable of carrying robot landers and rovers, cameras, probes, balloons, gliders or aircraft, and telecommunications equipment to Mars at much lower cost than recent NASA Mars missions. The lightweight spacecraft (about 220 Kg mass) will be launched in a cooperative venture with CNES as a TWIN auxiliary payload on the Ariane 5 launch vehicle. Two or more Mars Micromission launches are planned for each Mars launch opportunity, which occur every 26 months. The Mars launch window for the first mission is November 1, 2002 through April 2003, which is planned to be a Mars airplane technology demonstration mission to coincide with the 100 year anniversary of the Kittyhawk flight. Several subsequent launches will create a telecommunications network orbiting Mars, which will provide for continuous communication with lenders and rovers on the Martian surface. Dedicated science payload flights to Mars are slated to start in 2005. This new cheaper and faster approach to Mars exploration calls for innovative approaches to the qualification of the Mars Micromission spacecraft for the Ariane 5 launch vibration and acoustic environments. JPL has in recent years implemented new approaches to spacecraft testing that may be effectively applied to the Mars Micromission. These include 1) force limited vibration testing, 2) combined loads, vibration and modal testing, and 3) direct acoustic testing. JPL has performed nearly 200 force limited vibration tests in the past 9 years; several of the tests were on spacecraft and large instruments, including the Cassini and Deep Space One spacecraft. Force limiting, which measures and limits the spacecraft base reaction force using triaxial force gages sandwiched between the spacecraft and the test fixture, alleviates the severe overtest at spacecraft resonances inherent in rigid fixture vibration tests. It has the distinct advantage over response limiting that the method is not dependent on the accuracy of a detailed dynamic model of the spacecraft. Combined loads, vibration, and modal testing were recently performed on the QuikSCAT spacecraft. The combined tests were performed in a single test setup per axis on a vibration shaker, reducing test time by a factor of two or three. Force gages were employed to measure the true c.g. acceleration of the spacecraft for structural loads verification using a sine burst test, to automatically notch random vibration test input accelerations at spacecraft resonances based on predetermined force limits, and to directly measure modal masses in a base drive modal test. In addition to these combined tests on the shaker, the QuikSCAT spacecraft was subjected to a direct field acoustic test by surrounding the spacecraft, still on the vibration shaker, with rock concert type acoustic speakers. Since the spacecraft contractor does not have a reverberant field acoustic test facility, performing a direct field acoustic test -saved the program nearly two weeks schedule time that would have been required for packing / unpacking and shipping of the spacecraft. This paper discusses the rationale behind and advantages of the above test approaches and provides examples of their actual implementation and comparisons to flight data. The applicability of the test approaches to Mars Micromission spacecraft qualification is discussed.

  20. Analysis of the Effects of Surface Pitting and Wear on the Vibrations of a Gear Transmission System

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Polyshchuk, V.; Zakrajsek, J. J.; Handschuh, R. F.; Townsend, D. P.

    1994-01-01

    A comprehensive procedure to simulate and analyze the vibrations in a gear transmission system with surface pitting, 'wear' and partial tooth fracture of the gear teeth is presented. An analytical model was developed where the effects of surface pitting and wear of the gear tooth were simulated by phase and magnitude changes in the gear mesh stiffness. Changes in the gear mesh stiffness were incorporated into each gear-shaft model during the global dynamic simulation of the system. The overall dynamics of the system were evaluated by solving for the transient dynamics of each shaft system simultaneously with the vibration of the gearbox structure. In order to reduce the number of degrees-of-freedom in the system, a modal synthesis procedure was used in the global transient dynamic analysis of the overall transmission system. An FFT procedure was used to transform the averaged time signal into the frequency domain for signature analysis. In addition, the Wigner-Ville distribution was also introduced to examine the gear vibration in the joint time frequency domain for vibration pattern recognition. Experimental results obtained from a gear fatigue test rig at NASA Lewis Research Center were used to evaluate the analytical model.

  1. Nondestructive assessment of single-span timber bridges using a vibration- based method

    Treesearch

    Xiping Wang; James P. Wacker; Angus M. Morison; John W. Forsman; John R. Erickson; Robert J. Ross

    2005-01-01

    This paper describes an effort to develop a global dynamic testing technique for evaluating the overall stiffness of timber bridge superstructures. A forced vibration method was used to measure the natural frequency of single-span timber bridges in the laboratory and field. An analytical model based on simple beam theory was proposed to represent the relationship...

  2. Structural Analysis and Testing of an Erectable Truss for Precision Segmented Reflector Application

    NASA Technical Reports Server (NTRS)

    Collins, Timothy J.; Fichter, W. B.; Adams, Richard R.; Javeed, Mehzad

    1995-01-01

    This paper describes analysis and test results obtained at Langley Research Center (LaRC) on a doubly curved testbed support truss for precision reflector applications. Descriptions of test procedures and experimental results that expand upon previous investigations are presented. A brief description of the truss is given, and finite-element-analysis models are described. Static-load and vibration test procedures are discussed, and experimental results are shown to be repeatable and in generally good agreement with linear finite-element predictions. Truss structural performance (as determined by static deflection and vibration testing) is shown to be predictable and very close to linear. Vibration test results presented herein confirm that an anomalous mode observed during initial testing was due to the flexibility of the truss support system. Photogrammetric surveys with two 131-in. reference scales show that the root-mean-square (rms) truss-surface accuracy is about 0.0025 in. Photogrammetric measurements also indicate that the truss coefficient of thermal expansion (CTE) is in good agreement with that predicted by analysis. A detailed description of the photogrammetric procedures is included as an appendix.

  3. Assessment of coarse and fine hand motor performance in asymptomatic subjects exposed to hand-arm vibration.

    PubMed

    Popević, Martin B; Janković, Srđan M; Borjanović, Srđan S; Jovičić, Slavica R; Tenjović, Lazar R; Milovanović, Aleksandar P S; Bulat, Petar

    2014-03-01

    A frequently encountered exposure profile for hand-arm vibration in contemporary occupational setting comprises workers with a long history of intermittent exposure but without detectable signs of hand-arm vibration syndrome (HAVS). Yet, most of the published studies deal with developed HAVS cases, rarely discussing the biological processes that may be involved in degradation of manual dexterity and grip strength when it can be most beneficial - during the asymptomatic stage. In the present paper, a group of 31 male asymptomatic vibration-exposed workers (according to the Stockholm Workshop Scale) were compared against 30 male controls. They were tested using dynamometry and dexterimetry (modelling coarse and fine manual performance respectively) and cold provocation was done to detect possible differences in manual performance drop on these tests. The results showed reduced manual dexterity but no significant degradation in hand grip strength in the exposed subjects. This suggests that intermittent exposure profile and small cumulative vibration dose could only lead to a measurable deficit in manual dexterity but not hand grip strength even at non-negligible A(8) levels and long term exposures.

  4. Modal Correction Method For Dynamically Induced Errors In Wind-Tunnel Model Attitude Measurements

    NASA Technical Reports Server (NTRS)

    Buehrle, R. D.; Young, C. P., Jr.

    1995-01-01

    This paper describes a method for correcting the dynamically induced bias errors in wind tunnel model attitude measurements using measured modal properties of the model system. At NASA Langley Research Center, the predominant instrumentation used to measure model attitude is a servo-accelerometer device that senses the model attitude with respect to the local vertical. Under smooth wind tunnel operating conditions, this inertial device can measure the model attitude with an accuracy of 0.01 degree. During wind tunnel tests when the model is responding at high dynamic amplitudes, the inertial device also senses the centrifugal acceleration associated with model vibration. This centrifugal acceleration results in a bias error in the model attitude measurement. A study of the response of a cantilevered model system to a simulated dynamic environment shows significant bias error in the model attitude measurement can occur and is vibration mode and amplitude dependent. For each vibration mode contributing to the bias error, the error is estimated from the measured modal properties and tangential accelerations at the model attitude device. Linear superposition is used to combine the bias estimates for individual modes to determine the overall bias error as a function of time. The modal correction model predicts the bias error to a high degree of accuracy for the vibration modes characterized in the simulated dynamic environment.

  5. Centaur liquid oxygen boost pump vibration test

    NASA Technical Reports Server (NTRS)

    Tang, H. M.

    1975-01-01

    The Centaur LOX boost pump was subjected to both the simulated Titan Centaur proof flight and confidence demonstration vibration test levels. For each test level, both sinusoidal and random vibration tests were conducted along each of the three orthogonal axes of the pump and turbine assembly. In addition to these tests, low frequency longitudinal vibration tests for both levels were conducted. All tests were successfully completed without damage to the boost pump.

  6. Carbody elastic vibrations of high-speed vehicles caused by bogie hunting instability

    NASA Astrophysics Data System (ADS)

    Wei, Lai; Zeng, Jing; Chi, Maoru; Wang, Jianbin

    2017-09-01

    In particular locations of the high-speed track, the worn wheel profile matched up with the worn rail profile will lead to an extremely high-conicity wheel-rail contact. Consequently, the bogie hunting instability arises, which further results in the so-called carbody shaking phenomenon. In this paper, the carbody elastic vibrations of a high-speed vehicle in service are firstly introduced. Modal tests are conducted to identity the elastic modes of the carbody. The ride comfort and running safety indices for the tested vehicle are evaluated. The rigid-flexible coupling dynamic model for the high-speed passenger car is then developed by using the FE and MBS coupling approach. The rail profiles in those particular locations are measured and further integrated into the simulation model to reproduce the bogie hunting and carbody elastic vibrations. The effects of wheel and rail wear on the vehicle system response, e.g. wheelset bifurcation graph and carbody vibrations, are studied. Two improvement measures, including the wheel profile modification and rail grinding, are proposed to provide possible solutions. It is found that the wheel-rail contact conicity can be lowered by decreasing wheel flange thickness or grinding rail corner, which is expected to improve the bogie hunting stability under worn rail and worn wheel conditions. The carbody elastic vibrations caused by bogie hunting instability can be further restrained.

  7. Dynamic analysis and vibration testing of CFRP drive-line system used in heavy-duty machine tool

    NASA Astrophysics Data System (ADS)

    Yang, Mo; Gui, Lin; Hu, Yefa; Ding, Guoping; Song, Chunsheng

    2018-03-01

    Low critical rotary speed and large vibration in the metal drive-line system of heavy-duty machine tool affect the machining precision seriously. Replacing metal drive-line with the CFRP drive-line can effectively solve this problem. Based on the composite laminated theory and the transfer matrix method (TMM), this paper puts forward a modified TMM to analyze dynamic characteristics of CFRP drive-line system. With this modified TMM, the CFRP drive-line of a heavy vertical miller is analyzed. And the finite element modal analysis model of the shafting is established. The results of the modified TMM and finite element analysis (FEA) show that the modified TMM can effectively predict the critical rotary speed of CFRP drive-line. And the critical rotary speed of CFRP drive-line is 20% higher than that of the original metal drive-line. Then, the vibration of the CFRP and the metal drive-line were tested. The test results show that application of the CFRP drive shaft in the drive-line can effectively reduce the vibration of the heavy-duty machine tool.

  8. Tiltrotor Vibration Reduction Through Higher Harmonic Control

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Kvaternik, Raymond G.; Settle, T. Ben

    1997-01-01

    The results of a joint NASA/Army/Bell Helicopter Textron wind-tunnel test to assess the potential of higher harmonic control (HHC) for reducing vibrations in tiltrotor aircraft operating in the airplane mode of flight, and to evaluate the effectiveness of a Bell-developed HHC algorithm called MAVSS (Multipoint Adaptive Vibration Suppression System) are presented. The test was conducted in the Langley Transonic Dynamics Tunnel using an unpowered 1/5-scale semispan aeroelastic model of the V-22 which was modified to incorporate an HHC system employing both the rotor swashplate and the wing flaperon. The effectiveness of the swashplate and the flaperon acting either singly or in combination in reducing IP and 3P wing vibrations over a wide range of tunnel airspeeds and rotor rotational speeds was demonstrated. The MAVSS algorithm was found to be robust to variations in tunnel airspeed and rotor speed, requiring only occasional on-line recalculations of the system transfer matrix. HHC had only a small (usually beneficial) effect on blade loads but increased pitch link loads by 25%. No degradation in aeroelastic stability was noted for any of the conditions tested.

  9. Vibration Testing of Stirling Power Convertors

    NASA Technical Reports Server (NTRS)

    Hughes, Bill; Goodnight, Thomas; McNelis, Mark E.; Suarez, Vicente J.; Schreiber, Jeff; Samorezov, Sergey

    2003-01-01

    The NASA John H. Glenn Research Center (GRC) and the U.S. Department of Energy (DOE) are currently developing a high efficient, long life, free piston Stirling convertor for use as an advanced spacecraft power system for future NASA missions. As part of this development, a Stirling Technology Demonstrator Convertor (TDC), developed by Stirling Technology Company (STC) for DOE, was vibration tested at GRC s Structural Dynamics Laboratory (SDU7735) in November- December 1999. This testing demonstrated that the Stirling TDC is able to withstand the harsh random vibration (20 to 2000 Hertz) seen during a typical spacecraft launch and survive with no structural damage or functional power performance degradation, thereby enabling its usage in future spacecraft power systems. The Stirling Vibration Test Team at NASA GRC and STC personnel conducted tests on a single 55 electric watt TDC. The purpose was to characterize the TDC s structural response to vibration and determine if the TDC could survive the vibration criteria established by the Jet Propulsion Laboratory (JPL) for launch environments. The TDC was operated at full-stroke and full power conditions during the vibration testing. The TDC was tested in two orientations, with the direction of vibration parallel and perpendicular to the TDC s moving components (displacer and piston). The TDC successfully passed a series of sine and random vibration tests. The most severe test was a 12.3 Grms random vibration test (peak vibration level of 0.2 g2/Hz from 50 to 250 Hertz) with test durations of 3 minutes per axis. The random vibration test levels were chosen to simulate, with margin, the maximum anticipated launch vibration conditions. As a result of this very successful vibration testing and successful evaluations in other key technical readiness areas, the Stirling power system is now considered a viable technology for future application for NASA spacecraft missions. Possible usage of the Stirling power system would be to supply on- board electric spacecraft power for future NASA Deep-Space Missions, performing as an attractive alternative to Radioisotope Thermoelectric Generators (RTG). Usage of the Stirling technology is also being considered as the electric power source for future Mars rovers, whose mission profiles may exclude the use of photovoltaic power systems (such as exploring at high Martian latitudes or for missions of lengthy durations). GRC s Thermo-Mechanical Systems Branch (5490) provides Stirling technology expertise under a Space Act Agreement with the DOE. Additional vibration testing, by GRC s Structural Systems Dynamics Branch (7733, is planned to continue to demonstrate the Stirling power system s vibration capability as its technology and flight system designs progress.

  10. Untangling the Herman-infrared spectra of nitrogen atmospheric-pressure dielectric-barrier discharge

    NASA Astrophysics Data System (ADS)

    Čermák, Peter; Annušová, Adriana; Rakovský, Jozef; Martišovitš, Viktor; Veis, Pavel

    2018-05-01

    This study presents the first application of the N2 Herman-infrared (HIR) ro-vibrational model for the metrology of the atmospheric-pressure dielectric-barrier discharge. Our recent findings of suitable conditions for observation of the unperturbed HIR system (Annušová et al Contrib. Plasma Phys. 2017) gave us the opportunity to develop and test a numerical representation of this complex system composed of 75 branches. Commonly, the HIR covers a part of the near infrared spectra (690–850 nm) with its bands mixed with the N2 first positive system (1PS), which hinders applications of these systems for optical metrology of the discharge. In this work, we present a complex ro-vibrational model of the 1PS and HIR systems, which allowed us to untangle their spectra and retrieve the rotational temperature and vibrational populations of the systems for the first time. The latter was achieved by coupling the PGHOPHER simulation package with molecular constants obtained from high-resolution experiments. To test the model, the results and precision were compared to the retrievals based on the models of the NO γ and N2 second positive systems using the LIFBASE and SPECAIR programs, respectively.

  11. Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery.

    PubMed

    Pacchierotti, Claudio; Prattichizzo, Domenico; Kuchenbecker, Katherine J

    2016-02-01

    Despite its expected clinical benefits, current teleoperated surgical robots do not provide the surgeon with haptic feedback largely because grounded forces can destabilize the system's closed-loop controller. This paper presents an alternative approach that enables the surgeon to feel fingertip contact deformations and vibrations while guaranteeing the teleoperator's stability. We implemented our cutaneous feedback solution on an Intuitive Surgical da Vinci Standard robot by mounting a SynTouch BioTac tactile sensor to the distal end of a surgical instrument and a custom cutaneous display to the corresponding master controller. As the user probes the remote environment, the contact deformations, dc pressure, and ac pressure (vibrations) sensed by the BioTac are directly mapped to input commands for the cutaneous device's motors using a model-free algorithm based on look-up tables. The cutaneous display continually moves, tilts, and vibrates a flat plate at the operator's fingertip to optimally reproduce the tactile sensations experienced by the BioTac. We tested the proposed approach by having eighteen subjects use the augmented da Vinci robot to palpate a heart model with no haptic feedback, only deformation feedback, and deformation plus vibration feedback. Fingertip deformation feedback significantly improved palpation performance by reducing the task completion time, the pressure exerted on the heart model, and the subject's absolute error in detecting the orientation of the embedded plastic stick. Vibration feedback significantly improved palpation performance only for the seven subjects who dragged the BioTac across the model, rather than pressing straight into it.

  12. Vibration and Operational Characteristics of a Composite-Steel (Hybrid) Gear

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; LaBerge, Kelsen E.; DeLuca, Samuel; Pelagalli, Ryan

    2014-01-01

    Hybrid gears have been tested consisting of metallic gear teeth and shafting connected by composite web. Both free vibration and dynamic operation tests were completed at the NASA Glenn Spur Gear Fatigue Test Facility, comparing these hybrid gears to their steel counterparts. The free vibration tests indicated that the natural frequency of the hybrid gear was approximately 800 Hz lower than the steel test gear. The dynamic vibration tests were conducted at five different rotational speeds and three levels of torque in a four square test configuration. The hybrid gears were tested both as fabricated (machined, composite layup, then composite cure) and after regrinding the gear teeth to the required aerospace tolerance. The dynamic vibration tests indicated that the level of vibration for either type of gearing was sensitive to the level of load and rotational speed.

  13. Experimental investigation of nonlinear characteristics of a smart fluid damper

    NASA Astrophysics Data System (ADS)

    Rahman, Mahmudur; Ong, Zhi Chao; Chong, Wen Tong; Julai, Sabariah; Ahamed, Raju

    2018-05-01

    Smart fluids, known as smart material, are used to form controllable dampers in vibration control applications. Magnetorheological(MR) fluid damper is a well-known smart fluid damper which has a reputation to provide high damping force with low-power input. However, the force/velocity of the MR damper is significantly nonlinear and proper characteristic analysis are required to be studied for optimal implementation in structural vibration control. In this study, an experimental investigation is carried out to test the damping characteristics of MR damper. Dynamic testing is performed with a long-stroke MR damper model no RD-80410-1 from Lord corporation on a universal testing machine(UTM). The force responses of MR damper are measured under different stroke lengths, velocities and current inputs and their performances are analyzed. This study will play a key role to implement MR damper in many structural vibration control applications.

  14. Influence of structural parameters of deep groove ball bearings on vibration

    NASA Astrophysics Data System (ADS)

    Yu, Guangwei; Wu, Rui; Xia, Wei

    2018-04-01

    Taking 6201 bearing as the research object, a dynamic model of 4 degrees of freedom is established to solve the vibration characteristics such as the displacement, velocity and acceleration of deep groove ball bearings by MATLAB and Runge-Kutta method. By calculating the theoretical value of the frequency of the rolling element passing through the outer ring and the simulation value of the model, it can be known that the theoretical calculation value and the simulation value have good consistency. By the experiments, the measured values and simulation values are consistent. Using the mathematical model, the effect of structural parameters on vibration is obtained. The method in the paper is testified to be feasible and the results can be used as references for the design, manufacturing and testing of deep groove ball bearings.

  15. Modeling and experimental study on near-field acoustic levitation by flexural mode.

    PubMed

    Liu, Pinkuan; Li, Jin; Ding, Han; Cao, Wenwu

    2009-12-01

    Near-field acoustic levitation (NFAL) has been used in noncontact handling and transportation of small objects to avoid contamination. We have performed a theoretical analysis based on nonuniform vibrating surface to quantify the levitation force produced by the air film and also conducted experimental tests to verify our model. Modal analysis was performed using ANSYS on the flexural plate radiator to obtain its natural frequency of desired mode, which is used to design the measurement system. Then, the levitation force was calculated as a function of levitation distance based on squeeze gas film theory using measured amplitude and phase distributions on the vibrator surface. Compared with previous fluid-structural analyses using a uniform piston motion, our model based on the nonuniform radiating surface of the vibrator is more realistic and fits better with experimentally measured levitation force.

  16. Suppression of chaotic vibrations in a nonlinear half-car model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tusset, Ângelo Marcelo, E-mail: tusset@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: wagner-barth@hotmail.com; Piccirillo, Vinícius, E-mail: tusset@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: wagner-barth@hotmail.com; Janzen, Frederic Conrad, E-mail: tusset@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: wagner-barth@hotmail.com

    The present work investigates the nonlinear response of a half-car model. The disturbances of the road are assumed to be sinusoidal. After constructing the bifurcation diagram, we using the 0-1 test for identify the chaotic motion. The principal objective of this study is to eliminate the chaotic behaviour of the chassis and reduce its vibration, and for this reason a control system for semi-active vehicle suspension with magnetorheological damper is proposed. The control mechanism is designed based on SDRE technique, where the control parameter is the voltage applied to the coil of the damper. Numerical results show that the proposedmore » control method is effective in significantly reducing of the chassis vibration, increasing therefore, passenger comfort.« less

  17. Dynamic characterization of high damping viscoelastic materials from vibration test data

    NASA Astrophysics Data System (ADS)

    Martinez-Agirre, Manex; Elejabarrieta, María Jesús

    2011-08-01

    The numerical analysis and design of structural systems involving viscoelastic damping materials require knowledge of material properties and proper mathematical models. A new inverse method for the dynamic characterization of high damping and strong frequency-dependent viscoelastic materials from vibration test data measured by forced vibration tests with resonance is presented. Classical material parameter extraction methods are reviewed; their accuracy for characterizing high damping materials is discussed; and the bases of the new analysis method are detailed. The proposed inverse method minimizes the residue between the experimental and theoretical dynamic response at certain discrete frequencies selected by the user in order to identify the parameters of the material constitutive model. Thus, the material properties are identified in the whole bandwidth under study and not just at resonances. Moreover, the use of control frequencies makes the method insensitive to experimental noise and the efficiency is notably enhanced. Therefore, the number of tests required is drastically reduced and the overall process is carried out faster and more accurately. The effectiveness of the proposed method is demonstrated with the characterization of a CLD (constrained layer damping) cantilever beam. First, the elastic properties of the constraining layers are identified from the dynamic response of a metallic cantilever beam. Then, the viscoelastic properties of the core, represented by a four-parameter fractional derivative model, are identified from the dynamic response of a CLD cantilever beam.

  18. 3D model assisted fully automated scanning laser Doppler vibrometer measurements

    NASA Astrophysics Data System (ADS)

    Sels, Seppe; Ribbens, Bart; Bogaerts, Boris; Peeters, Jeroen; Vanlanduit, Steve

    2017-12-01

    In this paper, a new fully automated scanning laser Doppler vibrometer (LDV) measurement technique is presented. In contrast to existing scanning LDV techniques which use a 2D camera for the manual selection of sample points, we use a 3D Time-of-Flight camera in combination with a CAD file of the test object to automatically obtain measurements at pre-defined locations. The proposed procedure allows users to test prototypes in a shorter time because physical measurement locations are determined without user interaction. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. The proposed method is illustrated with vibration measurements of an unmanned aerial vehicle

  19. Design, analysis and testing of a new piezoelectric tool actuator for elliptical vibration turning

    NASA Astrophysics Data System (ADS)

    Lin, Jieqiong; Han, Jinguo; Lu, Mingming; Yu, Baojun; Gu, Yan

    2017-08-01

    A new piezoelectric tool actuator (PETA) for elliptical vibration turning has been developed based on a hybrid flexure hinge connection. Two double parallel four-bar linkage mechanisms and two right circular flexure hinges were chosen to guide the motion. The two input displacement directional stiffness were modeled according to the principle of virtual work modeling method and the kinematic analysis was conducted theoretically. Finite element analysis was used to carry out static and dynamic analyses. To evaluate the performance of the developed PETA, off-line experimental tests were carried out to investigate the step responses, motion strokes, resolutions, parasitic motions, and natural frequencies of the PETA along the two input directions. The relationship between input displacement and output displacement, as well as the tool tip’s elliptical trajectory in different phase shifts was analyzed. By using the developed PETA mechanism, micro-dimple patterns were generated as the preliminary application to demonstrate the feasibility and efficiency of PETA for elliptical vibration turning.

  20. A Study of Wing Flutter

    NASA Technical Reports Server (NTRS)

    Zahm, A F; Bear, R M

    1929-01-01

    Part I describes vibration tests, in a wind tunnel, of simple airfoils and of the tail plane of an M0-1 airplane model; it also describes the air flow about this model. From these tests are drawn inferences as to the cause and cure of aerodynamic wing vibrations. Part II derives stability criteria for wing vibrations in pitch and roll, and gives design rules to obviate instability. Part III shows how to design spars to flex equally under a given wing loading and thereby economically minimize the twisting in pitch that permits cumulative flutter. Resonant flutter is not likely to ensue from turbulence of air flow along past wings and tail planes in usual flying conditions. To be flutterproof a wing must be void of reversible autorotation and not have its centroid far aft of its pitching axis, i. e., axis of pitching motion. Danger of flutter is minimized by so proportioning the wing's torsional resisting moment to the air pitching moment at high-speed angles that the torsional flexure is always small. (author)

  1. Integrated Approach Using Condition Monitoring and Modeling to Investigate Wind Turbine Gearbox Design: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, S.; Guo, Y.

    2015-03-01

    Vibration-based condition monitoring (CM) of geared utility-scale turbine drivetrains has been used by the wind industry to help improve operation and maintenance (O&M) practices, increase turbine availability, and reduce O&M cost. This study is a new endeavor that integrates the vibration-based CM technique with wind turbine gearbox modeling to investigate various gearbox design options. A teamof researchers performed vibration-based CM measurements on a damaged wind turbine gearbox with a classic configuration, (i.e., one planetary stage and two parallel stages). We observed that the acceleration amplitudes around the first-order sidebands of the intermediate stage gear set meshing frequency were much lowermore » than that measured at the high-speed gear set, and similar difference wasalso observed in a healthy gearbox. One factor for a reduction at the intermediate stage gear set is hypothesized to be the soft sun-spline configuration in the test gearbox. To evaluate this hypothesis, a multibody dynamic model of the healthy test gearbox was first developed and validated. Relative percent difference of the first-order sidebands--of the high-speed and intermediate stagegear-meshing frequencies--in the soft and the rigid sun spline configurations were compared. The results verified that the soft sun-spline configuration can reduce the sidebands of the intermediate stage gear set and also the locating bearing loads. The study demonstrates that combining vibration-based CM with appropriate modeling can provide insights for evaluating different wind turbinegearbox design options.« less

  2. Vibration-Rotation-Tunneling Levels of the Water Dimer from an ab Initio Potential Surface with Flexible Monomers

    NASA Astrophysics Data System (ADS)

    Leforestier, Claude; van Harrevelt, Rob; van der Avoird, Ad

    2009-05-01

    The 12-dimensional ab initio potential for the water dimer with flexible monomers from Huang et al. (J. Chem. Phys. 2008, 128, 034312) was used in accurate calculations of the vibration-rotation-tunneling (VRT) levels of (H2O)2 and (D2O)2 involving the intermolecular rovibrational and tunneling states as well as the intramolecular vibrations. For the intermolecular VRT levels we used a 6 + 6d model in which the fast intramolecular vibrations are adiabatically separated from the much slower intermolecular vibrations, tunneling motions, and overall rotations. We also tested two six-dimensional (6d) rigid monomer models in which the monomers were frozen either at their equilibrium geometry or at their ground state vibrationally averaged geometry. All the results from the 6 + 6d model agree well with the large amount of detailed experimental data available from high-resolution spectroscopy. For most of the parameters characterizing the spectra the results of the two 6d rigid monomer models do not significantly differ from the 6 + 6d results. An exception is the relatively large acceptor tunneling splitting, which was the only quantity for which the 6d model with the monomers frozen at their equilibrium geometry was not in good agreement with the experimental data. The 6d model with monomers at their vibrationally averaged geometry performs considerably better, and the full 6 + 6d results agree with the measurements also for this quantity. For the excited intramolecular vibrations we tested two 6 + 6d models. In the first model the excitation was assumed to be either on the donor in the hydrogen bond or on the acceptor, and to hop from one monomer to the other upon donor-acceptor interchange. In the second model the monomer excitation remains localized on a given monomer for all dimer geometries. Almost the same frequencies of the intramolecular vibrations were found for the two models. The calculations show considerable variations in the frequencies of the intramolecular modes for transitions involving different tunneling levels and different values of the rotational quantum number K. For K = 0 → 0 transitions these variations largely cancel, however. A comparison with experimental data is difficult, except for the acceptor asymmetric stretch mode observed in high-resolution spectra, because it is not clear how much the different transitions contribute to the (unresolved) peaks in most of the experimental spectra. The large red shift of the donor bound OH stretch mode is correctly predicted, but the value calculated for this red shift is too small by more than 20%. Also in the smaller shifts of the other modes we find relatively large errors. It is useful, however, that our detailed calculations including all ground and excited state tunneling levels provide an explanation for the splitting of the acceptor asymmetric stretch band observed in He nanodroplet spectra, as well as for the fact that the other bands in these spectra show much smaller or no splittings.

  3. A micro-vibration generated method for testing the imaging quality on ground of space remote sensing

    NASA Astrophysics Data System (ADS)

    Gu, Yingying; Wang, Li; Wu, Qingwen

    2018-03-01

    In this paper, a novel method is proposed, which can simulate satellite platform micro-vibration and test the impact of satellite micro-vibration on imaging quality of space optical remote sensor on ground. The method can generate micro-vibration of satellite platform in orbit from vibrational degrees of freedom, spectrum, magnitude, and coupling path. Experiment results show that the relative error of acceleration control is within 7%, in frequencies from 7Hz to 40Hz. Utilizing this method, the system level test about the micro-vibration impact on imaging quality of space optical remote sensor can be realized. This method will have an important applications in testing micro-vibration tolerance margin of optical remote sensor, verifying vibration isolation and suppression performance of optical remote sensor, exploring the principle of micro-vibration impact on imaging quality of optical remote sensor.

  4. Validation of Force Limited Vibration Testing at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rice, Chad; Buehrle, Ralph D.

    2003-01-01

    Vibration tests were performed to develop and validate the forced limited vibration testing capability at the NASA Langley Research Center. The force limited vibration test technique has been utilized at the Jet Propulsion Laboratory and other NASA centers to provide more realistic vibration test environments for aerospace flight hardware. In standard random vibration tests, the payload is mounted to a rigid fixture and the interface acceleration is controlled to a specified level based on a conservative estimate of the expected flight environment. In force limited vibration tests, both the acceleration and force are controlled at the mounting interface to compensate for differences between the flexible flight mounting and rigid test fixture. This minimizes the over test at the payload natural frequencies and results in more realistic forces being transmitted at the mounting interface. Force and acceleration response data was provided by NASA Goddard Space Flight Center for a test article that was flown in 1998 on a Black Brant sounding rocket. The measured flight interface acceleration data was used as the reference acceleration spectrum. Using this acceleration spectrum, three analytical methods were used to estimate the force limits. Standard random and force limited vibration tests were performed and the results are compared with the flight data.

  5. Model verification of large structural systems

    NASA Technical Reports Server (NTRS)

    Lee, L. T.; Hasselman, T. K.

    1977-01-01

    A methodology was formulated, and a general computer code implemented for processing sinusoidal vibration test data to simultaneously make adjustments to a prior mathematical model of a large structural system, and resolve measured response data to obtain a set of orthogonal modes representative of the test model. The derivation of estimator equations is shown along with example problems. A method for improving the prior analytic model is included.

  6. Contributions to the study of inductive transducers for measuring the amplitude of vibrations in solid media

    NASA Technical Reports Server (NTRS)

    Dragan, O.; Galan, N.; Sirbu, A.; Ghita, C.

    1974-01-01

    The design and construction of inductive transducers for measuring the vibrations in metal bars at ultrasonic frequencies are discussed. Illustrations of the inductive transducers are provided. The quantitative relations that are useful in designing the transducers are analyzed. Mathematical models are developed to substantiate the theoretical considerations. Results obtained with laboratory equipment in testing specified metal samples are included.

  7. Development of flexural vibration inspection techniques to rapidly assess the structural health of timber bridge systems

    Treesearch

    Xiping Wang; James P. Wacker; Robert J. Ross; Brian K. Brashaw; Robert Vatalaro

    2005-01-01

    This paper describes an effort to develop a global dynamic testing technique for evaluating the overall stiffness of timber bridge superstructures. A forced vibration method was used to measure the natural frequency of single-span timber bridges in the laboratory and field. An analytical model based on simple beam theory was proposed to represent the relationship...

  8. Data of piezoelectric vibration energy harvesting of a bridge undergoing vibration testing and train passage.

    PubMed

    Cahill, Paul; Hazra, Budhaditya; Karoumi, Raid; Mathewson, Alan; Pakrashi, Vikram

    2018-04-01

    The data presented in this article is in relation to the research article "Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage" Cahill et al. (2018) [1]. The article provides data on the full-scale bridge testing using piezoelectric vibration energy harvesters on Pershagen Bridge, Sweden. The bridge is actively excited via a swept sinusoidal input. During the testing, the bridge remains operational and train passages continue. The test recordings include the voltage responses obtained from the vibration energy harvesters during these tests and train passages. The original dataset is made available to encourage the use of energy harvesting for Structural Health Monitoring.

  9. Vibration testing of the JE-M-604-4-IUE rocket motor (Thiokol P/N E 28639-03)

    NASA Technical Reports Server (NTRS)

    Alt, R. E.; Tosh, J. T.

    1976-01-01

    The NASA International Ultraviolet Explorer (IUE) rocket motor (TE-M-604-4), a solid fuel, spherical rocket motor, was vibration tested in the Impact, Vibration, and Acceleration (IVA) Test Unit of the von Karman Gas Dynamics Facility (VKF). The objective of the test program was to subject the motor to qualification levels of sinusoidal and random vibration prior to the altitude firing of the motor in the Propulsion Development Test Cell (T-3), Engine Test Facility (ETF), AEDC. The vibration testing consisted of a low level sine survey from 5 to 2,000 Hz, followed by a qualification level sine sweep and qualification level random vibration. A second low level sine survey followed the qualification level testing. This sequence of testing was accomplished in each of three orthogonal axes. No motor problems were observed due to the imposition of these dynamic environments.

  10. Transient excitation and mechanical admittance test techniques for prediction of payload vibration environments

    NASA Technical Reports Server (NTRS)

    Kana, D. D.; Vargas, L. M.

    1977-01-01

    Transient excitation forces were applied separately to simple beam-and-mass launch vehicle and payload models to develop complex admittance functions for the interface and other appropriate points on the structures. These measured admittances were then analytically combined by a matrix representation to obtain a description of the coupled system dynamic characteristics. Response of the payload model to excitation of the launch vehicle model was predicted and compared with results measured on the combined models. These results are also compared with results of earlier work in which a similar procedure was employed except that steady-state sinusoidal excitation techniques were included. It is found that the method employing transient tests produces results that are better overall than the steady state methods. Furthermore, the transient method requires far less time to implement, and provides far better resolution in the data. However, the data acquisition and handling problem is more complex for this method. It is concluded that the transient test and admittance matrix prediction method can be a valuable tool for development of payload vibration tests.

  11. Statistical correlation analysis for comparing vibration data from test and analysis

    NASA Technical Reports Server (NTRS)

    Butler, T. G.; Strang, R. F.; Purves, L. R.; Hershfeld, D. J.

    1986-01-01

    A theory was developed to compare vibration modes obtained by NASTRAN analysis with those obtained experimentally. Because many more analytical modes can be obtained than experimental modes, the analytical set was treated as expansion functions for putting both sources in comparative form. The dimensional symmetry was developed for three general cases: nonsymmetric whole model compared with a nonsymmetric whole structural test, symmetric analytical portion compared with a symmetric experimental portion, and analytical symmetric portion with a whole experimental test. The theory was coded and a statistical correlation program was installed as a utility. The theory is established with small classical structures.

  12. 77 FR 58301 - Technical Amendment; Airworthiness Standards: Aircraft Engines; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... technical amendment, the FAA clarified aircraft engine vibration test requirements in the airworthiness... amendment, the FAA intended to clarify vibration test requirements in Sec. 33.83 of 14 Code of Federal... read as follows: Sec. 33.83 Vibration test. (a) Each engine must undergo vibration surveys to establish...

  13. Effects of vibration and shock on the performance of gas-bearing space-power Brayton cycle turbomachinery. Part 3: Sinusoidal and random vibration data reduction and evaluation, and random vibration probability analysis

    NASA Technical Reports Server (NTRS)

    Tessarzik, J. M.; Chiang, T.; Badgley, R. H.

    1973-01-01

    The random vibration response of a gas bearing rotor support system has been experimentally and analytically investigated in the amplitude and frequency domains. The NASA Brayton Rotating Unit (BRU), a 36,000 rpm, 10 KWe turbogenerator had previously been subjected in the laboratory to external random vibrations, and the response data recorded on magnetic tape. This data has now been experimentally analyzed for amplitude distribution and magnetic tape. This data has now been experimentally analyzed for amplitude distribution and frequency content. The results of the power spectral density analysis indicate strong vibration responses for the major rotor-bearing system components at frequencies which correspond closely to their resonant frequencies obtained under periodic vibration testing. The results of amplitude analysis indicate an increasing shift towards non-Gaussian distributions as the input level of external vibrations is raised. Analysis of axial random vibration response of the BRU was performed by using a linear three-mass model. Power spectral densities, the root-mean-square value of the thrust bearing surface contact were calculated for specified input random excitation.

  14. Integrated Vehicle Ground Vibration Testing in Support of Launch Vehicle Loads and Controls Analysis

    NASA Technical Reports Server (NTRS)

    Askins, Bruce R.; Davis, Susan R.; Salyer, Blaine H.; Tuma, Margaret L.

    2008-01-01

    All structural systems possess a basic set of physical characteristics unique to that system. These unique physical characteristics include items such as mass distribution and damping. When specified, they allow engineers to understand and predict how a structural system behaves under given loading conditions and different methods of control. These physical properties of launch vehicles may be predicted by analysis or measured by certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified by testing before the vehicle becomes operational. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. NASA manned launch vehicles have undergone ground vibration testing leading to the development of successful launch vehicles. A GVT was not performed on the inaugural launch of the unmanned Delta III which was lost during launch. Subsequent analyses indicated had a GVT been performed, it would have identified instability issues avoiding loss of the vehicle. This discussion will address GVT planning, set-up, execution and analyses, for the Saturn and Shuttle programs, and will also focus on the current and on-going planning for the Ares I and V Integrated Vehicle Ground Vibration Test (IVGVT).

  15. Seminar on Understanding Digital Control and Analysis in Vibration Test Systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The advantages of the digital methods over the analog vibration methods are demonstrated. The following topics are covered: (1) methods of computer-controlled random vibration and reverberation acoustic testing, (2) methods of computer-controlled sinewave vibration testing, and (3) methods of computer-controlled shock testing. General algorithms are described in the form of block diagrams and flow diagrams.

  16. 1. Credit PSR. This view displays the north and west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Credit PSR. This view displays the north and west facades of Test Stand "G" (Vibration Facility) as seen when looking east southeast (110°). Test Stand "G" no longer houses the vibrator; it now houses an autoclave due to the changing nature of the testing work. The Vibration Facility was Test Stand "G"'s historic function. Test Stand "E" is at the far right. The Vibration Facility subjected motor and engine assemblies to various vibration patterns in order to simulate flight conditions and evaluate the durability of engine and motor designs. - Jet Propulsion Laboratory Edwards Facility, Test Stand G, Edwards Air Force Base, Boron, Kern County, CA

  17. Using input command pre-shaping to suppress multiple mode vibration

    NASA Technical Reports Server (NTRS)

    Hyde, James M.; Seering, Warren P.

    1990-01-01

    Spacecraft, space-borne robotic systems, and manufacturing equipment often utilize lightweight materials and configurations that give rise to vibration problems. Prior research has led to the development of input command pre-shapers that can significantly reduce residual vibration. These shapers exhibit marked insensitivity to errors in natural frequency estimates and can be combined to minimize vibration at more than one frequency. This paper presents a method for the development of multiple mode input shapers which are simpler to implement than previous designs and produce smaller system response delays. The new technique involves the solution of a group of simultaneous non-linear impulse constraint equations. The resulting shapers were tested on a model of MACE, an MIT/NASA experimental flexible structure.

  18. Investigation of Concrete Floor Vibration Using Heel-Drop Test

    NASA Astrophysics Data System (ADS)

    Azaman, N. A. Mohd; Ghafar, N. H. Abd; Azhar, A. F.; Fauzi, A. A.; Ismail, H. A.; Syed Idrus, S. S.; Mokhjar, S. S.; Hamid, F. F. Abd

    2018-04-01

    In recent years, there is an increased in floor vibration problems of structures like residential and commercial building. Vibration is defined as a serviceability issue related to the comfort of the occupant or damage equipment. Human activities are the main source of vibration in the building and it could affect the human comfort and annoyance of residents in the building when the vibration exceed the recommend level. A new building, Madrasah Tahfiz located at Yong Peng have vibration problem when load subjected on the first floor of the building. However, the limitation of vibration occurs on building is unknown. Therefore, testing is needed to determine the vibration behaviour (frequency, damping ratio and mode shape) of the building. Heel-drop with pace 2Hz was used in field measurement to obtain the vibration response. Since, the heel-drop test results would vary in light of person performance, test are carried out three time to reduce uncertainty. Natural frequency from Frequency Response Function analysis (FRF) is 17.4Hz, 16.8, 17.4Hz respectively for each test.

  19. Methodology for the Elimination of Reflection and System Vibration Effects in Particle Image Velocimetry Data Processing

    NASA Technical Reports Server (NTRS)

    Bremmer, David M.; Hutcheson, Florence V.; Stead, Daniel J.

    2005-01-01

    A methodology to eliminate model reflection and system vibration effects from post processed particle image velocimetry data is presented. Reflection and vibration lead to loss of data, and biased velocity calculations in PIV processing. A series of algorithms were developed to alleviate these problems. Reflections emanating from the model surface caused by the laser light sheet are removed from the PIV images by subtracting an image in which only the reflections are visible from all of the images within a data acquisition set. The result is a set of PIV images where only the seeded particles are apparent. Fiduciary marks painted on the surface of the test model were used as reference points in the images. By locating the centroids of these marks it was possible to shift all of the images to a common reference frame. This image alignment procedure as well as the subtraction of model reflection are performed in a first algorithm. Once the images have been shifted, they are compared with a background image that was recorded under no flow conditions. The second and third algorithms find the coordinates of fiduciary marks in the acquisition set images and the background image and calculate the displacement between these images. The final algorithm shifts all of the images so that fiduciary mark centroids lie in the same location as the background image centroids. This methodology effectively eliminated the effects of vibration so that unbiased data could be used for PIV processing. The PIV data used for this work was generated at the NASA Langley Research Center Quiet Flow Facility. The experiment entailed flow visualization near the flap side edge region of an airfoil model. Commercial PIV software was used for data acquisition and processing. In this paper, the experiment and the PIV acquisition of the data are described. The methodology used to develop the algorithms for reflection and system vibration removal is stated, and the implementation, testing and validation of these algorithms are presented.

  20. Construction and calibration of a low cost and fully automated vibrating sample magnetometer

    NASA Astrophysics Data System (ADS)

    El-Alaily, T. M.; El-Nimr, M. K.; Saafan, S. A.; Kamel, M. M.; Meaz, T. M.; Assar, S. T.

    2015-07-01

    A low cost vibrating sample magnetometer (VSM) has been constructed by using an electromagnet and an audio loud speaker; where both are controlled by a data acquisition device. The constructed VSM records the magnetic hysteresis loop up to 8.3 KG at room temperature. The apparatus has been calibrated and tested by using magnetic hysteresis data of some ferrite samples measured by two scientifically calibrated magnetometers; model (Lake Shore 7410) and model (LDJ Electronics Inc. Troy, MI). Our VSM lab-built new design proved success and reliability.

  1. In-Flight Vibration Environment of the NASA F-15B Flight Test Fixture

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Franz, Russell J.; Blanton, James N.; Vachon, M. Jake; DeBoer, James B.

    2002-01-01

    Flight vibration data are analyzed for the NASA F-15B/Flight Test Fixture II test bed. Understanding the in-flight vibration environment benefits design and integration of experiments on the test bed. The power spectral density (PSD) of accelerometer flight data is analyzed to quantify the in-flight vibration environment from a frequency of 15 Hz to 1325 Hz. These accelerometer data are analyzed for typical flight conditions and maneuvers. The vibration data are compared to flight-qualification random vibration test standards. The PSD levels in the lateral axis generally are greater than in the longitudinal and vertical axes and decrease with increasing frequency. At frequencies less than approximately 40 Hz, the highest PSD levels occur during takeoff and landing. Peaks in the PSD data for the test fixture occur at approximately 65, 85, 105-110, 200, 500, and 1000 Hz. The pitch-pulse and 2-g turn maneuvers produce PSD peaks at 115 Hz. For cruise conditions, the PSD level of the 85-Hz peak is greatest for transonic flight at Mach 0.9. From 400 Hz to 1325 Hz, the takeoff phase has the highest random vibration levels. The flight-measured vibration levels generally are substantially lower than the random vibration test curve.

  2. Dynamic Analysis of an Office Building due to Vibration from Road Construction Activities

    NASA Astrophysics Data System (ADS)

    Chik, T. N. T.; Kamil, M. R. H.; Yusoff, N. A.; Ibrahim, M. H. W.

    2018-04-01

    Construction activities are widely known as one of the predominant sources of man-made vibrations that able to create nuisance towards any adjacent building, and this includes the road construction operations. Few studies conclude the construction-induced vibration may be harmful directly and indirectly towards the neighbouring building. This lead to the awareness of study the building vibration response of concrete masonry load bearing system and its vibrational performance towards the road construction activities. This study will simulate multi-storey office building of Sekolah Menengah Kebangsaan (SMK) Bandar Enstek at Negeri Sembilan by using finite element vibration analyses. The excitation of transient loads from ground borne vibrations which triggered by the road construction activities are modelled into the building. The vibration response was recorded during in-situ ambient vibration test by using Laser Doppler Vibrometer (LDV), which specifically performed on four different locations. The finite element simulation process was developed in the commercial FEA software ABAQUS. Then, the experimental data was processed and evaluated in MATLAB ModalV to assess the vibration criteria of the floor in building. As a result, the vibration level of floor in building is fall under VC-E curve which was under the maximum permissible level for office building (VC-ISO). The vibration level on floor is acceptable within the limit that have been referred.

  3. Differential effect of muscle vibration on intracortical inhibitory circuits in humans

    PubMed Central

    Rosenkranz, Karin; Rothwell, John C

    2003-01-01

    Low amplitude muscle vibration (0.5 ms; 80 Hz; duration 1.5 s) was applied in turn to each of three different intrinsic hand muscles (first dorsal interosseus, FDI; abductor pollicis brevis, APB; and abductor digiti minimi, ADM) in order to test its effect on the EMG responses evoked by transcranial magnetic stimulation (TMS). Recordings were also taken from flexor and extensor carpi radialis (FCR and ECR, respectively). We evaluated the amplitude of motor evoked potentials (MEPs) produced by a single TMS pulse, short interval intracortical inhibition and facilitation (SICI and ICF) and long interval intracortical inhibition (LICI). TMS pulses were applied 1 s after the start of vibration with subjects relaxed throughout. Vibration increased the amplitude of MEPs evoked in the vibrated muscle (162 ± 6 % of MEP with no vibration; mean ± s.e.m.), but suppressed MEPs in the two non-vibrated hand muscles (72 ± 9 %). Compared with no vibration (test response reduced to 51 ± 5 % of control), there was less SICI in the vibrated muscle (test response reduced to 92 ± 28 % of control) and more in the non-vibrated hand muscles (test response reduced to 27 ± 5 % of control). The opposite occurred for LICI: compared with the no vibration condition (test response reduced to 33 ± 6 % control), there was more LICI in the vibrated muscle (test response reduced to 17 ± 3 % control) than in the non-vibrated hand muscles (test response reduced to 80 ± 11 % control) even when the intensity of the test stimulus was adjusted to compensate for the changes in baseline MEP. There was no effect on ICF. Cutaneous stimulation of the index finger (80 Hz, 1.5 s duration, twice sensory threshold) had no consistent differential effect on any of the parameters. We conclude that vibratory input from muscle can differentially modulate excitability in motor cortical circuits. PMID:12821723

  4. Anharmonic force field and vibrational dynamics of CH2F2 up to 5000 cm(-1) studied by Fourier transform infrared spectroscopy and state-of-the-art ab initio calculations.

    PubMed

    Tasinato, Nicola; Regini, Giorgia; Stoppa, Paolo; Pietropolli Charmet, Andrea; Gambi, Alberto

    2012-06-07

    Difluoromethane (CH(2)F(2), HFC-32) is a molecule used in refrigerant mixtures as a replacement of the more environmentally hazardous, ozone depleting, chlorofluorocarbons. On the other hand, presenting strong vibration-rotation bands in the 9 μm atmospheric window, it is a greenhouse gas which contributes to global warming. In the present work, the vibrational and ro-vibrational properties of CH(2)F(2), providing basic data for its atmospheric modeling, are studied in detail by coupling medium resolution Fourier transform infrared spectroscopy to high-level electronic structure ab initio calculations. Experimentally a full quantum assignment and accurate integrated absorption cross sections are obtained up to 5000 cm(-1). Ab initio calculations are carried out by using CCSD(T) theory and large basis sets of either the correlation consistent or atomic natural orbital hierarchies. By using vibrational perturbation theory to second order a complete set of vibrational and ro-vibrational parameters is derived from the ab initio quartic anharmonic force fields, which well compares with the spectroscopic constants retrieved experimentally. An excellent agreement between theory and experiment is achieved for vibrational energy levels and integrated absorption cross sections: transition frequencies up to four quanta of vibrational excitation are reproduced with a root mean square deviation (RMSD) of 7 cm(-1) while intensities are predicted within few km mol(-1) from the experiment. Basis set performances and core correlation effects are discussed throughout the paper. Particular attention is focused in the understanding of the anharmonic couplings which rule the vibrational dynamics of the |ν(1)>, |2ν(8)>, |2ν(2)> three levels interacting system. The reliability of the potential energy and dipole moment surfaces in reproducing the vibrational eigenvalues and intensities as well as in modeling the vibrational and ro-vibrational mixings over the whole 400-5000 cm(-1) region is also demonstrated by spectacular spectral simulations carried out by using the ro-vibrational Hamiltonian constants, and the relevant coupling terms, obtained from the perturbation treatment of the ab initio anharmonic force field. The present results suggest CH(2)F(2) as a prototype molecule to test ab initio calculations and theoretical models.

  5. Anharmonic force field and vibrational dynamics of CH2F2 up to 5000 cm-1 studied by Fourier transform infrared spectroscopy and state-of-the-art ab initio calculations

    NASA Astrophysics Data System (ADS)

    Tasinato, Nicola; Regini, Giorgia; Stoppa, Paolo; Charmet, Andrea Pietropolli; Gambi, Alberto

    2012-06-01

    Difluoromethane (CH2F2, HFC-32) is a molecule used in refrigerant mixtures as a replacement of the more environmentally hazardous, ozone depleting, chlorofluorocarbons. On the other hand, presenting strong vibration-rotation bands in the 9 μm atmospheric window, it is a greenhouse gas which contributes to global warming. In the present work, the vibrational and ro-vibrational properties of CH2F2, providing basic data for its atmospheric modeling, are studied in detail by coupling medium resolution Fourier transform infrared spectroscopy to high-level electronic structure ab initio calculations. Experimentally a full quantum assignment and accurate integrated absorption cross sections are obtained up to 5000 cm-1. Ab initio calculations are carried out by using CCSD(T) theory and large basis sets of either the correlation consistent or atomic natural orbital hierarchies. By using vibrational perturbation theory to second order a complete set of vibrational and ro-vibrational parameters is derived from the ab initio quartic anharmonic force fields, which well compares with the spectroscopic constants retrieved experimentally. An excellent agreement between theory and experiment is achieved for vibrational energy levels and integrated absorption cross sections: transition frequencies up to four quanta of vibrational excitation are reproduced with a root mean square deviation (RMSD) of 7 cm-1 while intensities are predicted within few km mol-1 from the experiment. Basis set performances and core correlation effects are discussed throughout the paper. Particular attention is focused in the understanding of the anharmonic couplings which rule the vibrational dynamics of the |ν1⟩, |2ν8⟩, |2ν2⟩ three levels interacting system. The reliability of the potential energy and dipole moment surfaces in reproducing the vibrational eigenvalues and intensities as well as in modeling the vibrational and ro-vibrational mixings over the whole 400-5000 cm-1 region is also demonstrated by spectacular spectral simulations carried out by using the ro-vibrational Hamiltonian constants, and the relevant coupling terms, obtained from the perturbation treatment of the ab initio anharmonic force field. The present results suggest CH2F2 as a prototype molecule to test ab initio calculations and theoretical models.

  6. Uncertainty quantification and propagation in dynamic models using ambient vibration measurements, application to a 10-story building

    NASA Astrophysics Data System (ADS)

    Behmanesh, Iman; Yousefianmoghadam, Seyedsina; Nozari, Amin; Moaveni, Babak; Stavridis, Andreas

    2018-07-01

    This paper investigates the application of Hierarchical Bayesian model updating for uncertainty quantification and response prediction of civil structures. In this updating framework, structural parameters of an initial finite element (FE) model (e.g., stiffness or mass) are calibrated by minimizing error functions between the identified modal parameters and the corresponding parameters of the model. These error functions are assumed to have Gaussian probability distributions with unknown parameters to be determined. The estimated parameters of error functions represent the uncertainty of the calibrated model in predicting building's response (modal parameters here). The focus of this paper is to answer whether the quantified model uncertainties using dynamic measurement at building's reference/calibration state can be used to improve the model prediction accuracies at a different structural state, e.g., damaged structure. Also, the effects of prediction error bias on the uncertainty of the predicted values is studied. The test structure considered here is a ten-story concrete building located in Utica, NY. The modal parameters of the building at its reference state are identified from ambient vibration data and used to calibrate parameters of the initial FE model as well as the error functions. Before demolishing the building, six of its exterior walls were removed and ambient vibration measurements were also collected from the structure after the wall removal. These data are not used to calibrate the model; they are only used to assess the predicted results. The model updating framework proposed in this paper is applied to estimate the modal parameters of the building at its reference state as well as two damaged states: moderate damage (removal of four walls) and severe damage (removal of six walls). Good agreement is observed between the model-predicted modal parameters and those identified from vibration tests. Moreover, it is shown that including prediction error bias in the updating process instead of commonly-used zero-mean error function can significantly reduce the prediction uncertainties.

  7. Vibration control of a cluster of buildings through the Vibrating Barrier

    NASA Astrophysics Data System (ADS)

    Tombari, A.; Garcia Espinosa, M.; Alexander, N. A.; Cacciola, P.

    2018-02-01

    A novel device, called Vibrating Barrier (ViBa), that aims to reduce the vibrations of adjacent structures subjected to ground motion waves has been recently proposed. The ViBa is a structure buried in the soil and detached from surrounding buildings that is able to absorb a significant portion of the dynamic energy arising from the ground motion. The working principle exploits the dynamic interaction among vibrating structures due to the propagation of waves through the soil, namely the structure-soil-structure interaction. In this paper the efficiency of the ViBa is investigated to control the vibrations of a cluster of buildings. To this aim, a discrete model of structures-site interaction involving multiple buildings and the ViBa is developed where the effects of the soil on the structures, i.e. the soil-structure interaction (SSI), the structure-soil-structure interaction (SSSI) as well as the ViBa-soil-structures interaction are taken into account by means of linear elastic springs. Closed-form solutions are derived to design the ViBa in the case of harmonic excitation from the analysis of the discrete model. Advanced finite element numerical simulations are performed in order to assess the efficiency of the ViBa for protecting more than a single building. Parametric studies are also conducted to identify beneficial/adverse effects in the use of the proposed vibration control strategy to protect cluster of buildings. Finally, experimental shake table tests are performed to a prototype of a cluster of two buildings protected by the ViBa device for validating the proposed numerical models.

  8. Effects of edaravone on a rat model of punch-drunk syndrome.

    PubMed

    Nomoto, Jun; Kuroki, Takao; Nemoto, Masaaki; Kondo, Kosuke; Harada, Naoyuki; Nagao, Takeki

    2011-01-01

    Punch-drunk syndrome (PDS) refers to a pathological condition in which higher brain dysfunction occurs in a delayed fashion in boxers who have suffered repeated blows to the head. However, the underlying mechanisms remain unknown. This study attempted to elucidate the mechanism of higher brain dysfunction observed following skull vibration in two experiments involving a rat model of PDS. Experiment 1 evaluated the effects of edaravone on histological changes in the rat brain tissue after skull vibration (frequency 20 Hz, amplitude 4 mm, duration 60 minutes). The amount of free radicals formed in response to skull vibration was very small, and edaravone administration reduced the number of glial fibrillary acidic protein and advanced glycation end product-positive cells. Experiment 2 examined the time course of change in learning ability following skull vibration in Tokai High Avoider rats. The learning ability of individual rats was evaluated by the Sidman-type electric shock avoidance test 5 days after the last session of skull vibration or final anesthesia and once a month for 9 consecutive months. Delayed learning disability was not observed in rats administered edaravone immediately after skull vibration. These results suggest that free radical-induced astrocyte activation and subsequent glial scar formation contribute to the occurrence of delayed learning disabilities. Edaravone administration after skull vibration suppressed glial scar formation, thereby inhibiting the occurrence of delayed learning disabilities.

  9. Specialized data analysis of SSME and advanced propulsion system vibration measurements

    NASA Technical Reports Server (NTRS)

    Coffin, Thomas; Swanson, Wayne L.; Jong, Yen-Yi

    1993-01-01

    The basic objectives of this contract were to perform detailed analysis and evaluation of dynamic data obtained during Space Shuttle Main Engine (SSME) test and flight operations, including analytical/statistical assessment of component dynamic performance, and to continue the development and implementation of analytical/statistical models to effectively define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational conditions. This study was to provide timely assessment of engine component operational status, identify probable causes of malfunction, and define feasible engineering solutions. The work was performed under three broad tasks: (1) Analysis, Evaluation, and Documentation of SSME Dynamic Test Results; (2) Data Base and Analytical Model Development and Application; and (3) Development and Application of Vibration Signature Analysis Techniques.

  10. Multiple direction vibration fixture

    DOEpatents

    Cericola, Fred; Doggett, James W.; Ernest, Terry L.; Priddy, Tommy G.

    1991-01-01

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  11. Low Intensity, High Frequency Vibration Training to Improve Musculoskeletal Function in a Mouse Model of Duchenne Muscular Dystrophy

    PubMed Central

    Novotny, Susan A.; Mader, Tara L.; Greising, Angela G.; Lin, Angela S.; Guldberg, Robert E.; Warren, Gordon L.; Lowe, Dawn A.

    2014-01-01

    The objective of the study was to determine if low intensity, high frequency vibration training impacted the musculoskeletal system in a mouse model of Duchenne muscular dystrophy, relative to healthy mice. Three-week old wildtype (n = 26) and mdx mice (n = 22) were randomized to non-vibrated or vibrated (45 Hz and 0.6 g, 15 min/d, 5 d/wk) groups. In vivo and ex vivo contractile function of the anterior crural and extensor digitorum longus muscles, respectively, were assessed following 8 wks of vibration. Mdx mice were injected 5 and 1 days prior to sacrifice with Calcein and Xylenol, respectively. Muscles were prepared for histological and triglyceride analyses and subcutaneous and visceral fat pads were excised and weighed. Tibial bones were dissected and analyzed by micro-computed tomography for trabecular morphometry at the metaphysis, and cortical geometry and density at the mid-diaphysis. Three-point bending tests were used to assess cortical bone mechanical properties and a subset of tibiae was processed for dynamic histomorphometry. Vibration training for 8 wks did not alter trabecular morphometry, dynamic histomorphometry, cortical geometry, or mechanical properties (P≥0.34). Vibration did not alter any measure of muscle contractile function (P≥0.12); however the preservation of muscle function and morphology in mdx mice indicates vibration is not deleterious to muscle lacking dystrophin. Vibrated mice had smaller subcutaneous fat pads (P = 0.03) and higher intramuscular triglyceride concentrations (P = 0.03). These data suggest that vibration training at 45 Hz and 0.6 g did not significantly impact the tibial bone and the surrounding musculature, but may influence fat distribution in mice. PMID:25121503

  12. Prediction of force and acceleration control spectra for Space Shuttle orbiter sidewall-mounted payloads

    NASA Technical Reports Server (NTRS)

    Hipol, Philip J.

    1990-01-01

    The development of force and acceleration control spectra for vibration testing of Space Shuttle (STS) orbiter sidewall-mounted payloads requiresreliable estimates of the sidewall apparent weight and free (i.e. unloaded) vibration during lift-off. The feasibility of analytically predicting these quantities has been investigated through the development and analysis of a finite element model of the STS cargo bay. Analytical predictions of the sidewall apparent weight were compared with apparent weight measurements made on OV-101, and analytical predictions of the sidewall free vibration response during lift-off were compared with flight measurements obtained from STS-3 and STS-4. These analysis suggest that the cargo bay finite element model has potential application for the estimation of force and acceleration control spectra for STS sidewall-mounted payloads.

  13. Analytical and experimental study of vibrations in a gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Ruan, Y. F.; Zakrajsek, J. J.; Oswald, Fred B.; Coy, J. J.

    1991-01-01

    An analytical simulation of the dynamics of a gear transmission system is presented and compared to experimental results from a gear noise test rig at the NASA Lewis Research Center. The analytical procedure developed couples the dynamic behaviors of the rotor-bearing-gear system with the response of the gearbox structure. The modal synthesis method is used in solving the overall dynamics of the system. Locally each rotor-gear stage is modeled as an individual rotor-bearing system using the matrix transfer technique. The dynamics of each individual rotor are coupled with other rotor stages through the nonlinear gear mesh forces and with the gearbox structure through bearing support systems. The modal characteristics of the gearbox structure are evaluated using the finite element procedure. A variable time steping integration routine is used to calculate the overall time transient behavior of the system in modal coordinates. The global dynamic behavior of the system is expressed in a generalized coordinate system. Transient and steady state vibrations of the gearbox system are presented in the time and frequency domains. The vibration characteristics of a simple single mesh gear noise test rig is modeled. The numerical simulations are compared to experimental data measured under typical operating conditions. The comparison of system natural frequencies, peak vibration amplitudes, and gear mesh frequencies are generally in good agreement.

  14. Period of vibration of axially vibrating truly nonlinear rod

    NASA Astrophysics Data System (ADS)

    Cveticanin, L.

    2016-07-01

    In this paper the axial vibration of a muscle whose fibers are parallel to the direction of muscle compression is investigated. The model is a clamped-free rod with a strongly nonlinear elastic property. Axial vibration is described by a nonlinear partial differential equation. A solution of the equation is constructed for special initial conditions by using the method of separation of variables. The partial differential equation is separated into two uncoupled strongly nonlinear second order differential equations. Both equations, with displacement function and with time function are exactly determined. Exact solutions are given in the form of inverse incomplete and inverse complete Beta function. Using boundary and initial conditions, the frequency of vibration is obtained. It has to be mentioned that the determined frequency represents the exact analytic description for the axially vibrating truly nonlinear clamped-free rod. The procedure suggested in this paper is applied for calculation of the frequency of the longissimus dorsi muscle of a cow. The influence of elasticity order and elasticity coefficient on the frequency property is tested.

  15. Vibration sensibility testing in the workplace. Day-to-day reliability.

    PubMed

    Rosecrance, J C; Cook, T M; Satre, D L; Goode, J D; Schroder, M J

    1994-09-01

    Loss of vibration sensibility has been suggested as an early indicator of peripheral compression neuropathy, including carpal tunnel syndrome. Although vibration sensibility has been used frequently to evaluate carpal tunnel syndrome, the day-to-day reliability of vibration measurements in an industrial population measured at the workplace has not been assessed. Vibration sensibility testing was performed at the university ergonomics laboratory on 50 volunteers (100 hands) and at a newspaper company on 50 workers (100 hands). Vibration perception and disappearance thresholds were measured on two occasions separated by 3 to 5 days. Student's t tests indicated no significant differences between the first and second tests or between the two groups. Pearson product-moment correlations for test-retest reliability were lower in the industry group but were relatively high despite the less than optimal testing conditions. Our findings suggest that vibration sensibility measurements are reliable from day to day not only in the laboratory but also in the workplace.

  16. Analysis and test of a 16-foot radial rib reflector developmental model

    NASA Technical Reports Server (NTRS)

    Birchenough, Shawn A.

    1989-01-01

    Analytical and experimental modal tests were performed to determine the vibrational characteristics of a 16-foot diameter radial rib reflector model. Single rib analyses and experimental tests provided preliminary information relating to the reflector. A finite element model predicted mode shapes and frequencies of the reflector. The analyses correlated well with the experimental tests, verifying the modeling method used. The results indicate that five related, characteristic mode shapes form a group. The frequencies of the modes are determined by the relative phase of the radial ribs.

  17. Effect of External Vibration on PZT Impedance Signature.

    PubMed

    Yang, Yaowen; Miao, Aiwei

    2008-11-01

    Piezoelectric ceramic Lead Zirconate Titanate (PZT) transducers, working on the principle of electromechanical impedance (EMI), are increasingly applied for structural health monitoring (SHM) in aerospace, civil and mechanical engineering. The PZT transducers are usually surface bonded to or embedded in a structure and subjected to actuation so as to interrogate the structure at the desired frequency range. The interrogation results in the electromechanical admittance (inverse of EMI) signatures which can be used to estimate the structural health or integrity according to the changes of the signatures. In the existing EMI method, the monitored structure is only excited by the PZT transducers for the interrogating of EMI signature, while the vibration of the structure caused by the external excitations other than the PZT actuation is not considered. However, many structures work under vibrations in practice. To monitor such structures, issues related to the effects of vibration on the EMI signature need to be addressed because these effects may lead to misinterpretation of the structural health. This paper develops an EMI model for beam structures, which takes into account the effect of beam vibration caused by the external excitations. An experimental study is carried out to verify the theoretical model. A lab size specimen with different external excitations is tested and the effect of vibration on EMI signature is discussed.

  18. Analysis on pseudo excitation of random vibration for structure of time flight counter

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Li, Dapeng

    2015-03-01

    Traditional computing method is inefficient for getting key dynamical parameters of complicated structure. Pseudo Excitation Method(PEM) is an effective method for calculation of random vibration. Due to complicated and coupling random vibration in rocket or shuttle launching, the new staging white noise mathematical model is deduced according to the practical launch environment. This deduced model is applied for PEM to calculate the specific structure of Time of Flight Counter(ToFC). The responses of power spectral density and the relevant dynamic characteristic parameters of ToFC are obtained in terms of the flight acceptance test level. Considering stiffness of fixture structure, the random vibration experiments are conducted in three directions to compare with the revised PEM. The experimental results show the structure can bear the random vibration caused by launch without any damage and key dynamical parameters of ToFC are obtained. The revised PEM is similar with random vibration experiment in dynamical parameters and responses are proved by comparative results. The maximum error is within 9%. The reasons of errors are analyzed to improve reliability of calculation. This research provides an effective method for solutions of computing dynamical characteristic parameters of complicated structure in the process of rocket or shuttle launching.

  19. A summary of recent NASA/Army contributions to rotorcraft vibrations and structural dynamics technology

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.; Bartlett, Felton D., Jr.; Cline, John H.

    1988-01-01

    The requirement for low vibrations has achieved the status of a critical design consideration in modern helicopters. There is now a recognized need to account for vibrations during both the analytical and experimental phases of design. Research activities in this area were both broad and varied and notable advances were made in recent years in the critical elements of the technology base needed to achieve the goal of a jet smooth ride. The purpose is to present an overview of accomplishments and current activities of govern and government-sponsored research in the area of rotorcraft vibrations and structural dynamics, focusing on NASA and Army contributions over the last decade or so. Specific topics addressed include: airframe finite-element modeling for static and dynamic analyses, analysis of coupled rotor-airframe vibrations, optimization of airframes subject to vibration constraints, active and passive control of vibrations in both the rotating and fixed systems, and integration of testing and analysis in such guises as modal analysis, system identification, structural modification, and vibratory loads measurement.

  20. Vibrational Dynamics of Biological Molecules: Multi-quantum Contributions

    PubMed Central

    Leu, Bogdan M.; Timothy Sage, J.; Zgierski, Marek Z.; Wyllie, Graeme R. A.; Ellison, Mary K.; Robert Scheidt, W.; Sturhahn, Wolfgang; Ercan Alp, E.; Durbin, Stephen M.

    2006-01-01

    High-resolution X-ray measurements near a nuclear resonance reveal the complete vibrational spectrum of the probe nucleus. Because of this, nuclear resonance vibrational spectroscopy (NRVS) is a uniquely quantitative probe of the vibrational dynamics of reactive iron sites in proteins and other complex molecules. Our measurements of vibrational fundamentals have revealed both frequencies and amplitudes of 57Fe vibrations in proteins and model compounds. Information on the direction of Fe motion has also been obtained from measurements on oriented single crystals, and provides an essential test of normal mode predictions. Here, we report the observation of weaker two-quantum vibrational excitations (overtones and combinations) for compounds that mimic the active site of heme proteins. The predicted intensities depend strongly on the direction of Fe motion. We compare the observed features with predictions based on the observed fundamentals, using information on the direction of Fe motion obtained either from DFT predictions or from single crystal measurements. Two-quantum excitations may become a useful tool to identify the directions of the Fe oscillations when single crystals are not available. PMID:16894397

  1. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for component-loaded curved orthogrid panels typical of launch vehicle skin structures. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was applied to correlate the measured input sound pressures across the energized panel. This application quantifies the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software developed for the RPTF method allows easy replacement of the diffuse acoustic field with other pressure fields such as a turbulent boundary layer (TBL) model suitable for vehicle ascent. Structural responses using a TBL model were demonstrated, and wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this environment. Finally, design load factors were developed from the measured and predicted responses and compared with those derived from traditional techniques such as historical Mass Acceleration Curves and Barrett scaling methods for acreage and component-loaded panels.

  2. High fidelity quantum gates with vibrational qubits.

    PubMed

    Berrios, Eduardo; Gruebele, Martin; Shyshlov, Dmytro; Wang, Lei; Babikov, Dmitri

    2012-11-26

    Physical implementation of quantum gates acting on qubits does not achieve a perfect fidelity of 1. The actual output qubit may not match the targeted output of the desired gate. According to theoretical estimates, intrinsic gate fidelities >99.99% are necessary so that error correction codes can be used to achieve perfect fidelity. Here we test what fidelity can be accomplished for a CNOT gate executed by a shaped ultrafast laser pulse interacting with vibrational states of the molecule SCCl(2). This molecule has been used as a test system for low-fidelity calculations before. To make our test more stringent, we include vibrational levels that do not encode the desired qubits but are close enough in energy to interfere with population transfer by the laser pulse. We use two complementary approaches: optimal control theory determines what the best possible pulse can do; a more constrained physical model calculates what an experiment likely can do. Optimal control theory finds pulses with fidelity >0.9999, in excess of the quantum error correction threshold with 8 × 10(4) iterations. On the other hand, the physical model achieves only 0.9992 after 8 × 10(4) iterations. Both calculations converge as an inverse power law toward unit fidelity after >10(2) iterations/generations. In principle, the fidelities necessary for quantum error correction are reachable with qubits encoded by molecular vibrations. In practice, it will be challenging with current laboratory instrumentation because of slow convergence past fidelities of 0.99.

  3. Control of Wheel/Rail Noise and Vibration

    DOT National Transportation Integrated Search

    1982-04-01

    An analytical model of the generation of wheel/rail noise has been developed and validated through an extensive series of field tests carried out at the Transportation Test Center using the State of the Art Car. A sensitivity analysis has been perfor...

  4. Vibrations Generated by Several Nickel-titanium Endodontic File Systems during Canal Shaping in an Ex Vivo Model.

    PubMed

    Choi, Dong-Min; Kim, Jin-Woo; Park, Se-Hee; Cho, Kyung-Mo; Kwak, Sang Won; Kim, Hyeon-Cheol

    2017-07-01

    This study aimed to compare the vibration generated by several nickel-titanium (NiTi) file systems and transmitted to teeth under 2 different motions (continuous rotation motion and reciprocating motion). Sixty J-shaped resin blocks (Endo Training Bloc-J; Dentsply Maillefer, Ballaigues, Switzerland) were trimmed to a root-shaped form and divided into 2 groups according to the types of electric motors: WaveOne motor (WOM, Dentsply Maillefer) and X-Smart Plus motor (XSM, Dentsply Maillefer). Each group was further subdivided into 3 subgroups (n = 10 each) according to the designated file systems: ProTaper Next (PTN, Dentsply Maillefer), ProTaper Universal (PTU, Dentsply Maillefer), and WaveOne (WOP, Dentsply Maillefer) systems. Vibration was measured during the pecking motion using an accelerometer attached to a predetermined consistent position. The average vibration values were subjected to 2-way analysis of variance as well as the t test and Duncan test for post hoc comparison at the 95% confidence interval. Both motor types and instrument types produced significantly different ranges of average vibrations. Regardless of the instrument types, the WOM group generated greater vibration than the XSM group (P < .05). Although PTN and PTU did not show significant differences, the WOP group showed significantly greater vibration than the other groups regardless of motor types (P < .05). Under the limitations of this study design, the reciprocating NiTi file system may generate greater vibration than the continuous rotation NiTi file systems. The motor type also has a significant effect to amplify the vibrations. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. 14 CFR 33.43 - Vibration test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vibration test. 33.43 Section 33.43... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.43 Vibration test. (a) Each... configuration of the propeller type which is used for the endurance test, and using, for other engines, the same...

  6. 14 CFR 33.83 - Vibration test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine... experience, analysis, and component test and shall address, as a minimum, blades, vanes, rotor discs, spacers...

  7. 14 CFR 33.83 - Vibration test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine... experience, analysis, and component test and shall address, as a minimum, blades, vanes, rotor discs, spacers...

  8. 14 CFR 33.43 - Vibration test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.43 Section 33.43... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.43 Vibration test. (a) Each... configuration of the propeller type which is used for the endurance test, and using, for other engines, the same...

  9. 14 CFR 33.83 - Vibration test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine... experience, analysis, and component test and shall address, as a minimum, blades, vanes, rotor discs, spacers...

  10. 14 CFR 33.43 - Vibration test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vibration test. 33.43 Section 33.43... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.43 Vibration test. (a) Each... configuration of the propeller type which is used for the endurance test, and using, for other engines, the same...

  11. Research on simultaneous impact of hand-arm and whole-body vibration.

    PubMed

    Kowalski, Piotr; Zając, Jacek

    2012-01-01

    This article presents the results of laboratory tests on the combined effect of whole-body vibration (WBV) and hand-arm vibration (HAV). The reactions of subjects exposed to various combinations of vibration were recorded. The vibrotactile perception threshold (VPT) test identified changes caused by exposure to vibration. Ten male subjects met the criteria of the study. There were 4 series of tests: a reference test and tests after exposure to HAV, WBV, and after simultaneous exposure to HAV and WBV. An analysis of the results (6000 ascending and descending VPTs) showed that the changes in VPTs were greatest after simultaneous exposure to both kinds of vibration. The increase in VPT, for all stimulus frequencies, was then higher than after exposure to HAV or WBV only.

  12. Effects of vibration and shock on the performance of gas-bearing space-power Brayton cycle turbomachinery. Part 4: Suppression of rotor-bearing system vibrations through flexible bearing support damping

    NASA Technical Reports Server (NTRS)

    Tessarzik, J. M.; Chiang, T.; Badgley, R. H.

    1974-01-01

    A bearing damper, operating on the support flexure of a pivoted pad in a tilting-pad type gas-lubricated journal bearing, has been designed, built, and tested under externally-applied random vibrations. The NASA Brayton Rotating Unit (BRU), a 36,000 rpm, 10-Kwe turbogenerator had previously been subjected in the MTI Vibration Test Laboratory to external random vibrations, and vibration response data had been recorded and analyzed for amplitude distribution and frequency content at a number of locations in the machine. Based on data from that evaluation, a piston-type damper was designed and developed for each of the two flexibly-supported journal bearing pads (one in each of the two three-pad bearings). A modified BRU, with dampers installed, has been re-tested under random vibration conditions. Root-mean-square vibration amplitudes were determined from the test data, and displacement power spectral density analyses have been performed. Results of these data reduction efforts have been compared with vibration tolerance limits. Results of the tests indicate significant reductions in vibration levels in the bearing gas-lubricant films, particularly in the rigidly-mounted pads. The utility of the gas-lubricated damper for limiting rotor-bearing system vibrations in high-speed turbomachinery has thus been demonstrated.

  13. Prediction of the interior noise levels of high-speed propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Rennison, D. C.; Wilby, J. F.; Wilby, E. G.

    1980-01-01

    The theoretical basis for an analytical model developed to predict the interior noise levels of high-speed propeller-driven airplanes is presented. Particular emphasis is given to modeling the transmission of discrete tones through a fuselage element into a cavity, estimates for the mean and standard deviation of the acoustic power flow, the coupling between a non-homogeneous excitation and the fuselage vibration response, and the prediction of maximum interior noise levels. The model allows for convenient examination of the various roles of the excitation and fuselage structural characteristics on the fuselage vibration response and the interior noise levels, as is required for the design of model or prototype noise control validation tests.

  14. Vibration Testing of an Operating Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Mark E.; Goodnight, Thomas W.

    2000-01-01

    The NASA John H. Glenn Research Center and the U.S. Department of Energy are currently developing a Stirling convertor for use as an advanced spacecraft power system for future NASA deep-space missions. As part of this development, a Stirling Technology Demonstrator Convertor (TDC) was recently tested to verify its survivability and capability of withstanding its expected launch random vibration environment. The TDC was fully operational (producing power) during the random vibration testing. The output power of the convertor was measured during the testing, and these results are discussed in this paper. Numerous accelerometers and force gauges were also present which provided information on the dynamic characteristics of the TDC and an indication of any possible damage due to vibration. These measurements will also be discussed in this paper. The vibration testing of the Stirling TDC was extremely successful. The TDC survived all its vibration testing with no structural damage or functional performance degradation. As a result of this testing, the Stirling convertor's capability to withstand vibration has been demonstrated, enabling its usage in future spacecraft power systems.

  15. Confidence Intervals for Laboratory Sonic Boom Annoyance Tests

    NASA Technical Reports Server (NTRS)

    Rathsam, Jonathan; Christian, Andrew

    2016-01-01

    Commercial supersonic flight is currently forbidden over land because sonic booms have historically caused unacceptable annoyance levels in overflown communities. NASA is providing data and expertise to noise regulators as they consider relaxing the ban for future quiet supersonic aircraft. One deliverable NASA will provide is a predictive model for indoor annoyance to aid in setting an acceptable quiet sonic boom threshold. A laboratory study was conducted to determine how indoor vibrations caused by sonic booms affect annoyance judgments. The test method required finding the point of subjective equality (PSE) between sonic boom signals that cause vibrations and signals not causing vibrations played at various amplitudes. This presentation focuses on a few statistical techniques for estimating the interval around the PSE. The techniques examined are the Delta Method, Parametric and Nonparametric Bootstrapping, and Bayesian Posterior Estimation.

  16. Dynamic Loads Generation for Multi-Point Vibration Excitation Problems

    NASA Technical Reports Server (NTRS)

    Shen, Lawrence

    2011-01-01

    A random-force method has been developed to predict dynamic loads produced by rocket-engine random vibrations for new rocket-engine designs. The method develops random forces at multiple excitation points based on random vibration environments scaled from accelerometer data obtained during hot-fire tests of existing rocket engines. This random-force method applies random forces to the model and creates expected dynamic response in a manner that simulates the way the operating engine applies self-generated random vibration forces (random pressure acting on an area) with the resulting responses that we measure with accelerometers. This innovation includes the methodology (implementation sequence), the computer code, two methods to generate the random-force vibration spectra, and two methods to reduce some of the inherent conservatism in the dynamic loads. This methodology would be implemented to generate the random-force spectra at excitation nodes without requiring the use of artificial boundary conditions in a finite element model. More accurate random dynamic loads than those predicted by current industry methods can then be generated using the random force spectra. The scaling method used to develop the initial power spectral density (PSD) environments for deriving the random forces for the rocket engine case is based on the Barrett Criteria developed at Marshall Space Flight Center in 1963. This invention approach can be applied in the aerospace, automotive, and other industries to obtain reliable dynamic loads and responses from a finite element model for any structure subject to multipoint random vibration excitations.

  17. Test and Evaluation Report of the Ohio Medical Transport Incubator Model Air-Vac

    DTIC Science & Technology

    1992-04-01

    0310 Gpk at 45.00 Hz .0530 Gpk at 56.25 Hz X and Y axes duration: 60 minutes each broadband intensity: 0.3099 Gr random vibration: initial slope: 99.00...99.00 dB/oct sinusoidal vibration: .3200 Gpk at 11.25 Hz .0670 Gp at 22.50 Hz .0950 Gp at 33.75 Hz .0350 Gpk at 45.00 Hz .0770 Gp at 56.25 Hz The Ohio...GFE government furnished equipment Gpk gravity, peak G(rms) gravity (root mean square) Hz hertz IAW in accordance with ITOP in-flight test operating

  18. New Approaches in Force-Limited Vibration Testing of Flight Hardware

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Kern, Dennis L.

    2012-01-01

    To qualify flight hardware for random vibration environments the following methods are used to limit the loads in the aerospace industry: (1) Response limiting and notching (2) Simple TDOF model (3) Semi-empirical force limits (4) Apparent mass, etc. and (5) Impedance method. In all these methods attempts are made to remove conservatism due to the mismatch in impedances between the test and the flight configurations of the hardware that are being qualified. Assumption is the hardware interfaces have correlated responses. A new method that takes into account the un-correlated hardware interface responses are described in this presentation.

  19. Joint excitation synchronization characteristics of fatigue test for offshore wind turbine blade

    NASA Astrophysics Data System (ADS)

    Zhang, Lei-an; Yu, Xiang-yong; Wei, Xiu-ting; Liu, Wei-sheng

    2018-02-01

    In the case of the stiffness of offshore wind turbine blade is relatively large, the joint excitation device solves the problem of low accuracy of bending moment distribution, insufficient driving ability and long fatigue test period in single-point loading. In order to study the synchronous characteristics of joint excitation system, avoid blade vibration disturbance. First, on the base of a Lagrange equation, a mathematical model of combined excitation is formulated, and a numerical analysis of vibration synchronization is performed. Then, the model is constructed via MATLAB/Simulink, and the effect of the phase difference on the vibration synchronization characteristics is obtained visually. Finally, a set of joint excitation platform for the fatigue test of offshore wind turbine blades are built. The parameter measurement scheme is given and the correctness of the joint excitation synchronization in the simulation model is verified. The results show that when the rotational speed difference is 2 r/min, 30 r/min, the phase difference is 0, π/20, π/8 and π/4, as the rotational speed difference and the phase difference increase, the time required for the blade to reach a steady state is longer. When the phase difference is too large, the electromechanical coupling can no longer make the joint excitation device appear self-synchronizing phenomenon, so that the value of the phase difference develops toward a fixed value (not equal to 0), and the blade vibration disorder is serious, at this time, the effect of electromechanical coupling must be eliminated. The research results provide theoretical basis for the subsequent decoupling control algorithm and synchronization control strategy, and have good application value.

  20. Mechanical energy flow models of rods and beams

    NASA Technical Reports Server (NTRS)

    Wohlever, J. C.; Bernhard, R. J.

    1992-01-01

    It has been proposed that the flow of mechanical energy through a structural/acoustic system may be modeled in a manner similar to that of flow of thermal energy/in a heat conduction problem. If this hypothesis is true, it would result in relatively efficient numerical models of structure-borne energy in large built-up structures. Fewer parameters are required to approximate the energy solution than are required to model the characteristic wave behavior of structural vibration by using traditional displacement formulations. The energy flow hypothesis is tested in this investigation for both longitudinal vibration in rods and transverse flexural vibrations of beams. The rod is shown to behave approximately according to the thermal energy flow analogy. However, the beam solutions behave significantly differently than predicted by the thermal analogy unless locally-space-averaged energy and power are considered. Several techniques for coupling dissimilar rods and beams are also discussed. Illustrations of the solution accuracy of the methods are included.

  1. Ring Laser Gyro G-Sensitive Misalignment Calibration in Linear Vibration Environments.

    PubMed

    Wang, Lin; Wu, Wenqi; Li, Geng; Pan, Xianfei; Yu, Ruihang

    2018-02-16

    The ring laser gyro (RLG) dither axis will bend and exhibit errors due to the specific forces acting on the instrument, which are known as g-sensitive misalignments of the gyros. The g-sensitive misalignments of the RLG triad will cause severe attitude error in vibration or maneuver environments where large-amplitude specific forces and angular rates coexist. However, g-sensitive misalignments are usually ignored when calibrating the strapdown inertial navigation system (SINS). This paper proposes a novel method to calibrate the g-sensitive misalignments of an RLG triad in linear vibration environments. With the SINS is attached to a linear vibration bench through outer rubber dampers, rocking of the SINS can occur when the linear vibration is performed on the SINS. Therefore, linear vibration environments can be created to simulate the harsh environment during aircraft flight. By analyzing the mathematical model of g-sensitive misalignments, the relationship between attitude errors and specific forces as well as angular rates is established, whereby a calibration scheme with approximately optimal observations is designed. Vibration experiments are conducted to calibrate g-sensitive misalignments of the RLG triad. Vibration tests also show that SINS velocity error decreases significantly after g-sensitive misalignments compensation.

  2. Vibration-translation energy transfer in vibrationally excited diatomic molecules. Ph.D. Thesis - York Univ., Toronto

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1976-01-01

    A semiclassical collision model is applied to the study of energy transfer rates between a vibrationally excited diatomic molecule and a structureless atom. The molecule is modeled as an anharmonic oscillator with a multitude of dynamically coupled vibrational states. Three main aspects in the prediction of vibrational energy transfer rates are considered. The applicability of the semiclassical model to an anharmonic oscillator is first evaluated for collinear encounters. Second, the collinear semiclassical model is applied to obtain numerical predictions of the vibrational energy transfer rate dependence on the initial vibrational state quantum number. Thermally averaged vibration-translation rate coefficients are predicted and compared with CO-He experimental values for both ground and excited initial states. The numerical model is also used as a basis for evaluating several less complete but analytic models. Third, the role of rational motion in the dynamics of vibrational energy transfer is examined. A three-dimensional semiclassical collision model is constructed with coupled rotational motion included. Energy transfer within the molecule is shown to be dominated by vibration-rotation transitions with small changes in angular momentum. The rates of vibrational energy transfer in molecules with rational frequencies that are very small in comparison to their vibrational frequency are shown to be adequately treated by the preceding collinear models.

  3. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    NASA Astrophysics Data System (ADS)

    Meng, Qingyong; Meyer, Hans-Dieter

    2015-10-01

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.

  4. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Qingyong, E-mail: mengqingyong@dicp.ac.cn; Meyer, Hans-Dieter, E-mail: hans-dieter.meyer@pci.uni-heidelberg.de

    2015-10-28

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in themore » present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.« less

  5. 14 CFR 33.83 - Vibration test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vibration test. 33.83 Section 33.83 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine...

  6. 33 CFR 159.103 - Vibration test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Vibration test. 159.103 Section 159.103 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.103 Vibration test. The device...

  7. A new compound control method for sine-on-random mixed vibration test

    NASA Astrophysics Data System (ADS)

    Zhang, Buyun; Wang, Ruochen; Zeng, Falin

    2017-09-01

    Vibration environmental test (VET) is one of the important and effective methods to provide supports for the strength design, reliability and durability test of mechanical products. A new separation control strategy was proposed to apply in multiple-input multiple-output (MIMO) sine on random (SOR) mixed mode vibration test, which is the advanced and intensive test type of VET. As the key problem of the strategy, correlation integral method was applied to separate the mixed signals which included random and sinusoidal components. The feedback control formula of MIMO linear random vibration system was systematically deduced in frequency domain, and Jacobi control algorithm was proposed in view of the elements, such as self-spectrum, coherence, and phase of power spectral density (PSD) matrix. Based on the excessive correction of excitation in sine vibration test, compression factor was introduced to reduce the excitation correction, avoiding the destruction to vibration table or other devices. The two methods were synthesized to be applied in MIMO SOR vibration test system. In the final, verification test system with the vibration of a cantilever beam as the control object was established to verify the reliability and effectiveness of the methods proposed in the paper. The test results show that the exceeding values can be controlled in the tolerance range of references accurately, and the method can supply theory and application supports for mechanical engineering.

  8. Further Examination of the Vibratory Loads Reduction Results from the NASA/ARMY/MIT Active Twist Rotor Test

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.; Yeager, William T., Jr.; Sekula, Martin K.

    2002-01-01

    The vibration reduction capabilities of a model rotor system utilizing controlled, strain-induced blade twisting are examined. The model rotor blades, which utilize piezoelectric active fiber composite actuators, were tested in the NASA Langley Transonic Dynamics Tunnel using open-loop control to determine the effect of active-twist on rotor vibratory loads. The results of this testing have been encouraging, and have demonstrated that active-twist rotor designs offer the potential for significant load reductions in future helicopter rotor systems. Active twist control was found to use less than 1% of the power necessary to operate the rotor system and had a pronounced effect on both rotating- and fixed-system loads, offering reductions in individual harmonic loads of up to 100%. A review of the vibration reduction results obtained is presented, which includes a limited set of comparisons with results generated using the second-generation version of the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II) rotorcraft comprehensive analysis.

  9. Vibration and acoustic testing of TOPEX/Poseidon satellite

    NASA Technical Reports Server (NTRS)

    Boatman, Dave; Scharton, Terry; Hershfeld, Donald; Larkin, Paul

    1992-01-01

    The satellite was subjected to a 1.5G swept sine vibration test and a 146 dB overall level acoustic test, in accordance with Ariane launch vehicle requirements, at the NASA Goddard Space Flight Center. Extensive pretest analysis of the sine test was conducted to plan the input notching and to justify vibration testing the satellite only in the longitudinal axis. A unique measurement system was utilized to determine the six components of interface force between the shaker and the satellite in the sine vibration test. The satellite was heavily instrumented in both the sine vibration and acoustic test in order to insure that the launch loads were enveloped with appropriate margin and that satellite responses did not exceed the compatibilities of the structure and equipment. The test specification, objectives, instrumentation, and test results are described herein.

  10. Force Limited Vibration Testing Monograph

    NASA Technical Reports Server (NTRS)

    Scharton, Terry D.

    1997-01-01

    The practice of limiting the shaker force in vibration tests was investigated at the NASA Jet Propulsion Laboratory (JPL) in 1990 after the mechanical failure of an aerospace component during a vibration test. Now force limiting is used in almost every major vibration test at JPL and in many vibration tests at NASA Goddard Space Flight Center (GSFC) and at many aerospace contractors. The basic ideas behind force limiting have been in the literature for several decades, but the piezo-electric force transducers necessary to conveniently implement force limiting have been available only in the last decade. In 1993, funding was obtained from the NASA headquarters Office of Chief Engineer to develop and document the technology needed to establish force limited vibration testing as a standard approach available to all NASA centers and aerospace contractors. This monograph is the final report on that effort and discusses the history, theory, and applications of the method in some detail.

  11. Measurement of Dynamic Viscoelasticity of Full-Size Wood Composite Panels Using a Vibration Testing Method

    Treesearch

    Cheng Guan; Houjiang Zhang; John F. Hunt; Lujing Zhou; Dan Feng

    2016-01-01

    The dynamic viscoelasticity of full-size wood composite panels (WCPs) under the free-free vibrational state were determined by a vibration testing method. Vibration detection tests were performed on 194 pieces of three types of full-size WCPs (particleboard, medium density fiberboard, and plywood (PW)). The dynamic viscoelasticity from smaller specimens cut from the...

  12. EUCLID/NISP GRISM qualification model AIT/AIV campaign: optical, mechanical, thermal and vibration tests

    NASA Astrophysics Data System (ADS)

    Caillat, A.; Costille, A.; Pascal, S.; Rossin, C.; Vives, S.; Foulon, B.; Sanchez, P.

    2017-09-01

    Dark matter and dark energy mysteries will be explored by the Euclid ESA M-class space mission which will be launched in 2020. Millions of galaxies will be surveyed through visible imagery and NIR imagery and spectroscopy in order to map in three dimensions the Universe at different evolution stages over the past 10 billion years. The massive NIR spectroscopic survey will be done efficiently by the NISP instrument thanks to the use of grisms (for "Grating pRISMs") developed under the responsibility of the LAM. In this paper, we present the verification philosophy applied to test and validate each grism before the delivery to the project. The test sequence covers a large set of verifications: optical tests to validate efficiency and WFE of the component, mechanical tests to validate the robustness to vibration, thermal tests to validate its behavior in cryogenic environment and a complete metrology of the assembled component. We show the test results obtained on the first grism Engineering and Qualification Model (EQM) which will be delivered to the NISP project in fall 2016.

  13. Digital vibration threshold testing and ergonomic stressors in automobile manufacturing workers: a cross-sectional assessment.

    PubMed

    Gold, J E; Punnett, L; Cherniack, M; Wegman, D H

    2005-01-01

    Upper extremity musculoskeletal disorders (UEMSDs) comprise a large proportion of work-related illnesses in the USA. Physical risk factors including manual force and segmental vibration have been associated with UEMSDs. Reduced sensitivity to vibration in the fingertips (a function of nerve integrity) has been found in those exposed to segmental vibration, to hand force, and in office workers. The objective of this study was to determine whether an association exists between digital vibration thresholds (VTs) and exposure to ergonomic stressors in automobile manufacturing. Interviews and physical examinations were conducted in a cross-sectional survey of workers (n = 1174). In multivariable robust regression modelling, associations with workers' estimates of ergonomic stressors stratified on tool use were determined. VTs were separately associated with hand force, vibration as felt through the floor (whole body vibration), and with an index of multiple exposures in both tool users and non-tool users. Additional associations with contact stress and awkward upper extremity postures were found in tool users. Segmental vibration was not associated with VTs. Further epidemiologic and laboratory studies are needed to confirm the associations found. The association with self-reported whole body vibration exposure suggests a possible sympathetic nervous system effect, which remains to be explored.

  14. Sparse Representation Based Frequency Detection and Uncertainty Reduction in Blade Tip Timing Measurement for Multi-Mode Blade Vibration Monitoring

    PubMed Central

    Pan, Minghao; Yang, Yongmin; Guan, Fengjiao; Hu, Haifeng; Xu, Hailong

    2017-01-01

    The accurate monitoring of blade vibration under operating conditions is essential in turbo-machinery testing. Blade tip timing (BTT) is a promising non-contact technique for the measurement of blade vibrations. However, the BTT sampling data are inherently under-sampled and contaminated with several measurement uncertainties. How to recover frequency spectra of blade vibrations though processing these under-sampled biased signals is a bottleneck problem. A novel method of BTT signal processing for alleviating measurement uncertainties in recovery of multi-mode blade vibration frequency spectrum is proposed in this paper. The method can be divided into four phases. First, a single measurement vector model is built by exploiting that the blade vibration signals are sparse in frequency spectra. Secondly, the uniqueness of the nonnegative sparse solution is studied to achieve the vibration frequency spectrum. Thirdly, typical sources of BTT measurement uncertainties are quantitatively analyzed. Finally, an improved vibration frequency spectra recovery method is proposed to get a guaranteed level of sparse solution when measurement results are biased. Simulations and experiments are performed to prove the feasibility of the proposed method. The most outstanding advantage is that this method can prevent the recovered multi-mode vibration spectra from being affected by BTT measurement uncertainties without increasing the probe number. PMID:28758952

  15. Low voltage 30-cm ion thruster development. [including performance and structural integrity (vibration) tests

    NASA Technical Reports Server (NTRS)

    King, H. J.

    1974-01-01

    The basic goal was to advance the development status of the 30-cm electron bombardment ion thruster from a laboratory model to a flight-type engineering model (EM) thruster. This advancement included the more conventional aspects of mechanical design and testing for launch loads, weight reduction, fabrication process development, reliability and quality assurance, and interface definition, as well as a relatively significant improvement in thruster total efficiency. The achievement of this goal was demonstrated by the successful completion of a series of performance and structural integrity (vibration) tests. In the course of the program, essentially every part and feature of the original 30-cm Thruster was critically evaluated. These evaluations, led to new or improved designs for the ion optical system, discharge chamber, cathode isolator vaporizer assembly, main isolator vaporizer assembly, neutralizer assembly, packaging for thermal control, electrical terminations and structure.

  16. Characterization of Friction Joints Subjected to High Levels of Random Vibration

    NASA Technical Reports Server (NTRS)

    deSantos, Omar; MacNeal, Paul

    2012-01-01

    This paper describes the test program in detail including test sample description, test procedures, and vibration test results of multiple test samples. The material pairs used in the experiment were Aluminum-Aluminum, Aluminum- Dicronite coated Aluminum, and Aluminum-Plasmadize coated Aluminum. Levels of vibration for each set of twelve samples of each material pairing were gradually increased until all samples experienced substantial displacement. Data was collected on 1) acceleration in all three axes, 2) relative static displacement between vibration runs utilizing photogrammetry techniques, and 3) surface galling and contaminant generation. This data was used to estimate the values of static friction during random vibratory motion when "stick-slip" occurs and compare these to static friction coefficients measured before and after vibration testing.

  17. Quantitative prediction of collision-induced vibration-rotation distributions from physical data

    NASA Astrophysics Data System (ADS)

    Marsh, Richard J.; McCaffery, Anthony J.

    2003-04-01

    We describe a rapid, accurate technique for computing state-to-state cross-sections in collision-induced vibration-rotation transfer (VRT) using only physical data, i.e. spectroscopic constants, bond length, mass and velocity distribution. The probability of linear-to-angular momentum (AM) conversion is calculated for a set of trajectories, each of which is subjected to energy conservation boundary conditions. No mechanism is specified for inducing vibrational state change. In the model, this constitutes a velocity or momentum barrier that must be overcome before rotational AM may be generated in the new vibrational state. The method is subjected to stringent testing by calculating state-to-state VRT probabilities for diatomics in highly excited vibrational, rotational and electronic states. Comparison is made to experimental data and to results from quantum mechanical and from quasi-classical trajectory calculations. There is quantitative agreement with data from all three sources, indicating that despite its simplicity the essential physics of collisions involving highly excited species is captured in the model. We develop further the concept of the molecular efficiency factor as an indicative parameter in collision dynamics, and derive an expression for ji > 0 and for VRT.

  18. Low-Magnitude, High-Frequency Vibration Fails to Accelerate Ligament Healing but Stimulates Collagen Synthesis in the Achilles Tendon.

    PubMed

    Thompson, William R; Keller, Benjamin V; Davis, Matthew L; Dahners, Laurence E; Weinhold, Paul S

    2015-05-01

    Low-magnitude, high-frequency vibration accelerates fracture and wound healing and prevents disuse atrophy in musculoskeletal tissues. To investigate the role of low-magnitude, high-frequency vibration as a treatment to accelerate healing of an acute ligament injury and to examine gene expression in the intact Achilles tendon of the injured limb after low-magnitude, high-frequency vibration. Controlled laboratory study. Complete surgical transection of the medial collateral ligament (MCL) was performed in 32 Sprague-Dawley rats, divided into control and low-magnitude, high-frequency vibration groups. Low-magnitude, high-frequency vibration started on postoperative day 2, and rats received vibration for 30 minutes a day for 12 days. All rats were sacrificed 2 weeks after the operation, and their intact and injured MCLs were biomechanically tested or used for histological analysis. Intact Achilles tendons from the injured limb were evaluated for differences in gene expression. Mechanical testing revealed no differences in the ultimate tensile load or the structural stiffness between the control and vibration groups for either the injured or intact MCL. Vibration exposure increased gene expression of collagen 1 alpha (3-fold), interleukin 6 (7-fold), cyclooxygenase 2 (5-fold), and bone morphogenetic protein 12 (4-fold) in the intact Achilles tendon when compared with control tendons ( P < .05). While no differences were observed in the mechanical or histological properties of the fully transected MCL after low-magnitude, high-frequency vibration treatment, significant enhancements in gene expression were observed in the intact Achilles tendon. These included collagen, several inflammatory cytokines, and growth factors critical for tendons. As low-magnitude, high-frequency vibration had no negative effects on ligament healing, vibration therapy may be a useful tool to accelerate healing of other tissues (bone) in multitrauma injuries without inhibiting ligament healing. Additionally, the enhanced gene expression in response to low-magnitude, high-frequency vibration in the intact Achilles tendon suggests the need to further study its potential to accelerate tendon healing in partial injury or repair models.

  19. CM-2 Environmental / Modal Testing of Spacehab Racks

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Goodnight, Thomas W.; Farkas, Michael A.

    2001-01-01

    Combined environmental/modal vibration testing has been implemented at the NASA Glenn Research Center's Structural Dynamics Laboratory. The benefits of combined vibration testing are that it facilitates test article modal characterization and vibration qualification testing. The Combustion Module-2 (CM-2) is a space experiment that launches on Shuttle mission STS 107 in the SPACEHAB Research Double Module. The CM-2 flight hardware is integrated into a SPACEHAB single and double rack. CM-2 rack level combined vibration testing was recently completed on a shaker table to characterize the structure's modal response and verify the random vibration response. Control accelerometers and limit force gauges, located between the fixture and rack interface, were used to verify the input excitation. Results of the testing were used to verify the loads and environments for flight on the Shuttle.

  20. Seismic Vibration Control of Elevated Water Tank by TLD and Validation of Full-Scale TLD Model through Real-Time-Hybrid-Testing

    NASA Astrophysics Data System (ADS)

    Roy, A.; Staino, A.; (D Ghosh, A.; Basu, B.; Chatterjee, S.

    2016-09-01

    Elevated water tanks (EWTs), being top-heavy structures, are highly vulnerable to earthquake forces, and several have experienced damage/failure in past seismic events. However, as these are critical facilities whose continued performance in the post-earthquake scenario is of vital concern, it is significant to investigate their seismic vibration control using reliable and cost-effective passive dampers such as the Tuned Liquid Damper (TLD). Here, this aspect is studied for flexible EWT structures, such as those with annular shaft supports. The criterion of tuning the sloshing frequency of the TLD to the structural frequency necessitates dimensions of the TLD larger than those hitherto examined in literature. Hence the nonlinear model of the TLD based on established shallow water wave theory is verified for large container size by employing Real-Time-Hybrid-Testing (RTHT). Simulation studies are further carried out on a realistic example of a flexible EWT structure with TLDs. Results indicate that the TLD can be applied very effectively for the seismic vibration mitigation of EWTs.

  1. A multiscale-based approach for composite materials with embedded PZT filaments for energy harvesting

    NASA Astrophysics Data System (ADS)

    El-Etriby, Ahmed E.; Abdel-Meguid, Mohamed E.; Hatem, Tarek M.; Bahei-El-Din, Yehia A.

    2014-03-01

    Ambient vibrations are major source of wasted energy, exploiting properly such vibration can be converted to valuable energy and harvested to power up devices, i.e. electronic devices. Accordingly, energy harvesting using smart structures with active piezoelectric ceramics has gained wide interest over the past few years as a method for converting such wasted energy. This paper provides numerical and experimental analysis of piezoelectric fiber based composites for energy harvesting applications proposing a multi-scale modeling approach coupled with experimental verification. The multi-scale approach suggested to predict the behavior of piezoelectric fiber-based composites use micromechanical model based on Transformation Field Analysis (TFA) to calculate the overall material properties of electrically active composite structure. Capitalizing on the calculated properties, single-phase analysis of a homogeneous structure is conducted using finite element method. The experimental work approach involves running dynamic tests on piezoelectric fiber-based composites to simulate mechanical vibrations experienced by a subway train floor tiles. Experimental results agree well with the numerical results both for static and dynamic tests.

  2. Vibration Sensitivity of a Wide-Temperature Electronically Scanned Pressure Measurement (ESP) Module

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Garza, Frederico R.

    2001-01-01

    A vibration sensitivity test was conducted on a Wide-Temperature ESP module. The test object was Module "M4," a 16-channel, 4 psi unit scheduled for installation in the Arc Sector of NTF. The module was installed on a vibration exciter and loaded to positive then negative full-scale pressures (+/-2.5 psid). Test variables were the following: Vibration frequencies: 20, 55, 75 Hz. Vibration level: 1 g. Vibration axes: X, Y, Z. The pressure response was measured on each channel, first without and then with the vibration turned on, and the difference analyzed by means of the statistical t-test. The results show that the vibration sensitivity does not exceed 0.01% Full Scale Output per g (with the exception of one channel on one axis) to a 95 percent confidence level. This specification, limited by the resolution of the pressure source, lies well below the total uncertainty specification of 0.1 percent Full Scale Output.

  3. An extension of command shaping methods for controlling residual vibration using frequency sampling

    NASA Technical Reports Server (NTRS)

    Singer, Neil C.; Seering, Warren P.

    1992-01-01

    The authors present an extension to the impulse shaping technique for commanding machines to move with reduced residual vibration. The extension, called frequency sampling, is a method for generating constraints that are used to obtain shaping sequences which minimize residual vibration in systems such as robots whose resonant frequencies change during motion. The authors present a review of impulse shaping methods, a development of the proposed extension, and a comparison of results of tests conducted on a simple model of the space shuttle robot arm. Frequency shaping provides a method for minimizing the impulse sequence duration required to give the desired insensitivity.

  4. Integrated Vehicle Ground Vibration Testing of Manned Spacecraft: Historical Precedent

    NASA Technical Reports Server (NTRS)

    Lemke, Paul R.; Tuma, Margaret L.; Askins, Bruce R.

    2008-01-01

    For the first time in nearly 30 years, NASA is developing a new manned space flight launch system. The Ares I will carry crew and cargo to not only the International Space Station, but onward for the future exploration of the Moon and Mars. The Ares I control system and structural designs use complex computer models for their development. An Integrated Vehicle Ground Vibration Test (IVGVT) will validate the efficacy of these computer models. The IVGVT will reduce the technical risk of unexpected conditions that could place the vehicle or crew in jeopardy. The Ares Project Office's Flight and Integrated Test Office commissioned a study to determine how historical programs, such as Saturn and Space Shuttle, validated the structural dynamics of an integrated flight vehicle. The study methodology was to examine the historical record and seek out members of the engineering community who recall the development of historic manned launch vehicles. These records and interviews provided insight into the best practices and lessons learned from these historic development programs. The information that was gathered allowed the creation of timelines of the historic development programs. The timelines trace the programs from the development of test articles through test preparation, test operations, and test data reduction efforts. These timelines also demonstrate how the historical tests fit within their overall vehicle development programs. Finally, the study was able to quantify approximate staffing levels during historic development programs. Using this study, the Flight and Integrated Test Office was able to evaluate the Ares I Integrated Vehicle Ground Vibration Test schedule and workforce budgets in light of the historical precedents to determine if the test had schedule or cost risks associated with it.

  5. Finite element analysis of damped vibrations of laminated composite plates

    NASA Astrophysics Data System (ADS)

    Hu, Baogang

    1992-11-01

    Damped free vibrations of composite laminates are subjected to macromechanical analysis. Two models are developed: a viscoelastic damping model and a specific damping capacity model. The important symmetry property of the damping matrix is retained in both models. A modified modal strain energy method is proposed for evaluating modal damping in the viscoelastic model using a real (instead of a complex) eigenvalue problem solution. Numerical studies of multidegree of freedom systems are conducted to illustrate the improved accuracy of the method compared to the modal strain energy method. The experimental data reported in the literature for damped free vibrations in both polymer matrix and metal matrix composites were used in finite element analysis to test and compare the damping models. The natural frequencies and modal damping were obtained using both the viscoelastic and specific models. Results from both models are in satisfactory agreement with experimental data. Both models were found to be reasonably accurate for systems with low damping. Parametric studies were conducted to examine the effects on damping of the side to thickness ratio, the principal moduli ratio, the total number of layers, the ply angle, and the boundary conditions.

  6. Field Test Data for Detecting Vibrations of a Building Using High-Speed Video Cameras

    DTIC Science & Technology

    2017-10-01

    ARL-TR-8185 ● OCT 2017 US Army Research Laboratory Field Test Data for Detecting Vibrations of a Building Using High -Speed Video...Field Test Data for Detecting Vibrations of a Building Using High -Speed Video Cameras by Caitlin P Conn and Geoffrey H Goldman Sensors and...June 2016 – October 2017 4. TITLE AND SUBTITLE Field Test Data for Detecting Vibrations of a Building Using High -Speed Video Cameras 5a. CONTRACT

  7. Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout.

    PubMed

    Xu, Xiangbo; Chen, Shao

    2015-08-31

    Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously.

  8. Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout

    PubMed Central

    Xu, Xiangbo; Chen, Shao

    2015-01-01

    Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously. PMID:26334281

  9. An antenna pointing mechanism for large reflector antennas

    NASA Technical Reports Server (NTRS)

    Heimerdinger, H.

    1981-01-01

    An antenna pointing mechanism for large reflector antennas on direct broadcasting communication satellites was built and tested. After listing the requirements and constraints for this equipment the model is described, and performance figures are given. Futhermore, results of the qualification level tests, including functional, vibrational, thermovacuum, and accelerated life tests are reported. These tests were completed successfully.

  10. An application of holographic interferometry for dynamic vibration analysis of a jet engine turbine compressor rotor

    NASA Astrophysics Data System (ADS)

    Fein, Howard

    2003-09-01

    Holographic Interferometry has been successfully employed to characterize the materials and behavior of diverse types of structures under dynamic stress. Specialized variations of this technology have also been applied to define dynamic and vibration related structural behavior. Such applications of holographic technique offer some of the most effective methods of modal and dynamic analysis available. Real-time dynamic testing of the modal and mechanical behavior of jet engine turbine, rotor, vane, and compressor structures has always required advanced instrumentation for data collection in either simulated flight operation test or computer-based modeling and simulations. Advanced optical holography techniques are alternate methods which result in actual full-field behavioral data in a noninvasive, noncontact environment. These methods offer significant insight in both the development and subsequent operational test and modeling of advanced jet engine turbine and compressor rotor structures and their integration with total vehicle system dynamics. Structures and materials can be analyzed with very low amplitude excitation and the resultant data can be used to adjust the accuracy of mathematically derived structural and behavioral models. Holographic Interferometry offers a powerful tool to aid in the developmental engineering of turbine rotor and compressor structures for high stress applications. Aircraft engine applications in particular most consider operational environments where extremes in vibration and impulsive as well as continuous mechanical stress can affect both operation and structural stability. These considerations present ideal requisites for analysis using advanced holographic methods in the initial design and test of turbine rotor components. Holographic techniques are nondestructive, real-time, and definitive in allowing the identification of vibrational modes, displacements, and motion geometries. Such information can be crucial to the determination of mechanical configurations and designs as well as critical operational parameters of turbine structural components or unit turbine components fabricated from advanced and exotic new materials or using new fabrication methods. Anomalous behavioral characteristics can be directly related to hidden structural or mounting anomalies and defects.

  11. 49 CFR 178.608 - Vibration standard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Vibration standard. 178.608 Section 178.608... Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section. (b) Test method. (1...

  12. 49 CFR 178.608 - Vibration standard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration standard. 178.608 Section 178.608... Testing of Non-bulk Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section...

  13. 49 CFR 178.608 - Vibration standard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Vibration standard. 178.608 Section 178.608... Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section. (b) Test method. (1...

  14. 49 CFR 178.608 - Vibration standard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Vibration standard. 178.608 Section 178.608... Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section. (b) Test method. (1...

  15. 49 CFR 178.608 - Vibration standard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Vibration standard. 178.608 Section 178.608... Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section. (b) Test method. (1...

  16. Optimal design and experimental analyses of a new micro-vibration control payload-platform

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqing; Yang, Bintang; Zhao, Long; Sun, Xiaofen

    2016-07-01

    This paper presents a new payload-platform, for precision devices, which possesses the capability of isolating the complex space micro-vibration in low frequency range below 5 Hz. The novel payload-platform equipped with smart material actuators is investigated and designed through optimization strategy based on the minimum energy loss rate, for the aim of achieving high drive efficiency and reducing the effect of the magnetic circuit nonlinearity. Then, the dynamic model of the driving element is established by using the Lagrange method and the performance of the designed payload-platform is further discussed through the combination of the controlled auto regressive moving average (CARMA) model with modified generalized prediction control (MGPC) algorithm. Finally, an experimental prototype is developed and tested. The experimental results demonstrate that the payload-platform has an impressive potential of micro-vibration isolation.

  17. Force Limiting Vibration Tests Evaluated from both Ground Acoustic Tests and FEM Simulations of a Flight Like Vehicle System Assembly

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Waldon, James; Hunt, Ron

    2014-01-01

    Marshall Space Flight Center has conducted a series of ground acoustic tests with the dual goals of informing analytical judgment, and validating analytical methods when estimating vibroacoustic responses of launch vehicle subsystems. The process of repeatedly correlating finite element-simulated responses with test-measured responses has assisted in the development of best practices for modeling and post-processing. In recent work, force transducers were integrated to measure interface forces at the base of avionics box equipment. Other force data was indirectly measured using strain gauges. The combination of these direct and indirect force measurements has been used to support and illustrate the advantages of implementing the Force Limiting approach for equipment qualification tests. The comparison of force response from integrated system level tests to measurements at the same locations during component level vibration tests provides an excellent illustration. A second comparison of the measured response cases from the system level acoustic tests to finite element simulations has also produced some principles for assessing the suitability of Finite Element Models (FEMs) for making vibroacoustics estimates. The results indicate that when FEM models are employed to guide force limiting choices, they should include sufficient detail to represent the apparent mass of the system in the frequency range of interest.

  18. Experimental testing on free vibration behaviour for silicone rubbers proposed within lumbar disc prosthesis.

    PubMed

    Rotaru, Iuliana; Bujoreanu, Carmen; Bele, Adrian; Cazacu, Maria; Olaru, Dumitru

    2014-09-01

    This research was focused on the damping capacity study of two types of silicone rubbers proposed as layers within total lumbar disc prostheses of ball-and-socket model. In order to investigate the damping capacity, the two silicone rubber types mainly differing by the molecular mass of polymeric matrix and the filler content, as was emphasized by scanning electron microscopy and differential scanning calorimetry, were subjected to free vibration testing. Using an adapted experimental installation, three kinds of damping testing were realised: tests without samples and tests with three samples of each type of silicone rubber (69 ShA and 99 ShA). The free vibration tests were performed at a frequency of about 6 Hz using a weight of 11.8 kg. The relative damping coefficient was determined by measuring of two successive amplitudes on the vibrogram and calculating of the logarithmic decrement. The test results with silicone rubber samples showed a relative damping coefficient of 0.058 and respectively 0.077, whilst test results without samples showed a relative damping coefficient of 0.042. These silicone rubbers were found to have acceptable damping properties to be used as layers placed inside the prosthetic components. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Random Vibration Testing of Advanced Wet Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2015-01-01

    Advanced wet tantalum capacitors allow for improved performance of power supply systems along with substantial reduction of size and weight of the systems that is especially beneficial for space electronics. Due to launch-related stresses, acceptance testing of all space systems includes random vibration test (RVT). However, many types of advanced wet tantalum capacitors cannot pass consistently RVT at conditions specified in MIL-PRF-39006, which impedes their use in space projects. This requires a closer look at the existing requirements, modes and mechanisms of failures, specifics of test conditions, and acceptance criteria. In this work, different lots of advanced wet tantalum capacitors from four manufacturers have been tested at step stress random vibration conditions while their currents were monitored before, during, and after the testing. It has been shown that the robustness of the parts and their reliability are mostly due to effective self-healing processes and limited current spiking or minor scintillations caused by RVT do not increase the risk of failures during operation. A simple model for scintillations events has been used to simulate current spiking during RVT and optimize test conditions. The significance of scintillations and possible effects of gas generation have been discussed and test acceptance criteria for limited current spiking have been suggested.

  20. Comparison between phenomenological and ab-initio reaction and relaxation models in DSMC

    NASA Astrophysics Data System (ADS)

    Sebastião, Israel B.; Kulakhmetov, Marat; Alexeenko, Alina

    2016-11-01

    New state-specific vibrational-translational energy exchange and dissociation models, based on ab-initio data, are implemented in direct simulation Monte Carlo (DSMC) method and compared to the established Larsen-Borgnakke (LB) and total collision energy (TCE) phenomenological models. For consistency, both the LB and TCE models are calibrated with QCT-calculated O2+O data. The model comparison test cases include 0-D thermochemical relaxation under adiabatic conditions and 1-D normal shockwave calculations. The results show that both the ME-QCT-VT and LB models can reproduce vibrational relaxation accurately but the TCE model is unable to reproduce nonequilibrium rates even when it is calibrated to accurate equilibrium rates. The new reaction model does capture QCT-calculated nonequilibrium rates. For all investigated cases, we discuss the prediction differences based on the new model features.

  1. Remote control circuit breaker evaluation testing. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Bemko, L. M.

    1974-01-01

    Engineering evaluation tests were performed on several models/types of remote control circuit breakers marketed in an attempt to gain some insight into their potential suitability for use on the space shuttle vehicle. Tests included the measurement of several electrical and operational performance parameters under laboratory ambient, space simulation, acceleration and vibration environmental conditions.

  2. Modeling and dynamic properties of dual-chamber solid and liquid mixture vibration isolator

    NASA Astrophysics Data System (ADS)

    Li, F. S.; Chen, Q.; Zhou, J. H.

    2016-07-01

    The dual-chamber solid and liquid mixture (SALiM) vibration isolator, mainly proposed for vibration isolation of heavy machines with low frequency, consists of four principle parts: SALiM working media including elastic elements and incompressible oil, multi-layers bellows container, rigid reservoir and the oil tube connecting the two vessels. The isolation system under study is governed by a two-degrees-of-freedom (2-DOF) nonlinear equation including quadratic damping. Simplifying the nonlinear damping into viscous damping, the equivalent stiffness and damping model is derived from the equation for the response amplitude. Theoretical analysis and numerical simulation reveal that the isolator's stiffness and damping have multiple properties with different parameters, among which the effects of exciting frequency, vibrating amplitude, quadratic damping coefficient and equivalent stiffness of the two chambers on the isolator's dynamics are discussed in depth. Based on the boundary characteristics of stiffness and damping and the main causes for stiffness hardening effect, improvement strategies are proposed to obtain better dynamic properties. At last, experiments were implemented and the test results were generally consistent with the theoretical ones, which verified the reliability of the nonlinear dynamic model.

  3. Pattern classifier for health monitoring of helicopter gearboxes

    NASA Technical Reports Server (NTRS)

    Chin, Hsinyung; Danai, Kourosh; Lewicki, David G.

    1993-01-01

    The application of a newly developed diagnostic method to a helicopter gearbox is demonstrated. This method is a pattern classifier which uses a multi-valued influence matrix (MVIM) as its diagnostic model. The method benefits from a fast learning algorithm, based on error feedback, that enables it to estimate gearbox health from a small set of measurement-fault data. The MVIM method can also assess the diagnosability of the system and variability of the fault signatures as the basis to improve fault signatures. This method was tested on vibration signals reflecting various faults in an OH-58A main rotor transmission gearbox. The vibration signals were then digitized and processed by a vibration signal analyzer to enhance and extract various features of the vibration data. The parameters obtained from this analyzer were utilized to train and test the performance of the MVIM method in both detection and diagnosis. The results indicate that the MVIM method provided excellent detection results when the full range of faults effects on the measurements were included in training, and it had a correct diagnostic rate of 95 percent when the faults were included in training.

  4. Vibration attenuation of the NASA Langley evolutionary structure experiment using H(sub infinity) and structured singular value (micron) robust multivariable control techniques

    NASA Technical Reports Server (NTRS)

    Balas, Gary J.

    1992-01-01

    The use is studied of active control to attenuate structural vibrations of the NASA Langley Phase Zero Evolutionary Structure due to external disturbance excitations. H sub infinity and structured singular value (mu) based control techniques are used to analyze and synthesize control laws for the NASA Langley Controls Structures Interaction (CSI) Evolutionary Model (CEM). The CEM structure experiment provides an excellent test bed to address control design issues for large space structures. Specifically, control design for structures with numerous lightly damped, coupled flexible modes, collocated and noncollocated sensors and actuators and stringent performance specifications. The performance objectives are to attenuate the vibration of the structure due to external disturbances, and minimize the actuator control force. The control design problem formulation for the CEM Structure uses a mathematical model developed with finite element techniques. A reduced order state space model for the control design is formulated from the finite element model. It is noted that there are significant variations between the design model and the experimentally derived transfer function data.

  5. Particle damping applied research on mining dump truck vibration control

    NASA Astrophysics Data System (ADS)

    Song, Liming; Xiao, Wangqiang; Guo, Haiquan; Yang, Zhe; Li, Zeguang

    2018-05-01

    Vehicle vibration characteristics has become an important evaluation indexes of mining dump truck. In this paper, based on particle damping technology, mining dump truck vibration control was studied by combining the theoretical simulation with actual testing, particle damping technology was successfully used in mining dump truck cab vibration control. Through testing results analysis, with a particle damper, cab vibration was reduced obviously, the methods and basis were provided for vehicle vibration control research and particle damping technology application.

  6. CM-2 Environmental/Modal Testing of SPACEHAB Racks

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Goodnight, Thomas W.

    2001-01-01

    Combined environmental/modal vibration testing has been implemented at the NASA Glenn Research Center's Structural Dynamics Laboratory. The benefits of combined vibration testing are that it facilitates test article modal characterization and vibration qualification testing. The Combustion Module-2 (CM-2) is a space experiment that will launch on shuttle mission STS-107 in the SPACEHAB Research Double Module. The CM-2 flight hardware is integrated into a SPACEHAB single and double rack. CM-2 rack-level combined vibration testing was recently completed on a shaker table to characterize the structure's modal response and verify the random vibration response. Control accelerometers and limit force gauges, located between the fixture and rack interface, were used to verify the input excitation. Results of the testing were used to verify the loads and environments for flight on the shuttles.

  7. COR1 Engineering Test Unit Measurements at the NCAR/HAO Vacuum Tunnel Facility, October-November 2002

    NASA Technical Reports Server (NTRS)

    Thompson, William

    2002-01-01

    The Engineering Test Unit (ETU) of COR1 was made in two configurations. The first configuration, ETU-1, was for vibration testing, while the second, ETU-2, was for optical testing. This is a report on the optical testing performed on ETU-2 at the NCAR/HAO Vacuum Tunnel Facility during the months of October and November, 2002. This was the same facility used to test the two previous breadboard models. In both configurations, the first two tube sections were complete, with all optical elements aligned. The vibration model ETU-1 had the remaining tube sections attached, with mass models for the remaining optics, for the various mechanisms, and for the focal plane assembly. It was then converted into the optical model ETU-2 by removing tube sections 3 to 5, and mounting the remaining optics on commercial mounts. (The bandpass filter was also installed into tube 2, which had been replaced in ETU-1 by a mass model, so that pre- and post-vibration optical measurements could be made.) Doublet 2 was installed in a Newport LP-2 carrier, and aligned to the other optics in the first two tube sections. The LP-2 adjustment screws were then uralened so that the alignment could be maintained during shipping. Because neither the flight polarizer nor Hollow Core Motor were available, they were simulated by a commercial polarizer and rotational mount, both from Oriel corporation. The Oriel rotational stage was not designed for vacuum use, but it was determined after consultation with the company, and lab testing, that the stage could be used in the moderate vacuum conditions at the NCAR/HAO facility. The shutter and focal plane assembly were simulated with the same camera used for the previous two breadboard tests. The focal plane mask was simulated with a plane of BK7 glass with a mask glued on, using the same procedure as for the Lyot spot on Doublet 1, and mounted in an adjustable LP-2 carrier. Two masks were made, one made to the precise specifications of the optical design, the other slightly bigger to make alignment easier.

  8. The History of a Decision: A Standard Vibration Test Method for Qualification

    DOE PAGES

    Rizzo, Davinia; Blackburn, Mark

    2017-01-01

    As Mil-Std-810G and subsequent versions have included multiple degree of freedom vibration test methodologies, it is important to understand the history and factors that drove the original decision in Mil-Std-810 to focus on single degree of freedom (SDOF) vibration testing. By assessing the factors and thought process of early Mil-Std-810 vibration test methods, it enables one to better consider the use of multiple degree of freedom testing now that it is feasible with today’s technology and documented in Mil-Std-810. This paper delves into the details of the decision made in the 1960s for the SDOF vibration testing standards in Mil-Std-810more » beyond the limitations of technology at the time. We also consider the implications for effective test planning today considering the advances in test capabilities and improvements in understanding of the operational environment.« less

  9. The History of a Decision: A Standard Vibration Test Method for Qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzo, Davinia; Blackburn, Mark

    As Mil-Std-810G and subsequent versions have included multiple degree of freedom vibration test methodologies, it is important to understand the history and factors that drove the original decision in Mil-Std-810 to focus on single degree of freedom (SDOF) vibration testing. By assessing the factors and thought process of early Mil-Std-810 vibration test methods, it enables one to better consider the use of multiple degree of freedom testing now that it is feasible with today’s technology and documented in Mil-Std-810. This paper delves into the details of the decision made in the 1960s for the SDOF vibration testing standards in Mil-Std-810more » beyond the limitations of technology at the time. We also consider the implications for effective test planning today considering the advances in test capabilities and improvements in understanding of the operational environment.« less

  10. Research on Vibration Test in Urban Indoor Substation

    NASA Astrophysics Data System (ADS)

    Ma, Yuchao; Mo, Juan; Xu, Jin; Fan, Baozhen

    2018-01-01

    The problem of vibration and noise of urban indoor substations has becoming more and more socially concerned.The urban indoor substation of 110kV and its conjoined buildings were taken as the research object and the vibration tests of the transformer and each floor slab were respectively carried out.The sound vibration characteristics and sound transmission rules of the urban indoor substation were obtained through the time-frequency analysis and coherence analysis of the test data. The vibration spectrum of transformer body was mainly 100Hz together with its multiplying factors and the vibration characteristics of the floor slab were basically the same as those of the transformer body. it is crucial to control the vibration and noise transmission in the equipment floor of the urban indoor substation.

  11. Advance prototype silver ion water bactericide system

    NASA Technical Reports Server (NTRS)

    Jasionowski, W. J.; Allen, E. T.

    1974-01-01

    An advance prototype unit was designed and fabricated to treat anticipated fuel cell water. The unit is a single canister that contains a membrane-type prefilter and a silver bromide contacting bed. A seven day baseline simulated mission test was performed; the performance was satisfactory and the effluent water was within all specifications for potability. After random vibrations another seven day simulated mission test was performed, and results indicate that simulated launch vibrations have no effects on the design and performance of the advanced prototype. Bench tests and accelerated breadboard tests were conducted to define the characteristics of an upgraded model of the advance prototype unit which would have 30 days of operating capability. A preliminary design of a silver ion generator for the shuttle orbiter was also prepared.

  12. 46 CFR 162.050-37 - Vibration test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Vibration test. 162.050-37 Section 162.050-37 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Pollution Prevention Equipment § 162.050-37 Vibration test. (a...

  13. A New Large Vibration Test Facility Concept for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Ross, Brian P.; Johnson, Eric L.; Hoksbergen, Joel; Lund, Doug

    2014-01-01

    The James Webb Space Telescope consists of three main components, the Integrated Science Instrument Module (ISIM) Element, the Optical Telescope Element (OTE), and the Spacecraft Element. The ISIM and OTE are being assembled at the National Aeronautics and Space Administration's Goddard Spaceflight Center (GSFC). The combined OTE and ISIM Elements, called OTIS, will undergo sine vibration testing before leaving Goddard. OTIS is the largest payload ever tested at Goddard and the existing GSFC vibration facilities are incapable of performing a sine vibration test of the OTIS payload. As a result, a new large vibration test facility is being designed. The new facility will consist of a vertical system with a guided head expander and a horizontal system with a hydrostatic slip table. The project is currently in the final design phase with installation to begin in early 2015 and the facility is expected to be operational by late 2015. This paper will describe the unique requirements for a new large vibration test facility and present the selected final design concepts.

  14. Method development of damage detection in asymmetric buildings

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Thambiratnam, David P.; Chan, Tommy H. T.; Nguyen, Andy

    2018-01-01

    Aesthetics and functionality requirements have caused most buildings to be asymmetric in recent times. Such buildings exhibit complex vibration characteristics under dynamic loads as there is coupling between the lateral and torsional components of vibration, and are referred to as torsionally coupled buildings. These buildings require three dimensional modelling and analysis. In spite of much recent research and some successful applications of vibration based damage detection methods to civil structures in recent years, the applications to asymmetric buildings has been a challenging task for structural engineers. There has been relatively little research on detecting and locating damage specific to torsionally coupled asymmetric buildings. This paper aims to compare the difference in vibration behaviour between symmetric and asymmetric buildings and then use the vibration characteristics for predicting damage in them. The need for developing a special method to detect damage in asymmetric buildings thus becomes evident. Towards this end, this paper modifies the traditional modal strain energy based damage index by decomposing the mode shapes into their lateral and vertical components and to form component specific damage indices. The improved approach is then developed by combining the modified strain energy based damage indices with the modal flexibility method which was modified to suit three dimensional structures to form a new damage indicator. The procedure is illustrated through numerical studies conducted on three dimensional five-story symmetric and asymmetric frame structures with the same layout, after validating the modelling techniques through experimental testing of a laboratory scale asymmetric building model. Vibration parameters obtained from finite element analysis of the intact and damaged building models are then applied into the proposed algorithms for detecting and locating the single and multiple damages in these buildings. The results obtained from a number of different damage scenarios confirm the feasibility of the proposed vibration based damage detection method for three dimensional asymmetric buildings.

  15. Analytical and Experimental Vibration Analysis of a Faulty Gear System.

    DTIC Science & Technology

    1994-10-01

    Wigner - Ville Distribution ( WVD ) was used to give a comprehensive comparison of the predicted and...experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD’s ability to...of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  16. Detection and characterization of fatigue cracks in thin metal plates by low frequency resonant model analysis

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Namkung, M.; Birt, E. A.

    1992-01-01

    Low-frequency resonant model analysis, a technique for the detection and characterization of fatigue cracks in thin metal plates, which could be adapted to rapid scan or large area testing, is considered. Experimental data displaying a direct correlation between fatigue crack geometry and resonance frequency for the second vibrational plate mode are presented. FEM is used to calculate the mechanical behavior of the plates, and provides a comparison basis for the experimentally determined resonance frequency values. The waveform of the acoustic emission generated at the resonant frequency is examined; it provides the basis for a model of the interaction of fatigue crack faces during plate vibration.

  17. The Conceptual Design for a Fuel Assembly of a New Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, J-S.; Cho, Y-G.; Yoon, D-B.

    2004-10-06

    A new Research Reactor (ARR) has been under design by KAERI since 2002. In this work, as a first step for the design of the fuel assembly of the ARR, the conceptual design has been carried out. The vibration characteristics of the tubular fuel model and the locking performance of the preliminary designed locking devices were investigated. In order to investigate the effects of the stiffener on the vibration characteristics of the tubular fuel, a modal analysis was performed for the finite element models of the tubular fuels with stiffeners and without stiffeners. The analysis results show that the vibrationmore » characteristics of the tubular fuel with stiffeners are better than those of the tubular fuel without stiffeners. To investigate the locking performance of the preliminary designed locking devices for the fuel assembly of the ARR, the elements of the locking devices were fabricated. Then the torsional resistance, fixing status and vibration characteristics of the locking devices were tested. The test results show that using the locking device with fins on the bottom guide can prevent the torsional motion of the fuel assembly, and that additional springs or guides on the top of the fuel assembly are needed to suppress the lateral motion of the fuel assembly. Based on the modal analysis and experimental results, the fuel assembly and locking devices of the ARR were designed and its prototype was fabricated. The locking performance, pressure drop characteristics and vibration characteristics of the newly designed fuel assembly will be tested in the near future.« less

  18. The methods of optical physics as a mean of the objects’ molecular structure identification (on the base of the research of dophamine and adrenaline molecules)

    NASA Astrophysics Data System (ADS)

    Elkin, M. D.; Alykova, O. M.; Smirnov, V. V.; Stefanova, G. P.

    2017-01-01

    Structural and dynamic models of dopamine and adrenaline are proposed on the basis of ab initio quantum calculations of the geometric and electronic structure. The parameters of the adiabatic potential are determined, a vibrational states interpretation of the test compound is proposed in this work. The analysis of the molecules conformational structure of the substance is made. A method for calculating the shifts of vibrational excitation frequencies in 1,2,4-threesubstituted of benzole is presented. It is based on second order perturbation theory. A choice of method and basis for calculation of a fundamental vibrations frequencies and intensities of the bands in the IR and Raman spectra is justified. The technique for evaluation of anharmonicity with cubic and quartic force constants is described. The paper presents the results of numerical experiments, geometric parameters of molecules, such as the valence bond lengths and angles between them. We obtain the frequency of the vibrational states and values of their integrated intensities. The interpretation of vibration of conformers is given. The results are in good agreement with experimental values. Proposed frequency can be used to identify the compounds of the vibrational spectra of molecules. The calculation was performed quantum density functional method DFT/B3LYP. It is shown that this method can be used to modeling the geometrical parameters molecular and electronic structure of various substituted of benzole. It allows us to construct the structural-dynamic models of this class of compounds by numerical calculations.

  19. Active control of structures using macro-fiber composite (MFC)

    NASA Astrophysics Data System (ADS)

    Kovalovs, A.; Barkanov, E.; Gluhihs, S.

    2007-12-01

    This paper presents the use of macro-fiber composites (MFC) for vibration reduces of structures. The MFC consist of polyimid films with IDE-electrodes that are glued on the top and the bottom of rectangular piezoceramic fibers. The interdigitated electrodes deliver the electric field required to activate the piezoelectric effect in the fibers and allows to invoke the stronger longitudinal piezoelectric effect along the length of the fibers. When this actuator embedded in a surface or attached to flexible structures, the MFC actuator provides distributed solid-state deflection and vibration control. The major advantages of the piezoelectric fibre composite actuators are their high performance, flexibility, and durability when compared with the traditional piezoceramic (PZT) actuators. In addition, the ability of MFC devices to couple the electrical and mechanical fields is larger than in monolithic PZT. In this study, we showed the experimental results that an MFC could be used as actuator to find modal parameters and reduce vibration for structures such as an aluminium beam and metal music plate. Two MFC actuators were attached to the surfaces of test subjects. First MFC actuator used to supply a signal as exciter of vibration and second MFC show his application for reduction of vibration in the range of resonance frequencies. Experimental results of aluminium beam with MFC actuators compared with finite element model which modelled in ANSYS software. The applied voltage is modelled as a thermal load according to thermal analogy for MFC. The experimental and numerical results presented in this paper confirm the potential of MFC for use in the vibration control of structures.

  20. Apparent mass matrix of standing subjects exposed to multi-axial whole-body vibration.

    PubMed

    Tarabini, Marco; Solbiati, Stefano; Saggin, Bortolino; Scaccabarozzi, Diego

    2016-08-01

    This paper describes the experimental characterisation of the apparent mass matrix of eight male subjects in standing position and the identification of nonlinearities under both mono-axial and dual-axis whole-body vibration. The nonlinear behaviour of the response was studied using the conditioned response techniques considering models of increasing complexity. Results showed that the cross-axis terms are comparable to the diagonal terms. The contribution of the nonlinear effects are minor and can be endorsed to the change of modal parameters during the tests. The nonlinearity generated by the vibration magnitude is more evident in the subject response, since magnitude-dependent effects in the population are overlaid by the scatter in the subjects' biometric data. The biodynamic response is influenced by the addition of a secondary vibration axis and, in case of dual-axis vibrations, the overall magnitude has a marginal contribution. Practitioner Summary: We have measured both the diagonal and cross-axis elements of the apparent mass matrix. The effect of nonlinearities and the simultaneous presence of vibration along two axes are smaller than the inter-subject variability.

  1. a Study of Radial Vibrations of a Rolling Tyre for TYRE-ROAD Noise Characterisation

    NASA Astrophysics Data System (ADS)

    Périsse, J.

    2002-11-01

    Because tyre-road noise represents the main noise source for light vehicles with driving speed above 60 km/h, comprehension of generation mechanism of tyre-road noise has become a subject of major importance. In this paper, tyre-road interaction and radial tyre vibrations are investigated for tyre-road noise characterisation. Experimental measurements are performed on a rolling smooth tyre with test laboratory facilities. Both tread band and sidewall responses of the tyre are measured and compared to each other. High concentration of vibrations is observed in the vicinity of the contact area. Stationary radial deformation and non-stationary vibrations due to road rugosity are studied. Frequency analyses have been performed on the acceleration time signals showing the influence of the rotating speed on the vibrations level and frequency content. Finally, by integrating acceleration signal of the tyre tread over one revolution, stationary radial displacement can be calculated and the true contact length can be estimated. This study provides us with new measurement data for comparison with mathematical modelling. It also gives a physical insight on generation mechanism of tyre radial vibrations.

  2. Design, simulation, fabrication, and characterization of MEMS vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Oxaal, John

    Energy harvesting from ambient sources has been a longtime goal for microsystem engineers. The energy available from ambient sources is substantial and could be used to power wireless micro devices, making them fully autonomous. Self-powered wireless sensors could have many applications in for autonomous monitoring of residential, commercial, industrial, geological, or biological environments. Ambient vibrations are of particular interest for energy harvesting as they are ubiquitous and have ample kinetic energy. In this work a MEMS device for vibration energy harvesting using a variable capacitor structure is presented. The nonlinear electromechanical dynamics of a gap-closing type structure is experimentally studied. Important experimental considerations such as the importance of reducing off-axis vibration during testing, characterization methods, dust contamination, and the effect of grounding on parasitic capacitance are discussed. A comprehensive physics based model is developed and validated with two different microfabricated devices. To achieve maximal power, devices with high aspect ratio electrodes and a novel two-level stopper system are designed and fabricated. The maximum achieved power from the MEMS device when driven by sinusoidal vibrations was 3.38 muW. Vibrations from HVAC air ducts, which have a primary frequency of 65 Hz and amplitude of 155 mgrms, are targeted as the vibration source and devices are designed for maximal power harvesting potential at those conditions. Harvesting from the air ducts, the devices reached 118 nW of power. When normalized to the operating conditions, the best figure of merit of the devices tested was an order of magnitude above state-of-the-art of the devices (1.24E-6).

  3. Spacecraft Jitter Attenuation Using Embedded Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    1995-01-01

    Remote sensing from spacecraft requires precise pointing of measurement devices in order to achieve adequate spatial resolution. Unfortunately, various spacecraft disturbances induce vibrational jitter in the remote sensing instruments. The NASA Langley Research Center has performed analysis, simulations, and ground tests to identify the more promising technologies for minimizing spacecraft pointing jitter. These studies have shown that the use of smart materials to reduce spacecraft jitter is an excellent match between a maturing technology and an operational need. This paper describes the use of embedding piezoelectric actuators for vibration control and payload isolation. In addition, recent advances in modeling, simulation, and testing of spacecraft pointing jitter are discussed.

  4. Radiation cooler for 10 micrometer wavelength engineering model receiver model no. 7172, serial no. 201

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The design, fabrication, and testing of a radiative cooler are described. This cooler is an engineering model suitable for bench testing in the laboratory as a part of the 10-micrometer wavelength engineering model receiver, and conforms to the standard radiative cooler configuration, except that the inner stage and its support system were redesigned to accommodate the larger, heavier SAT detector. This radiative cooler will cool the detector to cryogenic temperature levels when the receiver is in a space environment or in a suitable thermal vacuum chamber. Equipment specifications are given along with the results of thermal tests, vibration tests, and electrical integrity tests.

  5. Methods and benefits of experimental seismic evaluation of nuclear power plants. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    This study reviews experimental techniques, instrumentation requirements, safety considerations, and benefits of performing vibration tests on nuclear power plant containments and internal components. The emphasis is on testing to improve seismic structural models. Techniques for identification of resonant frequencies, damping, and mode shapes, are discussed. The benefits of testing with regard to increased damping and more accurate computer models are oulined. A test plan, schedule and budget are presented for a typical PWR nuclear power plant.

  6. The development of interior noise and vibration criteria

    NASA Technical Reports Server (NTRS)

    Leatherwood, J. D.; Clevenson, S. A.; Stephens, D. G.

    1990-01-01

    A generalized model was developed for estimating passenger discomfort response to combined noise and vibration. This model accounts for broadband noise and vibration spectra and multiple axes of vibration as well as the interactive effects of combined noise and vibration. The model has the unique capability of transforming individual components of noise/vibration environment into subjective comfort units and then combining these comfort units to produce a total index of passenger discomfort and useful sub-indices that typify passenger comfort within the environment. An overview of the model development is presented including the methodology employed, major elements of the model, model applications, and a brief description of a commercially available portable ride comfort meter based directly upon the model algorithms. Also discussed are potential criteria formats that account for the interactive effects of noise and vibration on human discomfort response.

  7. High stability design for new centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Kanki, H.; Katayama, K.; Morii, S.; Mouri, Y.; Umemura, S.; Ozawa, U.; Oda, T.

    1989-01-01

    It is essential that high-performance centrifugal compressors be free of subsynchronous vibrations. A new high-performance centrifugal compressor has been developed by applying the latest rotordynamics knowledge and design techniques: (1) To improve the system damping, a specially designed oil film seal was developed. This seal attained a damping ratio three times that of the conventional design. The oil film seal contains a special damper ring in the seal cartridge. (2) To reduce the destabilizing effect of the labyrinth seal, a special swirl canceler (anti-swirl nozzle) was applied to the balance piston seal. (3) To confirm the system damping margin, the dynamic simulation rotor model test and the full load test applied the vibration exciting test in actual load conditions.

  8. Comparison of rigorous and simple vibrational models for the CO2 gasdynamic laser

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1977-01-01

    The accuracy of a simple vibrational model for computing the gain in a CO2 gasdynamic laser is assessed by comparing results computed from it with results computed from a rigorous vibrational model. The simple model is that of Anderson et al. (1971), in which the vibrational kinetics are modeled by grouping the nonequilibrium vibrational degrees of freedom into two modes, to each of which there corresponds an equation describing vibrational relaxation. The two models agree fairly well in the computed gain at low temperatures, but the simple model predicts too high a gain at the higher temperatures of current interest. The sources of error contributing to the overestimation given by the simple model are determined by examining the simplified relaxation equations.

  9. Vibrational self-consistent field theory using optimized curvilinear coordinates.

    PubMed

    Bulik, Ireneusz W; Frisch, Michael J; Vaccaro, Patrick H

    2017-07-28

    A vibrational SCF model is presented in which the functions forming the single-mode functions in the product wavefunction are expressed in terms of internal coordinates and the coordinates used for each mode are optimized variationally. This model involves no approximations to the kinetic energy operator and does not require a Taylor-series expansion of the potential. The non-linear optimization of coordinates is found to give much better product wavefunctions than the limited variations considered in most previous applications of SCF methods to vibrational problems. The approach is tested using published potential energy surfaces for water, ammonia, and formaldehyde. Variational flexibility allowed in the current ansätze results in excellent zero-point energies expressed through single-product states and accurate fundamental transition frequencies realized by short configuration-interaction expansions. Fully variational optimization of single-product states for excited vibrational levels also is discussed. The highlighted methodology constitutes an excellent starting point for more sophisticated treatments, as the bulk characteristics of many-mode coupling are accounted for efficiently in terms of compact wavefunctions (as evident from the accurate prediction of transition frequencies).

  10. Harvesting Vibrational Energy Using Material Work Functions

    PubMed Central

    Varpula, Aapo; Laakso, Sampo J.; Havia, Tahvo; Kyynäräinen, Jukka; Prunnila, Mika

    2014-01-01

    Vibration energy harvesters scavenge energy from mechanical vibrations to energise low power electronic devices. In this work, we report on vibration energy harvesting scheme based on the charging phenomenon occurring naturally between two bodies with different work functions. Such work function energy harvester (WFEH) is similar to electrostatic energy harvester with the fundamental distinction that neither external power supplies nor electrets are needed. A theoretical model and description of different operation modes of WFEHs are presented. The WFEH concept is tested with macroscopic experiments, which agree well with the model. The feasibility of miniaturizing WFEHs is shown by simulating a realistic MEMS device. The WFEH can be operated as a charge pump that pushes charge and energy into an energy storage element. We show that such an operation mode is highly desirable for applications and that it can be realised with either a charge shuttle or with switches. The WFEH is shown to give equal or better output power in comparison to traditional electrostatic harvesters. Our findings indicate that WFEH has great potential in energy harvesting applications. PMID:25348004

  11. Comparison of holographic and numerical vibration modes on ductile cast iron containers at drop tests

    NASA Astrophysics Data System (ADS)

    Ettemeyer, Andreas; Schreiber, Dietmar; Voelzer, W.

    1996-08-01

    Ductile cast iron containers for transportation and deposition of radioactive waste have to be designed carefully in order to avoid unacceptable damages and leakages in case of an accident. Therefore various calculation and experimental methods are used during development and licensing of the containers. Besides others the container has to suffer severe impacts (e.g. falling from a height of several meters onto a concrete base). The level of strains must not exceed a value which would adversely affect the package in such a way that it would fail to meet the applicable requirements. In practice complex events such as drop tests are very difficult to calculate. Both the position of Maximum stress and the time of its occurrence are not easy to be predicted with the method of FEM. The uncertainty of the material modelling for plastic deformations by dynamic loading rates is the limiting factor. Therefore holography as an integral measuring technique in combination with strain gauge techniques were used to fit the FEM. By using the FEM calculations in the case of licensing, the FE and the material model have to be verified. The verification of the FE model has to be done by comparison of the local maxima measured by strain gauges and by comparison of the vibration modes. These vibration modes we take from holographic measurements. In this paper we explain container vibrations after impact analyzed with holographic measurements, FEM calculations and the comparison of the results. The comparison of the local maxima (strain gauges/FEM) is reported earlier.

  12. Method and apparatus for determining material structural integrity

    DOEpatents

    Pechersky, Martin

    1996-01-01

    A non-destructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis techniques to determine the damping loss factor of a material. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity as a function of time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method. If an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the amount of coil current used in vibrating the magnet. If a reciprocating transducer is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by a force gauge in the reciprocating transducer. Using known vibrational analysis methods, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity measurements. The damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.

  13. Shuttle structural dynamics characteristics: The analysis and verification

    NASA Technical Reports Server (NTRS)

    Modlin, C. T., Jr.; Zupp, G. A., Jr.

    1985-01-01

    The space shuttle introduced a new dimension in the complexity of the structural dynamics of a space vehicle. The four-body configuration exhibited structural frequencies as low as 2 hertz with a model density on the order of 10 modes per hertz. In the verification process, certain mode shapes and frequencies were identified by the users as more important than others and, as such, the test objectives were oriented toward experimentally extracting those modes and frequencies for analysis and test correlation purposes. To provide the necessary experimental data, a series of ground vibration tests (GVT's) was conducted using test articles ranging from the 1/4-scale structural replica of the space shuttle to the full-scale vehicle. The vibration test and analysis program revealed that the mode shapes and frequency correlations below 10 hertz were good. The quality of correlation of modes between 10 and 20 hertz ranged from good to fair and that of modes above 20 hertz ranged from poor to good. Since the most important modes, based on user preference, were below 10 hertz, it was judged that the shuttle structural dynamic models were adequate for flight certifications.

  14. Influence of the thrust bearing on the natural frequencies of a 72-MW hydropower rotor

    NASA Astrophysics Data System (ADS)

    Cupillard, S.; Aidanpää, J.-O.

    2016-11-01

    The thrust bearing is an essential element of a hydropower machine. Not only does it carry the total axial load but it also introduces stiffness and damping properties in the system. The focus of this study is on the influence of the thrust bearing on the lateral vibrations of the shaft of a 72-MW propeller turbine. The thrust bearing has a non-conventional design with a large radius and two rows of thrust pads. A numerical model is developed to estimate natural frequencies. Numerical results are analyzed and related to experimental measurements of a runaway test. The results show the need to include the thrust bearing in the model. In fact, the vibration modes are substantially increased towards higher frequencies with the added properties from the thrust bearing. The second mode of vibration has been identified in the experimental measurements. Its frequency and mode shape compare well with numerical results.

  15. A NASA/Industry/University Partnership for Development of Dual-Use Vibration Isolation Technology

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.

    1994-01-01

    A partnership is described that was formed as a result of a NASA university grant for the study of wire rope vibration isolation systems. Vibration isolators of this type are currently used in the Space Shuttle Orbiter and engine test facility, and have potential application in the international space station and other space vehicles. Wire rope isolators were considered for use on the Hubble Space Telescope and the military has used wire rope technology extensively. The desire of the wire rope industry to expand sales in commercial markets coupled with results of the prior NASA funded study, led to the formation of a partnership including NASA, the university involved in the research grant, and a small company that designs wire rope systems. Goals include the development of improved mathematical models and a designers handbook to facilitate the use of the new modeling tools.

  16. Characterisation of vibration input to flywheel used on urban bus

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kanarachos, S.; Christensen, J.

    2016-09-01

    Vibration induced from road surface has an impact on the durability and reliability of electrical and mechanical components attached on the vehicle. There is little research published relevant to the durability assessment of a flywheel energy recovery system installed on city and district buses. Relevant international standards and legislations were reviewed and large discrepancy was found among them, in addition, there are no standards exclusively developed for kinetic energy recovery systems on vehicles. This paper describes the experimentation of assessment of road surface vibration input to the flywheel on a bus as obtained at the MIRA Proving Ground. Power density spectra have been developed based on the raw data obtained during the experimentation. Validation of this model will be carried out using accelerated life time tests that will be carried out on a shaker rig using an accumulated profile based on the theory of fatigue damage equivalence in time and frequency domain aligned with the model predictions.

  17. A revised version of the transfer matrix method to analyze one-dimensional structures

    NASA Technical Reports Server (NTRS)

    Nitzsche, F.

    1983-01-01

    A new and general method to analyze both free and forced vibration characteristics of one-dimensional structures is discussed in this paper. This scheme links for the first time the classical transfer matrix method with the recently developed integrating matrix technique to integrate systems of differential equations. Two alternative approaches to the problem are presented. The first is based upon the lumped parameter model to account for the inertia properties of the structure. The second releases that constraint allowing a more precise description of the physical system. The free vibration of a straight uniform beam under different support conditions is analyzed to test the accuracy of the two models. Finally some results for the free vibration of a 12th order system representing a curved, rotating beam prove that the present method is conveniently extended to more complicated structural dynamics problems.

  18. Test-retest reliability of neurophysiological tests of hand-arm vibration syndrome in vibration exposed workers and unexposed referents.

    PubMed

    Gerhardsson, Lars; Gillström, Lennart; Hagberg, Mats

    2014-01-01

    Exposure to hand-held vibrating tools may cause the hand-arm vibration syndrome (HAVS). The aim was to study the test-retest reliability of hand and muscle strength tests, and tests for the determination of thermal and vibration perception thresholds, which are used when investigating signs of neuropathy in vibration exposed workers. In this study, 47 vibration exposed workers who had been investigated at the department of Occupational and Environmental Medicine in Gothenburg were compared with a randomized sample of 18 unexposed subjects from the general population of the city of Gothenburg. All participants passed a structured interview, answered several questionnaires and had a physical examination including hand and finger muscle strength tests, determination of vibrotactile (VPT) and thermal perception thresholds (TPT). Two weeks later, 23 workers and referents, selected in a randomized manner, were called back for the same test-procedures for the evaluation of test-retest reliability. The test-retest reliability after a two week interval expressed as limits of agreement (LOA; Bland-Altman), intra-class correlation coefficients (ICC) and Pearson correlation coefficients was excellent for tests with the Baseline hand grip, Pinch-grip and 3-Chuck grip among the exposed workers and referents (N = 23: percentage of differences within LOA 91 - 100%; ICC-values ≥0.93; Pearson r ≥0.93). The test-retest reliability was also excellent (percentage of differences within LOA 96-100 %) for the determination of vibration perception thresholds in digits 2 and 5 bilaterally as well as for temperature perception thresholds in digits 2 and 5, bilaterally (percentage of differences within LOA 91 - 96%). For ICC and Pearson r the results for vibration perception thresholds were good for digit 2, left hand and for digit 5, bilaterally (ICC ≥ 0.84; r ≥0.85), and lower (ICC = 0.59; r = 0.59) for digit 2, right hand. For the latter two indices the test-retest reliability for the determination of temperature thresholds was lower and showed more varying results. The strong test-retest reliability for hand and muscle strength tests as well as for the determination of VPTs makes these procedures useful for diagnostic purposes and follow-up studies in vibration exposed workers.

  19. Comparing Free-Free and Shaker Table Model Correlation Methods Using Jim Beam

    NASA Technical Reports Server (NTRS)

    Ristow, James; Smith, Kenneth Wayne, Jr.; Johnson, Nathaniel; Kinney, Jackson

    2018-01-01

    Finite element model correlation as part of a spacecraft program has always been a challenge. For any NASA mission, the coupled system response of the spacecraft and launch vehicle can be determined analytically through a Coupled Loads Analysis (CLA), as it is not possible to test the spacecraft and launch vehicle coupled system before launch. The value of the CLA is highly dependent on the accuracy of the frequencies and mode shapes extracted from the spacecraft model. NASA standards require the spacecraft model used in the final Verification Loads Cycle to be correlated by either a modal test or by comparison of the model with Frequency Response Functions (FRFs) obtained during the environmental qualification test. Due to budgetary and time constraints, most programs opt to correlate the spacecraft dynamic model during the environmental qualification test, conducted on a large shaker table. For any model correlation effort, the key has always been finding a proper definition of the boundary conditions. This paper is a correlation case study to investigate the difference in responses of a simple structure using a free-free boundary, a fixed boundary on the shaker table, and a base-drive vibration test, all using identical instrumentation. The NAVCON Jim Beam test structure, featured in the IMAC round robin modal test of 2009, was selected as a simple, well recognized and well characterized structure to conduct this investigation. First, a free-free impact modal test of the Jim Beam was done as an experimental control. Second, the Jim Beam was mounted to a large 20,000 lbf shaker, and an impact modal test in this fixed configuration was conducted. Lastly, a vibration test of the Jim Beam was conducted on the shaker table. The free-free impact test, the fixed impact test, and the base-drive test were used to assess the effect of the shaker modes, evaluate the validity of fixed-base modeling assumptions, and compare final model correlation results between these boundary conditions.

  20. Experimental analysis of thread movement in bolted connections due to vibrations

    NASA Technical Reports Server (NTRS)

    Ramey, G. ED; Jenkins, Robert C.

    1994-01-01

    The objective of this study was to identify the main design parameters contributing to loosening of bolts due to vibration and to identify their relative importance and degree of contribution to bolt loosening. Vibration testing was conducted on a shaketable with a controlled-random input in the dynamic testing laboratory of the Structural Test Division of MSFC. Test specimens which contained one test bolt were vibrated for a fixed amount of time and percentage of pre-load loss was measured. Each specimen tested implemented some combination of eleven design parameters as dictated by the design of experiment methodology employed. The eleven design parameters were: bolt size (diameter), lubrication on bolt, hole tolerance, initial pre-load, nut locking device, grip length, thread pitch, lubrication between mating materials, class of fit, joint configuration and mass of configuration. These parameters were chosen for this experiment because they are believed to be the design parameters having the greatest impact on bolt loosening. Two values of each design parameter were used and each combination of parameters tested was subjected to two different directions of vibration and two different g-levels of vibration. One replication was made for each test to gain some indication of experimental error and repeatability and to give some degree of statistical credibility to the data, resulting in a total of 96 tests being performed. The results of the investigation indicated that nut locking devices, joint configuration, fastener size, and mass of configuration were significant in bolt loosening due to vibration. The results of this test can be utilized to further research the complex problem of bolt loosening due to vibration.

  1. Random Vibrations

    NASA Technical Reports Server (NTRS)

    Messaro. Semma; Harrison, Phillip

    2010-01-01

    Ares I Zonal Random vibration environments due to acoustic impingement and combustion processes are develop for liftoff, ascent and reentry. Random Vibration test criteria for Ares I Upper Stage pyrotechnic components are developed by enveloping the applicable zonal environments where each component is located. Random vibration tests will be conducted to assure that these components will survive and function appropriately after exposure to the expected vibration environments. Methodology: Random Vibration test criteria for Ares I Upper Stage pyrotechnic components were desired that would envelope all the applicable environments where each component was located. Applicable Ares I Vehicle drawings and design information needed to be assessed to determine the location(s) for each component on the Ares I Upper Stage. Design and test criteria needed to be developed by plotting and enveloping the applicable environments using Microsoft Excel Spreadsheet Software and documenting them in a report Using Microsoft Word Processing Software. Conclusion: Random vibration liftoff, ascent, and green run design & test criteria for the Upper Stage Pyrotechnic Components were developed by using Microsoft Excel to envelope zonal environments applicable to each component. Results were transferred from Excel into a report using Microsoft Word. After the report is reviewed and edited by my mentor it will be submitted for publication as an attachment to a memorandum. Pyrotechnic component designers will extract criteria from my report for incorporation into the design and test specifications for components. Eventually the hardware will be tested to the environments I developed to assure that the components will survive and function appropriately after exposure to the expected vibration environments.

  2. Vibration suppression of a piezo-equipped cylindrical shell in a broad-band frequency domain

    NASA Astrophysics Data System (ADS)

    Loghmani, Ali; Danesh, Mohammad; Kwak, Moon K.; Keshmiri, Mehdi

    2017-12-01

    This paper focuses on the dynamic modeling of a cylindrical shell equipped with piezoceramic sensors and actuators, as well as the design of a broad band multi-input and multi-output linear quadratic Gaussian controller for the suppression of vibrations. The optimal locations of actuators are derived by Genetic Algorithm (GA) to effectively control the specific structural modes of the cylinder. The dynamic model is derived based on the Sanders shell theory and the energy approach for both the cylinder and the piezoelectric transducers, all of which reflect the piezoelectric effect. The natural vibration characteristics of the cylindrical shell are investigated both theoretically and experimentally. The theoretical predictions are in good agreement with the experimental results. Then, the broad band multi-input and multi-output linear quadratic Gaussian controller was designed and applied to the test article. An active vibration control experiment is carried out on the cylindrical shell and the digital control system is used to implement the proposed control algorithm. The experimental results show that vibrations of the cylindrical shell can be suppressed by the piezoceramic sensors and actuators along with the proposed controller. The optimal location of the actuators makes the proposed control system more efficient than other configurations.

  3. Theoretical foundation, methods, and criteria for calibrating human vibration models using frequency response functions

    PubMed Central

    Dong, Ren G.; Welcome, Daniel E.; McDowell, Thomas W.; Wu, John Z.

    2015-01-01

    While simulations of the measured biodynamic responses of the whole human body or body segments to vibration are conventionally interpreted as summaries of biodynamic measurements, and the resulting models are considered quantitative, this study looked at these simulations from a different angle: model calibration. The specific aims of this study are to review and clarify the theoretical basis for model calibration, to help formulate the criteria for calibration validation, and to help appropriately select and apply calibration methods. In addition to established vibration theory, a novel theorem of mechanical vibration is also used to enhance the understanding of the mathematical and physical principles of the calibration. Based on this enhanced understanding, a set of criteria was proposed and used to systematically examine the calibration methods. Besides theoretical analyses, a numerical testing method is also used in the examination. This study identified the basic requirements for each calibration method to obtain a unique calibration solution. This study also confirmed that the solution becomes more robust if more than sufficient calibration references are provided. Practically, however, as more references are used, more inconsistencies can arise among the measured data for representing the biodynamic properties. To help account for the relative reliabilities of the references, a baseline weighting scheme is proposed. The analyses suggest that the best choice of calibration method depends on the modeling purpose, the model structure, and the availability and reliability of representative reference data. PMID:26740726

  4. The Shock and Vibration Bulletin. Part 1. Keynote Address, Invited Papers, Panel Sessions, Modal Test and Analysis.

    DTIC Science & Technology

    1978-09-01

    SNAPSHOT PICTURE VIDEO TAPE 35-MM PHOTO TRANSPARENCY MICROFILM Figure 2 - Gross Area Information Density other across the organization. Then we developed...the finite element In the modeling of a tor- method. The torpedo hull is divided pedo for shock and vibration analysis, ,. into primary structural...length of the tor- 16. Figure 15 presents the magnitude pedo with several circumferential trac- and phase of motor motion, and Fig. 16 ings at

  5. Evaluation of vibrated fluidized bed techniques in coating hemosorbents.

    PubMed

    Morley, D B

    1991-06-01

    A coating technique employing a vibrated fluidized bed was used to apply an ultrathin (2 microns) cellulose nitrate coating to synthetic bead activated charcoal. In vitro characteristics of the resulting coated sorbent, including permeability to model small and middle molecules, and mechanical integrity, were evaluated to determine the suitability of the process in coating granular sorbents used in hemoperfusion. Initial tests suggest the VFB-applied CN coating is both highly uniform and tightly adherent and warrants further investigation as a hemosorbent coating.

  6. Active Vibration damping of Smart composite beams based on system identification technique

    NASA Astrophysics Data System (ADS)

    Bendine, Kouider; Satla, Zouaoui; Boukhoulda, Farouk Benallel; Nouari, Mohammed

    2018-03-01

    In the present paper, the active vibration control of a composite beam using piezoelectric actuator is investigated. The space state equation is determined using system identification technique based on the structure input output response provided by ANSYS APDL finite element package. The Linear Quadratic (LQG) control law is designed and integrated into ANSYS APDL to perform closed loop simulations. Numerical examples for different types of excitation loads are presented to test the efficiency and the accuracy of the proposed model.

  7. Ground Vibration Test of the Aerostructure Test Wing 2

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia; Moholt, Matthew

    2009-01-01

    The Aerostructures Test Wing (ATW) was developed to test unique concepts for flutter prediction and control synthesis. A follow-on to the successful ATW, denoted ATW2, was fabricated as a test bed to validate a variety of instrumentation in flight and to collect data for development of advanced signal processing algorithms for flutter prediction and aviation safety. As a means to estimate flutter speed, a ground vibration test (GVT) was performed. The results of a GVT are typically utilized to update structural dynamics finite element (FE) models used for flutter analysis. In this study, two GVT methodologies were explored to determine which nodes provide the best sensor locations: (i) effective independence and (ii) kinetic energy sorting algorithms. For measurement, ten and twenty sensors were used for three and 10 target test modes. A total of six accelerometer configurations measured frequencies and mode shapes. This included locations used in the original ATW GVT. Moreover, an optical measurement system was used to acquire data without mass effects added by conventional sensors. A considerable frequency shift was observed in comparing the data from the accelerometers to the optical data. The optical data provided robust data for use of the ATW2 finite element model update.

  8. Output Feedback Slewing Control of Flewible Spacecraft by

    NASA Astrophysics Data System (ADS)

    Kim, Daesik; Kim, Chun-Hwey; Bang, Hyochoong

    1997-12-01

    Slewing maneuver and vibration suppression control of flexible spacecraft model by Lyapunov stability theory are considered. The specific model considered in this paper consists of a rigid hub with an elastic appendage attached to the central hub and tip mass. Attitude control to point and stabilize single axis using reaction wheel type device is tested. To control all flexible modes is so critical to designing an active control law. We therefore considered an direct output feeback control design by using Lyapunov stability theory. It is shown that the ouput feedback control law design with proposed configuration gives satisfactory result in slewing performance and vibration suppression control.

  9. Psycho-vibratory evaluation of timber floors - Towards the determination of design indicators of vibration acceptability and vibration annoyance

    NASA Astrophysics Data System (ADS)

    Negreira, J.; Trollé, A.; Jarnerö, K.; Sjökvist, L.-G.; Bard, D.

    2015-03-01

    In timber housing constructions, vibrations can be a nuisance for inhabitants. Notably, the vibrational response of wooden floor systems is an issue in need of being dealt with more adequately in the designing of such buildings. Studies addressing human response to vibrations are needed in order to be able to better estimate what level of vibrations in dwellings can be seen as acceptable. In the present study, measurements on five different wooden floors were performed in a laboratory environment at two locations in Sweden (SP in Växjö and LU in Lund). Acceleration measurements were carried out while a person either was walking on a particular floor or was seated in a chair placed there as the test leader was walking on the floor. These participants filled out a questionnaire regarding their perception and experiencing of the vibrations in question. Independently of the subjective tests, several static and dynamic characteristics of the floors were determined through measurements. The ultimate aim was to develop indicators of human response to floor vibrations, specifically those regarding vibration acceptability and vibration annoyance, their being drawn based on relationships between the questionnaire responses obtained and the parameter values determined on the basis of the measurements carried out. To that end, use was made of multilevel regression. Although the sample of floors tested was small, certain clear trends could be noted. The first eigenfrequency (calculated in accordance with Eurocode 5) and Hu and Chui's criterion (calculated from measured quantities) proved to be the best indicators of vibration annoyance, and the Maximum Transient Vibration Value (computed on the basis of the accelerations experienced by the test subjects) to be the best indicator of vibration acceptability.

  10. A novel simplified model for torsional vibration analysis of a series-parallel hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Tang, Xiaolin; Yang, Wei; Hu, Xiaosong; Zhang, Dejiu

    2017-02-01

    In this study, based on our previous work, a novel simplified torsional vibration dynamic model is established to study the torsional vibration characteristics of a compound planetary hybrid propulsion system. The main frequencies of the hybrid driveline are determined. In contrast to vibration characteristics of the previous 16-degree of freedom model, the simplified model can be used to accurately describe the low-frequency vibration property of this hybrid powertrain. This study provides a basis for further vibration control of the hybrid powertrain during the process of engine start/stop.

  11. An observational study of the effect of vibration on the caking of suspensions in oily vehicles.

    PubMed

    Jain, Rohit; Bork, Olaf; Alawi, Fadil; Nanjan, Karthigeyan; Tucker, Ian G

    2016-11-30

    An oily suspension of penethamate (PNT) that was physically stable on storage, caked solidly during road/air transport. This paper reports on the caking behaviour of PNT oily suspension formulations exposed to vibrations in a lab-based test designed to simulate road/air transport. The lab-test was used to study the effects of container type (glass v PET) and formulation (oil, surfactant type and concentration) on the physical stability of suspension under vibration. Redispersibility of the sediment was lower at longer vibrations times and at higher intensity of vibration. Caking on vibration was strongly influenced by the type of container (caking in glass but not in PET) possibly due to tribo-charging of particles. Caking on vibration was dependent on the formulation: type and concentration of surfactant; type of oil. The physical stability of oily suspensions, and the effect of vibration are two areas which have been largely neglected in the pharmaceutical literature. This paper discusses some potential mechanisms for the observations but studies using fully characterised materials are required. Finally we conclude that static testing of physical stability of oily suspensions is not sufficient and that a vibrational stress test is required. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Environmental Testing of the NEXT PM1R Ion Engine

    NASA Technical Reports Server (NTRS)

    Snyder, John S.; Anderson, John R.; VanNoord, Jonathan L.; Soulas, George C.

    2007-01-01

    The NEXT propulsion system is an advanced ion propulsion system presently under development that is oriented towards robotic exploration of the solar system using solar electric power. The subsystem includes an ion engine, power processing unit, feed system components, and thruster gimbal. The Prototype Model engine PM1 was subjected to qualification-level environmental testing in 2006 to demonstrate compatibility with environments representative of anticipated mission requirements. Although the testing was largely successful, several issues were identified including the fragmentation of potting cement on the discharge and neutralizer cathode heater terminations during vibration which led to abbreviated thermal testing, and generation of particulate contamination from manufacturing processes and engine materials. The engine was reworked to address most of these findings, renamed PM1R, and the environmental test sequence was repeated. Thruster functional testing was performed before and after the vibration and thermal-vacuum tests. Random vibration testing, conducted with the thruster mated to the breadboard gimbal, was executed at 10.0 Grms for 2 min in each of three axes. Thermal-vacuum testing included three thermal cycles from 120 to 215 C with hot engine re-starts. Thruster performance was nominal throughout the test program, with minor variations in a few engine operating parameters likely caused by facility effects. There were no significant changes in engine performance as characterized by engine operating parameters, ion optics performance measurements, and beam current density measurements, indicating no significant changes to the hardware as a result of the environmental testing. The NEXT PM1R engine and the breadboard gimbal were found to be well-designed against environmental requirements based on the results reported herein. The redesigned cathode heater terminations successfully survived the vibration environments. Based on the results of this test program and confidence in the engineering solutions available for the remaining findings of the first test program, specifically the particulate contamination, the hardware environmental qualification program can proceed with confidence

  13. Force Limited Vibration Test of HESSI Imager

    NASA Technical Reports Server (NTRS)

    Amato, Deborah; Pankow, David; Thomsen, Knud

    2000-01-01

    The High Energy Solar Spectroscopic Imager (HESSI) is a solar x-ray and gamma-ray observatory scheduled for launch in November 2000. Vibration testing of the HESSI imager flight unit was performed in August 1999. The HESSI imager consists of a composite metering tube, two aluminum trays mounted to the tube on titanium flexure mounts, and nine modulation grids mounted on each tray. The vibration tests were acceleration controlled and force limited, in order to prevent overtesting. The force limited strategy reduced the shaker force and notched the acceleration at resonances. The test set-up, test levels, and results are presented. The development of the force limits is also discussed. The imager successfully survived the vibration testing.

  14. Gearbox vibration diagnostic analyzer

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.

  15. An environmental testing facility for Space Station Freedom power management and distribution hardware

    NASA Technical Reports Server (NTRS)

    Jackola, Arthur S.; Hartjen, Gary L.

    1992-01-01

    The plans for a new test facility, including new environmental test systems, which are presently under construction, and the major environmental Test Support Equipment (TSE) used therein are addressed. This all-new Rocketdyne facility will perform space simulation environmental tests on Power Management and Distribution (PMAD) hardware to Space Station Freedom (SSF) at the Engineering Model, Qualification Model, and Flight Model levels of fidelity. Testing will include Random Vibration in three axes - Thermal Vacuum, Thermal Cycling and Thermal Burn-in - as well as numerous electrical functional tests. The facility is designed to support a relatively high throughput of hardware under test, while maintaining the high standards required for a man-rated space program.

  16. Precision gravity measurement utilizing Accelerex vibrating beam accelerometer technology

    NASA Astrophysics Data System (ADS)

    Norling, Brian L.

    Tests run using Sundstrand vibrating beam accelerometers to sense microgravity are described. Lunar-solar tidal effects were used as a highly predictable signal which varies by approximately 200 billionths of the full-scale gravitation level. Test runs of 48-h duration were used to evaluate stability, resolution, and noise. Test results on the Accelerex accelerometer show accuracies suitable for precision applications such as gravity mapping and gravity density logging. The test results indicate that Accelerex technology, even with an instrument design and signal processing approach not optimized for microgravity measurement, can achieve 48-nano-g (1 sigma) or better accuracy over a 48-h period. This value includes contributions from instrument noise and random walk, combined bias and scale factor drift, and thermal modeling errors as well as external contributions from sampling noise, test equipment inaccuracies, electrical noise, and cultural noise induced acceleration.

  17. Blade-Mounted Flap Control for BVI Noise Reduction Proof-of-Concept Test

    NASA Technical Reports Server (NTRS)

    Dawson, Seth; Hassan, Ahmed; Straub, Friedrich; Tadghighi, Hormoz

    1995-01-01

    This report describes a wind tunnel test of the McDonnell Douglas Helicopter Systems (MDHS) Active Flap Model Rotor at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The test demonstrated that BVI noise reductions and vibration reductions were possible with the use of an active flap. Aerodynamic results supported the acoustic data trends, showing a reduction in the strength of the tip vortex with the deflection of the flap. Acoustic results showed that the flap deployment, depending on the peak deflection angle and azimuthal shift in its deployment schedule, can produce BVI noise reductions as much as 6 dB on the advancing and retreating sides. The noise reduction was accompanied by an increase in low frequency harmonic noise and high frequency broadband noise. A brief assessment of the effect of the flap on vibration showed that significant reductions were possible. The greatest vibration reductions (as much as 76%) were found in the four per rev pitching moment at the hub. Performance improvement cam results were inconclusive, as the improvements were predicted to be smaller than the resolution of the rotor balance.

  18. Vibration condition measure instrument of motor using MEMS accelerometer

    NASA Astrophysics Data System (ADS)

    Chen, Jun

    2018-04-01

    In this work, a novel vibration condition measure instrument of motor using a digital micro accelerometer is proposed. In order to reduce the random noise found in the data, the sensor modeling is established and also the Kalman filter (KMF) is developed. According to these data from KMF, the maximum vibration displacement is calculated by the integration algorithm with the DC bias removed. The high performance micro controller unit (MCU) is used in the implementation of controller. By the IIC digital interface port, the data are transmitted from sensor to controller. The hardware circuits of the sensor and micro controller are designed and tested. With the computational formula of maximum displacement and FFT, the high precession results of displacement and frequency are gotten. Finally, the paper presents various experimental results to prove that this instrument is suitable for application in electrical motor vibration measurement.

  19. Monitoring and analysis of liquid storage in LNG tank based on different support springs

    NASA Astrophysics Data System (ADS)

    He, Hua; Sun, Jianping; Li, Ke; Wu, Zheng; Chen, Qidong; Chen, Guodong; Cao, Can

    2018-04-01

    With the rapid development of social modernization, LNG vehicles are springing up in daily life. However, it is difficult to monitor and judge the liquid storage tanks accurately and quickly. Based on this, this paper presents a new method of liquid storage monitoring, LNG tank on-line vibration monitoring system. By collecting the vibration frequency of LNG tank and tank liquid and supporting spring system, the liquid storage quality in the tank can be calculated. In this experiment, various vibration modes of the tank spring system are fully taken into account. The vibration effects of different types of support springs on the LNG tank system were investigated. The results show that the spring model has a great influence on the test results. This study provides a technical reference for the selection of suitable support springs for liquid storage monitoring.

  20. Turbulence Control Through Selective Surface Heating Using Microwave Radiation

    DTIC Science & Technology

    2013-05-01

    models. This type of plasma actuators needs further development to follow aerodynamic requirements of wind -tunnel experiments. 5. Ring -type plasma...modes of MW-heated elements in the aerodynamic experiment. Design of a resistive vibrator array for the airfoil model to be tested in a wind tunnel...

  1. An Examination of a Music Appreciation Method Incorporating Tactile Sensations from Artificial Vibrations

    NASA Astrophysics Data System (ADS)

    Ideguchi, Tsuyoshi; Yoshida, Ryujyu; Ooshima, Keita

    We examined how test subject impressions of music changed when artificial vibrations were incorporated as constituent elements of a musical composition. In this study, test subjects listened to several music samples in which different types of artificial vibration had been incorporated and then subjectively evaluated any resulting changes to their impressions of the music. The following results were obtained: i) Even if rhythm vibration is added to a silent component of a musical composition, it can effectively enhance musical fitness. This could be readily accomplished when actual sounds that had been synchronized with the vibration components were provided beforehand. ii) The music could be listened to more comfortably by adding not only a natural vibration extracted from percussion instruments but also artificial vibration as tactile stimulation according to intentional timing. Furthermore, it was found that the test subjects' impression of the music was affected by a characteristic of the artificial vibration. iii) Adding vibration to high-frequency areas can offer an effective and practical way of enhancing the appeal of a musical composition. iv) The movement sensations of sound and vibration could be experienced when the strength of the sound and vibration are modified in turn. These results suggest that the intentional application of artificial vibration could result in a sensitivity amplification factor on the part of a listener.

  2. Synthetic Modifications In the Frequency Domain for Finite Element Model Update and Damage Detection

    DTIC Science & Technology

    2017-09-01

    Sensitivity-based finite element model updating and structural damage detection has been limited by the number of modes available in a vibration test and...increase the number of modes and corresponding sensitivity data by artificially constraining the structure under test, producing a large number of... structural modifications to the measured data, including both springs-to-ground and mass modifications. This is accomplished with frequency domain

  3. Thematic mapper flight model preshipment review data package. Volume 3, part B: System data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Procedures and results are presented for performance and systems integration tests of flight model-1 thematic mapper. Aspects considered cover electronic module integration, radiometric calibration, spectral matching, spatial coverage, radiometric calibration of the calibrator, coherent noise, dynamic square wave response, band to band registration, geometric accuracy, and self induced vibration. Thermal vacuum tests, EMI/EMS, and mass properties are included. Liens are summarized.

  4. Torsional Vibration in the National Wind Technology Center’s 2.5-Megawatt Dynamometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethuraman, Latha; Keller, Jonathan; Wallen, Robb

    2016-08-31

    This report documents the torsional drivetrain dynamics of the NWTC's 2.5-megawatt dynamometer as identified experimentally and as calculated using lumped parameter models using known inertia and stiffness parameters. The report is presented in two parts beginning with the identification of the primary torsional modes followed by the investigation of approaches to damp the torsional vibrations. The key mechanical parameters for the lumped parameter models and justification for the element grouping used in the derivation of the torsional modes are presented. The sensitivities of the torsional modes to different test article properties are discussed. The oscillations observed from the low-speed andmore » generator torque measurements were used to identify the extent of damping inherently achieved through active and passive compensation techniques. A simplified Simulink model of the dynamometer test article integrating the electro-mechanical power conversion and control features was established to emulate the torque behavior that was observed during testing. The torque response in the high-speed, low-speed, and generator shafts were tested and validated against experimental measurements involving step changes in load with the dynamometer operating under speed-regulation mode. The Simulink model serves as a ready reference to identify the torque sensitivities to various system parameters and to explore opportunities to improve torsional damping under different conditions.« less

  5. Design of an active helicopter control experiment at the Princeton Rotorcraft Dynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Marraffa, Andrew M.; Mckillip, R. M., Jr.

    1989-01-01

    In an effort to develop an active control technique for reducing helicopter vibrations stemming from the main rotor system, a helicopter model was designed and tested at the Princeton Rotorcraft Dynamics Laboratory (PRDL). A description of this facility, including its latest data acquisition upgrade, are given. The design procedures for the test model and its Froude scaled rotor system are also discussed. The approach for performing active control is based on the idea that rotor states can be identified by instrumenting the rotor blades. Using this knowledge, Individual Blade Control (IBC) or Higher Harmonic Control (HHC) pitch input commands may be used to impact on rotor dynamics in such a way as to reduce rotor vibrations. Discussed here is an instrumentation configuration utilizing miniature accelerometers to measure and estimate first and second out-of-plane bending mode positions and velocities. To verify this technique, the model was tested, and resulting data were used to estimate rotor states as well as flap and bending coefficients, procedures for which are discussed. Overall results show that a cost- and time-effective method for building a useful test model for future active control experiments was developed. With some fine-tuning or slight adjustments in sensor configuration, prospects for obtaining good state estimates look promising.

  6. Impeller leakage flow modeling for mechanical vibration control

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.

    1996-01-01

    HPOTP and HPFTP vibration test results have exhibited transient and steady characteristics which may be due to impeller leakage path (ILP) related forces. For example, an axial shift in the rotor could suddenly change the ILP clearances and lengths yielding dynamic coefficient and subsequent vibration changes. ILP models are more complicated than conventional-single component-annular seal models due to their radial flow component (coriolis and centrifugal acceleration), complex geometry (axial/radial clearance coupling), internal boundary (transition) flow conditions between mechanical components along the ILP and longer length, requiring moment as well as force coefficients. Flow coupling between mechanical components results from mass and energy conservation applied at their interfaces. Typical components along the ILP include an inlet seal, curved shroud, and an exit seal, which may be a stepped labyrinth type. Von Pragenau (MSFC) has modeled labyrinth seals as a series of plain annular seals for leakage and dynamic coefficient prediction. These multi-tooth components increase the total number of 'flow coupled' components in the ILP. Childs developed an analysis for an ILP consisting of a single, constant clearance shroud with an exit seal represented by a lumped flow-loss coefficient. This same geometry was later extended to include compressible flow. The objective of the current work is to: supply ILP leakage-force impedance-dynamic coefficient modeling software to MSFC engineers, base on incompressible/compressible bulk flow theory; design the software to model a generic geometry ILP described by a series of components lying along an arbitrarily directed path; validate the software by comparison to available test data, CFD and bulk models; and develop a hybrid CFD-bulk flow model of an ILP to improve modeling accuracy within practical run time constraints.

  7. A method for analyzing absorbed power distribution in the hand and arm substructures when operating vibrating tools

    NASA Astrophysics Data System (ADS)

    Dong, Jennie H.; Dong, Ren G.; Rakheja, Subhash; Welcome, Daniel E.; McDowell, Thomas W.; Wu, John Z.

    2008-04-01

    In this study it was hypothesized that the vibration-induced injuries or disorders in a substructure of human hand-arm system are primarily associated with the vibration power absorption distributed in that substructure. As the first step to test this hypothesis, the major objective of this study is to develop a method for analyzing the vibration power flow and the distribution of vibration power absorptions in the major substructures (fingers, palm-hand-wrist, forearm and upper arm, and shoulder) of the system exposed to hand-transmitted vibration. A five-degrees-of-freedom model of the system incorporating finger- as well as palm-side driving points was applied for the analysis. The mechanical impedance data measured at the two driving points under four different hand actions involving 50 N grip-only, 15 N grip and 35 N push, 30 N grip and 45 N push, and 50 N grip and 50 N push, were used to identify the model parameters. The vibration power absorption distributed in the substructures were evaluated using vibration spectra measured on many tools. The frequency weightings of the distributed vibration power absorptions were derived and compared with the weighting defined in ISO 5349-1 (2001). This study found that vibration power absorption is primarily distributed in the arm and shoulder when operating low-frequency tools such as rammers, while a high concentration of vibration power absorption in the fingers and hand is observed when operating high-frequency tools, such as grinders. The vibration power absorption distributed in palm-wrist and arm is well correlated with the ISO-weighted acceleration, while the finger vibration power absorption is highly correlated with unweighted acceleration. The finger vibration power absorption-based frequency weighting suggested that exposure to vibration in the frequency range of 16-500 Hz could pose higher risks of developing finger disorders. The results support the use of the frequency weighting specified in the current standard for assessing risks of developing disorders in the palm-wrist-arm substructures. The standardized weighting, however, could overestimate low-frequency effects but greatly underestimate high-frequency effects on the development of finger disorders. The results are further discussed to show that the trends observed in the vibration power absorptions distributed in the substructures are consistent with some major findings of various physiological and epidemiological studies, which provides a support to the hypothesis of this study.

  8. Many Molecular Properties from One Kernel in Chemical Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole

    We introduce property-independent kernels for machine learning modeling of arbitrarily many molecular properties. The kernels encode molecular structures for training sets of varying size, as well as similarity measures sufficiently diffuse in chemical space to sample over all training molecules. Corresponding molecular reference properties provided, they enable the instantaneous generation of ML models which can systematically be improved through the addition of more data. This idea is exemplified for single kernel based modeling of internal energy, enthalpy, free energy, heat capacity, polarizability, electronic spread, zero-point vibrational energy, energies of frontier orbitals, HOMOLUMO gap, and the highest fundamental vibrational wavenumber. Modelsmore » of these properties are trained and tested using 112 kilo organic molecules of similar size. Resulting models are discussed as well as the kernels’ use for generating and using other property models.« less

  9. A Study in a New Test Facility on Indoor Annoyance Caused by Sonic Booms

    NASA Technical Reports Server (NTRS)

    Rathsam, Jonathan; Loubeau, Alexandra; Klos, Jacob

    2012-01-01

    A sonic-boom simulator at NASA Langley Research Center has been constructed to research the indoor human response to low-amplitude sonic booms. The research goal is the development of a psychoacoustic model for individual sonic booms to be validated by future community studies. The study in this report assessed the suitability of existing noise metrics for predicting indoor human annoyance. The test signals included a wide range of synthesized and recorded sonic-boom waveforms. Results indicated that no noise metric predicts indoor annoyance to sonic-boom sounds better than Perceived Level, PL. During the study it became apparent that structural vibrations induced by the test signals were contributing to annoyance, so the relationship between sound and vibration at levels of equivalent annoyance has been quantified.

  10. The Shock and Vibration Bulletin: Proceedings on the Symposium on ShocK and Vibration (52nd) Held in New Orleans, Louisiana on 26-28 October 1981. Part 2. Invited Papers, Space Shuttle Loads and Dynamics, Space Shuttle Data Systems, Shock Testing, Shock Analysis Space Shuttle Thermal Protection Systems

    DTIC Science & Technology

    1982-05-01

    discovered during posttest inspection. The unit had experienced 2 As- designed damper, 0.92-1-.14 grams 8 tests for a total of 330 seconds of opera- 3...a Modeling DAMPED STRUCTURE DESIGN USING FINITE ELEMENT ANALYSIS M. F. Klunmner and M. L. Drake, University of Dayti-n Resatch Institute, Dayton, OH...IN DYNAMICS T. E. Simkins, U.S. Army Armament Research and Development Command, Watervliet, NY Stucturd Dynamics A PROCEDURE FOR DESIGNING OVERDAMPED

  11. Damage monitoring of aircraft structures made of composite materials using wavelet transforms

    NASA Astrophysics Data System (ADS)

    Molchanov, D.; Safin, A.; Luhyna, N.

    2016-10-01

    The present article is dedicated to the study of the acoustic properties of composite materials and the application of non-destructive testing methods to aircraft components. A mathematical model of a wavelet transformed signal is presented. The main acoustic (vibration) properties of different composite material structures were researched. Multiple vibration parameter dependencies on the noise reduction factor were derived. The main steps of a research procedure and new method algorithm are presented. The data obtained was compared with the data from a three dimensional laser-Doppler scanning vibrometer, to validate the results. The new technique was tested in the laboratory and on civil aircraft at a training airfield.

  12. Microgravity Disturbance Predictions in the Combustion Integrated Rack

    NASA Astrophysics Data System (ADS)

    Just, M.; Grodsinsky, Carlos M.

    2002-01-01

    This paper will focus on the approach used to characterize microgravity disturbances in the Combustion Integrated Rack (CIR), currently scheduled for launch to the International Space Station (ISS) in 2005. Microgravity experiments contained within the CIR are extremely sensitive to vibratory and transient disturbances originating on-board and off-board the rack. Therefore, several techniques are implemented to isolate the critical science locations from external vibration. A combined testing and analysis approach is utilized to predict the resulting microgravity levels at the critical science location. The major topics to be addressed are: 1) CIR Vibration Isolation Approaches, 2) Disturbance Sources and Characterization, 3) Microgravity Predictive Modeling, 4) Science Microgravity Requirements, 6) Microgravity Control, and 7) On-Orbit Disturbance Measurement. The CIR is using the Passive Rack Isolation System (PaRIS) to isolate the rack from offboard rack disturbances. By utilizing this system, CIR is connected to the U.S. Lab module structure by either 13 or 14 umbilical lines and 8 spring / damper isolators. Some on-board CIR disturbers are locally isolated by grommets or wire ropes. CIR's environmental and science on board support equipment such as air circulation fans, pumps, water flow, air flow, solenoid valves, and computer hard drives cause disturbances within the rack. These disturbers along with the rack structure must be characterized to predict whether the on-orbit vibration levels during experimentation exceed the specified science microgravity vibration level requirements. Both vibratory and transient disturbance conditions are addressed. Disturbance levels/analytical inputs are obtained for each individual disturber in a "free floating" condition in the Glenn Research Center (GRC) Microgravity Emissions Lab (MEL). Flight spare hardware is tested on an Orbital Replacement Unit (ORU) basis. Based on test and analysis, maximum disturbance level allocations are developed for each ORU. The worst-case disturbances are input into an on-orbit analytical dynamic model of the rack. These models include both NASTRAN and MATLAB Simulink models , which include eigenvector and frequency inputs of the rack rigid body modes, the rack umbilical modes, and the racks' structural modes. The disturbance areas and science locations need to be modeled accurately to give valid predictions. The analytically determined microgravity vibration levels are compared to the CIR science requirements contained in the FCF Science Requirements Envelope Document (SRED). The predicted levels will be compared with the on-orbit measurements provided by the Space Acceleration Measurement System (SAMS) sensor, which is to be mounted on the CIR optics bench.

  13. Research Problems Associated with Limiting the Applied Force in Vibration Tests and Conducting Base-Drive Modal Vibration Tests

    NASA Technical Reports Server (NTRS)

    Scharton, Terry D.

    1995-01-01

    The intent of this paper is to make a case for developing and conducting vibration tests which are both realistic and practical (a question of tailoring versus standards). Tests are essential for finding things overlooked in the analyses. The best test is often the most realistic test which can be conducted within the cost and budget constraints. Some standards are essential, but the author believes more in the individual's ingenuity to solve a specific problem than in the application of standards which reduce problems (and technology) to their lowest common denominator. Force limited vibration tests and base-drive modal tests are two examples of realistic, but practical testing approaches. Since both of these approaches are relatively new, a number of interesting research problems exist, and these are emphasized herein.

  14. Development of a semi-active dynamic vibration absorber for longitudinal vibration of propulsion shaft system based on magnetorheological elastomer

    NASA Astrophysics Data System (ADS)

    Liu, Gaoyu; Lu, Kun; Zou, Donglin; Xie, Zhongliang; Rao, Zhushi; Ta, Na

    2017-07-01

    The control of the longitudinal pulsating force and the vibration generated is very important to improve the stealth performance of a submarine. Magnetorheological elastomer (MRE) is a kind of intelligent composite material, whose mechanical properties can be continuously, rapidly and reversibly controlled by an external magnetic field. It can be used as variable-stiffness components in the design of a semi-active dynamic vibration absorber (SDVA), which is one of the effective means of longitudinal vibration control. In this paper, an SDVA is designed based on the MRE’s magnetic-induced variable stiffness characteristic. Firstly, a mechanical model of the propulsion shaft system with the SDVA is proposed, theoretically discussed and numerically validated. Then, the mechanical performance of the MRE under different magnetic fields is tested. In addition, the magnetic circuit and the overall structure of the SDVA are designed. Furthermore, electromagnetic and thermodynamic simulations are carried out to guarantee the structural design. The frequency shift property of the SDVA is found through dynamic simulations and validated by a frequency shift experiment. Lastly, the vibration absorption capacity of the SDVA is investigated. The results show that the magnetorheological effect of the MRE and the frequency shift of the SDVA are obvious; the SDVA has relatively acceptable vibration absorption capacity.

  15. A velocity-amplified electromagnetic energy harvester for small amplitude vibration

    NASA Astrophysics Data System (ADS)

    Klein, J.; Zuo, L.

    2017-09-01

    Dedicated, self-powered wireless sensors are widely being studied for use throughout many industries to monitor everyday operations, maintain safety, and report performance characteristics. To enable sensors to power themselves, harvesting energy from machine vibration has been studied, however, its overall effectiveness can be hampered due to small vibration amplitudes and thus limited harvestable energy density. This paper addresses the issue by proposing a novel vibration energy harvester architecture in which a compliant mechanism and proof mass system is used to amplify the vibrational velocity of machine vibration for a linear electromagnetic generator. A prototype has been fabricated and experimentally characterized to verify its effectiveness. When operating at its natural frequency in a low base amplitude, 0.001 inch (25.4 μm) at 19.4 Hz, during lab tests, the harvester has been shown to produce up to 0.91 V AC open voltage, and a maximum power of 2 mW, amplifying the relative proof mass velocity by approximately 5.4 times. This method of locally increasing the machine vibrational velocity has been shown to be a viable option for increasing the potential power output of an energy harvester. In addition, a mathematical model is created based on pseudo-rigid-body dynamics and the analysis matches closely with experiments.

  16. Terahertz laser spectroscopy of the water dimer intermolecular vibrations. II. (H2O)2

    NASA Astrophysics Data System (ADS)

    Braly, L. B.; Liu, K.; Brown, M. G.; Keutsch, F. N.; Fellers, R. S.; Saykally, R. J.

    2000-06-01

    Terahertz VRT laser spectra of four (H2O)2 intermolecular vibrations consisting of 362 transitions have been measured between 87 and 108 cm-1 with ca. 2 MHz precision. The results differ both qualitatively and quantitatively from the predictions of dimer potentials tested. The spectra also reveal an ordering of the intermolecular vibrations which differs dramatically from that predicted by normal mode analysis. Strong coupling is indicated between the low barrier tunneling motions and the intermolecular vibrations as well as among different vibrations. In particular the 102.1 cm-1 (H2O)2 vibration assigned as the acceptor wag (ν8) exhibits two types of perturbations. In one of these a component of Ka=1 coupling with a tunneling component of Ka=0 in the 108 cm-1 acceptor twist (ν11) vibration. There is also an indication that the 103.1 cm-1 (H2O)2 band assigned as the donor in-plane bend (ν6) is coupled to the acceptor wag resulting in a lower of the in-plane bend frequency and a higher acceptor wag frequency. Detailed analysis of the VRT levels confirms the extreme nonrigidity of this complex, indicating that the use of approximate models with reduced dimensionality to calculate its properties are likely to fail.

  17. 20 Meter Solar Sail Analysis and Correlation

    NASA Technical Reports Server (NTRS)

    Taleghani, B. K.; Lively, P. S.; Banik, J.; Murphy, D. M.; Trautt, T. A.

    2005-01-01

    This paper describes finite element analyses and correlation studies to predict deformations and vibration modes/frequencies of a 20-meter solar sail system developed by ATK Space Systems. Under the programmatic leadership of NASA Marshall Space Flight Center's In-Space Propulsion activity, the 20-meter solar sail program objectives were to verify the design, to assess structural responses of the sail system, to implement lessons learned from a previous 10-meter quadrant system analysis and test program, and to mature solar sail technology to a technology readiness level (TRL) of 5. For this 20 meter sail system, static and ground vibration tests were conducted in NASA Glenn Research Center's 100 meter diameter vacuum chamber at Plum Brook station. Prior to testing, a preliminary analysis was performed to evaluate test conditions and to determine sensor and actuator locations. After testing was completed, an analysis of each test configuration was performed. Post-test model refinements included updated properties to account for the mass of sensors, wiring, and other components used for testing. This paper describes the development of finite element models (FEM) for sail membranes and masts in each of four quadrants at both the component and system levels, as well as an optimization procedure for the static test/analyses correlation.

  18. Vibration control of an energy regenerative seat suspension with variable external resistance

    NASA Astrophysics Data System (ADS)

    Ning, Donghong; Sun, Shuaishuai; Du, Haiping; Li, Weihua; Zhang, Nong

    2018-06-01

    In this paper, an energy regenerative seat suspension with a variable external resistance is proposed and built, and a semi-active controller for its vibration control is also designed and validated. The energy regenerative seat suspension is built with a three-phase generator and a gear reducer, which are installed in the scissors structure centre of the seat suspension, and the vibration energy is directly harvested from the rotary movement of suspension's scissors structure. The electromagnetic torque of the semi-active seat suspension actuator is controlled by an external variable resistor. An integrated model including the seat suspension's kinematics and the generator is built and proven to match the test result very well. A simplified experimental phenomenon model is also built based on the test results for the controller design. A state feedback H∞ controller is proposed for the regenerative seat suspension's semi-active vibration control. The proposed regenerative seat suspension and its controller are validated with both simulations and experiments. A well-tuned passive seat suspension is applied to evaluate the regenerative seat's performance. Based on ISO 2631-1, the frequency-weighted root mean square (FW-RMS) acceleration of the proposed seat suspension has a 22.84% reduction when compared with the passive one, which indicates the improvement of ride comfort. At the same time, the generated RMS power is 1.21 W. The proposed regenerative seat suspension can greatly improve the driver's ride comfort and has the potential to be developed to a self-powered semi-active system.

  19. Convolutional neural networks for vibrational spectroscopic data analysis.

    PubMed

    Acquarelli, Jacopo; van Laarhoven, Twan; Gerretzen, Jan; Tran, Thanh N; Buydens, Lutgarde M C; Marchiori, Elena

    2017-02-15

    In this work we show that convolutional neural networks (CNNs) can be efficiently used to classify vibrational spectroscopic data and identify important spectral regions. CNNs are the current state-of-the-art in image classification and speech recognition and can learn interpretable representations of the data. These characteristics make CNNs a good candidate for reducing the need for preprocessing and for highlighting important spectral regions, both of which are crucial steps in the analysis of vibrational spectroscopic data. Chemometric analysis of vibrational spectroscopic data often relies on preprocessing methods involving baseline correction, scatter correction and noise removal, which are applied to the spectra prior to model building. Preprocessing is a critical step because even in simple problems using 'reasonable' preprocessing methods may decrease the performance of the final model. We develop a new CNN based method and provide an accompanying publicly available software. It is based on a simple CNN architecture with a single convolutional layer (a so-called shallow CNN). Our method outperforms standard classification algorithms used in chemometrics (e.g. PLS) in terms of accuracy when applied to non-preprocessed test data (86% average accuracy compared to the 62% achieved by PLS), and it achieves better performance even on preprocessed test data (96% average accuracy compared to the 89% achieved by PLS). For interpretability purposes, our method includes a procedure for finding important spectral regions, thereby facilitating qualitative interpretation of results. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. State resolved vibrational relaxation modeling for strongly nonequilibrium flows

    NASA Astrophysics Data System (ADS)

    Boyd, Iain D.; Josyula, Eswar

    2011-05-01

    Vibrational relaxation is an important physical process in hypersonic flows. Activation of the vibrational mode affects the fundamental thermodynamic properties and finite rate relaxation can reduce the degree of dissociation of a gas. Low fidelity models of vibrational activation employ a relaxation time to capture the process at a macroscopic level. High fidelity, state-resolved models have been developed for use in continuum gas dynamics simulations based on computational fluid dynamics (CFD). By comparison, such models are not as common for use with the direct simulation Monte Carlo (DSMC) method. In this study, a high fidelity, state-resolved vibrational relaxation model is developed for the DSMC technique. The model is based on the forced harmonic oscillator approach in which multi-quantum transitions may become dominant at high temperature. Results obtained for integrated rate coefficients from the DSMC model are consistent with the corresponding CFD model. Comparison of relaxation results obtained with the high-fidelity DSMC model shows significantly less excitation of upper vibrational levels in comparison to the standard, lower fidelity DSMC vibrational relaxation model. Application of the new DSMC model to a Mach 7 normal shock wave in carbon monoxide provides better agreement with experimental measurements than the standard DSMC relaxation model.

  1. Concorde noise-induced building vibrations: John F. Kennedy International Airport

    NASA Technical Reports Server (NTRS)

    Mayes, W. H.; Stephens, D. G.; Deloach, R.; Cawthorn, J. M.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.; Miller, W. T.

    1978-01-01

    Outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded at eight homesites and a school along with the associated vibration levels in the walls, windows, and floors at these test sites. Limited subjective tests were conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise. Both vibration and rattle were detected subjectively in several houses for some operations of both the Concorde and subsonic aircraft. Seated subjects more readily detected floor vibrations than wall or window vibrations. Aircraft noise generally caused more window vibrations than common nonaircraft events such as walking and closing doors. Nonaircraft events and aircraft flyovers resulted in comparable wall vibration levels, while floor vibrations were generally greater for nonaircraft events than for aircraft flyovers. The relationship between structural vibration and aircraft noise is linear, with vibration levels being accurately predicted from overall sound pressure levels (OASPL) measured near the structure. Relatively high levels of structural vibration measured during Concorde operations are due more to higher OASPL levels than to unique Concorde-source characteristics.

  2. 49 CFR 178.803 - Testing and certification of IBCs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Vibration 6 X 6 X 6 X 6 X 6 X 1.5 X Bottom lift 2 X X X X X Top lift 2 X 2 X 2 X 2 5 X Stacking 7 X 7 X 7 X... X Righting 2 5 X Tear 5 X 1 Flexible IBCs must be capable of withstanding the vibration test. 2 This... each test. 6 The vibration test may be performed in another order for IBCs manufactured and tested...

  3. 49 CFR 178.803 - Testing and certification of IBCs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Vibration 6 X 6 X 6 X 6 X 6 X 1.5 X Bottom lift 2 X X X X X Top lift 2 X 2 X 2 X 2,5 X Stacking 7 X 7 X 7 X... X Righting 2,5 X Tear 5 X 1 Flexible IBCs must be capable of withstanding the vibration test. 2 This... each test. 6 The vibration test may be performed in another order for IBCs manufactured and tested...

  4. 49 CFR 178.803 - Testing and certification of IBCs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Vibration 6 X 6 X 6 X 6 X 6 X 1.5 X Bottom lift 2 X X X X X Top lift 2 X 2 X 2 X 2 5 X Stacking 7 X 7 X 7 X... X Righting 2 5 X Tear 5 X 1 Flexible IBCs must be capable of withstanding the vibration test. 2 This... each test. 6 The vibration test may be performed in another order for IBCs manufactured and tested...

  5. Tool vibration detection with eddy current sensors in machining process and computation of stability lobes using fuzzy classifiers

    NASA Astrophysics Data System (ADS)

    Devillez, Arnaud; Dudzinski, Daniel

    2007-01-01

    Today the knowledge of a process is very important for engineers to find optimal combination of control parameters warranting productivity, quality and functioning without defects and failures. In our laboratory, we carry out research in the field of high speed machining with modelling, simulation and experimental approaches. The aim of our investigation is to develop a software allowing the cutting conditions optimisation to limit the number of predictive tests, and the process monitoring to prevent any trouble during machining operations. This software is based on models and experimental data sets which constitute the knowledge of the process. In this paper, we deal with the problem of vibrations occurring during a machining operation. These vibrations may cause some failures and defects to the process, like workpiece surface alteration and rapid tool wear. To measure on line the tool micro-movements, we equipped a lathe with a specific instrumentation using eddy current sensors. Obtained signals were correlated with surface finish and a signal processing algorithm was used to determine if a test is stable or unstable. Then, a fuzzy classification method was proposed to classify the tests in a space defined by the width of cut and the cutting speed. Finally, it was shown that the fuzzy classification takes into account of the measurements incertitude to compute the stability limit or stability lobes of the process.

  6. Active vibration absorber for CSI evolutionary model: Design and experimental results

    NASA Technical Reports Server (NTRS)

    Bruner, Anne M.; Belvin, W. Keith; Horta, Lucas G.; Juang, Jer-Nan

    1991-01-01

    The development of control of large flexible structures technology must include practical demonstration to aid in the understanding and characterization of controlled structures in space. To support this effort, a testbed facility was developed to study practical implementation of new control technologies under realistic conditions. The design is discussed of a second order, acceleration feedback controller which acts as an active vibration absorber. This controller provides guaranteed stability margins for collocated sensor/actuator pairs in the absence of sensor/actuator dynamics and computational time delay. The primary performance objective considered is damping augmentation of the first nine structural modes. Comparison of experimental and predicted closed loop damping is presented, including test and simulation time histories for open and closed loop cases. Although the simulation and test results are not in full agreement, robustness of this design under model uncertainty is demonstrated. The basic advantage of this second order controller design is that the stability of the controller is model independent.

  7. A novel approach using tendon vibration of the human flexor carpi radialis muscle to study spinal reflexes.

    PubMed

    Tsang, Kenneth; de Bruin, Hubert; Archambeault, Mark

    2008-01-01

    Although most muscle spindle investigations have used the cat model and invasive measurement techniques, several investigators have used microneurography to record from the Ia and II fibres in humans during tendon vibration. In these studies the muscle spindle primary endings are stimulated using transverse vibration of the tendon at reflex sub-threshold amplitudes. Others have used low amplitude vibration and the stretch evoked M-wave response to determine reflex properties during both agonist and antagonist voluntary contractions. In the past we have developed a PC based instrument that uses Labview and a linear servomotor to study tendon reflex properties by recording stretch evoked M-wave responses from single tendon taps or electrical stimuli to the afferent nerve. In this paper we describe a further development of this system to provide precise vibrations of the tendon up to 65 Hz with amplitudes up to 4 mm. The resultant M-wave train is extracted from background noise via phase coherent subtractive filtering. Test results from vibrating the human distal flexor carpi radialis tendon at 10 and 30 Hz, for relaxed, slight flexion and slight extension, are also presented.

  8. Rotorcraft Transmission Noise Path Model, Including Distributed Fluid Film Bearing Impedance Modeling

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen A.; Hanford, Amanda D.; Shepherd, Micah R.; Campbell, Robert L.; Smith, Edward C.

    2010-01-01

    A computational approach for simulating the effects of rolling element and journal bearings on the vibration and sound transmission through gearboxes has been demonstrated. The approach, using ARL/Penn State s CHAMP methodology, uses Component Mode Synthesis of housing and shafting modes computed using Finite Element (FE) models to allow for rapid adjustment of bearing impedances in gearbox models. The approach has been demonstrated on NASA GRC s test gearbox with three different bearing configurations: in the first condition, traditional rolling element (ball and roller) bearings were installed, and in the second and third conditions, the traditional bearings were replaced with journal and wave bearings (wave bearings are journal bearings with a multi-lobed wave pattern on the bearing surface). A methodology for computing the stiffnesses and damping in journal and wave bearings has been presented, and demonstrated for the journal and wave bearings used in the NASA GRC test gearbox. The FE model of the gearbox, along with the rolling element bearing coupling impedances, was analyzed to compute dynamic transfer functions between forces applied to the meshing gears and accelerations on the gearbox housing, including several locations near the bearings. A Boundary Element (BE) acoustic model was used to compute the sound radiated by the gearbox. Measurements of the Gear Mesh Frequency (GMF) tones were made by NASA GRC at several operational speeds for the rolling element and journal bearing gearbox configurations. Both the measurements and the CHAMP numerical model indicate that the journal bearings reduce vibration and noise for the second harmonic of the gear meshing tones, but show no clear benefit to using journal bearings to reduce the amplitudes of the fundamental gear meshing tones. Also, the numerical model shows that the gearbox vibrations and radiated sound are similar for journal and wave bearing configurations.

  9. Ab initio-informed maximum entropy modeling of rovibrational relaxation and state-specific dissociation with application to the O2 + O system

    NASA Astrophysics Data System (ADS)

    Kulakhmetov, Marat; Gallis, Michael; Alexeenko, Alina

    2016-05-01

    Quasi-classical trajectory (QCT) calculations are used to study state-specific ro-vibrational energy exchange and dissociation in the O2 + O system. Atom-diatom collisions with energy between 0.1 and 20 eV are calculated with a double many body expansion potential energy surface by Varandas and Pais [Mol. Phys. 65, 843 (1988)]. Inelastic collisions favor mono-quantum vibrational transitions at translational energies above 1.3 eV although multi-quantum transitions are also important. Post-collision vibrational favoring decreases first exponentially and then linearly as Δv increases. Vibrationally elastic collisions (Δv = 0) favor small ΔJ transitions while vibrationally inelastic collisions have equilibrium post-collision rotational distributions. Dissociation exhibits both vibrational and rotational favoring. New vibrational-translational (VT), vibrational-rotational-translational (VRT) energy exchange, and dissociation models are developed based on QCT observations and maximum entropy considerations. Full set of parameters for state-to-state modeling of oxygen is presented. The VT energy exchange model describes 22 000 state-to-state vibrational cross sections using 11 parameters and reproduces vibrational relaxation rates within 30% in the 2500-20 000 K temperature range. The VRT model captures 80 × 106 state-to-state ro-vibrational cross sections using 19 parameters and reproduces vibrational relaxation rates within 60% in the 5000-15 000 K temperature range. The developed dissociation model reproduces state-specific and equilibrium dissociation rates within 25% using just 48 parameters. The maximum entropy framework makes it feasible to upscale ab initio simulation to full nonequilibrium flow calculations.

  10. Assessment of dynamic and long-term performance of an innovative multi-story timber building via structural monitoring and dynamic testing

    NASA Astrophysics Data System (ADS)

    Omenzetter, Piotr; Morris, Hugh; Worth, Margaret; Gaul, Andrew; Jager, Simon; Desgeorges, Yohann

    2012-04-01

    An innovative three-story timber building, using self-centering, post-tensioned timber shear walls as the main horizontal load resisting system and lightweight non-composite timber-concrete floors, has recently been completed in Nelson, New Zealand. It is expected to be the trailblazer for similar but taller structures to be more widely adopted. Performance based standards require an advanced understanding of building responses and in order to meet the need for in-situ performance data the building has been subjected to forced vibration testing and instrumented for continuous monitoring using a total of approximately 90 data channels to capture its dynamic and long-term responses. The first part of the paper presents a brief discussion of the existing research on the seismic performance of timber frame buildings and footfall induced floor vibrations. An outline of the building structural system, focusing on the novel design solutions, is then discussed. This is followed by the description of the monitoring system. The analysis of monitoring results starts with a discussion of the monitoring of long-term deformations. Next, the assessment of the floor vibration serviceability performance is outlined. Then, the forced vibration tests conducted on the whole building at different construction stages are reviewed. The system identification results from seismic shaking records are also discussed. Finally, updating of a finite element model of the building is conducted.

  11. Analysis and control of the vibration of doubly fed wind turbine

    NASA Astrophysics Data System (ADS)

    Yu, Manye; Lin, Ying

    2017-01-01

    The fault phenomena of the violent vibration of certain doubly-fed wind turbine were researched comprehensively, and the dynamic characteristics, load and fault conditions of the system were discussed. Firstly, the structural dynamics analysis of wind turbine is made, and the dynamics mold is built. Secondly, the vibration testing of wind turbine is done with the German test and analysis systems BBM. Thirdly, signal should be analyzed and dealt with. Based on the experiment, spectrum analysis of the motor dynamic balance can be made by using signal processing toolbox of MATLAB software, and the analysis conclusions show that the vibration of wind turbine is caused by dynamic imbalance. The results show that integrating mechanical system dynamics theory with advanced test technology can solve the vibration problem more successfully, which is important in vibration diagnosis of mechanical equipment.

  12. Vibration and noise analysis of a gear transmission system

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Qian, W.; Zakrajsek, J. J.; Oswald, F. B.

    1993-01-01

    This paper presents a comprehensive procedure to predict both the vibration and noise generated by a gear transmission system under normal operating conditions. The gearbox vibrations were obtained from both numerical simulation and experimental studies using a gear noise test rig. In addition, the noise generated by the gearbox vibrations was recorded during the experimental testing. A numerical method was used to develop linear relationships between the gearbox vibration and the generated noise. The hypercoherence function is introduced to correlate the nonlinear relationship between the fundamental noise frequency and its harmonics. A numerical procedure was developed using both the linear and nonlinear relationships generated from the experimental data to predict noise resulting from the gearbox vibrations. The application of this methodology is demonstrated by comparing the numerical and experimental results from the gear noise test rig.

  13. Design optimization of a high specific speed Francis turbine runner

    NASA Astrophysics Data System (ADS)

    Enomoto, Y.; Kurosawa, S.; Kawajiri, H.

    2012-11-01

    Francis turbine is used in many hydroelectric power stations. This paper presents the development of hydraulic performance in a high specific speed Francis turbine runner. In order to achieve the improvements of turbine efficiency throughout a wide operating range, a new runner design method which combines the latest Computational Fluid Dynamics (CFD) and a multi objective optimization method with an existing design system was applied in this study. The validity of the new design system was evaluated by model performance tests. As the results, it was confirmed that the optimized runner presented higher efficiency compared with an originally designed runner. Besides optimization of runner, instability vibration which occurred at high part load operating condition was investigated by model test and gas-liquid two-phase flow analysis. As the results, it was confirmed that the instability vibration was caused by oval cross section whirl which was caused by recirculation flow near runner cone wall.

  14. Theoretical modeling, simulation and experimental study of hybrid piezoelectric and electromagnetic energy harvester

    NASA Astrophysics Data System (ADS)

    Li, Ping; Gao, Shiqiao; Cong, Binglong

    2018-03-01

    In this paper, performances of vibration energy harvester combined piezoelectric (PE) and electromagnetic (EM) mechanism are studied by theoretical analysis, simulation and experimental test. For the designed harvester, electromechanical coupling modeling is established, and expressions of vibration response, output voltage, current and power are derived. Then, performances of the harvester are simulated and tested; moreover, the power charging rechargeable battery is realized through designed energy storage circuit. By the results, it's found that compared with piezoelectric-only and electromagnetic-only energy harvester, the hybrid energy harvester can enhance the output power and harvesting efficiency; furthermore, at the harmonic excitation, output power of harvester linearly increases with acceleration amplitude increasing; while it enhances with acceleration spectral density increasing at the random excitation. In addition, the bigger coupling strength, the bigger output power is, and there is the optimal load resistance to make the harvester output the maximal power.

  15. Simplified approach to the mixed time-averaging semiclassical initial value representation for the calculation of dense vibrational spectra

    NASA Astrophysics Data System (ADS)

    Buchholz, Max; Grossmann, Frank; Ceotto, Michele

    2018-03-01

    We present and test an approximate method for the semiclassical calculation of vibrational spectra. The approach is based on the mixed time-averaging semiclassical initial value representation method, which is simplified to a form that contains a filter to remove contributions from approximately harmonic environmental degrees of freedom. This filter comes at no additional numerical cost, and it has no negative effect on the accuracy of peaks from the anharmonic system of interest. The method is successfully tested for a model Hamiltonian and then applied to the study of the frequency shift of iodine in a krypton matrix. Using a hierarchic model with up to 108 normal modes included in the calculation, we show how the dynamical interaction between iodine and krypton yields results for the lowest excited iodine peaks that reproduce experimental findings to a high degree of accuracy.

  16. Numerical assessment of fore-and-aft suspension performance to reduce whole-body vibration of wheel loader drivers

    NASA Astrophysics Data System (ADS)

    Fleury, Gérard; Mistrot, Pierre

    2006-12-01

    While driving off-road vehicles, operators are exposed to whole-body vibration acting in the fore-and-aft direction. Seat manufacturers supply products equipped with fore-and-aft suspension but only a few studies report on their performance. This work proposes a computational approach to design fore-and-aft suspensions for wheel loader seats. Field tests were conducted in a quarry to analyse the nature of vibration to which the driver was exposed. Typical input signals were recorded to be reproduced in the laboratory. Technical specifications are defined for the suspension. In order to evaluate the suspension vibration attenuation performance, a model of a sitting human body was developed and coupled to a seat model. The seat model combines the models of each suspension component. A linear two-degree-of-freedom model is used to describe the dynamic behaviour of the sitting driver. Model parameters are identified by fitting the computed apparent mass frequency response functions to the measured values. Model extensions are proposed to investigate postural effects involving variations in hands and feet positions and interaction of the driver's back with the backrest. Suspension design parameters are firstly optimized by computing the seat/man model response to sinusoidal acceleration. Four criteria including transmissibility, interaction force between the driver's back and the backrest and relative maximal displacement of the suspension are computed. A new suspension design with optimized features is proposed. Its performance is checked from calculations of the response of the seat/man model subjected to acceleration measured on the wheel loader during real work conditions. On the basis of the computed values of the SEAT factors, it is found possible to design a suspension that would increase the attenuation provided by the seat by a factor of two.

  17. System transmits mechanical vibration into hazardous environment

    NASA Technical Reports Server (NTRS)

    Armstrong, D. G.; Gaal, A. E.

    1965-01-01

    Vibration transducers are tested in a hazardous environment using a single axis transmission system with an electromagnetic shaker table and vibrating wires which drive identical rocker arms, one in the test cell and the other outside. This system can be modified for a multiaxis configuration.

  18. Research on the design of fixture for motor vibration test

    NASA Astrophysics Data System (ADS)

    Shen, W. X.; Ma, W. S.; Zhang, L. W.

    2018-03-01

    The vibration reliability of the new energy automobile motor plays a very important role in driving safety, so it is very important to test the vibration durability of the motor. In the vibration test process, the fixture is very important, simulated road spectrum signal vibration can be transmitted without distortion to the motor through the fixture, fixture design directly affect the result of vibration endurance test. On the basis of new energy electric vehicle motor concrete structure, Two fixture design and fixture installation schemes for lateral cantilever type and base bearing type are put forward in this article, the selection of material, weighting process, middle alignment process and manufacturing process are summarized.The modal analysis and frequency response calculation of the fixture are carried out in this design, combine with influence caused by fixture height and structure profile on response frequency, the response frequency of each order of the fixture is calculated, then ultimately achieve the purpose of guiding the design.

  19. Evaluation of haptic interfaces for simulation of drill vibration in virtual temporal bone surgery.

    PubMed

    Ghasemloonia, Ahmad; Baxandall, Shalese; Zareinia, Kourosh; Lui, Justin T; Dort, Joseph C; Sutherland, Garnette R; Chan, Sonny

    2016-11-01

    Surgical training is evolving from an observership model towards a new paradigm that includes virtual-reality (VR) simulation. In otolaryngology, temporal bone dissection has become intimately linked with VR simulation as the complexity of anatomy demands a high level of surgeon aptitude and confidence. While an adequate 3D visualization of the surgical site is available in current simulators, the force feedback rendered during haptic interaction does not convey vibrations. This lack of vibration rendering limits the simulation fidelity of a surgical drill such as that used in temporal bone dissection. In order to develop an immersive simulation platform capable of haptic force and vibration feedback, the efficacy of hand controllers for rendering vibration in different drilling circumstances needs to be investigated. In this study, the vibration rendering ability of four different haptic hand controllers were analyzed and compared to find the best commercial haptic hand controller. A test-rig was developed to record vibrations encountered during temporal bone dissection and a software was written to render the recorded signals without adding hardware to the system. An accelerometer mounted on the end-effector of each device recorded the rendered vibration signals. The newly recorded vibration signal was compared with the input signal in both time and frequency domains by coherence and cross correlation analyses to quantitatively measure the fidelity of these devices in terms of rendering vibrotactile drilling feedback in different drilling conditions. This method can be used to assess the vibration rendering ability in VR simulation systems and selection of ideal haptic devices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Dual-Actuator Active Vibration-Control System

    NASA Technical Reports Server (NTRS)

    Kascak, Albert F.; Kiraly, Louis J.; Montague, Gerald T.; Palazzolo, Alan B.; Manchala, Daniel

    1994-01-01

    Dual-actuator active vibration-control (DAAVC) system is developmental system of type described in "Active Vibration Dampers for Rotating Machinery" (LEW-15427). System features sensors and actuators positioned and oriented at bearings to measure and counteract vibrations of shaft along either of two axes perpendicular to axis of rotation. Effective in damping vibrations of helicopter-engine test stand, making it safer to operate engine at speeds near and above first resonance of engine/test-stand system. Opens new opportunities for engine designers to draw more power from engine, and concept applicable to other rotating machines.

  1. Experimental analysis of thread movement in bolted connections due to vibrations

    NASA Technical Reports Server (NTRS)

    Ramsey, G. ED; Jenkins, Robert C.

    1995-01-01

    This is the final report of research project NAS8-39131 #33 sponsored by NASA's George C. Marshall Space Flight Center (MSFC) and carried out by the Civil Engineering Department of Auburn University (Auburn, Alabama) and personnel of MSFC. The objective of this study was to identify the main design parameters contributing to the loosening of bolts due to vibration and to identify their relative importance and degree of contribution to bolt loosening. Vibration testing was conducted on a shaketable with a controlled-random input in the dynamic testing laboratory of the Structural Test Division of MSFC. Test specimens which contained one test bolt were vibrated for a fixed amount of time and a percentage of pre-load loss was measured. Each specimen tested implemented some combination of eleven design parameters as dictated by the design of experiment methodology employed. The eleven design parameters were: bolt size (diameter), lubrication on bolt, hole tolerance, initial pre-load, nut locking device, grip length, thread pitch, lubrication between mating materials, class of fit, joint configuration, and mass of configuration. These parameters were chosen for this experiment because they are believed to be the design parameters having the greatest impact on bolt loosening. Two values of each design parameter were used and each combination of parameters tested was subjected to two different directions of vibration and two different g-levels of vibration. One replication was made for each test to gain some indication of experimental error and repeatability and to give some degree of statistical credibility to the data, resulting in a total of 96 tests being performed. The results of the investigation indicated that nut locking devices, joint configuration, fastener size, and mass of configuration were significant in bolt loosening due to vibration. The results of this test can be utilized to further research the complex problem of bolt loosening due to vibration.

  2. Optical fiber grating vibration sensor for vibration monitoring of hydraulic pump

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengyi; Liu, Chuntong; Li, Hongcai; He, Zhenxin; Zhao, Xiaofeng

    2017-06-01

    In view of the existing electrical vibration monitoring traditional hydraulic pump vibration sensor, the high false alarm rate is susceptible to electromagnetic interference and is not easy to achieve long-term reliable monitoring, based on the design of a beam of the uniform strength structure of the fiber Bragg grating (FBG) vibration sensor. In this paper, based on the analysis of the vibration theory of the equal strength beam, the principle of FBG vibration tuning based on the equal intensity beam is derived. According to the practical application of the project, the structural dimensions of the equal strength beam are determined, and the optimization design of the vibrator is carried out. The finite element analysis of the sensor is carried out by ANSYS, and the first order resonant frequency is 94.739 Hz. The vibration test of the sensor is carried out by using the vibration frequency of 35 Hz and the vibration source of 50 Hz. The time domain and frequency domain analysis results of test data show that the sensor has good dynamic response characteristics, which can realize the accurate monitoring of the vibration frequency and meet the special requirements of vibration monitoring of hydraulic pump under specific environment.

  3. Two methods for modeling vibrations of planetary gearboxes including faults: Comparison and validation

    NASA Astrophysics Data System (ADS)

    Parra, J.; Vicuña, Cristián Molina

    2017-08-01

    Planetary gearboxes are important components of many industrial applications. Vibration analysis can increase their lifetime and prevent expensive repair and safety concerns. However, an effective analysis is only possible if the vibration features of planetary gearboxes are properly understood. In this paper, models are used to study the frequency content of planetary gearbox vibrations under non-fault and different fault conditions. Two different models are considered: phenomenological model, which is an analytical-mathematical formulation based on observation, and lumped-parameter model, which is based on the solution of the equations of motion of the system. Results of both models are not directly comparable, because the phenomenological model provides the vibration on a fixed radial direction, such as the measurements of the vibration sensor mounted on the outer part of the ring gear. On the other hand, the lumped-parameter model provides the vibrations on the basis of a rotating reference frame fixed to the carrier. To overcome this situation, a function to decompose the lumped-parameter model solutions to a fixed reference frame is presented. Finally, comparisons of results from both model perspectives and experimental measurements are presented.

  4. System level mechanical testing of the Clementine spacecraft

    NASA Technical Reports Server (NTRS)

    Haughton, James; Hauser, Joseph; Raynor, William; Lynn, Peter

    1994-01-01

    This paper discusses the system level structural testing that was performed to qualify the Clementine Spacecraft for flight. These tests included spin balance, combined acoustic and axial random vibration, lateral random vibration, quasi-static loads, pyrotechnic shock, modal survey and on-orbit jitter simulation. Some innovative aspects of this effort were: the simultaneously combined acoustic and random vibration test; the mass loaded interface modal survey test; and the techniques used to assess how operating on board mechanisms and thrusters affect sensor vision.

  5. Optimised Environmental Test Approaches in the GOCE Project

    NASA Astrophysics Data System (ADS)

    Ancona, V.; Giordano, P.; Casagrande, C.

    2004-08-01

    The Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) is dedicated to measuring the Earth's gravity field and modelling the geoid with extremely high accuracy and spatial resolution. It is the first Earth Explorer Core mission to be developed as part of ESA's Living Planet Programme and is scheduled for launch in 2006. The program is managed by a consortium of European companies: Alenia Spazio, the prime contractor, Astrium GmbH, the platform responsible, Alcatel Space Industries and Laben, suppliers of the main payloads, respectively the Electrostatic Gravity Gradiometer (EGG) and the Satellite to Satellite Tracking Instrument (SSTI), actually a precise GPS receiver. The GOCE Assembly Integration and Verification (AIV) approach is established and implemented in order to demonstrate to the customer that the satellite design meets the applicable requirements and to qualify and accept from lower level up to system level. The driving keywords of "low cost" and "short schedule" program, call for minimizing the development effort by utilizing off-the-shelf equipment combined with a model philosophy lowering the number of models to be used. The paper will deal on the peculiarities of the optimized environmental test approach in the GOCE project. In particular it introduces the logic of the AIV approach and describe the foreseen tests at system level within the SM environmental test campaign, outlining the Quasi Static test performed in the frame of the SM sine vibration tests, and the PFM environmental test campaign pinpointing the deletion of the Sine Vibration test on PFM model. Furthermore the paper highlights how the Model and Test Effectiveness Database (MATD) can be utilized for the prediction of the new space projects like GOCE Satellite.

  6. Topographic analysis of the skull vibration-induced nystagmus test with piezoelectric accelerometers and force sensors.

    PubMed

    Dumas, Georges; Lion, Alexis; Perrin, Philippe; Ouedraogo, Evariste; Schmerber, Sébastien

    2016-03-23

    Vibration-induced nystagmus is elicited by skull or posterior cervical muscle stimulations in patients with vestibular diseases. Skull vibrations delivered by the skull vibration-induced nystagmus test are known to stimulate the inner ear structures directly. This study aimed to measure the vibration transfer at different cranium locations and posterior cervical regions to contribute toward stimulus topographic optimization (experiment 1) and to determine the force applied on the skull with a hand-held vibrator to study the test reproducibility and provide recommendations for good clinical practices (experiment 2). In experiment 1, a 100 Hz hand-held vibrator was applied on the skull (vertex, mastoids) and posterior cervical muscles in 11 healthy participants. Vibration transfer was measured by piezoelectric sensors. In experiment 2, the vibrator was applied 30 times by two experimenters with dominant and nondominant hands on a mannequin equipped to measure the force. Experiment 1 showed that after unilateral mastoid vibratory stimulation, the signal transfer was higher when recorded on the contralateral mastoid than on the vertex or posterior cervical muscles (P<0.001). No difference was observed between the different vibratory locations when vibration transfer was measured on vertex and posterior cervical muscles. Experiment 2 showed that the force applied to the mannequin varied according to the experimenters and the handedness, higher forces being observed with the most experienced experimenter and with the dominant hand (10.3 ± 1.0 and 7.8 ± 2.9 N, respectively). The variation ranged from 9.8 to 29.4% within the same experimenter. Bone transcranial vibration transfer is more efficient from one mastoid to the other mastoid than other anatomical sites. The mastoid is therefore the optimal site for skull vibration-induced nystagmus test in patients with unilateral vestibular lesions and enables a stronger stimulation of the healthy side. In clinical practice, the vibrator should be placed on the mastoid and should be held by the clinician's dominant hand.

  7. A Cross-Validation Approach to Approximate Basis Function Selection of the Stall Flutter Response of a Rectangular Wing in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Vio, Gareth A.; Andrianne, Thomas; azak, Norizham Abudl; Dimitriadis, Grigorios

    2012-01-01

    The stall flutter response of a rectangular wing in a low speed wind tunnel is modelled using a nonlinear difference equation description. Static and dynamic tests are used to select a suitable model structure and basis function. Bifurcation criteria such as the Hopf condition and vibration amplitude variation with airspeed were used to ensure the model was representative of experimentally measured stall flutter phenomena. Dynamic test data were used to estimate model parameters and estimate an approximate basis function.

  8. Fixed Base Modal Survey of the MPCV Orion European Service Module Structural Test Article

    NASA Technical Reports Server (NTRS)

    Winkel, James P.; Akers, J. C.; Suarez, Vicente J.; Staab, Lucas D.; Napolitano, Kevin L.

    2017-01-01

    Recently, the MPCV Orion European Service Module Structural Test Article (E-STA) underwent sine vibration testing using the multi-axis shaker system at NASA GRC Plum Brook Station Mechanical Vibration Facility (MVF). An innovative approach using measured constraint shapes at the interface of E-STA to the MVF allowed high-quality fixed base modal parameters of the E-STA to be extracted, which have been used to update the E-STA finite element model (FEM), without the need for a traditional fixed base modal survey. This innovative approach provided considerable program cost and test schedule savings. This paper documents this modal survey, which includes the modal pretest analysis sensor selection, the fixed base methodology using measured constraint shapes as virtual references and measured frequency response functions, and post-survey comparison between measured and analysis fixed base modal parameters.

  9. Hand-arm Vibration Effects on Performance, Tactile Acuity, and Temperature of Hand

    PubMed Central

    Forouharmajd, Farhad; Yadegari, Mehrdad; Ahmadvand, Masoumeh; Forouharmajd, Farshad; Pourabdian, Siamak

    2017-01-01

    Effects of vibration appear as mechanical and psychological disorders, including stress reactions, cognitive and movement disorders, problem in concentration and paying attention to the assigned duties. The common signs and symptoms of hand-arm vibration (HAV) in the fingers and hands may appear as pins and needles feeling, tingling, numbness, and also the loss of finger sensation and dexterity. Laboratory Virtual Instrument Engineering Workbench programming software designed for occupational vibrations measurement was used to calculate HAV acceleration. Hole steadiness test is designed to measure involuntary movement of people. V-Pieron test is designed for one of the other aspects of the psycho motor phenomena of steadiness by moving the stylus across a V-form ruler. The two points test was an experiment of touch acuity, which used a caliper by placing the two styli very close on the pad of finger knuckles. The temperature of finger skin is also measured simultaneous to the above tests. Wilcoxon test indicated that a significant decrement in hand steadiness occurred after gripping a vibrating handle for 2 min (P ≤ 0.003). Wilcoxon test also represented a significant change in errors after gripping a grinder vibratory handle (P ≤ 0.003). The differences at all of the knuckles were significant with a confidence interval percentage of 99%. There was a significant reduction in finger skin temperature before and after exposure to vibration (mean = 0.45°C, based on paired sample test). The obtained results considerably demonstrated the relation between hand performance and vibrations due to gripping a grinder. It can be concluded that an injury or accident may happen after exposure to vibrations for the fine duties, in fast actions. PMID:29204383

  10. Hand-arm Vibration Effects on Performance, Tactile Acuity, and Temperature of Hand.

    PubMed

    Forouharmajd, Farhad; Yadegari, Mehrdad; Ahmadvand, Masoumeh; Forouharmajd, Farshad; Pourabdian, Siamak

    2017-01-01

    Effects of vibration appear as mechanical and psychological disorders, including stress reactions, cognitive and movement disorders, problem in concentration and paying attention to the assigned duties. The common signs and symptoms of hand-arm vibration (HAV) in the fingers and hands may appear as pins and needles feeling, tingling, numbness, and also the loss of finger sensation and dexterity. Laboratory Virtual Instrument Engineering Workbench programming software designed for occupational vibrations measurement was used to calculate HAV acceleration. Hole steadiness test is designed to measure involuntary movement of people. V-Pieron test is designed for one of the other aspects of the psycho motor phenomena of steadiness by moving the stylus across a V-form ruler. The two points test was an experiment of touch acuity, which used a caliper by placing the two styli very close on the pad of finger knuckles. The temperature of finger skin is also measured simultaneous to the above tests. Wilcoxon test indicated that a significant decrement in hand steadiness occurred after gripping a vibrating handle for 2 min ( P ≤ 0.003). Wilcoxon test also represented a significant change in errors after gripping a grinder vibratory handle ( P ≤ 0.003). The differences at all of the knuckles were significant with a confidence interval percentage of 99%. There was a significant reduction in finger skin temperature before and after exposure to vibration (mean = 0.45°C, based on paired sample test). The obtained results considerably demonstrated the relation between hand performance and vibrations due to gripping a grinder. It can be concluded that an injury or accident may happen after exposure to vibrations for the fine duties, in fast actions.

  11. 30 CFR 75.211 - Roof testing and scaling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... examination does not disclose a hazardous condition, sound and vibration roof tests, or other equivalent tests, shall be made where supports are to be installed. When sound and vibration tests are made, they shall be...

  12. 30 CFR 75.211 - Roof testing and scaling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... examination does not disclose a hazardous condition, sound and vibration roof tests, or other equivalent tests, shall be made where supports are to be installed. When sound and vibration tests are made, they shall be...

  13. 30 CFR 75.211 - Roof testing and scaling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... examination does not disclose a hazardous condition, sound and vibration roof tests, or other equivalent tests, shall be made where supports are to be installed. When sound and vibration tests are made, they shall be...

  14. 30 CFR 75.211 - Roof testing and scaling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... examination does not disclose a hazardous condition, sound and vibration roof tests, or other equivalent tests, shall be made where supports are to be installed. When sound and vibration tests are made, they shall be...

  15. Lightweight Vehicle and Driver’s Whole-Body Models for Vibration Analysis

    NASA Astrophysics Data System (ADS)

    MdSah, Jamali; Taha, Zahari; Azwan Ismail, Khairul

    2018-03-01

    Vehicle vibration is a main factor for driving fatigue, discomfort and health problems. The ability to simulate the vibration characteristics in the vehicle and its effects on driver’s whole-body vibration will give significant advantages to designers especially on the vehicle development time and cost. However, it is difficult to achieve optimal condition of ride comfort and handling when using passive suspension system. This paper presents mathematical equations that can be used to describe the vibration characteristics of a lightweight electric vehicle that had been developed. The vehicle’s model was combined with the lumped-parameter model of driver to determine the whole-body vibration level when the vehicle is passing over a road hump using Matlab Simulink. The models were simulated at a constant speed and the results were compared with the experimental data. The simulated vibration level at the vehicle floor and seat were almost similar to the experimental vibration results. The suspension systems that are being used for the solar vehicle are able to reduce the vibration level due to the road hump. The models can be used to simulate and choose the optimal parameters for the suspensions.

  16. Street-running LRT may not affect a neighbour's sleep

    NASA Astrophysics Data System (ADS)

    Sarkar, S. K.; Wang, J.-N.

    2003-10-01

    A comprehensive dynamic finite difference model and analysis was conducted simulating LRT running at the speed of 24 km/h on a city street. The analysis predicted ground borne vibration (GBV) to remain at or below the FTA criterion of a RMS velocity of 72 VdB (0.004 in/s) at the nearest residence. In the model, site-specific stratography and dynamic soil and rock properties were used that were determined from in situ testing. The dynamic input load from LRT vehicle running at 24 km/h was computed from actual measured data from Portland, Oregon's West Side LRT project, which used a low floor vehicle similar to the one proposed for the NJ Transit project. During initial trial runs of the LRT system, vibration and noise measurements were taken at three street locations while the vehicles were running at about the 20-24 km/h operating speed. The measurements confirmed the predictions and satisfied FTA criteria for noise and vibration for frequent events. This paper presents the analytical model, GBV predictions, site measurement data and comparison with FTA criterion.

  17. Numerical Simulation and Experimental Validation of Failure Caused by Vibration of a Fan

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Han, Wu; Feng, Jianmei; Jia, Xiaohan; Peng, Xueyuan

    2017-08-01

    This paper presents the root cause analysis of an unexpected fracture occurred on the blades of a motor fan used in a natural gas reciprocating compressor unit. A finite element model was established to investigate the natural frequencies and modal shapes of the fan, and a modal test was performed to verify the numerical results. It was indicated that the numerical results agreed well with experimental data. The third order natural frequency was close to the six times excitation frequency, and the corresponding modal shape was the combination of bending and torsional vibration, which consequently contributed to low-order resonance and fracture failure of the fan. The torsional moment obtained by a torsional vibration analysis of the compressor shaft system was exerted on the numerical model of the fan to evaluate the dynamic stress response of the fan. The results showed that the stress concentration regions on the numerical model were consistent with the location of fractures on the fan. Based on the numerical simulation and experimental validation, some recommendations were given to improve the reliability of the motor fan.

  18. Computational Study of Nonequilibrium Chemistry in High Temperature Flows

    NASA Astrophysics Data System (ADS)

    Doraiswamy, Sriram

    Recent experimental measurements in the reflected shock tunnel CUBRC LENS-I facility raise questions about our ability to correctly model the recombination processes in high enthalpy flows. In the carbon dioxide flow, the computed shock standoff distance over the Mars Science Laboratory (MSL) shape was less than half of the experimental result. For the oxygen flows, both pressure and heat transfer data on the double cone geometry were not correctly predicted. The objective of this work is to investigate possible reasons for these discrepancies. This process involves systematically addressing different factors that could possibly explain the differences. These factors include vibrational modeling, role of electronic states and chemistry-vibrational coupling in high enthalpy flows. A state-specific vibrational model for CO2, CO, O2 and O system is devised by taking into account the first few vibrational states of each species. All vibrational states with energies at or below 1 eV are included in the present work. Of the three modes of vibration in CO2 , the antisymmetric mode is considered separately from the symmetric stretching mode and the doubly degenerate bending modes. The symmetric and the bending modes are grouped together since the energy transfer rates between the two modes are very large due to Fermi resonance. The symmetric and bending modes are assumed to be in equilibrium with the translational and rotational modes. The kinetic rates for the vibrational-translation energy exchange reactions, and the intermolecular and intramolecular vibrational-vibrational energy exchange reactions are based on experimental data to the maximum extent possible. Extrapolation methods are employed when necessary. This vibrational model is then coupled with an axisymmetric computational fluid dynamics code to study the expansion of CO2 in a nozzle. The potential role of low lying electronic states is also investigated. Carbon dioxide has a single excited state just below the dissociation limit. CO and O recombine exclusively to this excited state and then relaxes to the ground electronic state. A simple model is proposed to represent the effect of this intermediate state in the recombination process. Preliminary results show that this excited electronic state is a potential reason for increased shock standoff distance observed in LENS facility. The general role of chemistry-vibrational coupling in modeling recombination dominated flows is also investigated. A state-specific model is developed to analyze the complex chemistry-vibration coupling present in high enthalpy nozzle flows. A basic model is formulated assuming molecules are formed at a specific vibrational level and then allowed to relax through a series of vibration-vibration and vibration-translation processes. This is carried out assuming that the molecules behave as either harmonic or anharmonic oscillators. The results are compared with the standard vibration-chemistry model for high enthalpy nozzle flows. Next, a prior recombination model that accounts for the rotational-vibrational coupling is used to obtain prior recombination distribution. A distribution of recombining states is obtained as a function of the total energy available to the system. The results of this model are compared with recent experiments. Additionally, a reduced model is formulated using the concepts of the state-specific model. The results of this reduced model is compared with the state specific model.

  19. Investigation of Noise and Vibration in Tires Through Analytical Modeling, Tests and Simulations

    NASA Astrophysics Data System (ADS)

    Cao, Rui

    Tire noise and vibration is an interesting topic, with more and more people paying attention to this issue. Tire noise can both propagate into the vehicle interior and radiate directly toward the immediate environment. Tire noise is not only related to vehicle passengers' comfort but also affects the residential or working area near highways, especially in high population density regions. The emerging electric vehicles also emphasize tires' role in vehicle Noise Vibration and Harshness (NVH) since power-train noises are significantly reduced. The study in this research focuses on the noise and vibration of tires from the low to high frequency range, typically from 60 kHz to 2 kHz. From the analytical point of view, forced vibration of a fully coupled 2D structural-acoustical model is presented and a 3D structural model is also investigated for various input conditions. Both circumferential and cross-sectional shearing motions in the analytical tire models can be observed. Static tire surface mobilities were also measured to verify the findings from the developed models. On the experimental side, the loading effect on tire noise radiation was studied, where applied loads ranged from 500 lbs to 1300 lbs. Results indicate that sound radiation is usually proportional to the loading, except between 1.1 kHz to 1.7 kHz where the load-noise relation is reversed. In addition, tire noise generated by road surface discontinuities was also studied experimentally. As expected, a broadband increase of the noise spectrum can be observed below 1 kHz compared to the noise on a continuous surface. However, the difference tends to diminish above 1 kHz except in a certain narrow frequency band depending on the particular tire tested. High frequency waves and motions in tire cross-sectional directions were identified as occurring in the frequency range of interest. A two-dimensional cross-sectional analytical tire model was proposed for further investigations, in order to verify the relation among high frequency tire noise properties and the fast propagating waves and cross-sectional motions in tires. Finally, a fully coupled finite element tire-wheel model was developed to simulate the tire deformation under static vertical loading and to explore the influence of various excitation forces. The forces or accelerations, depending on the boundary conditions, at the wheel center can be calculated from the tire model up to 500 Hz. The results can be potentially used as input for vehicle full body simulations, thus accelerating the optimization process of new product development.

  20. The discomfort produced by noise and whole-body vertical vibration presented separately and in combination.

    PubMed

    Huang, Yu; Griffin, Michael J

    2014-01-01

    This study investigated the prediction of the discomfort caused by simultaneous noise and vibration from the discomfort caused by noise and the discomfort caused by vibration when they are presented separately. A total of 24 subjects used absolute magnitude estimation to report their discomfort caused by seven levels of noise (70-88 dBA SEL), 7 magnitudes of vibration (0.146-2.318 ms(- 1.75)) and all 49 possible combinations of these noise and vibration stimuli. Vibration did not significantly influence judgements of noise discomfort, but noise reduced vibration discomfort by an amount that increased with increasing noise level, consistent with a 'masking effect' of noise on judgements of vibration discomfort. A multiple linear regression model or a root-sums-of-squares model predicted the discomfort caused by combined noise and vibration, but the root-sums-of-squares model is more convenient and provided a more accurate prediction of the discomfort produced by combined noise and vibration.

  1. Flow induced vibrations in the SSME injector heads

    NASA Technical Reports Server (NTRS)

    Lepore, Frank A.

    1991-01-01

    A description is given of the flowfield in the Space Shuttle Main Engine (SSME) powerhead, the mechanisms which control flow-induced vibrations, and previous experimental work. An in-depth description is given of the development phase of the program , which includes the analysis, design, and fabrication of liquid oxygen (LOX) posts models used in the experimental phase, as well as test facilities, equipment, and procedures used. Also covered is the experimental data analysis, which includes overall steady state powerhead flowfield as well as the high frequency response of the LOX posts.

  2. A Quadruped Micro-Robot Based on Piezoelectric Driving

    PubMed Central

    Su, Qi; Quan, Qiquan; Deng, Jie; Yu, Hongpeng

    2018-01-01

    Inspired by a way of rowing, a new piezoelectric driving quadruped micro-robot operating in bending-bending hybrid vibration modes was proposed and tested in this work. The robot consisted of a steel base, four steel connecting pins and four similar driving legs, and all legs were bonded by four piezoelectric ceramic plates. The driving principle is discussed, which is based on the hybrid of first order vertical bending and first order horizontal bending vibrations. The bending-bending hybrid vibration modes motivated the driving foot to form an elliptical trajectory in space. The vibrations of four legs were used to provide the driving forces for robot motion. The proposed robot was fabricated and tested according to driving principle. The vibration characteristics and elliptical movements of the driving feet were simulated by FEM method. Experimental tests of vibration characteristics and mechanical output abilities were carried out. The tested resonance frequencies and vibration amplitudes agreed well with the FEM calculated results. The size of robot is 36 mm × 98 mm × 14 mm, its weight is only 49.8 g, but its maximum load capacity achieves 200 g. Furthermore, the robot can achieve a maximum speed of 33.45 mm/s. PMID:29518964

  3. A Quadruped Micro-Robot Based on Piezoelectric Driving.

    PubMed

    Su, Qi; Quan, Qiquan; Deng, Jie; Yu, Hongpeng

    2018-03-07

    Inspired by a way of rowing, a new piezoelectric driving quadruped micro-robot operating in bending-bending hybrid vibration modes was proposed and tested in this work. The robot consisted of a steel base, four steel connecting pins and four similar driving legs, and all legs were bonded by four piezoelectric ceramic plates. The driving principle is discussed, which is based on the hybrid of first order vertical bending and first order horizontal bending vibrations. The bending-bending hybrid vibration modes motivated the driving foot to form an elliptical trajectory in space. The vibrations of four legs were used to provide the driving forces for robot motion. The proposed robot was fabricated and tested according to driving principle. The vibration characteristics and elliptical movements of the driving feet were simulated by FEM method. Experimental tests of vibration characteristics and mechanical output abilities were carried out. The tested resonance frequencies and vibration amplitudes agreed well with the FEM calculated results. The size of robot is 36 mm × 98 mm × 14 mm, its weight is only 49.8 g, but its maximum load capacity achieves 200 g. Furthermore, the robot can achieve a maximum speed of 33.45 mm/s.

  4. Ab initio-informed maximum entropy modeling of rovibrational relaxation and state-specific dissociation with application to the O{sub 2} + O system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulakhmetov, Marat, E-mail: mkulakhm@purdue.edu; Alexeenko, Alina, E-mail: alexeenk@purdue.edu; Gallis, Michael, E-mail: magalli@sandia.gov

    Quasi-classical trajectory (QCT) calculations are used to study state-specific ro-vibrational energy exchange and dissociation in the O{sub 2} + O system. Atom-diatom collisions with energy between 0.1 and 20 eV are calculated with a double many body expansion potential energy surface by Varandas and Pais [Mol. Phys. 65, 843 (1988)]. Inelastic collisions favor mono-quantum vibrational transitions at translational energies above 1.3 eV although multi-quantum transitions are also important. Post-collision vibrational favoring decreases first exponentially and then linearly as Δv increases. Vibrationally elastic collisions (Δv = 0) favor small ΔJ transitions while vibrationally inelastic collisions have equilibrium post-collision rotational distributions. Dissociationmore » exhibits both vibrational and rotational favoring. New vibrational-translational (VT), vibrational-rotational-translational (VRT) energy exchange, and dissociation models are developed based on QCT observations and maximum entropy considerations. Full set of parameters for state-to-state modeling of oxygen is presented. The VT energy exchange model describes 22 000 state-to-state vibrational cross sections using 11 parameters and reproduces vibrational relaxation rates within 30% in the 2500–20 000 K temperature range. The VRT model captures 80 × 10{sup 6} state-to-state ro-vibrational cross sections using 19 parameters and reproduces vibrational relaxation rates within 60% in the 5000–15 000 K temperature range. The developed dissociation model reproduces state-specific and equilibrium dissociation rates within 25% using just 48 parameters. The maximum entropy framework makes it feasible to upscale ab initio simulation to full nonequilibrium flow calculations.« less

  5. Self-consistent Non-LTE Model of Infrared Molecular Emissions and Oxygen Dayglows in the Mesosphere and Lower Thermosphere

    NASA Technical Reports Server (NTRS)

    Feofilov, Artem G.; Yankovsky, Valentine A.; Pesnell, William D.; Kutepov, Alexander A.; Goldberg, Richard A.; Mauilova, Rada O.

    2007-01-01

    We present the new version of the ALI-ARMS (for Accelerated Lambda Iterations for Atmospheric Radiation and Molecular Spectra) model. The model allows simultaneous self-consistent calculating the non-LTE populations of the electronic-vibrational levels of the O3 and O2 photolysis products and vibrational level populations of CO2, N2,O2, O3, H2O, CO and other molecules with detailed accounting for the variety of the electronic-vibrational, vibrational-vibrational and vibrational-translational energy exchange processes. The model was used as the reference one for modeling the O2 dayglows and infrared molecular emissions for self-consistent diagnostics of the multi-channel space observations of MLT in the SABER experiment It also allows reevaluating the thermalization efficiency of the absorbed solar ultraviolet energy and infrared radiative cooling/heating of MLT by detailed accounting of the electronic-vibrational relaxation of excited photolysis products via the complex chain of collisional energy conversion processes down to the vibrational energy of optically active trace gas molecules.

  6. Force limits measured on a space shuttle flight

    NASA Technical Reports Server (NTRS)

    Scharton, T.

    2000-01-01

    The random vibration forces between a payload and the sidewall of the space shuttle have been measured in flight and compared with the force specifications used in ground vibration tests. The flight data are in agreement with a semi-empirical method, which is widely used to predict vibration test force limits.

  7. Modeling for IFOG Vibration Error Based on the Strain Distribution of Quadrupolar Fiber Coil

    PubMed Central

    Gao, Zhongxing; Zhang, Yonggang; Zhang, Yunhao

    2016-01-01

    Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environment, especially in vibrational environment, is necessary for its practical applications. This paper presents a mathematical model for IFOG to theoretically compute the short-term rate errors caused by mechanical vibration. The computational procedures are mainly based on the strain distribution of quadrupolar fiber coil measured by stress analyzer. The definition of asymmetry of strain distribution (ASD) is given in the paper to evaluate the winding quality of the coil. The established model reveals that the high ASD and the variable fiber elastic modulus in large strain situation are two dominant reasons that give rise to nonreciprocity phase shift in IFOG under vibration. Furthermore, theoretical analysis and computational results indicate that vibration errors of both open-loop and closed-loop IFOG increase with the raise of vibrational amplitude, vibrational frequency and ASD. Finally, an estimation of vibration-induced IFOG errors in aircraft is done according to the proposed model. Our work is meaningful in designing IFOG coils to achieve a better anti-vibration performance. PMID:27455257

  8. Vibro-acoustic model of a piezoelectric-based stethoscope for chest sound measurements

    NASA Astrophysics Data System (ADS)

    Nelson, G.; Rajamani, R.; Erdman, A.

    2015-09-01

    This article focuses on the influence of noise and vibration on chest sound measurements with a piezoelectric stethoscope. Two types of vibrations, namely inputs through the patient chest and disturbances from the physician, influence the acoustic measurement. The goal of this work is to develop a model to understand the propagation of these vibrational noises through the stethoscope and to the piezoelectric sensing element. Using the model, methods to reduce the influence of disturbances acting on the stethoscope from the physician handling the device are explored. A multi-DOF rigid body vibration model consisting of discrete connected components is developed for the piezoelectric stethoscope. Using a two-port lumped parameter model, the mechanical vibrations are related to the resulting electrical signal. The parameterized state space model is experimentally validated and its parameters are identified by using a thorax simulator and vibration shaker. Based on predictions from the model, the introduction of vibration isolation to reduce the influence of physician noise on the transducer is then pursued. It is shown that direct vibration isolation between the transducer and the rest of the stethoscope structure leads to a reduction in coupling with the patient’s chest. However, if isolation is instead introduced between the transducer housing and the rest of the stethoscope, then vibration isolation from the physician is achieved with far less reduction in patient coupling. Experimental results are presented to study the influence of the proposed design changes and confirm the predicted model behavior.

  9. Radiation Analysis Program

    DTIC Science & Technology

    2018-02-28

    qualification testing to include vibrational, thermal bake and thermal cycling to ensure the experiment would perform as expected during operation on...series of tests for flight qualification. These tests included bake and thermal cycling. In addition, vibrational testing was also accomplished

  10. Self-tuning regulators for multicyclic control of helicopter vibration

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1982-01-01

    A class of algorithms for the multicyclic control of helicopter vibration and loads is derived and discussed. This class is characterized by a linear, quasi-static, frequency-domain model of the helicopter response to control; identification of the helicopter model by least-squared-error or Kalman filter methods; and a minimum variance or quadratic performance function controller. Previous research on such controllers is reviewed. The derivations and discussions cover the helicopter model; the identification problem, including both off-line and on-line (recursive) algorithms; the control problem, including both open-loop and closed-loop feedback; and the various regulator configurations possible within this class. Conclusions from analysis and numerical simulations of the regulators provide guidance in the design and selection of algorithms for further development, including wind tunnel and flight tests.

  11. Application of stiffened cylinder analysis to ATP interior noise studies

    NASA Technical Reports Server (NTRS)

    Wilby, E. G.; Wilby, J. F.

    1983-01-01

    An analytical model developed to predict the interior noise of propeller driven aircraft was applied to experimental configurations for a Fairchild Swearingen Metro II fuselage exposed to simulated propeller excitation. The floor structure of the test fuselage was of unusual construction - mounted on air springs. As a consequence, the analytical model was extended to include a floor treatment transmission coefficient which could be used to describe vibration attenuation through the mounts. Good agreement was obtained between measured and predicted noise reductions when the foor treatment transmission loss was about 20 dB - a value which is consistent with the vibration attenuation provided by the mounts. The analytical model was also adapted to allow the prediction of noise reductions associated with boundary layer excitation as well as propeller and reverberant noise.

  12. Alphabus Mechanical Validation Plan and Test Campaign

    NASA Astrophysics Data System (ADS)

    Calvisi, G.; Bonnet, D.; Belliol, P.; Lodereau, P.; Redoundo, R.

    2012-07-01

    A joint team of the two leading European satellite companies (Astrium and Thales Alenia Space) worked with the support of ESA and CNES to define a product line able to efficiently address the upper segment of communications satellites : Alphabus Starting in 2009 and up to 2011 the mechanical validation of the Alphabus platform has been obtained thanks to static tests performed on dedicated static model and to environmental test performed on the first satellite based on Alphabus: Alphasat I-XL. The mechanical validation of the Alphabus platform presented an excellent opportunity to improve the validation and qualification process, with respect to static, sine vibrations, acoustic and L/V shock environment, minimizing recurrent cost of manufacturing, integration and testing. A main driver on mechanical testing is that mechanical acceptance testing at satellite level will be performed with empty tanks due to technical constraints (limitation of existing vibration devices) and programmatic advantages (test risk reduction, test schedule minimization). In this paper the impacts that such testing logic have on validation plan are briefly recalled and its actual application for Alphasat PFM mechanical test campaign is detailed.

  13. Noise-Induced Building Vibrations Caused by Concorde and Conventional Aircraft Operations at Dulles and Kennedy International Airports

    NASA Technical Reports Server (NTRS)

    Mayes, W. H.; Stephens, D. G.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.; Deloach, R.; Cawthorn, J. M.; Finley, T. D.; Lynch, J. W.

    1978-01-01

    Outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded, as were the associated vibration levels in the walls, windows, and floors at building test sites. In addition, limited subjective tests were conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise. Representative peak levels of aircraft noise-induced building vibrations are reported and comparisons are made with structural damage criteria and with vibration levels induced by common domestic events. In addition, results of a pilot study are reported which indicate the human detection threshold for noise-induced floor vibrations.

  14. A New Approach in Force-Limited Vibration Testing of Flight Hardware

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Kern, Dennis L.

    2012-01-01

    The force-limited vibration test approaches discussed in NASA-7004C were developed to reduce overtesting associated with base shake vibration tests of aerospace hardware where the interface responses are excited coherently. This handbook outlines several different methods of specifying the force limits. The rationale for force limiting is based on the disparity between the impedances of typical aerospace mounting structures and the large impedances of vibration test shakers when the interfaces in general are coherently excited. Among these approaches, the semi-empirical method is presently the most widely used method to derive the force limits. The inclusion of the incoherent excitation of the aerospace structures at mounting interfaces has not been accounted for in the past and provides the basis for more realistic force limits for qualifying the hardware using shaker testing. In this paper current methods for defining the force limiting specifications discussed in the NASA handbook are reviewed using data from a series of acoustic and vibration tests. A new approach based on considering the incoherent excitation of the structural mounting interfaces using acoustic test data is also discussed. It is believed that the new approach provides much more realistic force limits that may further remove conservatism inherent in shaker vibration testing not accounted for by methods discussed in the NASA handbook. A discussion on using FEM/BEM analysis to obtain realistic force limits for flight hardware is provided.

  15. Finite Element Vibration Modeling and Experimental Validation for an Aircraft Engine Casing

    NASA Astrophysics Data System (ADS)

    Rabbitt, Christopher

    This thesis presents a procedure for the development and validation of a theoretical vibration model, applies this procedure to a pair of aircraft engine casings, and compares select parameters from experimental testing of those casings to those from a theoretical model using the Modal Assurance Criterion (MAC) and linear regression coefficients. A novel method of determining the optimal MAC between axisymmetric results is developed and employed. It is concluded that the dynamic finite element models developed as part of this research are fully capable of modelling the modal parameters within the frequency range of interest. Confidence intervals calculated in this research for correlation coefficients provide important information regarding the reliability of predictions, and it is recommended that these intervals be calculated for all comparable coefficients. The procedure outlined for aligning mode shapes around an axis of symmetry proved useful, and the results are promising for the development of further optimization techniques.

  16. Non-contact modal testing by the electromagnetic acoustic principle: Applications to bending and torsional vibrations of metallic pipes

    NASA Astrophysics Data System (ADS)

    Kim, Hongjin; Park, Chan Il; Lee, Sun Ho; Kim, Yoon Young

    2013-02-01

    This work aims to investigate a possibility of non-contact vibration modal testing for bending and torsional motions of cylindrical bodies such as pipes. Here, a transducer operated by the electromagnetic acoustic coupling principle is newly devised. Depending on vibration modes, bending or torsional, different magnetic circuit configurations are employed to fabricate the transducer. The main characteristic of the proposed transducer is non-contact vibration generation in a test specimen without any mechanical movement of the actuating unit. It can be also used as a non-contact sensing unit if necessary. The validity and the performance of the proposed non-contact modal testing method are checked with several experiments.

  17. Validation of finite element and boundary element methods for predicting structural vibration and radiated noise

    NASA Technical Reports Server (NTRS)

    Seybert, A. F.; Wu, X. F.; Oswald, Fred B.

    1992-01-01

    Analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise radiated from the box. The FEM was used to predict the vibration, and the surface vibration was used as input to the BEM to predict the sound intensity and sound power. Vibration predicted by the FEM model was validated by experimental modal analysis. Noise predicted by the BEM was validated by sound intensity measurements. Three types of results are presented for the total radiated sound power: (1) sound power predicted by the BEM modeling using vibration data measured on the surface of the box; (2) sound power predicted by the FEM/BEM model; and (3) sound power measured by a sound intensity scan. The sound power predicted from the BEM model using measured vibration data yields an excellent prediction of radiated noise. The sound power predicted by the combined FEM/BEM model also gives a good prediction of radiated noise except for a shift of the natural frequencies that are due to limitations in the FEM model.

  18. A Resonant Damping Study Using Piezoelectric Materials

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Duffy, K. P.; Choi, B. B.; Morrison, C. R.; Jansen, R. H.; Provenza, A. J.

    2008-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue (HCF) problems requiring damping treatments to mitigate vibration levels. Based on the technical challenges and requirements learned from previous turbomachinery blade research, a feasibility study of resonant damping control using shunted piezoelectric patches with passive and active control techniques has been conducted on cantilever beam specimens. Test results for the passive damping circuit show that the optimum resistive shunt circuit reduces the third bending resonant vibration by almost 50%, and the optimum inductive circuit reduces the vibration by 90%. In a separate test, active control reduced vibration by approximately 98%.

  19. Vibration manual

    NASA Technical Reports Server (NTRS)

    Green, C.

    1971-01-01

    Guidelines of the methods and applications used in vibration technology at the MSFC are presented. The purpose of the guidelines is to provide a practical tool for coordination and understanding between industry and government groups concerned with vibration of systems and equipments. Topics covered include measuring, reducing, analyzing, and methods for obtaining simulated environments and formulating vibration specifications. Methods for vibration and shock testing, theoretical aspects of data processing, vibration response analysis, and techniques of designing for vibration are also presented.

  20. A preliminary structural analysis of space-based inflatable tubular frame structures

    NASA Technical Reports Server (NTRS)

    Main, John A.; Peterson, Steven W.; Strauss, Alvin M.

    1992-01-01

    The use of inflatable structures has often been proposed for aerospace and planetary applications. The advantages of such structures include low launch weight and easy assembly. The use of inflatables for applications requiring very large frame structures intended for aerospace use are proposed. In order to consider using an inflated truss, the structural behavior of the inflated frame must be examined. The statics of inflated tubes as beams was discussed in the literature, but the dynamics of these elements has not received much attention. In an effort to evaluate the vibration characteristics of the inflated beam a series of free vibration tests of an inflated fabric cantilevers were performed. Results of the tests are presented and models for system behavior posed.

Top